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Abstract

In this paper, we investigate the multi-goal path planning problem to find the shortest
collision-free path connecting a given set of goal points located in the robot working environ-
ment. This problem combines two sub-problems: first, optimize the sequence of the goal points
located in the free workspace; second, compute the shortest collision-free path between goal
points. In this study, a genetic algorithm is used to optimize the sequence of the goal points
that the robot should visit. Once the sequence of the goal points is available, our developed
method called Boundary Node Method (BNM) is applied to generate an initial collision-free
path between every pair of the sequenced goal points. Subsequently, an additional developed
method called Path Enhancement Method (PEM) is used to find an optimal or near-optimal
path by reducing the overall initial path length. In the Boundary Node Method, the robot
and its immediate surroundings are simulated by a nine-node quadrilateral element, where the
centroid node represents the robot’s position. The robot moves between goals with boundary
nodes in the working environment depending on the boundary node’s potential value. The
potential value of each point in the working environment is calculated based on the proposed
potential function. Additionally, this article investigates the multi-goal path planning prob-
lem for multi-robot systems, when each goal reached by several robots. Finally, simulations
and experiments are performed on a real mobile robot to demonstrate the effectiveness of the
developed methods.

Keywords: Multi-goal path planning, Robot Path Planning, Boundary Node Method, Path
Enhancement Method

1 Introduction
In robotic planning, the problem of finding the shortest collision-free path connecting a given
set of goal points located in the robot working environment is called a multi-goal path planning
problem (MTP ) Glorieux et al., 2020; Saha et al., 2006; Wurll et al., 1999. In MTP , the task
to find a sequence of the goal points located in the robot working environment can be solved as
an instance of the Traveling Salesman Problem(TSP ) Vonásek and Pěnička, 2019 in which paths
between goal points have to be traverse-able by the robot. The requirement for a collision-free
path connecting goal points is the main reason why the problem is called MTP rather than TSP
to emphasize its difficulty Faigl, 2016. Finding the collision-free paths between the goal points is
essential in this problem Vonásek and Pěnička, 2019. In the TSP , a salesman has to visit several
cities (locations) with the constraint that the salesman should visit each city once. A salesman
is interested in travelling on the shortest route linking a set of cities based on the given distance
between them Sun, 2020. The shortest tour starts from a given city, passing through all the other
cities and returning to the home city Wurll et al., 1999. There are many methods to solve TSP ,
such as heuristic algorithms, genetic algorithms, simulated annealing algorithm, and ant colony
optimization Hongyun et al., 2013. Furthermore, the TSP has been well studied, and efficient
algorithms are available to solve the TSP problem Spitz and Requicha, 2000. The TSP has been
well studied and powerful algorithms are available Spitz and Requicha, 2000. In a simple case for
the mobile robot, optimizing the sequence of the goal points in free working space and the path
between the goal points can be modeled by the TSP Vicencio et al., 2014; Vonásek and Pěnička,
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Figure 1: A simple example of multi-goal path planning problem in a 2D workspace. (a) The
sequence of goal points obtained from the implementation of GA, the path marked in red dashed
line and the goals are shown in grey square object. (b) Results of BNM&PEM to generate the
collision-free path for linking the goal points, plotted in blue solid line.

2019. However, in the basic TSP , the probability of colliding obstacles along the path between
every pair of the sequenced goal points are not considered Noormohammadi-Asl and Taghirad,
2019, and the TSP is not a suitable model. In this case, not only it is necessary to optimize the
sequence of the goal points, but an optimal collision-free path between goals must be generated as
well (see Shiltagh and Jalal, 2013).

Figure 1 illustrates a simple example of MTP in a two-dimensional (2D) robot working en-
vironment with obstacles. As shown in the figure, the navigable area is shown in white and the
space occupied by obstacles is shown in black, while obstacles are assumed to be fixed in their
position. The goals (4 in Figure 1) are located randomly in the robot working environment, where
each goal is represented by a single point. The robot has to reach all goal points to fulfill a given
task, however, the sequence in which they should be reached is not given. This scenario illustrates
the MTP to find an optimal or near-optimal collision-free path in two steps: first, using a Genetic
Algorithm (GA) to find the optimal sequence of the goal points over the free working space (see
Figure 1a) to minimize the length of the path. As shown in the figure, the arrows indicate the
optimal goals sequence where the path starts from the 1st goal, passing through the 2nd goal,
3rd goal, and 4th goal and return to the 1st goal (similar to the TSP ) such that each goal is
visited once. Previously, the use of GA to solve the TSP problem has been reported by many
researchers (e.g., Bonert et al., 2000; Sun, 2020; Wurll et al., 1999). Moreover, in the fields of
mobile robotics, GA has been widely used in many studies to solve the TSP problem by taking
advantage of its strong optimization capability Wurll et al., 1999; Yu et al., 2002; Zacharia and
Aspragathos, 2005. GA is an adaptive search technique based on natural selection and a genetic
reproduction mechanism, that is widely applied to perform a random search to solve optimization
problems.

Once the sequence of the goal points is available, the Boundary Node Method (BNM) is ap-
plied to construct the initial collision-free path between every pair of the sequenced goal points.
Consequently, an additional developed method, Path Enhancement Method (PEM), is used to
find an optimal or near-optimal collision-free path from the initial feasible path by minimizing
the overall path length. Both methods, BNM&PEM , are introduced to provide an optimal path
between every two goal points, as illustrated in Figure 1b. The path starts from the initial goal
point, passing through all intermediate goal points, and returning to the initial goal point is called
a multi-goal path. A multi-goal path is assembled by simply connecting goal-to-goal points, ex-
tracted between goals iteratively until the path (tour) is completed. The length of the multi-goal
path is the sum of the lengths of the goal-to-goal paths.

Recently, using multiple mobile robots rather than a single mobile robot has attracted many
researchers’ attention Huang et al., 2019, and it has been widely used in industrial plants and
warehouses Liu et al., 2010.Optimizing the paths of the mobile robots that move simultaneously is
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a challenging problem Nazarahari et al., 2019. The multi-robot path planning problem has been
studied since the 1980s Chen et al., 2009; Hvězda et al., 2019; Pellegrinelli et al., 2017, and several
methods have been proposed during this period Hvězda et al., 2019. Multi-robot path planning
methods have been used to determine the collision-free path for multiple robots from their given
start positions to their goal positions. Two types of collisions have to consider to plan collision-free
paths for multiple mobile robots: robot–obstacle and robot–robot. In general, the multi-robot
path planning problem is considered as an optimization problem, the solution to the optimization
problem provides the optimal path Hvězda et al., 2019.

In many applications, the computational cost of constructing a collision-free path over every
goal-to-goal pairings in obstacle-filled environments with many goals is high Englot and Hover,
2011; Faigl, 2016; Saha et al., 2006, because of both the dimensionality of the configuration space
and the geometric complexity of the obstacles and the robot Saha et al., 2006. In robotic planning,
multiple-goal collision-free path planning has not been studied extensively in previous literature
because of the complexity that it implies Diaz-Arango et al., 2020. Depending on the problem
complexity, finding the shortest collision-free path between goal points as well as optimizing the
sequence of goal points will be very difficult Wurll et al., 1999, and computationally hard prob-
lems Saha et al., 2003.

The difficulty of determination of a collision-free path for a mobile robot that visits a set of
locations in the robot working environment has also been observed in Glover et al., 2001, and also
poor quality solutions are found for this kind of problem. Furthermore, sequencing goal points
before the search for the collision-free path may generate a near-optimal path, because goals are
arranged according to a distance function that ignores the obstacles. Additionally, the path plan-
ning between two sequenced goals may be very difficult Spitz and Requicha, 2000. While significant
progress has been made in this area, there are still no effective approaches Edelkamp et al., 2018.

The main objectives of this paper are stated below:

1. Solve a multi-goal path planning problem for single and multiple mobile robots by generating
the shortest collision-free path connecting a given set of goal points located in the robot
working environment.

2. Perform an experimental study on a real robot to verify the performance and effectiveness of
the proposed method for solving the multi-goal path planning problems, and illustrate how
the robot navigates in the working environment.

Based on these difficulties and to effectively solve this challenging problem, this paper inves-
tigates the implementation of our developed method, BNM , to find optimal goal-to-goal path
between a set of goal points in the obstacle-filled environment. A valuable benefit of BNM is its
simplicity and can be applied in a grid environment efficiently. Moreover, this method is capable
of finding the path for mobile robots effectively and efficiently in terms of path length and com-
putational time, even if the complexity of the environment is increased, as explained in detail in
our previous work Saeed and Recupero, 2019; Saeed et al., 2020. Moreover, this study contributed
to extending the BNM method further to solve the multi-goal path planning problem for multi-
ple mobile robot systems by generating the shortest collision-free path connecting every pair goal
points sequentially among obstacles.

The rest of the paper is organized as follows: a brief overview of the background work within
the domain of MTP is introduced in the this section. The problem statement is introduced in
Section 3. In Section 4, a brief description of the developed methods for generating the shortest
feasible multi-goal path is introduced. The implementation of the developed methods is presented
in Section 5 followed by the evaluation of results and a discussion. The experimental study is
presented in Section 6. Final conclusions are provided in Section 7.

2 Related Work
Multi-goal planning has been widely used in many robotics applications, such as surveillance,
manufacturing, autonomous inspection, and assembly. Moreover, the multi-goal path-planning
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is important for autonomous mobile robots that perform tasks in industrial environments Diaz-
Arango et al., 2020. The existing methods solve the MTP in a two-step process Englot and Hover,
2011: first, constructing a path by optimizing the sequence of goal points in a robot working
environment without considering obstacles; then, constructing a path (tour) when obstacles are
introduced into the environment, in which the robot must reach all sequenced goal points and
it visits each goal once. The MTP in the presence of obstacles have been discussed in litera-
ture and many solution have been found in this area, i.e, self-organizing map (SOM) Faigl, 2016;
Vaněk et al., 2014, branch-detected algorithm and heuristic algorithm Hongyun et al., 2013, bound-
ary iterative-deepening depth-first search (BIDDFS) algorithm Lim et al., 2015, Lin-Kernighan
Heuristics (LKH) algorithm Hernandez et al., 2017, generalized traveling salesman problem with
neighborhoods Vicencio et al., 2014, probabilistic roadmap (PRM) planner Spitz and Requicha,
2000, ant colony optimization (ACO) combined with a sampling-based point-to-point planning
algorithm Englot and Hover, 2011, branch-detected algorithm and heuristic algorithm Hongyun
et al., 2013, adaptive neural network Burke, 1996, Partially Observable Markov Decision Process
(POMDP ) framework Noormohammadi-Asl and Taghirad, 2019, hierarchical distance computa-
tion based on the A∗ search algorithm Wurll and Henrich, 2001, Artificial Potential Field (APF )
Nazarahari et al., 2019. The authors in Pandey et al., 2020; Patle et al., 2019 provide the various
soft computing techniques applied by different researchers for mobile robot navigation. The main
characteristics of the most used collision-free path planners are reported in Diaz-Arango et al., 2020.

The MTP has been previously investigated, and proposed approaches are motivated by many
practical problems, i.e. planning for a robotic arm Saha et al., 2006; Spitz and Requicha, 2000,
hexapod walking robot Vaněk et al., 2014, Industrial manipulators Zacharia et al., 2013, spot weld-
ing task Saha et al., 2003; Wurll and Henrich, 2001, inspection planning Faigl et al., 2011, search
and rescue mission Kulich et al., 2005, planetary exploration Hongyun et al., 2013, inspection and
surveillance applications Englot and Hover, 2011, coordinate measuring machines (CMMs) Spitz
and Requicha, 2000, finding cracks in large structures Danner and Kavraki, 2000, office-like envi-
ronments to perform common tasks of picking up, and delivering things such as mail, goods, trash
recycled paper, etc Hernandez et al., 2017. The author in Saha et al., 2006 considered a motion
planning problem which occurs often in practice, e.g., in spot-welding, car-painting, inspection,
and measurement tasks Saha et al., 2006 to compute a near optimal path of the mobile robot.

In previous research work, different methods were used to solve the multi-robot multi-goal
path planning problem, i.e., the authors in Huang et al., 2019 considered the cooperative path
planning problem of multiple mobile robots in an unknown indoor environment. They proposed
a novel obstacle avoidance and real-time navigation algorithm. This algorithm consists of global
path planning and local path planning via a hybrid artificial fish swarm algorithm (HAFSA)
and an expansion logic strategy. The application of adaptive Charged System Search (CSS) al-
gorithms has been usedPrecup et al., 2015 to find an optimal path for multiple mobile robots .
They examined these algorithms on holonomic wheeled platforms in static environments. A new
planning algorithm for multi-goal path planning, called Space-Filling Forest (SFF), is proposed
by Vonásek and Pěnička, 2019. The single robot ceiling vision SLAM has been extended by Chen
et al., 2009 to multi-robot formations to address global localization problems in unknown envi-
ronments. The author in Das et al., 2016 proposed improved classical Q-learning and improved
(PSO) with perturbed velocity (QIPSO-DV ) algorithm to construct an optimal collision-free path
multi-robots path planning from predefined starting and goal positions for each robot in the robot
working environment. The authors in Edelkamp and Lee, 2019; Warsame et al., 2020 addressed
the multi-robot multi-goal motion planning to solve the vehicle routing problem for mobile robots
by using Monte-Carlo search. Additionally, new path planning and collision-avoidance methods
were introduced by Sagar et al., 2017 to solve multi-robot multi-goal path planning problems. The
motion planning problem for multi-robot spot-welding cells in the construction of car doors studied
by Pellegrinelli et al., 2017. The authors in Kala, 2016 present a solution to an overall mission
wherein a team of robots visit several mission sights and carry some operation. The multiple mo-
bile robot solutions are extremely useful in spacecraft, rescue, transportation, etc Chen et al., 2009.
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3 Problem formulation
The multi-goal path planning problem is formulated as follows. For a given robot working envi-
ronment C = R2, the region of the working space free of obstacles is represented by Cfree = C –
Cobs and the region of the working space occupied by obstacles is denoted by Cobs. Each position
within Cfree is reachable by the robot. The robot’s working space is decomposed into rectangular
grid cells. Each grid cell has integer coordinates of the form C(x, y) ∈ C, 1 ≤ x ≤ n, 1 ≤ y ≤ m,
which either corresponds to a navigable area C(x, y) ∈ Cfree or a space occupied by obstacles
C(x, y) ∈ Cobs. We assume that all information related to the workspace is known in advance, and
obstacles are also assumed to be stationary. Each grid cell C(x, y) in Cfree has a potential value
E(x, y) ∈ E, which is calculated based on given potential function. In this study, a set of goal
points gi, (i = 1...n) are located randomly inside the free space Cfree, however the sequence of goals
is not known. In this study, the problem formulation have extended further to solve the multi-goal
path planning problem MTP for multiple mobile robot systems. The robot is requested to visit
all goal points and find the shortest path starting from the first goal g1 and tracking it through
all intermediate goal points gi, (i = 1...n) then return to g1, such that each goal is visited by the
robot once. The robot must not collide with any obstacle and must optimize the path between
waypoints point. In this study, obstacles are assumed to be static, and the robot is treated as a
dynamic obstacle for other robots. To solve the above planning problem, we compute an optimal
or near-optimal path for each robot, so that the robot reach all goal points and visit each goal
once.

4 Overall method
This section describes the implementation of the developed methods to construct the shortest path
between goal points gi, (i = 1...n). The first step of the developed method is constructing a 2D grid
model of the robot working environment, and then calculate the potential value of the grid cells
based on the new proposed potential function. In the second step, the initial feasible path IFP
between goal points is generated by using a new developed method called Boundary Node Method
(BNM). In this method, the IFP is generated from a sequence of waypoints w that the robot
has to traverse as it moves toward the destination point without colliding with any obstacles. The
obtained IFP between goal points is not optimal. Therefore, to reduce the overall path length in
the third step, an additional developed method called path enhancement method (PEM) is used
to construct an optimal or near-optimal path from IFP by reducing the number of waypoints and
the overall path length.

In this study, the robot’s working space is decomposed into rectangular grid cells, and the
center of all grid cells in the given workspace meets the Equation 1. Each grid cell is considered as
either an obstacle Cobs or a non-obstacle Cfree. An example of three different workspace scenarios
with different obstacle layouts is shown in Figure 2. In these scenarios, the workspace consists
of (67 × 109) grid cells. As shown in Figure 2, static obstacles (1 × 1 unit) are distributed at
different locations in the workspace, where the number of the obstacles in these workspaces are
1682, 1060 and 956 grid cells, respectively. The white region represents the Cfree and the black
objects represent the Cobs. The goal points are positioned randomly in the free workspace Cfree.

After constructing a model for each of the workspace, one-dimensional (1D) potential value
E(k), k = 1...N (N = n × m) is calculated for each grid cell C(h, k), with (h = 1...2), and
(k = 1...N) in the workspace C based on the new proposed potential function, and their values
formulated by using Equation 2. Subsequently, the obtained 1D array of E(k) is converted into
2D array of potential value E(x, y) ∈ E, 1 ≤ x ≤ n, 1 ≤ y ≤ m by using Equation 3. The potential
function is used to direct the robot from the starting goal point g1(xg1, yg1) toward the destination
goal point g2(xg2, yg2). This function has the lowest potential value at g2 and the potential value
increases as the robot moves further away. As shown in the Figure 2, the line’s color represents
the potential value, i.e. the blue line corresponds to the lowest potential value and the yellow line
corresponds the highest potential value.
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Figure 2: 2D models of the robot’s workspaces with obstacles. Contour lines represent the
potential values. The pink circle objects are goals, g1 and g2. The rectangular black objects
represent the obstacles. The size of the workspace is 67 × 109 and the starting goal point g1 and
destination goal point g2 are located randomly in the free space of the environment.

C =

n∑
x=1

m∑
y=1

C(x, y) (1)

E(k) =
√
(dl(1, k))2 − (dp(1, k))2,

dl(1, k) = |m× C(1, k) + b× C(2, k) + c|/ll,

dp(1, k) =
√
(C(1, k)− xg2)2 + (C(2, k)− yg2)

2,

(2)

E(x, y) =
√
(E(k)/D)2 + (d1(k))2 (3)

where C(h, k), (h = 1...2), (k = 1...N) represents the location of the grid cells in the workspace,
and the length of each grid cell is equal to 1 unit. The value of constants m, b, c, and ll can
be determined as follow: m = ((yg1 − yg2)/(xg1 − xg2)), c = (yg1 − m ∗ xg1), ll =

√
m2 + b2,

(b = −1). Additionally, D represents the distances between g1 and g2, is calculated as follow:
D =

√
(xg1 − xg2)2 + (yg1 − yg2)2), where the slope of a straight line D is denoted by m. The

distance between the goal point g2(xg2, yg2) and surrounding point C(h, k) in the workspace is
represent by dp(1, k).

Afterward, the BNM is used to find the initial feasible path (IFP ) for the mobile robot to
move between goal points in the workspace without colliding with any obstacles. In this study, the
given 2D workspace is completely known in advance, and also obstacles are assumed to be static.
In BNM , the robot is simulated by a nine-node quadrilateral element (see Figure 3a). The nodes
are denoted by p(q), (q = 1...9), and their location can be formulated by using Equation 4. In the
simulated model, the centroid node p(5) represents the robot’s location (see Figure 3b) and the
other nodes p(1 → 4) with p(6 → 9) represent the 8-boundary nodes. As shown in Figure 3b, in
each iteration t, the robot and boundary nodes p(q), (q = 1...9) are restricted to move in 8-possible
directions e(u), (u = 1...8) in the workspace.

The potential values E(q), (q = 1...9) for the robot and boundary nodes are equivalent to the
potential value of the corresponding generated point in the workspace (see Figure 3c), and their
values are calculated based on the proposed potential function. Characteristics of the boundary
nodes, their positions and potential values, guide the robot to move forward and change its motion
direction in the workspace (see Figure 3c). On the other hand, these characteristics can help the
robot to avoid obstacles as well.

In the workspace that contains no obstacles, the robot will reach the destination point along
a straight line from any starting point. As obstacles exist, the robot interferes with obstacles
when the distance between the robot and the obstacles is less than d, a safety distance between
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Figure 3: 2D illustration of a nine-node quadrilateral element (a) along with its motion directions
(b) and exploration location in the workspace (c).

Figure 4: Collision avoidance with static obstacles, (a) the initial position of the robot, (b) the
new updated position of the robot, (c) obstacles avoidance and change motion direction.

the center and the edge of the obstacle, d = 0.5 unit. As the robot might move very close to the
obstacle, they should keep a certain margin for safety. Therefore, the robot and boundary nodes re-
quire to avoid obstacles and change their moving direction by selecting a new position in the Cfree.

To explain the obstacle avoidance, suppose that the long vertical set of obstacles block the
robot path as presented in Figure 4. As shown in the Figure 4a, the boundary nodes p(1 → 4)
and p(6 → 9) are generated around the robot position p(5) by using Equation 4, the red object
represents the robot and the blue objects represent the boundary nodes. At iteration t, the robot
with boundary nodes change their positions from the current position (see Figure 4a) to the new
updated position (see Figure 4b). As a result, the nodes p(7), p(8), and p(9) interfere with the
obstacles (see Figure 4b). Therefore, the robot needs to investigate the workspace to find the next
position without colliding obstacles. In this case, the robot will move along the y-axis either in the
upward or downward direction until the robot passes the block of obstacles. The motion direction
depends on the characteristic of the boundary nodes (see Figure 4c).

p(q) =


x, y q=5
(x+ vx, y), (x, y + vy), (x− vx, y), (x, y − vy) q = 2, 4, 6, and 8
(x+ vx, y + vy), (x− vx, y + vy), (x− vx, y − vy), (x+ vx, y − vy) q = 1, 3, 7, and 9

(4)
where x and y are the distances between grid cell’s center and x and y − axis, vx is the hori-

zontal distance and vy is the vertical distance between the robot and boundary nodes, we assume
that vx = vy = 1 unit.

Furthermore, in order to demonstrate how the robot avoids colliding with the other robots and
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Figure 5: Collision avoidance between two moving robots, (a) the initial positions of both robots,
(b) the new updated positions of both robots, (c) robot-robot collision avoidance and change motion
direction.

changes its motion direction by using BNM , consider the two simple cases shown in Figure 5.
As illustrated in figure 5a, both robots start to move with boundary nodes in different directions
toward each other. While the robot moves forward in the first case, nodes p(2) and p(3) of the
first simulated robot interfere with the second robot, and nodes p(7) and p(8) of the second sim-
ulated robot interfere with the first robot. In the same way, in the second case, node p(3) of the
first simulated robot interfere with the second robot and node p(7) of the second simulated robot
interfere with the first robot (see Figure 5b). In order to avoid collision, the robot needs to change
its motion direction along the y-axis. The motion direction depends on the characteristics of the
boundary nodes, their positions and potential values. Then the robot moves forward and changes
its motion direction by shifting the robot toward a downward direction until the robot passes the
other robot, as shown in Figure 5c.

As the robot moves from gi to gi+1, (i = 1...n) in the workspace, it generates a set of waypoints
w(j), (j = 1...J) that the robot visits sequentially. Then, the IFP is generating from a set of
waypoints w that the robot visits before reaching the final destination point. For better clarity,
the waypoints are connected into a continuous path, the line segment that connects two waypoints
in sequence is represented by Pl,l+1, 1 ≤ l ≤ w − 1. The path IFP between goals consists of a
finite number of straight-line segments joining the way-points. The length of all line segments
that connect all waypoints sequentially to each other is representing the length of the IFP . The
path length between gi and gi+1 is formed by concatenation of all inter-line segments Pl,l+1 as
follows: IFP = [P1,2, P2,3 . . . , Pw−1,w]. The extracted path between each pair of goals is assem-
bled by simply connecting to another goal, iteratively, until the path is completed into a single
connected component. The complete path which starts in g1, and passes through all goal points
gi, (i = 2, ..., n), and then returns to g1 is called the multi-goal path.

The obtained IFP for a mobile robot between goal points is a safe path, however, it is not
the shortest path. In order to reduce the overall path length, the PEM is used to generate the
shortest path from IFP by reducing the number of waypoints w. To explain the PEM , consider
the robot moves from the first goal point g1 toward the second goal point g2, and the generated
IFP , consists a number of waypoints w(j), (j = 1...J). The PEM connect g1 with the intermediate
waypoints w(j) by a line-segments U , iteratively. For the first line-segments U1, g1 is connected
to the first waypoints w(1). Then, the line-segments U1 between these two points is checked for
feasibility. If a collision is not found, then g1 is connected to w(2), and this procedure continues in
the same way for all waypoints. In case the line between these two points collides with obstacles,
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Figure 6: A multiple-goals path planning problem (a) the path formulated from linking all se-
quenced goals, plotted in red dashed line. (b) the IFP for the robot in a given workspace, plotted
in blue. (c) optimize the initial path.

the starting point for the line-segments U2 is placed in the last waypoint. This procedure continues
until the robot reaches g2. The total length of the shortest path U between g1 and g2 is calculated
by summing the length of all the line segments U(i) in the path between g1 and g2. The same
procedure is repeated for every pair of goal points sequentially until the robot returning to g1.
More details about these methods can be found in Saeed et al., 2020.

5 Simulation
In order to validate the performance of the developed methods, different simulated configurations
with different parameters have been conducted, with different number of robots, obstacles layout,
number of goal points and their positions. Three examples of obstacle-filled environment scenarios
with complex obstacle layout used in this study are presented in Figure 2. In these scenarios, the
given workspace is completely known in advance, and also obstacles are assumed to be static. The
number of goal points n are positioned randomly in the free space of the working environment,
where each goal is represented by a single point. In the process of implementing and testing of the
developed methods, we compute a shortest collision-free path for the robot to reach all goal points
and visit each goal once. All simulations have been carried out on a laptop Intel(TM) Core(TM)
i5-8300H CPU , 2.3GHz, and 8GB RAM . The proposed model is implemented in the Python
and Matlab programming language.

In this study, the multiple-goals path planning problem in a given 2D workspace with obstacles
(see an example in Figure 6) is solved as follow: first, the optimal sequence of the goal points
(3 goals) located in a Cfree is found by using GA regardless of the obstacles(see Figure 6a). As
shown in the figure, the path (tour) starts from g1, passing through g2 and g3 and returns to g1,
where the goals are marked in pink circle object and the red dashed lines represent the shortest path
between sequenced goals. Next, the BNM is used to find the initial collision-free path connecting
every pair of the sequenced goal points, as illustrated in Figure 6b. It can be seen clearly that the
BNM successfully generated the IFP for the robot to move from g1 to g2 (see Figure 7a), from
g2 to g3 (see Figure 7b), and from g3 return to g1 (see Figure 7c). As the robot moves from gi to
gi+1, (i = 1...n) in the workspace, the IFP is constructed from the way-points w(j), (j = 1→ J)
that visited by the robot, where J represents the time required by the robot to reach the final
destination. As shown in that figure, the way-points w are represented by blue circles objects, each
new way-point position w(j + 1) is allocated after the current point position w(j) on the path.
The obtained IFP is a collision-free path, where the way-points do not fall on any obstacle and
also the line segments that connect all way-points do not intersect with any obstacle.

The BNM can generate the IFP safely and efficiently, but the path is not optimal in terms of
the total path length. Therefore, the PEM is applied to reduce the number of way-points as well
as the overall length of IFP . The obtained result of PEM (see Figure 6c) is an optimal or close-to-
optimal path for the robot which is represented by a thick blue line object. A complete multi-goal
path can be formulated by joining all line segments obtained between g1 and g2 (Figure 7d), g2 and
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Figure 7: : A 2D illustration of the path planning algorithm
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Table 1: Simulation and performance evaluation: Mean and standard deviation of the computa-
tional time (in seconds) to find the feasible path by a single robot for each instance on different
working environment.

No. of Goals F irstEnvironment SecondEnvironment ThirdEnvironment
MeanCT StdCT MeanPL StdPL MeanPL StdPL

2 4.9125 0.1966 4.8895 0.1249 4.5685 0.1641
4 5.1960 0.2057 5.1235 0.0953 4.8500 0.1126
6 5.3210 0.1501 5.2915 0.1200 5.0000 0.09531
8 5.4410 0.1210 5.4935 0.3305 5.0970 0.1425
10 5.6395 0.1245 5.7085 0.4026 5.1665 0.1111
12 5.6585 0.1608 5.8520 0.1461 5.2430 0.1246
14 5.7020 0.2240 5.9955 0.2518 5.3095 0.1236
16 5.7240 0.2368 6.0505 0.1719 5.3790 0.1587
18 5.7670 0.2157 6.1275 0.1831 5.4735 0.2103
20 5.8170 0.1787 6.1575 0.3323 5.5105 0.1694

g3 (see Figure 7e), g3 and g1 (see Figure 7f). The exact path length L can be found as the sum of
path length between goal points sequentially l1, . . . , ln. In the simulated environment, the problem
formulation to find the shortest path for the single and multi-robot by avoiding the collision with
obstacles are elaborated in subsections 5.1 and 5.2.

5.1 Simulation results of single-robot system
This section presents the obtained simulation results of multiple-goals path planning problemMTP
for a single mobile robot whose task requires visiting multiple-goal points. In this study, GA and
BNM&PEM were implemented for solving the MTP in several simulated scenarios with differ-
ent obstacles layout and the different number of goal points. All simulations were implemented
in MATLAB. Throughout this section, we consider three examples (Figure 2) with the different
numbers of goal points (2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 goals) which are located randomly
in the robot working environments. For each example, the proposed methods implemented on 200
randomly generated instances to find the initial feasible path. At each instance, the goal points
are placed randomly in the working environment, each random placement of the goal points led to
a different result.

The performance of the proposed method is calculated in terms of the total execution time
required to find the shortest path for the robot to reach the final goal point. The mean and the
standard deviation (Std) of the total computational time for each instance are calculated and pre-
sented in Table 1, and the graphical representation of the simulation results illustrated in Figure 8.
The obtained results reveal that the proposed methods can determine the shortest path between
goal points for each given instance within a reasonable computational time. In particular, for the
high number of goal points in a highly complex environment, the total computing time to find the
shortest path is around 6 second. Moreover, the mean value of the computational time required to
obtain the final path is not increased significantly with increasing the number of goal points and
the complexity of the simulated working environment (see Table 1). Obviously, the computational
time taken by this operation depends on the number of goals, their ordering, geometric complexity
of the obstacles, and also the problem complexity. The results agree with Saeed et al., 2020, which
stated that the computational time required to solve the path planning problem by using BNM
does not increase significantly with the increase of the environment’s complexity.

An example of the obtained results for each simulated scenario with 20 goal points located
randomly in the working environment are presented in Figures 9, 10, and 11, respectively. For
each tested scenario, the GA is used to optimize the sequence of the goal points with absence of
obstacles, and the obtained results are presented in Figures 9a, 10a and 11a. The goal points
are marked in pink circle object and the red dashed lines represent the shortest path between
sequenced goal points. As shown in figures, the robot visits all given goal positions located in the
robot working environment with minimizes the path length and the total execution time.
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Figure 8: Influence of the number of goal points on the total computational time required to solve
MTP using the proposed method for each simulated working environment.

Figure 9: A first scenario of the multi-goal path for 20 randomly-selected goal points. (a) the
path formulated from linking all sequenced goals plotted in the red dashed line. (b) the IFP for
the robot in a given workspace, plotted in blue. (c) optimize the initial path, plotted in the thick
blue line.

Subsequently, the BNM is used for generating the IFP between every pair of given goal points,
and the simulation results are presented in Figures 9b, 10b and 11b. The achieved result of IFP is
represented by a set of way-points w, the way-points of the robot’s motion path are marked by the
blue circle objects. For better clarity, these way-points are connected into a continuous path. As
observed from the figures, the final path allows the robot to move from goal to goal sequentially,
and avoid obstacles successfully.

From the obtained results, it can be clearly seen that the BNM has been well applied to
generate IFP , and reached important achievements in terms of safety and short computational
time. However, the path is not optimal in terms of the total path length. Therefore, the PEM
is used to reduce the overall length of IFP , and the obtained results for all tested scenarios are
presented in Figures 9c and 10c and 11c, where the solid blue lines between goal points represent
the final solution. As shown in the figures, the PEM can find the collision-free path that covers
the lowest number of waypoints to reach all of the goal points, and the total path length for each
tested scenario is reduced significantly. Furthermore, the obtained results clearly show that the
BNM&PEM provide the short and safe path for the robot to visit a given set of goal points (see
Figures 9, 10 and 11).

5.2 Simulation results of multi-robot system
This section presents the implementation of the proposed method for solving the multi-robot multi-
goal path planning problems. Each robot has to visit a number of goal points in the robot working
environment with obstacles, and each robot has to find its path independently without collision
with either static obstacles or other robots. Moreover, we have considered the robot working en-
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Figure 10: A second scenario of the multi-goal path for 20 randomly-selected goal points. (a) the
path formulated from linking all sequenced goals plotted in the red dashed line. (b) the IFP for
the robot in a given workspace, plotted in blue. (c) optimize the initial path, plotted in the thick
blue line.

Figure 11: A third scenario of the multi-goal path for 20 randomly-selected goal points. (a) the
path formulated from linking all sequenced goals plotted in the red dashed line. (b) the IFP for
the robot in a given workspace, plotted in blue. (c) optimize the initial path, plotted in the thick
blue line.
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Table 2: Characteristics of three different example scenarios

Scenarios Goal points
First Scenario (four goal points) [[14,5],[37,20],[29,41],[19,23]]
Second Scenario (three goal points) [[14,5],[29,41],[19,23]]
Third Scenario (two goal points) [[14,5] ,[19,23]]

Table 3: Simulation and performance evaluation: Mean and standard deviation of the computa-
tional time (in seconds) to find the feasible path for each instance on different simulated scenario.

No. of Robots F irst Scenario SecondScenario Third Scenario
MeanCT StdCT MeanPL StdPL MeanPL StdPL

1 12.6479 0.6727 11.8793 0.7119 6.0778 0.4230
2 25.3430 1.1184 24.2406 1.3893 12.1266 0.7627
3 38.3126 1.1113 36.4111 1.1663 18.5977 1.0296
4 52.5791 2.1483 48.9389 1.6548 25.3420 1.5899
5 66.2990 2.0072 61.7195 1.9908 31.8260 1.4962
6 80.8070 2.1736 76.3014 2.7425 38.7869 1.5057

vironment and obstacles are completely known in advance and the goal points scattered randomly
in the working environment.

For the formulation of the multi-robot path-planning problem, we consider a group of mobile
robots planning their path in the same simulated working environment (48× 44 square grid cells).
All simulations were implemented in Python. At any instant of time t, a number of robots m
at positions R(t) = r1, r2, ..., rm start to move to visit a set of goal positions G(t) = g1, g2, ..., gn
scattered randomly in the 2D robot working environment with static obstacles. Each robot moves
from the starting goal position, through all of the intermediate goal points, then return to the
starting goal position, such that each goal is reached by all robots and each goal g ∈ G(t) is visited
by each robot r ∈ R(t) once. In our research, each robot uses the BNM to find IFP from any
goal point to the next goal point in the workspace without colliding with any obstacle or other
robots. IFP is generated from a set of waypoints w that the robot visits before reaching to its
final destination.

An analysis of the computational complexity of the proposed was carried out by calculating
the execution time versus the number of robots. We conducted different simulated scenarios with
a different number of goal points and robots, an example of three scenarios with the different num-
ber of goal points are presented in Table 2. As shown in the table, the number of goal points in
different locations have been varied in all the tested scenarios. The problem formulation is to find
the path of each robot in the simulated environment by avoiding the collision with static obstacles
and other moving robots in the system. Each robot moves from the first goal point, through all
the intermediate goal points until it returns to the first position. Each robot uses the BNM to
find the shortest collision-free path to visit all goal points in the workspace.

The total computational time required to find the shortest path for each scenario has been
computed for 240 runs of the proposed methods. The mean and the standard deviation (Std) of
the total computational time for each instance are calculated and presented in Table 3, and the
graphical representation of the simulation results illustrated in Figure 12. The simulation results
are shown in the table and the figure reveals that all the robots reached their final destination
positions within a reasonable computational time without any collision with either static obstacles
or other robots. Moreover, it is clear from the obtained results that the computational time is
commensurate to the number of deployed robots, and the mean value of the computational time
to find a feasible path increases linearly with the number of robots.

An example of the simulation results for the multi-robot multi-goal path planning problem
shown in Figures 13, with five-robots (m = 5), four-goal points (n = 4), and 304 static obstacles.
In the first step, GA is used to optimize the sequence of the goal points scattered randomly in a
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Figure 12: Influence of the number of robots on the total computational time required to solve
MTP using the proposed method for each simulated scenario.

Figure 13: The simulation results for solving the MTP : (a) The sequence of goal points obtained
from the implementation of GA, the red square objects represent the goal points that have been
visited by each robot. (b → f) Five robots move to visit multiple-goal points sequentially in a
simulated working environment with obstacles.

Figure 14: The simulation results for solving the MTP : the number of goal points is fixed
(four-goal points) and we vary the number of robots from 1 to 6.
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Figure 15: The simulation results to generate the shortest path by using BNM&PEM .

2D simulated working environment with the absence of obstacles, as shown in Figure 13a, whereas
a group of robots (5 robots) has to move along a line (denoted by the blue solid line) to visit a
group of goal points (4 goals), marked in the red square objects. Then, the BNM is used to gen-
erate a feasible goal-to-goal path to direct each robot from each goal position toward the next goal
position by avoiding collision with either static obstacles or other robots in the system, and the
final simulation result is illustrated sequentially in Figure 13b → f . Different colors of the small
colored circles represent the position of the robots. Additionally, an example of the simulation
results for the different numbers of the robot is presented in Figure 14, whereas the number of goal
points is fixed (four-goal points) and we vary the number of robots from 1 to 6. The simulation
results demonstrate that each robot constructs an individual path independently by satisfying the
optimum path length, and all robots reach to their final destination position successfully without
any collision with either static obstacles or other moving robots.

6 Experimental evaluation
In this section, validation of the developed method for solving multiple-goals path-planning prob-
lems is studied by performing a set of experimental tests with the e-puck robot. Several exper-
imental scenarios have been carried out with different positions of the goal points and different
obstacles configuration. An example of the experimental scenario for a single mobile robot that
visits four-goal positions in the robot working environment is illustrated in Figure 15.

In the first step, GA is used to optimize the sequence of the goal points scattered randomly in a
2D simulated working environment with the absence of obstacles, as shown in Figure 15a, the red
dashed-line is represented the shortest obtained path. Then, the BNM is used to generate IFP to
direct the robot from its current goal position toward the second goal position by avoiding collision
with obstacles, as shown in Figure 15b. Finally, PEM is used to find an optimal or near-optimal
collision-free path from IFP by reducing the number of waypoints and the overall path length (see
Figure 15c).

Consequently, the constructed shortest collision-free path obtained from the simulation is used
to direct the real physical robot to move from the first goal point, passing through all intermediate
goal points, and return to the first goal point. An e-puck robot, shown in Figure 16, is used for
the experimental test. The experimental set-up and the robot working environment with obstacles
for conducting the experiment are presented in Figure 17, where the goal points (four-goal points)
are located on the robot working environment. The e-puck robot has a diameter of 75 mm, and
it has two actuators that control the robot’s movement speed and direction. We have chosen an
e-puck robot because the e-puck robot is a very compact, small, and flexible Mondada et al., 2009.
There is also a library extension to MATLAB to program the robot and integrate the robot with
the developed methods. The e-puck robot uses Bluetooth to connect to a computer, which allows
control programs to be remotely uploaded to the robot.
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Figure 16: The e-puck robot used for the experimental test

Figure 17: The experimental set-up
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Figure 18: The experimental results: (a) shows a graph representation of e-puck robot location
in the robot’s working environment, and the movement of the robot illustrate in (b) from g1 to
g2, (c) from g2 to g3, (d& e) from g3 to g4, and (f) from g4 to g1. The obtained shortest path by
using BNM&PEM is represented by a blue dashed-line, and the yellow and red dashed circles
represent the starting and destination goal points, respectively.

Table 4: The travelling path length and computational time from the starting point to the final
destination point for the e− puck robot

The movement of the robot Travelling path length [cm] Computational time [second]
move from g1 to g2 3.92 6.54
move from g2 to g3 6.18 12.91
move from g3 to g4 23.12 24.72
move from g4 to g1 13.46 18.09

Based on the generated data from the simulation results (see Figure 15c), the e-puck robot
motion data is determined. As shown in the figure, the shortest path consists of the number of
waypoints w(j), (j = 1...J), (J = 7), represented by blue circle objects. Then the e-puck robot
is connected to the computer via Bluetooth and the generated motion data are transmitted to
the robot via a toolbox eP ic(v2.1.2), where eP ic(v2.1.2) allows the user to control the robot in
MATLAB. Let (w1x, w1y) and (w2x, w2y) be the centroid coordinates of the first w1 and second
w2 waypoint, respectively, of the shortest path for the robot in the simulated workspace, as shown
in Figure 15. In the experimental test, in order to move the e-puck robot from first waypoint
w1 towards the second waypoint w2 as illustrated in Figures 18, the orientation of the robot is
calculated in MATLAB by using atan2(w2y-w1y, w2x-w1x). Thereafter, the e-puck robot starts
to move from w1 to w2 and so on until the robot visit all of the goal points. Figures 18(a → f)
show the intermediate moment of the robot’s positions at different locations in the robot working
environment during the experimental test. A summary of the obtained results of the travelling
path length and computational time from the starting point to the final destination point for the
e − puck robot is provided in Table 4. The test results demonstrate that the developed methods
can generate a goal-to-goal path to direct the e-puck robot to move from g1, passing through all
intermediate goal points gi, (i = 2...n), (n = 4), and returning to g1 such that each goal is visited
by the robot once. In spite of the efficiency and optimality guarantee of the BNM , the quality of
the constructed path obtained from the simulation depends on the resolution of the grid map. This
means that it can generate the optimal path in the high-resolution map, while in the low-resolution
map the path is not optimal. Besides, in a real environment, there are uncertainties such as friction
and slippery surfaces which can lead to non-optimal results.

7 Conclusions
In this paper, we have extended the newly developed path planning method called Boundary Node
Method BNM further to solve the multi-goal path planning problem. The objective of this study
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is to find the shortest collision-free path connecting a given set of goal points scattered randomly in
a 2D robot working environment, without colliding with any obstacles. The shortest collision-free
path is found in a two-step process. First, we applied a Genetic Algorithm GA to find an optimal
goal sequence. Second, we applied BNM to generate an initial collision-free path between every
pair given goal points, which is followed by using an additional developed method called Path En-
hancement Method PEM to extract an optimal or near-optimal collision-free path from the initial
path by minimizing the overall path length. Simulation results show that the BNM&PEM can
find the optimal or near-optimal collision-free path connecting the selected goal points located in
a robot working environment, efficiently. Additionally, the BNM&PEM takes a relatively short
computational time to solve MTP for generating the shortest path for all examined scenarios
which makes it easy to implement in real-time navigation.

Furthermore, instead of single robot, the developed method is also extended successfully to
solve the multi-goal path planning problem for multiple mobile robot systems. While each robot
has to find its path independently without collision with either static obstacles or other robots
in the system. The simulation results demonstrate the effectiveness of the developed method for
constructing the multi-goal path for multi-robot systems,

Finally, simulations and experiments are performed on a real mobile robot to demonstrate the
effectiveness of the developed methods for solving multiple-goals path planning problems. Several
experimental tests on the e− puck robot have been carried out with the different positions of the
goal points and different obstacles configuration. The results obtained from the experimental tests
show that the proposed method can construct the shortest collision-free path, and direct the real
physical robot to the final destination goal point.

Further study is required to address several research issues related to autonomous navigation
of mobile robots in unknown environments, where the robot does not have full knowledge about
its environment.
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