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Abstract

Challenges in anomaly detection include the implicit definition
of anomaly, benchmarking against human intuition and scarcity
of anomalous examples. We introduce a novel approach de-
signed to enforce separation of normal and abnormal samples
in an embedded space using a refined Triple Loss Function,
within the paradigm of Deep Networks. Training is based
on randomly sampled triplets to manage datasets with small
proportion of anomalous data. Results for a range of propor-
tions between normal and anomalous data are presented on the
MNIST, CIFAR10 and Concrete Cracks datasets and compared
against the current state of the art.

1 Introduction

Anomaly detection is the task of detecting rare patterns, which
deviate beyond the normal distribution of data. Automating
this task would be valuable as they have the potential to signif-
icantly reduce human operators’ time and therefore minimise
errors and costs for a wide range of applications.

Since anomaly detection can be considered a classification
task, supervised learning methods tend to outperform unsuper-
vised learning practices [1], assuming that a large enough, bal-
anced dataset is available for training. However, anomalies lack
explicit definition without normality and are infrequent by def-
inition. Consequently, datasets have heavily unbalanced data
sample sizes. Therefore, supervised learning an uncommon
approach to anomaly detection. Instead, recent approaches in-
clude unsupervised approaches that do not require any ground-
truth labels or semi-supervised approaches that are trained on
normal samples only.

This paper introduces the Enforced Isolation Deep Network
(EIDN), based on a refined Triplet Loss function designed
to train an arbitrary network into distinctly clustering normal
and anomalous samples far apart, by using a small fraction
of labeled anomalous samples along with the normal ones.
Section 2 briefly explores previous methods and explicate on
some of their intuitive flaws. Section 3 describes the proposed
methodology and section 4 presents the evaluation results,
analysis and comparison against the current state of the art.
Finally section 5 concludes the paper.

2 Previous Work

Classical machine learning approaches tackle the problem of
anomaly detection by measuring the distance between data
points with respect to the area occupied by the majority of data
within a vector space; examples of such methodologies are Iso-
lation Forests [2], Local Outlier Factor [3, 4], Gaussian Mix-
ture Models [5, 6] and One-Class SVMs [7]. These unsuper-
vised methods have demonstrated to be effective and hold var-
ious advantages and disadvantages depending on their applica-
tion. However, their effectiveness heavily depends on anoma-
lous samples being distinctly far from any cluster of normal
samples. For complex data such as images this is not always
the case as there tends to be much overlap and noise between
normal and anomalous samples. Images are often riddled with
noisy data, nevertheless human intuition is capable of detecting
anomalies in a set of images. More modern approaches tackle
this challenge by using semi-supervised learning methods such
as AutoEncoders (or Variational AutoEncoders) [8, 9, 10, 11].
An AutoEncoder is trained on normal samples and consists of
two parts, an Encoder followed by a Decoder. The Encoder
maps a dataset to a lower dimensional latent space from which
the Decoder then attempts to reconstruct the original dataset.
The intuition behind this is twofold: First, the Encoder will
eliminate the noise and only keep the features in the latent
space required for the Decoder to reconstruct the original data.
Secondly, since the AutoEncoder is trained only on normal
samples, an anomalous sample will not be effectively recon-
structed. Although AutoEncoders have been shown to work for
many anomaly detection datasets, anomalous samples are not
guaranteed to be any different to normal samples in the latent
space.

In current state-of-the-art methods, Generative Adversarial
Networks (GANs) are commonly used [12, 13, 14]. AnoGAN
[14] and EGBAD [13] detect anomalies by training a random
input Generator and a Discriminator. The Generator mim-
ics normal samples under the logical assumption anomalies
will resemble fake samples and the Discriminator is trained to
distinguish between real and fake samples. GANomaly [12]
utilises GANs to better tune an AutoEncoder by using a Dis-
criminator to distinguish the differences between the input and
output. For the datasets used in section 4, GANomaly appears
to outperform AnoGAN and EGBAD [15].

A One-Class Neural Network (OC-NN) [16] is a deep
learning unsupervised learning method which encompasses an
SVM loss function, designed to create a boundary around nor-
mal data samples in an embedded space. Although normal and



abnormal samples are not expected to be explicitly labelled,
their ratio is required for effective training.

Supervised learning methods significantly outperform all
of the mentioned unsupervised and semi-supervised methods
[1], still they suffer the weakness of requiring a large, balanced
dataset to be trained effectively, which is a scarce luxury in
most anomaly detection datasets.

More recently, a traditional Triplet Loss function has also
been used to detect anomalies from the output data of vehicles
[17], however, it maps normal and anomalous samples to arbi-
trarily located clusters in an embedded space, never allowing
a uniform measurable distinction between normal and anoma-
lous samples.

The main contribution of our methodology is the refined
Triplet Loss Function, a novel loss function designed to dis-
tinctly enforce isolation between anomalous and normal sam-
ples in the latent space using Deep Networks. Instead of using
a GAN to cope with unbalanced training datasets, we introduce
the Random Triplet Sampling.

3 Enforced Isolation Deep Network (EIDN)

Our method uses a modified Triplet Loss function which en-
forces the mapping of normal samples near the origin and
anomalous samples near the one-vector, in the embedded
space. The network is trained using triplets which are randomly
sampled. A Euclidean distance metric on the embedded space
is sufficient to distinguish how far a sample deviates from nor-
mality.

An anomaly detection dataset can be abstractly described
by a set D containing normal and anomalous samples X and
X̂ respectfully, such that X ⊂ D, X̂ ⊂ D, X ∩ X̂ = ∅,
X ∪ X̂ = D, assuming that the dataset is imbalanced towards
the normal samples |X| � |X̂|. We define an arbitrary neural
network f where Rk represents the input dimensional space
and Rl represents a lower dimensional embedded space.

f : Rk → Rl s.t. k � l (1)

The neural network f can be comprised of any sequence of
Convolutional layers, Dense Layers, or any other differentiable
layer of choice.

We refine the Triplet Loss Function L so that it trains f
to map different classes to specific coordinates, as shown in
equations 2, 3, 4 and 5. Three size-M batches of vectors are
passed through the loss function, an anchor value y, a positive
value xp and a negative value xn.

L(y, xp, xn) =
M∑
i

[‖yi−f(xp
i )‖2−‖yi−f(xn

i )‖2 +α]+ (2)

yi ∈ {~0,~1} ⊂ Rl (3)

xp
i ∈

{
X if yi = ~0
X̂ if yi = ~1

(4)
xn

i ∈

{
X̂ if yi = ~0
X if yi = ~1

(5)

The [V ]+ symbol is notation for max(V, 0) where V ∈ R.
The loss function L is designed to map all normal samples to
the ~0 vector, the origin of the embedded space, via f and all
anomalous samples to the ~1 coordinate, the one-vector; thus
maximizing the distance between the two. It does so by mini-
mizing the Euclidean distance between y and f(xp) and maxi-
mizing the Euclidean distance between y and f(xn). The real
value α ∈ R represents the minimum distance f should at-
tempt to attain between normal and anomalous samples. If ∀i,
‖yi − f(xn

i )‖2 ≥ α and ‖yi − f(xp
i )‖2 = 0 then the network

is completely trained and L(y, xp, xn) = 0.

Figure 1. Architecture of generator passing randomly sampled
triplets through f and to the modified Triplet Loss function. y
values consisting of ~1 or ~0 are passed directly to the loss func-
tion, while their corresponding xp and xn values are filtered
through f into the loss function.

Instead of creating a tremendous dataset of triplets to train
our model, we developed a generator g which randomly sam-
ples from X and X̂ to create batches of triplets to train the net-
works. Therefore, the network is utilised more effectively and
did not require downsizing the data sample to save memory.

In a batch size of M , for each sample i, the generator
g(X, X̂) would randomly make a choice between yi = ~0 or
yi = ~1 be normal or anomalous. If yi = ~0 then xp

i ∈ X and
xn

i ∈ X̂ , while if yi = ~1 then xp
i ∈ X̂ and xn

i ∈ X .
Most semi-supervised learning methods tend to use only

normal samples while training, therefore their training set sam-
ple size is |X|, while our network has the potential training
sample size of |X| · |X̂|.

Our approach uses a manipulation of the Triplet Loss Func-
tion to train f into clustering normal and anomalous samples
within an embedded space. (see Fig,1). Intuitively, each sam-
ple is ”attracted” to their respective class coordinates while be-
ing ”repelled” from samples of other classes. The training of a
two dimensional embedded space is visualised in Fig.2.

The projections of the normal and abnormal samples on
the embedded space should hover near the origin and the one-
vector, respectively. This makes Euclidean distance an ideal
metric for measuring how near or far a sample lies to normal-
ity. Normal samples would have a near zero Euclidean dis-
tance from the origin while anomalous samples would have
a large Euclidean distance. Such an embedded space can be
effectively used even by other anomaly detection methods, as
demonstrated later in the next section.



Figure 2. Demonstration of the embedded space of Class 1 of the MNIST dataset using EIDN, as described in section 4, gradually
clustering normal samples (orange) to the origin and anomalies (blue) to the one-vector with each epoch.

Class GANomaly AnoGAN EGBAD DenseNet-169 ResNet-152 Inception-V4 OC-NN(.01) EIDN(.01)
Class 0 0.881 0.623 0.783 0.998265 0.99805 0.997676 0.976 0.982818
Class 1 0.675 0.31 0.294 0.994258 0.994176 0.994609 0.9953 0.98322
Class 2 0.953 0.521 0.523 0.984126 0.982025 0.983431 0.8732 0.952041
Class 3 0.801 0.458 0.506 0.98075 0.981253 0.980548 0.8652 0.972594
Class 4 0.827 0.442 0.453 0.983918 0.984338 0.984617 0.9325 0.973357
Class 5 0.864 0.431 0.436 0.992295 0.989994 0.992676 0.8648 0.923452
Class 6 0.849 0.492 0.593 0.984011 0.98097 0.983624 0.9712 0.943311
Class 7 0.682 0.401 0.398 0.997476 0.99894 0.997108 0.9364 0.98485
Class 8 0.856 0.392 0.523 0.991551 0.989815 0.994305 0.8854 0.96304
Class 9 0.558 0.368 0.358 0.999386 0.998982 0.99908 0.9354 0.944933
Mean 0.7946 0.4438 0.4867 0.9906036 0.9898543 0.9907674 0.92354 0.962362

Table 1. Area Under Curve results on MNIST dataset from various competitor models [15, 16] and EIDN.

Class GANomaly AnoGAN EGBAD DenseNet-169 ResNet-152 Inception-V4 OC-NN(.1) EIDN(.1)
plane 0.633 0.516 0.577 0.998449 0.998071 0.930263 0.6042 0.786571
car 0.631 0.492 0.514 0.998933 0.998203 0.971474 0.6197 0.854727
bird 0.51 0.411 0.383 0.99498 0.995249 0.84234 0.6366 0.699063
cat 0.587 0.399 0.448 0.992014 0.991605 0.853591 0.5357 0.724128

deer 0.593 0.335 0.374 0.998145 0.99848 0.895042 0.674 0.749263
frog 0.683 0.321 0.353 0.991758 0.991375 0.893674 0.6331 0.849284
horse 0.605 0.399 0.526 0.999031 0.999607 0.949273 0.6009 0.811566
ship 0.616 0.567 0.413 0.998386 0.999289 0.921899 0.6467 0.85433
truck 0.617 0.511 0.555 0.998948 0.998934 0.954804 0.6032 0.833514
dog 0.628 0.393 0.481 0.998291 0.9979 0.931945 0.5611 0.750012

Mean 0.6103 0.4344 0.4624 0.9968935 0.9968713 0.9144305 0.61152 0.791246

Table 2. Area Under Curve results on CIFAR10 dataset from various competitor models [15, 16] and EIDN.

Class GANomaly DenseNet-169 ResNet-152 Inception-V4 EIDN(.5)
Cracks 0.858 0.999998 0.999986 0.998462 0.999645

Table 3. Area Under Curve results on Concrete Cracks dataset from various competitor models [15] and EIDN.

4 Experiments

We tested the EIDN on three different image datasets - MNIST
[18], CIFAR10 [19] and Concrete Cracks [20]. For MNIST
and CIFAR10 we used a one-versus-the-rest approach [15], i.e.
one class would be considered normal and the rest would be

considered anomalous. The MNIST dataset (hand-written dig-
its) consists of 60,000 28x28 grayscale hand-written training
images and 10,000 test images, where all ten classes are fairly
balanced. The CIFAR10 dataset consists of 50,000 32x32 RGB
training images and 10,000 test images, evenly distributed on



ten object categories. The Concrete Cracks dataset consists
of 40,000 227x227 RGB images of concrete, equally split be-
tween concrete images without cracks (normal class) and with
cracks (anomalous class); We reduced the dimension size of
the Concrete Cracks dataset to 32x32 RGB images, concate-
nated the normal and anomalous samples and randomly as-
signed 80% to be the training set and the other 20% to be the
testing set. Examples of normal and anomalous class splits can
be found in Fig.3.

Figure 3. Dataset examples of the MNIST and CIFAR10
datasets of arbitrarly chosen normal samples (Class 4 and ship)
against their respective anomalous samples (all other classes)
and Concrete Cracks dataset normal samples (without cracks)
against anomalous samples (with cracks).

To demonstrate EIDN’s ability to cope with unbalanced
data we first trained an EIDN on completely balanced data and
then trained other EIDNs on further reduced anomalous data
sample sizes; we reduced the training set anomalous sample
sizes to be 100%, 50%, 10%, 5% and 1% of the training set
normal sample sizes for each dataset.

We defined f to map colour images to a two dimensional
space, to allow visualisation of results (equation 6),

f : Rl×w×c → R2 (6)

where l, w, c represents the length, width and channels of an
image respectively. We chose a simple network architecture
(see Fig.4) to demonstrate the effectiveness of our method.

We trained a unique EIDN (f ) for each anomaly detec-
tion class, for each ratio between anomalous and normal train-
ing samples, on every dataset, totalling 105 networks (50 for
MNIST, 50 for CIFAR10, 5 for Concrete Cracks). To apply
the Triplet Loss Anomaly Detection, we created another net-
work with a single Triplet Loss Function Layer which inputs
[y, xp, xn] and outputs nothing. We trained the networks for 50
epochs, at 100 steps per epoch with a mini-batch size of 128
triplets, using an Adam Optimizer with α = 0.2.

We calculated the Euclidean distance of each sample from
the origin on the embedded space and scored those values on an
Area Under Curve (AUC) for all 105 f EIDNs. For the MNIST
and CIFAR10 datasets we compare our results to other models

Figure 4. Architecture of the neural network f used to be
trained on the MNIST, CIFAR10 and Concrete Cracks datasets.
The neural network takes inputs any image and outputs a two
dimensional space.

when the anomalous sample size is 1% and 10% of normal
samples respectively to also fairly compare against the OC-NN
results [16], shown in Tables 1 and 2. For the Concrete Cracks
dataset we compare our results when the anomalous sample
size is 50% of normal samples, shown in Table 3.

To demonstrate the effectiveness of the EIDN methodol-
ogy we plot the mean AUC results for each dataset as anoma-
lous sample size percentage drops from a completely bal-
anced dataset to a heavily unbalanced dataset and benchmark
them against other supervised (DenseNet-169, ResNet-152,
Inception-V4), semi-supervised (GANomaly, AnoGAN, EG-
BAD) or unsupervised OC-NN) methods, shown in Fig.5. The
results indicate that with a small proportion of labelled anoma-
lous samples (1%, 5% and 10% respectively for the MNIST,
CIFAR 10 and the Concrete Cracks datasets), performance is
significantly improved in comparison to methods that ignore
such labels and in most cases close to state-of-the-art super-
vised networks trained on balanced datasets.

The EIDN method is capable of coping with never-before-
seen anomalies and still yield strong results. To demonstrate
this ability, we trained an EIDN on the MNIST dataset with
normal samples from class 0, and 5% anomalous samples from
classes 1, 2, 3, 4 and 5. The EIDN was then tested on the
test set’s class 0, the normal class, and classes 6, 7, 8 and 9
to represent the never-before-seen anomalous samples. The re-
sult yielded an AUC score of 99.45%. A qualitative and quan-
titative (based on the average distance of anomalies from the
Normal Sample Cluster Centre) comparison against PCA and
T-SNE (Fig.6) demonstrates the effectiveness of our method to
detect unseen types of anomalies.

To demonstrate the effectiveness of the EIDN’s embedded
space, we dimensionally reduced the MNIST and CIFAR10’s
training sets to be labelled as the normal samples using both
EIDNs (which had been trained on an anomalous sample size
which was 5% the normal samples size) and Linear Discrimi-
nant Analysis (LDA), another supervised learning dimensional
reduction method. We then applied a variety of classical ma-
chine learning methods on the embedded normal samples and
computed their AUC score. Fig.7 confirms the suitability of the
EIDN embedded space for a wide range of methods.



Figure 5. Mean AUC results for MNIST, CIFAR10 and Concrete Cracks datasets as anomalous sample sizes for drop from a
completely balanced dataset to a heavily unbalanced dataset.

Figure 6. Scatter plots of the MNIST data on the embedded spaces derived by EIDN (both training and testing datasets), PCA
and T-SNE (only testing dataset).

Figure 7. Mean AUC scores across all classes of MNIST and CIFAR10 for various classic anomaly detection methods after
dimensionality reduction using EIDN or LDA.



5 Conclusion

In this work we proposed EIDN, a novel Anomaly Detection
approach, which utilises a refined Triplet Loss function that
enforces normal and anomalous samples to be isolated within
an embedded space. We introduced Random Triplet Sampling
to properly handle unbalanced training datasets. We evaluated
the suggested methodology on three publicly available datasets,
across various quantities of unbalanced data sample sizes, and
compared our method to the current state of the art. Our
method, despite its simplistic network architecture, achieved
results comparable with state-of-the-art supervised methods,
even in cases where it was trained with heavily unbalanced
datasets. When comparing to semi-supervised, approaches, our
method can deliver significant improvement by including rela-
tively few labeled anomalous samples in the training dataset.
Further improvements could encompass a more complex neu-
ral network, which maps to a higher dimensional embedded
space, and future work could apply the model to more convo-
luted and challenging datasets, such as videos.
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