
Kingston University London

Real-time Optimization of Working Memory in

Autonomous Reasoning for High-level Control of

Cognitive Robots deployed in Dynamic Environments

Author:

 Deon de Jager

This thesis being submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

 School of Engineering and the Environment, Kingston University London

May 31, 2020

i

Declaration of Authorship

I hereby declare that this thesis and the work presented in it are my own. I confirm

that: this work was done wholly while in candidature for a research degree at this

University and have not been submitted in whole or in part for consideration for

any other qualification in this, or any other University. Where I have consulted the

published work of others, this is always clearly attributed. Where I have quoted

from the work of others, the source is always given. With the exception of such

quotations, this thesis is entirely my own work.

Signed:

Date: 31 May 2020

ii

Abstract

High-level, real-time mission control of autonomous and semi-autonomous robots, deployed in

remote and dynamic environments, remains a research challenge. Robots operating in these

environments require some cognitive ability, provided by a simple, but robust, cognitive

architecture. The most important process in a cognitive architecture is the working memory,

with core functions being memory representation, memory recall, action selection and action

execution, performed by the central executive. The cognitive reasoning process uses a memory

representation, based on state flows, governed by state transitions with simple, quantified

propositional transition formulae. In this thesis, real-time working memory quantification and

optimization is performed using a novel adaptive entropy-based fitness quantification (AEFQ)

algorithm and particle swarm optimization (PSO), respectively. A cognitive architecture, using

an improved set-based PSO is developed for real-time, high-level control of single-task robots

and a novel coalitional games-theoretic PSO (CG-PSO) algorithm extends the cognitive

architecture for real-time, high-level control in multi-task robots. The performance of the

cognitive architecture is evaluated by simulation, where a UAV executes four use cases: Firstly,

for real-time high-level, single-task control: 1) relocating the UAV to a charging station and 2)

collecting and delivering medical equipment. Performance is measured by inspecting the

success and completeness of the mission and the accuracy of autonomous flight control.

Secondly, for real-time high-level control of multi-task autonomous vehicle control: 3)

delivering medical equipment to an incident and 4) provide aerial security surveillance support.

The performance of the architecture is measured in terms of completeness and cognitive

processing time and cue processing time. The results show that coalitions correctly represent

optimal memory and action selection in real-time, while overall processing time is within a

feasible time limit, arbitrarily set to 2 seconds in this study.

iii

Acknowledgements

I would like to express my sincere gratitude and appreciation to my supervisors, for their

unconditional guidance and support throughout this journey. I would like to thank Dr. Yahya

Zweiri, for his valuable advice, endless patience and teaching me the important points of

research. I would also like to thank Prof. Dimitrios Makris, for his advice, guidance and

teaching me to always look at things from different points of view. I am privileged to have

worked with Dr. Zweiri and Prof. Makris, and I truly believe I have become a better researcher,

as a result.

I would like to thank my sons, Robert and Jacques, for their constant encouragement and moral

support throughout this journey. I would particularly like to express my appreciation to my son

Robert, for his valuable assistance in the programming of my simulation environment.

I dedicate this thesis to my wife Vicky, for her unwavering support and endless patience

throughout this journey. Thank you for always being there, listening to my arguments and

explanations. Without your support, this thesis would not have been possible.

iv

Contents
Chapter 1 .. 1

Introduction ... 1

1.1 Problem description .. 4

1.2 Aims and objectives .. 5

1.3 Contributions .. 6

1.4 Publications ... 6

1.5 Methodology ... 6

1.6 Thesis outline .. 9

Chapter 2 .. 11

Associated research ... 11

2.1 Knowledge representation .. 11

2.2 Procedural autonomous vehicle control .. 14

2.3 Cognitive autonomous vehicle control ... 15

2.4 Critical review ... 19

Chapter 3 .. 24

Background theory .. 24

3.1 Working Memory in Neuro-cognitive architecture 24

3.1.1 Functional framework for human cognition ... 25

3.1.2 Working Memory Models ... 25

3.2 Knowledge representation .. 28

3.2.1 First-order logic .. 29

3.2.2 Evidence and logical constraints ... 30

3.2.3 Completeness and consistency .. 31

3.3 Information entropy .. 32

3.4 Particle swarm optimization ... 33

3.4.1 Overview of standard particle swarm optimization 33

3.4.2 Overview of set-based particle swarm optimization 36

3.5 Cooperative games theory ... 38

3.6 Conclusion .. 40

Chapter 4 .. 41

Working Memory Representation and Quantification 41

4.1 Working memory representation .. 41

4.1.1 Cue definition ... 44

4.1.2 Memory representation ... 44

4.2 Working memory quantification ... 47

4.2.1 Quantification model construction .. 47

v

4.2.2 Model-driven quantification ... 50

4.3 Conclusion .. 52

Chapter 5 .. 53

Memory Optimization .. 53

5.1 Methodology ... 54

5.1.1 The optimized working memory ... 55

5.1.2 The AEStd-PSO Algorithm .. 56

5.1.3 The AESet-PSO Algorithm ... 58

5.2 Experimental Evaluation ... 61

5.2.1 Datasets ... 62

5.2.2 Benchmark problems .. 63

5.2.3 Performance measures .. 64

5.2.4 PSO parameter selection ... 64

5.2.5 Experimental architecture and processes .. 67

5.2.6 Experimental execution .. 68

5.2.7 Empirical analysis ... 70

5.2.8 Results ... 71

5.2.9 Discussion ... 79

5.3 Conclusion .. 81

Chapter 6 .. 82

Robo-cognitive architectures .. 82

6.1 Real-time Episodic Memory Construction in Cognitive Control of

Autonomous Vehicles ... 82

6.1.1 Methodology ... 82

6.1.2 Reasoning in the robo-cognitive architecture ... 84

6.2 Real-time Activated memory Construction for Cognitive Control of

Autonomous Vehicles ... 85

6.2.1 Methodology ... 85

6.2.2 Reasoning in the robo-cognitive architecture ... 87

6.3 Conclusion .. 96

Chapter 7 .. 97

Evaluation by Simulation ... 97

7.1 Real-time Episodic Memory Construction in Cognitive Control of

Autonomous Vehicles ... 97

7.1.1 Use cases ... 97

7.1.2 Simulation setup ... 98

7.1.3 Evaluation criteria ... 99

7.1.4 Simulation results ... 100

vi

7.1.5 Discussion ... 106

7.2 Real-time Activated memory Construction for Cognitive Control of

Autonomous Vehicles ... 109

7.2.1 Use Cases .. 110

7.2.2 Simulation setup ... 110

7.2.3 Evaluation criteria ... 112

7.2.4 Simulation Results .. 113

7.2.5 Discussion ... 123

7.3 Conclusion .. 129

Chapter 8 .. 131

Conclusions and future work ... 131

8.1 Conclusions ... 131

8.1.1 Research question (1) ... 132

8.1.2 Research question (2) ... 132

8.1.3 Research question (3) ... 133

8.2 Future work ... 134

8.2.1 Reasoning .. 135

8.2.2 Learning .. 135

8.2.3 Collaboration .. 136

Bibliography .. 137

vii

List of Figures

Figure 1.1 The design and evaluation of two robo-cognitive architectures. 8

Figure 2.1 Summary of associated research and research of this thesis. 22

Figure 3.1 Functional framework for human cognition (based on [91]). 25

Figure 3.2 Baddeley’s Model of Working Memory (based on [20]). 27

Figure 3.3 Cowan’s attentional focus model (based on [20]). 28

Figure 4.1 UAV Flight control states and state transitions. 42

Figure 4.2 Gripper control states and state transitions. .. 42

Figure 4.3 The LTM of the cognitive architecture for the UAV. 43

Figure 4.4 Example of a composite state transition. .. 46

Figure 4.5 Example state transitions with corresponding propositions. 48

Figure 4.6 Method for constraint average assignment to propositions. 48

Figure 5.1 Parameters selection results for a 10k LTM and 5, 20 and 50 particles.

 ... 65

Figure 5.2 Parameters selection results for a 20k LTM and 5, 20 and 50 particles.

 ... 65

Figure 5.3 Parameters selection results for a 30k LTM and 5, 20 and 50 particles.

 ... 66

Figure 5.4 Experiment components and simulation process. 67

Figure 5.5 Average convergence time of AE-Std-PSO and AESet-PSO. 74

Figure 5.6 Completeness results - small (10k) search space with high volatility. 75

Figure 5.7 Information gain results - 10k search space with high volatility. 75

Figure 5.8 Completeness results - medium size search space (20k) with medium

volatility. .. 76

Figure 5.9 Information gain results - medium search space (20k) with medium

volatility. .. 76

Figure 5.10 Completeness comparison results - large search space (30k) with high

volatility. .. 77

Figure 5.11 Information gain comparison results - of a large search space (30k)

with high volatility. .. 77

Figure 5.12 Completeness comparison results - of a large search space (30k) with

medium volatility. .. 78

Figure 5.13 Information gain comparison results - of a large search space (30k)

with medium volatility. .. 78

viii

Figure 6.1 A robo-cognitive architecture, using on Baddeley’s model of working

memory. ... 83

Figure 6.2 A robo-cognitive architecture, using Cowan’s attentional focus theory

of working memory.. 86

Figure 6.3 An example of a coalition structure. ... 88

Figure 7.1 Use case 1 - unmanned aerial vehicle recharging. 97

Figure 7.2 Use case 2 - unmanned aerial vehicle medical equipment delivery. .. 98

Figure 7.3 The main components of the simulation platform architecture. 99

Figure 7.4 Resulting state flow of use case 1. .. 100

Figure 7.5 Dynamic velocity adjustment during use case 1. 101

Figure 7.6 UAV adjusting its velocity. .. 102

Figure 7.7 UAV reaching its destination and completing the mission. 102

Figure 7.8 Resulting state flow constructed for use case 2. 103

Figure 7.9 Dynamic velocity adjustment during mission 2................................ 104

Figure 7.10 UAV collecting its cargo at the collection point. 104

Figure 7.11 UAV reducing its velocity as it approaches its target destination. . 105

Figure 7.12 UAV successfully delivering its cargo. .. 105

Figure 7.13 Cognitive reasoning process (CRP) time for use cases 1 and 2. 108

Figure 7.14 Simulation platform system architecture for uses cases 3 and 4. 111

Figure 7.15 Main simulation functions for use cases 3 and 4. 114

Figure 7.16 Resulting state flow constructed for use case 3. 120

Figure 7.17 Resulting state flow constructed for use case 4. 123

Figure 7.18 Cognitive reasoning process (CRP) time for use case 3. 126

Figure 7.19 Cognitive reasoning process (CRP) time for use case 4. 127

ix

List of Tables

Table 4.1 Illustrative example of a quantification model. 50

Table 5.1 Inertia Weight and Acceleration Parameters. 64

Table 5.2 Swarm Size and Exploration Parameters. .. 64

Table 5.3 Volatility parameters for environmental data change. 67

Table 5.4 Statistical analysis results for benchmark problem 1. 71

Table 5.5 Statistical analysis results for benchmark problem 2. 72

Table 5.5 Continued. .. 73

Table 5.6 Hypothesis rejection for benchmark problem 1. 79

Table 5.7 Hypothesis rejection for benchmark problem 2. 79

Table 5.8 PSO algorithm preference for benchmark problem 1 80

Table 5.9 PSO algorithm preference for benchmark problem 2 80

Table 7.1 Cognitive reasoning results for use case 3. .. 115

Table 7.2 Processing and execution time for use case 3. 119

Table 7.3 Cognitive reasoning results for use case 4. .. 121

Table 7.4 Processing and execution time for use case 4. 123

x

List of Abbreviations

AI Artificial intelligence

AEFQ Adaptive Entropy Fitness Quantification

AESet-PSO Adaptive Entropy Set-based Particle Swarm Optimization

AEStd-PSO Adaptive Entropy Standard Particle Swarm Optimization

AM Activated Memory

CE Central Executive

CG-PSO Coalitional Game Theory-based Particle Swarm Optimization

CPt Cognitive Processing time

CRP Cognitive Reasoning Process

EM Episodic Memory

ENV Environmental Stimulus

FOA Focus Of Attention

LTM Long-Term Memory

MPt Maximum Processing time

PSO Particle Swarm Optimization

SPSO Set-based Particle Swarm Optimization

STM Short-Term Memory

TPt Task Processing time

UAV Unmanned Aerial Vehicle

WM Working Memory

xi

List of Equations

No.

Chapter 3

Page

3.1 𝐻(𝑋) =∑𝑝(𝑥𝑖) 𝑙𝑜𝑔2 (
1

𝑝(𝑥𝑖)
)

𝑛

𝑖

 32

3.2 𝑣𝑖𝑗(𝑡 + 1) = 𝓌𝑣𝑖𝑗(𝑡) + 𝑐1𝑟1𝑗 (𝑦𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) + 𝑐2𝑟2𝑗 (�̂�𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) 34

3.3 𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + 𝑣𝑖𝑗(𝑡 + 1) 34

3.4 𝑓 ∶ ℝ𝑛𝜙 → ℝ 34

3.5 𝑦𝑖(𝑡 + 1) = {
𝑦𝑖(𝑡)

𝑋𝑖(𝑡 + 1)

𝑖𝑓 𝑓(𝑋𝑖(𝑡 + 1)) ≥ 𝑓(𝑦𝑖(𝑡))

𝑖𝑓 𝑓(𝑋𝑖(𝑡 + 1)) < 𝑓(𝑦𝑖(𝑡))
 34

3.6 𝑦𝑖(𝑡 + 1) = {
𝑦𝑖(𝑡)

𝑋𝑖(𝑡 + 1)

if f(Xi(t + 1)) ≤ f(yi(t))

if f(Xi(t + 1)) > f(yi(t))
 34

3.7 �̂�(𝑡 + 1) = {
�̂�(𝑡)

𝑋𝑖(𝑡 + 1)

𝑖𝑓 𝑓(𝑋𝑖(𝑡 + 1)) ≥ 𝑓(�̂�(𝑡))

𝑖𝑓 𝑓(𝑋𝑖(𝑡 + 1)) < 𝑓(�̂�(𝑡))
 34

3.8 �̂�(𝑡 + 1) = {
�̂�(𝑡)

𝑋𝑖(𝑡 + 1)

𝑖𝑓 𝑓(𝑋𝑖(𝑡 + 1)) ≤ 𝑓(�̂�(𝑡))

𝑖𝑓 𝑓(𝑋𝑖(𝑡 + 1)) > 𝑓(�̂�(𝑡))
 34

3.9
𝑉𝑖(𝑡 + 1) = (𝑐1𝑟1⊗ (𝑌𝑖(𝑡) ⊖ 𝑋𝑖(𝑡))) ⊕ (𝑐2𝑟2⊗(�̂�𝑖(𝑡) ⊖ 𝑋𝑖(𝑡)))⊕

(𝑐3𝑟3⊙𝑘
+ 𝐴𝑖(𝑡)) ⊕ (𝑐4𝑟4⊙

− 𝑆𝑖(𝑡))
37

3.10 𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) ⊞ 𝑉𝑖(𝑡 + 1) 37

Chapter 4

4.1 𝛷𝑐 = {𝜑1
𝑐 , 𝜑2

𝑐 , … , 𝜑𝑛𝛷𝑐
𝑐 } 44

4.2 𝐿𝑇𝑀 = {𝜏1, 𝜏2, … , 𝜏𝑛𝐿𝑇𝑀} 44

4.3 𝜏𝑘 = (𝓋, S𝛼 , 𝑆𝛽 , 𝐴𝑘 , 𝐹𝑘, 𝑓𝑗) 44

4.4 𝛷𝑟 = {𝜑1
𝑟 , 𝜑2

𝑟 , … , 𝜑𝑛𝛷𝑟
𝑟 } 44

4.5 𝛷𝑚 = {𝜑1
𝑚, 𝜑2

𝑚, … , 𝜑𝑛𝛷𝑚
𝑚 } 45

4.6 𝑝𝑙 = (𝜑𝑖
𝑟 , 𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝜑𝑗

𝑚) 45

4.7 (𝜑𝑖
𝑟 > 𝜑𝑗

𝑚), (𝜑𝑖
𝑟 < 𝜑𝑗

𝑚) and (𝜑𝑖
𝑟 = 𝜑𝑗

𝑚) 45

4.8 ℳ𝜏𝑘
= (𝐕, 𝐗, 𝐅, 𝚲) 47

4.9 𝑑𝑗
𝑚 = 𝑢𝑏𝑗

𝑚 − 𝑙𝑏𝑗
𝑚 48

4.10 𝑑𝑖
𝑟 =

{

𝜑𝑖
𝑟 − 𝑙𝑏𝑗

𝑚 ; 𝑖𝑓 𝑝𝑙 = (𝜑𝑖
𝑟 ≤ 𝜑𝑗

𝑚)

𝑢𝑏𝑗
𝑚 − 𝜑𝑖

𝑟 ; 𝑖𝑓 𝑝𝑙 = (𝜑𝑖
𝑟 ≥ 𝜑𝑗

𝑚)

0 ; 𝑖𝑓 𝑝𝑙 = (𝜑𝑖
𝑟 ≠ 𝜑𝑗

𝑚)

1 ; 𝑖𝑓 𝑝𝑙 = (𝜑𝑖
𝑟 = 𝜑𝑗

𝑚)

 49

4.11 𝑃𝑟 (𝑝𝑙) =
𝑑𝑖
𝑟

𝑑𝑗
𝑚 49

4.12 𝑑𝑝1𝑝2 = 𝑑𝑝1 + 𝑑𝑝2 49

4.13 𝑑𝑝1𝑝2 = 𝑑𝑝1 + (1 − 𝑑𝑝2) 49

xii

4.14 𝑑𝑝2𝑝2 = (1 − 𝑑𝑝1) + 𝑑𝑝2 49

4.15 𝑑𝑝1𝑝2 = (1 − 𝑑𝑝1) + (1 − 𝑑𝑝2) 49

4.16 𝑑𝑓 = (𝑑𝑝1𝑝2 + 𝑑𝑝1𝑝2 + 𝑑𝑝2𝑝2 + 𝑑𝑝1𝑝2) 49

4.17 𝐅 = (𝑑𝑝0 ,
(𝑑𝑝1𝑝2 + 𝑑𝑝1𝑝2)

𝑑𝑓
,
(𝑑𝑝1𝑝2 + 𝑑𝑝1𝑝2)

𝑑𝑓
,
(𝑑𝑝1𝑝2 + 𝑑𝑝1𝑝2)

𝑑𝑓
,
(𝑑𝑝1𝑝2 + 𝑑𝑝1𝑝2)

𝑑𝑓
,
𝑑𝑝1𝑝2
𝑑𝑓

) 49

4.18 ℒ𝑡𝑟𝑎𝑛𝑠 = 𝚲 = 𝑚𝑖𝑛
𝜆𝑘

(𝑙𝑛 𝑍(𝜆1, 𝜆2, … 𝜆𝑘) − ∑𝜆𝑗〈𝐹𝑗〉

mτk

𝑗=1

) 49

4.19 (𝑞𝑖|ℳ𝜏𝑘
) =

1

𝑍(𝜆1, 𝜆2, … 𝜆𝑘)
𝑒
−∑ 𝜆𝑗𝐹𝑗(𝑋=𝑥𝑖)

mτk
𝑗=1 50

4.20 𝛱 = 𝓋 × 𝑞1 51

Chapter 5

5.1 𝜏𝑘 = {𝓅1, 𝓅2, … , 𝓅𝑛|𝜏𝑘|
} 54

5.2 𝓅𝑗 ≜ 𝑝𝑟𝑒𝑑 (𝛼1, 𝛼, … , 𝛼𝑛𝓅𝑗
) 54

5.3 𝐴𝑀 = {𝜏1
∗, 𝜏2

∗, … , 𝜏𝑛𝐿𝑇𝑀
∗ } 55

5.4 𝜏𝑘
∗ = (𝑓(𝜏𝑘), 𝜏𝑘) 55

5.5 𝑣𝑖(𝑡 + 1) = 𝓌𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑦𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(�̂�𝑖(𝑡) − 𝑥𝑖(𝑡)) 56

5.6 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) 56

5.7 𝑣𝑖(𝑡 + 1) = 𝑟1𝑐𝑐𝑜𝑔(𝑑𝑐𝑜𝑔) ∪ 𝑟2𝑐𝑠𝑜𝑐(𝑑𝑠𝑜𝑐) 58

5.8 𝑥𝑖(𝑡 + 1) = 𝑚𝑎𝑥𝜖(𝑥𝑖 ∪ 𝑣𝑖(𝑡 + 1)) 58

5.9 𝜙 =
|𝑧|

√𝑛
 70

Chapter 6

6.1 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁) 90

6.2 𝑜𝑓𝑓𝑒𝑟𝑖𝑗 = 𝑣(𝑆𝑝𝑖) + 𝑣(𝑝𝑗) 91

6.3 𝜑 = (𝑥; 𝑆1, 𝑆2, . . . , 𝑆𝑛ℱ) 91

6.4 𝜔𝑆𝑗 = {
1 ; 𝑖𝑓 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛 𝑆𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝐷_𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛

0 ; 𝑖𝑓 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛 𝑆𝑗 𝑖𝑠 𝐷_𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛
 93

6.5 𝜐(𝑆𝑗) = 𝜔𝑆𝑗 ∗ ∑ 𝜐(𝑝𝑖)𝑝𝑖∈𝑆𝑗
; 𝑖 = 1, . . 𝑁 94

6.6 𝑥𝑝𝑖 = 𝜐(𝑆𝑗) ; 𝑝𝑖 ∈ 𝑆𝑗 94

6.7 𝑥 = (𝑥𝑝1 , 𝑥𝑝2 , … , 𝑥𝑝𝑖); 𝑥𝑝𝑖 ∈ 𝑆𝑗 and 𝑆𝑗 ∈ ℬ 94

Chapter 7

7.1 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 0.3𝛱 100

1

Chapter 1

Introduction

The application of artificial intelligence (AI) for the high-level control of autonomous vehicles

(autonomous vehicles) holds a lot of promise. The ultimate objective is to deploy an

autonomous vehicle and leave it to intelligently and successfully perform the tasks it was

designed and equipped for [1, 2]. Unfortunately, such level of autonomy is proving hard to

accomplish, especially for robots deployed in remote and dynamic environments. For example,

consider the Mars rover, Curiosity. Currently, the rover is exploring the surface of Mars. The

rover is equipped with a number of on-board scientific testing laboratories, for example, a

Sample Analysis at Mars (SAM), Mast Camera (MASTCAM), Mars Hand Lens Imager

(MAHLI) and Rover Environmental Monitoring Station (REMS), amongst others. While the

rover is equipped with some level of low-level autonomous control (mostly for obstacle

avoidance), a human operator or designer, i.e. a domain expert, is still required to control some

mission-specific tasks such as, sampling, testing and analysis. This includes the decision about

whether an area is interesting and should be explored further. This is high-level mission control

and currently, there is a gap in solutions for autonomous AI for low-level control, such as

stabilization control [3, 4], and high-level control, such as mission execution [5]. This gap can

be partly filled by providing the autonomous vehicle with the cognitive ability to reason about

the knowledge provided by the domain expert. This cognitive ability allows the autonomous

vehicle to function more autonomously, alleviates the workload of the operator, and allows the

domain expert to extend the knowledge of the autonomous vehicle in an intuitive way.

Knowledge representation and structure plays a key role in the reasoning process. Expert

knowledge must combine logical and statistical formalisms [6]. Logical formalisms, such as

logic programming, symbolic parsing and rule induction is able to handle complexity in the

knowledge. Statistical formalisms, such as Bayesian networks, Markov networks, Markov logic

networks and neural networks handle uncertainty in the knowledge. In a dynamic environment,

knowledge and environmental data may change rapidly and continuously. Autonomous

systems, for example, autonomous exploratory robots [7, 8], encounter continuous changes in

their environmental data when applied in dynamic environments. Because of the dynamism and

degree of certainty in some environments, statistical formalisms, rather than logical formalisms

are more suitable for reasoning. Moreover, for quick decision-making, reasoning must be based

on an optimal, salient subset of the expert knowledge, given environmental sensory

information. Whenever there is a change in the environmental stimuli, the salient knowledge

becomes obsolete and needs to be replaced, using the new environmental stimuli. Therefore,

2

statistical formalisms which rely on discovery, learning and structure generation are inflexible

and computationally- and time-expensive and are therefore not suited for real-time high-level

autonomous vehicle control. The cognitive reasoning process needs to make a decision in an

acceptable time frame. The cognitive reasoning process therefore, relies on a well-structured

knowledgebase and real-time, adaptive cognitive reasoning ability. Naturally, researchers are

looking towards human neuro-cognitive sciences for guidance towards cognitive reasoning

solutions for robots. There is a tendency to develop robots to mimic human decision-making

and behaviour. However, there are two conflicting approaches towards the design of cognitive

architectures [9]: to create a model of cognition and gain an understanding of cognitive

processes and to build useful systems that have a cognitive ability and thereby provide robust

adaptive behaviour that can anticipate events and the need for action. The first is concerned

with advancing science, the second is concerned with effective engineering.

There has been an ongoing quest to understanding human cognition [10] and a number of

computational models [11] and neuro-cognitive architectures have been developed in order to

simulate, study and understand human cognition. The best-known architectures are Adaptive

control of thought (ACT) [12], Adaptive Control of Thought-Rational (ACT-R) [13], State

operator and result (SOAR) [14], Semantic pointer architecture unified network (SPAUN) [15]

and Neural Engineering Objects (Nengo) [15]. These architectures were designed to investigate

human neuro-cognitive functions of the brain, while some, for example [16], go further and

extend the architectures by augmenting it with human emotion characteristics. These

architectures provide a modular representation of the cognitive functions of the brain, and is

therefore an attractive option for designing similar architectures for cognitive robotics.

Computational devices have seen a reduction in cost and size, while increasing in computational

power and this have led to an increase in the application of cognitive architectures to robots.

Architectures, such as those described above, focus on the computation (or behavioural

outcome) of cognition. However, little attention is given to the foundation of cognitive

computation i.e. memory. Memory is only considered as a basic “repository” of information,

used by cognitive processes, while there is very little consideration of the dynamical memory-

specific processes, even though there appears to be a degree of consensus that cognition should

be founded on formation and manipulation of memory and memory as associative and

developmental [17]. It is advised that cognition be examined from the perspective of memory

(and its associative processes), rather than from a computation or behavioural outcome, point

of view.

However, cognitive neuroscience is not trivial, and in [15], four significant challenges are

identified, (1) the complexity of building representational structures for semantics, (2) utilizing

the semantic structures effectively, (3) an executive, controlling action selection and (4)

3

representing and recalling memory. Of the challenges, memory representation, memory recall

and action selection are, arguably, the most significant, since the autonomous vehicle’s

behaviour is directly impacted by these actions. Memory representation can be further

described in terms of semantic memory (short term and long-term) and episodic memory

(experience-based) [18, 19] which, together with memory processing, is often referred to, in

neuroscience, as working memory. Working memory is a very complex field of neuroscience

and still subject to intense research. Various working memory models, such as Baddeley’s

Multicomponent model, Cowan’s embedded process model and Engle’s controlled attention

model are presented in [20]. Despite its complexity, working memory is equally important in a

robo-cognitive architecture.

Cognitive robotics is described as “the study of knowledge representation and reasoning

problems, faced by an autonomous vehicle (or agent) in a dynamic and uncertain world” [21].

Cognitive control architectures typically provide cognitive functions, such as perception,

attention, planning, memory, reasoning and learning. In cognitive robotics, where some form

of memory representation is used, the initial memory is often provided by a domain expert.

This memory is then often stored in a knowledgebase or some other storage structure, such as

a file or database.

In some autonomous vehicle control architectures, control models are learned through methods,

such as artificial neural networks, to simulate memory representation, memory recall and the

executive functions of the brain. The models represent memory through synaptic weight

assignment, which is adjusted during a learning process. When presented with an input

stimulus, the model “recalls” learned facts by applying the synaptic weight and input stimulus

to an activation function.

In a survey [1], it is shown that contemporary AI machine learning techniques, (e.g. artificial

neural networks, Reinforcement learning and the deep learning variants of these techniques)

are favoured. The survey also identifies that the complexity of machine learning models and

parameter calibration, remains a problem for autonomous vehicles in general. Autonomous

vehicles must have the capability to reason about, and act fast, on changing environmental

stimuli. For example, when a unmanned aerial vehicle (UAV), in formation flight, encounters

exceptional aerial disturbances [22] or when an autonomous underwater vehicle encounters

exceptional underwater disturbances [23]. Autonomous vehicles are provided with initial

knowledge about its environment, and a set of rules on how to behave in that environment. For

example, knowledge about the environment or operational rules of autonomous vehicles,

patrolling an area [24] for security, may change at any time.

Unfortunately, for many real-world cognitive robotic applications, the approach of a-priori

4

learning of behavioural models is not always effective. Robots deployed in remote, unknown

and dynamic locations, cannot risk catastrophic failure. As mentioned before, they do not have

the time to learn new complex solutions from the start every time the environment changes.

In the need for real-time, high-level control in robotics, without the overhead of model re-

learning is discussed. In this thesis, the mechanics of a real-time, knowledge quantification and

optimization methodology, using a set-based particle swarm optimization (SPSO) algorithm,

are developed. However, while the SPSO successfully optimizes the knowledge on a task by

task basis, it is not suitable for knowledge optimization in a multi-task environment.

This thesis also introduces a cognitive architecture suitable for robotic applications and, in this

study, is referred to as a robo-cognitive architecture for high-level, single and multi-task control

of robots. A novel, coalitional games theory-based PSO (CG-PSO) algorithm, which is based

on a combination of SPSO and cooperative games theory, forms the cognitive process of the

robo-cognitive architecture.

1.1 Problem description

• Memory representation - Augmenting or modifying the working memory of a remotely-

deployed autonomous vehicle becomes more convoluted, error-prone and computationally

expensive if the structure of the working memory is complex. Limited communication

bandwidth also restricts the maintenance of the working memory.

• Timeliness - High-level controllers are often represented by states and state transitions

defined as a directed state-flow model with state-action policies, constructed through

machine learning techniques. These techniques progressively learn the policies of the state-

flow, using user-defined parameters, which are often selected subjectively or derived

through experimentation. Changes in the environment are likely to lead to the re-

optimization of the parameters and re-learning of the model.

• Dynamism - When machine learning is used to generate models as high-level controllers,

the controller (state-flow) is learnt in its entirety. For dynamic environments, a large number

of models have to be learnt to handle different scenarios. However, when the underlying

information or environment changes, learnt models may become obsolete and need to be

replaced. Due to the time it takes to relearn a model, re-generation of high-level controllers

in real-time operation becomes infeasible.

• Knowledge Quantification – Particle swarm optimization (PSO) is selected for the

optimization of the long-term memory (LTM), in order to provide the optimal, salient subset

of knowledge for cognitive reasoning. In order for the PSO to evaluate memory items

5

selected from the long-term memory for fitness, each memory item needs to have a numeric

value for fitness evaluation. Since the long-term memory is a discrete set of memory items,

algebraic fitness evaluation is not possible.

• Multi-tasking - Robots deployed in the real-world often have multiple functions they can

perform (e.g. the Mars rover), and are therefore multi-task, multi-state platforms. Some of

the states may be dependent on other states, while others may be completely independent.

This means the autonomous vehicle may transition to states in parallel and thereby execute

corresponding actions in parallel. Cognitive reasoning, using SPSO for memory

optimization, is capable of finding the optimal transition from a single current state in a

specific state-flow (function). However, it is not capable of providing multiple, parallel and

independent transitions from multiple, current states in multiple state-flows in real-time.

Given the problem description above, the research questions are:

(1) Can working memory be represented in a form which simplifies augmentation and

modification by domain expert?

(2) Can working memory be statistically quantified for the evaluation of optimality, during

memory recall in cognitive reasoning?

(3) Is the cognitive reasoning capable of correct action selection for both single- and

multiple, independent (or parallel) tasks?

1.2 Aims and objectives

To address the research questions above, this thesis develops and evaluates cognitive

architectures, suitable for real-time, high-level autonomous vehicle control in remote and

dynamic environments. The objectives of this research study are:

a. To design, implement and test a simple knowledge representation for the working memory,

which simplifies knowledge modification and augmentation.

b. To design and develop a statistical, entropy-based quantification algorithm for the

quantification of discrete knowledge in the working memory.

c. To investigate a cognitive reasoning process for real-time memory recall by combining

knowledge quantification with particle swarm optimization (PSO), for single task

execution.

d. To investigate a cognitive reasoning process for real-time memory recall combining game

theory and particle swarm optimization (PSO), for multiple action selection for parallel,

multi-task execution.

6

e. To evaluate the cognitive architecture for correctness, control and time efficiency, using

simulation.

1.3 Contributions

The main contributions of this thesis are:

1. The creation of a novel working memory representation, structured to simplify

modification and augmentation.

2. The design and development of a novel adaptive entropy fitness quantification (AEFQ)

algorithm for the statistical quantification of discrete memory items (knowledge).

3. The design and development of a cognitive reasoning process for memory recall, using

an improved set-based particle swarm optimization (SPSO) algorithm (which uses the

AEFQ algorithm) for action selection for single task execution.

4. The design and development of a cognitive reasoning process for memory recall, using

a novel CG-PSO algorithm (which uses the AEFQ algorithm) for multiple action

selection for multiple, parallel task execution.

5. Confirmation of the suitability of the robo-cognitive architectures in the execution of

four use cases in simulation.

1.4 Publications

Journal papers published

1. Deon de Jager, Yahya Zweiri, Dimitrios Makris (2019). “A Particle Swarm Optimization

approach using Adaptive Entropy-based Fitness Quantification of Expert Knowledge for

High-level, Real-time Cognitive Robotic Control”, SN Applied Sciences, No (12), Vol

1. https://doi.org/10.1007/s42452-019-1697-4

2. Deon de Jager, Yahya Zweiri, Dimitrios Makris (2020). “Real-time Episodic Memory

Construction for Optimal Action Selection in Cognitive Robotics”, International Journal

of Mechanical and Mechatronics Engineering, No (1), Vol 14.

doi.org/10.5281/zenodo.3669208

1.5 Methodology

To illustrate and explain the methodology in this study, simulated UAV use cases are used to

contextualize some of the theories and concepts. It should be noted that, without the loss of

https://doi.org/10.1007/s42452-019-1697-4
https://doi.org/10.5281/zenodo.3669208

7

generality, the methodology could equally apply to other autonomous vehicle (or automation)

scenarios.

In order to answer the research questions, two cognitive architectures which focusses on

working memory for memory representation, memory recall (quantification and optimization)

and action selection and execution, is developed. Figure 1.1 gives an overview of the two

cognitive architectures, including the main components, developed in this study.

The long-term memory is defined by a domain expert and formulated in a simple and discrete

proposition logic-based structure.

Memory recall is performed by the central executive (CE) and consists of two primary

functions, statistical memory quantification and memory optimization using a particle swarm

optimization approach. In this research study, two memory recall approaches are examined: 1)

memory recall resulting in episodic memory construction for single-task action selection and

execution and, 2) memory recall resulting in activated memory and focus of attention for

multiple, parallel action selection and execution. Memory quantification is based on

environmental stimuli and performed by the novel AEFQ algorithm. The AEFQ algorithm uses

the maximum entropy principle (MEP) [25], for the assignment of a probability distribution

over a memory item. Memory optimization for the first memory recall is performed using an

improved SPSO algorithm. Memory optimization for the second memory recall is performed

using the novel CG-PSO algorithm.

Four use cases are defined and executed in simulation, to evaluate the suitability and

performance of the cognitive architecture for both single task and parallel, multi-task execution.

8

Figure 1.1 The design and evaluation of two robo-cognitive architectures.

The architecture on top is based on Baddeley’s model of working memory for the construction of episodic memory, for single tasks

selection and execution. The robo-cognitive architecture shown below is based on Cowan’s attentional focus theory of working

memory. Cognitive reasoning is performed by real-time optimization of working memory optimization, using particle swarm

optimization and adaptive entropy memory fitness quantification of memory. Both architectures are evaluated in use case simulations.

Long-Term Memory

Central
Executive

Sensory Input

Activated Memory Focus of Attention

Central Executive

Episodic Buffer

Visual Spatial
Phonologica
l Short-term

Store

Articulatory
Loop

Long-Term Memory

Visuo-Spatial Sketch pad Phonological Loop

Central Executive
Memory Recall

Memory Quantification

Adaptive Entropy Fitness
Quantification (AEFQ)

Memory Optimization

Set-based PSO

Central Executive
Memory Recall

Memory Optimization

Cooperative
Game-based PSO

Memory Quantification

Adaptive Entropy Fitness
Quantification (AEFQ)

Use Case Evaluation

Robo-Cognitive Architecture (multi-task execution)

Baddeley Model of Working Memory

Cowan s Attentional Focus Theory of Working Memory

Robo-Cognitive Architecture (Single task execution)

Working Memory

Central Executive

Memory-Recall

Memory
Buffer

(Observation,
Objective,

Knowledge)

Action
 Execution

Semantic Memory

Memory
Quantification

Simultaneous
Memory

Optimization
Cues

ENV
(Stimuli)

LTM

k

*
ja

r

r

m

LTM STM

STM

()*

1 2, , ...k ja a a

Episodic MemoryEM

c

Working Memory

Central Executive

Memory-Recall

Memory
Buffer

(Observation,
Objective,

Knowledge)

Action
 Execution

Semantic Memory

Memory
Quantification

Simultaneous
Memory

Optimization
Cues

ENV
(Stimuli)

LTM

k

*
ja

r

r

m

Focus of Attention
(FOA)

LTM STM

STM Activated
Memory (AM)

 * * *
1 2, ,... k ()*

1 2, ,...k ja a a

()*

1 2, ,...k ja a a

c

9

To the best of my knowledge, no studies have been conducted in real-time, statistical

quantification of memory, using the MEP approach. Moreover, no studies have been found for

memory (or knowledge) optimization, using a particle swarm optimization approach.

1.6 Thesis outline

The rest of this thesis is structured as follows:

a. Chapter 2 – Related work

This chapter discussed research, relevant to the cognitive architecture and the core working

memory functions, memory representation, memory recall, action selection and action

execution.

b. Chapter 3 – Background Theory

This chapter discusses the theoretical foundations of the core functions of the cognitive

architecture. An overview of the human cognition framework is given to contextualize

working memory and the central executive. Various working memory models, relevant to

the cognitive architecture proposed in this study, is discussed. PSO is one of the two core

functions of memory recall and therefore, a detailed overview of the standard PSO and the

set-based PSO is given. The chapter also gives a detailed overview of cooperative games

theory with definitions relevant to coalition formation, based on the bargaining set solution

concept.

c. Chapter 4 – Working memory representation and quantification

This chapter describes the contributions (1) to (2) in detail. In this chapter, a memory

representation structure, representing the long-term memory used by the cognitive

reasoning process in memory recall, is discussed in detail. This chapter also discusses in

detail, the memory quantification methodology, used in the optimization step of memory

recall. The novel statistical entropy-based quantification algorithm is discussed in detail in

this chapter.

d. Chapter 5 – Memory optimization

This chapter describes the first part (investigation) of contribution (3) and (4), which

develops a cognitive process for memory recall. This chapter empirically evaluates both

the standard PSO and set-based PSO in detail for the suitability of using PSO for

knowledge optimization in memory recall. A detailed empirical evaluation is discussed in

this chapter.

e. Chapter 6 – Robo-cognitive architectures

10

This chapter describes the second part (methodology) of contributions (3) and (4). In this

chapter, two methodologies for memory recall in cognitive reasoning is developed for the

real-time, high-level cognitive control of an autonomous vehicle. Memory recall is

developed for two cognitive architectures. In the first method, an architecture for real-time,

cognitive control using SPSO for single-task execution, is developed and in the second

method, an architecture for real-time, cognitive control using CG-PSO for multi-task

execution, is developed.

f. Chapter 7 – Evaluation by simulation

This chapter describes contribution 5 in detail. Four simulations are evaluated to confirm

the suitability of the robo-cognitive architectures for high-level control of autonomous

vehicles. The first two simulations (section 7.1) apply an episodic working memory

approach for single task execution, while the next two simulations (section 7.2) apply the

attentional focus theory of working memory approach for multi-task execution.

g. Chapter 8 – Conclusion and Future work.

This chapter concludes the thesis, highlighting its contributions and proposes areas for

future research.

 11

Chapter 2

Associated research

In this chapter, research relating to neuro-cognitive architectures and cognitive robotic

architectures, are reviewed. In particular, the role of working memory processes, as opposed to

cognitive processes, are reviewed.

In a cognitive architecture, memory represents knowledge obtained either through learning or

provided by a domain expert. Memory representation is key to the success and efficiency of the

core functions of a cognitive architecture. The effectiveness of the central executive in memory

recall, action selection and action execution are directly affected by the structure and content

of the long-term memory in working memory. However, associated research in autonomous

vehicle control often refers to “knowledge”, “information” or just data, as the input to an

autonomous vehicle control process. Controllers govern the behaviour of the autonomous

vehicle and are often described in procedural (as opposed to cognitive) terms. In this chapter,

working memory representation and cognitive reasoning are reviewed in terms of knowledge

representation and autonomous vehicle control, respectively.

In section 2.1, popular approaches for the discovery and representation of knowledge are

reviewed. section 2.2 review autonomous vehicle control approaches which uses procedural

control methods and section 2.3 review autonomous vehicle control approaches which uses

cognitive control methods.

A critical review of the various approaches and main differences, between these approaches

and the methodology proposed in this study, is given at the end of the chapter.

2.1 Knowledge representation

Knowledge is the basis for successful decision-making, and may be learned (or derived)

computationally or explicitly defined by a domain expert. Equally important, is how the

knowledge is obtained, formulated and structured. A complicated format will be

computationally expensive and error-prone and decision-making may be sub-standard. For

example, formats, such as modal logic or Hennessy-Milner logic [26, 27], have complex and

unintuitive structures. The importance of simple knowledge representation structures becomes

evident if formal reasoning theories are investigated [28]. In this work, three types of reasoning

are described: deduction, induction, and abduction. These types of reasoning may be useful in

 12

humanoid robot or human-robot applications, such as [29-33], they are not particularly suitable

for remotely-deployed, exploratory autonomous vehicles, because, a subjective overemphasis

is often placed on some factors, depending on the preferences of the subject doing the reasoning.

This could lead to unacceptable levels of accuracy in inference, when applied to high-level

control of autonomous vehicles.

Knowledge is often defined as probabilistic reasoning models (PRMs) and modelled as

probabilistic graphical models (PGM) [6, 34]. probabilistic graphical models handle uncertainty

well and provide a useful structure for statistical inference. Arguably, the most widely used

probabilistic graphical models for statistical inference are Bayesian networks, Markov

networks and Markov logic networks.

Bayesian networks are directed acyclic graphs which expresses causal relationships between

random variables [6, 34, 35]. The Bayesian network is constructed by creating a node for each

random variable in the long-term memory. For each causal relationship between two random

variables, a directed edge is created between the two nodes representing the two random

variables. Associated with each node is a user-defined conditional probability distribution

(CPD) which indicates the probability of its states, given the probability of the states of its

parents. The conditional probability distribution is represented as a conditional probability table

(CPT). The conditional probability table is a table that has one probability for every possible

combination of parent and child states. This is an N+1 dimensional table, where N is the number

of parents. The Bayesian network is used to answer queries, for example, probability-of-

evidence queries [35]: what is the probability 𝑃𝑟(𝑒) of some variable instantiation, 𝑒, given

some evidence X and Y? In probability–of-evidence queries, 𝐸 = {𝑋, 𝑌} is the set of evidence

variables.

A Markov network is an undirected graph which models the joint distribution of a set of random

variables. A node is created for each random variable and an edge between two nodes expresses

the dependency between the two random variables [6, 36-38]. Some nodes in the graph form

cliques, which are 𝑛-vertex subgraphs of the graph where 𝑛 indicates the number of vertices of

the clique [39]. For cliques with more than one vertex, i.e. 𝑛 > 1, each pair of vertices is

connected by an edge. Associated with each clique is a user-defined clique potential function

which maps instantiations of the random variables in the clique to non-negative real numbers.

This mapping process is referred to as clique factorization [37, 38].

A Markov logic network combines Markov networks and first-order logic (FOL) to “soften”

the logical constraints of the long-term memory [36, 40]. Formally, a Markov logic network 𝐿

is defined as a set of pairs (𝐹𝑖, 𝑤𝑖), where 𝐹𝑖 is a formula in first-order logic and a weight, 𝑤𝑖.

The weight 𝑤𝑖 is a real number, indicating the strength of the logical constraint. The higher the

 13

weight, the greater the difference in log probability between a world which satisfies a formula

and one which does not [6, 40, 41]. The weight 𝑤𝑖 is determined by a user-defined function.

Together with a finite set of constants 𝐶 (defined by the evidence), a Markov logic network

defines a ground Markov network 𝑀𝐿,𝐶. A binary node is created for each possible grounding

of each predicate, appearing in some formula in 𝐿. The value of the binary node is 1 if the

represented predicate is true, otherwise it is 0. An edge is created between two nodes if, and

only if, the two corresponding ground predicates appear together in at least one grounding of

one formula in 𝐿. The ground Markov network, 𝑀𝐿,𝐶, also contains one binary feature for each

possible grounding of each formula 𝐹𝑖 in 𝐿 . The value of the binary feature is 1 if the

represented formula is true, otherwise it is 0.

The main difference between the Bayesian network, Markov network and the Markov logic

network is what the nodes represent. In a Bayesian network and a Markov network, the nodes

represent the random variables in the long-term memory. In a Markov logic network, the nodes

represent the predicates in the long-term memory.

The descriptions above highlight three common activities when using probabilistic graphical

models as a statistical formalism:

a. Construct the network structure (Bayesian network, Markov network or Markov logic

network) using the formally defined long-term memory and evidence.

b. Define the network parameters (conditional probability tables for Bayesian networks,

potentials for Markov networks and weights for Markov logic networks) by applying

user-defined functions to the knowledge.

c. Use the network and network parameters to execute statistical inference queries.

In a dynamic environment, an autonomous system can expect both change and uncertainty in

the evidence it observes. Therefore, probabilistic graphical models need to be created

dynamically, to model the world in real-time, using the latest evidence and expert knowledge.

Considering the activities mentioned above (a to c), if the environment is dynamic, the

computational cost of using probabilistic graphical models becomes prohibitive [42, 43].

For many years various machine learning approaches, such as statistical relational learning

(SRL) [44], inductive logic programming (ILP) [45-47] and knowledge-based model

construction (SMMC) [48, 49] have been used to derive expert knowledge from existing data

sources. Some machine learning systems have been developed to learn and formulate

knowledge, for example, FOIL [50] learns Horn clauses from relational data and MADDEN

[49] performs statistical knowledge extraction from textual data. CLAUDIEN [46] is an

inductive logic programming engine which computes a set of logically valid clauses from

 14

datasets. In [51] a data mining technique is used for knowledge discovery in a multi-objective

optimization topology. Clustering and association rules are applied sequentially to evaluate the

Pareto-optimally of potential solutions. Once clustering of the data is complete, the solutions

are visualized in the objective space. Discovering knowledge computationally is useful where

the knowledge is encapsulated in vast amounts of data. However, for high-level control of

autonomous vehicles, bespoke, problem-specific knowledge is required. This knowledge is

usually defined by a domain expert, according to the design purpose of the autonomous vehicle.

Whether knowledge is discovered computationally of provided by a domain expert, the

representation needs to be in a form suitable for computational inference. Popular forms include

first-order logic (or predicate logic) formulae and Horn clauses. Horn clauses are particularly

useful, as its syntax is similar to programmatic conditional statements, and therefore easier to

implement. (Because of its popularity, the syntax for first-order logic formulae and Horn

clauses are described in more detail in section 3.2). Once the knowledge is effectively

represented, the representation or variants thereof, can be used in high-level and low-level

autonomous vehicle controllers.

2.2 Procedural autonomous vehicle control

Linear temporal logic (LTL), is used in [52], as a formal language to define the tasks of an

autonomous vehicle, where linear temporal logic is combined with Petri Nets to determine

optimal movement planning for multiple robots. The problem of high-dimensionality in the

relationship between task planning, using linear temporal logic and robot motion is investigated

by Shoukry et al. [53]. Here, linear temporal logic is used to define a set of propositions,

applicable to all robots, for each region of the workspace. The robots’ movements across

regions are controlled by the linear temporal logic propositions.

In addition to high-level autonomous vehicle control, memory representation is also applied to

low-level control of robots. For example, improving path planning in dynamic environments,

where obstacles are avoided by prioritizing and predicting the future behaviour of the object

[54]. In [30], a semi-autonomous high-level controller is proposed for the semi-autonomous

control of autonomous vehicle teams in urban search and rescue missions. The objective of the

controller is to reduce the workload of the autonomous vehicle operator. Other cognitive robotic

approaches, combines inductive logic programming, used for predicate generation, and

reinforcement learning, to learn optimal behavioural policies in [55].

A combination of linear temporal logic and Markov decision processes is used to synthesize

high-level controllers in [56]. Here the linear temporal logic formulae provide a formal

 15

definition of tasks for the autonomous vehicle and the Markov decision processes govern the

execution of those tasks. However, synthesizing high-level controllers in a dynamic

environment remains a challenge. A framework to increase the adaptability of the synthesis

process, by using a 3-layer top-down hierarchical decomposition of the control problem, is

introduced. A three step-approach is used to firstly, solve the linear temporal logic problem on

a finite state automaton (FSA), secondly, find the best policy for transitioning and thirdly,

synthesize a controller.

Reinforcement learning (or Q-Learning) of Markov decision process type controllers are

increasingly being combined with other methodologies to learn high-level controllers to

accomplish some task. Generally, the objective of Q-Learning is to iteratively select the best

policy, i.e. state-action, which maximizes the expected discounted reward (Q-value), given the

current state, the user-defined short-term memory and user-defined rewards. The most popular

approach is the use of the Bellman equations [57], which calculates the optimal Q-value over

all policies. In [58], Q-learning is used in combination with a Deep Deterministic Policy

Gradients (DDPG) algorithm for a UAV to learn a landing task in simulation. In [59], the

effectiveness of the Q-learning algorithm for autonomous vehicle path planning, is improved

by using a flower pollinating algorithm to initialize the q-values of the algorithm. These

approaches mostly rely on traditional, component-based software architecture approaches, to

govern high-level control of an autonomous vehicle. Research into cognitive robotics (or

autonomous vehicle control), has seen an increase in research into high-level autonomous

vehicle control, especially in dynamic and uncertain environments.

2.3 Cognitive autonomous vehicle control

Emulating the power and adaptiveness of human cognitive reasoning in autonomous vehicle

control is very attractive. As the understanding of human cognition developed, the interest in

computation models for cognitive processes increased. This interest led to the development of

a number of cognitive architectures, with the purpose of simulating human cognitive processes.

The most well-known are Adaptive control of thought, Adaptive Control of Thought-Rational,

State operator and result, Semantic pointer architecture unified network and Neural Engineering

Objects architectures mentioned in the introduction. Other cognitive architectures include

Sigma (∑) [60], Learning Intelligent Distribution Agent (LIDA) [61], and Connectionist

Learning with Adaptive Rule Induction On-line (CLARION) [62], amongst many others. A

comprehensive survey of 58 cognitive architectures, spanning 20 years, was conducted in [63],

where it is shown that there is consensus on the various cognitive processes. This is mainly due

to advancement in research of human cognition; however, the computational architecture of

 16

these processes varies greatly. Although there are many similarities amongst the various

architectures, especially regarding the cognitive processes [64], there are also many differences,

especially on how memory is represented and processed.

Some cognitive architectures are developed with a specific focus on humanoid robotics, and

are closely tied to the physical architecture of the autonomous vehicle, the iCub open-systems

platform [65] and Cognitive Architecture (COG) [66] are two such architectures. These

architectures were designed to investigate human neuro-cognitive functions of the brain, while

some go further and extend the architectures by augmenting it with human emotion

characteristics [16]. These architectures, although complex, have opened the door to various

cognitive architectures, specifically for autonomous vehicle control.

As described in the introduction, the two key factors of cognitive robotics for autonomous

reasoning and decision-making, are working memory representation and cognitive reasoning

[67]. However, autonomy in robots deployed in dynamic environments is non-trivial, as the

environment may vary greatly, this especially applies to the operational environments of

humanoid robotics [33, 68], human-robot interaction [29, 30, 69, 70], Search and Rescue (SAR)

[71] and multi-robot systems [72, 73]. Computational architectures, based on neuro-cognitive

architectures are complex, inflexible and computationally expensive. These architectures

attempt to mimic human cognitive functionality, which involve numerous complex cognitive

processes. Moreover, neuro-cognitive processes have to process information dynamically,

often under a degree of uncertainty. Computational architectures based on neuro-cognitive

architectures are therefore not easily applied to autonomous vehicle solutions, especially when

they are deployed in remote locations. It is argued in [74] that high-level autonomous vehicle

control, where perception, reasoning and decision-making is required, is best achieved with a

cognitive architecture. Five requirements are listed for intelligent high-level cognitive control:

1) represent, integrate and use knowledge; 2) recognizing or learn new patterns of knowledge;

3) reason and solve problems; 4) flexible, adaptive, dynamic, and real-time behaviour; 5)

interact with humans in a natural way. For intelligent control, the cognitive architecture is

viewed in two parts: the architecture and the content. The architecture stays constant, while the

content is dynamic. The architecture is the algorithmic processes common to all robots, while

the content is defined as the semantic memory (knowledge), procedural memory (skills) and

episodic memory (experience) each autonomous vehicle possesses.

A cognitive architecture to autonomously control a transportation autonomous vehicle for use

in a factory or warehouse, is developed in [75]. The architecture is based on and extends the

State Operator And Result architecture. Information is processed from the Current Perception

 17

Memory, the Visuo-Spatial Memory and the Goal Memory, prior to passing it to State Operator

And Result for processing.

CORTEX, is an autonomous vehicle architecture discussed in terms of use cases and

autonomous vehicle applications [76]. CORTEX is composed of a number of computational

models which are selected according to the autonomous vehicle control problem. The main

feature of the CORTEX architecture is the existence of a unified, dynamic working memory,

which can represent environmental data and high-level symbols. The executive module

manages action plan generation and execution between all modules.

A cognitive architecture which integrates a number of cognitive modules for concept learning,

knowledge acquisition, language learning, and decision making is introduced in [77]. Concepts,

language, and actions are learned through trial and error from the state in which the autonomous

vehicle has no knowledge of the environment. The integration of the various components is

performed through the use of variables and uses learned models to select the appropriate

actions.

The performance of working memory, in syntactic sentence realization is investigated in [78].

The role of working memory in grammatical encoding, is experimentally examined using a

combination of grammatical theory and a computational psychological account of human

cognition. The adaptive control of thought-R architecture is used to represent the human

cognitive functionality.

An architecture for ethical robots inspired by the simulation theory of cognition is developed

in [79]. The study introduces an architecture which enables robots to autonomously act in a safe

and ethical manner. An additional ethics layer is added to the architecture and the robot

controller generates a set of prospective behavioural alternatives. Given an initial task, the

ethics layer simulates and evaluates the consequences of each alternative, and the results are

sent to the robot controller. The architecture was tested using a controlled and static

environment, with behavioural alternatives kept unchanged. It is pointed out that the application

of behavioural alternatives fits well into the composite state transition presented in this research

study in section 4.1.2, figure 4.4.

A review of dynamical approaches to cognitive systems is given in [80]. The focus of the review

is on concepts, data analysis methods and computational model. Human-autonomous team

stability and adaptiveness are investigated in [81] and [82]. In these studies, a human operator

teams up with an autonomous agent, developed using the adaptive control of thought-rational

cognitive architecture, in a simulated victim locator task scenario. In [83], the authors point out

that that all messages to the synthetic teammate should not be ambiguous or cryptic, otherwise

 18

the synthetic teammate would not understand the text message. This highlights the need for

simple, well-structured knowledge representation, when a cognitive architecture is used for

autonomous vehicle control.

A standard model for the representation of the human mind, is proposed in [84]. The standard

model combines the key aspects of three standard architectures, Adaptive Control of Thought-

Rational, State Operator And Result and SIGMA. Computational entities to represent these

aspects are proposed to form the basis for cognitive architectures for robotics. A cognitive

architecture for inner speech [85], uses the Standard Model of Mind, to simulate inner speech,

or inner dialogue. The central executive controls the computation which retrieves information

from long-term memory, and constructs conscience thoughts. The memory structure of the

solution, is based on the memory structure defined by the Standard Model of the Mind, which

consist of three types, the short-term memory (STM), the procedural and the declarative long-

term memory (DLTM), and the working memory system (WMS).

A mathematical model which represents the relationship between bottom-up and top-down

attention controllers, is presented in [86]. The study focusses on the neuronal functions of

focussing attention using bottom-up (BU) and top-down (TD) processes in response to input

stimuli, focussing of attention. Although the study focusses on human cognitive brain

processes, an important fact is highlighted: for cognitive reasoning, irrelevant memory

(knowledge) need to be supressed, while the saliency of relevant knowledge (memory) need to

be increased. This point is especially important for effective high-level control in autonomous

vehicles and is addressed with knowledge optimization during memory recall, in this research

study.

Dual processing of reasoning is defined in two forms: 1) fast-working and implicit, and 2)

affect-related and slow-working. In [87], a nonlinear dynamical systems theory approach is

used to investigate the dynamic interactions and transitions among the two forms of processing.

Dual-process theory treat cognition as informational in nature and as such, human cognition is

regarded as modular. In this context, modules are defined as being informationally

encapsulated, domain specific, and automatic, rather than connectionist, i.e. connected

networks of nodes. The human brain is a nonlinear dynamical system, where interaction is not

only on neuronal level, but is also strongly influenced by the state of the environment [88]. In

a dynamical approach, the macroscopic state of a system is represented as a set of differential

equations with order parameters and control parameters. The order parameters are the

dependent variables of the dynamic system and control parameters are the independent

variables of the dynamic system. Order parameters and control parameters guide the system’s

dynamics.

 19

A mobile robot navigation system presents an integrated system using a motivated

developmental network (MDN) and radial basis function neural network (RBFNN) to mimic

the supervised learning of the cerebellum and reward-based learning of the basal ganglia,

respectively [89]. The two systems are integrated to provide a hybrid complex cognition model,

to navigate a mobile robot in unknown environment. The experimental results of the study show

that by combining the cerebellum model and basal ganglia model, navigation accuracy is

improved and learning steps are slightly reduced. Unfortunately, the environment remained

static during the experiments, therefore, the effectiveness of the proposed method cannot be

evaluated for dynamic experiments.

In [90], a visual strangeness-driven long-term memory with autonomous ant colony learning

algorithm, is proposed for the improvement of the visual cognitive function of intelligent

robots. The approach combines an incremental self-organizing network as long-term memory

structure and visual strangeness internal motivation Q learning method, in working memory.

The proposed cognitive computing model is based on hippocampal-prefrontal memory system,

learning, pattern recognition and classification, storage and memory. A self-organizing map

(SOM) is used to store learned Q-values in a neural network, which, along with long-term

memory, represents knowledge. The knowledge is structured as two parts: perceptual

knowledge network and perceptual knowledge Q-value network. The perceptual knowledge is

stored and accumulated separately, and the corresponding Q value is taken in each step. While

the approach is useful for acquiring new knowledge over time, the knowledge of the robot is

limited to that of the samples, produced by the domain expert. Therefore, the effectiveness of

the approach when presented with unknown information, cannot be evaluated. Moreover, time-

sensitive control of the robot will be constrained by the determinism of the contents of its long-

term memory, learned from the samples.

2.4 Critical review

There is an infinite number of ways knowledge may be represented. Whatever representation

is chosen, the cognitive reasoning process (or inference engine) has to interpret the information

contained within the knowledge.

autonomous vehicles and semi-autonomous robots, remotely deployed in unknown and

dynamic environments, are often required to make time-sensitive decisions, based on

continuously changing information. The methods discussed in section 2.1 may prove to be

sufficient for discovery and formulation of knowledge for high-level autonomous vehicle

control in a controlled or well-defined environment. However, in an unknown or highly

 20

dynamic environment, environmental stimuli may change constantly. Moreover, the expert-

provided knowledge of an autonomous vehicle may have to be modified or augmented in real-

time, often over vast distances. In these types of environments, knowledge representation using

complex syntax (such as modal logic and linear temporal logic) is computationally expensive

and error-prone and remote updates will overload communication bandwidths. The syntax of

these representations is not intuitive, difficult to comprehend and often open to interpretation

and therefore error-prone. Using these knowledge representations are more suitable in a

controlled and reasonably static environment and less suitable for real-time, high-level control

of autonomous vehicles (with the possible exception of humanoid robots).

first-order logic is based on propositional logic, combined with quantifiers, to form a first-order

logic formula, which is more suitable for knowledge representation for robots. Although the

simpler structure will have a reduced cost with regards to communication band-with, it is still

error-prone, since the syntax is not intuitive, especially in a dynamic operational environment.

In addition, the logical structure may still be complex and will still require some computational

resource for inference. Simplifying the first-order logic formula by removing the quantifiers

and decomposing the formula into a propositional logic formula, is a more suitable

representation of knowledge for robots. This approach is discussed in more detail in section

4.1.

Learning high-level controllers using machine learning techniques, such as Q-learning, may be

suitable in well-defined or controlled environments. Here a degree of dynamism may be catered

for by learning a large number of models, in order to cater for as many scenarios as possible.

However, if the environment is unknown and/or dynamic, it is not always possible to define a-

priori, which features to learn.

Many of the approaches reviewed above, use machine learning which rely on the specification

of control parameters. The accuracy and efficiency of approaches, such as machine learning or

dynamic systems, is directly affected by the parameters supplied. Initially these parameters are

specified subjectively and are then optimized during learning cycles or repetitive experiments.

While machine learning approaches deal with some degree of noise in the data, any significant

noise requires that the parameters be re-optimized. This means most models need to be re-

learned as well. For real-time, high-level control of autonomous vehicles, it is expected that the

environment may change significantly, leading to a significant change in the information the

cognitive reasoning process has to deal with. Moreover, since it is expected that reasoning be

done in real-time, there is no time for re-learning of models.

The approaches described above all attempt to provide architectures and solutions which

provide high-level control for robots. Some of these approaches are based on procedural

 21

software design. Others are starting to explore machine learning, in combination with

procedural processes to introduce some intelligence into the control architectures. Others

attempt to leverage cognitive functionality, based on neuro-cognitive architectures, for

intelligent control. There are two conflicting approaches towards the design of cognitive

architectures [9]: “…to create a model of cognition and gain an understanding of cognitive

processes and secondly, to build useful systems that have a cognitive ability and thereby provide

robust adaptive behaviour that can anticipate events and the need for action. The first is

concerned with advancing science, the second is concerned with effective engineering”. It is

argued in this study that the advancement of cognitive science should lead the design of a

practical architecture for cognitive robotics and that the architecture should contain processes

which will result in “robust adaptive behaviour” by the robot.

 It is further argued that many of the approaches described in this section are not suitable for

real-time, high-level control of autonomous vehicles because the methodologies chosen (for

example machine learning) cannot provide the robust adaptive behaviour, which is

characteristic in human cognition. When the contemporary methodology is not appropriate, a

different perspective is required. This research study takes that different perspective by

focussing on cognitive processes for memory representation and memory recall to enable

“robust adaptive behaviour” of an autonomous vehicle.

Figure 2.1 gives a summary of the associated research and shows the relationship between the

associated research and the research in this thesis. The figure puts both the associated research

and the research in this thesis in the context of memory representation and memory recall.

 22

Figure 2.1 Summary of associated research and research of this thesis.

An overview of the different approaches and methodologies are given in terms of memory representation and

memory recall in cognitive reasoning. Associated research is indicated in blue and research in this thesis is

indicated in orange.

Neuro-Cognitive Architectures

Real-time, High-level Cognitive ControlProcedural Control (Section 2.2) Cognitive Control (Section 2.3)

Working Memory and Central Executive

Knowledge representation Memory Representation

E.g.:

- Linear Temporal Logic (LTL)

- Markov Decision Processes (MDP)

- Inductive Logic Programming (ILP)

- Bespoke component-based
programming

Machine Learning

- Q-Learning

- Reinforcement Learning (RL)

- Artificial Neural Networks (ANN)

E.g.:

Decision Processing / Inference Cognitive Reasoning

- Data Tables

- Production Rules

- Bespoke storage

E.g.:

- Trained Reinforcement Learning Models

- Trained Neural Network Models

E.g.:

- Knowledgebases

- Bespoke modelling

- Procedural Programming

- Inference Engines

E.g.:

- Parallel Rule Processing

- Serial Rule Processing

- Prediction Algorithms

- Classification Algorithms

- Fuzzy Logic

E.g.:

- Robo-Cognitive Architecture (RCA) for Real-time,
high-level control of autonomous vehicles

A
p

p
ro

a
ch

M
e

th
o

d
o

lo
g

y

- iCub (Open source
humanoid robot platform)

- COG (Cognitive Humanoid
Robot platform)

- CORTEX (Computational
framework for intelligence)

- Natural Language
Processing (NLP)

E.g.:

Real-time Cognitive Reasoning (Chapter 6)

- Real-time, Memory quantification
(Adaptive Entropy Fitness Quantification(AEFQ))

- Real-time Memory optimization
(Particle Swarm Optimization memory optimization)

- Action selection and execution

Memory Representation (Chapter 4)

- Simplified, proposition-based state transitions

- Extensible state-transition memory representation

- Quantified multi-state transitions

- Adaptive Control of Thought (ACT) - Adaptive Control of Thought-Rational (ACT-R)

- State Operator and Result (SOAR)- Semantic Pointer Architecture Unified
Network (SPAUN)

E.g.:

- Baddeley s model of
working memory

- Cowan s Attentional
Focus model

Inspired by Inspired by

- Bespoke decision logic - Bespoke reasoning logic

 23

Figure 2.1 shows that there is no general standard for cognitive architectures in robotics and

that most architecture designs are problem-specific. Some architectures follow a component-

based design model, while others follow a hybrid design model, where component-based design

is combined with machine learning models. It is clear however, that both neuro-cognitive

architectures and cognitive architectures for robotics, prioritises cognitive processes, with very

little emphasis on memory structure and process. The role of memory in the cognitive

architecture is often reduced to simple storage structures. The research in this thesis prioritises

working memory and working memory process, with a focus on memory representation and

memory recall for action selection and execution by the central executive.

 24

Chapter 3

Background theory

The main functions of the robo-cognitive architecture developed in this research study, focusses

on working memory for real-time cognitive decision-making. The main functions are memory

representation, memory recall and action selection and execution. This chapter introduces the

theoretical foundations of the robo-cognitive architecture, including the two most popular

working memory models suited for robo-cognitive architectures. PSO is used for memory

optimization in the memory recall process and the methodology of real-time, high-level

cognitive control of single task robotics, uses a set-based PSO for memory optimization.

Therefore, an overview of the standard PSO (which forms the basis of all PSO algorithms), and

set-based PSO, are given. The methodology for the real-time, high-level control for multi-task

robotics, is based on a cooperative, games-theoretic PSO. An overview of general (but

applicable) concepts of games theory, as well as the relevant definitions of coalitional games

theory are presented. Section 3.1.1 introduces a common neuro-cognitive architecture,

including working memory. Section 3.1.2 describes the Baddeley working memory model, and

the Cowan attentional focus theory model of working memory. The working memory models

are used in sections 6.1 and 6.2 for memory recall for single task and multi-task execution,

respectively. Section 3.2 gives an overview of knowledge representation and section 3.3 gives

an overview of information entropy, as a measurement of uncertainty in information.

Knowledge representation and information uncertainty forms the basis for memory

representation and quantification, developed in sections 4.1 and 4.2, respectively. Section 3.4.1

gives an overview of standard particle swarm optimization. Section 3.4.2 gives an overview of

set-based particle swarm optimization, which is used for memory recall in single tasks

execution in section 6.1 and section 3.5 introduces cooperative game theory, which is used in

multi-task execution in section 6.2.

3.1 Working Memory in Neuro-cognitive architecture

The study of working memory and its constituent workings, have been a challenging field of

study for neuro-scientists for many years. While there are still many outstanding questions,

there seems to be consensus that working memory is key to cognitive decision-making and

action selection. Most neuro-cognitive architectures include working memory in some form or

another.

 25

3.1.1 Functional framework for human cognition

Figure 3.1 illustrates a typical functional framework for human cognition [91].

Figure 3.1 Functional framework for human cognition (based on [91]).

Working memory, including the central executive are the core memory processing components,

leading to action selection and execution.

The central executive is responsible for the cognitive processes of memory classification,

memory representation, recall, action selection and action execution. Collectively, these

processes constitute the working memory.

3.1.2 Working Memory Models

A number of working memory models have been defined over the years. In the functional

framework for human cognition, introduced by Baars and Nicole [91], working memory

consists of the central executive and working storage. The working storage is created from

sensory memory (verbal and visuospatial) and long-term (stored) memory, and is used in the

action selection and execution process. Memory is defined further as declarative memory

(semantic and episodic facts) and procedural memory (actions) in [9, 19]. Semantic facts are

knowledge representing the beliefs, relations and intentions of the world, of humans and of

objects, provided by a trainer (or domain expert). Episodic memory describes information about

events and instances which occurred, e.g., what, where and when an event happened and is

Central Executive

Sensory
Buffers

Working Storage

Verbal
Rehearsal

Visuospatial
sketchpad

Perceptual
memory

Autobiographical
memory

Linguistic and
Semantic

Visual
knowledge

Declarative
knowledge

Habits and
Motor skills

Action
Planning &
Selection

Working Memory

Learning and
Retrieval

Stored memories, knowledge and Skills

Se
n

so
ry

 In
p

u
t

R
e

sp
o

n
se

 O
u

tp
u

t

 26

based on personal experience. In this research study, long-term memory is semantic memory

and episodic memory is derived from the long-term memory, based on real-time environmental

stimuli.

There are many definitions for the different types of memory identified in neuro-science. In this

study, the following descriptions will be used:

• Cognitive cycle – a period of reasoning, action selection and (possible) action

execution.

• Long-term memory (LTM) – semi-permanent information, provided by a domain

expert.

• Short-term memory (STM) – dynamic information either provided by a domain expert

or generated during the action execution of a cognitive cycle. This information becomes

obsolete after completion of the cognitive cycle.

• Environmental stimulus (ENV) – a very short-term memory consisting of information

received from sensory input and used only once during a cognitive cycle.

• Episodic memory (EM) – limited information, based directly on environmental stimuli,

obtained during a cognitive cycle. EM is knowledge with a degree of uncertainty (based

on knowledge quantification) and represents “personal” experience while executing a

selected action. EM becomes obsolete as soon as new information is received/observed.

A popular and well-referenced model is Baddeley’s model of working memory [20] , shown in

figure 3.2 and is used in [92] to improve cognitive control in agents. In Baddeley’s model, the

central executive processes visuospatial, phonological and long-term semantic memory, are

used to create the episodic buffer. The episodic buffer performs the same role as the working

storage memory in figure 3.1.

 27

Figure 3.2 Baddeley’s Model of Working Memory (based on [20]).

Central to Baddeley’s model, is the construction of episodic memory from long-term memory

and sensory information, by the central executive for reasoning and decision-making.

The robo-cognitive architecture for real-time, high-level cognitive control in single-task

robotics (developed in section 6.1), uses the episodic buffer approach shown in figure 3.2.

A different approach is presented in Cowan’s attentional focus theory [20] model. In Cowan’s

model, shown in figure 3.3, instead of types of memory being classified separately and

distributed according to the cognitive functionality, all memory is stored as long-term memory.

When memory receives attention, it becomes salient and closely stored memory is activated.

Activated memory (AM) is a portion of memory which is relevant to the current environmental

context and may become the focus of attention (FOA). The central executive (CE) uses the

FOA for action selection and execution.

Central Executive

Episodic Buffer

Visual Spatial
Phonological
Short-term

Store

Articulatory
Loop

Long-Term Memory

Visuo-Spatial Sketch pad Phonological Loop

 28

Figure 3.3 Cowan’s attentional focus model (based on [20]).

Cowan’s model forms “clusters” of activated long-term memory elements, from which suitable

elements will become the focus of attention for reasoning and decision-making.

The robo-cognitive architecture for real-time, high-level cognitive control in multi-task robotics

(developed in section 6.2), uses the AM and FOA approach shown in figure 3.3. The AM and

FOA construction represent memory recall (memory quantification and optimization),

performed by the central executive.

For the memory recall cognitive process, the PSO algorithm is selected as memory optimization

method, due to the simplicity and scalability of its architecture and control parameters. The next

section provides a brief overview of the standard and set-based PSO algorithms. The set-based

PSO algorithm forms the basis of the memory recall central executive for cognitive high-level

control in single-task robotics.

3.2 Knowledge representation

The structure of memory representation is important for efficient and cost-effective

computation. Knowledge acquired, either through learning or provided by a domain expert, are

represented by sentences, constructed from logic formula and stored in a knowledgebase. An

inference process deduces new facts from the sentences in the knowledgebase.

Long-Term Memory

Central Executive

Sensory Input

Activated Memory Focus of Attention

 29

3.2.1 First-order logic

Another widely used approach is representing knowledge as a set of first-order logic formulae

which are based on propositional logic, and stored in a knowledgebase. A formal overview of

first-order logic is given below.

To assist in the explanation of first-order logic, the following fictional scenario is used: “The

main objective of a Mars rover is to autonomously explore Mars and finding environmental

data of water. On-board is a sample analysis at Mars (SAM) lab and a rock drill. The rover

has the following knowledge, provided by a domain expert:

• If hematite is found in clay, water may be present

• If water is present, the lab system selects a tool to collect samples”

First-Order Language ℒ, is defined as a set of random variables, 𝑉 = {𝑣1, . . . , 𝑣𝑛}, a finite set

of connectives ¬, ∧, ∨, ⇒, ⇔, quantifiers ∀, ∃ and a signature 𝛴 = < 𝑃, 𝐹, 𝐶 >. The finite

set of predicate symbols in 𝛴 are represented by P, where each predicate has an arity 𝑚 and

𝑚 ∈ ℤ+. A finite set of function symbols, each with arity 𝑛 and 𝑛 ∈ ℤ+, is represented by 𝐹

and a finite set of constant symbols are represented by 𝐶.

Given a constant or functor 𝑓 ∈ 𝐹 with arity 𝑛 and (𝑡1, … , 𝑡𝑛) ∈ ℒ, then 𝑓(𝑡1, . . . , 𝑡𝑛) is a term

in ℒ. Atomic formulas in ℒ are predicates followed by the number of appropriate terms. Given

a predicate 𝓅 ∈ 𝑃 with arity 𝑚 and (𝑡1, … , 𝑡𝑚) ∈ ℒ, then 𝓅(𝑡1, . . . , 𝑡𝑛) is an atomic formula in

ℒ. Atomic formulae ℒ are also formed by applying the logical the connectives ¬, ∧, ∨, ⇒,

⇔, to two or more atomic formulae.

An objective of this study is to simplify the maintenance of the long-term memory. Therefore,

the knowledgebase will only contain predicate atomic formulae 𝓅(𝑡1, . . . , 𝑡𝑛), where each term

𝑡𝑖 represents a random variable. No functors will be used.

Another popular format for knowledge representation, are Horn clauses. Horn clauses can be

defined in two ways: the disjunction form and the implication form. A Horn clause in

disjunctive form, has at most one positive literal, and all remaining literals in negated

disjunctive form. In implication form, the Horn clause has one positive consequence literal and

all remaining literals in positive conjunctive form. For example, for the sample scenario, the

following rules may be defined:

 30

English Hematite found in clay indicates water is present

first-order logic ∀ 𝑚, 𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐼𝑛(𝑚, 𝑠) ⇒ 𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑤)

Horn clause ¬𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐼𝑛(𝑚, 𝑠) ∨ 𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑤)

English If water is present in a hematite sample, the lab system selects a

tool to collect samples

first-order logic ∀ 𝑚, 𝑠, 𝑜 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐼𝑛(𝑚, 𝑠) ∧ 𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑜) ⇒ 𝑆𝑒𝑙𝑒𝑐𝑡𝑠(𝑙, 𝑡)

Horn clause

(disjunctive form)
¬𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐼𝑛(𝑚, 𝑠) ∨ ¬𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑤) ∨ 𝑆𝑒𝑙𝑒𝑐𝑡𝑠(𝑙, 𝑡)

Horn clause

(implication form)
𝑆𝑒𝑙𝑒𝑐𝑡𝑠(𝑙, 𝑡) ← 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐼𝑛(𝑚, 𝑠) ∧ 𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑤)

(m=mineral; s = sediment; w = water; l = lab; t = tool)

It is clear from the example that formulae in Horn clauses (implication) format is better suited

for computation, since the implication form is similar to the conditional “if…then…” statement

used in programming languages. The Horn clause form is used in the knowledgebase, described

in section 5.2.1 for the knowledge optimization evaluation.

“Mineral”, “sediment”, “water”, “lab” and “tool” are described as “entities of interest” and form

is the environmental stimuli received. This means, environmental stimuli received pertaining

to any of the entities, will change the belief (quantification) of the predicate of which the entity

is an argument.

3.2.2 Evidence and logical constraints

In this study, information acquired about entities of interest, are referred to as “evidence”. For

example, the lab on-board the fictional rover detects a “mineral = hematite“ and “sediment =

clay” in a soil sample. The evidential items are the constants (e.g. “hematite” and “clay”), which

are represented by the variable symbols 𝑚 and 𝑠 (“mineral” and “sediment”). Before

quantification can take place, the predicate arguments (variable symbols) are replaced by the

evidence in a process called grounding. Using the example above, the predicate

¬𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐼𝑛(𝑚, 𝑠) will be ground using the evidence “hematite” and “clay” to become the

ground predicate, ¬𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐼𝑛(ℎ𝑒𝑚𝑎𝑡𝑖𝑡𝑒, 𝑐𝑙𝑎𝑦).

Any combination of predicates in the knowledgebase is called a world [93] of the

knowledgebase. The knowledgebase may have any number of worlds, depending on the subset

of predicates selected. When the predicates are grounded by the evidence, they become possible

worlds of the knowledgebase. A possible world represents the state of the knowledge in the

 31

knowledgebase at a specific point in time, given the evidence. The formulae in the

knowledgebase represents a set of hard logical constraints on all possible worlds of the

knowledgebase [6, 36]. Each formula in the knowledgebase represents a logical constraint. This

means that a world which violates even one formula has zero probability under inference.

When there is no uncertainty in the evidence, expert systems use logical formalisms for

inference. This means each predicate of a formula, given the evidence, evaluates to either true

or false and thereby either satisfies or violates the formula completely. When there is

uncertainty in the evidence, expert systems use statistical formalisms for inference on the

knowledgebase. Each predicate evaluates to true, but with a probability, indicating the degree

of confidence in the truth of the formula. Therefore, a world which violates a formula is less

probable, but not impossible. Statistical formalisms “soften” the hard, logical constraints of the

knowledgebase, by creating a probabilistic reasoning model which enables statistical inference

on the formulae in the knowledgebase.

3.2.3 Completeness and consistency

Completeness of the knowledge, indicates the degree of representation of expert knowledge

within the knowledgebase. If all possible knowledge needed for inference is formulated within

the knowledgebase, it is said to be complete. However, in dynamic real-world environments,

completeness of the knowledgebase can never be guaranteed. It is possible to encounter un-

defined objects or unexpected interactions between objects (known or unknown). Therefore,

when modelling an environment, one of the following principles is followed: the closed world

assumption (CWA) or the open world assumption (OWA) [6, 94, 95]. The closed world

assumption is based on a minimum model of the world and assumes the knowledge about the

environment is complete. This means that, unless it is known that a formula is true, it must be

assumed to be false. The open world assumption however, assumes that the knowledge

representing the environment is incomplete. This means that any information not explicitly

specified, is considered unknown, but not false.

The knowledge is considered to be consistent, if there are no changes made to any of the ground

predicates, during inference. While consistency is not a requirement for the representation of

the knowledge in the knowledgebase, it is important for efficient reasoning. Under the closed

world assumption, the knowledge base is considered consistent and, by not allowing new

knowledge to be added, remains consistent. However, in a dynamic environment, the

knowledge may be augmented with newly encountered environmental data or a domain expert

 32

may provide additional knowledge. Therefore, for an autonomous system functioning in a

dynamic environment, the open world assumption is more suitable.

In cognitive processing, the knowledgebase is redefined as the long-term memory (see section

4.1), which is used in the cognitive reasoning process. In memory recall, optimal memory is

recalled, to assist in action selection and execution, by the central executive. The PSO

algorithm is selected as memory optimization method, because of the simplicity and scalability

of its architecture and control parameters. The long-term memory (knowledgebase) is the

search space of the PSO. The next section provides a brief overview of the standard and set-

based PSO algorithms. The set-based PSO algorithm forms the basis of the memory recall

central executive for high-level cognitive control in single-task robotics.

3.3 Information entropy

Shannon’s seminal work on information entropy [96], provides a means to quantify the amount

of information gained (or conversely, uncertainty reduction) from an event, once the outcome

(i.e. probability) of that event becomes known.

Formally, for a discrete random variable 𝑋 = {𝑥1, … , 𝑥𝑛𝑋} where 𝑥𝑖 ∈ 𝑋 is a state of 𝑋, and

probability mass function 𝑝(𝑥𝑖), the information entropy of the probability distribution of 𝑋 is

calculated as:

 𝐻(𝑋) = −∑ 𝑝(𝑥𝑖) 𝑙𝑜𝑔2 𝑝(𝑥𝑖)
𝑛𝑋
𝑖 (3.1)

The random variable 𝑋 may be in any of the 𝑛 states at any point in time. The set {𝑥1, … , 𝑥𝑛𝐴}

is the state space of the problem and the states are mutually exclusive, that is 𝑋 can only be in

one state at any point in time. The probability of 𝑋 being in state 𝑖, is represented by 𝑝(𝑥𝑖).

Using the sample scenario for the fictional rover, the quantification of a predicate using

information entropy can be described as follows:

Assume the knowledgebase of the rover contains the predicate 𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑋). If the objective

is the detection of water, then the random variable 𝑋 represent the state space for the outcome

of a sample analysis, e.g. “water is present”. A state 𝑥𝑖 ∈ 𝑋 denotes one possible outcome, e.g.

“water detected” or “no water detected”. Therefore, the state space for the predicate is the set

{true, false} and has a dimension of 𝑛 = 2. A probability 𝑃(𝑥𝑖) is a function, mapping each

state 𝑥𝑖 to a real number [97]. The information entropy, 𝐻(𝑋) , is then calculated for the

probability distribution over the states of 𝑋. When the states of 𝑋 are all equally probable, the

entropy is maximized. For example, if the probability of water detected in the sample is 𝑥1 =

 33

0.5 and the probability of no water detected is 𝑥2 = 0.5. Then, assuming a logarithm with base

2, the entropy 𝐻(𝑋) = 1 (maximum), i.e. 1 bit of information was gained (or uncertainty has

been reduced by 1 bit). If it is known for certain that water was detected, there can only be one

state, i.e. “water detected” with a probability of 1. Since the outcome is certain, no new

information is gained, and the entropy 𝐻(𝑋) = 0 (minimum).

Since information entropy is a measurement over a probability distribution, the assignment of

the probability is important. There are two schools of thought for probability assignment, the

frequentist approach and the Bayesian approach [98]. The frequentist approach assigns a

probability to an event, based on the long-run frequency of an event over a large number of

repetitions of an experiment. This approach also implies the availability of data which will be

used to count the frequencies. The Bayesian approach subjectively assigns a probability as a

degree of belief about an event. The subjectivity of the assignment risks the introduction of

unwanted (or incorrect) information during the probability assignment. Neither of these

approaches is suitable for the assignment of probabilities to the states of the predicate (i.e.

knowledge item), when the information is dynamic. The maximum entropy principle, discussed

in detail in section 4.2, provides a more suitable approach for the assignment of a probability

distribution over the state space of the predicate. The maximum entropy principle only

considers the information received from the environment and is therefore more accurate.

3.4 Particle swarm optimization

Particle swarm optimization (PSO) is a swarm intelligence algorithm, inspired by the

movement and behaviour of a flock of birds searching for food, Eberhart and Kennedy

developed the standard particle swarm optimization (StdPSO) algorithm [99].

3.4.1 Overview of standard particle swarm optimization

The standard PSO (StdPSO) algorithm is a stochastic optimization algorithm, which has been

successfully applied to optimization problems in the fields of engineering and robotics [100-

102]. PSO has been successfully applied to problems where the search space is either

continuous or discrete.

The swarm of particles moves through a D-dimensional solution space. The position of

particle 𝑖 in the solution space represents a candidate solution, which is defined as a solution

vector, 𝐗𝑖 ∈ ℝ
𝐷. The optimality of the candidate solution is determined by a fitness function,

𝑓(𝐗𝑖) ∈ ℝ. The particle’s velocity represents the step size and direction of its movement and

 34

is defined by a vector 𝐯𝑖 ∈ ℝ
𝐷. StdPSO iteratively updates each particle’s velocity and position

using the following equations:

 𝑣𝑖𝑗(𝑡 + 1) = 𝓌𝑣𝑖𝑗(𝑡) + 𝑐1𝑟1𝑗 (𝑦𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) + 𝑐2𝑟2𝑗 (�̂�𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) (3.2)

 𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + 𝑣𝑖𝑗(𝑡 + 1) (3.3)

where 𝑣𝑖𝑗(𝑡) represents the jth element of the velocity vector of particle 𝑖, at the tth iteration. An

inertia weight 𝓌 is applied to the particle velocity. Two key components of the velocity

equation are, the cognitive component, 𝑐1𝑟1𝑗 (𝑦𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)), and the social component,

𝑐2𝑟2𝑗 (�̂�𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)), where 𝑦𝑖𝑗(𝑡) represents the jth element of the personal best vector of

particle 𝑖 at the tth iteration and �̂�𝑗(𝑡) represents the jth element of the global best vector of the

swarm at the tth iteration. The term, 𝑥𝑖𝑗(𝑡), represents the jth element of the current position of

particle 𝑖 at the tth iteration. The two positive real numbers 𝑐1 and 𝑐2 are acceleration constants,

used to scale the contributions of the cognitive and social components. The random

values, 𝑟1𝑗, 𝑟2𝑗 ~ 𝑈(0,1), add a stochastic element to the cognitive and social components. A

user-defined inertia weight, 𝓌, is added to the current velocity [103], which, along with the

acceleration constants, balances the effect between global search and local search.

The general fitness function for the PSO is defined as

 𝑓 ∶ ℝ𝑛𝜙 → ℝ (3.4)

For a minimization problem, the personal best position at the next iteration is calculated as

 𝑦𝑖(𝑡 + 1) = {
𝑦𝑖(𝑡)

𝐗𝑖(𝑡 + 1)

𝑖𝑓 𝑓(𝐗𝑖(𝑡 + 1)) ≥ 𝑓(𝑦𝑖(𝑡))

𝑖𝑓 𝑓(𝐗𝐢(𝑡 + 1)) < 𝑓(𝑦𝑖(𝑡))
 (3.5)

and for a maximization problem, the personal best position at the next iteration is calculated as

 𝑦𝑖(𝑡 + 1) = {
𝑦𝑖(𝑡)

𝐗𝑖(𝑡 + 1)

if f(𝑿i(t + 1)) ≤ f(yi(t))

if f(𝑿𝒊(t + 1)) > f(yi(t))
 (3.6)

For a minimization problem, the global best position at the next iteration is calculated as

 �̂�(𝑡 + 1) = {
�̂�(𝑡)

𝐗𝑖(𝑡 + 1)

𝑖𝑓 𝑓(𝐗𝑖(𝑡 + 1)) ≥ 𝑓(�̂�(𝑡))

𝑖𝑓 𝑓(𝐗𝑖(𝑡 + 1)) < 𝑓(�̂�(𝑡))
 (3.7)

and for a maximization problem, the global best position at the next iteration is calculated as

 �̂�(𝑡 + 1) = {
�̂�(𝑡)

𝐗𝑖(𝑡 + 1)

𝑖𝑓 𝑓(𝐗𝑖(𝑡 + 1)) ≤ 𝑓(�̂�(𝑡))

𝑖𝑓 𝑓(𝐗𝑖(𝑡 + 1)) > 𝑓(�̂�(𝑡))
 (3.8)

 35

The standard particle swarm optimization algorithm is shown in Algorithm 3.1 below.

Algorithm 3.1 Standard PSO

1: Initialize an 𝑛𝑥-dimensional swarm, 𝑆;

2: repeat

3: for each particle 𝑖 ∈ 𝑆

4: -- set the personal best position

5: if 𝑓(𝑥𝑖) > 𝑓(𝑦𝑖) -- see eqs. 3.5 - 3.8

6: 𝑦𝑖 = 𝑥𝑖;

7: endif

8: -- set the global best position

9: if 𝑓(𝑥𝑖) > 𝑓(�̂�𝑖) -- see eqs. 3.5 - 3.8

10: �̂�𝑖 = 𝑥𝑖;

11: endif

12: endfor

13: for each particle 𝑖 ∈ 𝑆

14: update the velocity using eq. (3.2)

15: update the position using eq. (3.3)

16: endfor

17: until stopping condition is true

The objective of the PSO algorithm is to find the solution in the search space which will

minimize or maximize the fitness function, also called the objective function. The fitness

function is defined by the designer, based on the type of optimization problem. The algorithm

repeatedly iterates through all particles in the swarm, each time evaluating the fitness of the

vector, represented by the position of the particle. If the fitness of the current solution (i.e.

position) of the particle is better than its personal (previous) best position, the personal best

position is replaced with the current position. Similarly, if the fitness of the particle’s current

solution is better than the fitness of the swarm’s best (global best) position, the global best

position is replaced with the particle’s current position. On conclusion of all iterations, all (or

most) of the particles should have converged on the best global solution, which is represented

by the global best position vector. The results should be verified to ensure the swarm did get

stuck in a local maximum or minimum. This means the swarm has prematurely converged on

a position it perceives as an optimum, but a better position exists somewhere else in the search

space. The number of iterations and the stopping condition are defined by the designer.

 36

3.4.2 Overview of set-based particle swarm optimization

When the search space is discrete, the velocity and position update eqs. (3.2) and (3.3) cannot

be used without re-definition. In [104] and [105] a generic, set-based PSO (SPSO), suitable for

optimization problems with a discrete search space, is introduced and a survey of discrete set-

based PSO is given in [106]. In SPSO, the search space is the universal set of discourse 𝑈, of

the optimization problem. The position, 𝑋𝑖(𝑡) of particle 𝑖 is a subset of elements from 𝑈, and

represents a candidate solution in the search space. The particle velocity, 𝑉𝑖(𝑡), is defined as a

set of operations {𝑣𝑖,1, . . . , 𝑣𝑖,𝑘} = {(±, 𝑒𝑛𝑖,1), . . . , (±, 𝑒𝑛𝑖,𝑘)} where 𝑒 ∈ 𝑈 and 𝑛𝑖,𝑗 is the index

of the 𝑗𝑡ℎ element of particle 𝑖 . The number of operations is denoted by 𝑘 . The operation

pair (±, 𝑒𝑛𝑖,𝑗) indicates whether the element (𝑒𝑛𝑖,𝑗) should be added to, or subtracted

from, 𝑋𝑖(𝑡). The result of the operation is a new position, 𝑋𝑖(𝑡 + 1). To remain in accordance

with standard PSO velocity and position update equations, new set-based operators are defined

for the generic set-based PSO:

- Velocity addition (⨁) : 𝑉1 ⨁ 𝑉2 = 𝑉1 ∪ 𝑉2

- Position difference (⊖) : 𝑋1 ⊖ 𝑋2 = ({+} × (𝑋1\𝑋2)) ∪ ({−} × (𝑋2\𝑋1))

- Velocity - scalar multiplication: 𝜂⨂𝑉, 𝜂 ∈ [0,1], is the random selection of ⌊𝜂 × |𝑉|⌋

elements from 𝑉 to yield a new velocity.

- Velocity – position addition: 𝑋 ⊞ 𝑉 = 𝑉(𝑋), where a velocity, 𝑉, is applied element by

element to the position 𝑋. An element is either added to, or removed from, 𝑋 . The

following additional operators perform the addition and removal of elements from 𝑋:

▪ ⨀− for the removal of elements from a position,

 𝛽⨀−𝑆 = {−} × (
𝑁𝛽,𝑆

|𝑆|
⨂𝑆)

A number of elements, specified by 𝛽, are randomly selected for removal from the

set 𝑆, defined by 𝑋(𝑡) ∩ 𝑌(𝑡) ∩ �̂�(𝑡).

▪ ⨀+ for the addition of elements to a position,

 𝛽⨀𝑘
+𝐴 = {+} × k-Tournament selection(𝐴,𝑁𝛽,𝐴)

A number of elements, specified by 𝛽, are selected from the set 𝐴, for addition to 𝑋.

The set of elements, 𝐴, are defined by 𝑈\ (𝑋(𝑡) ∪ 𝑌(𝑡) ∪ �̂�(𝑡)). The selection is

done using k-tournament selection process, which ensures that the best performing

elements are added. The best performing elements are those, which collectively

maximize the fitness function.

 37

The set-based velocity equation is:

 𝑉𝑖(𝑡 + 1) = (𝑐1𝑟1⊗ (𝑌𝑖(𝑡) ⊖ 𝑋𝑖(𝑡))) ⊕ (𝑐2𝑟2⊗(�̂�𝑖(𝑡) ⊖ 𝑋𝑖(𝑡)))⊕

 (𝑐3𝑟3⊙𝑘
+ 𝐴𝑖(𝑡)) ⊕ (𝑐4𝑟4⊙

− 𝑆𝑖(𝑡)) (3.9)

where (𝑐1𝑟1⊗ (𝑌𝑖(𝑡) ⊖ 𝑋𝑖(𝑡))) is the cognitive component and (𝑐2𝑟2⊗(�̂�𝑖(𝑡) ⊖ 𝑋𝑖(𝑡))) is

the social component. The author added two additional components to the standard PSO

equation: 𝑐3𝑟3⊙𝑘
+ 𝐴𝑖(𝑡) and 𝑐4𝑟4⊙

− 𝑆𝑖(𝑡) , where 𝐴𝑖(𝑡) = 𝑈\ (𝑋𝑖(𝑡) ∪ 𝑌𝑖(𝑡) ∪ �̂�𝑖(𝑡))

and 𝑆𝑖(𝑡) = (𝑋𝑖(𝑡) ∩ 𝑌𝑖(𝑡) ∩ �̂�𝑖(𝑡)) . The acceleration constants are defined as 𝑐1, 𝑐2 ∈

 [0, 1] and 𝑐3, 𝑐4 ∈ [0, |𝑈|]. The random numbers, 𝑟1 to 𝑟4, are random values sampled from a

uniform distribution, i.e. 𝑟1, 𝑟2, 𝑟3, 𝑟4 ~ 𝛺(0,1).

The set-based position update equation is:

 𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) ⊞ 𝑉𝑖(𝑡 + 1) (3.10)

While the movement of particles through the search space is governed by eqs. (3.2) and (3.3)

for a continuous search space, eqs. (3.9) and (3.10) govern the movement of particles (sets)

through a discrete set-based search space. Research involving PSO can be divided into two

parts: 1) the application of PSO to optimization problems [107-111] and 2) the improving the

efficiency of the PSO algorithm itself [112-116]. An example of the former is the use of the

set-based PSO algorithm for optimal placement of virtual machines in cloud and in [117], a

saturated control method, using PSO, is developed for three-dimensional spatial tracking of a

UAV. An example of the latter is improving the performance of the PSO algorithm for dynamic

optimization problems.

There is an intuitive similarity between the individual and social behaviour of the particles in a

swarm, and the individual and social rationality of players in a game. However, despite the

intuitive similarity, there have been very few attempts to exploit it. Although, PSO has been

used to find optimality in game-theoretic problems, for example finding a Nash equilibrium

[118]. However, no relevant research could be found which applies game-theory, specifically

collaborative game-theory, to the behaviour of a swarm of particles. Therefore, this similarity

is exploited in section 6.2, where PSO is combined with cooperative game theory, for the real-

time, high-level cognitive control in multi-task robotics. An overview of the applicable games

theory foundations and definitions are given in the next section.

 38

3.5 Cooperative games theory

Game theory is a context-free mathematical methodology used to model and analyse interactive

decision making among a group of rational decision makers. The decision of each individual,

affects the outcome for the group as a whole. Such an interactive scenario is formally modelled

as a game being played between all the decision makers, i.e. the players of the game. Referring

to eqs. (3.2) and (3.9), by “remembering” the personal-best solution 𝑦𝑖𝑗(𝑡), the particle exhibits

individually rational behaviour, while “remembering” the social-best solution �̂�𝑗(𝑡), the swarm

exhibits socially rational behaviour.

The study of game theory is divided into two subfields: strategic (or non-cooperative) games

and coalitional (or cooperative) games [119]. This study will focus on coalitional games which

model scenarios where players may choose to cooperate, i.e. form a coalition and binding

agreements, which are likely to maximize the utility they will receive, or defect to another more

profitable coalition.

Choosing a game model depends, on the specification of the decision problem, which may be

strategic or cooperative. However, as noted by [119], some decision problems may require

aspects of both coalitional and strategic games. There are also some aspects which are common

to both paradigms. An overview of the fundamentals of games theory, as they relate to the robo-

cognitive architecture, is given below. Comments throughout the section, help to relate a games

theory concept to the proposed robo-cognitive architecture methodology.

Common game theory concepts

An overview of games theory, based on the work of Maschler [119] and Tadelis [120], form

the basis of the cognitive process of the robo-cognitive architecture.

The decision problem

For a player to make a decision, he/she must consider the choices he/she has, what the

consequence of each choice is and, how the choice will influence his welfare. The decision

problem has the following features:

• Actions (𝐴) - represents the player’s choices;

• Outcomes (𝑋) - represents the consequence of the actions;

• Preferences, represent the player’s ranking of the set of possible outcomes, from most

desired to least desired. The preference relation, ≳ describes the player’s preference,

where 𝑥 ≳ 𝑦 denotes the player’s preference of 𝑥 over 𝑦.

 39

In the context of the robo-cognitive architecture, a player is represented by a particle in a swarm

in the CG-PSO algorithm, and the preference represents “remembering” the best solution

(individually or socially), based on the utility i.e. fitness of the solution. Just like the cognitive

and social components govern the trajectory of a particle towards an optimal solution, utility

and rationality govern the decision of a player in a game.

Utility and rationality

A player is considered rational when he/she chooses actions which will maximize his well-

being. In other words, the player chooses the actions which result in the most favourable

outcomes, indicated by the preference relation.

A utility function (also called a payoff function) assigns a real number to each outcome and is

used to produce the set of preferences. The payoff function is an ordinal function, defined as:

Definition 3.1: A payoff function 𝑢: 𝑋 → ℝ represents the preference relation ≳ if, for any pair

𝑥, 𝑦 ∈ 𝑋, 𝜐(𝑥) ≥ 𝜐(𝑦) iff 𝑥 ≳ 𝑦. The purpose of the payoff function is to rank a player’s

preference over various outcomes.

The payoff function extends the features of the decision problem to include the rational

preferences (utility) over the outcomes. Given the decision problem description above and the

means to numerically evaluate outcomes, a rational player is defined as follows:

Definition 3.2: A player facing a decision problem with a payoff function 𝜐(∙) over actions is

rational if he/she chooses an action 𝑎 ∈ 𝐴 which maximizes his utility, that is, 𝑎∗ ∈ 𝐴 is chosen

iff 𝜐(𝑎∗) ≥ 𝜐(𝑎), ∀𝑎 ∈ 𝐴.

Since the objective of the CG-PSO is the formation of coalitions, each with the maximum social

utility, the particle endeavours to maximize the social utility of the coalition through its

individual contribution. The particle’s choice is therefore based on the “promise” of an equal

share in the coalition’s utility. Obviously, the higher the social utility, the bigger the (promised)

individual payoff. This characteristic is similar to a particle swarm converging on the global-

best solution.

Static games of complete information

In a static game, a set of players independently choose a set of actions once, which in turn

results in a set of outcomes. A static game has two steps:

 40

1. Each player in the game chooses an action independently and simultaneously. This

means each player chooses an action without knowing the choices of the other players or

interacting with other players.

2. Utility is distributed to each player. Once a player has made a choice, the choice results

in a preferred outcome, which in turn result in utility calculated by the payoff function.

A game with complete information extends the knowledge of a decision problem for a single

player to include common knowledge amongst all the players:

• all the possible actions of all the players;

• all the possible outcomes;

• the outcomes of all the players, based on their actions;

• the preferences of every player, over the outcomes, calculated by the payoff function.

The notion of rationality and common knowledge is important and fundamental in the

application of games-theory to particle swarm behaviour. Coalition formation through rational

individual and social bargaining, forms the foundation of the cognitive process. The social

behaviour of the particles is influenced by the common knowledge shared amongst the particles.

The cognitive behaviour of each particle is driven by its rationality. The CG_PSO algorithm

“shares” the knowledge between all particles by giving each particle a turn to negotiate with

every other particle and only evaluates its payoff if there is no objection (see definition 6.7 in

section 6.2.2).

3.6 Conclusion

The robo-cognitive architecture proposed in this thesis focusses on the cognitive processes,

memory representation, memory recall, action selection and action execution. The overview

given in this chapter, forms the theoretical foundation for these cognitive processes. Section 3.1

provided an overview of the working memory models, used in in neuro-cognitive architectures

and sections 3.2 and 3.3 gave an overview of knowledge and uncertainty representation which

will form the basis for memory representation and quantification developed in the robo-

cognitive architecture. Sections 3.4.1 and 3.4.2 gave an overview of both the standard and set-

based particle swarm optimization algorithms. The fundamentals of cooperative game theory

was discussed in section 3.5. The set-based PSO algorithm and cooperative game theory will

form the foundation for memory recall in the design and development of robo-cognitive

architectures, developed in chapter 6 and evaluated in chapter 7.

 41

Chapter 4

Working Memory Representation and

Quantification

In section 3.2, an overview was given for knowledge representation, using logic formulae. This

chapter discusses the development of two robo-cognitive architectures with a novel memory

representation structure and a novel memory quantification methodology, for real-time, high

level control of a UAV. Both the memory representation structure and the memory

quantification algorithm are used in memory recall, developed in sections 6.1 and 6.2. In section

4.1 working memory representation is formally defined and in section 4.2 memory

quantification is formally defined and the adaptive entropy fitness quantification (AEFQ)

algorithm is developed.

4.1 Working memory representation

The working memory of the robo-cognitive architecture is discussed in the context of high-

level control for a UAV. Figures 4.1 and 4.2 show the states and state transitions of the UAV,

defined by the domain expert. These state flows are graphical representations of the knowledge

about the behaviour of the UAV and defines the LTM of the working memory for the UAV.

Each edge between two states represents a memory item (or knowledge) about transitioning

from one state to another, and is defined by the domain expert. Each memory item is given an

identifier, for example, 𝜏10 represents the memory item “arm motors”, i.e. start the motors. The

assigned identifier makes computation easier and is arbitrarily defined by the designer (see

figure 4.3). The UAV can perform two functions (or tasks), flight control and gripper control.

The first diagram represents the flight control task, while the second diagram represent the

gripper control task. Although one task may influence the state of the other, each task is

independent from the other.

 42

Figure 4.1 UAV Flight control states and state transitions.

The state flow illustrates all the flight control states of the UAV, while the labelled state

transitions illustrates valid transitions from one flight state to another.

Figure 4.2 Gripper control states and state transitions.

The state flow illustrates all the control states of the on-board gripper, while the labelled state

transitions illustrates valid transitions from one gripper state to another.

In order to keep the introduction of the robo-cognitive architecture methodology simple, the

LTM used in this study, represent only singleton state transitions. That is, there is only one

unique directional edge between two states. However, composite transitions are possible

(discussed in section 4.1.2 and shown in figure 4.4).

Given the states and state transitions, shown in figures 4.1 and 4.2, the LTM for the UAV is

represented in matrix form. In the LTM, it is assumed that the states are fully connected. In

other words, there can be a transition from any state to any other state, including itself.

Obviously, this is not always true, for example, there cannot be a transition from state s6 (flying)

to state s1 (disarm). The UAV will crash. Therefore, the domain expert defines (“switch on”)

the valid states by setting the indicator 𝜐 in eq. (4.3) to “true” or 1, depending on the

s1 s2

s5 s6

s7

disarmed

armed

ascending flying

DescendingStart

s4hovering

s8
yawing

Flight control states

s3
airborne

s9
landed

525

10

70

80

285

300

480

280

220

240
150

235

215

475

495

355

425

230
410

345

225

485

365

s10 s11

Gripper control states

cargoattachedgripdisarmed griparmed

s12

cargorreleased

s13

700

640 710 780

830

 43

implementation. This makes the LTM more flexible, as transitions could be conditionally

activated, based on cognitive decision-making. Figure 4.3, shows the LTM, with valid state

transitions for the UAV application. Each cell 𝜏𝑛 represents a state transition from a state 𝑠𝑖 in

row 𝑖 to a state 𝑠𝑗 in column 𝑗. Each state transition is assigned a sequence number 𝑛 to act as

identifier during computation. In this thesis, a sequence number in multiples of 5 are assigned

to make insertions simpler, but the format of the sequence number is the decision of the designer

of the LTM. Valid state transitions are defined by the domain expert and are highlighted in blue

in figure 4.3.

d
is

ar
m

ed

ar
m

ed

ai
rb

o
rn

e

h
o

ve
ri

n
g

as
ce

n
d

in
g

fl
yi

n
g

d
es

ce
n

d
in

g

ya
w

in
g

la
n

d
ed

gr
ip

d
is

ar
m

ed

gr
ip

ar
m

ed

ca
rg

o
at

ta
ch

ed

ca
rg

o
re

le
as

ed

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

disarmed s1 𝜏5 𝜏10 𝜏15 𝜏20 𝜏25 𝜏30 𝜏35 𝜏40 𝜏45 𝜏50 𝜏55 𝜏60 𝜏65

armed s2 𝜏70 𝜏75 𝜏80 𝜏85 𝜏90 𝜏95 𝜏100 𝜏105 𝜏110 𝜏115 𝜏120 𝜏125 𝜏130

airborne s3 𝜏135 𝜏140 𝜏145 𝜏150 𝜏155 𝜏160 𝜏165 𝜏170 𝜏175 𝜏180 𝜏185 𝜏190 𝜏195

hovering s4 𝜏200 𝜏205 𝜏210 𝜏215 𝜏220 𝜏225 𝜏230 𝜏235 𝜏240 𝜏245 𝜏250 𝜏255 𝜏260

ascending s5 𝜏265 𝜏270 𝜏275 𝜏280 𝜏285 𝜏290 𝜏295 𝜏300 𝜏305 𝜏310 𝜏315 𝜏320 𝜏325

flying s6 𝜏330 𝜏335 𝜏340 𝜏345 𝜏350 𝜏355 𝜏360 𝜏365 𝜏370 𝜏375 𝜏380 𝜏385 𝜏390

descending s7 𝜏395 𝜏400 𝜏405 𝜏410 𝜏415 𝜏420 𝜏425 𝜏430 𝜏435 𝜏440 𝜏445 𝜏450 𝜏455

yawing s8 𝜏460 𝜏465 𝜏470 𝜏475 𝜏480 𝜏485 𝜏490 𝜏495 𝜏500 𝜏505 𝜏510 𝜏515 𝜏520

landed s9 𝜏525 𝜏530 𝜏535 𝜏540 𝜏545 𝜏550 𝜏555 𝜏560 𝜏565 𝜏570 𝜏575 𝜏580 𝜏585

gripdisarmed s10 𝜏590 𝜏595 𝜏600 𝜏605 𝜏610 𝜏615 𝜏620 𝜏625 𝜏630 𝜏635 𝜏640 𝜏645 𝜏650

griparmed s11 𝜏655 𝜏660 𝜏665 𝜏670 𝜏675 𝜏680 𝜏685 𝜏690 𝜏695 𝜏700 𝜏705 𝜏710 𝜏715

cargoattached s12 𝜏720 𝜏725 𝜏730 𝜏735 𝜏740 𝜏745 𝜏750 𝜏755 𝜏760 𝜏765 𝜏770 𝜏775 𝜏780

cargoreleased s13 𝜏785 𝜏790 𝜏795 𝜏800 𝜏805 𝜏810 𝜏815 𝜏820 𝜏825 𝜏830 𝜏835 𝜏840 𝜏845

Figure 4.3 The LTM of the cognitive architecture for the UAV.

Each cell represents a memory item, which is defined as a possible state transition between a

state in a row to a target state in a column. Each cell (memory element) is labelled and valid

states are highlighted in blue.

In order for the cognitive reasoning process to recall the optimal memory items from the LTM,

the central executive needs to quantify the memory item, based on the cue received. The

quantification is then used in the evaluation for optimality by the central executive. The LTM

 44

representation and quantification are formally developed in the next sections. Although the

working memory representation and quantification discussed in this chapter are described

within the context of real-time, high-level control of a UAV, both the representation and

quantification may, without the loss of generality, be applied to other autonomous vehicle

control problems.

4.1.1 Cue definition

A mission is composed of a set of tasks which must be executed. The tasks of the mission are

provided by a domain expert and serve as cues to the cognitive process of the autonomous

vehicle. Each cue (task) controls the state to state transitioning of the vehicle, during the

mission. The set of cues representing the mission, are defined as,

 𝛷𝑐 = {𝜑1
𝑐 , 𝜑2

𝑐 , … , 𝜑𝑛𝛷𝑐
𝑐 } (4.1)

where 𝜑𝑖
𝑐, 𝑖 = 1, . . , 𝑛𝛷𝑐 is the 𝑖𝑡ℎ task of the mission. An example of the use of cues is shown

in an example in section 4.1.2.

4.1.2 Memory representation

Formally, the LTM is defined as the set of state transitions which governs the behaviour of the

UAV (see section 4.1):

 LTM = {𝜏1, 𝜏2, … , 𝜏𝑛𝐿𝑇𝑀} (4.2)

where 𝜏𝑘 ∈ LTM, 𝑘 = (1,… , |LTM|) is a memory item, representing a state transition in the

LTM. Each 𝜏𝑘 represents a state transition in the matrix in figure 4.3. The state transition is a

tuple,

 𝜏𝑘 = (υ, S𝛼, 𝑆𝛽 , 𝐴𝑘 , 𝐹𝑘 , 𝑓𝑗) (4.3)

where υ = {0,1} indicates whether the transition is valid, 𝑆𝛼 and 𝑆𝛽 are the start and end states

of the state transition, respectively, 𝐴𝑘 = {𝒶1, … , 𝒶𝑛𝐴𝑘
} is a set of actions and 𝐹𝑘 =

{𝑝1, 𝑝2, … , 𝑝𝑛𝐹𝑘
} is the trigger formula for the transition, consisting of a set of simple logic

propositions. The function to which 𝜏𝑘 belongs to is indicated by 𝑓𝑗 ∈ ℱ.

The ENV stimuli are defined as,

 𝛷𝑟 = {𝜑1
𝑟 , 𝜑2

𝑟 , … , 𝜑𝑛𝛷𝑟
𝑟 } (4.4)

 45

where 𝜑𝑖
𝑟, 𝑖 = 1, . . , 𝑛𝛷𝑟 is the environmental stimulus received during the cognitive cycle.

The short-term memory items are defined as,

 𝛷𝑚 = {𝜑1
𝑚, 𝜑2

𝑚, … , 𝜑𝑛𝛷𝑚
𝑚 } (4.5)

where 𝜑𝑗
𝑚 ∈ [𝑙𝑏𝑚𝑗 , 𝑢𝑏𝑚𝑗], 𝑗 = 1, . . , 𝑛𝛷𝑚 , defines a short-term memory item, constrained to

specified lower and upper boundaries. short-term memory is defined as initial (or default)

information provided by the domain expert and may be updated during a cognitive cycle. Both

𝜑𝑖
𝑟 and 𝜑𝑗

𝑚 are used for memory quantification during a cognitive cycle.

Each proposition 𝑝𝑙 ∈ 𝐹𝑘, 𝑙 = (1, … , 𝑛𝐹𝑘) is defined by a domain expert and is a tuple,

 𝑝𝑙 = (𝜑𝑖
𝑟 , 𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝜑𝑗

𝑚) (4.6)

where 𝜑𝑖
𝑟 and 𝜑𝑗

𝑚 are related by a logical_operator, from the set { >,<,= }, to form simple

propositions of the form:

 (𝜑𝑖
𝑟 > 𝜑𝑗

𝑚), (𝜑𝑖
𝑟 < 𝜑𝑗

𝑚) and (𝜑𝑖
𝑟 = 𝜑𝑗

𝑚) (4.7)

Any non-numeric argument is discretized to a numeric value, prior to quantification of 𝐹𝑘.

The indicator 𝓋, the actions 𝒜 and all the propositions 𝑝𝑙 are defined and maintained by the

domain expert. The trigger formula is always conjunctive, i.e. 𝐹𝑘 = (𝑝1 ∧ 𝑝2 ∧ …).

The following example illustrates the evaluation of a LTM element, based on cues,

environmental (sensory) stimuli and short-term memory during the execution of a mission.

Example: Assume the UAV has taken off and is in a hover state, i.e. 𝑆𝛼 = 𝑠4. One of the tasks

of a mission, 𝜑1
𝑐 ∈ 𝛷𝑐 is to fly from a home position 𝐻, indicated by the coordinates 𝑥𝐻 , 𝑦𝐻

and 𝑧𝐻, to a target position 𝑇, indicated by the coordinates 𝑥𝑇 , 𝑦𝑇 and 𝑧𝑇. During runtime, the

UAV’s current position, indicated by the coordinates 𝑥, 𝑦, 𝑧, are recorded as environmental

stimuli. The transition from the “hovering” state to the “flying” state, is subject to some rules.

The UAV should only fly if it is explicitly allowed to do so, by the domain expert. This is

indicated by setting the indicator 𝜐 to 1 (se eq. 4.20). In addition, the UAV should only fly to

the specified destination if it is not there already and the current energy level is above a specified

minimum level. The state transition, 𝜏225, represents the transitioning from state 𝑠4 (hovering)

to 𝑠6 (flying), and is evaluated as follows:

• Input mission cue: 𝜑1
𝑐 = 𝑓𝑙𝑦𝑡𝑜(𝑇);

• Read environment stimulus: 𝛷𝑟 = {𝜑1
𝑟 = (𝑥, 𝑦, 𝑧), 𝜑2

𝑟 = 𝑣𝑖𝑛};

• Read STM: 𝛷𝑚 = {𝜑1
𝑚 = (𝑥𝑇 , 𝑦𝑇 , 𝑧𝑇), 𝜑2

𝑚 = 𝑣𝑚𝑖𝑛};

• Identify states: From state: S𝛼 = ′𝑠4′ to state 𝑆𝛽 =
′ 𝑠6′;

 46

• Action: 𝐴224 = ′𝑓𝑙𝑦𝑡𝑜(𝑥𝑇 , 𝑦𝑇 , 𝑧𝑇)′;

• Proposition 1: 𝑝1 = (𝜑1
𝑟 < 𝜑1

𝑚);

 (i.e. rule 1: “the current position is less than target position”)

• Proposition 2: 𝑝2 = (𝜑2
𝑟 > 𝜑2

𝑚);

 (i.e. rule 2: “current energy levels are greater than the minimum level”)

• Function: 𝑓1 = 1 = "𝑓𝑙𝑖𝑔ℎ𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙";

• Trigger formula: 𝐹224 = (𝑝1 ∧ 𝑝2).

Given the values above, the state transition (see eq. (4.3)) is prepared as follows:

𝜏225 = (1, s4, s6, 𝑓𝑙𝑦𝑡𝑜(𝑥𝑇 , 𝑦𝑇 , 𝑧𝑇), (𝑝1 ∧ 𝑝2), 1)

and will be evaluated and actioned (or rejected), based on the quantification of the trigger

formula, 𝐹1 (discussed in section 4.2).

However, the robo-cognitive architecture allows for the definition of composite, rule-based

transitions between states (shown by the blue line in the example, shown in figure 4.4). This

makes the high-level control very flexible, as each composite transition allows for any number

of possible transitions between S𝛼 and 𝑆𝛽 , each with its own trigger formula. Composite

transitions also enable a logical combination of the trigger formulae in disjunctive normal form

(DNF), i.e. a disjunction of conjunctions: ((𝑝1 ∧ 𝑝2) ∨ (𝑝3 ∧ 𝑝4) ∨ …).

Figure 4.4 Example of a composite state transition.

The diagram illustrates the definition of multiple transitions between state s4 and state s6. The

diagram shows that multiple, problem-specific trigger functions and actions may be defined

between states.

s4 s6

()225 4 6 225 225 1, , , , ,S S A F f =

()226 4 6 226 226 1, , , , ,S S A F f =

()227 4 6 227 227 1, , , , ,S S A F f =

s4 s6

Hovering Flying

1 225 226 227{ , , }T =

where

225

226

227

 47

Composite transitions allow the definition of any number of problem-specific trigger functions,

𝐹𝑘 , and corresponding actions, 𝐴𝑘 . This capability greatly extends the cognitive reasoning

process and therefore, the functionality of the high-level control.

4.2 Working memory quantification

In order to perform the quantification of a state transition 𝜏𝑘 ∈ LTM, a problem-specific model

is constructed before it is presented to the maximum entropy principle equation for

quantification.

4.2.1 Quantification model construction

Given a state transition τk ∈ LTM the model is formally defined as a tuple:

 ℳ𝜏𝑘 = (𝐕, 𝐗, 𝐅, 𝚲) (4.8)

The set of variables are represented by 𝐕 = {{𝑣ℚ} ∪, {𝑣1
ℙ, 𝑣2

ℙ, … 𝑣𝑛ℙ
ℙ } ∪ {𝑣1

𝔸, 𝑣2
𝔸, … 𝑣𝑛𝔸

𝔸 }} where

𝑣ℚ is the query variable, 𝑣𝑝
ℙ , 𝑝 = 1,… , 𝑛ℙ is a predictor variable, representing a proposition in

the trigger formula and 𝑣𝑙
𝔸 , 𝑙 = 1,… , 𝑛𝔸 is an association variable. Note that, since the

propositions are independent, they will not have any effect on the query variable, unless

relevant associations are defined between the query variable and appropriate predictor

variables. The associations are problem-specific and are defined by the user.

Let 𝑚 𝜏𝑘 = |{𝑣
ℚ} ∪ {𝑣1

ℙ, 𝑣2
ℙ, … 𝑣𝑛ℙ

ℙ }|, and 𝑛𝜏𝑘 = 2
𝑚 𝜏𝑘 , then a 𝑚𝜏𝑘 × 𝑛𝜏𝑘 constraint matrix, 𝐗

is the state space of the trigger formula and defines all the joint statements of {𝑣ℚ} ∪

{𝑣1
ℙ, 𝑣2

ℙ, … 𝑣𝑛ℙ
ℙ } . A binary constraint function, 𝐹(𝑋 = 𝑥𝑖𝑗) , 𝑖 ∈ 𝑛𝜏𝑘 and 𝑗 ∈ 𝑚𝜏𝑘 assigns a

boolean constraint to each variable in the state space. Let 𝑛𝑉 = (1 + 𝑛ℙ + 𝑛𝔸), then vector 𝐅 =

 (〈𝐹1〉, 〈𝐹2〉,… , 〈𝐹𝑛𝐹〉), 𝑛𝐹 = 𝑛𝑉 are constraint averages for each of the variables in 𝐕 . The

vector 𝚲 = (𝜆1, 𝜆2, … 𝜆𝑛𝛬), 𝑛𝛬 = 𝑛𝑉, represents the Lagrange multipliers, calculated for each

variable in 𝐕.

Each constraint average 〈𝐹𝑛𝐹〉 ∈ 𝐅 represents the degree of belief in a proposition and is derived

from real-time information (environmental data) received from the environment. The constraint

average follows the open world assumption, and is crucial for the accurate quantification of the

state transition.

In this thesis, the constraint average is calculated by interpreting a proposition as a degree of

believe, (probability), derived from a distance calculation. For example, figure 4.5 illustrates

two example state transitions:

 48

Figure 4.5 Example state transitions with corresponding propositions.

The figure shows two rule definitions for two example state transitions, including the

corresponding upper and lower bounds.

A constraint average for the proposition is calculated by measuring the progress of the current

runtime parameter 𝜑𝑖
𝑟, relative to the operational bounds of the mission task. The result is a

probability assigned to the proposition. Figure 4.6 illustrates the approach:

Figure 4.6 Method for constraint average assignment to propositions.

The figure graphically illustrates the method for calculating the constraint average as a

probability of the progress, relative to the upper and lower bounds, of the current runtime

parameter, as moves towards the objective.

This approach ensures that the constraint average accurately reflects relevant environmental

data. This will also ensure that the fitness quantification of the trigger formula for the state

transition is based on relevant and correct environmental data.

The rule is translated into a probability as follows:

Firstly, given the proposition 𝑝𝑙, calculate the total operation distance 𝑑𝑗
𝑚, using the upper and

lower bounds of the mission argument:

 𝑑𝑗
𝑚 = 𝑢𝑏𝑗

𝑚 − 𝑙𝑏𝑗
𝑚 (4.9)

Calculate the current distance 𝑑𝑖
𝑟 of the runtime argument, 𝜑𝑗

𝑟 with respect to the upper and

lower bounds of the mission parameter, 𝜑𝑖
𝑚 , according to the logical operation of the

proposition:

s2 s3t12

Motors On Ascend

s4 s5t32

Hover Fly

, m

j

m

j

m
j lb ub

()1l
r m
i jp = = ()2

r m
l i jp = =

() , m

j

m

j

m
j t lb ub

Proposition: Current height is less than operation height Proposition: Current energy level is above minimum

m
jub

where,

Rule:

objective is

where,

Rule:

objective is m

j
lb

and and

Outside bounds Operational range Outside bounds

()j
r
i

m
ub

m m m
j j jd ub lb= −

m
jlb

()j
r
i

mlb

m
jub

r
i

()j
r
i

mlb ()j
r
i

mlb

() ()1Pr / m
l j

m
j

r
ip ub d= −=

() ()2Pr / m
l j

m
j

r
i lbp d= = −

 49

 𝑑𝑖
𝑟 =

{

𝜑𝑖
𝑟 − 𝑙𝑏𝑗

𝑚 ; 𝑖𝑓 𝑝𝑙 = (𝜑𝑖
𝑟 ≤ 𝜑𝑗

𝑚)

𝑢𝑏𝑗
𝑚 − 𝜑𝑖

𝑟 ; 𝑖𝑓 𝑝𝑙 = (𝜑𝑖
𝑟 ≥ 𝜑𝑗

𝑚)

0 ; 𝑖𝑓 𝑝𝑙 = (𝜑𝑖
𝑟 ≠ 𝜑𝑗

𝑚)

1 ; 𝑖𝑓 𝑝𝑙 = (𝜑𝑖
𝑟 = 𝜑𝑗

𝑚)

 (4.10)

Use (19) and (20) to calculate a real valued distance, in the range [0,1], for the proposition:

 𝑃𝑟 (𝑝𝑙) =
𝑑𝑖
𝑟

𝑑𝑗
𝑚 (4.11)

where 𝑃𝑟 (𝑝𝑙) represent the relative remaining distance of 𝜑𝑖
𝑟, within the boundaries 𝑙𝑏𝑗

𝑚 and

𝑢𝑏𝑗
𝑚 as a probability. Once the distances for each proposition have been calculated, the

distances for each of the joint statements can be calculated. To illustrate, let 𝑣ℚ = 𝑝0, 𝑣1
ℙ = 𝑝1

and 𝑣2
ℙ = 𝑝2, then the state space consists of 23 = 8 joint statements. The joint distances, for

the predictor variables are calculated as follows:

 𝑑𝑝1𝑝2 = 𝑑𝑝1 + 𝑑𝑝2 (4.12)

 𝑑𝑝1𝑝2 = 𝑑𝑝1 + (1 − 𝑑𝑝2) (4.13)

 𝑑𝑝2𝑝2 = (1 − 𝑑𝑝1) + 𝑑𝑝2 (4.14)

 𝑑𝑝1𝑝2 = (1 − 𝑑𝑝1) + (1 − 𝑑𝑝2) (4.15)

The overall distance 𝑑𝑓, represented by the probability distribution over all the propositions of

the trigger formula, is calculated by:

 𝑑𝑓 = (𝑑𝑝1𝑝2 + 𝑑𝑝1𝑝2 + 𝑑𝑝2𝑝2 + 𝑑𝑝1𝑝2) (4.16)

With all the joint distances of the joint statements available, the respective constraint averages

can now be calculated. Firstly, the constraint average 〈F1〉 of the query variable p0 is set to 1.0.

The constraint averages for the predictor and association variables are then set as follows:

 𝐅 = (𝑑𝑝0 ,
(𝑑𝑝1𝑝2+𝑑𝑝1𝑝2)

𝑑𝑓
,
(𝑑𝑝1𝑝2+𝑑𝑝1𝑝2)

𝑑𝑓
,
(𝑑𝑝1𝑝2+𝑑𝑝1𝑝2)

𝑑𝑓
,
(𝑑𝑝1𝑝2+𝑑𝑝1𝑝2)

𝑑𝑓
,
𝑑𝑝1𝑝2
𝑑𝑓

) (4.17)

Next, the Lagrange multipliers are determined.

The duality between the Lagrange multipliers and the user-defined constraint averages, allows

the Legendre transform to be used to derive the Lagrange multipliers:

 ℒ𝑡𝑟𝑎𝑛𝑠 = 𝚲 = 𝑚𝑖𝑛
𝜆𝑘

(𝑙𝑛 𝑍(𝜆1, 𝜆2, … 𝜆𝑘) − ∑ 𝜆𝑗〈𝐹𝑗〉
mτk
𝑗=1

) (4.18)

The multipliers are derived by varying the values of 𝜆𝑘 while keeping the constraint

average, 〈𝐹𝑗〉 fixed, until ℒ𝑡𝑟𝑎𝑛𝑠 reaches a minimum. Table 4.1 shows an example of a

 50

quantification model for a trigger formula containing two propositions, represented by the

predictor variables B and C and the query variable, represented by A. The table also shows the

association between the query variable and the predictor variables. The associations are

represented by AB, AC, ABC. The model contains a 𝑚𝜏𝑘 × 𝑛𝜏𝑘 Boolean constraint matrix,

where 𝑚𝜏𝑘 = 3 and 𝑛𝜏𝑘 = 8.

Table 4.1 Illustrative example of a quantification model.

i A B C AB AC ABC

1 1 1 1 1 1 1

2 1 1 0 1 0 0

3 1 0 1 0 1 0

4 1 0 0 0 0 0

5 0 1 1 0 0 0

6 0 1 0 0 0 0

7 0 0 1 0 0 0

8 0 0 0 0 0 0

𝐅 〈𝐹𝐴〉 〈𝐹𝐵〉 〈𝐹𝐶〉 〈𝐹𝐴𝐵〉 〈𝐹𝐴𝐶〉 〈𝐹𝐴𝐵𝐶〉

𝚲 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6

For each variable, the vector of constraint averages, 𝐅, are calculated (eq. 4.17). Each vector

element represents the constraint average for a predictive or associative variable. The constraint

averages are then used to calculate the vector of Lagrange multipliers, 𝚲, (eq. 4.18). Each

element of the Lagrange multiplier vector corresponds to the constraint average for a predictor

or associative variable. Once the model is complete, it is used in the fitness quantification,

discussed in the next section.

4.2.2 Model-driven quantification

Given the model ℳ𝜏𝑘 , the probability distribution, 𝐐 = (𝑞1, 𝑞2, … 𝑞𝑛𝐐), 𝑛𝐐 = 𝑛𝜏𝑘over the

variables (propositions) of the trigger formula can now be calculated. Given the 𝑚𝜏𝑘 × 𝑛𝜏𝑘

constraint matrix and let 𝑖 ∈ 𝑛𝜏𝑘 and 𝑗 ∈ 𝑚𝜏𝑘, the MEP is then formally defined as:

 (𝑞𝑖|ℳ𝜏𝑘) =
1

𝑍(𝜆1,𝜆2,…𝜆𝑘)
𝑒
−∑ 𝜆𝑗𝐹𝑗(𝑋=𝑥𝑖)

mτk
𝑗=1 (4.19)

where 𝑍(𝜆1, 𝜆2, … 𝜆𝑘) = ∑ 𝑒
∑ 𝜆𝑗𝐹𝑗(𝑋=𝑥𝑖)
mτk
𝑗=1τk

𝑖=1

𝑍 is the partition function which ensures the probabilities are assigned between 0 and 1. The

Lagrange multipliers are represented by 𝜆𝑗 , 𝑗 = 1,… , 𝑘 and 𝐹𝑗(𝑋 = 𝑥𝑖) assigns a real-world,

domain-specific constraint, to the state 𝑖 of variable 𝑗.

 51

 (Refer to [25], chapters 24 and 25 for a detailed discussion on the mathematical derivation of

the Legendre transformation and the MEP formula).

Finally, the fitness of the state transition 𝜏𝑘 ∈ LTM is calculated as,

 𝛱 = 𝜐 × 𝑞1 (4.20)

where 𝜐 ∈ 𝜏𝑘 and 𝜐 = 1 indicate a valid state transition and 𝜐 = 0 indicate an invalid state

transition.

Note that any of the resulting probabilities (including marginal probabilities) in the distribution

𝐐 may now be used in the fitness quantification. However, in this study, only 𝑞1 will be used

for fitness quantification, since its value is conditioned on all the predictor variables, i.e.

propositions.

Algorithm 4.1 shows the adaptive entropy fitness quantification method:

Algorithm 4.1 Adaptive Entropy Fitness Quantification (AEFQ).

1: Input: : State-transition 𝜏𝑘 eq. (4.3)

2: : ENV stimuli, 𝛷𝑟 eq. (4.4)

3: : STM, 𝛷𝑚 eq. (4.5)

4: Output : Fitness quantification, 𝛱

5: Begin

6: Initialize model ℳ𝜏𝑘, given ℱ ∈ 𝜏𝑘 eq. (4.8)

7: Calculate weighted constraint averages 𝐅 eq. (4.17)

8: Calculate Lagrange multipliers 𝚲, given 𝐅 eq. (4.18)

9: Calculate probability distribution 𝐐, given 𝚲 eq. (4.19)

10: Calculate the fitness 𝛱, given 𝐐 eq. (4.20)

11: Return 𝛱

12: End

During runtime, algorithm 4.1 is applied for the quantification of a state transition. The selected

state transition, along with STM and ENV information are passed to the algorithm where the

information is used define the quantification model, described in section 4.2. The model is then

used by the MEP equation (eq. (4.19)) to assign a probability distribution over the trigger

formula of the state transition. The probability distribution is used to assign a fitness to the state

transition, which is used during the memory optimization process of memory recall.

Note that, for simplicity, the environmental stimuli are processed as a single set, rather than

each individual input element. Prior to the constraint average calculation (line 9), the arguments

of the trigger formula of the state transition are ground using the corresponding sensory input

parameters. This automation of the grounding process simplifies modification or creation of

new propositions.

 52

4.3 Conclusion

This chapter discussed memory representation and the quantification methodology in detail.

The methodology described section 4.1 enables LTM to be structured in an extensible way,

improving cognitive reasoning and functionality of high-level control. By simplifying the logic

structure (rules) of the trigger formulae, maintenance or extension of the LTM is greatly

simplified. This is especially important for remotely deployed autonomous vehicles. Moreover,

by allowing the multiple state transitions between the same two states, the LTM structure

greatly extends the reasoning and functionality of the cognitive architecture, in a flexible way.

By including short-term memory and environmental stimuli in the real-time quantification of

LTM elements, developed in section 4.2, cognitive reasoning can be performed at a much

higher accuracy level, taking real-time information in consideration. Since the quantification

produces a probability distribution across all the propositions of the trigger formula, inference

can be performed at a much finer level, including using marginal probabilities. The memory

representation structure and memory quantification methodology will be used in the cognitive

reasoning process during memory recall, developed in sections 6.1 and 6.2.

 53

Chapter 5

Memory Optimization

The two main functions of memory recall are memory quantification and memory optimization.

PSO has been chosen for the optimization, due to the simplicity of the algorithm’s architecture

and the scalability of its parameters. As described in section 3.4.1, PSO is usually applied to

numeric optimization problems with an algebraic objective function. The search time of the

PSO is directly related to the size of the search space. The larger the search space, the larger

the swarm size to cover the search and as a consequence, the longer the swarm will take to

converge on the optimal solution. If the search time is constrained too much, the PSO may not

find all the optimal solutions. On the other hand, the time the swarm requires to find all the

optimal solutions, may be infeasible for a specific problem. These challenges become greater

under dynamic conditions. In this research study, the optimization problem is defined as finding

the optimal knowledge which will successfully control a UAV in real-time. This means finding

the optimal state transitions from the long-term memory, given the ENV information, for every

relevant state and in real-time. For this problem, the “objective function” of the PSO is

abstractly defined as the optimal knowledge found (AM) in the search space (long-term

memory), which is composed of discrete and complex elements (state transitions). The

approach, therefore, raises three important questions whether PSO would be suitable for the

optimization stage of the memory recall process, under both static and dynamic conditions:

1. Will the PSO algorithm find all optimal solutions (completeness)?

2. Will each memory item be quantified accurately (information gain)?

3. Will the PSO algorithm find the optimal solutions in time (convergence time)?

To answer these questions, two PSO algorithms, AEStd-PSO and AESet-PSO, are developed

and discussed in section 5.1. These algorithms are variants of the StdPSO (section 3.4.1) and

SPSO (section 3.4.2), adapted for knowledge quantification and optimization. Both algorithms

use the adaptive entropy-based fitness quantification method (developed in section 4.2) for

fitness evaluation of potential solutions. Fundamentally, the difference between the two

algorithms is how particles represent potential solutions in the search space and how the

trajectories of particles are calculated, i.e. how the particles moves through the search space. In

the AEStd-PSO algorithm, a particle represents a single solution in the search space. The

velocity and positioning of the particle is calculated using a sequential index assigned to the

solution. On the other hand, in the AESet-PSO, a particle represents a set of solutions. Particle

 54

velocity and positioning is calculated using set-based operators, redefined to retain the

cognitive and social influences of the swarm during the optimization process. Two benchmark

problems are defined to investigate questions 1 – 3 in section 5.2.2. The first benchmark

problem is used to empirically evaluate these questions under uncertain, but static conditions,

while the second benchmark problem empirically evaluate these questions under uncertain and

dynamic conditions.

5.1 Methodology

Since the objective is to evaluate the PSO algorithms’ suitability for knowledge optimization,

the data for quantification is synthesized and kept constant. The long-term memory is defined

as a set of conjunctive normal form predicate logic formulae (as discussed in section 3.2),

converted from a large set of Horn clause formulae. Each memory item in the long-term

memory represents one of these logic formulae. Since no inference will be performed in this

evaluation, the long-term memory is simplified by removing all logical connectives from the

memory items in the long-term memory. There is also no subsumption of memory items in the

long-term memory, that is, each memory item in the long-term memory is independent from

any other memory item. However, the same predicate may occur in more than one memory

item. Note, for this evaluation, the memory item, 𝜏𝑘 ∈ LTM is defined differently from eq.

(4.3) in section 4.1.2.:

 𝜏𝑘 = {𝓅1, 𝓅2, … , 𝓅𝑛|𝜏𝑘|
}; (5.1)

where 𝓅𝑗 ∈ 𝜏𝑘, where 𝑗 = 1,… , 𝑛|𝜏𝑘|, is a predicate of 𝜏𝑘.

Each predicate 𝓅𝑗, is defined as,

 𝓅𝑗 ≜ 𝑝𝑟𝑒𝑑 (𝛼1, 𝛼, … , 𝛼𝑛𝓅𝑗
); (5.2)

and 𝛼𝑚 ∈ 𝓅𝑗, 𝑚 = 1,… , 𝑛𝓅𝑗, is an argument (or random variable) of 𝓅𝑗 (see section 3.2.1).

The predicate symbol, 𝑝𝑟𝑒𝑑, is the relation of the arguments, (𝛼1, 𝛼2, … , 𝛼𝑛𝓅𝑗
). The relation

and the arguments are specified by the domain expert. The number of arguments 𝑚, defines the

arity of the predicate, 𝓅𝑗. To simplify the identification and addressing of the memory items

in the LTM, each 𝜏𝑘 is assigned an integer index value, of type ℤ+. This index represents the

position (or address) of the memory item in the LTM and is used by the PSO for particle

trajectory calculation.

 55

The objective of the experiments is the evaluation of the PSO algorithms’ suitability for

knowledge optimization. Two conditions are evaluated: knowledge optimization under static

conditions and knowledge optimization under dynamic conditions (see experimental evaluation

in section 5.2). The data used in the datasets is synthesized and remains constant for all

experiments. During the experiments for static conditions, the environmental stimuli, 𝛷𝑟, and

short-term memory information, 𝛷𝑚 , are defined, containing all the arguments of all the

predicates, defined in the control set (see section 5.2.1). Each element of 𝛷𝑟, is set to 0, while

the 𝑙𝑏𝑗
𝑚 of 𝛷𝑚 is set to 0 and the 𝑢𝑏𝑗

𝑚 is set to a synthesized value, obtained from an

environmental data file. Under static conditions, the values of both 𝛷𝑟 and 𝛷𝑚 are kept

constant for all test runs. For the evaluation of the algorithms under dynamic conditions, three

data files with synthetic environmental data are used. To simulate dynamism (or volatility) in

the environmental data, the experiment cycle through the three environmental data files, at a

predefined rate, defined by a parameter, 𝒱ENV. Under dynamic conditions, each element of 𝛷𝑟,

is set to 0, while the 𝑙𝑏𝑗
𝑚 of 𝛷𝑚 is set to 0 and the 𝑢𝑏𝑗

𝑚is set to the new synthesised value,

obtained from the new environmental data file. The approach is described in detail in the

experimental evaluation in section 5.2.

5.1.1 The optimized working memory

The result of the PSO execution is the optimized activated memory. Each element of the

activated memory represents the optimal memory item, selected from the LTM . For this

evaluation, the activated memory is defined as,

 AM = {𝜏1
∗, 𝜏2

∗, … , 𝜏𝑛AM
∗ } (5.3)

where 𝜏𝑘
∗ , (𝑘 = 1,… , 𝑛AM), represents an optimal memory item, determined by the fitness

quantification of the predicates of the memory item. The memory item 𝜏𝑘
∗ is defined as,

 𝜏𝑘
∗ = (𝑓(𝜏𝑘), 𝜏𝑘) (5.4)

where, 𝜏𝑘 is a memory item in the LTM, and 𝑓(𝜏𝑘), is the quantification of 𝜏𝑘, calculated by

the AEFQ algorithm. The resulting AM is a reduced set of weighted memory items, where the

weight of each memory item, is represented by the quantification 𝑓(𝜏𝑘).

Knowledge optimization involves searching the discrete search space (LTM) containing a set

of complex solutions (𝜏𝑘). The search space has a single dimension, indexed with an integer

value. Each potential solution in the search space is a complex memory item which requires

quantification, prior to evaluation by the PSO. This optimization problem is significantly

different from the optimization problems for which the StdPSO and the SPSO were designed.

Therefore, both the StdPSO and SPSO algorithms are modified to be applied to a knowledge

 56

optimization problem. Two variant PSO algorithms, the AEStd-PSO and AESet-PSO, are

developed for the StdPSO and SPSO, respectively. These two PSO variant algorithms are

developed in sections 5.1.2 and 5.1.3 below.

5.1.2 The AEStd-PSO Algorithm

In AEStd-PSO (Algorithm 5.1), a particle, 𝑖, represents a memory item in the LTM, where the

position of the particle is defined as, xi ∈ ℤ
+, which is the index value of the memory item. To

calculate the step size and direction of a particle 𝑖 searching a discrete and finite logic search

space, eqs. (3.2) and (3.3) are modified:

 𝑣𝑖(𝑡 + 1) = 𝓌𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑦𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(�̂�𝑖(𝑡) − 𝑥𝑖(𝑡)) (5.5)

 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (5.6)

Equations (5.5) and (5.6) are similar to eqs. (3.2) and (3.3), except, the terms of the expressions

now represent a single dimension only. The term, 𝑥𝑖(𝑡), represents the current position of

particle 𝑖, which is the integer index of the memory item, in the LTM. The inertia weight, 𝓌,

acceleration constants, 𝑐1and 𝑐2, and random stochastic parameters, 𝑟1 and 𝑟2, are of type ℝ.

The resulting velocity, 𝑣𝑖(𝑡 + 1), is of type ℝ as well. However, the particle position is the

index of a memory item, and must be of type ℤ+. Therefore, before updating the particle’s

position, 𝑥𝑖(𝑡 + 1), in eq. (5.6), the velocity, 𝑣𝑖(𝑡 + 1), is converted to type ℤ+. The conversion

is performed as follows: if 𝑣𝑖(𝑡 + 1) is an even number, halfway between two whole numbers,

the even number is returned, otherwise the next even number is returned. For example, if the

velocity value is 4.5, it is converted to 4, and if it is 5.5, it is converted to 6.

In StdPSO, the search space is iteratively searched for an optimal memory item, given the

environmental stimuli. The particles continuously move closer together until they converge on

the optimal solution. In AEStd-PSO algorithm, an optimal solution is any memory item which

satisfies the open world assumption, given the environmental stimuli, Φr. That means any

memory item where 𝑓(𝜏𝑘) > 0.

The AEStd-PSO algorithm is shown below:

Algorithm 5.2 Adaptive entropy-based standard PSO (AEStd-PSO)

(Refer to section 3.4.1 for a detailed overview of the Std PSO algorithm, including

variables).

1: Input : Long-term memory, LTM

2: : Environmental information, ENV

3: : Short-term memory, STM

 57

4: Output : Activated memory, AM

5:

6: -- Set the PSO parameters

7: 𝑁 is the number of particles

8: 𝓌 is the inertia weight

9: 𝑐1, 𝑐2 is the acceleration constants

10: 𝜉 is the number of iterations

11:

12: -- Prepare PSO variables

13: 𝑥𝑖 be position of particle 𝑖

14: 𝑣𝑖 be the velocity of particle 𝑖

15: 𝑦𝑖 be the initial particle best position

16: �̂� be the swarm best position

17: 𝜏𝑘 be a memory item represented by particle 𝑖, at index position 𝑥

18: 𝓅𝑗 be the jth predicate in 𝜏𝑘

19: 𝑓(𝓅𝑗) be the fitness of predicate 𝓅𝑗

20: 𝑓(𝑥𝑖) be the fitness of particle 𝑖

21: 𝑓(𝑦𝑖) be the pBest fitness of particle 𝑖

22: 𝑓(�̂�) be the gBest fitness of the swarm

23:

24: -- Initialize a swarm of 𝑁 particles, randomly selected from the LTM

25: -- Activate the swarm

26: Repeat

27: If there is a change in the environmental stimuli (ENV)

28: Reinitialize a swarm of 𝑁, randomly selected from the LTM

29: Endif

30: For 𝑟 = 1, . . . , 𝜉

31: For 𝑖 = 1, . . . , 𝑁

32: Calculate 𝑣i using eq. (5.5)

33: Calculate 𝑥𝑖 using eq. (5.6)

34: -- Evaluate the fitness of the particle 𝑖, representing memory item, 𝜏𝑘

35: For each predicate 𝓅𝑗 ∈ 𝜏𝑘

36: Set parameter 𝛷𝑚, using 𝓅𝑗 arguments (see section 4.1.2)

37: Set parameter 𝛷𝑟, using 𝓅𝑗 arguments (see section 4.1.2)

38: -- Call the AEFQ process to quantify the memory item

39: 𝑓(𝑥𝑖) = 𝑓(𝑥𝑖) + 𝐴𝐸𝐹𝑄(𝜏𝑘 , 𝛷
𝑚, 𝛷𝑟) -- see algorithm 4.1

40: Endfor

41: If 𝑓(𝑦𝑖) < 𝑓(𝑥𝑖) -- see section 3.4.1

42: 𝑦𝑖 = 𝑥𝑖

43: 𝑓(𝑦𝑖) = 𝑓(𝑥𝑖)

44: Endif

45: If 𝑓(�̂�) < 𝑓(𝑥𝑖) -- see section 3.4.1

 58

46: �̂� = 𝑥𝑖

47: 𝑓(�̂�) = 𝑓(𝑥𝑖)

48: Endif

49: Endfor

50: Endfor

51: -- Upon convergence of the swarm, construct the optimal memory

52: -- item, 𝜏𝑘
∗ and add it to the activated memory, 𝐴𝑀

53: If 𝑓(�̂�) > 0

54: Construct 𝜏𝑘
∗ by concatenating 𝑓(�̂�) and 𝜏𝑘 -- see eq. (5.4)

55: Add 𝜏𝑘
∗ to AM

56: Endif

57: Until cognitive process terminated -- see section 3.4.1

5.1.3 The AESet-PSO Algorithm

AESet-PSO (Algorithm 5.2) is a variant of the SPSO, where particles represent sets of candidate

solutions. The SPSO was designed for the optimization of a discrete, random search space,

since candidate solutions are randomly selected across the entire solutions space and included

in a particle set. The inclusion or exclusion of candidate solutions in a set simulates particle

movement through the search space, as shown in the particle velocity and positioning operators

defined below. Note that, unlike StdPSO, set-based PSO does not require the LTM to be

ordered. AESet-PSO interprets the velocity and positioning equations of the standard PSO (eqs.

(3.2) and (3.3)), in terms of set operations. A particle represents a set of memory items and the

algebraic operations of eqs. (3.2) and (3.3) are redefined as set-based operations:

Let:

 𝑥𝑖 be the set of memory items representing the current position of particle I,

 𝑦𝑖 be the set of memory items representing the personal best position of particle I,

 �̂� be the set of memory items representing the global best position of the swarm,

 𝑐𝑐𝑜𝑔, 𝑐𝑠𝑜𝑐 be the cognitive and social accelerators respectively.

then

 𝑣𝑖(𝑡 + 1) = [𝑓(𝑟𝑐𝑜𝑔𝑐𝑐𝑜𝑔) ∪ (𝑑𝑐𝑜𝑔)] ∪ [𝑓(𝑟𝑠𝑜𝑐𝑐𝑠𝑜𝑐) ∪ (𝑑𝑠𝑜𝑐)] (5.7)

 𝑥𝑖(𝑡 + 1) = 𝑚𝑎𝑥𝜖(𝑥𝑖 ∪ 𝑣𝑖(𝑡 + 1)) (5.8)

where

Cognitive Difference: 𝑑𝑐𝑜𝑔 ∶ 𝑦𝑖 ∪ (𝑥𝑖\𝑦𝑖)

 59

The difference between the particle’s personal best set 𝑦𝑖 and the particle’s current set 𝑥𝑖 is

defined as the unification of 𝑦𝑖 and the set-theoretic difference between 𝑦𝑖 and 𝑥𝑖. That is, all

the elements in the particle’s personal best set are retained and the elements in 𝑥𝑖 which are not

in 𝑦𝑖 are included in the difference set.

Social Difference: 𝑑𝑠𝑜𝑐 ∶ �̂� ∪ (𝑥𝑖\�̂�)

The difference between the swarm’s global best set �̂� and particle’s current set 𝑥𝑖 is defined as

the unification of �̂� and the set-theoretic difference between �̂� and 𝑥𝑖. That is, all the elements

the swarm’s best set is retained and the elements in 𝑥𝑖 which are not in �̂� are included in the

difference set.

Cognitive Velocity: 𝑣𝑐𝑜𝑔 ∶ 𝑓(𝑟𝑐𝑜𝑔𝑐𝑐𝑜𝑔) ∪ (𝑑𝑐𝑜𝑔)

The cognitive velocity is derived by a user-defined function, which selects 𝑐𝑐𝑜𝑔 random

elements from the LTM. A random number 𝑟𝑐𝑜𝑔 is iteratively, i.e. 𝑐𝑐𝑜𝑔 times, selected from the

range [1, |LTM|] and the element (state transition) at index 𝑟𝑐𝑜𝑔 is added to 𝑑𝑐𝑜𝑔.

Social Velocity: 𝑣𝑠𝑜𝑐 ∶ 𝑓(𝑟𝑠𝑜𝑐𝑐𝑠𝑜𝑐) ∪ (𝑑𝑠𝑜𝑐)

The social velocity is derived by a user-defined function, which selects 𝑐𝑠𝑜𝑐 random elements

from the LTM. A random number 𝑟𝑠𝑜𝑐 is iteratively, i.e. 𝑐𝑠𝑜𝑐 times, selected from the range

[1, |LTM|] and the element (state transition) at index 𝑟𝑠𝑜𝑐 is added to 𝑑𝑠𝑜𝑐.

Particle Velocity: 𝑣𝑖(𝑡 + 1) = 𝑣𝑐𝑜𝑔 ∪ 𝑣𝑠𝑜𝑐

The resulting velocity 𝑣𝑖(𝑡 + 1) is the union of the elements of cognitive velocity 𝑣𝑐𝑜𝑔 and the

elements of the social velocity 𝑣𝑠𝑜𝑐.

Particle Position: 𝑥𝑖(𝑡 + 1) = 𝑚𝑎𝑥𝜖(𝑥𝑖 ∪ 𝑣𝑖(𝑡 + 1))

In order to preserve the fittest elements from one iteration to the next, an elitism parameter 𝜖,

is introduced [48]. The elitism parameter specifies the number of fittest elements to include in

the particle’s new position set. The new position 𝑥𝑖(𝑡 + 1) is derived by selecting the top 𝜖

elements from the union of the current position 𝑥𝑖 and the velocity 𝑣𝑖(𝑡 + 1). The selection of

the top 𝜖 elements is denoted by 𝑚𝑎𝑥𝜖(∙) and scales the set of solutions.

Note the absence of the inertia weight applied to the particle’s current velocity. In the standard

PSO, the inertia weight 𝓌, along with the accelerator constants 𝑐1, 𝑐2 control the granularity of

the exploration. In set-based PSO, the accelerator constants 𝑐1, 𝑐2 control the granularity by

specifying the size of the random set of new elements to be added. Similarly, the inertia

weight 𝓌, would specify the size of the subset of elements (the inertia set) to be selected from

 60

the velocity set. However, it would serve no purpose to add the inertia set again, because when

calculating the new position set, the velocity set is already added in full to the current position

set. Therefore, when calculating the difference sets 𝑑𝑐𝑜𝑔 and 𝑑𝑠𝑜𝑐 at the next iteration, the new

position already includes the velocity elements.

The AESet-PSO algorithm is shown below:

Algorithm 5.3 Adaptive entropy-based set PSO (AESet-PSO)

(Refer to section 3.4.2 for a detailed overview of the Set-based PSO algorithm, including

variables).

1: Input : Long-term memory, LTM

2: : Environmental information, ENV

3: : Short-term memory, STM

4: Output : Activated memory, AM

5:

6: -- Set the PSO parameters, where

7: 𝑁 is the number of particles

8: 𝛷 is the particle size

9: 𝑐1, 𝑐2 is the acceleration constants

10: 𝜉 is the number of iterations

11:

12: -- Let,

13: 𝑥𝑖 be a set of 𝛷 memory items, represented by particle 𝑖

14: 𝑣𝑖 be the velocity set of particle 𝑖

15: 𝑦𝑖 be particle 𝑖‘s best set of memory items

16: �̂� be the swarm’s best set of memory items

17: 𝜏𝑘 be a memory item of particle 𝑖

18: 𝓅𝑗 be the jth predicate in 𝜏𝑘

19: 𝑓(𝓅𝑗) be the fitness of predicate 𝓅𝑗

20: 𝑓(𝑥𝑖) be the fitness of particle 𝑖

21: 𝑓(𝑦𝑖) be the pBest fitness of particle 𝑖

22: 𝑓(�̂�) be the gBest fitness of the swarm

23: 𝜖 be an elitism parameter -- see eq. (5.8)

24:

25: -- Initialize a swarm of N particles with 𝜑 randomly selected

26: -- memory items, each

27:

28: -- Activate the swarm

29: Repeat

30: If there is a change in the environmental stimuli (ENV)

31: --Reinitialize a swarm of N particles with 𝜑 randomly selected

32: --memory items, each

33: Endif

34: --Start iterations

 61

35: For r = 1, . . . , ξ

36: For i = 1, . . . , n

37: Calculate the set 𝑣i -- using eq. (5.7)

38: Calculate the set 𝑥𝑖 -- using eq. (5.8)

39: -- Evaluate the fitness of the particle 𝑖, representing memory item, 𝜏𝑘

40: For each memory item 𝜏𝑘 ∈ 𝑥𝑖

41: For each predicate 𝓅𝑗 ∈ 𝜏𝑘

42: Set parameter 𝛷𝑚, using 𝓅𝑗 arguments -- see section 4.1.2)

43: Set parameter 𝛷𝑟, using 𝓅𝑗 arguments -- see section 4.1.2)

44: -- Call the AEFQ process to quantify the memory item

45: 𝑓(𝓅𝑗) = 𝑓(𝓅𝑗) + 𝐴𝐸𝐹𝑄(𝜏𝑘 , 𝛷
𝑚, 𝛷𝑟) -- see algorithm 4.1

46: Endfor

47: 𝑓(𝑥𝑖) = 𝑓(𝑥𝑖) + 𝑓(𝓅𝑗)

48: Endfor

49: -- Update personal and global best values

50: If 𝑓(𝑦𝑖) < 𝑓(𝑥𝑖) -- see section 3.4.2

51: 𝑓(𝑦𝑖) = 𝑓(𝑥𝑖)

52: 𝑦𝑖 = 𝑥𝑖

53: Endif

54: If 𝑓(�̂�) < 𝑓(𝑥𝑖) -- see section 3.4.2

55: 𝑓(�̂�) = 𝑓(𝑥𝑖)

56: �̂� = 𝑥𝑖

57: Endif

58: Endfor

59: Endfor

60: -- Upon convergence of the swarm, construct the optimal memory

61: -- item, 𝜏𝑘
∗ and add it to the activated memory, 𝐴𝑀

62: If 𝑓(�̂�) > 0

63: Construct 𝜏𝑘
∗ by concatenating 𝑓(�̂�) and 𝜏𝑘 -- see eq. (5.4)

64: Add 𝜏𝑘
∗ to AM

65: Endif

66: Until cognitive process terminated -- see section 3.4.1

5.2 Experimental Evaluation

This section describes the experimental evaluation of the performance of the two PSO

algorithms. A statistical comparison is performed between the AEStd-PSO and the AESet-PSO

algorithms, in section 5.2.7. The null and alternative hypothesis defined below, are statistically

evaluated using the performance measures defined in section 5.2.3.

For the statistical comparison, the null hypothesis 𝑯𝟎 is defined as:

 62

“There is no tendency for the performance of one PSO algorithm to be significantly higher (or

lower) than the other when optimizing a logical search space under uncertain and dynamic

conditions”.

The alternative hypothesis 𝑯𝑨 is defined as:

“There is a tendency for the performance of one PSO algorithm to be significantly higher (or

lower) than the other when optimizing a logical search space under uncertain and dynamic

conditions”.

The performance of each PSO algorithm is evaluated using three LTMs, increasing in size,

using both static and dynamic environmental data. Section 5.2.1 describes the datasets used in

the experiments. The benchmark problems and performance measures used in the evaluation

are described in sections 5.2.2 and 5.2.3, respectively. Section 5.2.4 describes the PSO

parameters selected for the experiment.

5.2.1 Datasets

The Knowledge Base

To be able to evaluate the performance of the algorithms on a large LTM, an extensive set of

Horn clauses, produced by the Sherlock system [121], was used in the experiments. The

Sherlock system constructed the set of Horn clauses programmatically from the internet. The

dataset was first cleansed by removing duplicate clauses and any garbage data in the dataset.

The cleansed Horn clauses were then converted to conjunctive normal form formulae, resulting

in a test LTM that contains 30,912 memory items, 4,821 relations (predicates) and 137 classes

(arguments). All memory items in the source LTM were grouped, based on context, i.e. all

related memory items were stored together in the LTM. Since PSO stochastically explores the

LTM, two factors influence the performance of PSO: the size 𝒮LTM of the LTM and the

volatility, 𝒱ENV, of the environmental data. 𝒮LTM is the number of memory items in the LTM

and 𝒱ENV is the frequency at which new environmental data is observed in the environment.

For the experiments, three LTMs of different sizes were created: 𝒮LTM =

{𝑠𝑚𝑎𝑙𝑙,𝑚𝑒𝑑, 𝑙𝑎𝑟𝑔𝑒} , where 𝑠𝑚𝑎𝑙𝑙 ≅ (10,000) , 𝑚𝑒𝑑 ≅ (20,000) and 𝑙𝑎𝑟𝑔𝑒 ≅ (30, 000)

memory items in the LTM. The volatility of the environmental data was set as 𝒱ENV =

(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ). The frequencies for 𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚 𝑎𝑛𝑑 ℎ𝑖𝑔ℎ are defined in table 5.3.

The Control Set

In order to evaluate the AM in a controlled manner, a control set of ten predefined memory

items was created and inserted at random positions in each of the three test LTMs. The memory

 63

items in the control set act as target memory items for optimization and are used in the

performance measures.

Synthetic environmental data

Dynamic environmental data is simulated by three pre-compiled datasets. Each dataset contains

a collection of instances with synthesized values, corresponding to the arguments of the

predicates in the control dataset. Environmental data values were changed between different

datasets.

5.2.2 Benchmark problems

Based on the size (𝒮LTM) of the LTM and volatility (𝒱ENV) of the environmental data mentioned

above, two types of benchmark problems are defined to evaluate the performance of the PSO

algorithms and the AEFQ algorithm:

1. Benchmark problem 1 - Optimization of different sizes of LTMs, given uncertain

environmental data:

In real-world scenarios, there is often a degree of uncertainty about the environmental data

received. When quantifying a memory item, this degree of uncertainty impacts the

quantification of memory items. Therefore, the performance of the optimization process is

impacted in terms of the completeness and information gain (defined in section 5.2.3 below).

2. Benchmark problem 2 - Optimization of different sizes of LTMs, given dynamic

environmental data:

The AM, is produced by optimizing the LTM, using the environmental data available at the

time of optimization. In real-world scenarios, new environmental data may be observed at any

time. This new environmental data may be completely new or it may be the same environmental

data, but with a different degree of certainty. Any change in the environmental data immediately

invalidates the current AM, because the memory items in the AM were quantified based on the

previous environmental data. Any inference using the AM, will therefore be invalid. A new

optimized AM, has to be created each time the environmental data changes.

Each benchmark problem is applied to both AEStd-PSO and AESet-PSO for each LTM size

parameter (small, med and large) to measure completeness and information gain of the resulting

AM. The performance measures (defined below) measures the ability of the two PSO

algorithms to optimize an AM, using the AEFQ algorithm.

 64

5.2.3 Performance measures

For each of the benchmark problems defined above, the following performance measures are

used:

1. The completeness (𝜑AM) of the AM, represents the number of memory items in the AM.

Comparison of this number against the control set indicates how successful the PSO was

in finding all the relevant memory items. No difference between the number of memory

items in the AM, and the number of memory items in the control set indicates that the

PSO has good exploration ability.

2. The information gain (ψAM) of the AM. The maximum information gain of the

predicate is the maximum entropy, given the environmental data and is derived from the

maximum entropy of its predicates. Therefore, the information gain of the AM, is the

cumulative maximum entropy of the memory items it contains. An AM with a high

information gain indicates that the PSO has good exploitation ability.

3. The convergence time (τAM), calculated as the elapsed wall clock time until convergence

of the particles. This performance measure is used in the empirical analysis of the

execution time of the two PSO algorithms.

5.2.4 PSO parameter selection

The PSO algorithm uses a number of parameters which control the movement of particles

through the search space. Table 5.1 shows the standard PSO parameters selected, based on

guidelines in [122-124]:

Table 5.1 Inertia Weight and Acceleration Parameters.

Algorithm Inertia

Weight

𝓌

Acceleration

constant 𝑐1

Acceleration

constant 𝑐2

Elitism

parameter 𝜖

AEStd-PSO 0.715 1.7 1.7 n/a

AESet-PSO n/a 3 3 15

To select appropriate swarm size and exploration parameters, both the AEStd-PSO and AESet-

PSO algorithms were executed for each permutation of the parameters listed in table 5.2.

Table 5.2 Swarm Size and Exploration Parameters.

LTM Sizes Swarm Sizes Iterations

10k

20k

30k

5

20

50

10,000

20,000

50,000

The AEStd-PSO and AESet-PSO algorithms were executed for each permutation of the

parameters in table 5.2 and the results were evaluated against the control set of memory items.

 65

The graphs in figures 5.1 – 5.3 show the results of the experimental runs of both the AEStd-

PSO and AESet-PSO for each of the LTM sizes. The number of particles for each PSO

algorithm is shown alongside the algorithm in brackets.

Figure 5.1 Parameters selection results for a 10k LTM and 5, 20 and 50 particles.

The graph shows the difference in completeness between the AEStd-PSO and AESet-PSO

algorithms on a control set of 10 memory items.

Figure 5.2 Parameters selection results for a 20k LTM and 5, 20 and 50 particles.

The graph shows that, for the control set of 10 memory items, when the search space increases

to 20k elements and swarm size is below 50 particles, the completeness of the AEStd-PSO

decreases.

0

2

4

6

8

10

10k
20k

50k
100k

150k
200k

AEStd (5)
AEStd (20)

AEStd (50)
AESet (5)

AESet (20)
AESet (50)

N
o

 o
f

m
e

m
o

ry
 it

e
m

s

Iteration

10k LTM and Swarm Size of 5, 20, 50 particles

0

2

4

6

8

10

10k
20k

50k
100k

150k
200k

AEStd (5)
AEStd (20)

AEStd (50)
AESet (5)

AESet (20)
AESet (50)

N
o

 o
f

m
e

m
o

ry
 it

e
m

s

Iteration

20k LTM and Swarm Size of 5, 20, 50 particles

 66

Figure 5.3 Parameters selection results for a 30k LTM and 5, 20 and 50 particles.

The graph shows that, for the control set of 10 memory items, when the search space increases

to 30k elements and swarm size is below 50 particles, the completeness of the AEStd-PSO

decreases significantly.

The graphs in figures 5.1 - 5.3 show that the completeness of the AEStd-PSO consistently

decreases when the swarm size is below 50 particles and the size of the search space increases.

On the other hand, the AESet-PSO consistently achieve completeness for all swarm sizes and

all test search spaces. The graphs show that both AEStd-PSO and AESet-PSO are able to

successfully find the 10 control memory items with a swarm size of 50 particles and 20,000

iterations. Also, 10,000 iterations would have been sufficient, but since the experiment needs

to simulate a dynamic change in the environmental data, as described for benchmark problem

2, 20,000 iterations provide a sufficient time window for the simulation. This means the

algorithms successfully finds all the control memory items, before the next dynamic change

occurs.

Dynamic change in the environmental data is simulated using the volatility parameters 𝒱𝜀

defined in table 5.3.

The volatility values are timed in milliseconds.

0

2

4

6

8

10

10k
20k

50k
100k

150k
200k

AEStd (5)
AEStd (20)

AEStd (50)
AESet (5)

AESet (20)
AESet (50)

N
o

 o
f

m
e

m
o

ry
 it

e
m

s

Iteration

30k LTM and Swarm Size of 5, 20, 50 particles

 67

Table 5.3 Volatility parameters for environmental data change.

PSO Algorithm LTMSize Volatility(ms)

High Med Low

AEStd-PSO 10k 10 300 600

 20k 10 500 1000

 30k 10 800 1600

AESet-PSO 10k 100 3500 7000

 20k 100 4500 9000

 30k 100 9000 18000

5.2.5 Experimental architecture and processes

The experiments were executed on an Intel i7 machine with 2.90 GHz Quad Core CPU and

16Gb RAM with MS Windows 8.1 x64 OS. Figure 5.4 shows the core objects and simulation

process. A PSO control program uses run-time parameters to input the datasets (LTM, control

set and evidence vector) and executes each of the PSO algorithms for each benchmark problem.

For benchmark problem 2, the PSO control program simulates the input of dynamic evidence,

by periodically introducing a new evidence set, according to the volatility values in table 5.3.

The output and execution values of the PSO algorithms are logged by PSO control program for

statistical analysis.

Figure 5.4 Experiment components and simulation process.

A PSO control program governs the application of control parameters, search space and

evidence data for the two PSO algorithms, AEStd-PSO and AESet-PSO.

 68

5.2.6 Experimental execution

Empirical analysis is performed using algorithms 5.3 and 5.4. To analyse benchmark problem

1 type problems, i.e. optimization of the LTM under uncertain conditions, 30 identical runs are

performed for each PSO algorithm. The parameters are selected from tables 5.1 and 5.2. A

single set of evidence with pre-defined uncertainty was used for each run. The evidence set

remained unchanged between runs. Algorithm 5.3 shows the statistical analysis process for

benchmark problem 1. The objective of the process is to test the null hypothesis, 𝐻0, defined in

the beginning of section 5.2 and repeated here:

“There is a tendency for the performance of one PSO algorithm to be significantly higher (or

lower) than the other when optimizing a logical search space under uncertain and dynamic

conditions”,

and select an algorithm, based on the sum-of-ranks produced by the Mann-Whitney test.

Algorithm 5.4 Preferred PSO algorithm selection for benchmark problem 1

(Refer to the empirical analysis in section 5.2.7 for a detailed explanation of

the methods of this algorithm).

1: Begin

2: For each LTMSize (𝒮LTM)

3: For each performance measure -- see section 5.2.3

4: -- Statistically compare AEStd-PSO and AESet-PSO

5: Perform Mann-Whitney U test on the performance measure

6: If there is no statistically significant difference

7: Reject hypothesis 𝐻0

8: Endif

9: --Select preferred PSO-algorithm using sum of ranks

10: Calculate sum-of-ranks 𝜂𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂 = ∑𝑅𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂

11: Calculate sum-of-ranks 𝜂𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂 = ∑𝑅𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂

12: If performance measure = 𝜑AM𝑂𝑅 𝜓AM

13: If 𝜂𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂 > 𝜂𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂

14: Select AEStd-PSO

15: Else

16: Select AESet-PSO

17: Endif

18: Endif

19: If performance measure = 𝜏AM

20: If 𝜂𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂 < 𝜂𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂

21: Select AEStd-PSO

22: Else

23: Select AESet-PSO

24: Endif

25: Endif

 69

26: Endfor

27: Endfor

28: End

To analyse the optimization of the LTM under uncertain and dynamic conditions (benchmark

problem 2), 30 identical runs are performed for each PSO algorithm. The parameters are

selected from tables 5.1 and 5.2. Three sets of evidence with defined uncertainty were used for

each run. The dynamism of the environment was simulated by changing between the three sets

of evidence with the frequencies defined in table 5.3. To simplify comparison, the evidence set

remained unchanged between runs. This resulted in three sets of results for each run. To

quantify the results for each run, the average of the results of the three changes were calculated.

Algorithm 5.4 shows the statistical analysis process for benchmark problem 2:

Algorithm 5.5 Preferred PSO algorithm selection for benchmark problem 2

(Refer to the empirical analysis in section 5.2.7 for a detailed explanation of

the methods of this algorithm).

1: Begin

2: For each LTMSize (𝒮LTM)

3: For each Volatility 𝒱𝜀

4: For each performance measure -- see section 5.2.3

5: --Statistically compare AEStd-PSO and AESet-PSO

6: Perform Mann-Whitney U test on performance measure

7: If there is a statistical significant difference

8: Reject 𝐻0

9: Endif

10: --Select preferred PSO-algorithm using sum of ranks

11: Calculate sum-of-ranks 𝜂𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂 = ∑𝑅𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂

12: Calculate sum-of-ranks 𝜂𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂 = ∑𝑅𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂

13: If performance measure = 𝜑AM𝑂𝑅 𝜓AM

14: If 𝜂𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂 > 𝜂𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂

15: Select AEStd-PSO

16: Else

17: Select AESet-PSO

18: Endif

19: Endif

20: If performance measure = 𝜏AM

21: If 𝜂𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂 < 𝜂𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂

22: Select AEStd-PSO

23: Else

24: Select AESet-PSO

25: Endif

26: Endif

 70

27: Endfor

28: Endfor

29: Endfor

30: End

5.2.7 Empirical analysis

The objective of the statistical analysis is to assist in the selection of a suitable PSO architecture

and parameters, for a specific type of environment. This section discusses the statistical

parameters and analysis of the results of the experimental execution of the two algorithms, AE-

StdPSO and AESet-PSO. The results are analysed statistically to measure of the performance

of the two PSO algorithms under uncertain and dynamic conditions.

The Mann-Whitney U-test [125] is a two-tailed test which indicates a significant statistical

difference between the two PSO algorithms. Using the Mann-Whitney U-test (with a

significance level α = 0.05 and critical value range [-1.96, 1.96]), statistically significant

differences between the results of AEStd-PSO and AESet-PSO are tested. The z-value, based

on a sample mean �̅�𝑈 = 450 and standard deviation 𝑠𝑈 = 67.6, is tested against the critical

value range to determine whether to reject (or not reject) the null hypothesis. The strength of

the difference between the AEStd-PSO and the AESet-PSO is also determined by calculating

the effect size (𝜙) introduced by Cohen [126]:

 𝜙 =
|𝑧|

√𝑛
 (5.9)

Cohen defines the effect size to be in the range [0, 1] and classified as small=0.10, medium=0.30

and large=0.50.

Table 5.4 contains the analysis results for benchmark problem 1. The hypothesis is tested for

each LTMSize/performance measure combination, using the statistical analysis process

described in Algorithm 5.3.

Table 5.5 contains the analysis for benchmark problem 2. The hypothesis is tested for each

LTMSize/volatility/performance measure combination, using the statistical analysis process

described in Algorithm 5.4.

The convergence time performance measure 𝜏AM is consistently and significantly higher for the

AEStd-PSO than for the AESet-PSO. Therefore, the analysis of convergence time (𝜏AM) is

discussed separately, following the analysis of the completeness (𝜑AM) and information gain

(𝜓AM).

 71

The parameter combination represents the conditions of the environment. Both tables show the

sum-of-ranks, ∑𝑅1 for AEStd-PSO and ∑𝑅2 for AESet-PSO, as well as the z-score. The sum-

of-rank value indicates the success of the PSO algorithm, for a specific parameter combination.

The higher the sum-of-ranks value, the closer the PSO came to finding all the solutions,

compared to the control set. The z-score indicates the difference in the distributions of the

results of each parameter combination. The sum-of-ranks and z-score are both used in the

Mann-Whitney U-test and effect size calculation. A preferred PSO algorithm is selected by

comparing the sum-of-ranks ∑𝑅1 and ∑𝑅2 . To assist in the selection of a preferred PSO

algorithm, the Mann-Whitney U-test statistically tests if there is a significant difference in the

performance of the two PSO algorithms for a specific parameter combination. If there is a

significant difference, the null hypothesis 𝐻0 is rejected. The hypothesis is an indication of the

level of confidence in selecting the preferred PSO algorithm. If 𝐻0 is rejected, the PSO

algorithm with the highest sum-of-ranks value is the most likely to successfully optimize the

LTM, for the specific parameter combination. If 𝐻0 is not rejected, the sum-of-ranks values and

effect size is considered for each performance measure. The effect size 𝜙 indicates the size of

the statistical difference and is calculated using eq. (5.9). The preferred PSO algorithm is then

selected subjectively, based on the user-preference. For clarity, the classification of 𝜙 is given.

5.2.8 Results

In tables 5.4 and 5.5, values shown in bold are the “winning” ones and if there is a significant

difference between the “winning” and “losing” value, the “winning value” is shown in bold

italics.

Table 5.4 Statistical analysis results for benchmark problem 1.

𝒮LTM
Performance

measure
∑𝑅1 ∑𝑅2 z-score Reject 𝐻0? Preference

10k 𝜑AM 915.0 915.0 0.00 N equal

𝜓AM 915.0 915.0 0.00 N equal

𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO

20k 𝜑AM 900.0 930.0 -0.22 N AESet-PSO

𝜓AM 930.0 900.0 -0.22 N AEStd-PSO

𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO

30k 𝜑AM 885.0 945.0 -0.44 N AESet-PSO

𝜓AM 945.0 885.0 -0.44 N AEStd-PSO

𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO

 72

The results for benchmark problem 1, in table 5.4, show that there is no significant difference

between the two PSO architectures (except for 𝜏AM). The null hypothesis is not rejected for

completeness (𝜑AM) or information gain (𝜓AM). The reason is, given a stable environment

where the environmental data do not change, both architectures are able to successfully

optimize the LTM. The small effect size indicates that the difference between the two PSO

algorithms is negligible.

Table 5.5 Statistical analysis results for benchmark problem 2.

𝒮LTM 𝒱𝜀
Performance

measure
∑𝑅1 ∑𝑅2 z-score Reject 𝐻0? Preference

10k High 𝜑AM 1082.5 747.5 -2.48 Y AEStd-PSO

𝜓AM 1201.0 629.0 -4.23 Y AEStd-PSO

𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO

Med 𝜑AM 1016.5 813.5 -1.50 N AEStd-PSO

𝜓AM 815.5 1014.5 -1.47 N AESet-PSO

𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO

Low 𝜑AM 885.0 945.0 -0.44 N AESet-PSO

𝜓AM 945.0 885.0 -0.44 N AEStd-PSO

𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO

20k High 𝜑AM 971.0 859.0 -0.83 N AEStd-PSO

𝜓AM 1023.0 807.0 -1.60 N AEStd-PSO

𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO

Med 𝜑AM 1239.0 591.0 -4.79 Y AEStd-PSO

𝜓AM 645.0 1185.0 -3.99 Y AESet-PSO

𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO

Low 𝜑AM 945.0 885.0 -0.44 N AEStd-PSO

𝜓AM 885.0 945.0 -0.44 N AESet-PSO

𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO

30k High 𝜑AM 1058.5 771.5 -2.12 Y AEStd-PSO

𝜓AM 1092.0 738.0 -2.62 Y AEStd-PSO

𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO

Med 𝜑AM 1202.5 627.5 -4.25 Y AEStd-PSO

𝜓AM 654.5 1175.5 -3.85 Y AESet-PSO

𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO

Low 𝜑AM 870.0 960.0 -0.67 N AESet-PSO

 73

Table 5.6 Continued.

𝜓AM 960.0 870.0 -0.67 N AEStd-PSO

𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO

The results for benchmark problem 2, in table 5.5, show that when optimizing a 10k LTM under

high volatility, there is a significant difference between the two PSO algorithms. The AEStd-

PSO performs better for completeness (𝜑AM) and information gain (𝜓AM). The reason for this

is the AEStd-PSO evaluates only a single candidate per particle within the limited timeframe,

whereas the set-based architecture has to evaluate a set of candidate solutions in the limited

time frame. The AEStd-PSO is therefore able to evaluate more candidates before the next

environmental data change. When volatility decreases from Med to Low, there is no significant

difference between the two PSO algorithms. This is because both architectures have sufficient

time to evaluate the candidate solutions. The sum-of-ranks ∑𝑅1 and ∑𝑅2 indicate the AEStd-

PSO performing slightly better on completeness, when volatility is Med, but the AESet-PSO

performs slightly better on information gain when volatility is Low.

When optimizing a 20k LTM under high volatility, there is no significant difference between

the two PSO algorithms. The AEStd-PSO performing slightly better on completeness and

information gain, but the small-medium effect size indicates that the difference is negligible.

When volatility is Med, there is a significant difference between the PSO algorithms. The

AEStd-PSO performs better on completeness but the AESet-PSO performs better on

information gain. When the volatility decreases to Low, there is no significant difference.

Although the AEStd-PSO performs slightly better on completeness and the AESet-PSO

performs slightly better on information gain, the effect size is small, indicating the difference

to be negligible.

When optimizing a 30k LTM, there is a significant difference between the two PSO algorithms

for both High and Med volatility. Under High volatility, the AEStd-PSO performs better on

both completeness and information gain, while the AESet-PSO performs better on information

gain when the volatility is Med. When the volatility is low, there is no significant difference.

Although the AESet-PSO performs slightly better on completeness and the AEStd-PSO

performs slightly better on information gain, the effect size is small, indicating the difference

to be negligible.

The convergence time 𝜏AM for AESet-PSO is consistently higher than that of AEStd-PSO. (see

figure 5.5 below). This is due to the difference in PSO architecture. In the AEStd-PSO, particles

 74

only have to search along a vector (i.e. single dimension) and fitness is evaluated only once for

each particle. The particles, therefore, reach convergence faster. The AESet-PSO, on the other

hand, needs to perform a number of set-based operations where fitness is evaluated for each

element in the set (particle) and more processing time is expended. Figure 5.5 shows the

magnitude of the time difference between AEStd-PSO and AESet-PSO to reach convergence,

with both algorithms showing a slight increase in convergence time over the 30 runs. This is

due to the increase in the size of the LTM.

Figure 5.5 Average convergence time of AE-Std-PSO and AESet-PSO.

The graph shows the average convergence time of both the AEStd-PSO and AESet-PSO

algorithms.

It is important to note that a short convergence time would be preferable for algebraic

optimization problems. However, for optimization problems where the search space consists of

discrete and complex items, completeness and information gain of the optimization results are

more important. Since the LTM contains discrete and complex memory items, the more

important performance measures, such as completeness and information gain. These

performance measures are used below to evaluate and select an appropriate algorithm.

The Mann-Whitney U statistic doesn’t indicate the magnitude or direction of the difference.

Moreover, the difference becomes more important when the search space is volatile. The graphs

in figures 5.6 - 5.13 serves to show the effect volatility of the search space has on the

completeness and information gain of the two algorithms. The graphs give an indication of the

difference between the AEStd-PSO and the AESet-PSO for each statistic (completeness and

confidence level), where 𝐻0 is rejected, that is, where there is a significant difference.

 75

Figure 5.6 Completeness results - small (10k) search space with high volatility.

The results show that volatility has a dramatic effect on the completeness, even when the search

space is small. Although the AESet-PSO performs better than the AEStd-PSO algorithm, both

algorithms perform poorly under highly volatile conditions.

Figure 5.7 Information gain results - 10k search space with high volatility.

The results in this graph show that volatility has a dramatic effect on the confidence level, even

when the search space is small. Although the AESet-PSO performs better than the AEStd-PSO

algorithm, both algorithms perform poorly under highly volatile conditions.

 76

Figure 5.8 Completeness results - medium size search space (20k) with medium volatility.

The results show that a reduction in search space size and volatility, significantly improves the

completeness of the algorithms, with the AESet-PSO performing marginally better than the

AEStd-PSO.

Figure 5.9 Information gain results - medium search space (20k) with medium volatility.

The results show that a reduction in search space size and volatility, significantly improves the

completeness of the algorithms, with the AESet-PSO performing marginally better than the

AEStd-PSO.

 77

Figure 5.10 Completeness comparison results - large search space (30k) with high volatility.

The results show that, although the AESet-PSO performs slightly better than the AEStd-PSO,

both algorithms perform very poorly on a large and volatile search space. when the search

space.

Figure 5.11 Information gain comparison results - of a large search space (30k) with high

volatility.

The results show that, although the AESet-PSO performs slightly better than the AEStd-PSO,

both algorithms perform very poorly on a large and volatile search space. when the search

space.

 78

Figure 5.12 Completeness comparison results - of a large search space (30k) with medium

volatility.

The results in this graph show that by reducing the volatility on a large search space, the

performance is improved, with the AEStd-PSO performing slightly better than the AESet-PSO

on completeness.

Figure 5.13 Information gain comparison results - of a large search space (30k) with medium

volatility.

The results in this graph show that by reducing the volatility on a large search space, the

performance is improved, with similar performance between the AEStd-PSO and AESet-PSO

algorithms on information gain.

 79

5.2.9 Discussion

There is a significant difference between the two PSO algorithms for the 10k LTM under High

volatility, for the 20k LTM under Med volatility and for the 30k LTM under both High and

Med volatility. The effect size of the difference is large. The hypothesis is therefore rejected

under these conditions.

When the volatility is High, the AEStd-PSO consistently performs better on both completeness

and information gain for all LTM sizes. When the volatility is Med, the AEStd-PSO performs

better on completeness, while the AESet-PSO performs better on information gain for all LTM

sizes. When the volatility is Low, there is no significant difference between the PSO algorithms

for any of the LTM sizes and effect size is generally small.

For benchmark problem 1, the null hypothesis is not rejected. There is no significant difference

between the AEStd-PSO and AESet-PSO when optimizing an LTM under uncertain conditions.

For benchmark problem 2, the null hypothesis is conditionally rejected, subject to

environmental conditions. Tables 5.6 and 5.7 summarizes the rejection/non-rejection of the null

hypothesis, for the simulated environmental conditions.

Table 5.7 Hypothesis rejection for

benchmark problem 1.

 Performance measure

LTM

Size
𝝋𝐀𝐌 𝝍𝐀𝐌 𝝉𝐀𝐌

10k N N Y

20k N N Y

30k N N Y

Table 5.8 Hypothesis rejection for

benchmark problem 2.

 Volatility

LTM

Size high med low

10k Y N N

20k N Y N

30k Y Y N

The selections are made using sum-of-ranks and effect size in tables 5.4 and 5.5 and the

hypothesis rejections, summarized in tables 5.6 and 5.7. Tables 5.8 and 5.9 below, show the

preferred PSO algorithm selections. Environmental conditions, for which the null hypothesis is

rejected, indicate a significant statistical difference in the performance of the PSO algorithms.

The sum-of-ranks indicate the magnitude and direction of this difference, where the magnitude

is interpreted as the degree of confidence in the selection. The PSO algorithm with the greatest

sum-of-ranks magnitude is selected as the preferred PSO, with a high level of confidence.

Environmental conditions, for which the null hypothesis is not rejected, indicate no significant

statistical difference in the performance of the PSO algorithms. However, the sum-of-ranks

may still show a nominal difference. The PSO algorithm with the greatest sum-of-ranks

magnitude is still selected as the preferred algorithm, albeit with a low level of confidence.

 80

The PSO algorithms in bold italics in table 5.8 indicate the algorithm selected with high degree

of confidence for benchmark problem 1. PSO algorithms not in bold indicate the algorithm

selected with a low degree of confidence.

Table 5.9 PSO algorithm preference for benchmark problem 1

LTMSize
performance

measure
preferred

10k 𝜑AM either

 𝜓AM either

 𝜏AM AEStd-PSO

20k 𝜑AM AESet-PSO

 𝜓AM AEStd-PSO

 𝜏AM AEStd-PSO

30k 𝜑AM AESet-PSO

 𝜓AM AEStd-PSO

 𝜏AM AEStd-PSO

The PSO algorithms in bold italics in table 5.9 indicate the algorithm selected with high degree

of confidence for benchmark problem 2. PSO algorithms not in bold indicate the algorithm

selected with a low degree of confidence.

Table 5.10 PSO algorithm preference for benchmark problem 2

 Volatility

LTMSize
performance

measure
high med low

10k 𝜑AM AEStd-PSO AEStd-PSO AESet-PSO

 𝜓AM AEStd-PSO AESet-PSO AEStd-PSO

 𝜏AM AEStd-PSO AEStd-PSO AEStd-PSO

20k 𝜑AM AEStd-PSO AEStd-PSO AEStd-PSO

 𝜓AM AEStd-PSO AESet-PSO AESet-PSO

 𝜏AM AEStd-PSO AEStd-PSO AEStd-PSO

30k 𝜑AM AEStd-PSO AEStd-PSO AESet-PSO

 𝜓AM AEStd-PSO AESet-PSO AEStd-PSO

 𝜏AM AEStd-PSO AEStd-PSO AEStd-PSO

The statistical analysis shows that both PSO algorithms are capable of optimizing a LTM, given

temporal environmental data. However, the performance, in terms of completeness, information

 81

gain and convergence time of the PSO algorithm is influenced by the environmental conditions.

When selecting a preferred PSO algorithm, the statistical analysis of the performance of each

algorithm is used. Tables 5.8 and 5.9 shows the preferred PSO algorithms, based on the

statistical results, given the various environmental conditions. The PSO algorithms shown in

bold italics, are selected with “high” confidence, because there is a significant statistical

difference and the null hypothesis is rejected. The PSO algorithms not in bold, are selected with

“low” confidence, because there is only a nominal difference and the hypothesis is not rejected.

When the PSO algorithm is selected with “low” confidence, the effect size is small to medium.

The selection is then made subjectively, as the performance of both algorithms is similar.

5.3 Conclusion

The significant difference in the convergence time of the two PSO algorithms, for all

environmental conditions, is important. If reaction time is a priority for an autonomous system,

the lag in convergence time for the AESet-PSO may be prohibitive and the AEStd-PSO is

preferred. On the other hand, since completeness and information gain is more important, the

AESet-PSO is preferred.

It is important to note that the level of performance of the AEStd-PSO, as indicated in the

statistical analysis, can only be achieved if the LTM is ordered prior to optimization, as stated

previously. Then, all the relevant memory items are in close proximity and the density of the

converging swarm in the area is able to find all memory items. The AESet-PSO does not have

this requirement. However, if the environment is dynamic and diverse, it cannot be guaranteed

that the LTM will be ordered. It is therefore concluded that the set-based PSO will be more

suitable for the optimization of discrete memory elements in the LTM, since it performed better

overall on completeness and confidence level.

 82

Chapter 6

Robo-cognitive architectures

In this chapter, memory representation and quantification, developed in chapter 4, are combined

with memory optimization, in the cognitive function of memory recall. In section 6.1, an

architecture for real-time, cognitive control using SPSO for single-task execution, is developed

and section 6.2, an architecture for real-time, cognitive control using CG-PSO for multi-task

execution, is developed. The methodology, simulations and performance analysis for both

architectures are presented in detail in this chapter. The performance of both architectures is

evaluated using a UAV simulation environment.

Memory representation and quantification

In section 4.1, figures 4.1 and 4.2 represent state flows which represents the valid states and

state transitions of two UAV functions, flight controls and gripper controls. These state flow

diagrams are provided as a visual reference to the reader, but is implemented in the LTM, shown

in figure 4.3. The memory represented as the LTM, is used in the memory quantification,

developed in chapter 4. The quantification is then used by both the SPSO and CG-PSO

algorithms during memory recall (memory optimization).

6.1 Real-time Episodic Memory Construction in Cognitive Control of

Autonomous Vehicles

The architecture developed in this section is based on the Baddeley model for working memory

and uses the set-based PSO to construct the episodic memory. The episodic memory represents

the optimal set of memory items, i.e. state transitions, from which the CE selects and executes

the actions, defined by the memory item (state transition).

6.1.1 Methodology

During memory recall, the CE uses real-time environmental stimuli and cues to statistically

quantify and recall memory items from LTM. Memory optimization during memory recall is

performed by the SPSO algorithm, and memory item fitness quantification is performed by the

adaptive entropy fitness quantification (AEFQ) algorithm. The robo-cognitive architecture and

main functions are shown in figure 6.1. To the best of our knowledge, there has been no attempt

 83

to use set-based PSO for real-time optimization of working memory in any robo-cognitive

architecture.

Figure 6.1 A robo-cognitive architecture, using on Baddeley’s model of working memory.

Episodic memory is constructed during memory recall. The episodic memory is used by the

central executive to select the optimal memory element for action selection and execution.

In this approach, the domain expert provides cues (or missions) which defines the objectives of

the autonomous vehicle. The central executive recalls, quantifies and optimizes semantic

memory in real-time, subject to the cues and stimuli. Since the process is dynamic and in real-

time, the optimal memory constructed by the central executive is episodic, and used for

selecting and executing the optimal action. Memory optimization is done using the SPSO

algorithm. The result of the memory optimization, is the episodic memory, from which the CE

selects the optimal memory item. Finally, the action defined by the selected episodic memory

item is executed.

In this approach, episodic construction, using the AEFQ algorithm and set-based particle swarm

optimization (SPSO) algorithm, is used for real-time memory recall for high-level, single task

autonomous vehicle control. Memory representation and quantification, is used in the memory

recall cognitive process.

Working Memory

Central Executive

Memory-Recall

Memory
Buffer

(Observation,
Objective,

Knowledge)

Action
 Execution

Semantic Memory

Memory
Quantification

Simultaneous
Memory

Optimization
Cues

ENV
(Stimuli)

LTM

k

*
ja

r

r

m

LTM STM

STM

()*

1 2, ,...k ja a a

Episodic Memory
EM

c

 84

The AEFQ algorithm employs the MEP to provide a probability distribution over all the

characteristics of the semantic memory item, for fitness evaluation. In this approach, the

episodic memory (see Baddeley’s memory model, figure 3.2) represents the optimal set of

memory items from which the executive uses the probability distribution of each item to select

the best memory item and execute a suitable action. The performance of the approach is

evaluated by simulation with two unmanned aerial vehicle (UAV) use cases: 1) flying to a

charging station for re-charging and 2) delivering a medical package, before flying to a charging

station.

6.1.2 Reasoning in the robo-cognitive architecture

Reasoning in the robo-cognitive architecture is a cognitive process performed by the CE. In

figure 6.1, it is shown that the CE is composed of two main functions: cognition and reasoning.

The cognition component is tasked with the statistical optimization of the knowledge from the

LTM, given the environmental data. The reasoning component is tasked with selecting the

optimal action 𝜋∗, from the episodic memory, EM.

The CRP uses the optimal set of solutions (state transition) found by the AE-SPSO to select

and execute the relevant actions.

Algorithm 6.1 Cognitive reasoning process (CRP) algorithm

1: Input : LTM -- Domain expert knowledge

2: : Mission parameters, 𝛷𝑚 with tasks, 𝜑𝑗
𝑚

3: : Runtime parameters 𝛷𝑟 with evidence , 𝜑𝑖
𝑟

4: Begin

5: -- Execute the mission

6: For each task, 𝜑𝑗
𝑚 ∈ 𝛷𝑚

7: Repeat

8: Input all 𝜑𝑖
𝑟 ∈ 𝛷𝑟 from sensory input

9: -- Call the AE_SPSO algorithm to find the optimal solutions

10: 𝐸𝑀 = 𝐴𝐸_𝑆𝑃𝑆𝑂(LTM,𝛷𝑚, 𝛷𝑟) -- see (Algorithm 5.2)

11: -- Select and execute action/s from optimal solution/s

12: For each action 𝜏𝑘 ∈ 𝐸𝑀

13: For each action 𝒜 ∈ 𝜏𝑘

14: For each action 𝒶𝑛 ∈ 𝒜

15: Execute action 𝒶𝑛

16: Next action

17: Next state transition

18: Until Task completed

19: Next Task

20: End

 85

The robo-cognitive architecture developed in this section enables action selection and execution

from episodic by the central executive. Each task of the mission is executed sequentially, task-

by-task. The next section discusses the development of a robo-cognitive architecture for multi-

task execution, based on a coalitional game-theoretic approach.

6.2 Real-time Activated memory Construction for Cognitive Control of

Autonomous Vehicles

This section introduces a coalitional game theory-based PSO (CG-PSO) algorithm, based on a

combination of PSO and coalitional games theory. During memory recall, the CE follows

Cowan’s attentional focus memory model (see figure 3.3), where the CG-PSO produces an

optimal AM, from which multiple FOAs can be selected for action selection and execution.

The performance of the CG-PSO algorithm is evaluated by simulation, with two unmanned

aerial vehicle (UAV) use cases: delivering medical equipment to an incident, and flying a

security surveillance support mission.

6.2.1 Methodology

During memory recall, the CE uses real-time environmental stimuli and cues to statistically

quantify and recall memory items from LTM. Memory optimization during memory recall is

performed by the CG-PSO algorithm, and memory item fitness quantification is performed by

the adaptive entropy fitness quantification (AEFQ) algorithm. The robo-cognitive architecture

for multi-task execution and its main functions are shown in figure 6.2. To the best of our

knowledge, there has been no attempt to combine cooperative game theory and PSO for real-

time optimization of working memory in any robo-cognitive architecture.

 86

Figure 6.2 A robo-cognitive architecture, using Cowan’s attentional focus theory of working

memory.

Activated memory and focus of attention is constructed during memory recall. From the focus

of attention, actions are selected for execution by the central executive.

To assist in the description, the architecture is described using a UAV with two functions: Flight

control and Gripper Control. The robo-cognitive architecture, illustrated in figure 6.2, shows

the structure and components of the working memory, specifically:

• Central Executive (CE) – the cognitive process, governing the cognitive components

in reasoning and decision-making,

• Long-term memory (LTM),

• Short-term memory (STM),

• Environmental stimulus (ENV),

• Cues represent a mission, composed of a collection of tasks, defined by the domain

expert,

• Cue represents a specific task of the mission,

• AM represents the Activated Memory,

• FOA represents the Focus of Attention,

Working Memory

Central Executive

Memory-Recall

Memory
Buffer

(Observation,
Objective,

Knowledge)

Action
 Execution

Semantic Memory

Memory
Quantification

Simultaneous
Memory

Optimization
Cues

ENV
(Stimuli)

LTM

k

*
ja

r

r

m

Focus of Attention (FOA)

LTM STM

STM Activated
Memory (AM)

 * * *
1 2, ,... k ()*

1 2, ,...k ja a a

()*

1 2, ,...k ja a a

c

 87

• Cognitive cycle (C) – a period of memory recall, action selection and action

execution.

6.2.2 Reasoning in the robo-cognitive architecture

Reasoning in robo-cognitive architecture is a cognitive process, implemented as a coalitional

game played by the particles in a swarm. The process governs the construction of AM, from

which the FOA is identified for action selection and execution by the CE.

Formally, the coalitional game (with transferable utility) is defined as follows:

When the worth of the coalition can be distributed amongst its members, the game is called a

transferable utility (TU-Game). A coalitional game with transferable utility is defined as

follows:

Definition 6.1: A coalitional game is a pair (𝑁; 𝜐) such that:

• 𝑁 = {1,2,… , 𝑛} is a finite set of players. A subset of N is a coalition 𝑆 and the collection

of all coalitions is denoted by 2𝑁.

• 𝜐: 2𝑁 → ℝ is a function associating each coalition 𝑆 with a real number 𝜐(𝑆), satisfying

𝜐(∅) = 0. This function is also called the characteristic function of the game and 𝜐(𝑆) is

the social welfare of the coalition.

Contrary to real-world practice, in this study, coalitions may consist of a single player. For ease

of computation, every particle in a game will initially be in a coalition by him- or herself.

The maximum amount a coalition 𝑆 can generate through the cooperation of its members is the

social welfare or social utility 𝜐(𝑆), of the coalition. The coalition’s social welfare is distributed

amongst its members. The amount of utility a member 𝑥 receives is referred to as the individual

welfare or individual utility 𝜐(𝑥) the member receives from the coalition; it chooses to join. A

user-defined payoff function (see definition 3.1), calculates the utility a player will potentially

receive, when forming a coalition with another player. A player cannot receive a higher payoff

than the worth of the coalition.

In this study, the individual utility 𝜐(𝑥), is assigned by the AEFQ algorithm.

Definition 6.2: Let 𝒰 be a family of coalitional games. A solution concept over 𝒰 is a function

𝜑 associating every game (𝑁; 𝜐) ∈ 𝒰 with a subset 𝜑(𝑁; 𝜐) 𝑜𝑓 ℝ𝑁.

A single-valued solution concept, also called a point solution, is a function which assigns to

each coalitional game, a payoff vector in ℝ𝑁, indicating the individual welfare of each player

in the game. This function is performed by an arbitrator (i.e. the designer), which decides how

 88

to divide the social welfare amongst the players. A solution concept specifies the payoff each

member receives in a game and defines the players in terms of the coalition structures they form

and corresponding payoff of both coalitions and players.

Figure 6.3 shows an example of a coalition structure. In a game, memory items (see eq. 4.3)

selected from the LTM, during memory recall, are defined as quantified assets. The assets

“owned” by the player, determine the player’s utility (or worth) and is used during the

bargaining process. Given a swarm 𝕊 of 𝑁 particles, the objective of the swarm is to maximize

its collective (social) welfare by cooperatively accumulating the best assets. To achieve this, all

the particles engage in a coalitional game, (𝑁; 𝑣), possibly resulting in a coalition 𝑆, with social

utility 𝜐(𝑆), for each function of the problem.

Figure 6.3 An example of a coalition structure.

In the figure, a coalition structure, composed of three coalitions, each with two members, is

shown. In the diagram, p = particle (member) and 𝜏 = asset (state transition).

The example shows a coalition structure with 3 coalitions: 𝑆1 = {𝑝1, 𝑝2}, 𝑆2 = {𝑝3, 𝑝4} and

𝑆3 = {𝑝5, 𝑝6}. formed by a swarm of 6 particles, each with 3 assets. An asset represents a

memory item, selected from the LTM, during memory recall. The coalition structure represents

the AM for a specific function of the problem and from which the FOA (optimal asset) is

selected for action execution.

Coalition structure formation

During the cognitive cycle, the CG-PSO constructs an imputation (see definition 6.6), by firstly

constructing the coalition structure ℬ, using algorithm 6.2. The coalition structure contains

coalitions of particles, where the individual utility (fitness), 𝑓(𝑝) , of each particle, is

determined by the AEFQ algorithm. Secondly, the payoff vector of the coalition structure is

derived through the defection process (algorithm 6.3), where particles remain in a coalition or

defect to another (more profitable) coalition.

Coalition Structure

Coalition Coalition Coalition

Assets Assets Assets

 1 2 53 4 6, , , ,{ , }p p p p p p

 1 2,p p 3 4,p p 5 6,p p

52 4 6{ , , }p =
1 1 2 3{ , , }p = 73 8 9{ , , }p =

4 10 11 12{ , , }p =
5 13 14 15{ , , }p =

6 16 17 18{ , , }p =

 89

Definition 6.3: A coalition structure ℬ is a collection of disjoint sets, where each set is a

coalition 𝑆 ∈ ℬ of players. The coalition structure ℬ is therefore a partition of the set of N

players.

The solution concept 𝜑(𝑁; 𝜐; ℬ) represents a set solution concept for the coalition structure ℬ.

Associated with ℬ , is a set of payoff vectors, where each payoff vector corresponds to a

coalition 𝑆 ∈ ℬ. The rationality of the payoff distribution is important, as it influences the

decision of a player to form a coalition or defect from a coalition.

Definition 6.4: A payoff vector is socially rational if 𝑥(𝑆) ≥ 𝜐(𝑆), that is the total social

welfare of the coalition 𝑆 is divided amongst its players.

In the proposed methodology, there is no a-priori “budget” available for distribution amongst

the members. The social utility of a coalition, defined in definition 6.1, is calculated as the sum

of the individual utility of its members and each member is “awarded” only the utility he/she

contributed. Therefore, in the robo-cognitive architecture, coalitions are always socially

rational, as each member receives at least what he contributed and there is no “unallocated”

utility.

Definition 6.5: A payoff vector is individually rational if 𝑥𝑖 ≥ 𝜐(𝑖). Since every player can

guarantee at least his current individual welfare 𝜐(𝑖) if he/she doesn’t join, it is reasonable to

assume he/she will demand at least this amount when joining the coalition. (Also see comment

– definition 3.2)

In the proposed methodology, this definition is ignored for performance reasons. When a

particle defects from a coalition it may transfer some of its assets before defecting, thereby

reducing its individual utility. However, since the particle joins a coalition, relevant to the

category of its assets, it may be argued that the particle will receive a bigger payoff because its

assets are worth more to the coalition it joins.

When a payoff vector is socially and individually rational, it is called an imputation of the

coalition and is defined in definition 6.6 below.

Definition 6.6: Let (𝑁; 𝜐) be a coalitional game, and let ℬ be a coalitional structure. An

imputation 𝑥, for the coalitional structure ℬ is a vector 𝑥 ∈ ℝ𝑁 which is both socially and

individually rational for ℬ. The set of all imputations for ℬ is denoted by 𝑋(ℬ; 𝜐):

𝑋(ℬ, 𝜐) ≔ {𝑥 ∈ ℝ𝑁 ∶ 𝑥(𝑆) = 𝜐(𝑆) ∀𝑆 ∈ ℬ, 𝑥𝑖 ≥ 𝜐(𝑖) ∀𝑖 ∈ 𝑁}

where 𝑥(𝑆) is a vector of payoffs to all players in coalition 𝑆 and 𝜐(𝑆) is the total value of the

coalition.

An imputation, 𝑥 ∈ 𝑋(ℬ, 𝜐) is denoted by,

 90

 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁) (6.1)

where 𝑥𝑖 ; 𝑖 ∈ [1, 𝑁] represent the payoff player 𝑖 receives.

The set of imputations forms the basis for rational bargaining, amongst the particles in the

swarm. The bargaining set, is a coalitional solution concept and is the set of all imputations in

X(ℬ, υ) at which every objection of one player against another player in the same coalition in

the coalitional structure ℬ, is met by a counter objection. In other words, it is the set of all

imputations against which unjustified objections are raised and forms the basis for negotiation

amongst the players. Bargaining may be described as an iterative, negotiation-objection-counter

objection, process. However, in this study, the performance of the cognitive process is

important for the high-level control of a UAV. Therefore, bargaining will be limited to

negotiation-objection process only, where there is no counter-objection raised by the initiating

player. This prevents intractable and expensive recursive negotiations between particles.

Definition 6.7: Let (𝑥, ℬ) be an imputation, and let 𝑘, 𝑙(𝑘 ≠ 𝑙) be two players belonging to

different coalitions in ℬ. An objection of player 𝑘 against player 𝑙 at 𝑥 is a pair (𝐶, 𝑦) such that:

1. 𝐶 ⊆ 𝑁 is an alternative coalition containing 𝑘 but not 𝑙: 𝑘 ∈ 𝐶, 𝑙 ∉ 𝐶.

2. 𝑦 ∈ ℝ|𝐶| is a vector of real numbers satisfying 𝑦(𝐶) = 𝜐(𝐶), and 𝑦𝑖 > 𝑥𝑖 for each

player 𝑖 ∈ 𝐶.

where 𝑦 is an alternative imputation (see definition 6.6), 𝑦(𝐶) = 𝜐(𝐶) indicates the social

rationality (see definition 6.4) of the alternative coalition 𝐶 and 𝑦𝑖 > 𝑥𝑖 indicates the individual

rationality (see definition 6.5) of all the players in the alternative coalition. The alternative

coalition is the coalition that will be formed if 𝑘 decides to join.

This definition states: player 𝑘 raises an objection to player 𝑙’s offer since he/she can potentially

receive a larger payoff (𝑦𝑖), when he/she joins an alternative coalition 𝐶, than he/she would

have received (𝑥𝑖), if joining 𝑙’s coalition. The objection is a result of the rational behaviour of

player 𝑘 in maximizing his utility.

Definition 6.8: Let (𝐶, 𝑦) be an objection of player 𝑘 against player 𝑙 at 𝑥. The objection is

justified if player 𝑙 has no counter objection to it.

As an example of the bargaining process, consider a swarm of four particles: A, B, C and D.

Particle A requests particle B to join its coalition. Particle B checks with particles C and D, to

establish whether he/she can do better (rational behaviour) if he/she forms/joins a coalition with

one of them. If he/she will be better off joining either C or D, he/she will object to particles A’s

offer. Particle A then approaches particle C with the same request and the process is repeated.

 91

How the particles join coalitions are random, based on the potential payoff the candidate

particle will receive, i.e. the offer of the recruiting particle.

Let particle 𝑖 be the recruiting particle, and particle 𝑗 be the candidate particle. The potential

payoff particle 𝑖 offers particle 𝑗, is calculated as,

 𝑜𝑓𝑓𝑒𝑟𝑖𝑗 = 𝑣(𝑆𝑝𝑖) + 𝑣(𝑝𝑗) (6.2)

where 𝑜𝑓𝑓𝑒𝑟𝑖𝑗 represents the payoff “promised” to particle j if he/she joins particle 𝑖 ’s

coalition. The utility 𝑣(𝑝𝑗) of particle 𝑗 is calculated by summing the total fitness of all assets

(memory items) owned by particle 𝑗. The fitness of each asset is quantified using the AEFQ

algorithm. The social utility of particle 𝑖’s coalition is represented by 𝑣(𝑆𝑝𝑖) and is the sum of

the utility (fitness) of all particles in the same coalition as particle 𝑖. The utility, 𝑜𝑓𝑓𝑒𝑟𝑖𝑗, which

is offered to particle 𝑗, is the social utility of particle’s 𝑖’s coalition plus the utility particle 𝑗

will contribute to the coalition if it joins the coalition.

Given definitions 6.3 – 6.8, the bargaining set can now be defined.

Definition 6.9: Let (𝑁; 𝜐) be a coalitional game, and let ℬ be a coalitional structure. The

bargaining set relative to the coalitional structure ℬ, is the set ℳ(𝑁; 𝜐; ℬ) of imputations in

𝑋(ℬ, 𝜐) at which no player has a justified objection against any other player in the same

coalition.

From the bargaining set, a point solution concept [119] can now be defined as,

 𝜑 = (𝑥; 𝑆1, 𝑆2, . . . , 𝑆𝑛ℱ) (6.3)

where 𝑥 is the imputation (definition 6.6) and 𝑆j ; 𝑗 ∈ [1, 𝑛ℱ] represent the 𝑗𝑡ℎ coalition in the

coalition structure ℬ, representing a function in ℱ.

Each iteration of the CG-PSO is a cognitive cycle, during which bargaining takes place. Each

particle in the swarm, in turn, bargains with (or requests) every other particle in the swarm to

join its coalition. During the cognitive cycle, the decision of the particle to join or not join, is

made based the rationality of the particle. The particle’s individual utility is determined by the

worth (i.e. fitness) of the quantified assets (i.e. memory items) it owns. The particle’s rationality

is driven by the offer (eq. 6.2), which is influenced by the particle’s individual utility and the

coalition’s social utility.

The bargaining process for the construction of the coalition structure of the imputation

performed by the CG-PSO algorithm, shown in Algorithm 6.2.

 92

Algorithm 6.2 Coalitional game-theoretic PSO (CG-PSO) algorithm

1: Input : Cues, LTM, ENV, STM

2: Output: coalition structure, ℬ

3:

4: Begin

5: Initialize a swarm, 𝕊 of 𝑁 particles, each particle contains 𝑛

6: randomly selected state transitions, 𝜏𝑘 ∈ LTM.

7:

8: Initialize coalition structure, ℬ with each particle in its own coalition:

9: for each particle 𝑝𝑖 ∈ 𝕊

10: set 𝑆𝑖 = {𝑝𝑖}

11: add 𝑆𝑖 to ℬ

12: endfor

13: -- Start negotiation (bargaining) cycle

14: repeat

15: for each particle 𝑖 ∈ 𝕊

16: for each particle 𝑗 ∈ 𝕊 where (𝑗 ≠ 𝑖)

17: -- particle 𝑖 negotiate with particle 𝑗 to form {𝑖, 𝑗}

18: -- calculate an offer from particle 𝑖 to particle 𝑗 using eq. (6.2)

19: calculate 𝑜𝑓𝑓𝑒𝑟𝑖𝑗 using (6.2)

20: for each particle 𝑘 ∈ 𝕊 where (𝑘 ≠ 𝑗) and (𝑘 ≠ 𝑖)

21: -- particle 𝑗 negotiates with particle 𝑘 to form {𝑗, 𝑘}

22: -- calculate an offer from particle 𝑗 to particle 𝑘

23: -- using eq. (6.2)

24: calculate 𝑜𝑓𝑓𝑒𝑟𝑗𝑘

25: if 𝑜𝑓𝑓𝑒𝑟𝑗𝑘 > 𝑜𝑓𝑓𝑒𝑟𝑖𝑗

26: particle 𝑗 objects to particle 𝑖’s offer -- see def. 6.7

27: else

28: particle 𝑗 defects from 𝑆j -- using algorithm 6.3

29: particle 𝑗 joins 𝑆𝑖

30: endif

31: endfor

32: endfor

33: endfor

34: until end condition

35: return ℬ

36: end of working memory optimization

The bargaining process causes coalitions of particles to form in a way which maximizes the

social utility of the coalition. This is similar to the behaviour of the swarm in PSO, where

particles converge on the global best solution.

 93

In order to keep the response time for memory recall as low as possible, bargaining is limited

to objections only. However, for problems without strict performance constraints, the

negotiation-objection-counter objection may prove useful for coalition-formation, based on

more complex negotiations and formation rules. For completeness of the role of the bargaining

set in coalitional games theory, the definition of a counter-objection is given below.

Definition 6.10: Let (𝐶, 𝑦) be an objection of player 𝑘 against player 𝑙 at payoff 𝑥𝑖 of the

payoff vector. A counter objection of player 𝑙 against player 𝑘 is a pair (𝐷, 𝑧) satisfying:

1. 𝐷 is a coalition where 𝑙 ∈ 𝐷 and 𝑘 ∉ 𝐷.

2. 𝑧 ∈ ℝ𝐷 and 𝑧(𝐷) = 𝜐(𝐷).

3. 𝑧𝑖 ≥ 𝑥𝑖, for every player 𝑖 ∈ 𝐷\𝐶.

4. 𝑧𝑖 ≥ 𝑦𝑖, for every player 𝑖 ∈ 𝐷 ∩ 𝐶.

This definition states: a counter objection is raised by player 𝑙 if he/she can find another

coalition D of which he/she (but not 𝑘) is a member and the worth of coalition D is divided in

such a way that each member of 𝐷\𝐶 receives at least what he/she receives under 𝑥, and each

member of 𝐷 ∩ 𝐶 receives at least what he/she receives under 𝑦 (offered by 𝑘 in his objection

to 𝑥).

The solution concept can now be completed by constructing the payoff vector (imputation).

Payoff vector construction

To assist in the construction of the payoff vector 𝑥, each coalition is categorized according to

the assets possessed by its members. Each asset in the search space belongs to a specific

function 𝑓𝑗 and therefore coalitions will be formed which fully represent a single function, 𝑓𝑗 ∈

ℱ, (referred to as P-coalition, indicating it is a “pure” coalition) or a mix of functions (referred

to as a D-coalition, indicating members will defect in to join another P-coalition.

A coalition whose members possess assets only from a single function 𝑓1 is a P-coalition and

is assigned type 𝐴, a coalition whose members only possess assets only from function 𝑓2 is also

a P-coalition and is assigned type 𝐵 and so on. A coalition whose members possess assets from

various functions, is a D-coalition and is assigned a unique type 𝐷 (reserved for these types of

coalitions). (Category codes used are arbitrary and the decision of the designer).

Let,

 𝜔𝑆𝑗 = {
1 ; 𝑖𝑓 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛 𝑆𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝐷_𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛

0 ; 𝑖𝑓 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛 𝑆𝑗 𝑖𝑠 𝐷_𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛
 (6.4)

 94

be a payoff weight assigned to a coalition 𝑆𝑗, based on the assets of its members. The social

utility of coalition 𝑆𝑗 is then defined as,

 𝜐(𝑆𝑗) = 𝜔𝑆𝑗 ∗ ∑ 𝜐(𝑝𝑖)𝑝𝑖∈𝑆𝑗 ; 𝑖 = 1, . . 𝑁 (6.5)

which is shared in full with each member particle:

 𝑥𝑝𝑖 = 𝜐(𝑆𝑗) ; 𝑝𝑖 ∈ 𝑆𝑗 (6.6)

The payoff weight controls the behaviour of particle’s movement towards maximizing the

social utility. A positive payoff by the coalition encourages particles to remain in the coalition,

while particles who receive no payoff is incentivised to defect and join a more profitable

coalition.

The payoff vector (imputation) 𝑥, for coalition structure ℬ, is constructed:

 𝑥 = (𝑥𝑝1 , 𝑥𝑝2 , … , 𝑥𝑝𝑖); 𝑥𝑝𝑖 ∈ 𝑆𝑗 and 𝑆𝑗 ∈ ℬ (6.7)

The coalition structure ℬ represents the AM for a function. The FOA can only be selected from

AM represented by P-coalitions. Therefore, for any D-coalitions, a negotiation must take place

between its members and other relevant P-coalitions. The objective is for particles in a D-

coalition to defect to other, more “profitable” coalitions. Algorithm 6.3 shows the defection

process:

Algorithm 6.3 Particle defection process

1: begin

2: given coalition structure ℬ ∈ 𝜑

3: For each 𝐷-Coalition ≠ ∅

4: for each particle in type D-Coalition

5: Separate assets into function-type sets

6: Retain function-type set with the largest number of assets.

7: Transfer all other assets to particles in relevant coalitions

8: Defect from D-Coalition

9: Join relevant P-coalition according to retained assets

10: endfor

11: endfor

12: end defection

Finally, after defections, the point solution concept 𝜑 is complete and each coalition 𝑆𝑗 ∈ 𝜑

represents the AM for a specific function 𝑓𝑗 ∈ ℱ.

 95

6.2.1.3 Action selection and execution

The cognitive process of the robo-cognitive architecture concludes with action select and

execution by the CE. With the solution concept (containing the coalition structure) constructed,

the FOA can be set and the CE selects the action/s from 𝐴𝑘 = {𝒶1, … , 𝒶𝑛𝐴𝑘
}, defined by the

asset. The relevant command/s is/are derived from the selected action/s and sent to the UAV

controller for execution.

The complete cognitive reasoning process of the robo-cognitive architecture is shown in

Algorithm 6.4.

Algorithm 6.4 Cognitive reasoning process (CRP)

1: Initialize:

2: Cues, 𝛷𝑐 -- see eq. (4.1)

3: Long Term memory, LTM -- see eq. (4.2) and (4.3)

4: Short term memory, STM -- see eq. (4.5)

5: Environmental info, ENV -- see eq. (4.4)

6: Activate memory, AM = {}

7:

8: begin -- reasoning process, given a cue from Cues

9: for each cue in Cues

10: Input environment stimuli, ENV

11: Given the cue and ENV, retrieve related STM

12:

13: -- Construct the coalition structure ℬ of 𝜑

14: ℬ𝑥 = 𝐶𝐺_𝑃𝑆𝑂(𝐶𝑈𝐸, LTM, ENV, STM) using Algorithm 6.2

15:

16: -- Construct the payoff vector of 𝜑

17: for each 𝑆𝑗 ∈ ℬ𝑥

18: Categorize coalition 𝑆𝑗 as P-coalition or D-coalition

19: Calculate payoff 𝜐(𝑆𝑗) using eq. (6.5)

20: Endfor

21:

22: -- Assign utility to each member of ℬ𝑥

23: for each 𝑝𝑖 ∈ 𝑆𝑗 and 𝑆𝑗 ∈ ℬ𝑥

24: Assign individual utility using eq. (6.6)

25: endfor

26:

27: -- Process defections and complete coalition structure construction

28: Process defections from D-coalition using Algorithm 6.3

29: -- Calculate payoff vector (imputations) (see eq. (6.7))

30. AM = 𝐼𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑥

 96

31.

32. -- Construct Focus of Attention set

33. for each 𝜏𝑘
∗ ∈ AM

34. if 𝜏𝑘
∗ = 𝑐𝑢𝑒. 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒

35. Add 𝜏𝑘
∗ to FOA

36. endif

37. endfor

38. endfor

39.

40. -- Action selection and execution

41. for each 𝜏𝑘
∗ ∈ FOA

42. for each 𝑎𝑗
∗ ∈ 𝐴𝜏𝑘

∗

43. execute action 𝑎𝑗
∗

44. endfor

45: endfor

46. end cognitive process

6.3 Conclusion

Two robo-cognitive architectures were developed in this chapter. The methodology, developed

in section 6.1, constructs optimal episodic memory, based on Baddeley’s model of working

memory, for the real-time, high-level control of an autonomous vehicle.

The methodology, developed in section 6.2, constructs a focus of attention from activated

memory, based on Cowan’s attentional focus model of working memory, for the real-time,

high-level control of an autonomous vehicle.

The cognitive reasoning processes of both architectures, uses the memory representation (LTM)

and memory quantification (AEFQ), developed in chapter 4. Both architectures will be

evaluated by simulation in the next chapter.

 97

Chapter 7

Evaluation by Simulation

In order to evaluate the suitability of the two architectures developed in sections 6.1 and 6.2,

four practical uses cases are defined. Each use case is executed in an unmanned aerial vehicle

simulation. This chapter defines the use cases and simulation setup in detail. Each simulation

is then executed and the results are evaluated and discussed in detail.

7.1 Real-time Episodic Memory Construction in Cognitive Control of

Autonomous Vehicles

Two use cases are designed for the evaluation of the robo-cognitive architecture, developed in

section 6.1. The first use case executes a recharging mission and the second use case executes

a medical package delivery mission. The architecture provides real-time, high-level control

using episodic memory construction, based on Baddeley’s working memory model.

7.1.1 Use cases

Use case 1

From the Home (I) location, arm (turn on) the motors, ascend to a specified operational height

and fly to the Charging point (IV), passing over the Collection and Delivery locations. Descend

on the charging point and disarm (turn off) the motors. As collection and delivery are not

performed in the mission, these destinations are ignored by the UAV.

Figure 7.1 Use case 1 - unmanned aerial vehicle recharging.

I

Home
II

Collection
Point

III

Delivery
Point

IV

Charging
Point

UAV1

mu1

UAV1

mu1

 98

Use case 2

From the Home (I) location, arm (turn on) the motors, ascend to a specified operational height

and fly to the Collection point (II). Descend and collect the cargo, then ascend to the specified

operational height and fly to the Delivery point (III). Descend at the delivery point and deliver

the cargo. Ascend to a new operational height and fly to the Charging point (IV) for recharging.

Descend on the charging point and disarm (turn off) the motors.

Figure 7.2 Use case 2 - unmanned aerial vehicle medical equipment delivery.

7.1.2 Simulation setup

The unmanned aerial vehicle in the simulations, have the states defined in section 4.1, figures

4.1 and 4.2 and the LTM for the robo-cognitive architecture of the unmanned aerial vehicle is

the set of state transitions, defined in section 4.1.2 and illustrated in figure 4.3.

The simulations were executed on an Intel i7 laptop computer with 2.97GHz quad-core CPU,

16Gb RAM and an Intel HD Graphics 4000 video adapter. Figure 7.3 illustrates the system

architecture of the simulation environment. The cognitive architectures developed in section

6.1 are implemented in a C# program, representing the cognitive reasoning process. A

simulation client program, which passes relevant control commands to the simulator module,

is developed in C++. Communication between the C++ simulation components and the CRP is

performed via a Redis cache database, thereby providing functional abstraction. The simulation

environment for the unmanned aerial vehicle is the Unity games engine.

Γ1 Γ1

α β

mu1

I

Home
II

Collection
Point

III

Delivery
Point

IV

Charging
Point

UAV1UAV1

mu1

UAV1

mu1

UAV1

mu1

 99

Figure 7.3 The main components of the simulation platform architecture.

The CRP passes messages based on actions selected by the central executive, to the simulation

client, via the Redis database middleware. The simulation client formulates and passes the

control command the simulation engine, which executes the commend. The result, i.e.

behaviour of the UAV is displayed in the Unity games engine simulation.

For each of the use cases, an annotated video of the simulation is recorded and published to

YouTube:

1. Use case 1 - Cognitive Robotics - Autonomous UAV recharging [127]

2. Use case 2 - Cognitive Robotics - Autonomous medical supplies delivery [128]

7.1.3 Evaluation criteria

The methodology is evaluated by simulation, where a UAV autonomously executes two use

cases, one simple and one more complex. The performance measures for each of the use cases

are:

1. Success – Measured by inspecting the completeness of the learned state flow, for each

mission and;

2. Reasoning – Measured by inspecting the level of velocity control of the UAV, based on

reasoning about the statistical fitness of each state transition.

UAV Cognitive Control Architecture

Windows 10

SM

Cues

UAV CRP
(C#)

Unity Engine
v2018.2.17

AirSim
Simulator

(C++)

AirSim
Drone Client

(C++)

Redis Database

Display

Domain
Expert

 100

7.1.4 Simulation results

7.1.4.1 Use case 1 - results

Figure 7.4 shows the resulting state flow for use case 1, dynamically constructed by the central

executive during the execution of use case 1. The start state is state s1, i.e. Motors Off.

Figure 7.4 Resulting state flow of use case 1.

The diagram shows the applicable states and state transitions, with each transition labelled with

the task number, relevant command (action) and state transition fitness.

The resulting state flow can be saved and, provided the mission and operational conditions

remain the same, may be used as a high-level controller to execute similar, subsequent missions.

To demonstrate the usefulness of the memory item quantification in the dynamic control of the

velocity of the UAV, the resulting probability distribution produced by the quantification was

used. In this study, the velocity of the UAV (eq. 7.1), is dynamically derived by multiplying

the fitness, 𝛱 (eq. (4.20)) by an arbitrary factor, chosen by the designer.

 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 0.3𝛱 (7.1)

After running some simulations and observing the behaviour of the UAV, a factor of 0.3 was

chosen.

Figure 7.5 below shows the dynamic control of the velocity, derived from the state transition

fitness. The graph shows the reduction in velocity, in accordance with the reduction in fitness

of the “fly” state transition, as the UAV nears its destination.

s1 s2(1:[arm,1.0])

Motors Off Motors On

Rotating cargoattached

s8

cargoreleased

s9

Ascending

(2:[ascendto,0.4])

Hovering

(4:[hoverfor,1.0])

Flying

Descending

s7

(5:[flyto,0.4])

s4

s5

(28:[disarm,1.0])

s6

s3

(3:[hoverfor,0.4])

(6:[flyto,0.38])
(7:[flyto,0.35])
(8:[flyto,0.30])
(9:[flyto,0.28])
(10:[flyto,0.25])
(11:[flyto,0.23])
(12:[flyto,0.23])
(13:[flyto,0.20])
(14:[flyto,0.20])
(15:[flyto,0.20])
(16:[flyto,0.18])
(17:[flyto,0.18])
(18:[flyto,0.18])
(19:[flyto,0.15])
(20:[flyto,0.15])
(21:[flyto,0.15])
(22:[flyto,0.15])

(24:[descendto,0.15])

(25:[descendto,0.15])

(26:[descendto,0.15])

(26:[descendto,0.15])

 101

Figure 7.5 Dynamic velocity adjustment during use case 1.

The graph shows automatic adjustment of the velocity (bottom) which corresponds to the

fitness (top).

On the graph, the target destination (charging) of mission 1 can be seen at task 18. The graph

shows that the UAV proportionally reduces its velocity as it approaches its destination (see eq.

7.1).

Figures 7.6 and 7.7 show some key stages in the simulation for use case 1. The window at the

bottom shows the central executive finding the optimal state transitions and sending the

corresponding actions to the simulator. The window on the left shows the results of the

simulator as it performs the actions received from the central executive.

Figure 7.6 below, shows the UAV reducing its velocity, using the dynamic velocity adjustment

derived from the fitness quantification, as the UAV approaches its target. This behaviour is

used to evaluate performance measure 2 (defined in see section 7.1.3).

 102

Figure 7.6 UAV adjusting its velocity.

The image shows the UAV reducing its velocity, based on the real-time calculation of the

fitness of the “flyto” state transition, as it approaches its target destination

As the UAV approaches its target, Pr(φi
r < φj

m) is reduced from 0.3 to 0.25 and the velocity

of the UAV (indicated in the window left) is adjusted accordingly from 8.00 𝑚/𝑠 to 2.00 𝑚/𝑠.

Figure 7.7 below, shows the successful completion of the mission. This behaviour is used to

evaluate performance measure 1.

Figure 7.7 UAV reaching its destination and completing the mission.

When the UAV reached its target destination (the charging point), it descends and successfully

completes the mission.

 103

7.1.4.2 Use case 2 - results

Figure 7.8 shows the resulting state flow for use case 2, dynamically constructed by the central

executive during the execution of use case 2. The start state is state s1, i.e. Motors Off.

Figure 7.8 Resulting state flow constructed for use case 2.

The diagram shows the applicable states and state transitions, with each transition labelled with

the task number, relevant command (action) and state transition fitness.

The resulting state flow in figure 7.9 shows the dynamic velocity control, derived from the state

transition fitness. The graph shows the corresponding reduction in velocity every time the UAV

near its target.

s1 s2(1:[arm,1.0])

Motors Off Motors On

Rotating

cargoattached

cargoreleased

Ascending

Hovering

(20:[hoverfor,1.0])

Flying

Descending

s7

(5:[flyto,0.4])

(12:[hoverfor,1.0])

s4

s5

s6

s3

(3:[ascendto,0.4])

(6:[flyto,0.4])
(7:[flyto,0.25])
(8:[flyto,0.18])
(9:[flyto,0.18])
(10:[flyto,0.15])
(11:[flyto,0.15])

(13:[descendto,0.15])

(14:[descendto,0.15])

(31:[descendto,0.15])

(22:[flyto,0.35])
(23:[flyto,0.28])
(24:[flyto,0.23])
(25:[flyto,0.20])
(26:[flyto,0.18])
(27:[flyto,0.15])
(28:[flyto,0.15])

(15:[hoverfor,1.0])

s8

(17:[hoverfor,1.0])

(19:[ascendto,0.4])

(21:[flyto,0.4])

(29:[hoverfor,1.0])

(30:[descendto,0.15])

(32:[hoverfor,1.0])

s9

(33:[releasecargo,1.0])

(35:[ascendto,0.4])

(36:[ascendto,0.4])

(37:[hoverfor,1.0])

(38:[flyto,0.4])

(39:[flyto,0.35])
(40:[flyto,0.25])
(41:[flyto,0.18])
(42:[flyto,0.15])
(43:[flyto,0.15])

(44:[hoverfor,1.0])

(46:[descendto,0.15])
(47:[descendto,0.15])
(48:[descendto,0.15])

(49:[disarm,1.0])

(4:[hoverfor,1.0])

(45:[descendto,0.15])

 104

Figure 7.9 Dynamic velocity adjustment during mission 2.

The graph shows automatic adjustment of the velocity (bottom) which corresponds to the

fitness (top).

On the graph, the three target destinations (collection, delivery and charging) of the missions

can be seen at tasks 7, 15, and 21. The graph shows that the UAV proportionally reduces its

velocity as it approaches each of the destinations (see eq. 7.1).

Figures 7.10, 7.11 and 7.12 shows some key stages in the simulation for use case 2. Figure 7.10

shows the UAV in process of collecting its cargo.

Figure 7.10 UAV collecting its cargo at the collection point.

 105

Figure 7.11 shows the UAV adjusting its velocity in accordance with the fitness of the state

transition, fly.

Figure 7.11 UAV reducing its velocity as it approaches its target destination.

Figure 7.12 shows the UAV successfully delivering its cargo at the specified target location.

Figure 7.12 UAV successfully delivering its cargo.

 106

7.1.5 Discussion

The domain expert submits the mission definition, the long-term memory, short-term memory

and initial environmental stimuli to the central executive for execution. Each mission contains

a list of actions to be performed successfully in order to successfully complete the mission. The

mission, long-term memory, short-term memory and environmental stimuli are provided in

extensible markup language (XML) format. After the initial loading of the definitions,

modification of either the long-term memory, or the mission, means an update of a state

transition in the long-term memory or an update of the mission and environmental data

definitions. Changing between missions is simply a number change in the configuration of the

central executive, which may be performed by the operator or autonomously, based on the

central executive reasoning. This achieves the one objective of the study, i.e. simplifying the

maintenance of the knowledge of a remotely deployed autonomous vehicle.

In the implementation of the central executive, a mission task was repeatedly executed, until

the task objective has been reached. Due to some lagging in the communication between the

AirSim simulator and Unity games engine, it was observed that, at high velocity, the UAV

would overshoot its target destination in the Unity games engine. The delay in the Unity games

engine to calculate the UAV’s current position, causes the UAV to miss its objectives.

However, with the autonomous and dynamic velocity control, an unexpected result was

observed. The UAV would autonomously correct its positioning, by repeating the task, while

constantly reducing its velocity according to the fitness of the task. At low velocity, the

positioning of the UAV was quite accurate and it could achieve its objectives. With the

autonomous velocity control, the UAV was able to successfully reach the charging station in

use case 1 and was able to successfully collect and deliver its cargo in use case 2.

The results (figures 7.4 and 7.8) show that the UAV can successfully execute its missions by

optimizing the expert-provided knowledge and dynamically generating and executing its high-

level controller. The behaviour of the UAV in both use cases are demonstrated in the

accompanying videos [127, 128].

Although this approach is suitable for the successful execution of missions which involve a set

of tasks to be executed in sequence, one-by-one, most robots can perform multiple tasks, often

independent and in parallel. For example, a state flow for flight-control, a state flow for camera

control and a state flow for gripper control. Memory recall, therefore, needs to optimize the

memory for multiple functions. The SPSO algorithm is able to produce an optimal set of

memory items, based on a single objective (function). However, multiple objectives are not

possible with the SPSO, without significant changes to the set-based operators. Changing the

 107

set-based operators will result in the SPSO architecture losing the individual and social

characteristics, typical of swarm behaviour. In order to retain the swarm characteristics, while

providing memory optimization for multiple objectives, a novel games-theoretic PSO

algorithm, is developed in the next section.

Performance

The simulation was executed repeatedly, with consistent results. It was uncertain whether all

the required actions of the missions would be selected and executed successfully or whether

some actions would be missed. However, figures 7.4 and 7.5 (for use case 1) and figures 7.8

and 7.9 (for use case 2) show that the central executive successfully executed all actions of the

missions submitted by the domain expert. This success was also observed during the simulation.

Figures 7.5 and 7.9, for use case 1 and 2 respectively, show the successful reasoning for velocity

control, using statistical reasoning. The figures show the corresponding velocity adjustment,

based on the fitness (probability).

In addition, conducting the simulations also showed the following general benefits:

• The approach is less error-prone and requires less communication bandwidth to

maintain because, in our approach, knowledge and missions are defined using a simple

structure. The trigger memory item of state transitions is constructed as a simple

conjunction of propositions, and is therefore more intuitive to the domain expert.

Moreover, the knowledgebase and missions can be modified independently, reducing

errors during the updating process.

• There is no re-learning of complex statistical reasoning models or networks whenever

the knowledge or evidence changes because, in our approach, potential solutions are

evaluated in real-time and a statistical model for reasoning is generated in real-time by

the MEP.

• Autonomous behaviour can be controlled more effectively because in our approach,

the probabilities and marginal probabilities provided by the AEFQ algorithm enables

finer control of the statistical fitness evaluations of the state transitions.

• The high-level control provided by the CRP is more representative of human cognition,

because in our approach, the open world assumption is followed. This means the action

of a state transition may be less probable, but not impossible. This gives the CRP

powerful reasoning capabilities.

• The fitness of a state transition is a true representation of the environment because, the

MEP applied in our approach, guarantees an accurate probability assignment, based

 108

only on the constraint averages derived from the mission constraints and environmental

evidence. There are no other subjective control parameters or bias in the fitness

quantification.

Time Efficiency

The objective of this study is the real-time, high-level control provided by the CRP. Therefore,

the time efficiency of the CRP, i.e. the time taken by the AE-SPSO to find an optimal solution

for a mission task, is evaluated. Optimization algorithms, including the PSO algorithm, are

known for the extensive time it takes to converge on an optimum. This is especially true for

large, multi-dimensional and real search spaces. However, in this approach, the search space is

finite and discrete, allowing the AE-SPSO to find optimal solutions in acceptable and sufficient

time. Moreover, the control parameters of the AE-SPSO make it easy to scale the performance

of the PSO when the search space increases.

Figure 7.13 below, shows the time the CRP took to find an optimal solution for each of the

tasks of each mission.

Figure 7.13 Cognitive reasoning process (CRP) time for use cases 1 and 2.

The CRP time for use case 1 (mission 1) is shown on top and the CRP time for use case 2

(mission 2), is shown below.

 109

The average CRP time for use case 1 was 0.0785 sec and for use case 2, the average CRP time

was 0.1477 sec. These times were found to be completely suitable for the high-level control of

the UAV, while executing its missions.

Simulation constraints

The performance of the UAV may appear slow in the videos. This is because the complex

integration architecture of the AirSim simulator and the Unity games engine is not optimal and

causes a considerable time lag between the simulator and the games engine.

Similar to the use case 1 behaviour discussed in section 7.1.5, it was observed that, at high

velocity, the UAV would overshoot its target destination in the Unity games engine. This

resulted in the target position parameters reported by the AirSim to be inconsistent from that

reported by the games engine. This caused the UAV to wrongly interpret its position and

therefore miss its objectives. To improve the performance, a delay was explicitly implemented

between the execution of mission tasks, in order to give the games engine and simulator time

to synchronise. Assisted by the explicit delay, the UAV would autonomously correct its

positioning, by repeating the task, while constantly reducing its velocity according to the fitness

of the task. At low velocity, the positioning of the UAV was quite accurate and it could achieve

its objectives. With the autonomous velocity control, the UAV was able to successfully reach

the charging station in use case 1 and was able to successfully collect and deliver its cargo in

use case 2.

It is plausible that a similar problem could occur in a real-world scenario, where a physical

UAV is used. Therefore, correction control measures for positioning correction will have to be

developed. These measures would use the fitness quantification, similar to the way velocity

control is derived, as discussed in section 7.1.4.1 and using eq. (7.1).

7.2 Real-time Activated memory Construction for Cognitive Control of

Autonomous Vehicles

Two simulations are designed for the evaluation of the robo-cognitive architecture, developed

in section 6.2. The architecture provides real-time, high-level control using activated memory

and focus of attention construction, based on Cowan’s attentional focus theory of working

memory.

 110

7.2.1 Use Cases

The methodology is evaluated by simulation, where a UAV autonomously executes two use

cases. In the simulation, a drone station is located at the Surbiton Health Centre for community

support.

A domain expert defined two use cases for the UAV. The first mission is a request for a UAV

to make a delivery of a medical package and is comprised of 25 tasks. The second mission is a

request for aerial surveillance and is comprised of 15 tasks. During each mission, each of the

tasks is presented to the cognitive process of the robo-cognitive architecture, as a cue. The UAV

must successfully reason about each cue and successfully select and execute the command

derived from the FOA.

Use case 3

Scenario: There is a request from healthcare personnel for medical equipment to be delivered

to Surbiton train station as a result of a medical incident.

The proposed UAVs delivery approach facilitates telemedicine and makes it possible for

medical professionals to interact with patients remotely, saving time by delivering urgent

medication, prescription orders for medicine to the doorsteps of surgeries and care homes in

the community.

It could reduce overcrowding by making this proposed approach more practical for non-urgent

patients to receive care in local surgeries closer to home.

Use case 4

Scenario: A security incident was reported by a Furniture Company and the police requested

aerial surveillance of the area. The proposed UAVs delivery approach facilitates on-demand

surveillance support to local law-enforcement and security personnel.

7.2.2 Simulation setup

7.2.2.1 Simulation architecture

Hardware: The simulations were executed on an Intel i7 laptop computer with 2.97GHz quad-

core CPU, 16Gb RAM and an Intel HD Graphics 4000 video adapter.

Software: The simulations were performed using the Drone-kit Software-in-the-loop (SITL)

(Python version) quadcopter and the ArduPilot Mission Planner Ground Control Station (GCS).

Two bespoke components were developed: the UAV cognitive process (UAV-CP), in .NET/C#

 111

and a high-level UAV control server (UAV-HC), in Python. The UAV-CP and UAV-HC

components are integrated using a Redis Cache middleware layer, thereby abstracting the

autonomous vehicle (UAV in this case) platform from the cognitive process. The UAV-HC

server listens for messages from the UAV-CP, and passes the relevant low-level control

commands to the UAV, using MAVProxy protocol. All the components are deployed on a

computer with the Microsoft Windows 8.1 operating system.

Figure 7.14 below illustrates the simulation’s software architecture:

Figure 7.14 Simulation platform system architecture for uses cases 3 and 4.

The cognitive reasoning process (C#), passes a message on to the high-level control component

(Python), via the Redis database middleware. The high-level control component formulates a

MAVProxy command which is passes to the DroneKit simulation platform. The result, i.e.

behaviour of the UAV is displayed in Missionplanner ground control station.

7.2.2.2 Simulation parameters

In order to measure the time efficiency of robo-cognitive architecture, an arbitrary maximum

processing time limit (MPt) of 2 seconds is set by the designer for the use cases. Given that the

evaluations are performed in simulation, a threshold of 2 seconds are deemed a sufficient

response time for the cognitive processing time (CPt) of the central executive. The lapse time

of the cognitive processing (memory recall and action selection) is evaluated against this time

threshold and is assumed efficient if the CPt is below the MPt, for each cue processed by the

central executive. In order to give the UAV time to complete a task in the simulation, explicit

time delays were set in the UAV control program. Therefore, evaluating the task processing

Windows 8.1

DroneKit-SITL

MAVProxy

Missionplanner

UAV-HC.py

MAVLink Cmd

Redis Cache Server

UAV-CP.exe

message

message

 112

time (TPt) against the 2 second time limit is of little use to evaluate cognitive performance.

However, it is still useful, from a practical point of view, to inspect the time it takes the UAV

to complete a task in the simulation.

The search space of the simulation is the long-term memory, shown in section 4.1, figure 4.3.

In order to keep the introduction of the methodology clear and simple, only two UAV functions

were used. However, it is clear that, without loss of generality, the proposed methodology can

be scaled to a large number of functions. However, an increase in the number of functions will

increase the size of the long-term memory. PSO was chosen for optimization in the cognitive

process, due to its scalability. The three most important PSO runtime parameters, which may

potentially impact the cognitive processing time, are:

• Swarm size (number of particles)

• Particle size (number of elements, when set-based), and;

• Iterations (for successful exploration)

The parameter sizes must be scaled according to the size of the search space. In this study, both

use cases were executed repeatedly, and the PSO parameters adjusted until the CPt was

consistently less than the MPt. Because the long-term memory for this simulation is relatively

small, the following parameter values gave acceptable processing times which were below the

MPt:

• Swarm size = 3

• Particle size = 3

• Iterations = 10

7.2.3 Evaluation criteria

Performance Measures

The performance measures for each of the use cases are:

1. Correctness – Measured by inspecting the specific states, the state transitions and

transition sequence. The learned state flow is inspected for correctness against the

reference state flows in figures 4.1 and 4.2.

2. Cognitive Processing time (CPt) – Measured by inspecting the lapsed time of the

cognitive process. The CPt is defined as the lapsed time between the receipt of a cue and

sending the appropriate command to the UAV controller. The CPt represents the

cognitive processing time (or “thinking” time) of the central executive.

 113

3. Cue processing time (TPt) - Measured by inspecting the lapsed time of cue (task)

processing. The TPt is defined as the lapsed time between the receipt of a cue and the

UAV completing the task. The TPt represents the complete processing time (or “thinking

and doing” time) of a task.

7.2.4 Simulation Results

Overview

The simulation environment is shown in Figure 7.15. The flight behaviour of the UAV is shown

in the Mission Planner CGS on the top, while the UAV-CP results are shown in the window on

the bottom left of the screen. The window on the bottom right shows the results of the UAV-

HC server. Figure 7.15 shows the UAV’s home location (H), the Surbiton Health Centre, from

where medical equipment and tests are supplied to the community.

The UAV-CP window shows the stimulus (mission task) and the central executive, composed

of the active memory (AM), the focus of attention (FOA) and the action selected and sent to

the UAV. The AM shows the collection of particles and the coalition of which it is a member.

The relevant assets of each particle are shown as well, along with the particle’s utility,

quantified by the AEFQ algorithm. The FOA shows the asset receiving the focus. determined

by its relevance to the stimulus. From the FOA, actions are selected for execution by the central

executive and passed to the UAV-HC. All the key points of the simulation environment shown

in figure 7.15.

Note that, at the start of the simulation, there are two start states, S1 and S10, for the flight-

control function and the gripper control function respectively.

The results of use case 3 are presented in tables 7.1 and 7.2, including the learned state flow in

figure 7.16. The results for use case 4 are presented in tables 7.3 and 7.4, including the learned

state flow in figure 7.17. Tables 7.1 and 7.3 show the results of the cognitive process where

columns 1 and 2 describes the cues received by the cognitive process (algorithm 6.4). Columns

3 - 5 shows the results of the AM construction (algorithms 6.2 and 6.3) and column 6 shows

the FOA, derived from the coalition structure. Tables 7.2 and 7.4 present the results for the

cognitive processing time and cue processing time, for the two use cases, respectively.

For each use case, an annotated video of the full mission simulation was recorded and published

to YouTube:

1. Use case 3 – Cognitive Robotics - On-demand UAV delivery of COVID-19 equipment [129]

2. Use case 4 – Cognitive Robotics - On-demand UAV security surveillance support [130]

 114

Figure 7.15 Main simulation functions for use cases 3 and 4.

The image shows the main functions of the simulation environment: 1) the cognitive process;

2) the UAV high-level controller and 3) the MissionPlanner ground control station.

The points of interest of the simulation environment, shown in figure 7.15, are:

1. A stimulus, provided to the cognitive process as a cue - Column 2,

2. The AM of the cognitive process – Column 3,

3. The FOA of the cognitive process – Column 6,

4. The action selected by the central executive – Column 7,

5. The UAV controller executing the command,

6. The state of the UAV after executing the command,

7. The attitude of the UAV, displayed in the GCS,

8. The Head-Up Display (HUD) of the UAV, displayed in the GCS,

9. The map of the environment, displayed in the GCS.

Use case 3 results (medical supplies delivery)

Table 7.1 shows the results of the simulation for use case 3 – delivering medical equipment to

an incident. For this simulation, two functions, flight control and gripper control are applicable.

8

5

7

6

9

2 3 4

1

115

Table 7.1 shows the results for use case 3 – medical supplies delivery.

Table 7.1 Cognitive reasoning results for use case 3.

For each cue (task), the results of the cognitive process (memory recall, activated memory, focus of attention and action selection) are shown. (Cues

relevant to function 1 are shown in blue and cues relevant to function 2 are shown in red. The asset and particle, relevant to the cue, is highlighted in bold)

(Each “p” represents a specific particle and each “t” represents an asset (memory item) of the particle)

Cues Activated Memory Focus of Attention Action Selection

No Cue Optimized LTM (Swarm) Individual Utility Coalition Structure Asset Command

1 arm
p1{ }

p2{ t10(2.0) }

p3{ t640(2.0) }

[p1(0.0), p2(2.0), p3(2.0)] { {p3},{p1,p2},{} } t10 - arm arm

2 takeoff
p1{ t640(2.0) }

p2{ t70(2.0), t80(2.0) }

p3{ }

[p1(2.0), p2(4.0), p3(0.0)] { {p3,p2},{p1},{} } t80 - takeoff takeoff,10.0

3 hoverfor
p1{ t150(1.0) }

p2{ t640(2.0) }

p3{ }

[p1(1.0), p2(2.0), p3(0.0)] { {p3,p1},{p2},{} } t150 - hoverfor hoverfor,1.0

4 flytoNED

p1{ t640(2.0) }

p2{ t225(1.33), t220(1.33),

t215(1.0) }

p3{ t235(1.5), t240(2.0),

t230(1.33) }

[p1(2.0), p2(3.7), p3(4.8)] { {p3,p2},{p1},{} } t225 - flytoNED flytoNED,-25,-5,-15

5 hoverfor

p1{ t345(1.0), t365(1.5),

t355(1.08) }

p2{ t640(2.0) }

p3{ }

[p1(3.6), p2(2.0), p3(0.0)] { {p3,p1},{p2},{} } t345 - hoverfor hoverfor,1.0

6 descendto

p1{ t640(2.0) }

p2{ t235(1.5), t225(1.33) }

p3{ t220(1.33), t230(1.33),

t215(1.0), t240(2.0) }

[p1(2.0), p2(2.8), p3(5.7)] { {p3,p2},{p1},{} } t230 - descendto descendto,-25,-5,-1

7 hoverfor
p1{ t640(2.0) }

p2{ t425(1.08) }

p3{ t410(1.0) }

[p1(2.0), p2(1.1), p3(1.0)] { {p3,p2},{p1},{} } t410 - hoverfor hoverfor,1.0

8 armgrip

p1{ t640(2.0) }

p2{ t220(1.08), t215(1.0),

t235(1.5), t230(1.08) }

p3{ t240(2.0), t225(1.08) }

[p1(2.0), p2(4.7), p3(3.1)] { {p1},{p2,p3},{} } t640 - armgrip armgrip

116

Table 7.1 Cognitive reasoning results for use case 3 - continued

Cues Activated Memory Focus of Attention Action Selection

No Cue Optimized LTM (Swarm) Individual Utility Coalition Structure Asset Command

9 attachcargo

p1{ t710(2.0) }

p2{ t700(2.0) }

p3{ t240(2.0), t230(1.08),

t215(1.0), t225(1.08),

t235(1.5), t220(1.08) }

[p1(2.0), p2(2.0), p3(7.7)] { {p3},{p2,p1},{} } t710 - attachcargo attachcargo

10 hoverfor

p1{ t230(1.08), t225(1.08),

t215(1.0), t235(1.5) }

p2{ t240(2.0), t220(1.08) }

p3{ t780(2.0) }

[p1(4.7), p2(3.1), p3(2.0)] { {p2,p1},{p3},{} } t215 - hoverfor hoverfor,1.0

11 ascendto

p1{ t780(2.0) }

p2{ t220(1.33), t215(1) }

p3{ t225(1.33), t230(1.33),

t235(1.5), t240(2.0) }

[p1(2.0), p2(2.3), p3(6.2)] { {p3,p2},{p1},{} } t220 - ascendto ascendto,-25,-5,-15

12 hoverfor

p1{ t300(1.5), t285(1.08),

t280(1.0) }

p2{ }

p3{ t780(2.0) }

[p1(3.6), p2(0.0), p3(2.0)] { {p2,p1},{p3},{} } t280 - hoverfor hoverfor,1.0

13 flytoNED

p1{ t780(2.0) }

p2{ t215(1), t235(1.5),

t230(1.33) }

p3{ t240(2.0), t225(1.33),

t220(1.33) }

[p1(2.0), p2(3.8), p3(4.7)] { {p2,p3},{p1},{} } t225 - flytoNED flytoNED,170.0,-266.0,-15.0

14 hoverfor
p1{ t345(1.0) }

p2{ t780(2.0) }

p3{ t365(1.5), t355(1.08) }

[p1(1.0), p2(2.0), p3(2.6)] { {p2},{}{p3,p1}, } t345 - hoverfor hoverfor,1.0

15 descendto

p1{ t220(1.33), t240(2.0),

t225(1.33) }

p2{ t780(2.0) }

p3{ t215(1.0), t230(1.33),

t235(1.5) }

[p1(4.7), p2(2.0), p3(3.8)] { {p3,p1},{p2},{} } t230 - descendto descendto,170.0,-266.0,-5,1

117

Table 7.1 Cognitive reasoning results for use case 3 - continued

Cues Activated Memory Focus of Attention Action Selection

No Cue Optimized LTM (Swarm) Individual Utility Coalition Structure Asset Command

16 hoverfor
p1{ t780(2) }

p2{ t410(1.0), t425(1.08) }

p3{ }

[p1(2.0), p2(2.1), p3(0.0)] { {p3,p2},{p1},{} } t410 - hoverfor hoverfor,1.0

17 releasecargo

p1{ t780(2.0) }

p2{ t230(1.08), t240(2.0),

t225(1.08), t220(1.08) }

p3{ t235(1.5), t215(1.0) }

[p1(2.0), p2(5.2), p3(2.5)] { {p2,p3},{p1},{} } t780 - releasecargo releasecargo

18 disarmgrip

p1{ t230(1.08), t240(2.0) }

p2{ t830(2.0) }

p3{ t235(1.5), t215(1.0),

t220(1.08), t225(1.08) }

[p1(3.1), p2(2.0), p3(4.7)] { {p2},{}{p3,p1}, } t830 - disarmgrip disarmgrip

19 hoverfor

p1{ t230(1.08), t225(1.08),

t240(2.0), t220(1.08),

t215(1.0), t235(1.5) }

p2{ t640(2.0) }

p3{ }

[p1(7.7), p2(2.0), p3(0.0)] { {p3,p1},{p2},{} } t215 - hoverfor hoverfor,1.0

20 ascendto

p1{ t240(2.0), t225(1.33),

t215(1.0) }

p2{ t640(2) }

p3{ t235(1.5), t230(1.33),

t220(1.33) }

[p1(4.3), p2(2.0), p3(4.2)] { {p3,p1},{p2},{} } t220 - ascendto ascendto,170.0,-266.0,-15.0

21 hoverfor
p1{ t640(2.0) }

p2{ t280(1.0), t285(1.08) }

p3{ t300(1.5) }

[p1(2.0), p2(2.1), p3(1.5)] { {p1},{p3,p2},{} } t280 - hoverfor hoverfor,1.0

22 flytoNED

p1{ t215(1), t225(1.33),

t220(1.33) }

p2{ t230(1.33), t240(2.0),

t235(1.5) }

p3{ t640(2.0) }

[p1(3.7), p2(4.8), p3(2.0)] { {p2,p1},{p3},{} } t225 - flytoNED flytoNED,0,0,-15.0

23 hoverfor

p1{ t640(2.0) }

p2{ t345(1.0), t365(1.5),

t355(1.08) }

p3{ }

[p1(2.0), p2(3.6), p3(0.0)] { {p3,p2},{p1},{} } t345 - hoverfor hoverfor,1.0

118

Table 7.1 Cognitive reasoning results for use case 3 - continued

Cues Activated Memory Focus of Attention Action Selection

No Cue Optimized LTM (Swarm) Individual Utility Coalition Structure Asset Command

24 land

p1{ t240(2.0), t230(1.08),

t215(1.0), t235(1.5) }

p2{ t640(2.0) }

p3{ t220(1.08), t225(1.08) }

[p1(5.6), p2(2.0), p3(2.2)] { {p3,p1},{p2},{} } t240 - land land

25 disarm
p1{ t640(2.0) }

p2{ t525(2.0) }

p3{ }

[p1(2.0), p2(2.0), p3(0.0)] { {p3,p2},{p1},{} } t525 - disarm disarm

 119

Table 7.2 shows the cognitive process time (CPt) and stimulus process time (TPt), for use case

3.

Table 7.2 Processing and execution time for use case 3.
(Cues relevant to function 1 are shown in blue and cues relevant to function 2 are shown in red)

Cue CPt (Secs) TPt (secs) Cue CPt (Secs) TPt (secs)

1 0.271 05.613 14 0.617 06.137

2 0.359 17.939 15 1.245 21.766

3 0.226 06.741 16 0.432 07.121

4 1.081 21.491 17 1.221 09.165

5 0.545 06.096 18 1.258 09.125

6 1.151 21.550 19 1.216 07.995

7 0.444 07.029 20 1.204 21.833

8 1.220 09.135 21 0.599 06.122

9 1.461 08.367 22 1.252 45.963

10 1.225 08.010 23 0.620 07.330

11 1.222 22.929 24 1.269 19.543

12 0.617 08.457 25 0.281 09.044

13 1.255 48.379

Average: 0.892 14.515

Function 1 = Flight Control; Function 2 = Gripper Control

Figure 7.16 shows the state flow generated for use case 3. The state flow represents the set of

actions, selected by the central executive, and sent as commands to the UAV controller, for

execution. Each transition (edge) between the states, identifies the cue number and the resulting

command, defined by the state transition (see eq. (4.3) in section 4.1.2).

 120

Figure 7.16 Resulting state flow constructed for use case 3.

The diagram shows the applicable states and state transitions, with each transition labelled with

the task number, relevant command (action) and state transition fitness.

The two independent functions, applicable to the mission, can be seen on the state flow. The

state “yawing” is not applicable to either function, and therefore (correctly) remains

unconnected.

Use case 4 results (Aerial Surveillance)

Table 7.3 shows the results of the simulation for use case 4 – providing security surveillance

support at an incident. For this simulation only one UAV function, flight control, is applicable.

s1 s2(1:[arm])

disarmed armed

yawing

s3

airborne

hovering

(3:[hoverfor,1.0])

ascending

flying

s9

landed

s8

(4:[flytoNED,-25,-5,-15])

(5:[hoverfor,1.0])

s4

s6
(13:[flytoNED,170.0,-266.0,-15.0])

(14:[hoverfor,1.0])

(22:[flytoNED,0,0,-15.0])

s10 s11

cargoattachedgripdisarmed griparmed

s12

cargoreleased

s13

(24:[land])(25:[disarm])

s7

Descending

(6:[descendto,-25,-5,-1)

(7:[hoverfor,1.0])

(10:[hoverfor,1.0])

(15:[descendto,170.0,-266.0,-5,1)

(16:[hoverfor,1.0])

(18:[disarmgrip])

s5

(19:[hoverfor,1.0])

121

Table 7.3 Cognitive reasoning results for use case 4.

For each cue (task), the results of the cognitive process (memory recall, activated memory, focus of attention and action selection) are shown. (Cues

relevant to function 1 are shown in blue – there are no cues relevant to function 2. The asset and particle, relevant to the cue, is highlighted in bold)

(Each “p” represents a specific particle and each “t” represents an asset (memory item) of the particle)

Cues Activated Memory
Focus of

Attention
Action Selection

No Cue Optimized LTM (Swarm) Individual Utility Coalition Structure Asset Command

1 arm
p1{ }

p2{ t640(2.0) }

p3{ t10(2.0) }

[p1(0.0), p2(2.0), p3(2.0)] { {p2}, {p1,p3}, {} } t10-arm arm

2 takeoff
p1{ t70(2.0), t80(2.0) }

p2{ t640(2.0) }

p3{ }

[p1(4.0), p2(2.0), p3(0.0)] { {p3,p1}, {p2},{} } t80-takeoff takeoff,10.0

3 hoverfor
p1{ t150(1.0)}

p2{ t640(2.0) }

p3{ }

[p1(1.0), p2(2.0), p3(0.0)] { {p2,p3,p1}, {}, {} } t150-hoverfor hoverfor,1.0

4 flytoNED

p1{ t235(1.5), t220(1.33) }

p2{ t640(2.0) }

p3{ t225(1.33), t230(1.33), t215(1.0),

t240(2.0) }

[p1(2.8), p2(2.0), p3(5.7)] { {p3,p1}, {p2}, {} } t225-flytoNED flytoNED,-225,190,-10

5 hoverfor
p1{ t640(2.0)}

p2{ t365(1.5), t355(1.08), t345(1.0) }

p3{ }

[p1(2.0), p2(3.6), p3(0.0)] { {p3,p2}, {p1}, {} } t345-hoverfor hoverfor,1.0

6 flytoNED
p1{ t640(2.0)}

p2{ t230(1.33), t215(1.0), t235(1.5) }

p3{ t225(1.33), t240(2.0), t220(1.33) }

[p1(2.0), p2(3.8), p3(4.7)] { {p3,p2}, {p1}, {} } t225-flytoNED flytoNED,-320,215,-10

7 hoverfor
p1{ t345(1.0), t365(1.5), t355(1.08) }

p2{ }

p3{ t640(2.0) }

[p1(3.6), p2(0.0), p3(2.0)] { {p2,p1}, {p3}, {} } t345-hoverfor hoverfor,1.0

8 flytoNED

p1{ t640(2.0)}

p2{ t225(1.33), t220(1.33) }

p3{t235(1.5), t240(2.0), t215(1.0),

t230(1.33) }

[p1(2.0), p2(2.7), p3(5.8)] { {p3,p2}, {p1}, {} } t225-flytoNED flytoNED,-210,260,-10

9 hoverfor
p1{ t640(2.0) }

p2{ t345(1.0) }

p3{ t365(1.5), t355(1.08) }

[p1(2.0), p2(1.0), p3(2.6)] { {p1}, {}, {p3,p2} } t345-hoverfor hoverfor,1.0

122

Table 7.3 Cognitive reasoning results for use case 4 – continued

Cues Activated Memory
Focus of

Attention
Action Selection

No Cue Optimized LTM (Swarm) Individual Utility Coalition Structure Asset Command

10 flytoNED

p1{ t235(1.5), t225(1.33)}

p2{t215(1.0), t220(1.33), t240(2.0),

t230(1.33)}

p3{ t640(2.0) }

[p1(2.8), p2(5.7), p3(2.0)] { {p3}, {p1,p2}, {} } t225-flytoNED flytoNED,-225,190,-10

11 hoverfor
p1{ t640(2.0) }

p2{ t345(1.0), t365(1.5), t355(1.08) }

p3{ }

[p1(2.0), p2(3.6), p3(0.0)] { {p2,p1,p3}, {}, {} } t345-hoverfor hoverfor,1.0

12 flytoNED
p1{ t240(2.0), t225(1.33), t215(1.0) }

p2{ t235(1.5), t230(1.33), t220(1.33) }

p3{ t640(2.0) }

[p1(4.3), p2(4.2), p3(2.0)] { {p3}, {}, {p1,p2} } t225-flytoNED flytoNED,0,0,-10,1.33

13 hoverfor
p1{ t355(1.08) }

p2{ t345(1), t365(1.5) }

p3{ t640(2.0) }

[p1(1.1), p2(2.5), p3(2.0)] { {p1,p2}, {p3}, {} } t345-hoverfor hoverfor,1.0

14 land

p1{ t640(2.0) }

p2{ t215(1.0), t230(1.08), t235(1.5),

t225(1.08), t220(1.08), t240(2.0) }

p3{ }

[p1(2.0), p2(7.7), p3(0.0)] { {p3, p2}, {p1}, {} } t240-land land

15 disarm
p1{ t525(2.0) }

p2{ t640(2.0) }

p3{ }

[p1(2.0), p2(2.0), p3(0.0)] { {p2,p3,p1}, {}, {} } t525-disarm disarm

 123

Table 7.4 shows the cognitive process time (CPt) and stimulus process time (TPt), for use case

4.

Table 7.4 Processing and execution time for use case 4.
(Cues relevant to function 1 are shown in blue)

No CPt (Secs) TPt (secs) No CPt (Secs) TPt (secs)

1 0.266 5.575 9 0.640 7.308

2 0.373 16.735 10 1.268 20.659

3 0.257 7.805 11 0.641 6.212

4 1.114 47.557 12 1.210 46.919

5 0.580 7.251 13 0.619 6.124

6 1.173 22.671 14 1.217 19.469

7 0.615 7.286 15 0.278 9.118

8 1.252 24.776

Average: 0.767 17.031

Function 1 = Flight Control; Function 2 = Gripper Control

Figure 7.17 shows the state flow generated for use case 4. The state flow represents the set of

actions, selected by the central executive, and sent as commands to the UAV controller, for

execution. Each transition (edge) between the states identifies the cue number and the resulting

command, as defined by the state transition (see eq. (4.3) in section 4.1.2).

Figure 7.17 Resulting state flow constructed for use case 4.

The diagram shows the applicable states and state transitions, with each transition labelled with

the task number, relevant command (action) and state transition fitness.

7.2.5 Discussion

The results of use case 3 and use case 4, are shown in tables 7.1 - 7.2 and 7.3 – 7.4, respectively.

Referring to table 7.1, column 7 shows the action (command) selected and executed for each

stimulus received. In column 3, the optimized long-term memory is represented by a swarm of

s1 s2(1:[arm])

disarmed armed

yawing

s10 s11

cargoattachedgripdisarmed griparmed

s12

cargoreleased

s13

s3

airborne

hovering

(3:[hoverfor,1.0])

s5

ascending

flying

s7

Descending

s9

landed

s8

(4:[flytoNED,-225,190,-10])

(5:[hoverfor,1.0])

s4 s6

(6:[flytoNED,-320,215,-10])

(7:[hoverfor,1.0])

(8:[flytoNED,-210,260,-10])

(14:[land])(15:[disarm])

 124

particles, p1, p2 and p3, including the set of quantified assets, assigned to each particle. For

example, for cue 2 (takeoff), particle 2 is represented by p2{ t70(2.0), t80(2.0) }, where p2 is

the particle identifier, { t70(2.0), t80(2.0) } is the set of assets, represented by t70(2.0), t80(2.0),

where t70 and t80 are the asset identifiers, each quantified with a real value of (2.0). In column

4, the individual utility of each particle (in the swarm) is shown as the rounded sum of its assets.

The coalition structure resulting from algorithms 6.2 and 6.3, is shown in column 5. For

example, for cue 2 (takeoff), the coalition structure is represented by {{p3,p2},{p1},{}}, where

{p3,p2},{p1} and {} are the coalitions 1, 2 and 3, respectively. Coalition 1 has two members,

p3 and p2, coalition 2 has one member, p1 and coalition 3 is empty. The FOA, shown in column

6, is derived from the coalition structure and is the optimal asset, given the cue received. From

the FOA, the central executive selects the corresponding action/s and passes it/them as a

command/s (with arguments, if applicable) to the UAV controller. The commands passed to

the UAV controller are shown in column 7. The results of use case 4 are represented in the

same way in table 7.3.

Correctness

The state flow, shown in figure 7.16, shows that the robo-cognitive architecture correctly

executed use case 1 and that the correct transition was learned for each cue received. Figure

7.16 shows that the correct states were connected for function 1 (flight control) and function 2

(gripper control), required by the mission. It is also shown that there were no incorrect or

redundant transitions. The lack of any transitions between any of the states of function 1 and

states for function 2, shows that independence between the functions was correctly maintained

by the robo-cognitive architecture. This shows that the robo-cognitive architecture enables the

UAV to perform multiple independent tasks.

(Note that, for the two simulations, the robo-cognitive architecture was executed using a

sequential processing computational architecture. However, minor changes to the robo-

cognitive architecture, in favour of parallel computing, will enable the parallel execution of the

commands for independent functions.)

The results in table 7.1 also show that the robo-cognitive architecture reasoned correctly for

each of the 25 cues of the mission. Inspecting table 7.1 shows that, for each cue in column 2,

the correct corresponding asset (state transition) received the focus of attention (column 6).

This allowed the central executive to select the correct action for execution (column 7).

For example, after descending, the robo-cognitive architecture receives cue number 16

(hoverfor). The asset t410, (which represent the transition between states s7 and s4), correctly

 125

received the focus of attention which enabled the central executive to send the command

“hoverfor,1.0” to the UAV controller. The robo-cognitive architecture then receives cue 17

(releasecargo) and the asset t780 ((which represent the transition between states s12 and s13),

correctly received the focus of attention which enabled the central executive to send the

command “releasecargo” to the UAV control program. The results in table 7.1 show that all 25

cues were processed, without repetition or redundancy and figure 7.16 shows that the 25 cues

were processed in the correct order. It is therefore concluded that use case 3 executed

completely and correctly.

The learned state flow (figure 7.17) shows that the robo-cognitive architecture correctly

executed use case 4, and that the correct transition was learned for each cue received. Figure

7.17 shows that the correct states were connected for function 1 (flight control) and that there

were no incorrect or redundant transitions. This is evident in figure 7.17, which shows no

transitions were learned for any of the states for function 2 (gripper control). The states for

function 2 remain unconnected.

The results in table 7.3 also show that the robo-cognitive architecture reasoned correctly for

each of the 15 cues of the mission. Inspecting table 7.3 shows that, for each cue in column 2,

the correct corresponding asset (state transition) received the focus of attention (column 6).

This allowed the central executive to select the correct action for execution (column 7). For

example, for cue number 2 (takeoff), the asset t80, (which represent the transition between

states s2 and s3), correctly received the focus of attention which enabled the central executive

to send the command “takeoff,10.0” to the UAV control program. The results in table 7.3 show

that all 15 cues were processed, without repetition or redundancy and figure 7.17 shows that

the 15 cues were processed in the correct sequence. It is therefore concluded that use case 4

also executed completely and correctly.

Time Efficiency

The time efficiency of use case 3 is evaluated by inspecting table 7.2, and presented in the graph

in figure 7.18.

 126

Figure 7.18 Cognitive reasoning process (CRP) time for use case 3.

The cognitive processing time (CPt) is shown on top and the cue processing time (TPt) is shown

below.

Figure 7.18 shows the measured processing time for both the CPt (top) and the TPt (bottom)

for each cue received and processed by the robo-cognitive architecture. Table 7.2 and the CPt

graph, figure 7.18, show that the average cognitive processing time for the whole mission is

0.892s. The lowest time recorded is 0.226s (cue 3 – “hoverfor”) and the highest time recorded

is 1.461s (cue 9 – “attachcargo”). It is worth noting the difference in the CPt for the cognitive

processing of long-term memory items with different trigger functions. For example, the CPt

for cue 3 (“hoverfor”) is 0.226s, while the CPt for cue 4 (“flytoNED”) is 1.081s. The reason for

the difference is due to the complexity of the constraint average calculation in the quantification

algorithm. For example, quantifying the “hoverfor” asset involves a constraint average

calculation based on a single, real parameter (i.e. hover time), while the quantification of the

“flytoNED” asset involves a constraint average calculation based on spatial parameters (i.e. x,

y, z). It should also be noted that the difference applies to each iteration of the CG-PSO and

cumulatively impacts the overall CPt. However, it is clear that, overall, the CPt is still well

below the MPt, of 2s.

The TPt results shown in table 7.2 and figure 7.18, show the total time it took to complete the

whole mission was approximately 6 mins, which is deemed acceptable for the type of mission.

 127

The shortest task took 5.613s and the longest task took 48.379s. The TPt for cues 13 and 22

show the time it took for the UAV to fly to and back from the target destination. It is concluded

that use case 4 was successfully completed within an acceptable time.

The time efficiency of use case 4 is evaluated by inspecting the CPt and TPt values in table 7.4,

which is represented in the graph in figure 7.19.

Figure 7.19 Cognitive reasoning process (CRP) time for use case 4.

The cognitive processing time (CPt) is shown on top and the cue processing time (TPt) is shown

below.

Figure 7.19 shows the measured processing time for both the CPt (top) and the TPt (bottom)

for each cue received and processed by the robo-cognitive architecture. Table 7.4 and the CPt

graph shows that the average cognitive processing time for the whole mission is 0.767s. The

lowest time recorded is 0.257s (cue 3 – “hoverfor”) and the highest time recorded is 1.268s (cue

10 – “flytoNED”). Again, it is worth noting the difference in the CPt for the cognitive

processing of long-term memory items with different trigger functions. For example, the CPt

for cue 3 (“hoverfor”) is 0.257s, while the CPt for cue 4 (“flytoNED”) is 1.114s. The reason for

the difference is due to the complexity of the constraint average calculation in the quantification

algorithm. For example, quantifying the “hoverfor” asset involves a constraint average

calculation based on a single, real parameter (i.e. hover time), while the quantification of the

 128

“flytoNED” asset involves a constraint average calculation based on spatial parameters (i.e. x,

y, z). It should also be noted that the difference applies to each iteration of the CG-PSO and

cumulatively impacts the overall CPt. However, it is still clear that, overall, the CPt is well

below the MPt, of 2s.

The TPt results shown in table 7.4 and figure 7.19 show the total time it took to complete the

whole mission was approximately 4 mins, which is deemed acceptable for the type of mission.

The shortest task took 5.575s and the longest task took 47.557s. The TPt for cues 4 and 12 show

the time it took for the UAV to fly to, and back from, the target destination. It is concluded that

the use case 4 was successfully completed within an acceptable time.

Note that, explicit time delays were set in the UAV control program, in order to give the UAV

sufficient time to complete a task. For example, for the “flytoNED” command, a delay of 35s

was set to give the UAV to get to and from its destination. Therefore, it does not make sense to

evaluate the TPt against the MPt. However, from a practical point of view, the TPt still provides

useful information regarding the task execution and mission execution times.

The approaches followed in the associated research, discussed in chapter 2, varies greatly in

architectural design, scientific and technological approach, size and complexity. It is therefore

impossible to do a fair empirical comparison between these approaches and the methodologies

developed and tested in this chapter. The differences are too significant and mostly

unquantifiable. Below, the benefits of the proposed robo-cognitive architecture are contrasted

with the approaches reviewed in chapter 2.

1. Knowledge is represented using a simple propositional logic structure, which is more

intuitive for a domain expert to maintain and therefore less error-prone than modal

logic, linear temporal logic, first-order logic or Horn clause formats. While the

propositional representation is not as rich as the other representations, it is sufficient

for real-time, high-level control of an autonomous vehicle. The approach is discussed

in detail in section 4.1.2.

2. The simplified knowledge structure simplifies modification and augmentation of the

knowledge through simple propositional memory item updates. This means less

computational resources are required, since there are no complex modal logic, linear

temporal logic, first-order logic or Horn clause memory item resolutions required. This

also means that modifications or augmentation may be applied on a proposition level,

which is more intuitive and requires less communication bandwidth.

 129

3. The cognitive reasoning process uses knowledge quantification, based on the long-term

memory and real-time environmental stimuli, for inference in high-level autonomous

vehicle control. No subjective probabilities, biases or parameters (such as those used

in machine learning) are applied to the quantification process. This also means that the

robo-cognitive architecture is more robust to changes in the environment.

4. The flexibility and adaptiveness of the knowledge representation and quantification

process mean the robo-cognitive architecture enables autonomous vehicle control,

based on real-time environmental stimuli. No time-consuming and expensive re-

learning of models or algorithm changes are required when knowledge or

environmental stimuli changes.

5. Statistical quantification of a knowledge item produces a probability distribution over

all the propositions (rules) of the memory item. This allows inference to follow the

open world assumption (see section 3.2.3), which allows finer-grained statistical

reasoning to be applied in the inference. This has a major benefit when handling

uncertainty in the inference. This approach is demonstrated in velocity control result of

use cases 1 and 2 and shown in figures 7.5 and 7.9.

6. The robo-cognitive architecture has a relatively simple architecture, as it focusses on

the working memory and central executive only and does not attempt to completely

emulate all the neuro-cognitive processes. This greatly reduces the complexity of the

architecture, but is modular enough to extend with further functionality (e.g. a learning

module, see future work in chapter 8), if required.

7. The adaptiveness of the robo-cognitive architecture enables automatic identification

and parallel execution of multiple functions on the autonomous vehicle, according to

its mission. Because no complex and computationally expensive bespoke procedural

processes are used, extending the functionality of the autonomous vehicle is simplified.

No rebuilding, retesting and redeployment of components are required.

7.3 Conclusion

The methodology, developed in section 6.1, constructs optimal episodic memory, based on

Baddeley’s model of working memory, for the real-time, high-level control of an autonomous

vehicle. The methodology was evaluated by executing two simulated missions, developed in

section 7.1. The results of the simulated missions show that the robo-cognitive architecture

 130

successfully and completely executed each mission by repeatedly finding and executing the

optimal task for the mission, given the state of the unmanned aerial vehicle.

The methodology, developed in section 6.2, constructs a focus of attention from activated

memory, based on Cowan’s attentional focus model of working memory, for the real-time,

high-level control of an autonomous vehicle. The methodology was evaluated by executing two

simulated missions, developed in section 7.2. The results of the simulated missions show that

the robo-cognitive architecture successfully and completely executed each mission by

repeatedly finding and executing all the optimal set of tasks for the mission, given the state of

the unmanned aerial vehicle.

It is concluded that the two robo-cognitive architectures, based on working memory

optimization, is suitable for real-time, high-level cognitive control of a multi-functioned,

autonomous vehicle.

 131

Chapter 8

Conclusions and future work

8.1 Conclusions

In chapter 1, the problem of real-time, high-level control of robots, deployed in dynamic

environments, was highlighted. A robo-cognitive architecture, providing the main cognitive

processes for memory representation, memory recall, action selection and action execution, is

proposed. The cognitive approach raises the following research questions:

(1) Can working memory be represented in a form which simplifies augmentation and

modification by domain expert?

(2) Can working memory be statistically quantified for the evaluation of optimality, during

memory recall in cognitive reasoning?

(3) Is the cognitive reasoning capable of correct action selection for both single- and

multiple, independent (or parallel) tasks?

The main aim of this thesis is to address these questions by designing, developing and

evaluating the main cognitive functions in a robo-cognitive architecture. While addressing these

questions, the following contributions, as listed in section 1.3, were made:

1. The creation of a novel working memory representation, structured to simplify

modification and augmentation.

2. The design and development of a novel adaptive entropy fitness quantification (AEFQ)

algorithm for the statistical quantification of discrete memory items (knowledge).

3. The design and development of a cognitive reasoning process for memory recall, using

an improved set-based particle swarm optimization algorithm (using the AEFQ

quantification) for action selection for single task execution.

4. The design and development of a cognitive reasoning process for memory recall, using

a novel CG-PSO algorithm (and AEFQ quantification) for multiple action selection for

multiple, parallel task execution.

5. Confirmation of the suitability of the robo-cognitive architectures in the execution of

four use cases in simulation.

Each research question is discussed below:

 132

8.1.1 Research question (1)

The importance of memory representation was discussed in section 1.1 and popular knowledge

definitions and structures were reviewed in sections 2.1 and 3.2. The reviews showed that

knowledge may be defined by a domain expert or it may be learned programmatically. It is also

shown that a popular approach is to structure the knowledge in some probabilistic graphical

model or network structure for inference. An overview of some popular formats for knowledge

representation, for example, first-order logic and Horn clauses, are given in section 3.2. Due to

the complexity and lack of intuitiveness of these representations, a simplified memory

representation structure, is developed in section 4.1.2. The novel memory representation

represents the long-term memory and is used in the memory quantification function developed

for memory recall. Since the memory items in the long-term memory are structured as simple

conjunctive and/or disjunctive propositional logic terms, maintenance is more cost-effective in

computation and bandwidth. The simplicity of the representation makes the control logic of

memory items also more intuitive and therefore less error-prone. As shown in the simulations,

the validity indicator in eq. (4.3) simplifies the activation of memory items. Only active state

transitions are (correctly) included in the resulting state flows of the four use cases, shown in

figures 7.4, 7.8, 7.16 and 7.17. The propositional logic form of the formulae of the memory

items allows the domain expert to focus on the atomic facts about each memory item, while the

relations between these facts are simplified through the use of conjunctions and disjunctions

only. This eliminates the complexity of existential relations, such as those used in modal logic

or first-order logic. Modifications and augmentations can focus on atomic facts and relations.

The fully connected long-term memory, therefore, provides a memory representation which is

more economical, simpler to maintain and is less error-prone. The memory representation

developed and applied in the use case simulations, confirms contribution 1, described above.

8.1.2 Research question (2)

The two main functions of memory recall are memory quantification and optimization. There

must be a sufficient belief in a memory item before it will be applied in the decision-making

process. This degree of belief (fitness) is defined as a probability. Given the probability

assigned to a memory item, it could be quantified using information entropy, discussed in

section 3.3. Information entropy (also called information gain) is a means of quantifying the

level of uncertainty in a memory item, given its probability. However, the probability of a

memory item is not known a-priori during memory recall. Therefore, the novel AEFQ

algorithm, developed in section 4.2, assigns probabilities to a memory item before the fitness

evaluation of the memory item. The AEFQ algorithm uses the maximum entropy principle to

derive a probability distribution over the propositional terms of the e memory item. The

 133

maximum entropy principle is the maximization of the information entropy, given the

environmental stimuli. Therefore, a memory item is quantified, not only in terms of its logic

formula, but in terms of each of its facts (propositional logic terms). This means fitness

evaluation can be performed on a finer level, using probability calculus, including conditional

and marginal probabilities. Moreover, the probabilities assigned are “pure”. This means no

subjective values were introduced, instead, only real-time environmental stimuli are used in the

calculation. The results of the simulations (sections 7.1 and 7.2) show that the correct memory

items (state transitions) were selected for action selection and execution. This means only

memory items with positive fitness were selected. Each edge of the state flows in figures 7.4

and 7.8 shows the correct memory item and corresponding fitness value. Figures 7.5 and figure

7.9 shows the fine-grained control of vehicle velocity, controlled by the fitness quantification.

The figures show the decreasing fitness, as the unmanned aerial vehicle approaches its

destination. Moreover, figures 7.13, 7.18 and 7.19 show that all use cases were executed within

the specified time window. Tables 7.1 and 7.3 shows the activated memory, along with fitness

(utility) for each memory item. In addition, figures 7.16 and 7.17 show the correct and complete

state flows for use cases 3 and 4. Each edge of the state flow also shows the correct action

selected. All four use cases were successfully, timeously and completely executed, as

demonstrated in the videos. The successful completion of the use cases confirms that memory

quantification and optimization, in memory recall, were successfully performed. The success

of the AEFQ algorithm, used in the set-based PSO and coalitional game-theoretic PSO

algorithms during memory recall, confirms contribution 2, as described above.

8.1.3 Research question (3)

In chapter 6, two methodologies were developed for the real-time, high-level cognitive control

of robots:

• Real-time episodic memory construction for single-task cognitive control in robotics

(section 6.1)

• A cognitive architecture using coalitional games-theoretic particle swarm optimization

for real-time, multi-task control in cognitive robotics (section 6.2)

In section 6.1, an SPSO and AEFQ methodologies was developed for the real-time construction

of episodic memory. The central executive selected and executed an action, after selecting an

optimal memory item from episodic memory. The approach is based on the Baddeley working

memory model (section 3.1.2), which represents working memory as episodic memory. The

results of the simulations (section 7.1) show that the correct memory items (state transitions)

were selected for action selection and execution. Figure 7.4 and figure 7.8 shows the correct

and complete state flows for the simulations. Each edge of the state flow also shows the correct

 134

fitness. The simulations show that each task of the mission was correctly selected, one by one,

and executed from episodic memory. Both use cases were successfully, timeously and

completely executed, as demonstrated in the videos.

In section 6.2, a CG-PSO methodology was developed for the real-time construction of

activated memory and focus of attention, from which the central executive selects the

appropriate action for execution. The approach is based on Cowan’s attentional focus working

memory model (section 3.1.2), which represent working memory as activated memory with a

focus of attention. The results of the simulations (section 7.2) show that the correct memory

items (state transitions) were selected for action selection and execution. Tables 7.1 and 7.3

shows the activated memory, along with fitness (utility) for each memory item. Figure 7.16 and

figure 7.17 show the correct and complete state flows of the simulations, including the correct

action selected from the focus of attention. Figure 7.16 shows two correct, independent state

flows, one for flight-control and one for gripper control, while figure 7.17 correctly shows only

the one state flow, for flight-control. Moreover, figure 7.18 and figure 7.19 shows that the use

cases were executed within the specified time window. Both use cases were successfully,

timeously and completely executed, as demonstrated in the videos.

The success of the set-based particle swarm optimization and coalitional game-theoretic

particle swarm optimization algorithms during memory recall, confirms contributions 3 and 4.

The successful completion of all four use cases shows that the cognitive reasoning of the

cognitive architecture, proposed in this research study, can successfully select and execute

single tasks sequentially. The results also show that multiple tasks are correctly selected and

executed (in parallel, if the architecture allows). The successful completion of all four use cases

confirm contribution 5.

8.2 Future work

In this research study, the problem of real-time, high-level control of robots, in remote and

dynamic environments, were investigated. The focus was on effective cognitive processing of

working memory pertaining to memory representation, memory recall, action selection and

action execution. This study assumes knowledge is provided and maintained by a domain

expert, while the cognitive reasoning is left to the autonomous vehicle. During the literature

review and the development and testing of the robo-cognitive architecture, two specific areas

were identified for further research. These areas are described below.

 135

8.2.1 Reasoning

The robo-cognitive architecture developed in this research study quantifies a memory item,

representing a state transition, by calculating a probability distribution over the propositional

terms of the trigger formula of the state transition. To simplify the introduction of the

methodology, only one of the probabilities were used for fitness evaluation. However, this

approach lays, without loss of generality, the foundation for more extensive reasoning in the

robo-cognitive architecture. An adaptive, cognitive reasoner paradigm, using, the probability

quantification, will extend the applicability and power of the robo-cognitive architecture

significantly. The results of the adaptive cognitive reasoner will support decision-making, and

enable tractability and explanation of the reasoning and decision-making. Explanation of

inference is an important requirement in artificial intelligence solutions. The adaptiveness of

the paradigm will allow the reasoning to take new knowledge acquired into account. This

approach will improve the real-time reactiveness to changing knowledge or a changing

environment. An adaptive cognitive reasoner, used in conjunction with a learning paradigm

(section 8.2.2), will also improve the autonomy of an autonomous vehicle. For example, the

autonomous vehicle could decide if and when to report its findings, instead of being requested

or instructed. An example of such an application is the exploration of the Mars autonomous

vehicle, Curiosity.

8.2.2 Learning

The approach in this research study assumes knowledge (memory) is initially defined and

provided by a domain expert. The robo-cognitive architecture focusses on the simplification of

the representation of the memory, as well as the cognitive processing of this memory. An

unsupervised learning paradigm, will extend the autonomy of an autonomous vehicle using the

robo-cognitive architecture, significantly. However, the argument is maintained that knowledge

cannot be learned from nothing, especially in remotely deployed robots. However, it is argued

that the simplified memory representation presented in this research study lays the foundation

for an effective unsupervised learning paradigm. This learning paradigm could build on and

extend the initial knowledge provided by the domain expert. Problems may be solved

autonomously, within the functional capabilities of the autonomous vehicle, by employing the

adaptive, cognitive reasoner (recommended in section 8.2.1) and augmenting the long-term

memory and the short-term memory. The quantification method of the AEFQ algorithm may

be extended to take the biases and weights, resulting from the learning paradigm, into account

during the reasoning process. This extension will drive the reasoning, and therefore, the

decision-making process. This approach will also assist the domain expert in the definition of

 136

initial knowledge, and the efficacy of the initial knowledge may be tested and evaluated using

experimentation and simulation in a laboratory.

8.2.3 Collaboration

The robo-cognitive architecture developed in this research study, provides a cognitive approach

towards real-time, high-level control of a multi-function autonomous vehicle. Some tasks,

however, require more than one autonomous vehicle. For example, in the simulations in section

7.1 and 7.2, the unmanned aerial vehicle delivers a medical package to a target destination.

There may be situations where the package requires two (or more) vehicles to work together in

order to transport the cargo successfully. For autonomous vehicles to successfully cooperate in

a group, there needs to be robust, real-time collaboration between them. By extending the robo-

cognitive architecture with a collaboration function, the autonomous vehicle will be able to

operate in a group of autonomous vehicles. Memory recall, in the robo-cognitive architecture,

involves memory quantification, by the AEFQ algorithm, developed in section 4.2. The

algorithm uses information from the environmental stimuli and short-term memory, to find the

optimal memory in the long-term memory. By including collaboration information in the

environmental stimuli and short-term memory, memory quantification and memory

optimization will take the collaboration information into account when finding appropriate

memory items from the long-term memory. The collaboration function has to update the

environmental stimuli and short-term memory in real-time, and this will enable the central

executive to select and execute actions, appropriate to the state of all autonomous vehicles in

the group. There are many technical solutions available for sharing of information between

processes. However, since the high-level control affects the behaviour of the autonomous

vehicle in real-time, a time-efficient communication protocol must be applied. By extending

the robo-cognitive architecture, with a collaboration component, autonomous vehicles may be

deployed in team (multi-agent) or swarm configurations.

 137

Bibliography

[1] Y. Ma, Z. Wang, H. Yang, and L. Yang, "Artificial intelligence applications in the

development of autonomous vehicles: a survey," IEEE/CAA Journal of Automatica

Sinica, vol. 7, no. 2, pp. 315-329, 2020, doi: 10.1109/JAS.2020.1003021.

[2] A. Chamuah and R. Singh, "Securing sustainability in Indian agriculture through

civilian UAV: a responsible innovation perspective," SN Applied Sciences, vol. 2, no.

1, p. 106, 2019/12/18 2019, doi: 10.1007/s42452-019-1901-6.

[3] S. Avasker et al., "A method for stabilization of drone flight controlled by autopilot

with time delay," SN Applied Sciences, vol. 2, no. 2, p. 225, 2020/01/17 2020, doi:

10.1007/s42452-020-1962-6.

[4] A. Martinez Alvarez and C. A. Lozano Espinosa, "Nonlinear control for collision-free

navigation of UAV fleet," SN Applied Sciences, vol. 1, no. 12, p. 1577, 2019/11/08

2019, doi: 10.1007/s42452-019-1606-x.

[5] R. Almadhoun, T. Taha, L. Seneviratne, and Y. Zweiri, "A survey on multi-robot

coverage path planning for model reconstruction and mapping," SN Applied Sciences,

vol. 1, no. 8, p. 847, 2019/07/10 2019, doi: 10.1007/s42452-019-0872-y.

[6] M. Biba, Integrating Logic and Statistics - Novel Algorithms in Markov Logic

Networks. VDM Verlag Dr Muller Aktiengesellschaft & Co. KG, 2009.

[7] B. Wilcox et al., "Robotic vehicles for planetary exploration," in Proceedings 1992

IEEE International Conference on Robotics and Automation, 12-14 May 1992 1992,

pp. 175-180 vol.1, doi: 10.1109/robot.1992.220266.

[8] R. Francis et al., "AEGIS autonomous targeting for the Curiosity rover's ChemCam

instrument," in 2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR),

13-15 Oct. 2015 2015, pp. 1-5, doi: 10.1109/aipr.2015.7444544.

[9] D. Vernon, "Two Ways (Not) To Design a Cognitive Architecture," in Cognitive Robot

Architectures, Vienna, Austria, December 8-9, 2016 2016, no. Proceedings of

EUCognition 2016.

[10] P. Singh, "Contrasting Embodied Cognition with Standard Cognitive Science: A

Perspective on Mental Representation," Journal of Indian Council of Philosophical

Research, journal article vol. 36, no. 1, pp. 125-149, January 01 2019, doi:

10.1007/s40961-018-0159-5.

[11] S. Lewandowsky and S. Farrell, Computational Modeling in Cognition: Principles and

Practice. Sage Publications Inc., 2011, p. 357.

[12] J. R. Anderson, The Architecture of Cognition. Harvard University Press, 1983, p. 345.

[13] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and Y. Qin, "An

integrated theory of the mind," Psychological Review, vol. 111, 4, pp. 1036-1060,

2004.

[14] J. E. Laird, The SOAR Cognitive Architecture. The MIT Press, 2012.

[15] C. Eliasmith, How to Build a Brain (Oxford Series on Cognitive Models and

Architecture). United States: Oxford University Press, 2013, p. 456.

[16] A. V. Samsonovich, "Socially emotional brain-inspired cognitive architecture

framework for artificial intelligence," Cognitive Systems Research, vol. 60, pp. 57-76,

2020/05/01/ 2020, doi: https://doi.org/10.1016/j.cogsys.2019.12.002.

https://doi.org/10.1016/j.cogsys.2019.12.002

 138

[17] R. R. Pieters, M Veronese,A Kyrki,V, "Human-Aware Interaction: A Memory-

inspired Artificial Cognitive Architecture," in Cognitive Robot Architectures, Vienna,

Austria, December 8-9, 2016 2016, no. Proceedings of EUCognition 2016.

[18] B. J. G. Baars, Nicole M., Fundamentals of Cognitive Neuroscience - A Beginner's

Guide. Academic Press - Elsevier, 2012.

[19] E. Tulving, "How many memory systems are there," American Psychologist, vol. 40,

pp. 385-398, 1985.

[20] G. A. Radvansky, Human Memory, Third ed. Routledge, 2017.

[21] F. L. Van Harmelen, V; Porter, B, Handbook of Knowledge Representation, First ed.

(no. Volume 1). Elsevier, 2008.

[22] Y. Chen, R. Yu, Y. Zhang, and C. Liu, "Circular formation flight control for unmanned

aerial vehicles with directed network and external disturbance," IEEE/CAA Journal of

Automatica Sinica, vol. 7, no. 2, pp. 505-516, 2020, doi: 10.1109/JAS.2019.1911669.

[23] Z. Gao and G. Guo, "Fixed-time sliding mode formation control of AUVs based on a

disturbance observer," IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 2, pp. 539-

545, 2020, doi: 10.1109/JAS.2020.1003057.

[24] L. Huang, M. Zhou, K. Hao, and E. Hou, "A survey of multi-robot regular and

adversarial patrolling," IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 4, pp. 894-

903, 2019, doi: 10.1109/JAS.2019.1911537.

[25] D. J. Blower, Information Processing - The Maximum Entropy Principle. CreateSpace

Independent Publishing Platform, 2013.

[26] A. Francalanza, L. Aceto, and A. Ingolfsdottir, "Monitorability for the Hennessy–

Milner logic with recursion," Formal Methods in System Design, vol. 51, no. 1, pp. 87-

116, 2017/08/01 2017, doi: 10.1007/s10703-017-0273-z.

[27] M. Jasper, M. Schlüter, and B. Steffen, "Characteristic invariants in Hennessy–Milner

logic," Acta Informatica, vol. 57, no. 3, pp. 671-687, 2020/10/01 2020, doi:

10.1007/s00236-020-00376-5.

[28] J. J. Sarbo and R. Cozijn, "Belief in reasoning," Cognitive Systems Research, vol. 55,

pp. 245-256, 2019/06/01/ 2019, doi: https://doi.org/10.1016/j.cogsys.2019.01.004.

[29] S. Schiffer, "Integrating Qualitative Reasoning and Human-Robot Interaction in

Domestic Service Robotics," KI - Künstliche Intelligenz, vol. 30, no. 3, pp. 257-265,

2016/10/01 2016, doi: 10.1007/s13218-016-0436-x.

[30] A. Hong, O. Igharoro, Y. Liu, F. Niroui, G. Nejat, and B. Benhabib, "Investigating

Human-Robot Teams for Learning-Based Semi-autonomous Control in Urban Search

and Rescue Environments," Journal of Intelligent & Robotic Systems, journal article

August 09 2018, doi: 10.1007/s10846-018-0899-0.

[31] S. Lemaignan, M. Warnier, E. A. Sisbot, A. Clodic, and R. Alami, "Artificial cognition

for social human–robot interaction: An implementation," Artificial Intelligence, vol.

247, pp. 45-69, 2017/06/01/ 2017, doi: https://doi.org/10.1016/j.artint.2016.07.002.

[32] D. Zhang, Aziguli, and H. Chen, "Research on Cognitive Induction Based Knowledge

Acquisition," in Computer Science-Technology and Applications, 2009. IFCSTA '09.

International Forum on, 25-27 Dec. 2009 2009, vol. 1, pp. 227-234, doi:

10.1109/ifcsta.2009.62.

[33] D. H. Perico et al., "Humanoid Robot Framework for Research on Cognitive Robotics,"

Journal of Control, Automation and Electrical Systems, vol. 29, no. 4, pp. 470-479,

2018/08/01 2018, doi: 10.1007/s40313-018-0390-y.

https://doi.org/10.1016/j.cogsys.2019.01.004
https://doi.org/10.1016/j.artint.2016.07.002

 139

[34] J. Pearl, Causality: Models, Reasoning and Inference, Second ed. Cambridge

University Press, 2009.

[35] A. Darwiche, Modeling and Reasoning with Bayesian Networks. Cambridge University

Press, 2009, p. 548.

[36] M. Richardson and P. Domingos, "Markov logic networks," Mach. Learn., vol. 62, no.

1-2, pp. 107-136, 2006, doi: 10.1007/s10994-006-5833-1.

[37] S. K. M. X. Wong, Y., "Construction of a Markov Network from Data for Probabilistic

Inference," in In Proc. 3rd Inter. Workshop on Rough Sets and Soft Computing, 1994,

pp. 562--569.

[38] D. Lowd and J. Davis, "Improving Markov network structure learning using decision

trees," J. Mach. Learn. Res., vol. 15, no. 1, pp. 501-532, 2014.

[39] R. D. Alba, "A graph‐theoretic definition of a sociometric clique," The Journal of

Mathematical Sociology, vol. 3, no. 1, pp. 113-126, 1973/07/01 1973, doi:

10.1080/0022250x.1973.9989826.

[40] P. Domingos and D. Lowd, Markov Logic - An Interface Layer for Artificial

Intelligence. Morgan & Claypool Publishers, 2009.

[41] D. Lowd and P. Domingos, "Efficient Weight Learning for Markov Logic Networks,"

in Knowledge Discovery in Databases: PKDD 2007, vol. 4702, J. Kok, J. Koronacki,

R. Lopez de Mantaras, S. Matwin, D. Mladenič, and A. Skowron Eds., (Lecture Notes

in Computer Science: Springer Berlin Heidelberg, 2007, ch. 21, pp. 200-211.

[42] D. Jain, B. Kirchlechner, and M. Beetz, "Extending Markov Logic to Model Probability

Distributions in Relational Domains," in KI 2007: Advances in Artificial Intelligence,

vol. 4667, J. Hertzberg, M. Beetz, and R. Englert Eds., (Lecture Notes in Computer

Science: Springer Berlin Heidelberg, 2007, ch. 12, pp. 129-143.

[43] J. Shavlik and S. Natarajan, "Speeding up inference in Markov logic networks by

preprocessing to reduce the size of the resulting grounded network," presented at the

Proceedings of the 21st international jont conference on Artifical intelligence,

Pasadena, California, USA, 2009.

[44] L. Getoor and J. Grant, "PRL: A probabilistic relational language," (in English),

Machine Learning, vol. 62, no. 1-2, pp. 7-31, 2006/02/01 2006, doi: 10.1007/s10994-

006-5831-3.

[45] S. D. R. Muggleton, L., "Inductive Logic Programming: Theory and Methods," Journal

of Logic Programming, vol. 19, no. 20, pp. 629--679, 1994.

[46] W. D. Van Laer, L; De Raedt, L, "Applications of a logical discovery engine," in In

Proceedings of the AAAI Workshop on Knowledge Discovery in Databases, 1994, pp.

263--274.

[47] H. Karimi and A. Kamandi, "A learning-based ontology alignment approach using

inductive logic programming," Expert Systems with Applications, vol. 125, pp. 412-

424, 2019/07/01/ 2019, doi: https://doi.org/10.1016/j.eswa.2019.02.014.

[48] M. P. Wellman, J. S. Breese, and R. P. Goldman, "From knowledge bases to decision

models," The Knowledge Engineering Review, vol. 7, no. 01, pp. 35-53, 1992, doi:

doi:10.1017/S0269888900006147.

[49] D. Z. Wang, Y. Chen, S. Goldberg, C. Grant, and K. Li, "Automatic knowledge base

construction using probabilistic extraction, deductive reasoning, and human feedback,"

presented at the Proceedings of the Joint Workshop on Automatic Knowledge Base

Construction and Web-scale Knowledge Extraction, Montreal, Canada, 2012.

https://doi.org/10.1016/j.eswa.2019.02.014

 140

[50] J. R. Quinlan;, "Learning logical definitions from relations," Machine Learning, vol. 5,

pp. 239--266, 1990.

[51] Y. Sato, K. Izui, T. Yamada, and S. Nishiwaki, "Data mining based on clustering and

association rule analysis for knowledge discovery in multiobjective topology

optimization," Expert Systems with Applications, vol. 119, pp. 247-261, 2019/04/01/

2019, doi: https://doi.org/10.1016/j.eswa.2018.10.047.

[52] M. V. J. Luis, G. A. Holguin, and H. L. Mauricio, "A Methodology for Movement

Planning in Autonomous Systems with Multiple Agents," in 2018 IEEE 2nd

Colombian Conference on Robotics and Automation (CCRA), 1-3 Nov. 2018 2018, pp.

1-6, doi: 10.1109/ccra.2018.8588140.

[53] Y. Shoukry et al., "Linear temporal logic motion planning for teams of underactuated

robots using satisfiability modulo convex programming," in 2017 IEEE 56th Annual

Conference on Decision and Control (CDC), 12-15 Dec. 2017 2017, pp. 1132-1137,

doi: 10.1109/cdc.2017.8263808.

[54] F. Kamil, T. S. Hong, W. Khaksar, M. Y. Moghrabiah, N. Zulkifli, and S. A. Ahmad,

"New robot navigation algorithm for arbitrary unknown dynamic environments based

on future prediction and priority behavior," Expert Systems with Applications, vol. 86,

pp. 274-291, 2017/11/15/ 2017, doi: https://doi.org/10.1016/j.eswa.2017.05.059.

[55] A. C. Tenorio-González and E. F. Morales, "Automatic discovery of concepts and

actions," Expert Systems with Applications, vol. 92, pp. 192-205, 2018/02/01/ 2018,

doi: https://doi.org/10.1016/j.eswa.2017.09.023.

[56] P. Meyer and D. V. Dimarogonas, "Hierarchical Decomposition of LTL Synthesis

Problem for Nonlinear Control Systems," IEEE Transactions on Automatic Control,

vol. 64, no. 11, pp. 1-1, 2019, doi: 10.1109/tac.2019.2902643.

[57] R. Bellman, "A Markovian Decision Process," Indiana University Mathematics

Journal, vol. 6, no. 4, pp. 679--684, 1957.

[58] A. Rodriguez-Ramos, C. Sampedro, H. Bavle, P. de la Puente, and P. Campoy, "A

Deep Reinforcement Learning Strategy for UAV Autonomous Landing on a Moving

Platform," Journal of Intelligent & Robotic Systems, vol. 93, no. 1, pp. 351-366,

2019/02/01 2019, doi: 10.1007/s10846-018-0891-8.

[59] E. S. Low, P. Ong, and K. C. Cheah, "Solving the optimal path planning of a mobile

robot using improved Q-learning," Robotics and Autonomous Systems, vol. 115, pp.

143-161, 2019/05/01/ 2019, doi: https://doi.org/10.1016/j.robot.2019.02.013.

[60] P. Rosenbloom, A. Demski, and V. Ustun, "The Sigma Cognitive Architecture and

System: Towards Functionally Elegant Grand Unification," Journal of Artificial

General Intelligence, vol. 7, 01/15 2016, doi: 10.1515/jagi-2016-0001.

[61] S. Franklin et al., "A LIDA cognitive model tutorial," Biologically Inspired Cognitive

Architectures, vol. 16, pp. 105-130, 2016/04/01/ 2016, doi:

https://doi.org/10.1016/j.bica.2016.04.003.

[62] R. Sun, "The CLARION Cognitive Architecture: Extending Cognitive Modeling to

Social Simulation," in Cognition and Multi-Agent Interaction: From Cognitive

Modeling to Social Simulation, R. Sun Ed. Cambridge: Cambridge University Press,

2005, pp. 79-100.

[63] P. Ye, T. Wang, and F. Wang, "A Survey of Cognitive Architectures in the Past 20

Years," IEEE Transactions on Cybernetics, vol. 48, no. 12, pp. 3280-3290, 2018, doi:

10.1109/TCYB.2018.2857704.

https://doi.org/10.1016/j.eswa.2018.10.047
https://doi.org/10.1016/j.eswa.2017.05.059
https://doi.org/10.1016/j.eswa.2017.09.023
https://doi.org/10.1016/j.robot.2019.02.013
https://doi.org/10.1016/j.bica.2016.04.003

 141

[64] D. F. Lucentini and R. R. Gudwin, "A Comparison Among Cognitive Architectures: A

Theoretical Analysis," Procedia Computer Science, vol. 71, pp. 56-61, 2015/01/01/

2015, doi: https://doi.org/10.1016/j.procs.2015.12.198.

[65] G. Metta et al., "The iCub humanoid robot: An open-systems platform for research in

cognitive development," Neural Networks, vol. 23, no. 8, pp. 1125-1134, 2010/10/01/

2010, doi: https://doi.org/10.1016/j.neunet.2010.08.010.

[66] R. A. Brooks, C. Breazeal, M. Marjanović, B. Scassellati, and M. M. Williamson, "The

Cog Project: Building a Humanoid Robot," in Computation for Metaphors, Analogy,

and Agents, Berlin, Heidelberg, C. L. Nehaniv, Ed., 1999// 1999: Springer Berlin

Heidelberg, pp. 52-87.

[67] P. J. Antsaklis and A. Rahnama, "Control and Machine Intelligence for System

Autonomy," Journal of Intelligent & Robotic Systems, vol. 91, no. 1, pp. 23-34,

2018/07/01 2018, doi: 10.1007/s10846-018-0832-6.

[68] D. Hernández García, C. A. Monje, and C. Balaguer, "Task Oriented Control of a

Humanoid Robot Through the Implementation of a Cognitive Architecture," Journal

of Intelligent & Robotic Systems, vol. 85, no. 1, pp. 3-25, 2017/01/01 2017, doi:

10.1007/s10846-016-0383-7.

[69] D. Drenjanac, S. D. K. Tomic, and E. Kuhn, "A Semantic Framework for Modeling

Adaptive Autonomy in Task Allocation in Robotic Fleets," in Enabling Technologies:

Infrastructure for Collaborative Enterprises (WETICE), 2015 IEEE 24th International

Conference on, 15-17 June 2015 2015, pp. 15-20, doi: 10.1109/wetice.2015.29.

[70] A. Martínez-Tenor, J. A. Fernández-Madrigal, A. Cruz-Martín, and J. González-

Jiménez, "Towards a common implementation of reinforcement learning for multiple

robotic tasks," Expert Systems with Applications, vol. 100, pp. 246-259, 2018/06/15/

2018, doi: https://doi.org/10.1016/j.eswa.2017.11.011.

[71] C. Sampedro, A. Rodriguez-Ramos, H. Bavle, A. Carrio, P. de la Puente, and P.

Campoy, "A Fully-Autonomous Aerial Robot for Search and Rescue Applications in

Indoor Environments using Learning-Based Techniques," Journal of Intelligent &

Robotic Systems, 2018/07/03 2018, doi: 10.1007/s10846-018-0898-1.

[72] G. Rishwaraj and S. G. Ponnambalam, "Integrated trust based control system for

multirobot systems: Development and experimentation in real environment," Expert

Systems with Applications, vol. 86, pp. 177-189, 2017/11/15/ 2017, doi:

https://doi.org/10.1016/j.eswa.2017.05.074.

[73] T. Wareham and A. Vardy, "Putting it together: the computational complexity of

designing robot controllers and environments for distributed construction," Swarm

Intelligence, journal article vol. 12, no. 2, pp. 111-128, June 01 2018, doi:

10.1007/s11721-017-0152-7.

[74] U. Kurup and C. Lebiere, "What can cognitive architectures do for robotics?,"

Biologically Inspired Cognitive Architectures, vol. 2, pp. 88-99, 2012/10/01/ 2012, doi:

https://doi.org/10.1016/j.bica.2012.07.004.

[75] R. Gudwin et al., "The TROCA Project: An autonomous transportation robot

controlled by a cognitive architecture," Cognitive Systems Research, vol. 59, pp. 179-

197, 2020/01/01/ 2020, doi: https://doi.org/10.1016/j.cogsys.2019.09.011.

[76] P. Bustos, L. J. Manso, A. J. Bandera, J. P. Bandera, I. García-Varea, and J. Martínez-

Gómez, "The CORTEX cognitive robotics architecture: Use cases," Cognitive Systems

Research, vol. 55, pp. 107-123, 2019/06/01/ 2019, doi:

https://doi.org/10.1016/j.cogsys.2019.01.003.

[77] K. Miyazawa, T. Horii, T. Aoki, and T. Nagai, "Integrated Cognitive Architecture for

Robot Learning of Action and Language," (in English), Frontiers in Robotics and AI,

https://doi.org/10.1016/j.procs.2015.12.198
https://doi.org/10.1016/j.neunet.2010.08.010
https://doi.org/10.1016/j.eswa.2017.11.011
https://doi.org/10.1016/j.eswa.2017.05.074
https://doi.org/10.1016/j.bica.2012.07.004
https://doi.org/10.1016/j.cogsys.2019.09.011
https://doi.org/10.1016/j.cogsys.2019.01.003

 142

Original Research vol. 6, no. 131, 2019-November-29 2019, doi:

10.3389/frobt.2019.00131.

[78] J. R. Cole and D. Reitter, "The role of working memory in syntactic sentence

realization: A modeling & simulation approach," Cognitive Systems Research, vol. 55,

pp. 95-106, 2019/06/01/ 2019, doi: https://doi.org/10.1016/j.cogsys.2019.01.001.

[79] D. Vanderelst and A. Winfield, "An architecture for ethical robots inspired by the

simulation theory of cognition," Cognitive Systems Research, vol. 48, pp. 56-66,

2018/05/01/ 2018, doi: https://doi.org/10.1016/j.cogsys.2017.04.002.

[80] L. H. Favela, "Editor’s introduction: Innovative dynamical approaches to cognitive

systems," Cognitive Systems Research, vol. 58, pp. 156-159, 2019/12/01/ 2019, doi:

https://doi.org/10.1016/j.cogsys.2019.06.001.

[81] M. Demir, N. Cooke, and P. Amazeen, "A Conceptual Model of Team Dynamical

Behaviors and Performance in Human-Autonomy Teaming," Cognitive Systems

Research, vol. 52, 08/01 2018, doi: 10.1016/j.cogsys.2018.07.029.

[82] M. Demir, "The Impact of Coordination Quality on Coordination Dynamics and Team

Performance: When Humans Team with Autonomy," Doctor of Philosophy, Arizona

State University, 2017, 2017.

[83] N. J. McNeese, M. Demir, N. J. Cooke, and C. Myers, "Teaming With a Synthetic

Teammate: Insights into Human-Autonomy Teaming," Human Factors, vol. 60, no. 2,

pp. 262-273, 2018/03/01 2017, doi: 10.1177/0018720817743223.

[84] E. L. John, L. Christian, and S. R. Paul, "A Standard Model of the Mind: Toward a

Common Computational Framework across Artificial Intelligence, Cognitive Science,

Neuroscience, and Robotics," AI Magazine, vol. 38, no. 4, 12/28 2017, doi:

10.1609/aimag.v38i4.2744.

[85] A. Chella and A. Pipitone, "A cognitive architecture for inner speech," Cognitive

Systems Research, vol. 59, pp. 287-292, 2020/01/01/ 2020, doi:

https://doi.org/10.1016/j.cogsys.2019.09.010.

[86] G. Baghdadi, F. Towhidkhah, and R. Rostami, "A mathematical model of the

interaction between bottom-up and top-down attention controllers in response to a

target and a distractor in human beings," Cognitive Systems Research, vol. 58, pp. 234-

252, 2019/12/01/ 2019, doi: https://doi.org/10.1016/j.cogsys.2019.07.007.

[87] L. H. Favela and M. M. J. W. van Rooij, "Reasoning across continuous landscapes: A

nonlinear dynamical systems theory approach to reasoning," Cognitive Systems

Research, vol. 54, pp. 189-198, 2019/05/01/ 2019, doi:

https://doi.org/10.1016/j.cogsys.2018.12.013.

[88] G. Van Orden, G. Hollis, and S. Wallot, "The Blue-Collar Brain," (in English),

Frontiers in Physiology, Hypothesis and Theory vol. 3, no. 207, 2012-June-18 2012,

doi: 10.3389/fphys.2012.00207.

[89] D. Wang, Y. Hu, and T. Ma, "Mobile robot navigation with the combination of

supervised learning in cerebellum and reward-based learning in basal ganglia,"

Cognitive Systems Research, vol. 59, pp. 1-14, 2020/01/01/ 2020, doi:

https://doi.org/10.1016/j.cogsys.2019.09.006.

[90] Y. Jian and Y. Li, "Research on intelligent cognitive function enhancement of

intelligent robot based on ant colony algorithm," Cognitive Systems Research, vol. 56,

pp. 203-212, 2019/08/01/ 2019, doi: https://doi.org/10.1016/j.cogsys.2018.12.014.

[91] B. J. G. Baars, Nicole M., Fundamentals of Cognitive Neuroscience - A Beginner's

Guide, Second ed. Academic Press - Elsevier, 2018.

https://doi.org/10.1016/j.cogsys.2019.01.001
https://doi.org/10.1016/j.cogsys.2017.04.002
https://doi.org/10.1016/j.cogsys.2019.06.001
https://doi.org/10.1016/j.cogsys.2019.09.010
https://doi.org/10.1016/j.cogsys.2019.07.007
https://doi.org/10.1016/j.cogsys.2018.12.013
https://doi.org/10.1016/j.cogsys.2019.09.006
https://doi.org/10.1016/j.cogsys.2018.12.014

 143

[92] M. Persiani, A. M. Franchi, and G. Gini, "A working memory model improves

cognitive control in agents and robots," Cognitive Systems Research, vol. 51, pp. 1-13,

2018/10/01/ 2018, doi: https://doi.org/10.1016/j.cogsys.2018.04.014.

[93] H. J. Levesque, The Logic of Knowledge Bases. MIT Press, 2000.

[94] S. Brass and U. W. Lipeck, "Specifying closed world assumptions for logic databases,"

in MFDBS 89: 2nd Symposium on Mathematical Fundamentals of Database Systems

Visegrád, Hungary, June 26–30, 1989 Proceedings, J. Demetrovics and B. Thalheim

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989, pp. 68-84.

[95] G. F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem

Solving, Fifth Edition ed. Pearson Education Ltd, 2005, p. 903.

[96] C. E. Shannon, "A mathematical theory of communication," Bell System Technical

Journal, The, vol. 27, no. 4, pp. 623-656, 1948, doi: 10.1002/j.1538-

7305.1948.tb00917.x.

[97] J. Pitman, Probability. Springer-Verlag, 1993, p. 559.

[98] J. H. Joseph K. Blitzstein, Introduction to Probability (Texts in Statistical Science).

CRC Press, 2015.

[99] R. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," in Micro

Machine and Human Science, 1995. MHS '95., Proceedings of the Sixth International

Symposium on, 4-6 Oct 1995 1995, pp. 39-43, doi: 10.1109/mhs.1995.494215.

[100] P. K. Das, B. M. Sahoo, H. S. Behera, and S. Vashisht, "An improved particle swarm

optimization for multi-robot path planning," in 2016 International Conference on

Innovation and Challenges in Cyber Security (ICICCS-INBUSH), 3-5 Feb. 2016 2016,

pp. 97-106, doi: 10.1109/iciccs.2016.7542324.

[101] Q. Cai, T. Long, Z. Wang, Y. Wen, and J. Kou, "Multiple paths planning for UAVs

using particle swarm optimization with sequential niche technique," in 2016 Chinese

Control and Decision Conference (CCDC), 28-30 May 2016 2016, pp. 4730-4734, doi:

10.1109/ccdc.2016.7531839.

[102] C. Walha, H. Bezine, and A. M. Alimi, "A Multi-Objective Particle Swarm

Optimization approach to robotic grasping," in Individual and Collective Behaviors in

Robotics (ICBR), 2013 International Conference on, 15-17 Dec. 2013 2013, pp. 120-

125, doi: 10.1109/icbr.2013.6729267.

[103] S. Yuhui and R. Eberhart, "A modified particle swarm optimizer," in Evolutionary

Computation Proceedings, 1998. IEEE World Congress on Computational

Intelligence., The 1998 IEEE International Conference on, 4-9 May 1998 1998, pp. 69-

73, doi: 10.1109/icec.1998.699146.

[104] C. Wei-Neng, Z. Jun, H. S. H. Chung, Z. Wen-Liang, W. Wei-gang, and S. Yu-Hui,

"A Novel Set-Based Particle Swarm Optimization Method for Discrete Optimization

Problems," Evolutionary Computation, IEEE Transactions on, vol. 14, no. 2, pp. 278-

300, 2010, doi: 10.1109/tevc.2009.2030331.

[105] X. Yu et al., "Set-Based Discrete Particle Swarm Optimization Based on

Decomposition for Permutation-Based Multiobjective Combinatorial Optimization

Problems," IEEE Transactions on Cybernetics, vol. PP, no. 99, pp. 1-15, 2018, doi:

10.1109/tcyb.2017.2728120.

[106] W.-N. Chen and D.-Z. Tan, "Set-based discrete particle swarm optimization and its

applications: a survey," Frontiers of Computer Science, vol. 12, no. 2, pp. 203-216,

2018/04/01 2018, doi: 10.1007/s11704-018-7155-4.

[107] Y. Weng, W. Chen, A. Song, and J. Zhang, "Set-Based Comprehensive Learning

Particle Swarm optimization for Virtual Machine Placement Problem," in 2018 Ninth

https://doi.org/10.1016/j.cogsys.2018.04.014

 144

International Conference on Intelligent Control and Information Processing (ICICIP),

9-11 Nov. 2018 2018, pp. 243-250, doi: 10.1109/icicip.2018.8606676.

[108] Y. Zhong, J. Lin, L. Wang, and H. Zhang, "Discrete comprehensive learning particle

swarm optimization algorithm with Metropolis acceptance criterion for traveling

salesman problem," Swarm and Evolutionary Computation, 2018/03/20/ 2018, doi:

https://doi.org/10.1016/j.swevo.2018.02.017.

[109] A. ŞİMŞEk and R. Kara, "Using swarm intelligence algorithms to detect influential

individuals for influence maximization in social networks," Expert Systems with

Applications, vol. 114, pp. 224-236, 2018/12/30/ 2018, doi:

https://doi.org/10.1016/j.eswa.2018.07.038.

[110] K. V. Shihabudheen, M. Mahesh, and G. N. Pillai, "Particle swarm optimization based

extreme learning neuro-fuzzy system for regression and classification," Expert Systems

with Applications, vol. 92, pp. 474-484, 2018/02/01/ 2018, doi:

https://doi.org/10.1016/j.eswa.2017.09.037.

[111] M. Mahmood, S. Mathavan, and M. Rahman, "A parameter-free discrete particle

swarm algorithm and its application to multi-objective pavement maintenance

schemes," Swarm and Evolutionary Computation, 2018/03/31/ 2018, doi:

https://doi.org/10.1016/j.swevo.2018.03.013.

[112] L. Cao, L. Xu, and E. D. Goodman, "A collaboration-based particle swarm optimizer

with history-guided estimation for optimization in dynamic environments," Expert

Systems with Applications, vol. 120, pp. 1-13, 2019/04/15/ 2019, doi:

https://doi.org/10.1016/j.eswa.2018.11.020.

[113] C. W. Cleghorn and A. P. Engelbrecht, "Particle swarm stability: a theoretical

extension using the non-stagnate distribution assumption," Swarm Intelligence, journal

article vol. 12, no. 1, pp. 1-22, March 01 2018, doi: 10.1007/s11721-017-0141-x.

[114] M. Chih, "Three pseudo-utility ratio-inspired particle swarm optimization with local

search for multidimensional knapsack problem," Swarm and Evolutionary

Computation, vol. 39, pp. 279-296, 2018/04/01/ 2018, doi:

https://doi.org/10.1016/j.swevo.2017.10.008.

[115] Y. Chen, L. Li, H. Peng, J. Xiao, and Q. Wu, "Dynamic multi-swarm differential

learning particle swarm optimizer," Swarm and Evolutionary Computation, vol. 39, pp.

209-221, 2018/04/01/ 2018, doi: https://doi.org/10.1016/j.swevo.2017.10.004.

[116] M. Z. Shirazi, T. Pamulapati, R. Mallipeddi, and K. C. Veluvolu, "Particle Swarm

Optimization with Ensemble of Inertia Weight Strategies," Cham, 2017: Springer

International Publishing, in Advances in Swarm Intelligence, pp. 140-147.

[117] J.-J. Wang and G.-Y. Liu, "Saturated control design of a quadrotor with heterogeneous

comprehensive learning particle swarm optimization," Swarm and Evolutionary

Computation, vol. 46, pp. 84-96, 2019/05/01/ 2019, doi:

https://doi.org/10.1016/j.swevo.2019.02.008.

[118] M. Brady, V. K. Mamanduru, and M. K. Tiwari, "An evolutionary algorithmic

approach to determine the Nash equilibrium in a duopoly with nonlinearities and

constraints," Expert Systems with Applications, vol. 74, pp. 29-40, 2017/05/15/ 2017,

doi: https://doi.org/10.1016/j.eswa.2016.12.037.

[119] M. Maschler, E. Solan, and S. Zamir, Game Theory. Cambridge University Press, 2013.

[120] S. Tadelis, Game Theory - An Introduction. Princeton University Press, 2013.

[121] S. Schoenmackers, O. Etzioni, D. S. Weld, and J. Davis, "Learning first-order Horn

clauses from web text," presented at the Proceedings of the 2010 Conference on

Empirical Methods in Natural Language Processing, Cambridge, Massachusetts, 2010.

https://doi.org/10.1016/j.swevo.2018.02.017
https://doi.org/10.1016/j.eswa.2018.07.038
https://doi.org/10.1016/j.eswa.2017.09.037
https://doi.org/10.1016/j.swevo.2018.03.013
https://doi.org/10.1016/j.eswa.2018.11.020
https://doi.org/10.1016/j.swevo.2017.10.008
https://doi.org/10.1016/j.swevo.2017.10.004
https://doi.org/10.1016/j.swevo.2019.02.008
https://doi.org/10.1016/j.eswa.2016.12.037

 145

[122] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence. John Wiley &

Sons Ltd., 2005, p. 672.

[123] D. Simon, Evolutionary Optimization Algorithms: Biologically Inspired and

Population-Based Approaches to Computer Intelligence, First Edition ed. John Wiley

& Sons, Inc, 2013, p. 742.

[124] J. L. Sun, Choi-Hong; Wu, Xiao-Jun, Particle Swarm Optimization: Classical and

Quantum Perspectives (Analysis and Scientific Computing Series). Chapman &

Hall/CRC, 2012, p. 419.

[125] G. W. F. Corder, D.I., Nonparametric Statistics - A Step-by-Step Approach, Second ed.

John Wiley & Sons, Ltd, 2014, p. 282.

[126] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum

Associates, 1988, p. 400.

[127] D. De Jager. "Cognitive Robotics - Autonomous UAV recharging."

https://youtu.be/OiA6Tip923U.

[128] D. De Jager. "Cognitive Robotics - Autonomous medical supplies delivery."

https://youtu.be/ZPCfCGsr7eY.

[129] D. De Jager. "Cognitive Robotics - On-demand UAV delivery of COVID-19

equipment." https://youtu.be/94Y_moDr43s.

[130] D. De Jager. "Cognitive Robotics - On-demand UAV security surveillance support."

https://youtu.be/LIRCporJmxM.

https://youtu.be/OiA6Tip923U
https://youtu.be/ZPCfCGsr7eY
https://youtu.be/94Y_moDr43s
https://youtu.be/LIRCporJmxM

