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Abstract

Retinal blood vessel segmentation and analysis is critical for the computer-aided diagno-
sis of different diseases such as diabetic retinopathy. This study presents an automated
unsupervised method for segmenting the retinal vasculature based on hybrid methods.
The algorithm initially applies a preprocessing step using morphological operators to
enhance the vessel tree structure against a non-uniform image background. The main pro-
cessing applies the Radon transform to overlapping windows, followed by vessel valida-
tion, vessel refinement and vessel reconstruction to achieve the final segmentation. The
method was tested on three publicly available datasets and a local database comprising a
total of 188 images. Segmentation performance was evaluated using three measures: accu-
racy, receiver operating characteristic (ROC) analysis, and the structural similarity index.
ROC analysis resulted in area under curve values of 97.39%, 97.01%, and 97.12%, for the
DRIVE, STARE, and CHASE-DB1, respectively. Also, the results of accuracy were 0.9688,
0.9646, and 0.9475 for the same datasets. Finally, the average values of structural similar-
ity index were computed for all four datasets, with average values of 0.9650 (DRIVE),
0.9641 (STARE), and 0.9625 (CHASE-DB1). These results compare with the best pub-
lished results to date, exceeding their performance for several of the datasets; similar per-

1 | INTRODUCTION

The eye provides a keyhole view of the retinal vascular network.
Many systemic diseases change the vascular network and could
be diagnosed through this transparent window. Therefore,
retinal vessel evaluation is increasingly used to establish retinal
normality, and to diagnose/monitor diseases that exhibit retinal
abnormality. Changes to the retinal vasculature are associated
with conditions that include microaneurysms (MAs), hemot-
rhage (HEs) [1], and increasing levels of vessel tortuosity [2],
that is a marker for diseases like diabetic retinopathy (DR) [3].
DR, as a common complication of diabetes, is the leading cause
of blindness in the working population of Western countries
and requires monitoring [4]. It is a silent disease and may only
be recognized in a patient when retinopathy has progressed.
Therefore, eatly screening of retinopathy can significantly
reduce the incidence of blindness. In order to find DR symp-
toms, detection systems require the analysis of changes to the

formance is found using accuracy.

retinal vasculature. Indeed, the retinal vessel segmentation is
the first step for the detection and diagnosis of the related DR
lesions. In better words, early detection of DR can be screened
by the analysis of retinal vessels [5]. Masking of the retinal
vessels ensures that the vessels do not decrease the accuracy of
systems in detection of the red lesions that are caused by DR
[6]. Therefore, for such screening and detection systems, a fast
and accurate segmentation algorithm for blood vessel detection
is necessary. Evaluation and abnormality detection of the
retinal vascular network undertaken by ophthalmologists is a
time-consuming process, and associated with error and fatigue.

Moreover, clinical analysis based on an ophthalmologist’s
review may not be exactly repeatable. One possible solution
for these problems is to use computer-assisted diagnosis sys-
tems [7-9] which apply automated computerized techniques to
segmentation, leading to a more rapid and expedient detection
[10, 11] and subsequent diagnosis. For this purpose, image pro-
cessing techniques are required to extract suitable information
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about changes to the vascular tree. In general, vessel segmen-
tation is a critical step in screening for DR [12]. It is a corner-
stone in the detection of other retinal landmarks, such as the
optic nerve head (ONH) [13, 14] and the fovea [15]. Moreover,
it is an important step in reducing the number of FPs (FPs) in
the detection of MAs and HEs for the purpose of image regis-
tration [6] and the extraction of vasculature reference points.

This paper describes the evaluation of a fully automatic unsu-
pervised algorithm for segmenting the retinal vascular tree using
an approach based on the Radon transform (RT) originally
developed in [16]. The contribution is fourfold: i) to improve the
segmentation performance by suppressing FP detections, and
false detections associated with MAs; ii) to validate the method
on a much larger color dataset; iii) to investigate the applicability
of an alternative quality measure, the structural similarity index
(SSIM) [17];1v) to evaluate performance on a large set of abnor-
mal samples. The method is evaluated on three widely used reti-
nal image datasets (DRIVE, STARE, CHASE-DB1) to enable
performance comparisons with those of other researchers. In
addition, we apply the method to a locally acquired dataset
(MUMS-DB) that has a large proportion of DR cases, in order
to evaluate the performance with a larger number of abnormal
images. An important feature of the study is the use of the RT
[18] to detect the vascular tree in retinal images, combine with
the multi-overlapping windows, and morphological reconstruc-
tion. Compared with other line detectors, RT is less sensitive to
noise in the image, because of the concept of integral operator
that it has cancelled the intensity fluctuations due to noise [19].
As shown in the result section, our unique approach to detect
blood vessels achieves higher performance than the reported
unsupervised methods. Moreover, to evaluate the results of our
segmentation in comparison with the other methods besides
using receiver operating characteristic (ROC) curve, we used
the concept of SSIM [17]. The results demonstrate a level of
performance that matches or exceeds the best of current meth-
ods reported in the literature, using the conventional measure
of accuracy, ROC curve, and area under the curve (AUC) anal-
ysis, and also reveal the benefits of a structural analysis of the
vascular tree using SSIM.

The rest of the paper is organized as follows. The next
section reviews other published studies in vessel segmenta-
tion. Section 3 introduces the material used in this study and
explains the proposed method for retinal vessel segmentation.
Section 4 provides an assessment of segmentation quality using
the SSIM index. Section 5 presents the results and compates
them to existing methods. The final section presents a discus-
sion and conclusions.

2 | PREVIOUS WORKS

There is a substantial effort reported in the literature for the
segmentation of blood vessels in fundus images [20-42]. A
comprehensive review on existing methods in retinal vessel
segmentation and available public datasets are presented in [43,
44]. In general, vessel segmentation algorithms can be classi-
fied into two broad categories: unsupervised and supervised

methods [45]. A comparative survey of these two classes has
been presented in [46]. Unsupervised methods can be further
classified into techniques based on matched filtering [47, 48],
morphological processing [9, 49], vessel tracking, multi-scale
analysis [50, 51], line detectors [52], and model-based algo-
rithms [53, 54]. Supervised segmentation methods are based
on pixel classification such as the k-nearest neighbours (kNN)
[55], Gaussian mixture models [56], support vector machines
(SVM) [57], neural networks (NNs) [57], decision trees [27],
and AdaBoost [58, 59]. They utilize ground truth data for the
classification of vessels, based on given features.

The principle of matched filter detection in unsupervised
methods was proposed in [47]. With this technique, the authors
used a 2-D Gaussian-shaped template to search for vessel
segments in all possible directions. The resulting image is
thresholded to produce a binary representation of the reti-
nal vasculature. Chakraborti et al. [48] applied an unsupet-
vised segmentation approach that combined a ‘vesselness’
filter and matched filter using an orientation histogram. Ver-
meer et al. [53] achieved vessel detection by thresholding, after
convolving the image with a 2-D Laplacian kernel. A general
framework of adaptive local thresholding based on the use of a
multi-threshold scheme, combined with a classification proce-
dure to verify each resulting binary object, was applied by Jiang
and Mojon [60].

An improved method for blood vessel segmentation using
morphological component analysis was introduced by [42, 49].
Martinez-Perez et al. [50] presented an automated technique for
retinal images based on a multi-scale feature extraction. The
local maxima of the gradient magnitude and the maximum prin-
cipal curvature of the Hessian tensor were used in a multi-pass
region growing procedure. Zhang et al. [51] employed innova-
tive rotating multi-scale second-order Gaussian derivative filters
which are referred to as orientation scores for the enhance-
ment and segmentation of blood vessels. Roychowdhury et al.
proposed an iterative unsupervised retinal vessel segmentation
algorithm that used an adaptive threshold and a region growing
method with a stopping criterion to terminate the iteration [61].

Nguyen et al. proposed a vessel detection method based on
line detection [52]. This approach was based on this fact that
changing the length of a line detector makes line detectors with
variety of scales. The final vessel segmentation results were
achieved by combining line responses at varying scales. The
combination of shifted filter responses (COSFIRE) for detec-
tion of bar-shaped structures in retinal images was presented
by Azzopardi et al. [62]. Their approach was rotation invariant,
where the orientation selectivity was determined from given
vessel-like structures which suffered from difficult crossing
cases. Lam and Yan [54] used the Laplacian operator to extract
blood vessels and detect centerlines from the normalized
gradient vector field, pruning noisy objects. Vessel continuity
employs measures of width and orientation, iteratively com-
puted in a local region near the current point, in order to track
along the length of a vessel [63, 64].

Supervised approaches [28, 55, 57, 65] use a pixel classifica-
tion method, referred to as a primitive-based method by Staal
et al. [06]. This algorithm is based on the extraction of ridges,
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used as primitives for describing linear segments, named line ele-
ments. Sinthanayothin et al. [67] identified retinal vessels using
a NN whose inputs were derived from principal component
analysis of the image and edge detection of the first principal
component. The kNN classifier was implemented by Niemei-
jer et al. [55]. In their method, from the green channel of the
original image, a 31-component pixel feature vector was con-
structed with the Gaussian and its derivatives up to order 2 at
5 different scales, augmented with the grey level. Soares et al.
[56] applied a Gaussian mixture model Bayesian classifier. By
using the Gabor wavelet transform, multi-scale analysis was per-
formed on the image. Ricci and Perfetti [57] utilized an SVM
for classifying pixels as vessel or non-vessel. They applied two
orthogonal line detectors along with the grey level of the tar-
get pixel to construct the feature vector. One of the best super-
vised methods was implemented by Fraz et al. [28] which was an
ensemble classification system of boosted and bagged decision
trees. The drawback of supervised classification is its need for a
sufficient number of manually annotated training samples and it
is not easy to generalize the trained models to meet the require-
ments of different datasets. More recent studies have success-
fully applied the concept of deep learning to the segmentation
of the retinal vasculature [68-77].

The available literature broadly falls under hand-crafted
methods and NN-based algorithm. As we explain in the result
section, while NN-based approaches deliver good results in
terms of accuracy and outperform humans occasionally, they
need heavily parallelized hardware, e.g. GPU to run which is
not available to all users. Hand-crafted methods, on the other
hand, require a lot of domain expertise but are much compu-
tationally cheaper. Our method as a hand-crafted one improves
the accuracy of the existing methods with high robustness with-
out a lot of computations. This study describes an unsupervised
vessel segmentation method for retinal images based on a com-
bination of the RT, multi-overlapping windows, and a morpho-
logical reconstruction that extends our previous method [16].

Block diagram of proposed method. Here we pictorially show the steps of our study. The details of each step is explained in the text

The extension of our previous method is, first, evaluation of
the algorithm with real color retinal databases. Here, we used
images from four different databases (one rural and three pub-
lic databases) instead of the previous one which was fluores-
cein angiography retinal images. Second, in the method section,
we added morphological reconstruction to minimize FP pix-
els associated with other retinal lesions and landmarks. Finally,
a means of measuring image quality called SSIM index, based
on the human perception, was performed to more correctly
determine image distortion than the commonly used method of
mean squared error to benchmark the results of final segmenta-
tion. Results of the method are compared with normal images
and those affected by DR. The goal of this work is to develop
a complementary automated algorithm for detecting the retinal
vessel network to support the detection of DR.

3 | PROPOSED METHODOLOGY

A pictorial flowchart of the proposed method is shown in
Figure 1 and the individual processing steps are detailed in the
following sub-sections.

3.1 | Materials

To evaluate the retinal vessel segmentation method described in
this study, four datasets (one local and three publicly available)
were used (see Table 1).

1) The first set (rural database) is named MUMS-DB (Mash-
had University Medical Science Database). The MUMS-DB
provided 120 retinal images including 100 cases with DR
and 20 without DR or any systemic disease or ocular micro-
vascular involvement. The images were obtained via a TOP-
CON (TRC-50EX) retinal camera at 50 degree field of view
(FOV) and mostly obtained from the posterior pole view
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TABLE 1 Details for the four datasets in this study

No. of
Database Image size FOV  Normal Abnormal images
MUMS-DB 2896 X 1944 50 20 100 120
DRIVE 768 X 584 45 31 7 40
STARE 700 X 605 35 10 10 20
CHASE_DB1 999 X 960 30 - 28 28

(including ONH and macula) with a resolution of 2896 X 1944
pixels [78].

2) The second is the DRIVE database consisting of 40
images with a resolution of 768 X 584 pixels; 33 images have no
signs of DR and 7 images showed signs of early or mild DR with
a 45 degree FOV. For algorithms that operate in a supervised
manner, this database is often divided into a testing and training
set, each containing 20 images. For the test set, two specialists
provided manual segmentations for each image [55].

3) The STARE database consists of 20 retinal images that
were used initially by Hoover and Goldbaum. These images
were captured at 35-degree FOV with an image resolution of
700 X 605 pixels. This database contains 10 images of normal
retina and 10 images of diseased retina. [47].

4) The CHASE-DB1 dataset [43] includes 28 fundus images
with a resolution of 999 X 960 pixels, acquired from both the
left and right eye. An ophthalmologist and human experts were
asked to mark the vessels in all these images and these hand-
labelled vessels were used as the ground truth (or gold standard)
for this dataset.

3.2 | Preprocessing and image enhancement

A preprocessing (enhancement) step is used to increase the con-
trast between the vessel and the non-uniform background. The
green channel of the RGB image is chosen as the input image
(D), as it provides the greatest contrast between vessel and back-
ground. Intensity variations in the background of the fundus
images can lead to poor vessel detection. For example, some
background image regions can appear brighter than the fore-
ground vessels. To deal with this problem, the image I is com-
plemented by subtracting each intensity from the maximum
(white) value. To create a more uniform background, a top-
hat transform is then applied to the complemented image. The
transformation uses a disk-shaped structural element whose
diameter was empitically found to provide the best separa-
tion of vessel from background (4=10 pixels). Because the
disk diameter depends on the input image resolution, various
diameters were tested for the different datasets to evaluate the
effect of that on final segmentation (see Section 5.2.1 for mote
details). The result of this first step of preprocessing is shown in
Figure 2(b). Following application of the top-hat transform, an
averaging filter (filter size=25 X 25 pixels) was used to suppress
remaining intensity variations and point noise, which further
helped in reducing FP detections. The results of the averaging

@ () ©

FIGURE 2
Top-hat result. (c) Result of subtraction of top-hat and filtered top-hat image

Preprocessing steps. (a) Fundus image from MUMS-DB. (b)

are then subtracted from the top-hat transformed image. The
final result of preprocessing is shown in Figure 2(c).

3.3 | Detection of retinal vessel

Blood vessels can be described as dark curvilinear objects
against a lighter background, with indistinct edges. The retinal
blood vessels are non-uniform in intensity, length, and width
throughout the image. As a result, global detection methods are
prone to failure. The algorithm described here applies analy-
sis localized to sub-regions of the image where features exhibit
more homogeneity. The algorithm is composed of five steps:
image partitioning, local RT, vessel validation, vessel refinement,
and vessel reconstruction. Further details involving steps 1-3
can be found in [16]. The retinal image is initially partitioned
into small overlapping windows within which short sections of
vessel will be detected and segmented. The RT is used to detect
these shott sections of vessel as line-like features, and to create
a coarse estimate of the vessel orientation and width. Vessel sec-
tions detected in each window are accumulated over the entire
image. Those parts associated with FP detections and microa-
neurysms, are suppressed used a vessel reconstruction method
to create the final segmentation of the vascular tree. The algo-
rithm is described in detail in the following sections.

3.3.1 | Image partitioning
The fundus image is partitioned into sub-image windows to
ensure reliable detection of short sections of a vessel. The back-
ground and vessel pixels will exhibit the greatest homogeneity
for a small window, but the window must be large enough to
wholly contain the widest vessel sections, which is necessary for
detection of the vessel section using the RT. Hence, the win-
dow size of (# X n) is chosen to be at least twice the width of
the thickest vessel in the image, which leads to a value for #
that is approximately 2% of the full image width. In fact, the
image size is our geometric feature that applies here. The hyper-
parameter that is most sensitive to image size is the window size
(7). Here, image size is taking into account the image resolution
and consequently window size differs with changing in image
resolution.

One issue with windowing is that the vessel boundary might
fall on the window edge. The windows are overlapped to ensure
that the vessel will be more centrally located in the window
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in subsequent instances of the sliding window position. The
degree of overlap is controlled by the value of the step size (step)
of the sliding window. As shown in Figure 3, the step size can be
expressed as a proportion of the window size. Overlapping win-
dows ensure that each pixel is examined multiple times (actually,
‘step’ number of times in both the horizontal and vertical slid-
ing direction) resulting in each pixel being processed up to 7
times for a step size of 1. An experiment to assess the value of

overlapped windows is described in Section 5.2.2.

3.3.2 | Local Radon transform
The RT is an algorithm that can used to locate line segments
in an image, by projecting and integrating the image intensities
through 180 degrees. Combination of local RT with overlapping
windows is used here to detect and locate sections of vessel in
the windows, where the contrast between the vessel and back-
ground is associated with peaks in Radon space: the longer the
line in the image domain, the stronger the peak in the trans-
form domain. The motivation behind using the RT is that it
makes the algorithm less sensitive to noise than other methods,
because variations in intensity due to noise tend to be removed
by the process of integration. In the RT, each line gives a peak
or a valley in Radon space. For the detected line, other features
such as line width and line orientation can be directly extracted
from the Radon matrix.

The RT of a function f(x,y) which represents the greyscale
density and the transformed function fy(s) is defined in Equa-
tion (1) [18].

g px
Jo(®) = / / F,9)0(s — xcos 8 —ysinO)dxdy (1)
o Jo

Both x and y in Equation (1) are equal to the window size,
n. However, a problem arises because there are more diagonal
pixels than other directions. Therefore, the peak in the RT is
more likely to appear in this diagonal direction. Hence, a circu-
lar mask is applied to the preprocessed sub-image, as shown in
Figure 4. The vessel profile in which peak has occurred is con-
sidered a candidate that might contain a vessel. This profile is
further analyzed for validation of a candidate vessel.

R P
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FIGURE 4

mask; (c) masked sub-image
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Masking process. (a) Preprocessed sub-image; (b) applied

TABLE 2  Comparison of segmentation performance with and without
overlapping windows, measured across the four datasets

- Without  Overlap ~ With Overlap  No. of
Database TPF FPF TPF FPF images
MUMS-DB 0.5023 0.2510 0.9562 0.2020 120
DRIVE 0.6715 0.2510 0.9613 0.2020 20
STARE 0.6073 0.2510 0.9589 0.2020 20
CHASE-DB1 0.5913 0.2510 0.9512 0.2020 28
3.3.3 | Vessel validation

In this section, the peak amplitude in Radon space is compared
with a predefined threshold (Th) (see Table 2). If the peak ampli-
tude is larger than the threshold, the detected vessel is con-
firmed, otherwise the next projection is analyzed. This process
is repeated for O between 0 and 7 in increments of 6 degrees. At
this point, or if a vessel section is successfully detected, the win-
dow is advanced by ‘step’ pixels and the RT detection process
is repeated.

When a vessel is successfully found, the algorithm calculates
the vessel’s width (), w = 7, — fmin + 1, and its orientation
(with respect to the window) as well as the intersection of its
start and end points with the window border. A binary detection
mask is constructed using these parameters to create an initial
(coarse) segmentation of the vessel section, referred to as the
local vessel map.

Figure 5 plots a section of the RT projection profile that
passes through the detected peak in RT space. The peak’s index,

12000 T T T = =1 T T

10000

8000 -

| Peak x alpha -
2
2 6000 - 1
2
=
4000 B
2000 1
0 1 l""" 1 i'"""l 1
0 10 20 30 40 i 50 60 70 80
Angle (degree)
FIGURE 5 Sample Radon profile. Projection profile of Radon transform

(P) for a peak located at © = 45 degrees (for image window shown in Figure 4(c)
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FIGURE 6 Local vessel mask calculated from profile in Figure 5

i5, determines the orientation of the sub-vessel’s centetline and
the interval [

width (w = 7,
mated as a proportion of the peak height as follows:

min> Imax]> 18 used to approximate the sub-vessel’s

— Imin + 1). The values of [/, Zmay] ate esti-

P@min) = P@max) =aX P(Zp) (2)

where & is a constant (0 < a < 1) which is chosen empirically
(see Table 2). The sub-vessel mask is created using the projec-
tion angle (8) width determined 7;,, and 4y;,. Figute 6 depicts
the local vessel mask (LVM) created for the vessel segment
shown in Figure 4 based on the peak detected in Figure 5. In the
next section, this mask will be used to define the mean intensi-
ties of vessel and background.

3.34 |

Vessel refinement

The LVM provides a coarse segmentation of the vessel segment,
but a more accurate refinement is generated by intensity thresh-
olding. The mask is used to define two image regions: back-
ground and vessel. The mean pixel intensity is computed for
these two regions and the intensity threshold (75g;; Table 2) that
best separates them is defined by

i+

1, if 7>
Ipsy = 2 ©)
0, else

Here, the first mean () is the mean of those pixels in win-
dow which their associated pixels in LVM place on white rib-
bon. The second mean () is the mean of those pixels in win-
dow which their corresponding pixels in LVM set on the black
background. The result of thresholding the pixel intensities cre-
ates the binary sub-image (BSI). Because thresholding is a noise-
sensitive process. the LVM is used to suppress detections out-
side the vessel region defined by the white pixels of the LVM.
The result is named the fine local mask (FLM) and is generated
by a logical ANDing of the LVM and BSI images. Figure 7(d)
and (h) shows the final vessel segmentation result for the image
window shown in Figure 4.

FIM(@,j) = LVM(@i, j) AND BSI(5, /) [i,7 =1,2,..,7]

*

Finally, the FLMs associated with all the image windows are

merged to obtain a complete vessel segmentation of the input

V4V

FIGURE 7
preprocessed sub-images; (b) binary sub-images (BSI); (c) local vessel masks
(LVM); (d) fine local masks (FLM) of sub-images

D

Merging sub-images. Logical OR of sub-images of vessel

Vessel refinement steps. An example of window analysis: (a)

FIGURE 8

refinement

image. Figure 8 depicts the merging of two overlapping FLM’s,
highlighting the capability of the algorithm to cope with the fail-
ure of the individual segmentation to reliably detect the vessel
region in each window. The merging is implemented as a logical
OR of the FLM windows.

3.3.5 | Vessel reconstruction

Vessel reconstruction analyzes the merged FLM images to min-
imise FP pixels-associated HEs, exudates (EXs), or MAs thatare
detected with the vessel tree whilst extending the connectivity of
the vessel tree. Figure 9(b) and (f) shows examples of an FLM
image with disconnected vessel fragments and FP detections.
An iterative conditional dilation is used to apply a connectiv-
ity test to identify those elements that belong to the vessel tree,
and unconnected false detections that can then be eliminated
[Figure 9(c) and (e)].

The conditional dilation uses two binary images: a marker
image that is used as a seed for the reconstruction process [9,
79]; and a mask image that constrains the dilation process to
only add pixels that are part of the vessel tree. The mask image
is the FLM created using the steps described in the previous
section. The marker image is created using the same steps as the
FLM, but a more stringent threshold is used for vessels detected
by the RT. Hence, the mask image will contain only the more
prominent and thicker vessels that are guaranteed to form part

.

. B e |
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FIGURE 9

sub-images; (c) marker sub-images; (d) final result of vessel segmentation for

Vessel reconstruction steps. (a) Original sub-images; (b) mask

the sub-images
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FIGURE 10

(a) marker image; (b) mask image or FLM image

Mask and marker sample images. Conditional dilation masks:

FIGURE 11  Final vessel segmentation. An example of vessel reconstruc-
tion for entire image: (a) original image from the MUMS-DB dataset; (b) man-
ual vessel segmentation (ground truth); (c) vessel segmentation results with false
positives, before applying morphological reconstruction; (d) accurate segmenta-
tion result after applying reconstruction

of the vessel tree. By using the marker image as the seed for the
conditional dilation, and the FLM image to ensure the dilation
operator cannot grow beyond the FLLM mask, the FP regions
can be found and eliminated. Figure 10 shows an example of
the two image masks used for conditional dilation; the thresh-
old value used for the marker image is 7, e = 1.5 Th; its value
is empirically determined (see Table 2).

Figure 11 shows the results of vessel reconstruction on two
examples. Since MAs or any FPs are separated from vessels
and do not exist in the marker image, they do not appear
in the final vessel map that is the output of conditional dila-
tion and hence this morphological reconstruction removes all
unconnected components associated with FPs from the final
binary image.

The extracted blood vessels were checked by an independent
ophthalmologist and the algorithm was evaluated subjectively.

4 | VESSEL SEGMENTATION
ASSESSMENT USING STRUCTURAL
SIMILARITY INDEX

The AUC and accuracy are widely used to assess the effective-
ness of segmentation algorithms, providing single measures of
performance that can easily be compared. Based on the hypoth-
esis that the human visual system is well adapted to extracting
structural information from the viewing field, an image qual-
ity measure is performed for retinal segmentation, based on the
structural similarity (SSIM) measure [17, 80]. This measure of
structural information change can provide a good approxima-
tion to understand image distortion as compared to conven-
tional methods such as mean squared error that can be weakly
correlated with human visual perception; also, its values for the
same images do not inherently contain the same error. For the
SSIM method, an objective image assessment can be classified
according to the availability of an original image (the manual
segmentation in our case) with which the automated segmen-
tation image is to be compared. The motivation behind the
SSIM approach for measuring retinal vessel segmentation qual-
ity is that ROC curves are not petfectly designed for detec-
tion of imperfections or noise and errors in the segmented
images. Instead, the SSIM extracts information to exploit the
structure (segmented vessels) of the original images. Based on
this observation, it makes sense that a useful perceptual quality
metric would emphasize the structure of scenes. In the SSIM
approach, the structural part is sensitive to distortions or any
changes that overwhelm natural spatial correlation of an image,
such as artefacts and noise [81]. In general, the SSIM distin-
guishes between structural and nonstructural changes or distor-
tions, giving results that agree with perception visibly distorted
images. It takes values in the range 0.0 to 1.0, where zero corre-
sponds to a loss of all structural similarity info and one means
having an identical copy of the original image [80]. Just as an
example for our study, Figure 16 shows a sample of the qual-
ity assessment of retinal vessel segmentation using SSIM index.
The reason for greater success in quality assessment lies in the
fact that the SSIM approach separates the task of similarity mea-
surement into three categories: luminance, contrast, and struc-
ture. The first two, luminance and contrast, are constant in our
case because our final segmented image is a binary image. The
structure category (which is related to our segmented vessels) is
particularly sensitive to noise (i.e. MAs and FPs) in the final seg-
mentation results and this has a more significant effect on the
SSIM measure than the ROC analysis [82]. As defined in [17],
the structural information in an image is independent of the
average luminance and contrast. Since luminance and contrast
do not change in the segmentation results, the local luminance
and contrast is used for our definition. The SSIM value is given

by

o+ 1% [200+61° 1oo+a 1
Haclhy 1 XYy 2 [ Xy 3] ®)
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whete @ > 0,8 > 0,and ¥ > 0 are parameters used to weight
the importance of each component. In this paper, a, 8, and ¥y
are given equal weighting and are all set to a value of 1.
1 N - -
= T, 6y — )05 =) and
G, Gy, Cj ate three constants related to the dynamic range of

The standard deviation 0, =

the pixel values. An important point is that the three compo-
nents are relatively independent. Because the segmentation is
local (local RT), the quality assessment will be more useful rather
than if we had applied a global SSIM index locally. This index
compares automated segmented images with manual segmenta-
tions (as our gold standard). So the closer the index value is to
1, the greater the similarity between the ground truth and the
segmented images.

5 | EXPERIMENTAL RESULTS
Two standard methods are used to assess the effectiveness of
the proposed method and to enable comparison with results
reported by others: ROC analysis and SSIM analysis. ROC
curves illustrate the tradeoff between sensitivity (Se) and speci-
ficity (Sp) for a range of thresholds and enable the identification
of an optimal value [83]. However, different classification goals
might make the selection of one point on the curve more appro-
priate for one task whilst another point may be more suitable for
a different task. Hence, assessment using the ROC curve is a way
to evaluate the model independent of the choice of threshold.
The algorithm was evaluated in terms of the true positive
fraction (TPF) given by (Se), and the false positive fraction
(FPF), given by (1-Sp). Also, the accuracy was determined as
a measurement providing the ratio of well-classified pixels. The
results for the automated method compated to the ground truth
or gold standard (GS) were calculated for each image. These
metrics are defined as follows:

TP
Sensitivity (Se) = TP+—FN
. TN
SpCClﬁClty (Sp) = TN—+FP (6)
TP + TN

Accuracy (Acc) = TP + EN + TN + FP

where TP is true positive, TN is true negative, FP is false
positive and FN is false negative, the same as in [59, 84].

5.1 | Parameters tuning

In this study, several different retinal image datasets have been
used to evaluate the performance of the proposed segmenta-
tion algorithm. Table 1 summarises details of the four datasets.
For each dataset, we have some images for fine-tuning of algo-
rithm parameters. The purpose of parameter tuning is to set all
the parameters which our segmentation has maximum accuracy.

After fixing the parameters of the algorithm by using appropri-
ate set, the algorithm was tested in each image of our databases.

FIGURE 12
Input image from DRIVE and STARE; (b) and (e) automatic segmentation

Final vessel segmentation for public datasets. (a) and (d)

results; (c) and (f) manual segmentation image (ground truth)

The DRIVE dataset comprises 40 retinal images and includes
20 images that have a hand-labelled segmentation and a further
20 unlabelled images. The labelled set is used as the tuning set
and the remaining 20 form the test set.

For the other three datasets (STARE, CHASE-DB1, and
MUMS-DB), there is no distinction between images that are
used separately for tuning or testing. In the published stud-
ies, there are two ways to determine tuning and test sets. The
first one is called the random samples method which builds
randomly the tuning and testing sets and is used in most of
the studies [57, 85]. The problem with this approach is that
there is overlap between these two sets that raises a concern of
excessively optimistic results [68]. The second approach is called
leave-one-out [56, 66] which we used in this study. With this
technique, each image is tested by using a network model that
is trained on the other images. Hence, for the STARE dataset,
one image is tested using the model trained on the other 19
retinal images. The advantage of this method is that the tun-
ing and testing images do not overlap and the networks require
tuning for all images in the dataset. Figure 12 shows the results
of vessel detection related to three sample images from the pub-
lic datasets.

52 |
FPF

Comparison of the results of TPF and

One validation is related to the TPF and the FPE The valida-
tion of our segmentation was based on hand-labelled images as
the manual segmentation or GS. The TPF is defined as the ratio
of TP to the total number of vessel pixels in GS. The FPF is
calculated by dividing the number of FP by the total number of
non-vessel pixels in GS. The characteristic of perfect segmenta-
tion is TPF = 1 and FPF = 0.

5.2.1 | Setting the preprocessing parameters

The important characteristics in colour retinal images are
colour and contrast (especially for the blood vessels). Uneven
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FIGURE 13
DRIVE; (b) automatic segmentation results without preprocessing; (c) auto-

Evaluating effect of preprocessing. (a) Input image from

matic segmentation results with preprocessing; and (d) manual segmentation
image (ground truth)

TABLE 3  Comparison with and without vessel reconstruction in the four
databases

- Without  Reconst.  With Reconst.  No. of
Database TPF FPF TPF FPF images
MUMS-DB 0.9702 0.3544 0.9562 0.2020 120
DRIVE 0.9795 0.3544 0.9613 0.2020 20
STARE 0.9723 0.3544 0.9589 0.2020 20
CHASE_DBI1 0.9673 0.3544 0.9512 0.2020 28

illumination causes noise in this images. To reduce the effect
of noise in retinal image, we need to preprocess this image to
enhance the quality. In such case, preprocessing the image can
give better results in final segmentation or detection.

At the beginning, we need to check the effect of preprocess-
ing. To evaluate the image quality of the preprocessed images
after applying top-hat, we need to prove that preprocessing
does not affect the vessel pixels. For this purpose, as you see in
Figure 13, we compare the results of vessel segmentation with
and without preprocessing first. Using the concept of Se and
Sp related to ROC curves, the accuracy of vessel segmentation
without preprocessing dropped by at least 15%.

After evaluating the effect of preprocessing, the next step is
assessing the sensitivity of the parameters that control the pre-
processing steps. With the top-hat algorithm, in order to avoid
removal of portions of the vessels, it is necessary to apply a
large structural element. However, a large structural element
increases the background noise. A reasonable compromise sets
the size of the structural element to be the maximum size of
the primary vessels. The algorithm was evaluated using constant
averaging filter size (25 pixels) and a range of structural elements
of varying sizes. The segmentation result after vessel reconstruc-
tion was stable for sizes of 10-50 pixels (vatied in increments of
10 pixels), but for values outside this range, the accuracy of ves-
sel segmentation dropped by at least 10%. A second experiment
varied the size of the averaging filter. For this, the structural ele-
ment for the top-hat was fixed at 10 pixels and for filter sizes
from 40 to 100 pixels (in increments of 10 pixels), the result
(as shown in Table 3) remained stable, but below 40 pixels, seg-
mentation performance dropped by 5%—10%. Hence, a value of
25 pixels was chosen as the most effective and efficient value for
the remainder of the experiments for all databases.

TABLE 4  Parameters used for ROC analysis of optimum Th value

No. of  Window
Database images size (n) Step Th o4 T T, arkcer
MUMS-DB 120 62 5 [0,5] 05 0.5 1.5Th
DRIVE 20 15 5 [0,5] 05 05 1.5Th
STARE 20 18 5 [0,5] 05 05 1.5Th
CHASE_DB1 28 30 5 [0,5] 05 05 1.5Th

>

FIGURE 14  Effect of overlapping windows. (a) and (d) Input image from
DRIVE and MUMS-DB; (b) and (e) results for a window step of 5 (80% over-
lap); (c) and (f) results with a window step of 1 (no overlap)

5.2.2 | Effectiveness of overlapping windows

This experiment assesses the value of the overlapping widows.
As in Section 5.2.1, the evaluation considers the segmentation
after vessel reconstruction. Table 4 shows the result of a step
size of 1 (i.e. no overlap) compared with a step size of 5 (i.e. 80%
overlap). As can be seen, segmentation accuracy drops below
70% without ovetlap, considerably poorer than the result when
ovetlapping is employed. This lower performance is reflected
in Figure 14(c) and (f) where the fragmented appearance of
the final segmentation result is clearly visible. This experiment
demonstrates the importance of using overlapping windows to
achieve a robust segmentation result.

5.3 | Comparing the results of ROC curves in
four databases

This experiment investigates the optimal value for the threshold
value (Th) that is used to select valid peaks in the RT and deter-
mine the presence of a valid vessel segment within an image
window. This optimal value is determined by using ROC curves
[a plot of TPF (Se) versus FPF (1-Sp)] generated using vary-
ing values Th over the range [0:5], on vessel segmentation per-
formance for each of the datasets. Figure 15 superimposes the
results for all four datasets using the set of parameters shown in
Table 2.

The ROC curve, which provides a graphical representation
of classifier performance, can be reduced to a single value that
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FIGURE 15 ROC curves for all databases. ROC curves for values of Th

in the range [0:5] on the four datasets

describes an algorithm’s performance [86] by calculating the
AUC, which is 1 for a perfect system,. The AUC measured sep-
arately for images from the four datasets is 95.98% for MUMS-
DB, 97.39% for DRIVE, 97.01% for the STARE, and 97.12%
for CHASE DB1. Segmentation performance measured using
accuracy [Equation (6)] is 0.9456, 0.9688, 0.9646, and 0.9475,
respectively, for MUMS-DB, DRIVE, STARE, and CHASE-
DBI1.

Finally, the proposed method was compared with other stud-
ies reported in the literatutre, both supervised and unsupervised,
that have used the three public datasets [28, 48, 49, 51, 56, 57,
59, 62, 87-91]. Table 5 compares the results for accuracy whilst
Table 6 shows AUC values. From both the accuracy and AUC
results, our method is demonstrated to be effective for vessel
segmentation on these datasets. Its application to the STARE
dataset resulted in the third highest AUC among other algo-
rithms (behind Marin et al. [59] and Fraz et al. [28]) and the sec-
ond best for the DRIVE dataset (only behind Fraz et al. [28]).
For the CHASE-DBI, the results were the highest for both
accuracy and AUC. It can be noted that these results (by com-
parison with other studies) are obtained using a large propot-
tion of images with pathological signs; also, abnormalities and
poorer image quality are more common in the STARE dataset
[47]. Compared to all the unsupervised methods, our approach
achieved better results, as shown in Tables 5 and 6. In the case of
accuracy, our approach was the highest compared with all other
methods on the STARE database (same as Ricci and Petfetti
[57]) and highest among those performed on images from the
DRIVE and CHASE-DBI1 datasets.

5.4 | Evaluation of the approach with
abnormal images

The accuracy of vessel segmentation algorithms can be strongly
dependent on the presence of abnormalities such as red lesions

TABLE 5 Performance comparison results to other methods’ accuracy
CHASE_
Type Methods DRIVE STARE DB1
Franklin and Rajan [21]  0.9503  — -
Niemeijer et al. [55] 0.9417 - -
Thangaraj et al. [65] 0.9606  0.9435  0.9468
Staal et al. [66] 0.9441 09516  0.9467
Supervised Soares et al. [50] 0.9466 0.9480 -
Ricci and Perfetti [57] 0.9595  0.9646  —
Matin et al. [59] 0.9452 09526 -
Fraz et al. [28] 0.9480  0.9534  0.9469
Chaudhuri et al. [12] 0.8773 - -
Odstreilik et al. [20] 0.9340  0.9341 -
Shahid and Taj [92] 0.9580 09513  —
Panda et al. [30] 0.9539  0.9424 -
Farokhian et al. [30] 09392 - -
Hoover et al. [47] - 0.9275 -
Jiang and Mojon [60] 0.8911 0.9009 -
Cinsdikici and Aydin [93]  0.9293  — -
Mendonca et al. [9] 0.9463  0.9479 -
Martinez-Peres et al. [50]  0.9344 09410 -
Unsupervised YQ Zhao et al. [25] 0.9540 09560  —
Biswal et al. [37] 0.9500  0.9500  —
Khomti et al. [41] 0.9450  0.9400 -
Zhang et al. [51] 0.9476 0.9554 -
Roychowdhury etal. [61]  0.9494  0.9560  0.9467
Azzopardi et al. [62] 0.9442  0.9497  0.9387
Oliveira et al. [89] 0.9464 09532 -
Imani et al. [49] 0.953 0.951 -
Y Zhao et al. [87] 09523 0.9590 -
Chakraborti et al. [48] 0.9370  0.9379  0.9304
Javidi et al. [91] 0.9450 09517 -
Neto et al. [34] 0.8787  0.8616  —
Proposed method ~ Our method 0.9688  0.9646  0.9475

(MAs and HEs) and bright lesions (exudates) in the retinal
images [6, 50, 57]. Table 7 compares the results on two images
from the STARE database that exhibit notable red and bright
lesions, with results from the literature [55, 57, 61, 94]. Our
method matches the performance of Roychowdhury et al. [61]
and outperforms all other approaches except the perceptive
transform-based method proposed by Lam et al. [94]. However,
their method is more computationally expensive.

5.5 | Evaluation using SSIM index

The SSIM index was computed for all four datasets, with
average values for each dataset of 0.9460, 0.9650, 0.9641, and
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TABLE 6  Performance comparison results to other methods” AUC
CHASE_

Type Methods DRIVE STARE DBI1
Niemeijer et al. [55] 0.9294 - -
Thangaraj et al. [65] 0.8884 0.8938 0.7971
Staal et al. [66] 0.9520 - -

Supervised Soares et al. [50] 0.9614 0.9671 -
Ricci and Perfetti [57] 0.9633 0.9680 -
Marin et al. [59] 0.9588 0.9769 -
Fraz et al. [28] 0.9747 0.9768 0.9712
Chaudhuri et al. [12] 0.7878 - -
Odstreiliket al. [20] 0.9519 0.9569 -
Shahid and Taj [92] 0.850 0.870 -
Farokhian et al. [36] 0.9530 - -
Hoover et al. [47] - 0.7590 -
Jiang et al. [60] 0.9327 0.9298 -
Cinsdikici and Aydin [93]  0.9407 - -
YQ Zhao et al. [25] 0.8620 0.8740 -

Unsupervised Zhang et al. [51] 0.9636 0.9614 -
Roychowdhury et al. [61]  0.9672 0.9673 0.9623
Azzopardi et al. [62] 0.9614 0.9563 0.9467
Oliveira et al. [89] 0.9513 0.9544 -
Zhao et al.[87] 0.8610 0.881 -
Chakraborti et al. [48] 0.9419 - -

Proposed Our method 0.9739 0.9701 0.9712

method
TABLE 7 Comparison of segmentation performance on two abnormal

samples from the STARE dataset

Proposed
Methods  [47] [60] [56] [53] [94] [61] method
ACC 0.9211 09352 0.9425 0.9278 0.9556 0.9535 0.9536
AUC 0.7590  0.9343  0.9571 0.9187 0.9707 0.9638  0.9638

0.9625 for MUMS-DB, DRIVE, STARE, and CHASE-DB1,
respectively. Figure 16 shows the change in the SSIM index
(for a single exemplar image) across a range of vessel detection
(Th) thresholds, from Th=[0.6 1.5] as follows: Th=0.6, SSIM=
0.9621; Th=0.8, SSIM= 0.9423; Th=0.9, SSIM= 0.9407;
Th=1, SSIM= 0.9378; Th=1.5, SSIM= 0.7856. The index
peaks with a value of 0.9621 at a Th=0.6.

Table 8 presents the averaged SSIM value for 10 images ran-
domly selected from the four datasets, in order to illustrate the
narrow variance of the measure across the datasets.

Finally, to compare some other methods with our method in
terms of SSIM index, we evaluated the SSIM values for these
studies and our proposed method. Table 9 presents this result
for five random images from public datasets.

FIGURE 16  SSIM values. Variation of #and effect of that in vessel detec-
tion. (a) Input image; (b) Th=0.6, SSIM= 0.9413; (c) Th=0.8, SSIM=0.9621; (d)
Th=0.9, SSIM= 0.9407; (¢) Th=1, SSIM= 0.9378; (f) Th=1.5, SSIM= 0.7856

6 | DISCUSSION
This study has presented and validated an algorithm to segment
the retinal blood vessel network in a fully automatic fashion. It
combines multi-overlapping windows, with the RT by adding
morphological reconstruction, and improved vessel refinement
applied to colour retinal imagery that extends our previous work
[16], beyond just fluorescein angiography retinal images, and
removes with greater clarity the FP vessel detection. In addition,
the extension of our previous method is a significant improve-
ment in accuracy from our antecedent paper and is commensu-
rate to previous research methods, listing a comparison accutracy
table (Table 5). Further validity is gained by appreciably increas-
ing the amount of data from our previous work, implementing
images from four different databases (one rural and three public
databases) instead of the previous one. Finally, a means of mea-
suring image quality called SSIM, based on the human percep-
tion, is performed to more correctly determine image distortion
than the commonly used method of mean squared error.
Previous approaches for retinal vessel segmentation can be
classified into supervised- and unsupervised-based methods.
The proposed study is an approach within the latter class.
According to the results of TPF, FPE, and ROC curve analy-
sis, the method is shown to outperform many of the alterna-
tive methods reported in the literature over the past 10 years.
Tables 5 and 6 present an overall performance on previously
published vessel segmentation approaches in terms of accuracy
and and AUC, respectively, for DRIVE and STARE databases.
From the measurement of AUC, as shown in Table 6, our
method performs better than Staal et al. [06], Niemeijer et al.
[55], Soares et al [56], and Ricci and Perfetti [57] in the super-
vised methods and Chaudhuri et al. [12], Jiang et al. [60], and
Cinsdikici and Aydin [93] in the unsupervised methods. In the
case of the STARE, our results are comparable with Marin et al.
[59] and Fraz et al. [28]. In terms of accuracy, our approach
performs better than Hoover et al. [47], Martinez-Prez et al.
[50], and Chaudhuri et al. [12] on STARE images. In DRIVE
database, it outperforms Jiang et al. [60], Cinsdikici and Aydin
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TABLE 8  Evaluation using SSIM index for 10 sample images from the four datasets

Image 1 2 3 4 5 6 7 8 9 10 Average
MUMS-DB 0.9623 0.9713 0.9589 0.9656 0.9697 0.9778 0.9726 0.9689 0.9610 0.9534 0.9662
DRIVE 0.9684 0.9691 0.9602 0.9711 0.9666 0.9579 0.9693 0.9619 0.9592 0.9654 0.9649
STARE 0.9598 0.9661 0.9673 0.9622 0.9590 0.9631 0.9612 0.9703 0.9654 0.9627 0.9637
CHASE_DB1 0.9650 0.9652 0.9670 0.9589 0.9602 0.9614 0.9630 0.9591 0.9577 0.9631 0.9621

TABLE 9 Comparison our algorithm using SSIM index for five sample
images from the public datasets with other methods

Proposed
Methods [47] [59] [56] [62] [94] [61] method
DRIVE 0.8816  0.9488 0.9593 0.9619 0.9640 0.9630 0.9645
STARE 0.7912  0.9433 0.9312 0.9103 0.9654 0.9627 0.9639

CHASE_DB1 0.8592 0.9514 0.9530 0.9525 0.9620 0.9331 0.9620

[93], Zana et al. [95], Gang et al. [96], and Martinez-Prez et al.
[50]. Accurate vessel detection, based on a robust algorithm,
in terms of vessel widths and continuity, allows detection of
disease-affected morphological changes such as change in diam-
etets, tortuosity, length, and angle of bifurcations [97] and even
changes in topological structure. [98]. The obtained results show
the high accuracy of our approach in vessel segmentation and
its robustness against noise. As we have shown in Figure 12, our
method extracted both thick and thin vessels appropriately even
in low contrast regions.

In general, although most of supervised approaches have bet-
ter results in vessel segmentation, they are dependent on the
training data to learn the nets and also sensitive to false edges
[61]. It was observed that, for instance, in Ricci and Perfetti [57],
by dropping the training images, the performance of accuracy
strongly decreased from 0.9595 to 0.9266 on DRIVE database
and 0.9646 to 0.9452 on STARE database [59]. Moreover, they
need heavily parallelized hardware, e.g. GPU to run which is not
available to all users. Whilst most of the existing methods, such
as [52, 54, 50], have good segmentation results on healthy reti-
nal images, some have low accuracy with abnormal pathology.
For this reason, the method presented in this paper is evalu-
ated on a dataset, STARE, with significant pathology, yielding
good segmentation results in both accuracy (Table 5) and AUC
(Table 0). To test our approach using high-resolution images, a
new database (MUMS-DB) was utilized that contained at least
three times the number of images in the most widely used public
datasets. Although the performance on this database was lower
than the other three public datasets (on average about 4% less),
it still segmented vessels with high accuracy and AUC (greater
than 90%).

Furthermore, most of studies in vessel detection are based on
morphological processing and vessel tracking, where many of
them mandate detection of retinal land marks such as the ONH
and make a key point of this in their algorithms. Nevertheless,
one of the significances of our algorithm is that it is unnecessary

to identify the location of the ONH for vessel segmentation.
The reason for that is our vessel segmentation method works
by this broad assumption that blood vessels could be treated as
piece-wise linear structure and be detected by RT. Therefore,
this eliminates the need for ONH detection. Another advan-
tage of our algorithm, unlike some approaches, such as [51,
53, 61] which consider small MAs close to the vasculature as
a part of the vessel map, is using combination of RT, overlap-
ping windows, and morphological reconstruction to distinguish
between MAs and segmented vessels by selecting an appro-
priate window size, 7, and an accurate reconstruction process.
Moreovet, as we have already mentioned in Section 3.3.1, the
window size is also important in our final results to identify
bifutcation point, and branching point vessel pixels. If the win-
dow is too large, we may be unable to estimate the curvatutre
of blood vessel and also unable to detect the thin blood vessels
in the presence of noise. The retinal blood vessel’s curvature
can be estimated with lines as long as an appropriate window
size is applied. If the window size is too small, we are unable
to generate clear Radon peaks in the Radon space in the pres-
ence of noise. Branching points also face with difficulty if the
size of window is too small. We have applied structural simi-
larity approach as an alternative motivating principle as a cti-
terion for quality of our automated vessel segmentation based
on the SSIM index. From an image segmentation point of view,
we considered this SSIM indexing method as a particular imple-
mentation of the philosophy of structural similarity. We com-
pared our evaluation using SSIM with some important works
[47, 56, 59, 61, 62, 94] (see Table 9). The results show that our
proposed method is as good as other or even better than some
of them.

From deep learning view point, we have some excellent stud-
ies, which we mentioned them in Section 2, with very good
results [68—75, 77, 99]. As a whole, our results are close to most
of these studies [73—75] or less than some of them like [68, 77].
However, the problem of these methods is that they need huge
database for learning purpose, and if we have that, using these
methods will be very useful. As an interesting extension of this
work to be pursued in future studies is combining concept of
deep NN with current study and improve the results.

However, our approach has one limitation. From computa-
tional viewpoint, some approaches such as [46, 59—02] are much
faster and this is a main drawback of the proposed approach.
The average processing time for these studies are less than a
minute. For some of them, like [46, 61], it is less than 10 s.
However, the average processing time for our method run-
ning on a PC with an Intel Corei3 CPU at 2.13 GHz and 2
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GB of RAM was 2.5 min, which is likely to be too high for
portable DR screening systems of the future. The reason for
this arises from the use of the RT in overlapping windows. With-
out overlapping windows, the computational time is less than a
minute, which is acceptable, but in this case, as we have shown
in Table 4, the accuracy of vessel segmentation tremendously
will drop. Another future work will be directed toward compu-
tational analysis of the MUMS-DB database, because it is large,
even though biased towards images with disease, with some fast
approaches with high accuracy such as [46, 59—61] to test the
performance of our algorithm with them from both a compu-
tational and the accuracy view point. However, the timings for
our algorithm ate quoted for an implementation in Matlab, and
are certainly be transformable to speed-up in other languages,
such as CSharp. Moreover, as we point out before, the focus of
this study is on high accuracy of diagnosis DR and robustness
of the algorithm.

7 | CONCLUSION

An important feature of the study is the use of the RT to detect
the vascular tree in fundus images, and the use of morphological
reconstruction operators. Computers are appropriate for prob-
lems involving the derivation of quantitative information from
images because their capacity to process data is fast and effec-
tive and has a high level of reproducibility [100]. Moreovet, an
automatic system would help to reduce the workload of well-
paid ophthalmologists, enabling hospitals and eye clinics to use
their resources in other important tasks [101]. In addition, the
detection of the retinal blood vessel tree can facilitate detection
of other features that are signs of disease, such as MAs, HEs,
and other changes in the vascular network including neovascu-
larization and venous changes.

The quality of our segmentation depends on some param-
eters such as the size of the window, window step, and
line validation thresholding. Determining appropriate values
for these parameters has some advantages in the process-
ing including: accurate detection of retinal vessels location,
determination of some parameters like width and length of
vessels, and even determining the location of vessel bifurca-
tion, which can assist clinicians in analysing images later by
registration schemes.

Our algorithm also has some important characteristics in the
detection of vascular structure in retinal images that include its
robustness to noise, because of the characteristic of the algo-
rithm which is an integral transformation; acceptable perfor-
mance in the detection of both thick and thin vessels by the
combined methods of RT and multi-overlapping windows; and
last but not least, the method is simple in comparison with other
methods mentioned in this paper.

ACKNOWLEDGMENTS

The authors would like to thank J.J. Staal and his colleagues, A.
Hoover, and Fraz and his colleagues for making their databases
publicly available.

REFERENCES

1. Abramoff, M.D,, et al.: Evaluation of a system for automatic detection of
diabetic retinopathy from color fundus photographs in a large population
of patients with diabetes. Diabetes Care 31, 193-198 (2008)

2. Sasongko, M., et al.: Retinal vascular tortuosity in persons with diabetes
and diabetic retinopathy. Diabetologia 54, 2409-2416 (2011)

3. Zhou, W,, et al.: Automatic microaneurysm detection using the sparse
principal component analysis-based unsupervised classification method.
IEEE Access 5, 2563-2572 (2017)

4. Abramoff, M.D., Garvin, M.K.,, Sonka, M.: Retinal imaging and image
analysis. IEEE Rev. Biomed. Eng, 3, 169208 (2010)

5. Palomera-Pérez, M.A., et al.: Parallel multiscale feature extraction and
region growing: Application in retinal blood vessel detection. IEEE
Trans. Inf. Technol. Biomed. 14, 500-506 (2009)

6. Tavakoli, M., et al.: A complementary method for automated detection
of microaneurysms in fluorescein angiography fundus images to assess
diabetic retinopathy. Pattern Recognit. 46, 2740-2753 (2013)

7. Mookiah, M.R.K., et al.: Computer-aided diagnosis of diabetic retinopa-
thy: A review. Comput. Biol. Med. 43, 2136-2155 (2013)

8. Faust, O, et al.: Algorithms for the automated detection of diabetic
retinopathy using digital fundus images: a review. J. Med. Syst. 36, 145—
157 (2012)

9. Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels
by combining the detection of centerlines and morphological reconstruc-
tion. IEEE Trans. Med. Imaging 25, 1200-1213 (2006)

10. Welikala, R., et al.: Automated detection of proliferative diabetic retinopa-
thy using a modified line operator and dual classification. Comput. Meth-
ods Programs Biomed. 114, 247-261 (2014)

11. Welikala, R., et al.: Genetic algorithm based feature selection combined
with dual classification for the automated detection of proliferative dia-
betic retinopathy. Comput. Med. Imaging Graph. 43, 64-77 (2015)

12. Chaudhuri, S., et al.: Detection of blood vessels in retinal images using
two-dimensional matched filters. IEEE Trans. Med. Imaging 8, 263269
(1989)

13. Youssif, A.A.-H.A.-R., Ghalwash, A.Z., Ghoneim, A.A.S.A.-R.: Optic
disc detection from normalized digital fundus images by means of a ves-
sels’ direction matched filter. IEEE Trans. Med. Imaging 27, 1118 (2008)

14. Aquino, A., Gegindez-Arias, M.E., Marin, D.: Detecting the optic disc
boundary in digital fundus images using morphological, edge detection,
and feature extraction techniques. IEEE Trans. Med. Imaging 29, 1860—
1869 (2010)

15. Tavakoli, M., et al.: Automated fovea detection based on unsupervised
retinal vessel segmentation method. In: 2017 IEEE Nuclear Science Sym-
posium and Medical Imaging Conference (NSS/MIC). IEEE, pp. 1-7
(2017)

16. Tavakoli, M., et al.: Radon transform technique for linear structures detec-
tion: Application to vessel detection in fluorescein angiography fundus
images. In: Nuclear Science Symposium and Medical Imaging Confer-
ence (NSS/MIC). IEEE, pp. 3051-3056 (2011)

17. Wang, Z., et al.: Image quality assessment: From error visibility to struc-
tural similarity. IEEE Trans. Image Process. 13, 600-612 (2004)

18. Deans, S.R.: The Radon Transform and Some of Its Applications. Dover
Publications, INC., NewYork (2007)

19. Zhang, Q., Couloigner, 1.: Accurate centerline detection and line width
estimation of thick lines using the radon transform. IEEE Trans. Image
Process. 16, 310-316 (2007)

20. Odstreilik, J., et al.: Retinal vessel segmentation by improved matched fil-
tering: Evaluation on a new high-resolution fundus image database. IET
Image Proc. 7, 373-383 (2013)

21. Franklin, S.W,, Rajan, S.E.: Computerized screening of diabetic retinopa-
thy employing blood vessel segmentation in retinal images. Biocybern.
Biomed. Eng. 34, 117124 (2014)

22. Estrada, R., et al.: Retinal artery-vein classification via topology estima-
tion. IEEE Trans. Med. Imaging 34, 2518-2534 (2015)

23. Zhang, L., Fisher, M., Wang, W.: Retinal vessel segmentation using multi-
scale textons detived from keypoints. Comput. Med. Imaging Graph. 45,
47-56 (2015)



TAVAKOLI ET AL.

1497

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Dashtbozorg, B., Mendonga, A.M., Campilho, A.: An automatic graph-
based approach for artery/vein classification in retinal images. IEEE
Trans. Image Process. 23, 1073—1083 (2014)

Zhao, Y.Q., et al.: Retinal vessels segmentation based on level set and
region growing. Pattern Recognit. 47, 2437-2446 (2014)

Kovics, G., Hajdu, A.: A self-calibrating approach for the segmentation
of retinal vessels by template matching and contour reconstruction. Med.
Image Anal. 29, 24-46 (2010)

Lazar, 1., Hajdu, A.: Segmentation of retinal vessels by means of direc-
tional response vector similarity and region growing, Comput. Biol. Med.
66,209-221 (2015)

Fraz, M.M., et al.: An ensemble classification-based approach applied to
retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59, 2538—
2548 (2012)

Fraz, M.M., et al.: An approach to localize the retinal blood vessels using
bit planes and centerline detection. Comput. Methods Programs Biomed.
108, 600-616 (2012)

Panda, R., Puhan, N, Panda, G.: New binary Hausdorff symmetry mea-
sure based seeded region growing for retinal vessel segmentation. Biocy-
bern. Biomed. Eng. 36, 119-129 (2016)

Xu, X., et al.: Vessel boundary delineation on fundus images using
graph-based approach. IEEE Trans. Med. Imaging 30, 1184-1191
(011)

Akram, M.U,, Khan, S.A.: Multilayered thresholding-based blood vessel
segmentation for screening of diabetic retinopathy. Eng. Comput. 29,
165-173 (2013)

Orlando, J.I., Prokofyeva, E., Blaschko, M.B.: A discriminatively trained
fully connected conditional random field model for blood vessel segmen-
tation in fundus images. IEEE Trans. Biomed. Eng. 64, 16-27 (2017)
Neto, L.C., et al.: An unsupervised coarse-to-fine algorithm for blood
vessel segmentation in fundus images. Expert Syst. Appl. 78, 182-192
(017

Jiang, Z., et al.: Fast, accurate and robust retinal vessel segmentation sys-
tem. Biocybern. Biomed. Eng. 37, 412421 (2017)

Farokhian, F, et al.: Automatic parameters selection of Gabor filters with
the imperialism competitive algorithm with application to retinal vessel
segmentation. Biocybern. Biomed. Eng. 37, 246-254 (2017)

Biswal, B., Pooja, T., Subrahmanyam, N.B.: Robust retinal blood vessel
segmentation using line detectors with multiple masks. IET Image Proc.
12, 389-399 (2017)

Karn, PK., Biswal, B., Samantaray, S.R.: Robust retinal blood vessel seg-
mentation using hybrid active contour model. IET Image Proc. 13, 440—
450 (2018)

Yue, K., et al.: Improved multi-scale line detection method for retinal
blood vessel segmentation. IET Image Proc. 12, 14501457 (2018)
Sathananthavathi, V., Indumathi, G.: Bat algorithm inspired retinal blood
vessel segmentation. IET Image Proc. 12, 2075-2083 (2018)

Khomri, B., et al.: Retinal blood vessel segmentation using the elite-guided
multi-objective artificial bee colony algorithm. IET Image Proc. 12,2163~
2171 (2018)

Wang, W., Wang, W, Hu, Z.: Retinal vessel segmentation approach based
on corrected morphological transformation and fractal dimension. IET
Image Proc. 13, 2538-2547 (2019)

Fraz, M.M., et al.: Blood vessel segmentation methodologies in retinal
images-A survey. Comput. Methods Programs Biomed. 108, 407433
(2012)

Moccia, S., et al: Blood vessel segmentation algorithms—review of
methods, datasets and evaluation metrics. Comput. Methods Programs
Biomed. 158, 71-91 (2018)

Annunziata, R., et al.: Leveraging multiscale hessian-based enhancement
with a novel exudate inpainting technique for retinal vessel segmentation.
IEEE J. Biomed. Health. Inf. 20, 1129-1138 (2016)

Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: Blood vessel segmen-
tation of fundus images by major vessel extraction and subimage classifi-
cation. IEEE J. Biomed. Health. Inf. 19, 1118-1128 (2015)

Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels
in retinal images by piecewise threshold probing of a matched filter
response. IEEE Trans. Med. Imaging 19, 203—210 (2000)

48.

49.

50.

51.

53.

54.

50.

58.

60.

61.

62.

63.

64.

65.

606.

67.

68.

69.

70.

71.

72.

73.

Chakraborti, T., et al.: A self-adaptive matched filter for retinal blood ves-
sel detection. Mach. Vision Appl. 26, 55-68 (2015)

Imani, E., Javidi, M., Pourreza, H.-R.: Improvement of retinal blood ves-
sel detection using morphological component analysis. Comput. Methods
Programs Biomed. 118, 263-279 (2015)

Martinez-Perez, M.E., et al.: Segmentation of blood vessels from red-free
and fluorescein retinal images. Med. Image Anal. 11, 4761 (2007)
Zhang, J., et al.: Robust retinal vessel segmentation via locally adaptive
derivative frames in orientation scores. IEEE Trans. Med. Imaging 35,
2631-2644 (2016)

. Nguyen, UT., et al: An effective retinal blood vessel segmentation

method using multi-scale line detection. Pattern Recognit. 46, 703-715
(2013)

Vermeer, K.A., et al.: A model based method for retinal blood vessel
detection. Comput. Biol. Med. 34, 209-219 (2004)

Lam, B.S.Y,, Yan, H.: A novel vessel segmentation algorithm for patholog-
ical retina images based on the divergence of vector fields. IEEE Trans.
Med. Imaging 27, 237-246 (2008)

. Niemeijer, M., et al.: Comparative study of retinal vessel segmentation

methods on a new publicly available database. In: SPIE Medical Imaging
Conference. SPIE, vol. 5370, pp. 648—656. (2004)

Soares, J.V., et al.: Retinal vessel segmentation using the 2-D Gabor
wavelet and supervised classification. IEEE Trans. Med. Imaging 25,
1214-1222 (2000)

. Ricdi, E., Perfetti, R.: Retinal blood vessel segmentation using line oper-

ators and support vector classification. IEEE Trans. Med. Imaging 26,
1357-1365 (2007)

Lupascu, C.A., Tegolo, D., Trucco, E.: FABC: retinal vessel segmenta-
tion using AdaBoost. IEEE Trans. Inf. Technol. Biomed. 14, 12671274
(2010)

. Marin, D, et al.: A new supervised method for blood vessel segmenta-

tion in retinal images by using gray-level and moment invariants-based
features. IEEE Trans. Med. Imaging 30, 146—158 (2011)

Jiang, X., Mojon, D.: Adaptive local thresholding by verification-based
multithreshold probing with application to vessel detection in retinal
images. IEEE Trans. Pattern Anal. Mach. Intell. 25, 131-137 (2003)
Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: Tterative vessel seg-
mentation of fundus images. IEEE Trans. Biomed. Eng. 62, 1738-1749
(2015)

Azzopardi, G., et al.: Trainable cosfire filters for vessel delineation with
application to retinal images. Med. Image Anal. 19, 46-57 (2015)

Wu, D, etal.: On the adaptive detection of blood vessels in retinal images.
IEEE Trans. Biomed. Eng. 53, 341-343 (20006)

Tolias, Y.A., Panas, SM.: A fuzzy vessel tracking algorithm for retinal
images based on fuzzy clustering. IEEE Trans. Med. Imaging 17, 263—
273 (1998)

Thangaraj, S., Periyasamy, V., Balaji, R.: Retinal vessel segmentation using
neural network. IET Image Proc. 12, 669—-678 (2017)

Staal, J., et al.: Ridge-based vessel segmentation in color images of the
retina. IEEE Trans. Med. Imaging 23, 501-509 (2004)

Sinthanayothin, C., et al.: Automated localisation of the optic disc, fovea,
and retinal blood vessels from digital colour fundus images. Brit. . Oph-
thalmol. 83, 902-910 (1999)

Li, Q. et al.: A cross-modality learning approach for vessel segmentation
in retinal images. IEEE Trans. Med. Imaging 35, 109-118 (2016)
Annunziata, R., Trucco, E.: Accelerating convolutional sparse coding for
curvilinear structures segmentation by refining SCIRD-TS filter banks.
IEEE Trans. Med. Imaging 35, 2381-2392 (2016)

Wang, S., et al.: Hierarchical retinal blood vessel segmentation based on
feature and ensemble learning. Neurocomputing 149, 708-717 (2015)
Zhu, C.,, et al.: Retinal vessel segmentation in colour fundus images using
extreme learning machine. Comput. Med. Imaging Graph. 55, 68-77
(2017)

Tan, J.H., et al.: Segmentation of optic disc, fovea and retinal vasculature
using a single convolutional neural network. ]. Comput. Sci. 20, 70-79
(2017)

Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep
neural networks. IEEE Trans. Med. Imaging 35, 2369—2380 (2016)



1498

TAVAKOLI ET AL.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

Lin, Y., Zhang, H., Hu, G.: Automatic retinal vessel segmentation via
deeply supervised and smoothly regularized network. IEEE Access 7,
57717-57724 (2018)

Ren, X, et al.: Drusen segmentation from retinal images via supervised
feature learning. IEEE Access 6, 2952-2961 (2018)

Oliveira, A., Pereira, S., Silva, C.A.: Retinal vessel segmentation based
on fully convolutional neural networks. Expert Syst. Appl. 112, 229-242
(2018)

Rammy, S.A., et al.: CPGAN: Conditional patch-based generative adver-
sarial network for retinal vessel segmentation. IET Image Proc. 14, 1081—
1090 (2019)

Pourreza-Shahri, R., Tavakoli, M., Kehtarnavaz, N.: Computationally effi-
cient optic nerve head detection in retinal fundus images. Biomed. Signal
Process. Control 11, 63-73 (2014)

Soille, P.: Morphological Image Analysis: Principles and Applications.
springer-Verlag, New York (2013)

Wang, Z., Bovik, A.C., Lu, L.: Why is image quality assessment so diffi-
cult? In: IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP). IEEE, vol. 4, pp. IV-3313 (2002)

Brooks, A.C., Zhao, X., Pappas, T.N.: Structural similarity quality metrics
in a coding context: Exploring the space of realistic distortions. IEEE
Trans. Image Process. 17, 1261-1273 (2008)

Saito, T., Rehmsmeier, M.: The precision-recall plot is more informa-
tive than the ROC plot when evaluating binary classifiers on imbalanced
datasets. PloS One 10, ¢0118432 (2015)

Tavakoli, M., et al.: Automated optic nerve head detection in fluorescein
angiography fundus images. In: Nuclear Science Symposium and Medical
Imaging Conference (NSS/MIC), IEEE, pp. 3057-3060 (2011)

Yan, Z., Yang, X., Cheng, K.-T.: A skeletal similarity metric for quality
evaluation of retinal vessel segmentation. IEEE Trans. Med. Imaging 37,
1045-1057 (2018)

Cheng, E., et al.: Discriminative vessel segmentation in retinal images by
fusing context-aware hybrid features. Mach. Vision Appl. 25, 1779-1792
(2014)

Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27,
861-874 (2006)

Zhao, Y., et al.: Automated vessel segmentation using infinite perime-
ter active contour model with hybrid region information with appli-
cation to retinal images. IEEE Trans. Med. Imaging 34, 1797-1807
(2015)

Ayerdi, B., Grafia, M.: Random forest active learning for retinal image
segmentation. In: Proceedings of the 9th International Conference on
Computer Recognition Systems (CORES) 2015. Springer, Switzetland
pp. 213-221 (2016)

Oliveira, WS., et al.: Unsupervised retinal vessel segmentation using com-

bined filters. PloS One 11, ¢0149943 (2016)

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

Zhao, Y., et al.: Correction: Retinal vessel segmentation: An efficient
graph cut approach with retinex and local phase. PloS One 10, e0127486
(2015)

Javidi, M., Pourreza, H.-R., Harati, A.: Vessel segmentation and microa-
neurysm detection using discriminative dictionary learning and sparse
representation. Comput. Methods Programs Biomed. 139, 93-108 (2017)
Shahid, M., Taj, I.A.: Robust retinal vessel segmentation using vessel’s
location map and Frangi enhancement filter. IET Image Proc. 12, 494—
501 (2018)

Cinsdikici, M.G., Aydin, D.: Detection of blood vessels in ophthalmo-
scope images using MF/ANT (matched filter/ant colony) algorithm.
Comput. Methods Programs Biomed. 96, 85-95 (2009)

Lam, B.S., Gao, Y., Liew, A.W.-C.: General retinal vessel segmentation
using regularization-based multiconcavity modeling. IEEE Trans. Med.
Imaging 29, 1369—1381 (2010)

Zana, F,, Klein, J.-C.: A multimodal registration algorithm of eye fundus
images using vessels detection and hough transform. IEEE Trans. Med.
Imaging 18, 419-428 (1999)

Gang, L., Chutatape, O., Krishnan, S.M.: Detection and measurement of
retinal vessels in fundus images using amplitude modified second-order
gaussian filter. IEEE Trans. Biomed. Eng. 49, 168-172 (2002)

Gelman, R., et al.: Diagnosis of plus disease in retinopathy of prematurity
using retinal image multiscale analysis. Invest. Ophthalmol. Visual Sci. 46,
4734-4738 (2005)

Martinez-Perez, M.E., et al.: Retinal vascular tree morphology: A semi-
automatic quantification. IEEE Trans. Biomed. Eng. 49, 912-917 (2002)
Fu, H., et al.: Retinal vessel segmentation via deep learning network and
fully-connected conditional random fields. In: IEEE 13th International
Symposium on Biomedical Imaging (ISBI). IEEE, pp. 698-701 (2016)
Seoud, L., et al.: Red lesion detection using dynamic shape features for
diabetic retinopathy screening. IEEE Trans. Med. Imaging 35, 11161126
(20106)

Tavakoli, M., Nazar, M., Mehdizadeh, A.: Effect of two different prepro-
cessing steps in detection of optic nerve head in fundus images. In: SPIE
Medical Imaging. International Society for Optics and Photonics, SPIE,
Orlando, USA pp. 101343A-101343A (2017)

How to cite this article: Tavakoli M, Mehdizadeh A,
Shahri RP, Dehmeshki J. Unsupervised automated
retinal vessel segmentation based on Radon line detector
and morphological reconstruction. /=T Image Process.
2021;15:1484-1498.

https://doi.org/10.1049 /ipr2.12119



https://doi.org/10.1049/ipr2.12119

	Unsupervised automated retinal vessel segmentation based on Radon line detector and morphological reconstruction
	Abstract
	1 | INTRODUCTION
	2 | PREVIOUS WORKS
	3 | PROPOSED METHODOLOGY
	3.1 | Materials
	3.2 | Preprocessing and image enhancement
	3.3 | Detection of retinal vessel
	3.3.1 | Image partitioning
	3.3.2 | Local Radon transform
	3.3.3 | Vessel validation
	3.3.4 | Vessel refinement
	3.3.5 | Vessel reconstruction


	4 | VESSEL SEGMENTATION ASSESSMENT USING STRUCTURAL SIMILARITY INDEX
	5 | EXPERIMENTAL RESULTS
	5.1 | Parameters tuning
	5.2 | Comparison of the results of TPF and FPF
	5.2.1 | Setting the preprocessing parameters
	5.2.2 | Effectiveness of overlapping windows

	5.3 | Comparing the results of ROC curves in four databases
	5.4 | Evaluation of the approach with abnormal images
	5.5 | Evaluation using SSIM index

	6 | DISCUSSION
	7 | CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES


