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A B S T R A C T

Reliability enhancement is indispensable in modern operations. It aims to ensure the viability of complex func-
tionalities in competitive products. We propose a full-robust screening/optimization method that promotes the
rapid multi-factorial profiling of censored highly-fractionated lifetime datasets. The method intends to support
operational conditions that demand quick, practical and economical experimentation. The innovative part of this
proposal includes the robust split and quantification of structured lifetime information in terms of location and
dispersion tendencies. To accomplish the robust data-reduction of lifetimes, maximum breakdown-point esti-
mators are introduced to stabilize potential external-noise intrusions, which might be manifested as outliers or
extremities. The novel solver provides resilience by robustifying the location (median) and dispersion (Rous-
seeuw-Croux Qn) estimations. The proposed profiler fuses dichotomized and homogenized lifetime information in
a distribution-free manner. The converted and consolidated lifetime dataset is non-parametrically pre-screened to
ensure error balances across effects. Consequently, any strong effects that maximize the lifetime response are
diagnosed as long as the error symmetry has been previously established. We discuss problems that may be
encountered in comparison to other multi-factorial profilers/optimizers upon application to densely-fractionated-
and-saturated experimental schemes. We comment on the lean and agile advantages of the proposed technique
with respect to several traditional treatments for the difficult case that implicates small and censored survival
datasets. The robust screening procedure is illustrated on an industrial-level paradigm that concerns the multi-
factorial reliability improvement of a thermostat; the trial units have been subjected to conditions of censoring
and use-rate acceleration.
1. Introduction

Innovation and quality are vital to elevating modern operations to
peak performance (Al-Hakim and Jin, 2013; Maillard, 2015; ReVelle,
2001; Silva et al., 2014). Both strategies rely on an enterprise’s
data-driven capacity to rapidly generate and apply new knowledge
(Bendoly et al., 2012). Operational maturity progresses through various
phases that combine leagile (lean-and-agile) engineering philosophies
and six-sigma quality initiatives (Balle et al., 2017; Cherrafi et al., 2016;
Singh et al., 2017; Vinodh et al., 2008; Virmani et al., 2018). A core
manufacturing priority is the reliability improvement of intricate proc-
esses/products. This is because the continuous minimization of process
waste and product failures leads to robust operational behavior and,
hence, to promising product placement in the markets. Consequently,
overall brand profitability tends to grow (King and Jewett, 2010;
Mackelprang et al., 2015). The Six Sigma toolbox provides several
pathways to design quality and reliability into innovative products
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(Cudney and Agustiady, 2016; Pyzdek and Keller, 2014). However, in
manufacturing, we often encounter non-normal processes because of
either their inherent nature or their low operational maturity, or even
both. To predict and improve the reliability performance status of
non-normal processes remains a challenging subject in Six Sigma
(Aldowaisan et al., 2015). Thus, the discovery of new reliability screen-
ing/optimization techniques justifiably merits further exploration such
as to encompass real-life processes, which are governed by strong
non-normal tendencies.

Design of Experiments (DOE) furnishes the main arsenal for carrying
out reliability screening and optimization studies (Condra, 2001). Reli-
ability improvement requires specialized DOE approaches, which
harmoniously enmesh classical reliability theory (Lawless, 2003; Meeker
and Escobar, 1998) with traditional experimental planning and analysis
(Box et al., 2005; Taguchi et al., 2004). Maximizing the product lifetime
response is the crux in reliability analysis. While investigating lifetime
trends, an experimenter is often confronted with the practical need to
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screen and optimize product lifetimes that may be much longer than the
allotted duration of the improvement project. To shorten the trial time
span and accelerate the data collection procedure, censored trials (Collins
et al., 2013; Nelson, 1990) and use-rate acceleration (Meeker and Esco-
bar, 1998) are designed into the sampling scheme.

In a typical manufacturing environment, a comprehensive list of
factors should be initially considered for a factor-screening effort to be
effective. To improve product lifetimes, voluminous experiments are
usually anticipated (Bhote and Bhote, 2004). However, the exorbitant
number of trials may be viewed as a formidable obstacle to expediting a
reliability improvement project. The necessity for discovery is counter-
acted by substantial costs in wasted test materials and labor hours.
Moreover, real screening/optimization studies should be directly con-
ducted on a production line to ensure that any predictions are to be
meaningful and applicable. Thus, additional costs are to be realized from
interrupting the production flow in order to divert operational avail-
ability to industrial trials. Thereupon, early researchers in reliability
engineering resorted to conducting fractionated trials (Hamada and Wu,
1991, 1995) in order to: 1) reduce the total volume and duration of the
experiments, 2) minimize operational unavailability, 3) curtail research
expenditures, and 4) accelerate decision-making. Highly efficient plans
rely on ‘rapid-and-dense’ structured sampling, which is furnished by
fractional factorial design (FFD) schemes (Box et al., 2005). FFDs play the
role of standard trial recipe planners in Six Sigma (Pyzdek and Keller,
2014). A popular class of FFDs which is suitable for industrial pro-
duct/process improvement projects are the Taguchi-type orthogonal ar-
rays (OAs) (Taguchi et al., 2004). Past efforts combined Taguchi-type
OAs with survival analysis to provide a basic framework for
multi-factorial screening/optimization solvers (Hamada 1993, 1995).
Such approaches mainly demand on previously determining a proper
parametric reliability distribution, which should convincingly represent
the fitted lifetime OA-dataset. Ordinarily, the Weibull and the lognormal
distributions have been considered as the primary candidate reliability
functions of choice (Bullington et al., 1993; Joseph and Yu, 2006; Lio
et al., 2015; Lv et al., 2017; Pi~na-Monarrez and Ortiz-Ya~nez, 2015; Wang
et al., 2017). Of course, there are many other families of reliability
functions that should not be disregarded. This is the reason that profes-
sional statistical software packages are equipped to carry out, as a pre-
liminary phase, a distribution identification analysis, before proceeding
to any formal prediction studies. Since fractionated trials are often
sped-up by keeping short the extent of replication, a distribution iden-
tification session might not always be fruitful. Wemay not overlook cases
where samples are susceptible to distribution multiplicities, or even, on
the other end, to indeterminate distributions. Moreover, it might even
occur that miscellaneous types of distributions may be involved in order
to describe the sample lifetime data across the various OA-recipes. The
intermixing of multifarious known and even unresolvable parametric
distributions might lead to “messy” datasets (Milliken and Johnson,
2004). Messy data are intriguing because of their association to real
complex processes. Messy data analysis may be arduous. Ostensibly,
order statistics may be more suitable in interpreting complex phenomena
than standard t-distribution statistics (Ludbrook and Dudley, 1998).
Robust estimators, which deliver maximum breakdown-point perfor-
mance, become imperative in the treatment of messy data (Wilcox,
2010). Recently, specialized nonparametric treatments have been rec-
ommended to aid in delineating the behavior of small non-normal sam-
ples (Pett, 2015; Siebert and Siebert, 2017).

Following Taguchi’s approach to robust design, it is instructed that
the factor analysis be split in terms of location and dispersion measures
(Taguchi et al., 2004). The suggested measures for central tendency and
variability are the response mean and the signal-to-noise ratio (SNR),
respectively (Taguchi et al., 2000). For the mean and the SNR estimations
to be valid, the sample size of the replicated data should be adequate and
the behavior of the collected observations ought to adhere to normality.
Otherwise, both estimations might lead to weak or even spurious pre-
dictions (Silver, 2015). Unfortunately, in survival analysis, data
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normality is not guaranteed. Another aspect that complicates matters is
that lifetime samples are usually expected to be available in suboptimal
size - due to practical and economic constraints – as it was mentioned
earlier. An approximate minimum sample size, which is encountered in
reliability research, is in the vicinity of ten observations (Darby, 2010).

By saturating a selected OA scheme, maximum utilization of the
experimental plan is achieved. As a result, the selected design accom-
modates the maximum number of controlling factors that it could handle
(Taguchi et al., 2004). From an operational standpoint, it is a desirable
condition, because saturation also presents an extra opportunity to
minimizing further the trial expenditures. In Taguchi methods, the un-
controlled noise is captured by summarizing the replicate behavior in
terms of the mean and SNR estimations (Taguchi et al., 2004). This
data-reduction step converts the OA-sampled data-matrix into two
component vectors (mean and SNR), each posing in an ‘unreplicated’
form. Regular multifactorial treatments, such as the analysis of variance
(ANOVA) and the general linear regression modeling (GLM), cannot
process OA-datasets in a ‘saturated-and-unreplicated’ state. All available
degrees of freedom are strictly assigned to size the magnitudes of the
effects (Box et al., 2005). Consequently, an estimation of the aleatory and
epistemic uncertainties may not be attained (Briggs, 2016). The problem
is exacerbated when there is also involvement of messy data (Milliken
and Johnson, 1989).

In ‘saturated-and-censored’ OA trials, the synchronous conditions of
sample ‘smallness’ and data ‘messiness’may undermine the capability of
a regular multifactorial solver to deliver robust results. Robustness
cannot be relinquished in operational environments that expect high
performance (Roy, 2010). A novel multifactorial reliability profiler is
proposed to permit the robust lifetime screening/optimization, while
simultaneously incorporating location and dispersion information. This
aspect may be an advance with respect to the classical Taguchi meth-
odology. In Taguchi methods, two separate searches for active effects are
conducted – based on their influence on either the location or the
dispersion tendencies of the response. Thus, two separate groups of
strong effects are identified. Then, an empirical ‘mending’ of the two
separate predictions is attempted to arrive to a joint (compromised) so-
lution. To fortify the lifetime data-conversion process, we substitute the
mean and SNR estimators with two robust estimators. The median re-
places the mean as a preferred location estimator (Hoaglin et al., 2000).
The median sustains the maximum attainable breakdown point value at
50% (Huber and Ronchetti, 2009). Thus, it robustly stabilizes the
response location estimations. On the contrary, the mean is unguarded
against underlying skewed or messy data trends, since its
breakdown-point performance plummets to the minimum attainable
value of 0%. Similarly, the scale estimator Qn replaces the scale SNR
measure (Rousseeuw and Croux, 1993). This action is necessary because
the SNR estimator carries the minimum possible breakdown point value
of 0%. Instead, the Qn estimator retains the maximum possible break-
down point value of 50%, even for asymmetrical distributions.

To recapitulate, we attempt to process a replicated ‘censored-and-
saturated’ lifetime OA-dataset, which is dichotomized and reduced into a
form of two robust measure vectors. The median vector and the Qn-
estimator vector represent the response location and dispersion compo-
nents. It is a succinct information structure as long as the two vector
components are not correlated with each other. If it is verified that they
are uncorrelated, the two vectors may be treated with an appropriate
analyzer, which handles multiple responses. The robust multi-factorial
screening and optimization of multiple responses is a challenging task
because it requires specialized solvers (Gabrel et al., 2014; Kim and Lin,
2006). In dealing with ‘saturated-unreplicated-and-censored’
OA-datasets, the robust solver should be equipped to assess the symmetry
status of the residual errors across all the examined factor-settings.
Otherwise, the predicted group of strong effects may be misleading or
even erroneous. The desirability analysis (DA) is a popular method that is
employed to tackle multi-fractionated multi-response datasets (He et al.,
2012; Jeong and Kim, 2009). However, the DA has not been extensively



Fig. 1. Compact OA arrangement of n-experimental recipes, m-controlling factors and r-replicated lifetimes.
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studied in reliability improvement applications, which involve censoring
and non-normal responses. In general, the DA is considered a practical -
but also subjective - approach. A primary concern is that the DA uses a
composite desirability score to evaluate the “goodness of the optimiza-
tion” (Derringer and Suich, 1980). The concept of the desirability-score
performance has not been shown to correspond to a statistical signifi-
cance according to a reference law. Ergo, the DA predictions are not
gaged against a probabilistic distribution. A second issue is that the DA
uses ordinary regression fitting techniques to model the examined
OA-datasets. As it was mentioned earlier, the condition of ‘unre-
plication-saturation-and-censoring’, if it is imposed on OA-datasets, will
not permit the estimation of the statistical significance of the regression
coefficients. This is also extended to imply that the main assumptions of
the regression analysis will not be testable. Moreover, a quantification of
the coefficient of determination is not feasible. The emphasis on the
effectiveness of the multi-factorial analysis of censored lifetime data has
been placed on preselecting the right parametric model (Wang et al.,
2017). In the past, solutions have been suggested that track optimal
survival behavior by directly profiling the split OA-data in terms of
Weibull-type shape and scale parameters (Besseris, 2010). For small
samples and messy datasets the constant shape-parameter assumption in
Weibull regression may not be detectable (Mueller and Rigdon, 2015).
Thus, a more general modeling approach may be intriguing, if it permits
the data-conversion process with no prior knowledge about a particular
parametric reference law. This motivates us to propose a distribution-free
multi-factorial method to treat censored lifetime experiments. It is a
leagile approach. It is ‘lean’, because it simplifies the data-processing
phase by proposing a non-iterative solver. Hence, it automatically re-
duces computational work. It is also ‘lean’, because there are no binding
assumptions for posterior checking, as it is required, for instance, when
implementing ANOVA and GLM treatments. So, the intermediate work of
examining the validity of the assumptions is eliminated. Finally, it is a
‘lean’ technique, because it eliminates the work for searching and
establishing a parametric reliability model prior to conducting the
multifactorial analysis. On the other hand, it is ‘agile’ because it is
applicable to any survival distribution, while being adaptable and
responsive to any censored OA-dataset. The new methodology is eluci-
dated by undergoing a reliability improvement study for an
industrial-level thermostat. The previously published dataset has been
selected because it highlights a use-rate accelerated and censored (highly
fractionated) experimental plan for small sampling that simultaneously
accommodates a mix of several numerical and categorical controlling
factors (Bullington et al., 1993). Moreover, the interpretation of the
underlying phenomena in the non-normal saturated datasets continues to
attract attention today (Lv et al., 2017; Wang and Kececioglou, 2000;
Wang et al., 2017; Wu and Hamada, 2009). The solution is compared
with alternative approaches and their respective predictions. We
comment on advantages and disadvantages at several points during the
analysis process.

2. Methodology

The objective is to screen and/or improve a product’s reliability
through mini trials. A ‘mini’ endeavor is construed to be motivated by
practical and economic incentives. We contemplate the acceleration of
3

trials by: 1) reducing the total required trial volume, 2) lifetime censoring
and 3) use-rate speed-up. The reduction of the planned experimental
work is accomplished by implementing structured FFDs/OAs (Box et al.,
2005; Taguchi et al., 2004). We examine datasets that have been
generated by the general two-level OAs under the conditions of: 1) a
limited number of replicated runs (small lifetime samples), and 2)
censored (Type I) lifetime observations - to a predefined cutoff value (To).
To have a typical robust estimation of a sample, we minimally need at
least five observations – to form a boxplot (Hoaglin et al., 2000). In
particular to survival studies, this low limit may be about ten - as many as
the deciles - as reported in high-criticality publications (Darby, 2010).

The OAs are fractional factorial matrices of the (i,j) type. The OAn(2m)
tables are quantized arrays (Besseris, 2013) of all-purpose (‘ready--
to-use’) recipes, which allow the manipulation of as many as m con-
trolling factors (columns) by limiting the number of required recipes
(rows) to a maximum of n (<2m) combinations. We require the maximum
utilization of an OA trial-plan, which is achieved by saturating all
available array columns. This means that the OA-scheme permits infor-
mation collection from the maximum number of effects (m) it can handle,
with no additional overhead in costs and time. At saturation point, it
holds that n ¼ m þ 1; this indicates that all degrees of freedom are solely
assigned to the examined effects. Consequently, no residual error can be
estimated with ordinary treatments, i.e. methods based on ANOVA or
GLM. We label the group of investigated factors as: {X1, X2, …,Xm}. Their
respective predetermined settings on a selected saturated (i,j)-OA, are
denoted, then, as: {(xi1, xi2,…, xim) 2< |i¼ 1, 2… n}. Accelerated failure
tests are to be replicated r times per trial recipe. The resulting r-replicated
lifetime entries are symbolized as: {(lt1j, lt2j … ltnj) 2< |j ¼ 1,2, …,r}. A
concise depiction of a typical input-output OA arrangement, which the
factors and replicated lifetime responses are positioned on the left- and
right-hand side of the design, respectively, is provided in Fig. 1. The
proposed data analyzer does not require that a parametric reliability
framework have been previously established. The focal assumption of the
central limit theorem is naively absent from the backbone of the pro-
posed developments. We generalize in the proposed ‘framework’ to
encompass such cases where there might not be available a common
model to describe the replicate dataset, which is generated from all
executed OA-recipes.

In other words, different OA-recipes might generate samples that map
to different reliability models. Furthermore, the data processing is not
impeded by other complicating conditions, which may be exacerbated by
the restricted sampling tactics. The analyzer is apt to resolve relation-
ships under the more extreme conditions of: 1) an indeterminate distri-
bution and 2) multiplicities, i.e. several distributions fitting the same
sample data. Besides this agility to convert even pragmatic ‘messy’
datasets, the proposed processor may offer more tangible gains in com-
parison to ordinary multifactorial treatments. Comparing to ANOVA, the
proposed analyzer is built on a distribution-free perspective to waive
ANOVA’s two main pre-processing assumptions: 1) the normality of re-
sidual errors, and 2) the homoscedasticity. Similarly, comparing to GLM,
the proposed analyzer is relieved from the assumption-verification step
and its concomitant data post-processing. Namely, the post-processing
graphical work that is eliminated is: 1) the histogram of residuals, 2)
the normal plot of residuals, 3) the residuals-vs-fits plot and 4) the
residuals-vs-order plot. Therefore, the processor simplifies the analysis



Fig. 2. Data reduction, estimator rank ordering and rank fusion of the lifetime dataset of Fig. 1.

Fig. 3. Compact OA arrangement of n-experimental recipes with m-controlling

factors and ranked-and-fused bMi and bQni estimators ( ssri).
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cycle by designing in it the modern operational stipulation of lean
engineering.

In lack of a direct estimation of the residual error, early attempts, in
screening unreplicated-saturated FFD-datasets, introduced new types of
assumptions to resolve this anomaly. One assumption was that the
number of the strong factors is small in contrast to the rest of the
investigated effects (Daniel, 1959). This is called the sparsity assumption.
Moreover, the ‘larger’ inactive group of factors was assumed to also obey
normality. The separation of active and inactive effects was inspected
visually on a half-normal plot. Then, a simple filtering of the strong ef-
fects was empirically determined. There was no direct quantification of
the statistical significance of the outcome, though. A different approach,
which maintained the sparsity assumption, promoted an estimator for a
‘pseudo standard’ error in order to size the variation of any strong effects
(Lenth, 1989). To truncate the examined contrasts, the Lenth approach
had to introduce two constants. In the formulation, the constants were
fixed in all cases, even though there is no evidence of their universality.
To control the error rate for each individual effect, the t-distribution was
assumed to be the reference law. Subsequently, in an arbitrary fashion,
one-third of the available degrees of freedom are accounted toward an
estimate of the t-score. Overall, both methods (the half-normal plot and
Lenth test) are the prevailing options for screening in mainstream sta-
tistics software. The above reality offered an opportunity to experiment
with a novel ‘lean-and-agile’ solver. Thus, the proposed analyzer was
designed to rid of the sparsity assumption, be constant-free, and
distribution-free. To summarize ‘small-and-messy’ lifetime sample data,
a proper robust measure that captures the central tendency of the repli-
cate propensities is imperative.

A simple resistant location estimator – with maximum breakdown
point efficiency - is the median, which is defined as follows (Hoaglin
et al., 2000; Huber and Ronchetti, 2009; Milliken and Johnson, 2004):

bM i¼median
n
lti1; lti;2;…; ltir

o �� bM i2< 8 i¼ 1; 2;…; n (1)

This is advantageous when fending-off against outliers and extrem-
ities in inherently skewed data; it is often the norm in survival studies.
Similarly, we select the Qn-estimator to provide a resistant dispersion
measure for the replicate data; it also ensures maximum breakdown-
point efficiency in the presence of asymmetric data distributions. It is
defined as follows (Rousseeuw and Croux, 1993):

bQni ¼ d
���ltio � ltip

��; 1 � o � p � r
�
ðkÞ

���� d 2<; bQni 2< 8 i¼ 1; 2;…; n

(2)

The kth ordered value is given by:

k¼
�
h
2

�
with h ¼ r

�
2þ 1 (3)

It is an attractive feature that both estimators, the median and Qn, are
conveniently computed. We proceed by taking the difference of each
lifetime data entry (output in Fig. 1) from the censoring limit, To (Fig. 2).
Using equations (1)–(3), we reduce the censor-differenced lifetime ma-
trix (Fig. 2) to the two vector measures according to the median and the
Qn estimators (Fig. 2).

It is obvious that the r-replicated lifetime dataset has been condensed
down to two individual single-column (“unreplicated”) responses; they
4

represent the robustified location and dispersion properties of the orig-
inal lifetime dataset. To retain both vectors in the ensuing consolidation,
the two vectors should not be correlated. If it is found that they are
correlated, we drop any one of the two vectors in the output arrange-
ment. Then, the problem is cast to the simpler ‘unreplicated-saturated’
case (Besseris, 2013). The two vectors ought to be checked for depen-
dence with regular regression methods. Returning to the analysis pro-
cedure for the uncorrelated case, the median vector entries (Fig. 2) are
ordered to the rank vector rmi 2 R j i ¼ 1; 2;…; n (Fig. 2). Similarly, thebQni vector entries are rank-transformed to the new vector rqi 2 R j i ¼
1;2;…; n: To reach to an optimal selection of the examined factors, the
optimization direction aligns with the synchronous minimization of both

(and bQni) estimators. This is because the minimum median estimation of
the censor-differenced lifetimes is minimized at the censoring limit, i.e.

to value of 0. Likewise, by minimizing bQni, we minimize the fluctuation
of the lifetime values toward the censoring limit. By default, in either
case, ranks ascend by starting from the entries possessing the smallest

magnitude in dfMig and cfQnig. The lowest rank reflects the greatest
proximity to the respective goal. Squaring and summing the ranks of the
two ordered estimators uniformly fuses and concurrently aggregates
their constituent tendencies. The sum of squared ranks creates the new
variable, ssri 2 R j i ¼ 1;2;…; n (Fig. 2). This has practical meaning
because we seek to identify those effects that concurrently influence the
maximization of the reliability status. The restructuring of the original
input-output relationship in terms of the ‘ranked-and-fused’ output is
shown in concise from in Fig. 3.

The input-output OA arrangement in Fig. 3 is in the ‘saturated-unre-
plicated’ form. This condition demands a specialized tool to gauge the
effect strengths of the examined controlling factors. We utilize a “block-
and-profile” surrogate tool (Besseris, 2013) in order to detect uncertainty
asymmetries from across factor-settings. This is a crucial step that should
be completed before computing and awarding significance to the inves-
tigated effects. Briefly, we reiterate the key processing steps. First, we
‘meta-dimensionalize’ { ssri} to { ssri1 ;i2 ;…;im}. In this manner, trans-
parency improves since it allows direct tracking of the setting combina-
tions for all m factors. The linear model that is considered is:

ssri1 ;i2 ;…;im ¼M þ
Xm
j¼1

Dj þ εi1 ;i2 ;…;im (4)

The residual error, εi1 ;i2 ;…;im , consists of a random error plus any other
spontaneous unknowable intrusions. The indices i1; i2;…; im are sym-
bolically ‘binary’, coded as ‘-’ and ‘þ’, to represent the factor-setting
endpoints. The grand median, M, the median for each factor-setting,



Fig. 4. Boxplot screening of the 12 thermostat-lifetime OA-datasets - censored at 7342 (k-cycles).
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Ml, and their associated differences, Dl, in equation (4) are:

M ¼Medð� ssri1 ;i2 ;…;im

�Þ forall i1; i2; ::; im (5)

Ml ¼
(

Mþ
l ¼ Medð�LTi1 ;i2 ;…il ;::;im

�Þ if il → þ
M�

l ¼ Medð�LTi1 ;i2 ;…il ;::;im

�Þ if il → �

)
for all i1; i2;…; il�1; ilþ1:::; im (6)

Dl ¼
(

Dþ
l ¼ Mþ

l �M if il → þ
D�

l ¼ M�
l �M if il → �

)
(7)

The error asymmetry is quantified through the distribution-free error
balances:

ssr’’i1 ;i2 ;…;im ¼ M þ εi1 ;i2 ;…il ;::;im for all il and 1 � l � m (8)

The error balances are rank-ordered:

ssr
0 0
i1 ;i2 ;…;im → r0 i1 ;i2 ;…il ;::;im for all il and 1 � l � m (9)

The minimum rank-sum (Wilcoxon, 1945) of error balances is simply
computed for each considered factor setting (Besseris, 2013).

TEl ¼Min

8>><>>:
RSEþ

l ¼
X
il

r0 i1 ;i2 ;…il ;::;im if il → þ

RSE�
l ¼

X
il

r0 i1 ;i2 ;…il ;::;im if il → �

9>>=>>;
for all i1; i2;…; il�1; ilþ1:::; im (10)

The minimum rank-sum is sized on the Wilcoxon-Mann-Whitney
reference scale (Mann-Whitney, 1947; Wilcoxon, 1945) to deliver the
corresponding statistical significance (p-value). Then, the p-value is
contrasted against a standard error rate, i.e. α ¼ 0.05. If the error
asymmetry is statistically significant (p-value < α), the uncertainty in-
trusions may interfere with and hence mar the effect strength estimation
in the profiling process. Then, for that particular controlling factor, we
may infer that the predicted strength size might not be reliable. Exact
p-values are obtained using the Mann-Whitney test from the software
package MINITAB® (v.18). The reconstructed one-factor responses are:

ssr0 i1 ;i2 ;…;im ¼M þ Dl þ εi1 ;i2 ;…il ;::;im for all il and 1 � l � m (11)

They also receive a rank-ordering to obtain:
5

ssr0 i1 ;i2 ;…;im → ri1 ;i2 ;…il ;::;im for all il and 1 � l � m (12)
Reorganizing the effects in terms of the minimum rank-sums, we
finally obtain:

Tl ¼Min

8>><>>:
RSþl ¼

X
il

ri1 ;i2 ;…il ;::;im if il → þ

RS�l ¼
X
il

ri1 ;i2 ;…il ;::;im if il → �

9>>=>>; for all i1; i2;…; il�1; ilþ1:::; im

(13)

The statistical potency of the effects is measured against the
Wilcoxon-Mann-Whitney reference distribution. The exact p-values are
again computed by the software package MINITAB® (v.18), which also
allows for corrections in the case of tied values. The p-value performance
of the strong effects will be controlled at a false discovery rate of α¼ 0.05
(Benjamini and Hochberg, 1995). In a nutshell, the methodology may be
paced in three distinct stages: 1) a distribution identification screening
(optional), 2) an uncertainty symmetry screening, and 3) an effect
strength profiling (screening/optimization).

3. Results

3.1. Data pre-screening

The original thermostat lifetime dataset featured a twelve-run eleven-
factor FFD problem (Bullington et al., 1993). Each of the twelve inde-
pendent samples consisted of ten lifetime observations. We opt to
pre-screen each of the twelve samples in order to identify a parametric
reliability distribution that could best fit each. An immediate comment is
that all twelve datasets may be discerned in two groups: 1) those datasets
that include some observations which are truncated at the censoring limit
(‘censored’), and 2) those datasets that contain no truncated observations
at all (‘uncensored’). In Fig. 4, we display the twelve samples in a box plot
screening (MINITAB 18). Three runs generated data, which had to be
truncated at the censoring limit (7342 k-cycles). This ‘two-group’
discrimination is instructive because it allows releasing information with
different accuracy potential. Several types of reliability distributions may
be tried to fit the ‘uncensored’ datasets. Their goodness of fit may be
objectively evaluated by ordinary tests, such as the Anderson-Darling
(AD) test. On the hand, ‘censored’ datasets need to be treated with the
adjusted Anderson-Darling (aAD) test, which relays no information on



Table 1
Goodness of fit for 14 ordinary reliability distributions (for the 9 uncensored datasets).

Table 2
Goodness of fit for eleven ordinary reliability distributions (three censored
dataset cases).

Distribution Recipe ID

R1 R6 R11

adj AD adj AD adj AD

Weibull 36.85 43.12 36.86
Lognormal 36.85 43.12 36.86
Exponential 36.85 43.15 36.91
Loglogistic 36.85 43.12 36.86
3-Parameter Weibull 36.85 43.13 36.86
3-Parameter Lognormal 36.86 43.14 36.86
2-Parameter Exponential 36.86 43.13 36.86
3-Parameter Loglogistic 36.86 43.14 36.86
Smallest Extreme Value 36.85 43.14 36.86
Normal 36.85 43.14 36.86
Logistic 36.85 43.14 36.86
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the significance of the results. In Table 1, we tabulate the goodness of fit
for 14 common reliability distribution functions (MINITAB 18), for the
nine ‘uncensored’ datasets (runs #2–5, 7–10, 12). We have also included
the p-value (red font) of the likelihood-ratio test (LRT-P) to indicate any
potential correction if we decide to add a third parameter in the fitted
model. The primary disposition is that several candidate distributions
might achieve comparable performance, leading to similarly low AD
scores. For example, we may elaborate on the results regarding to the
sample behavior of run #2 (R2-dataset). We notice that the goodness of
fit is statistically indistinguishable among the following functions:
lognormal, 3-parameter lognormal, 3-parameterWeibull, largest extreme
value, gamma, logistic, log-logistic and 3-parameter log-logistic. In all
eight models, their estimated AD scores are in the vicinity of 0.2. This
multiplicity of equivalent models might be perplexing. In lack of speci-
fying a parametric reference law, conventional effect-profiling attempts
might result to dubious outcomes. Surprisingly, analogous trends emerge
when fitting the three ‘censored’ datasets (runs # 1, 6 and 11). From
Table 2, we notice the perfect agreement among all of the estimated aAD
scores of the three datasets - for all fitted distributions. There is a con-
spicuous kind of bias that emerges when the number of the survived test
units exceed the number of failed units in type I censored experiments.
We observe that the number of censored observations dictates the fitting
performance. Different trials with equal number of censored observations
6

perform similarly regardless of: 1) the variability of the failed units (runs
#1 and 11) and the type of the fitted reliability model. Moreover, the
number of censored observations regulates the fitting performance be-
tween trials (runs #1 or 11 against run #6). While a sample size of 10, for
each run, may be generally valid for normal and non-normal distributions
(Dodson, 1994; Jantschi and Bolboaca, 2018; Marsaglia, 2004), the
validity of the parametric estimations rely on the validity of the selected
reference law. Finally, it is illuminating to contemplate how individual
recipes drastically influence lifetime parametrization and model uncer-
tainty. We exemplify the diverse trends of the goodness-of-fit for a typical
3-parameter Weibull model; it has been applied to three separate runs
(R4-, R5-and R6-datasets). Plotting the coefficient of determination (R2)
versus the location parameter, in Fig. 5, we discern three distinctly
different tendencies:

1) The variable R2 may experience a plateau. Thus, the uncertainty
range for the location estimation (Run #4) is uniformly broadened;
the location estimation also includes a zero value.

2) The variable R2 may be ‘optimally’ located ‘anywhere’ on the tracing
curve (Run #5).

3) The variable R2 may reach a peak value for a given location value that
minimizes uncertainty (Run #6).

We infer that there is an exhibited variety with respect to the func-
tional tendencies of the variable R2, due to the location parameter. This
might render the chance to identify a single parametric model rather
remote. To gain more insight from the examined data, we estimate the
relevant robust descriptive statistics along with the common distribution
measures of symmetry and peakedness. We tabulate the descriptive sta-
tistics values (Table 3) in terms of the typical three quartiles and a robust
measure of variation, the interquartile range (IQR). The common distri-
bution shape estimators, kurtosis and skewness, have been computed,
too. We notice that there are great differences among the estimated
magnitudes of the medians, as well as those among the IQRs. Median
lifetime values fluctuate from 117 to 7342 (k-cycles). Similarly, their
respective IQR values range from 92.5 to 5888 (k-cycles). We also
conclude that the skewness and peakedness dramatically vary from run
to run. This may imply that complex mechanisms influence the lifetime
response at different factorial combinations. Among runs, in Table 3,
right-skewness dominates left-skewness by a factor of two. Furthermore,
the group of the ‘censored’ runs favors left-skewed formations (Table 3).



Fig. 5. Graphs of the coefficient of determination versus location parameter for 3-parameter Weibull model.
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Table 3
Descriptive statistics of the original and log-transformed dataset.

Variable Original Data Transformed Data

Q1 Median Q3 IQR Skewness Kurtosis Q1 Median Q3 IQR Skewness Kurtosis

CT1 6218 7342 7342 1124 �1.94 2.49 8.664 8.901 8.901 0.237 �2.35 5.26
CT2 293 328 420.5 127.5 0.75 1.07 5.68 5.792 6.0414 0.3614 �0.05 0.76
CT3 125 151 281.8 156.8 0.91 0.13 4.827 5.017 5.639 0.813 �0.13 �0.07
CT4 110.8 317 490 379.3 0.12 �1.32 4.707 5.748 6.194 1.487 �0.59 �1.2
CT5 215.3 390 498.5 283.3 �0.39 �1.26 5.335 5.966 6.211 0.876 �1.06 0
CT6 1454 7342 7342 5888 �1.05 �1.09 7.26 8.901 8.901 1.641 �1.31 0.14
CT7 326 409 591.8 265.8 0.65 �0.32 5.787 6.01 6.383 0.596 0.03 �0.48
CT8 86.8 141 179.3 92.5 0.57 �0.2 4.457 4.943 5.182 0.725 �0.29 �0.66
CT9 214 314 527.3 313.3 0.63 �0.77 5.343 5.749 6.258 0.914 �0.14 �0.96
CT10 296 357.5 432.3 136.3 0.45 �0.37 5.6886 5.8787 6.0687 0.3801 0.05 �0.68
CT11 5612 7342 7342 1731 �1.78 1.41 8.186 8.901 8.901 0.715 �1.78 1.42
CT12 84.5 117 238.5 154 2.56 7.08 4.423 4.762 5.473 1.05 1.03 1.3

Table 4
Differenced dataset with respect to the right-censoring limit value (7342 k-cycles).

Run # dCT1 dCT2 dCT3 dCT4 dCT5 dCT6 dCT7 dCT8 dCT9 dCT10

1 6385 4496 0 0 0 0 0 0 0 0
2 7136 7058 7046 7037 7029 6999 6978 6922 6920 6799
3 7279 7229 7213 7204 7193 7189 7125 7070 7031 6940
4 7266 7238 7229 7108 7072 6978 6944 6861 6825 6731
5 7250 7216 7097 7092 6952 6952 6863 6855 6809 6769
6 6852 6371 5727 574 0 0 0 0 0 0
7 7110 7016 7016 6991 6970 6896 6883 6752 6745 6610
8 7286 7271 7250 7238 7216 7186 7181 7175 7126 7079
9 7200 7200 7104 7095 7032 7024 6922 6860 6679 6670
10 7083 7076 7036 7005 6995 6974 6970 6916 6891 6832
11 6961 6922 0 0 0 0 0 0 0 0
12 7286 7280 7250 7238 7229 7221 7178 7110 7084 6611

Table 5
Median and Qn data reduction, their associated ranked quantities, and their sum
of squared ranks (SSR).

Run # M rM Qn rQn SSR

1 0 2 0 2 8
2 7014 7 94.29 6.5 91.25
3 7191 10 105.47 8 164
4 7025 8 207.75 12 208
5 6952 5 198.16 11 146
6 0 2 0 2 8
7 6933 4 190.17 10 116
8 7201 11 76.71 4 137
9 7028 9 175.79 9 162
10 6984.5 6 94.29 6.5 78.25
11 0 2 0 2 8
12 7225 12 81.5 5 169
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The overall standard error for skewness is 0.687. This indicates that the
group of the ‘uncensored’ runs is more prone to symmetrical spreads. But
run #12 does not conform to normality (Table 1) as the p-value for its AD
test score is significant to a level of 0.01. Similarly, the kurtosis estima-
tions display mixed-up sign tendencies. The kurtosis overall standard
error is 1.334. Run # 12 appears to produce the only leptokurtic sample.
Data from runs #1 and #11 deviate from normal peakedness behavior.
Their corresponding AD test scores are 2.37 (p < 0.005) and 2.53 (p <

0.005). In Appendix A, we provide comparisons of the adjusted
Anderson-Darling test scores (maximum likelihood estimates) along with
graphical depictions for the trials (runs #2–5 and #7–10) that have not
outright rejected normality in Table 1. The non-normal distribution
models, which were preferably used in previous publications (Weibull,
lognormal and smallest extreme value), are contrasted against the per-
formance of a normal fit. It appears that the estimates from the non-
normal candidate models justifiably compete with a normal fit, accord-
ing to the adjusted Anderson-Darling test scores. The lifetime datasets are
usually log-transformed in order to improve the resolution of the diag-
nostic pre-screening in difficult cases. In Table 3, we have repeated the
same descriptive analysis for the log-transformed lifetime values. The
picture is still perplexing, as the replicates from runs # 1 and 11 appear
left-skewed, while the dataset that is related to run #1 switches behavior
to appear leptokurtic.

The Anderson-Darling test scores for runs # 1 (2.32), #6 (1.62), and
#11 (2.51) are statistically significant at a level of 0.01. This outcome
also supports the argument that the three ‘censored’ runs may not be
modeled by a transformed normal distribution, and a more intricate
modeling should be pursued. From Fig. 1, we notice that comparing
among different goodness-of-fit performances (based on the regular
Anderson-Darling scores), the normal distribution could be actually
nominated to describe eight specific trials (R2-R5, R7-10). However, Q-Q
plot (STATISTICA 7.0) comparisons demonstrate that some non-normal
distributions compete or outcompete the normal distribution fits by
delivering narrower 95%-confidence bands in most cases, i.e. Weibull
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distribution: trials # 2, 8, and 10, beta distribution: trials # 4, and 5, and
gamma distribution: trials # 3, 7 and 9. Even so, the attempted normal/
non-normal fits are questionable because often not all points can be
restricted in the expected 95% confidence bands, thus further accentu-
ating the overall messy behavior of the various trials.
3.2. Robust multifactorial profiling

The original lifetime dataset (Bullington et al., 1993) has been dif-
ferenced with respect to the right-censoring limit of 7342 k-cycles. The
resulting values for the twelve runs are listed in Table 4. In Table 5, we
list the median (M) and Qn values for each run. In Fig. 6A, the linear
regression of M vs Qn demonstrates that this fitting may not be infor-
mative, as several points lie outside the 95% confidence band. The
moderate goodness-of-fit performance, according to the estimation of the
adjusted coefficient of determination, adj R2, at a value of 57.1%, may
not be profitably assessed. The residual plots (Fig. 6B) also seem to



Fig. 6. Linear regression (A) and residual plots (B) of Qn versus median (M).
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support the fact that some non-random errors may not be ruled out. It is a
‘messy’ portrayal that, nevertheless, does not attest to that a correlation
exists between theM and Qn vectors. This justifies the decision to proceed
to the profiling process by preserving both responses in the analysis.
Next, we rank order both vector estimators. The ranked values of the
median (rM) and Qn (rQn) along with their consolidation into a sum of
squared ranks (SSR) are listed in Table 5.

In Table 6, we tabulate the median value of the SSR response for each
individual factor-setting. Alongside, we provide each setting’s relative
9

strength which is calculated with respect to the grand median SSR value
of 126.5. A practical way to (subjectively) compare the strength of the
effects is to depict them in a main effects plot (Fig. 7). It is obvious that
the effect E is the predominant influencer. It is likely that factor H could
also be active, but it would need further examination. For highly frac-
tionated datasets, an ordinary main effects plot is not equipped to pro-
vide estimation for the statistical significance of the examined effects.

To confront this inadequacy, in Table 7, we peruse the error asym-
metries across all factor levels using the proposed methodology. At a first



Table 6
Median SSR response table for the twelve factors and their relative strength with
respect to the grand median (126.5).

Factor Level Median SSR Relative Strength

A 1 118.6 �7.9
2 126.5 0

B 1 126.5 0
2 112.1 �14.4

C 1 126.6 0.1
2 126.5 0

D 1 114.1 �12.4
2 139 12.5

E 1 43.1 �83.4
2 163 36.5

F 1 140 13.5
2 114.1 �12.4

G 1 112.1 �14.4
2 126.5 0

H 1 72.5 �54
2 131 4.5

J 1 126.5 0
2 126.6 0.1

K 1 107.6 �18.9
2 131 4.5

L 1 131 4.5
2 114.1 �12.4

Table 7
Error checking and factor significance using the consolidated SSR dataset
through the new approach.

Factor error check Factor Significance

U test p-value (exact) U test p-value (exact)

A 16.5 0.818182 14 0.588745
B 15.0 0.699134 12 0.393939
C 16.5 0.818182 18 1.000000
D 10.0 0.240260 18 1.000000
E 17.0 0.937229 0 0.002165
F 14.0 0.588745 4 0.025974
G 10.5 0.240260 7 0.093074
H 16.0 0.818182 1 0.004329
J 13.5 0.484848 12 0.393939
K 14.5 0.588745 12.5 0.393939
L 2.5 0.008658 9 0.179654
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glance, we observe that only the L-effect may be tagged as significantly
prone to asymmetry of errors (p < 0.05). However, by controlling for
false discovery (α ¼ 0.05), we find that the highest critical value is
0.0045 (¼0.05/11) for the effect that exhibits the strongest asymmetrical
uncertainty. Hence, nonparametric asymmetry may not actually be
claimed for any of the investigated factors. This is because that even the
smallest significance value of the L-effect (p-value ¼ 0.0087) has
exceeded the critical value of 0.0045. Coincidentally, the direct com-
parison (Table 7) between the two levels of the L-effect results in a weak
outcome (p > 0.10). The nominated strong factors are E, F and H. By
controlling the false discovery rate at a level of 0.05, the factor E emerges
as the predominant influence, which concurrently maximizes the lifetime
of the thermostats; it simultaneously minimizes both the median and the
Qn differences. This is because the factor E has the smallest p-value
(¼0.00217), which is less than the cutoff point of 0.0045 (¼0.05/11).
The second smaller p-value, 0.0043, is identified to factor H, which is
Fig. 7. Main effect

10
also below the cutoff point of 0.0091 (¼2*0.05/11); it becomes the
second stronger effect in the hierarchy. The third smaller p-value, 0.026,
is identified to factor F which is above the cutoff point of 0.014
(¼3*0.05/11). Hence, the factor F is inactive and none of the remaining
factors may be deemed significant. From Table 6, the optimal settings
that coincide with the minimization of the SSR response identically occur
at ‘setting 1’ for both factors E and H.

4. Discussion

To gain new insights from using this new approach, it is imperative to
view and compare the data analysis outcomes from different angles,
which other multi-factorial methods could potentially provide. We
should point that one overall computational advantage of the proposed
method is that besides being a non-iterative approach, it also does not
require a Gram-Schmidt orthogonalization phase. A log-transformation
preprocessing of the non-normal data is not a binding action for the
proposed tool to be effective. A convenient – but subjective and primitive
- way to probe the hierarchy and the relative strength of many factors is
by separately assessing the two robust estimators through the use of the
main effects plots (MINITAB 18) – one for the median response, M
(Fig. 8A), and the other for the scale response, Qn (Fig. 8B). It is imme-
diately revealed that both effects, E and H, are the leading influencers for
both lifetime components. Additionally, both of their slopes are co-
s plot for SSR.



Fig. 8. Main effects plot for: A) the median response (M), and B) the variation response (Qn).
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directionally elevating. Hence, it is the setting that is labelled as ‘1’, for
both controlling factors, which individually minimize the M and Qn
quantities. This outcome agrees with our findings in the preceding sec-
tion. Of course, the advantage of our method is that the final diagnosis
was concurrent and quantified with a statistical significance value.

Next, we compare our results with two widely used screening tech-
niques (MINITAB 18), such as: 1) the Lenth test (1989), which portrays
effects on a Pareto graph (Fig. 9A), and 2) the half-normal plot (Daniel,
1959), which is assorted with the Lenth-test critical values (Fig. 9B).

No significant effect may be identified to the median screening - at a
comparable error rate of 0.05. Repeating the same procedure for the Qn
estimator (Fig. 10), both plots indicate that effects E and H are now
statistically significant at a level of 0.05. Therefore, combining the
available information from the two graphical screenings, one might infer
that the same two effects impel the overall maximization of the
11
thermostat lifetime by tightening its variability. It would be instructive to
repeat the same graphical screening by directly using as a variable the
new unified non-parametric response, SSR. The profiled effects are
shown in Fig. 11 in terms of the Lenth-test/Pareto-chart and the half-
normal plot. In agreement with the two previous (individual) screen-
ings, the effects E and H appear to be active at an error rate of 0.05. The
proposed terminal solution, we arrived at in the preceding section, also
agrees with the solution that was achieved utilizing the Lenth-test and
the half-normal plot on the new ‘two-in-one’ response, SSR. The clear
advantage of our method is that it speeds up the diagnostics generation
process while being totally constant-free, sparsity-free and distribution-
free. Oppositely, the estimation of the critical cutoff point for both, the
Pareto chart and the half-normal plot, are dependent on Lenth’s pseudo-
error. Ostensibly, the pseudo-error is regulated by two fixed constants,
which are necessary to pace the trimming of the calculated regression



Fig. 9. Screening the effects on the median response with: A) the Pareto chart, B) Half normal plot.
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coefficients. The two required Lenth constants have not been universally
proven to be valid for all types of FFD datasets. Hence, they might impose
some unknown degree of subjectiveness on the solver.

Finally, the desirability analysis is applied on the dichotomized life-
time response, which is represented as independent variable vectors, M
and Qn (Fig. 12). Again the results seem to confirm that effects E and H
drive the composite desirability score to a value of 1.0 - in agreement
with our predictions. Moreover, it is discerned from Fig. 12 that the
optimal settings are E1 and H1, respectively. This outcome also agrees
with our recommendations. Nevertheless, we stress the fact that our
proposed solution is directly interpretable in congruence to the prevail-
ing concept of the statistical significance. On the other hand, a perfect
12
score in composite desirability, i.e. a value of 1, is not meaningful in
terms of an affirmed probabilistic reference law. There is no rule to map a
composite desirability score to a p-value estimate. Furthermore, to fit the
two derived desirability functions, the response optimizer (MINITAB 18)
must be fed by proper shape weights, which are picked by a trial-and-
error process. The function shape weights tend to range across two or-
ders of magnitude, i.e. from values of 0.1–10. The desirability analysis
requires professional software support for the calculations because of the
two sequential model fitting stages. The first stage determines an
empirical multivariate model - to predict the component response - using
regression analysis. Since the FFD-dataset is in the saturated-unreplicated
form, the regression coefficients cannot be t-tested in order to quantify



Fig. 10. Screening the effects on the Qn response with: A) the Pareto chart, B) Half normal plot.
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significance; the coefficient of determination is inestimable. Thus, the
(quasi-fitted) empirical model comprises of incomplete information,
which must be dispatched to the next data processing phase. The second
phase searches for a solution, which maximizes the composite desir-
ability score – always based on the available empirical model. Compu-
tationally, then, our method offers simplicity. Besides being ‘agile-and-
lean’, during the full data conversion cycle, it aims to ensure a rapid
completion of the solution cycle. Overall, our method disagrees on the
total number of discovered strong effects with respect to the original
solution (Bullington et al., 1993), which was found that all factors were
important (Table 8). However, our solution exactly agrees on the number
and type of effects with both methods: 1) the Berk and Picard (1991)
method and 2) the Kececioglou method; both were employed and
13
commented in the original publication (Bullington et al., 1993). It also
agrees with the lognormal method of Wu and Hamada (2009). It is
worthwhile to consider the value of the proposed method from a more
obscure angle in agile decision-making. It nonparametrically resolved a
difficult non-normal highly-fractionated FFD-dataset, which was initially
diagnosed to be of: 1) the lognormal-type (Bullington et al., 1993; Wu
and Hamada, 2009), 2) the Weibull-type (Wang and Kececioglou, 2000),
and 3) the smallest-extreme-value-type (Lv et al., 2017; Wang et al.,
2017).

It becomes more transparent now that the proposed technique uses
the “less is more” aspect of lean thinking and the simplicity and resilience
of the agile mentality – foundations well imbued in Occam ‘s razor. The
new approach is lean because it requires less data (less cost and time)



Fig. 11. Screening the effects on the SSR response with: A) the Pareto chart, B) Half normal plot.
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through its highly fractionated design. It is accomplished by coalescing a
mini factorial-recipe design with censored lifetime sampling. The tech-
nique is computationally lean because not only it uses no iterative
solvers, but it also does not require a Gram-Schmidt orthogonalization
phase. Furthermore, since it does not involve regression coefficients, it is
computationally simpler, i.e. more agile, because it produces no re-
siduals. Residual analysis requires inspecting for independence of errors
(autocorrelation effect) which might be a risky endeavor for small
datasets. Work reduction is realized as the data analysis does not demand
graphical inspection of the essential assumptions in residual analysis
assumptions through: (a) the normal-probability plot, (b) the data
14
histogram (c) the ‘residuals-versus-fitted-values’ plot, and (d) the ‘re-
siduals-versus-observation-order’ plot. It is also lean on the tactical level
because the extensive distribution identification search that was wit-
nessed in the elucidated example is not a prerequisite for the new factor
profiler to operate. The selection of maximum breakdown-point estima-
tors to evaluate location and dispersion lifetime properties in tandem
with the distribution-free (Wilcoxon-Mann-Whitney) comparison of ef-
fects offers the resilience for an agile data treatment. The multifactorial
screening becomes now constant-free and not dependent on the sparsity
assumption. Hence, it is an agile approach because it is simpler and
responsive.



Fig. 12. Desirability analysis for the robust measures, M and Qn.

Table 8
Main effects predictions in previous research and new results.

Strong Main Effects
Identification

Distribution Type Reference

All 11 effects (A-K) Lognormal Bullington et al. (1993)
E, H Lognormal with the

Kececioglou method
E, H Berk and Picard

method(1991)
All 11 effects (A-K) Weibull log-linear Wang and

Kececioglou(2000)
E, H Lognormal Wu and Hamada (2009)
Three bootstrap
methods:

Smallest extreme value Wang et al. (2017)

PB: C, E, G, H (at the location parameter)
BCPB: B, C, D, E, F, G, H,
I

BCa: B, C, D, E, F, G, H, I
A, C, E, G, H, I, J, K Smallest extreme value Lv et al. (2017)

(with random effects)
E, H Distribution free Proposed method

(Wilcoxon-Mann-Whitney)
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5. Conclusions

Highly fractionated survival datasets, which also contain censored
observations, pose several challenges to analyzers. Robust multifactorial
profilers might prove beneficial in determining the impact of the studied
effects in terms of location and dispersion contributions. We propose a
method for screening and optimizing small censored lifetime datasets,
which are programmed by dense factorial arrays. To improve complex
product/process performance, the technique orchestrates the statistical
assessment of the effect hierarchy. The overall concept endorses
simplicity in decision-making. It heeds to the realistic needs in operations
for speedy and economic discovery with minimal exploitation of the
available resources (lean thinking). From a DOE perspective, two
essential features were addressed: 1) the adoption of saturated fractional
factorial schemes for maximum effect engagement, and 2) the necessity
to work with limited data. The data characteristics that are flexibly
handled are: 1) small sampling, 2) censoring (partial/full), 3) use-rate
acceleration, 4) indeterminate distribution or multiplicities, and 5)
experimental scheme saturation. The versatility of the proposed profiler
rests on furnishing dichotomized information by splitting and reformu-
lating the lifetime dataset in terms of robust location (median estimator)
and robust dispersion (Qn-estimator) measures. Rank operations facili-
tated the smooth fusion of location and dispersion information in order to
seamlessly achieve the synchronous effect profiling. Advantages that are
attributed to the proposed multi-factorial profiler include: 1) the
15
statistical quantification of uncertainty asymmetry between individual
factor levels, 2) the naïve resolution of unreplicated-saturated informa-
tion vectors, 3) the determination of ‘constant-free’ effect hierarchy, 4)
the determination of distribution-free effect hierarchy and 5) the indi-
vidualization of the effect-strength significance.

The new methodology was tested on a published dataset that high-
lighted the screening and maximization of lifetime performance for a real
thermostat product. Only twelve experimental recipes were necessitated
to configure the profile of as many as eleven controlling factors. Each
recipe was restricted to generate a small output (10 replicates). The
paradigm was proved to be intriguing because of its distinctive ‘messi-
ness’; it could not be shown that it obeyed a particular parametric
reference law. Instead, distribution multiplicity was evident. The
censored data contributed to the overall problem complexity by
neutralizing the conversion capabilities of regular solvers. No correlation
was found between the median- and Qn-estimator vectors. Thus, they
were fused, analyzed and the resulting profiling indicated that only two
controlling factors were statistically strong (E and H). Peripheral analysis
with other combinations of methods showed that the final result is reli-
able. The false discovery rate was controlled at a level of α ¼ 0.05, which
is deemed superb for this level of difficulty. Future work could explore
the concurrent robust screening and optimization of multiple reliability
characteristics of a product.
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