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Abstract — Honeybees are of vital importance to both 
agriculture and ecology, but honeybee populations have been in 
serious decline over recent years. The queen bee is of crucial 
importance to the success of a colony. In this paper, we contribute 
to addressing these problems by employing Long Short-Term 
Memory (LSTM), Multi-Layer Perceptron (MLP) Neural Networks 
and Logistic Regression approaches applied to audio data recorded 
from “queen-absent” and “queen-present” hives to provide a method 
of prompt detection of a hive lacking a queen. The initial results – 
particularly from the LSTM - are highly encouraging. 
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I. INTRODUCTION 
Insects are of vital importance to both agriculture and the 
wider ecological system, as scavengers to clear up detritus 
from dead animals and plants, as vital links in the food chain, 
but most important as pollinators of many flowering plants – 
especially a very high proportion of food crops. However, 
many insect species have been in very serious decline over 
recent decades, due to a wide variety of proposed causes, 
including pesticides and fungicides, diseases, predators, and 
parasites, and possibly climate change or even electro- 
magnetic radiation. Notable amongst insects under serious 
decline are several species of bees – including the honeybee 
Apis Mellifera – which are essential pollinators of many fruit 
crops and flower species, in addition to their role as producers 
of honey. In this paper, we discuss our approach to a 
contribution towards addressing the decline of honeybees via 
electronic monitoring of honeybee colonies. We re-examine 
approaches to determining whether a given colony contains a 
healthy queen. Queen bees, as normally the only reproductive 
female in most eusocial bee colonies, are essential for the 
colony to survive and thrive. The death of the queen, or a 
serious decline in her health, will usually lead to the colony 
becoming extinct unless remedial action is taken promptly.   

The remainder of this paper is structured as follows. In section 
II, we give a brief account of the “demography” of a typical 
honeybee colony. In section III we discuss previous related 
work on bee monitoring in general, and of detection of “Queen 
lessness” in particular. In section IV we present our 
methodology and describe our dataset, whilst in section V we 
display and discuss our results to date. Finally, in section VI, 
we present our current conclusions and lay out our plan for our 
proposed future work on this topic. 

II. HONEYBEE COLONIES 
   Honeybees are social insects with a successful colony 
averaging between 30000 and 80000 bees in Summer. This, 

however, can fall as low as 5000 bees in Winter. The colony 
is made up of the queen, thousands of sterile female worker 
bees, a few hundred male drones, eggs, larvae, and pupae. 
The queen bee is the lifeline of the colony as she is the only 
female who can lay fertilized eggs. The worker bees carry out 
all tasks of a colony such as building the comb, foraging, and 
hive guarding [1]. Generally, while older worker bees work 
outside the hive, the activities of younger workers take place 
inside the hive. Unlike worker bees, drones do not do any 
work, their primary purpose is to fertilize a new queen – 
although they may play a part in regulating hive temperature 
[2]. Bee colonies are well structured with daily activities 
shared between male and female bees as well as between the 
young and the old [2]. Honeybees are very active during the 
spring and summer seasons when activities such as swarming 
takes place and worker bees gather pollen and nectar used to 
build food reserves in preparation for winter. These colony 
activities are communicated and coordinated through various 
audio and vibrational signals. 

III. RELATED PREVIOUS WORK 
There have been several previous investigations relating 

to the sounds produced by bee colonies. The early work of 
Woods [3] and then Kirchner [4] reported on the sounds 
made by honeybees under a variety of situations – 
especially in the period before a swarm . Further studies 
relying on bee sounds revealed they could be indicative of a 
swarm being imminent [5], [6]. Alternatively, other authors 
[7], [8], [9] noted that a rising temperature inside a hive 
could predict swarms. With regard to the problem of queen 
lessness in a hive, [10] used a method based on a Fast 
Fourier Transform (FFT) and Self-Organising Map (SOM) 
to investigate how the sounds produced by honeybees in 
hives changed after their queen had been removed, 
comparing those acoustic data with those produced in 
nearby “control” hives where the queen was allowed to 
remain, under identical local environmental conditions. In 
this present paper, we re- examine the data of the study in 
[10], providing its analysis using more sophisticated 
methodologies, including LSTM neural network [11] and 
Mel Frequency Cepstral Coefficients (MFCC) [12]. 

IV. DATASETS AND METHODOLOGIES 
A. Data 

The data consists of one-minute duration Waveform audio 
files sampled hourly from the 3rd to the 9th of August 2012 
[10]. It comprises both “Queen Present” (QP) and “Queen 
Absent” (QA) hives recorded in four separate hives. Two of 
the hives had the Italian sub-species Apis mellifera ligustica 



and the other two had the Slovenian Apis mellifera carnica. 
One hive of each species which had a queen throughout was 
used as control. In total there were 480 one-minute samples, 
sampled at 44.1kHz, from the four hives used in this study. 

Table 1 The status of each hive for the 5 recording days. 
 

Honeybee 5/8 6/8 7/8 8/8 9/8 
Italian QA QA QA QA QA 
Italian (Control) QP QP QP QP QP 
Slovenia QA QA QA QA QA 
Slovenia (Control) QP QP QP QP QP 

Key: QP – Queen present, QA – Queen absent 

B. Methodologies 
 

In this work, we proposed the use of MFCCs as input features 
in an LSTM classifier to discriminate between a hive with a 
queen present and that without a queen. 
 
i) Mel Frequency Cepstral Coefficients  

MFCC are features extracted from audio signals which are 
motivated by observations in human speech recognition [13]. 
They are proposed in this work due to their success reported 
in other audio related areas such as music genre classification 
[14] and heart sounds recognition [15] and automatic speaker 
recognition [16]. Their success is attributed to their good 
representation of the continually relevant aspects of the short-
term audio spectrum [17]. MFCC features are uncorrelated 
hence there is less redundant information. Usually, the first 
few MFCCs features are used as they represent most of the 
information in a signal. The MFCC feature extraction process 
is summarised in figure 1. A more detailed description of this 
7-step process follows. 

1) Pre-Emphasis 
The signal is filtered to generate energy in a high frequency 
that was previously compressed during the audio generating 
process.  

2) Framing  
The sound signal is partitioned into overlapping frames of 
equal length about 20–40ms duration [18]. This enables the 
capturing of signal characteristics while reducing the non-
stationarity effects of the signal. 
 

3) Windowing 

Windowing is then applied to individual consecutive frames 
to prevent discontinuity of the signals generated by the 
framing process. The most commonly used windows are the 
Hamming and the Hanning windows. The two windows are 
defined as  w[n] :  
𝑤𝑤[𝑛𝑛] = (1 − 𝜔𝜔) − 𝜔𝜔 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐 �2𝜋𝜋𝜋𝜋

𝐿𝐿−1
�   (1) 

for  0 ≤  n  ≤  L – 1, where L is the window width,  𝜔𝜔 = 0.5 
for the Hanning window and 𝜔𝜔 = 0.46164 for the 
Hamming window [19]. 

 
4) Fast Fourier Transform  

The FFT is an efficient algorithm that computes the Discrete 
Fourier Transform of a signal (DFT), converting the framed 
and windowed signal from the time domain to the frequency 

domain. For a signal x[n] = x(t = n/fs) sampled at regular 
discrete time periods, where fs is the sampling frequency  

and  n = 1, 2, 3, … the DFT of the signal X is defined as: 

𝑋𝑋[𝑘𝑘] = � x[n]𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁𝑁𝑁−1
𝑘𝑘=0     (2) 

For 0 ≤ k ≤ N – 1, 𝑖𝑖2 =  −1 and N = number of frames 

5) Mel Filter Bank  
In Mel Filter banks, the spectrum from the FFT is warped 
along its frequency axis f (in Hz) into the Mel-scale using 
triangular overlapping windows [19] using the equation: 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 2595 log10(1 +
f

700
) 

where f denotes the physical frequency in Hz, and fmel denotes 
the perceived frequency [19]. The resultant Mel frequencies 
are then filtered using the equation below. 

𝑌𝑌[𝑚𝑚] = � Wm[k]|𝑋𝑋[𝑘𝑘]|2𝑁𝑁
𝑘𝑘=1   

For 0 ≤  k  ≤  N    and 0 ≤  m ≤  M 

Where k is the FFT bin number and m is Mel-filter bank 
number 

6) Logarithms Transformation 
The powers of the Mel frequencies are then transformed using 
logarithms to reduce the dynamic range [19]. 

7) Discrete Cosine Transform (DCT) 
 Finally, the DCT is taken on the logarithmic outputs from 
above. This is results in decorrelated MFCC features. 

 

𝑐𝑐(𝑛𝑛) =  � log10(𝑠𝑠 (m)cos (πn(m−0.5)
M

)
𝑀𝑀−1

𝑚𝑚=0
)  

For 0 ≤  n  ≤ C – 1 and 0 ≤  m  ≤  M - 1 

where c(n) are the cepstral coefficients and C is the number of 
MFCCs and M the number of filter banks.  

Figure 1 Showing the MFCC feature extraction process. FFT 
is the Fast Fourier Transform, whilst DCT is Discrete Cosine 
Transform        

 
ii) Long Short-Term Memory  

LSTM is a type of recurrent neural networks (RNN). Although 
unlike traditional networks, RNN have loops that enable them 
to retain sequential information, they are not able to learn 
long-term dependencies as error signals flowing backwards in 
time" tend to either blow up or vanish [20]. The LSTM 
network overcomes this problem by using an architecture 
which enforces constant error flow through each repeating cell 
[20]. The repeating module has four interacting layers, forget 
gate layer, update/input gate layer, a tanh layer, and output 
layer. In the forget gate layer, a sigmoid function is used to 
determine the information to be thrown away from the cell 
state. In the input gate layer, another sigmoid function is used 
to decide the values to be updated in the cell state. In a tanh 

Pre-
emphasis Framing Windowing FTT

Filter bankLog 
transformDCTMFCC



layer, a vector of new possible values that could be added to 
the state is created. Lastly the output layer uses a sigmoid 
function to decide the cell state output values [12]. 

Figure 2. The LSTM repeating cell which contains four 
interacting layers [12, 21] 

 
yt  is the y estimate at time t and xt is the input sequence value 
at time t. 

For an input sequence x = (x1, . . ., xT) the LSTM network 
outputs y = (y1, . . ., yT) by implementing the following 
equations. 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑎𝑎𝑡𝑡−1 + 𝑏𝑏𝑖𝑖)                             (1) 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑓𝑓𝑓𝑓𝑎𝑎𝑡𝑡−1 + 𝑏𝑏𝑓𝑓)                           (2) 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡⨀𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡⨀𝑔𝑔(𝑊𝑊𝑐𝑐𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑐𝑐𝑐𝑐𝑎𝑎𝑡𝑡−1 + 𝑏𝑏𝑐𝑐)   (3) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑜𝑜𝑜𝑜𝑎𝑎𝑡𝑡−1 + 𝑏𝑏𝑜𝑜)                          (4) 

𝑎𝑎𝑡𝑡 = 𝑜𝑜𝑡𝑡⨀ℎ( 𝑐𝑐𝑡𝑡)                                                      (5) 

𝑦𝑦𝑡𝑡 = 𝜙𝜙(𝑊𝑊𝑦𝑦𝑦𝑦𝑎𝑎𝑡𝑡 + 𝑏𝑏𝑦𝑦)                                             (6) 

where the W terms are the weight matrices, b terms are the 
bias vectors , σ is the logistic sigmoid function, and i, f, o and 
c are the input, “forget” gate, output gates and cell activation 
vectors respectively, a is the cell output activation vector, ⨀ 
is the element-wise product of the vectors, g and h are 
generally tanh  cell input and output activation functions and 
𝜙𝜙 is the output activation function, sigmoid in this paper [22].  

Two standard classifiers, Logistic regression and a MLP 
neural network, were used for baseline comparisons with the 
LSTM model performance. 

V. RESULTS 
i) Preliminary Analysis  

We began by exploring the original audio samples using plots 
of the bee audio samples. The plots reveal clear difference 
between the two signals in the time domain, where the queen 
present signal shows less time variability and a smaller 
amplitude standard deviation than the queen absent signal.  

Figure 3 Plots of randomly selected 1 second clips for 
queenless (red) and queen present (blue) audio signals. 

 
The bee acoustic signals also appear to have distinctive 
spectral characteristics. The queen absent signal displays 
higher energy levels overall. Moreover, the energy 

distributions are also different when comparing morning and 
afternoon signals. This suggests that hive status can be 
classified acoustically for hive monitoring.  

Figure 4 Acoustic Spectra for queen absent (left) and queen 
present (right) hives. The upper graphs show data recorded in 
the morning, whilst the lower ones display afternoon data. 

 
From the audio data, 14 features, 13 MFCCs and log energy 
and were computed in MATLAB [23]. The resultant MFCCs 
and log energy from control hives were combined to form the 
queen present class and those from the none control hives 
were combined to form the queen absent class. The mean for 
each Mel coefficient and the log energy was computed for 
healthy and unhealthy hives data. Then an ANOVA test for 
each of the MFCCs and log energy averages for the classes 
were conducted. They indicated that there is a statistically 
significantly different (p=0.001) at 5% level of significance 
between the means of the “healthy” and “unhealthy” classes 
for all MFCCs and the log energy. This confirmed the initial 
observation illustrated in Figure 3 and 4 suggesting that the 
two hive classes are distinguishable.  

ii) Hive Status Classification  

Two target class labels defined above were used to classify the 
hives status. From the 14 features extracted, 4 combinations 
of 13 MFCCs and the log energy features were used as 
features to train three classifiers, a logistic regression MLP 
and LSTM in our experiments. These are 1) dataset 1 with 13 
MFCCs plus the log energy 2) dataset 2 with 13 MFCCs 3) 
dataset 3 with MFCCs minus the 1st coefficient plus the log 
energy and 4) dataset 4 with MFCCs minus both the 1st 
coefficient and the log energy. These combinations were 
investigated due to their success in other related audio 
classification tasks [16].  

For each of these combinations, a Logistic regression, MLP 
and an LSTM classifier were applied. We used Scikit learn  
for both the Logistic regression [24] and the MLP classifiers 
[25]. The LSTM architecture had 100 units, an ADAM 
optimizer, binary cross-entropy loss function on a Keras [26] 
framework. 70:30 train – test split of the beehives data was 
used for training and testing all models. The training set data 
were normalized so that each coefficient and the log energy 
had zero mean and unit variance to reduce the effects of undue 
influence of larger values on the model training weights. To 
evaluate the model performance the model accuracy was 
obtained for each classification task. The predictive accuracy 
of a classifier is defined as: 

Accuracy = TP+TN
N

  were - TP = true positive and TN = true 
negatives, are the correctly predicted hive status samples for 
the two classes and N is the total number of hive status 
samples.  



Whatever the feature combination, the LSTM model 
performed either similarly or better than the other models 
achieving the best accuracy of 0.92, see Table 2. While the 
MLP delivered a best accuracy of 0.90, the Logistic regression 
model could only reach 0.87. One should note that the best 
accuracy results were achieved when all 14 features were 
used, while the worst accuracies correspond to the usage of 
only 12 features. 

Table 2: Accuracy values (with perfect = 1.00) across the four 
datasets considered, as described in Section V B) 

Data Number of 
Features 

Logistic 
model 

MLP 
model 

LSTM 
model 

Dataset 1 14 0.87 0.9 0.92 

Dataset 2 13  0.85 0.9 0.9 

Dataset 3 13 0.87 0.9 0.91 

Dataset 4 12 0.81 0.85 0.87 

Figure 5: shows a confusion matrix of the best LSTM model. 

 

VI. CONCLUSION 
     Our work adds evidence supporting the value of acoustics 
in monitoring beehives. The best model high accuracy of 92% 
discriminating between Queen Less and Queen present hives, 
make acoustic monitoring a useful tool for beekeepers to 
remotely monitor the status of their hives. In future, we plan 
to test the current models on data from different hives and 
extend this work to the use of Mel spectrograms as features 
on a Convolution Neural Network in a bid to improve the 
results. In addition, we intend to investigate the use of audio 
monitoring to predict swarms. 

                                    ACKNOWLEDGMENTS 
Stenford Ruvinga is grateful to the Graduate School of 

Kingston University for awarding him a Postgraduate 
Research Studentship enabling him to work on this project. 
We would all like to thank Arnia Ltd for making their data 
available for us to use, and to beekeepers Colm Treacy and 
Stewart Westsmith for providing valuable insights into the life 
of honeybees.  

REFERENCES 
[1] M. L. Winston (1987) “Temperate and Tropical Honey Bees” in The 

Biology of the Honey Bee, Harvard University Press; (11 April 1991 
Edition) 

[2] B.R, Johnson (2009) “Division of labor in honeybees: form, function, 
and proximate mechanisms”, Behav Ecol Sociobiol. 2010 
Jan;64(3):305-316. doi: 10.1007/s00265-009-0874-7. Epub 2009 Nov 
10. PMID: 20119486; PMCID: PMC2810364. 

[3] R. Boys (1999) “Listen to the Bees”, available on-line at 
https://beedata.com.mirror.hiveeyes.org/data2/listen/listenbees.htm 
[Last accessed 18 October 2020] 

[4] W.H. Kirchner (1993) “Acoustical Communication in Honeybees”, 
Apidologie, Vol. 24, pp 297-307 

[5] T.D. Seeley and J. Tautz (2001) “Worker Piping in Honeybee Swarms 
and its Role in Preparing for Liftoff”, Journal of Comparative 
Physiology A, Vol. 187, pp 667 - 676  

[6] S. Ferrari, M. Silva, M. Guarino & D. Berckmans (2008) “Monitoring 
of swarming sounds in bee hives for early detection of the swarming 
period”, Computers and Electronics in Agriculture, Vol. 64, pp 72-77 

[7] D.S. Kridi et al (2016) “Applications of Wireless Sensor Networks for 
Beehive Monitoring and In-Hive Thermal Patterns Detection”, 
Computers and Electronics in Agriculture, Vol. 127, pp 221 – 235 

[8] A. Zacepins et al  (2016) “Remote Detection of the Swarming of Honey 
Bee Colonies by Single-Point Temperature Monitoring”, Biosystems 
Engineering, Vol. 148, pp 76 – 80 

[9] G. Hunter, D. Howard, S. Gauvreau, O. Duran & R. Busquets (2019) 
“Processing of Multi-Modal Envronmental Signals from a ‘Smart’ 
Beehive”, Proceedings of the Institute of Acoustics, Vol 41, Part 1, pp 
337 - 348 

[10] D. Howard, O. Duran, G. Hunter and S. Stebel (2013) “Signal 
Processing the Acoustics of Honeybees (Apis Mellifera) to Identify the 
‘Queenless’ State in Hives”, Proceedings of the Institute of Acoustics, 
Vol. 35, Part 1, pp 290 – 297 

[11] http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 
[12] F. Zheng, G. Zhang and Z. Song, “Comparison of Different 

Implementations of MFCC”. Available from: 
https://www.researchgate.net/publication/220584952_Comparison_of
_Different_Implementations_of_MFCC [accessed Oct 28 2020]. 

[13] S. Davis and P. Mermelstein (1980) "Comparison of parametric 
representations for monosyllabic word recognition in continuously 
spoken sentences," in IEEE Transactions on Acoustics, Speech, and 
Signal Processing, vol. 28, no. 4, pp. 357-366, August 1980, doi: 
10.1109/TASSP.1980.1163420. 

[14] Gursimran Kour, Neha Mehan (2015), “Music Genre Classification 
using MFCC, SVM and BPNN” International Journal of Computer 
Applications (0975 – 8887) Volume 112 – No. 6, February 2015 

[15] M. Deng, T. Meng, J. Cao, S. Wang, J. Zhang & H. Fan (2020), “Heart 
sound classification based on improved MFCC features and 
convolutional recurrent neural networks”, Neural Networks, Volume 
130, Pages 22-32, https://doi.org/10.1016/j.neunet.2020.06.015. 

[16] T. Ganchev, N. Fakotakis, and G. Kokkinakis (2005), "Comparative 
evaluation of various MFCC implementations on the speaker 
verification task Archived 2011-07-17 at the Wayback Machine," 
in 10th International Conference on Speech and Computer (SPECOM 
2005), Vol. 1, pp. 191–194. 

[17] A. Mohamed (2014). “Deep Neural Network acoustic models for 
ASR”, PhD thesis, University of Toronto, Canada. 

[18] K. Paliwal, J. Lyons & K. Wojcicki (2011) “Preference for 20-40 ms 
window duration in speech analysis”, Proceedings of 4th International 
Conference on Signal Processing and Communication Systems 
(ICSPCS'2010) 1 - 4. 10.1109/ICSPCS.2010.5709770  

[19] https://www.inf.ed.ac.uk/teaching/courses/asr/2012-13/asr02-signal-
4up.pdf 

[20] S. Hochreiter, J. Schmidhuber (1997), “Long Short-term Memory”, 
December 1997, Neural Computation, 9 (8) : 1735-80, 
doi: 10.1162/neco.1997.9.8.1735 

[21] A. Ng, K. Katanforoosh & Y.B.Y. Mouri (n.d.). Sequence 
models [MOOC]. Coursera : https://www.coursera.org/learn/nlp-
sequence-models?   

[22] H. Sak, A. Senior, and F. Beaufays, (2014)  “Long Short-Term 
Memory Recurrent Neural Network Architectures for Large Scale 
Acoustic Modeling”  In Proceedings of  INTERSPEECH, 338-342. 

[23] https://uk.mathworks.com/help/audio/ref/mfcc.html 
[24] https://scikitlearn.org/stable/modules/generated/sklearn.linear_model.

LogisticRegression.html 
[25] https://scikitlearn.org/stable/modules/generated/sklearn.neural_networ

k.MLPClassifier.html 
[26] https://keras.io/api/layers/recurrent_layers/lstm/ 
[27] J.W. Picone (1993) “Signal modeling techniques in speech 

recognition”, Proc. IEEE 81, 1215–1247  
[28] P. D. Wasserman and T. Schwartz (1988) "Neural networks. II. What 

are they and why is everybody so interested in them now?," in IEEE 
Expert, vol. 3, no. 1, pp. 10-15, doi: 10.1109/64.209

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.researchgate.net/publication/220584952_Comparison_of_Different_Implementations_of_MFCC
https://www.researchgate.net/publication/220584952_Comparison_of_Different_Implementations_of_MFCC
https://doi.org/10.1016/j.neunet.2020.06.015
http://www.wcl.ece.upatras.gr/ganchev/Papers/ganchev17.pdf
http://www.wcl.ece.upatras.gr/ganchev/Papers/ganchev17.pdf
http://www.wcl.ece.upatras.gr/ganchev/Papers/ganchev17.pdf
https://web.archive.org/web/20110717210107/http:/www.wcl.ece.upatras.gr/ganchev/Papers/ganchev17.pdf
https://en.wikipedia.org/wiki/Wayback_Machine
https://www.inf.ed.ac.uk/teaching/courses/asr/2012-13/asr02-signal-4up.pdf
https://www.inf.ed.ac.uk/teaching/courses/asr/2012-13/asr02-signal-4up.pdf
https://www.researchgate.net/profile/Sepp_Hochreiter?_sg%5B0%5D=kTIxfa2F1itSEpPooSaMMI5ODcD14OBRe0DdnGW2qw_tBPoicOLfKZyysagbfPF3jcpyQBc.MIhPvzqkUF0THvlvRaP9tecZyelAZuX8G8N_4WIHL4ORvUastPNzaIk1Dn-7nkAzFXA6DsGI5ExZWDHIqjSZnA&_sg%5B1%5D=JYtO7KwsGq1uotWIGUnjjV8m_PI4gQhuq3OPKfDV9v2id7tJGqOxUVx6T_S8zsRp3OC9U5U.fGxsfdHO-uXI09gIPCe09-5JcGEQBXP0RZrO3ZyvNTbJGFfXBRRDSSSEMUc9UIzmUaHelcSkh-gfWyIWZaPYxw
https://www.researchgate.net/scientific-contributions/Juergen-Schmidhuber-40000894?_sg%5B0%5D=kTIxfa2F1itSEpPooSaMMI5ODcD14OBRe0DdnGW2qw_tBPoicOLfKZyysagbfPF3jcpyQBc.MIhPvzqkUF0THvlvRaP9tecZyelAZuX8G8N_4WIHL4ORvUastPNzaIk1Dn-7nkAzFXA6DsGI5ExZWDHIqjSZnA&_sg%5B1%5D=JYtO7KwsGq1uotWIGUnjjV8m_PI4gQhuq3OPKfDV9v2id7tJGqOxUVx6T_S8zsRp3OC9U5U.fGxsfdHO-uXI09gIPCe09-5JcGEQBXP0RZrO3ZyvNTbJGFfXBRRDSSSEMUc9UIzmUaHelcSkh-gfWyIWZaPYxw
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1162%2Fneco.1997.9.8.1735?_sg%5B0%5D=O1FZVpwgiP7wuQaBjcZAmxKtAogypu2tSZRnxApM7In3g_SKiTIi8rhNmItYWhbwBs6cQcS2KKv8G_tEZy1eCLSRog.hMNYIRc23mOMIIEfvRwcgseQcP91WNsMAnYm4AOVLjGPh3hUE0_aRmIJxhasuuAudQiXNox2AtthedMwiBjp7w
https://uk.mathworks.com/help/audio/ref/mfcc.html
https://scikitlearn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikitlearn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikitlearn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikitlearn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://keras.io/api/layers/recurrent_layers/lstm/


 


	I. Introduction
	II. Honeybee Colonies
	III. Related Previous Work
	IV. Datasets and Methodologies
	1) Pre-Emphasis
	2) Framing
	3) Windowing
	Windowing is then applied to individual consecutive frames to prevent discontinuity of the signals generated by the framing process. The most commonly used windows are the Hamming and the Hanning windows. The two windows are defined as  w[n] :
	𝑤,𝑛.=,1−𝜔.−𝜔∗,𝑐𝑜𝑠-,,2𝜋𝑛-𝐿−1.. .  (1)
	for  0 ≤  n  ≤  L – 1, where L is the window width,  𝜔=0.5 for the Hanning window and 𝜔=0.46164 for the Hamming window [19].
	4) Fast Fourier Transform
	5) Mel Filter Bank
	6) Logarithms Transformation
	7) Discrete Cosine Transform (DCT)
	Finally, the DCT is taken on the logarithmic outputs from above. This is results in decorrelated MFCC features.

	V. RESULTS
	VI. CONCLUSION
	Acknowledgments
	References


