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Abstract. Oral cancer is most prevalent in low- and middle-income countries 

where it is associated with late diagnosis. A significant factor for this is the lim-

ited access to specialist diagnosis. The use of artificial intelligence for decision 

making on oral cavity images has the potential to improve cancer management 

and survival rates. This study forms part of the MeMoSA® (Mobile Mouth 

Screening Anywhere) project. In this paper, we extended on our previous deep 

learning work and focused on the binary image classification of ‘referral’ vs. 

‘non-referral’. Transfer learning was applied, with several common pre-trained 

deep convolutional neural network architectures compared for the task of fine-

tuning to a small oral image dataset. Improvements to our previous work were 

made, with an accuracy of 80.88% achieved and a corresponding sensitivity of 

85.71% and specificity of 76.42%.  
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1 Introduction 

Oral cancer is one of the most common cancers worldwide, with an estimated 354,864 

new cases and 177,384 deaths in 2018 [1]. The disease disproportionately affects low- 

and middle-income countries (LMICs). Oral cancer is typically associated with late 

diagnosis, particularly in LMICs, and as a result survival rates are low [2]. Significant 
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factors associated with late diagnosis are poor awareness and the limited access to 

specialist diagnosis. 

A major advantage is that oral cancer is often preceded by visible oral lesions 

termed as oral potentially malignant disorders (OPMDs) which can be detected from a 

clinical oral examination performed by a trained healthcare practitioner. Screening 

programs, if in place, offer early diagnosis and can lead to a reduction in mortality 

rates and morbidity. Telemedicine using images captured via mobile phones [3] 

would allow for remote consultation by specialists and may improve the referral accu-

racy of screening programs. 

Artificial intelligence (AI) has the potential to classify images according to specific 

disease types or even provide descriptive summaries. However, achieving a high-level 

of performance for the binary classification of ‘referral’ vs. ‘non-referral’ would be 

the first step towards translation into clinical practice (following robust clinical evalu-

ation). With a telemedicine approach, this would assist primary healthcare providers 

who may not be trained in identifying high-risk oral lesions in sending through only 

relevant cases to the specialists. 

Recent methods related to the automated early detection of oral cancer made use of 

the convolutional neural network (CNN) which is a deep learning based AI technique 

designed for inputs in the form of images. Deep learning enables features to be auto-

matically learnt at multiple levels of abstraction which allow complex patterns to be 

derived. Uthoff [4] used a CNN to classify pairs of autofluorescence and white light 

images as suspicious and not suspicious. Aubreville [5] used a CNN to classify laser 

endomicroscopy images as clinically normal and carcinogenic. Whilst custom CNN 

architectures can be built for a specific task, there are several popular architectures 

well known for achieving state-of-the-art performance on the ImageNet dataset [6] at 

their time of release. Among these are VGG [7], InceptionV3 [8], ResNet [9] and 

Xception [10]. 

Transfer learning is a technique where a model trained on one task is repurposed 

on a second related task. The biggest benefit of transfer learning shows when the tar-

get dataset is small, this is due to very large datasets being required to train deep 

learning models. It is common to use CNN architectures pre-trained on the ImageNet 

dataset which contains 1.2 million images with 1000 classes (e.g. tiger, pizza, speed-

boat). If a dataset is very small (e.g. < 1000 images) then best practice is to use a pre-

trained CNN as a fixed feature extractor, if not as small (e.g. > 1000 images) then 

fine-tuning the CNN can produce superior results. Due to overfitting concerns with 

small datasets, it is advisable to keep the initial layers frozen (which capture universal 

low-level features such as edges, curves and blobs) and only fine-tune the latter part 

of the network. 

Our previous work [11] focused on using ResNet to tackle early detection of oral 

cancer. ResNet was used to explore image classification and object detection, along 

with classifying according to different levels of disease categorization. In this paper, 

we provide a short extension to this work, focused on the binary image classification 

of ‘referral’ vs. ‘non-referral’. We compared the performance of some common pre-

trained CNN architectures (VGG, InceptionV3 and ResNet) when applied to our oral 

image dataset, whilst exploring issues of fine-tuning with respect to a small dataset. 
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2 Materials 

This study forms part of the MeMoSA® (Mobile Mouth Screening Anywhere) project 

[3], in which images are currently in the process of being gathered and annotated from 

clinical experts from across the world. At this initial phase of the project, the number 

of annotated oral cavity images stands at 2155. 

From this dataset, 1180 images were of class ‘non-referral’ and 975 images were of 

class ‘referral’. The ‘non-referral’ class comprised of a mixture of images without 

lesions and images with lesions but not requiring referral. The ‘referral’ class com-

prised of images with lesions that required referral for low risk OPMD, high risk 

OPMD, cancer and other reasons. The images were of varying size, the largest was 

5472 x 3648 pixels and the smallest was 119 x 142 pixels. The dataset was split into 

training, validation and test sets as detailed in Table 1. Further details on the dataset 

can be found in [11]. 

Table 1. Image numbers according to the class label and dataset type. 

Class Training Validation Test Total 

Non-referral 949 125 106 1180 

Referral 795 82 98 975 

3 Method 

Five different CNN architectures were trained on our dataset for the binary image 

classification of ‘referral’ vs. ‘non-referral’. The softmax layer with a 1000 outputs 

was changed to two outputs to represent the two classes (equivalent to sigmoid func-

tion). The training involved freezing the initial part of the networks and fine-tuning 

the latter part of the networks, which included the convolutional layers responsible for 

high-level features. These architectures are detailed in Table 2; the stated top1/top5 

accuracies were reported by Keras [12] for performance of the ImageNet dataset. 

Table 2. CNN architectures. 

Architecture Description Top-1  Top-5 

VGG-16 13 convolutional and 3 fully-connected (FC) layers (includ-

ing the softmax layer). Its novelty was to go deeper. 

71.3% 90.1% 

VGG-19 A deeper variant to VGG-16. 71.3% 90.0% 

Inception-V3 48 layers with no FC layers except for the softmax layer. Its 

novelty was the concatenation of feature maps generated by 

filters of multiple sizes. Among the first to use batch nor-

malization. 

77.9% 93.7% 

ResNet-50 50 layers with no FC layers except for the softmax layer. Its 

novelty was to popularize skip connections with residual 

blocks to combat training issues associated with very deep 

networks. Among the first to use batch normalization. 

74.9% 92.1% 

ResNet-101 A deeper variant to ResNet-50. 76.4% 92.8% 
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3.1 Technical Details 

Backpropagation and stochastic gradient descent (SGD) with momentum of 0.9 was 

used for training. Images were rescaled to 224 x 224 pixels, except for InceptionV3 

which used 299 x 299 pixels. The training data was augmented with horizon-

tal/vertical flipping, scaling, translation and rotation. 

SGD mini-batch size was 128 images. A weighted loss function was used to cor-

rect for the slight class imbalance in the training data. The models were initialized 

with pre-trained ImageNet weights and fine-tuned from the second last convolutional 

layer for VGG, from second last Inception block for InceptionV3 and from conv4_1 

for ResNet. The training strategy varied based on the architecture, e.g. VGG-19 was 

trained for 100 epochs at a learning rate of 0.001. Varying levels of weight decay 

were used for regularization. The models were built on the training set and hyperpa-

rameters were derived from performance on the validation set.  

A Nvidia GeForce RTX 2080 Ti graphics card with 11GB memory was used for 

training. This implementation used Keras and TensorFlow. 

3.2 Batch Normalization for Transfer Learning 

Batch Normalization (BN) targets the vanishing gradient problem by standardizing 

the output of the previous layer, it speeds up the training process and it enables deeper 

networks to be trained. During training BN uses the mean and variance of the current 

mini-batch to normalize, and during inference BN uses fixed batch statistics derived 

from the moving mean and variance that was estimated during training. 

BN works well when fine-tuning the entire network. But when part of the network 

is frozen (due to limited data) the behavior of BN can cause discrepancies between 

training and inference. Consider the frozen part of the network; for training BN uses 

the current mini-batch statistics and for inference BN uses fixed batch statistics de-

rived from the original dataset. This works well if the data is from the same/similar 

domain as ImageNet, but leads to poor results if the domain is different (i.e. oral can-

cer). This was rectified when BN in the frozen part of the network was set to use 

moving mean and variance that was estimated during training for both training and 

inference. 

An additional issue, when the dataset is small and the domain is different, is to 

achieve representative fixed batch statistics (used for inference) for the data. Training 

for long enough resolves this, but this is problematic with limited data. We find a BN 

momentum value of 0.9 helped towards achieving better statistics. 

These issues affected the IncpetionV3 and ResNet models which used BN 

throughout their architecture. 

4 Results 

Evaluation was performed on the test set. As the classes were approximately balanced 

in the test set, we used accuracy as a single performance metric to compare the archi-

tectures (as detailed in Table 3). For each architecture, a confidence score threshold 
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that produced the best operating point defined by the accuracy was selected. The best 

performing architecture was VGG19 with an accuracy of 80.88%. This corresponds to 

a sensitivity of 85.71% and a specificity of 76.42%, with further metrics detailed in 

Table 4. Examples of outputs from VGG-19 are provided in Fig. 1. 

Table 3. Image classification results for several CNN architectures. 

Architecture Accuracy (%) Architecture Accuracy (%) 

VGG-16 80.39 ResNet-50 74.51 

VGG-19 80.88 ResNet-101 76.96 

Inception-V3 76.47   

Table 4. Further metrics on the image classification results for VGG-19. 

Performance metric (%) Performance metric (%) 

Sensitivity  85.71 False positive rate 23.58 

Specificity 76.42 Precision 77.06 

Positive predictive value 77.06 Recall 85.71 

Negative predictive value 85.26 F1 score 81.16 

False negative rate 14.29 Accuracy 80.88 

 

Fig. 1. Examples of results. Left: correctly classified as ‘non-referral’ with a class probability 

of 0.82. Middle: correctly classified as ‘referral’ with a class probability of 0.85. Right: incor-

rectly classified as ‘non-referral’ with a class probability of 0.83. 

5 Discussion and Conclusion 

In this paper, we demonstrate the performance of deep learning based systems for the 

image classification of ‘referral’ vs. ‘non-referral’ with respect to oral cancer. The 

best performing model achieved a sensitivity of 85.71% and a specificity of 76.42% 

for the identification of images that required referral. An accuracy of 80.88% and F1 

score of 81.16 %; it surpassed the F1 score of  78.30% reported in previous work [11].  

After exploring several CNN architectures, we demonstrate that the VGG architec-

tures produced superior results for our dataset, with the VGG-19 coming out on top. 

Despite InceptionV3 and ResNet being more complex and deeper networks, they 

were surpassed by the easier to fine-tune VGG models. Aside from overfitting issues 
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with deeper networks (although VGG does contain FC layers which can also cause 

overfitting); InceptionV3 and ResNet present batch normalization issues when being 

used for fine-tuning on small datasets of a different domain. Therefore, the VGG 

models currently provide a more stable and reliable approach, better showing the 

potential of AI. However, the other architectures offer more potential to learn com-

plex patterns and will be used to produce superior results when our dataset is larger 

Our future scope is to pre-train our models on datasets from a similar domain as 

our data (e.g. skin cancer), this is likely to improve results. But the most important 

target is to build a large dataset as this is key to deep learning. This will enable fine-

tuning of the entire network, or even training the architectures from scratch and train-

ing custom made architectures. We plan to focus on the interpretability of our models 

to support clinical confidence in AI decision making, briefly covered in the appendix. 

In conclusion, we have shown potential for AI to be incorporated into a mobile 

phone based telemedicine approach for the early detection of oral cancer. These 

promising early results are set to improve as the MeMoSA® project continues and the 

dataset grows.  
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Appendix 

 

Fig. 2-3 provide gradient-weighted class activation mappings (Grad-CAM) [13] to 

demonstrate where the VGG-19 model was looking. The model appears to approxi-

mately focus on the lesion when making the decision of ‘referral’. We feel our models 

could benefit from using a trainable attention mechanism [14]. 

 

Fig. 2. Correctly classified as ‘referral’ with a class probability of 0.787. Left: original image. 

Right: Grad-CAM for class ‘referral’. 
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Fig. 3.  Correctly classified as ‘referral’ with a class probability of 0.791. Left: original image. 

Right: Grad-CAM for class ‘referral’. 
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