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Abstract 

High-level, real-time mission control of autonomous and semi-autonomous robots, deployed in 

remote and dynamic environments, remains a research challenge. Robots operating in these 

environments require some cognitive ability, provided by a simple, but robust, cognitive 

architecture. The most important process in a cognitive architecture is the working memory, 

with core functions being memory representation, memory recall, action selection and action 

execution, performed by the central executive. The cognitive reasoning process uses a memory 

representation, based on state flows, governed by state transitions with simple, quantified 

propositional transition formulae. In this thesis, real-time working memory quantification and 

optimization is performed using a novel adaptive entropy-based fitness quantification (AEFQ) 

algorithm and particle swarm optimization (PSO), respectively. A cognitive architecture, using 

an improved set-based PSO is developed for real-time, high-level control of single-task robots 

and a novel coalitional games-theoretic PSO (CG-PSO) algorithm extends the cognitive 

architecture for real-time, high-level control in multi-task robots. The performance of the 

cognitive architecture is evaluated by simulation, where a UAV executes four use cases: Firstly, 

for real-time high-level, single-task control: 1) relocating the UAV to a charging station and 2) 

collecting and delivering medical equipment. Performance is measured by inspecting the 

success and completeness of the mission and the accuracy of autonomous flight control. 

Secondly, for real-time high-level control of multi-task autonomous vehicle control: 3) 

delivering medical equipment to an incident and 4) provide aerial security surveillance support. 

The performance of the architecture is measured in terms of completeness and cognitive 

processing time and cue processing time. The results show that coalitions correctly represent 

optimal memory and action selection in real-time, while overall processing time is within a 

feasible time limit, arbitrarily set to 2 seconds in this study.
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Chapter 1 

Introduction 

The application of artificial intelligence (AI) for the high-level control of autonomous vehicles 

(autonomous vehicles) holds a lot of promise. The ultimate objective is to deploy an 

autonomous vehicle and leave it to intelligently and successfully perform the tasks it was 

designed and equipped for [1, 2]. Unfortunately, such level of autonomy is proving hard to 

accomplish, especially for robots deployed in remote and dynamic environments. For example, 

consider the Mars rover, Curiosity. Currently, the rover is exploring the surface of Mars. The 

rover is equipped with a number of on-board scientific testing laboratories, for example, a 

Sample Analysis at Mars (SAM), Mast Camera (MASTCAM), Mars Hand Lens Imager 

(MAHLI) and Rover Environmental Monitoring Station (REMS), amongst others. While the 

rover is equipped with some level of low-level autonomous control (mostly for obstacle 

avoidance), a human operator or designer, i.e. a domain expert, is still required to control some 

mission-specific tasks such as, sampling, testing and analysis. This includes the decision about 

whether an area is interesting and should be explored further. This is high-level mission control 

and currently, there is a gap in solutions for autonomous AI for low-level control, such as 

stabilization control [3, 4], and high-level control, such as mission execution [5]. This gap can 

be partly filled by providing the autonomous vehicle with the cognitive ability to reason about 

the knowledge provided by the domain expert. This cognitive ability allows the autonomous 

vehicle to function more autonomously, alleviates the workload of the operator, and allows the 

domain expert to extend the knowledge of the autonomous vehicle in an intuitive way. 

Knowledge representation and structure plays a key role in the reasoning process. Expert 

knowledge must combine logical and statistical formalisms [6]. Logical formalisms, such as 

logic programming, symbolic parsing and rule induction is able to handle complexity in the 

knowledge. Statistical formalisms, such as Bayesian networks, Markov networks, Markov logic 

networks and neural networks handle uncertainty in the knowledge. In a dynamic environment, 

knowledge and environmental data may change rapidly and continuously. Autonomous 

systems, for example, autonomous exploratory robots [7, 8], encounter continuous changes in 

their environmental data when applied in dynamic environments. Because of the dynamism and 

degree of certainty in some environments, statistical formalisms, rather than logical formalisms 

are more suitable for reasoning. Moreover, for quick decision-making, reasoning must be based 

on an optimal, salient subset of the expert knowledge, given environmental sensory 

information. Whenever there is a change in the environmental stimuli, the salient knowledge 

becomes obsolete and needs to be replaced, using the new environmental stimuli. Therefore, 
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statistical formalisms which rely on discovery, learning and structure generation are inflexible 

and computationally- and time-expensive and are therefore not suited for real-time high-level 

autonomous vehicle control. The cognitive reasoning process needs to make a decision in an 

acceptable time frame. The cognitive reasoning process therefore, relies on a well-structured 

knowledgebase and real-time, adaptive cognitive reasoning ability. Naturally, researchers are 

looking towards human neuro-cognitive sciences for guidance towards cognitive reasoning 

solutions for robots. There is a tendency to develop robots to mimic human decision-making 

and behaviour. However, there are two conflicting approaches towards the design of cognitive 

architectures [9]:  to create a model of cognition and gain an understanding of cognitive 

processes and to build useful systems that have a cognitive ability and thereby provide robust 

adaptive behaviour that can anticipate events and the need for action. The first is concerned 

with advancing science, the second is concerned with effective engineering.  

There has been an ongoing quest to understanding human cognition [10] and a number of 

computational models [11] and neuro-cognitive architectures have been developed in order to 

simulate, study and understand human cognition. The best-known architectures are Adaptive 

control of thought (ACT) [12], Adaptive Control of Thought-Rational (ACT-R) [13], State 

operator and result (SOAR) [14], Semantic pointer architecture unified network (SPAUN) [15] 

and Neural Engineering Objects (Nengo) [15]. These architectures were designed to investigate 

human neuro-cognitive functions of the brain, while some, for example [16], go further and 

extend the architectures by augmenting it with human emotion characteristics. These 

architectures provide a modular representation of the cognitive functions of the brain, and is 

therefore an attractive option for designing similar architectures for cognitive robotics. 

Computational devices have seen a reduction in cost and size, while increasing in computational 

power and this have led to an increase in the application of cognitive architectures to robots. 

Architectures, such as those described above, focus on the computation (or behavioural 

outcome) of cognition. However, little attention is given to the foundation of cognitive 

computation i.e. memory. Memory is only considered as a basic “repository” of information, 

used by cognitive processes, while there is very little consideration of the dynamical memory-

specific processes, even though there appears to be a degree of consensus that cognition should 

be founded on formation and manipulation of memory and memory as associative and 

developmental [17]. It is advised that cognition be examined from the perspective of memory 

(and its associative processes), rather than from a computation or behavioural outcome, point 

of view. 

However, cognitive neuroscience is not trivial, and in [15], four significant challenges are 

identified, (1) the complexity of building representational structures for semantics, (2) utilizing 

the semantic structures effectively, (3) an executive, controlling action selection and (4) 
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representing and recalling memory. Of the challenges, memory representation, memory recall 

and action selection are, arguably, the most significant, since the autonomous vehicle’s 

behaviour is directly impacted by these actions. Memory representation can be further 

described in terms of semantic memory (short term and long-term) and episodic memory 

(experience-based) [18, 19] which, together with memory processing, is often referred to, in 

neuroscience, as working memory. Working memory is a very complex field of neuroscience 

and still subject to intense research. Various working memory models, such as Baddeley’s 

Multicomponent model, Cowan’s embedded process model and Engle’s controlled attention 

model are presented in [20]. Despite its complexity, working memory is equally important in a 

robo-cognitive architecture. 

Cognitive robotics is described as “the study of knowledge representation and reasoning 

problems, faced by an autonomous vehicle (or agent) in a dynamic and uncertain world” [21]. 

Cognitive control architectures typically provide cognitive functions, such as perception, 

attention, planning, memory, reasoning and learning. In cognitive robotics, where some form 

of memory representation is used, the initial memory is often provided by a domain expert. 

This memory is then often stored in a knowledgebase or some other storage structure, such as 

a file or database.  

In some autonomous vehicle control architectures, control models are learned through methods, 

such as artificial neural networks, to simulate memory representation, memory recall and the 

executive functions of the brain. The models represent memory through synaptic weight 

assignment, which is adjusted during a learning process. When presented with an input 

stimulus, the model “recalls” learned facts by applying the synaptic weight and input stimulus 

to an activation function. 

In a survey [1], it is shown that contemporary AI machine learning techniques, (e.g. artificial 

neural networks, Reinforcement learning and the deep learning variants of these techniques) 

are favoured. The survey also identifies that the complexity of machine learning models and 

parameter calibration, remains a problem for autonomous vehicles in general. Autonomous 

vehicles must have the capability to reason about, and act fast, on changing environmental 

stimuli. For example, when a unmanned aerial vehicle (UAV), in formation flight, encounters 

exceptional aerial disturbances [22] or when an autonomous underwater vehicle encounters 

exceptional underwater disturbances [23]. Autonomous vehicles are provided with initial 

knowledge about its environment, and a set of rules on how to behave in that environment. For 

example, knowledge about the environment or operational rules of autonomous vehicles, 

patrolling an area [24] for security, may change at any time. 

Unfortunately, for many real-world cognitive robotic applications, the approach of a-priori 
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learning of behavioural models is not always effective. Robots deployed in remote, unknown 

and dynamic locations, cannot risk catastrophic failure. As mentioned before, they do not have 

the time to learn new complex solutions from the start every time the environment changes. 

In the need for real-time, high-level control in robotics, without the overhead of model re-

learning is discussed. In this thesis, the mechanics of a real-time, knowledge quantification and 

optimization methodology, using a set-based particle swarm optimization (SPSO) algorithm, 

are developed. However, while the SPSO successfully optimizes the knowledge on a task by 

task basis, it is not suitable for knowledge optimization in a multi-task environment. 

This thesis also introduces a cognitive architecture suitable for robotic applications and, in this 

study, is referred to as a robo-cognitive architecture for high-level, single and multi-task control 

of robots. A novel, coalitional games theory-based PSO (CG-PSO) algorithm, which is based 

on a combination of SPSO and cooperative games theory, forms the cognitive process of the 

robo-cognitive architecture. 

 

1.1 Problem description 

• Memory representation - Augmenting or modifying the working memory of a remotely-

deployed autonomous vehicle becomes more convoluted, error-prone and computationally 

expensive if the structure of the working memory is complex. Limited communication 

bandwidth also restricts the maintenance of the working memory. 

•  Timeliness - High-level controllers are often represented by states and state transitions 

defined as a directed state-flow model with state-action policies, constructed through 

machine learning techniques. These techniques progressively learn the policies of the state-

flow, using user-defined parameters, which are often selected subjectively or derived 

through experimentation. Changes in the environment are likely to lead to the re-

optimization of the parameters and re-learning of the model. 

• Dynamism - When machine learning is used to generate models as high-level controllers, 

the controller (state-flow) is learnt in its entirety. For dynamic environments, a large number 

of models have to be learnt to handle different scenarios. However, when the underlying 

information or environment changes, learnt models may become obsolete and need to be 

replaced. Due to the time it takes to relearn a model, re-generation of high-level controllers 

in real-time operation becomes infeasible.  

• Knowledge Quantification – Particle swarm optimization (PSO) is selected for the 

optimization of the long-term memory (LTM), in order to provide the optimal, salient subset 

of knowledge for cognitive reasoning. In order for the PSO to evaluate memory items 
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selected from the long-term memory for fitness, each memory item needs to have a numeric 

value for fitness evaluation. Since the long-term memory is a discrete set of memory items, 

algebraic fitness evaluation is not possible. 

• Multi-tasking - Robots deployed in the real-world often have multiple functions they can 

perform (e.g. the Mars rover), and are therefore multi-task, multi-state platforms. Some of 

the states may be dependent on other states, while others may be completely independent. 

This means the autonomous vehicle may transition to states in parallel and thereby execute 

corresponding actions in parallel. Cognitive reasoning, using SPSO for memory 

optimization, is capable of finding the optimal transition from a single current state in a 

specific state-flow (function). However, it is not capable of providing multiple, parallel and 

independent transitions from multiple, current states in multiple state-flows in real-time. 

 

Given the problem description above, the research questions are: 

(1) Can working memory be represented in a form which simplifies augmentation and 

modification by domain expert? 

(2) Can working memory be statistically quantified for the evaluation of optimality, during 

memory recall in cognitive reasoning? 

(3) Is the cognitive reasoning capable of correct action selection for both single- and 

multiple, independent (or parallel) tasks? 

 

1.2 Aims and objectives 

To address the research questions above, this thesis develops and evaluates cognitive 

architectures, suitable for real-time, high-level autonomous vehicle control in remote and 

dynamic environments. The objectives of this research study are: 

a. To design, implement and test a simple knowledge representation for the working memory, 

which simplifies knowledge modification and augmentation. 

b. To design and develop a statistical, entropy-based quantification algorithm for the 

quantification of discrete knowledge in the working memory. 

c. To investigate a cognitive reasoning process for real-time memory recall by combining 

knowledge quantification with particle swarm optimization (PSO), for single task 

execution. 

d. To investigate a cognitive reasoning process for real-time memory recall combining game 

theory and particle swarm optimization (PSO), for multiple action selection for parallel, 

multi-task execution. 
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e. To evaluate the cognitive architecture for correctness, control and time efficiency, using 

simulation. 

 

1.3 Contributions 

The main contributions of this thesis are: 

1. The creation of a novel working memory representation, structured to simplify 

modification and augmentation. 

2. The design and development of a novel adaptive entropy fitness quantification (AEFQ) 

algorithm for the statistical quantification of discrete memory items (knowledge). 

3. The design and development of a cognitive reasoning process for memory recall, using 

an improved set-based particle swarm optimization (SPSO) algorithm (which uses the 

AEFQ algorithm) for action selection for single task execution. 

4. The design and development of a cognitive reasoning process for memory recall, using 

a novel CG-PSO algorithm (which uses the AEFQ algorithm) for multiple action 

selection for multiple, parallel task execution. 

5. Confirmation of the suitability of the robo-cognitive architectures in the execution of 

four use cases in simulation. 

 

1.4 Publications 

Journal papers published 

1. Deon de Jager, Yahya Zweiri, Dimitrios Makris (2019). “A Particle Swarm Optimization 

approach using Adaptive Entropy-based Fitness Quantification of Expert Knowledge for 

High-level, Real-time Cognitive Robotic Control”, SN Applied Sciences, No (12), Vol 

1. https://doi.org/10.1007/s42452-019-1697-4  

2. Deon de Jager, Yahya Zweiri, Dimitrios Makris (2020). “Real-time Episodic Memory 

Construction for Optimal Action Selection in Cognitive Robotics”, International Journal 

of Mechanical and Mechatronics Engineering, No (1), Vol 14. 

doi.org/10.5281/zenodo.3669208 

 

1.5 Methodology 

To illustrate and explain the methodology in this study, simulated UAV use cases are used to 

contextualize some of the theories and concepts. It should be noted that, without the loss of 

https://doi.org/10.1007/s42452-019-1697-4
https://doi.org/10.5281/zenodo.3669208
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generality, the methodology could equally apply to other autonomous vehicle (or automation) 

scenarios. 

In order to answer the research questions, two cognitive architectures which focusses on 

working memory for memory representation, memory recall (quantification and optimization) 

and action selection and execution, is developed. Figure 1.1 gives an overview of the two 

cognitive architectures, including the main components, developed in this study. 

The long-term memory is defined by a domain expert and formulated in a simple and discrete 

proposition logic-based structure. 

Memory recall is performed by the central executive (CE) and consists of two primary 

functions, statistical memory quantification and memory optimization using a particle swarm 

optimization approach. In this research study, two memory recall approaches are examined: 1) 

memory recall resulting in episodic memory construction for single-task action selection and 

execution and, 2) memory recall resulting in activated memory and focus of attention for 

multiple, parallel action selection and execution. Memory quantification is based on 

environmental stimuli and performed by the novel AEFQ algorithm. The AEFQ algorithm uses 

the maximum entropy principle (MEP) [25], for the assignment of a probability distribution 

over a memory item. Memory optimization for the first memory recall is performed using an 

improved SPSO algorithm. Memory optimization for the second memory recall is performed 

using the novel CG-PSO algorithm. 

Four use cases are defined and executed in simulation, to evaluate the suitability and 

performance of the cognitive architecture for both single task and parallel, multi-task execution. 
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Figure 1.1 The design and evaluation of two robo-cognitive architectures. 

The architecture on top is based on Baddeley’s model of working memory for the construction of episodic memory, for single tasks 

selection and execution. The robo-cognitive architecture shown below is based on Cowan’s attentional focus theory of working 

memory. Cognitive reasoning is performed by real-time optimization of working memory optimization, using particle swarm 

optimization and adaptive entropy memory fitness quantification of memory. Both architectures are evaluated in use case simulations.  
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To the best of my knowledge, no studies have been conducted in real-time, statistical 

quantification of memory, using the MEP approach. Moreover, no studies have been found for 

memory (or knowledge) optimization, using a particle swarm optimization approach.  

 

1.6 Thesis outline 

The rest of this thesis is structured as follows: 

a. Chapter 2 – Related work 

This chapter discussed research, relevant to the cognitive architecture and the core working 

memory functions, memory representation, memory recall, action selection and action 

execution. 

b. Chapter 3 – Background Theory 

This chapter discusses the theoretical foundations of the core functions of the cognitive 

architecture. An overview of the human cognition framework is given to contextualize 

working memory and the central executive. Various working memory models, relevant to 

the cognitive architecture proposed in this study, is discussed. PSO is one of the two core 

functions of memory recall and therefore, a detailed overview of the standard PSO and the 

set-based PSO is given. The chapter also gives a detailed overview of cooperative games 

theory with definitions relevant to coalition formation, based on the bargaining set solution 

concept. 

c. Chapter 4 – Working memory representation and quantification 

This chapter describes the contributions (1) to (2) in detail. In this chapter, a memory 

representation structure, representing the long-term memory used by the cognitive 

reasoning process in memory recall, is discussed in detail. This chapter also discusses in 

detail, the memory quantification methodology, used in the optimization step of memory 

recall. The novel statistical entropy-based quantification algorithm is discussed in detail in 

this chapter. 

d. Chapter 5 – Memory optimization 

This chapter describes the first part (investigation) of contribution (3) and (4), which 

develops a cognitive process for memory recall. This chapter empirically evaluates both 

the standard PSO and set-based PSO in detail for the suitability of using PSO for 

knowledge optimization in memory recall. A detailed empirical evaluation is discussed in 

this chapter. 

e. Chapter 6 – Robo-cognitive architectures 
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This chapter describes the second part (methodology) of contributions (3) and (4).  In this 

chapter, two methodologies for memory recall in cognitive reasoning is developed for the 

real-time, high-level cognitive control of an autonomous vehicle. Memory recall is 

developed for two cognitive architectures. In the first method, an architecture for real-time, 

cognitive control using SPSO for single-task execution, is developed and in the second 

method, an architecture for real-time, cognitive control using CG-PSO for multi-task 

execution, is developed. 

f. Chapter 7 – Evaluation by simulation 

This chapter describes contribution 5 in detail. Four simulations are evaluated to confirm 

the suitability of the robo-cognitive architectures for high-level control of autonomous 

vehicles. The first two simulations (section 7.1) apply an episodic working memory 

approach for single task execution, while the next two simulations (section 7.2) apply the 

attentional focus theory of working memory approach for multi-task execution. 

g. Chapter 8 – Conclusion and Future work. 

This chapter concludes the thesis, highlighting its contributions and proposes areas for 

future research. 
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Chapter 2 

Associated research 

In this chapter, research relating to neuro-cognitive architectures and cognitive robotic 

architectures, are reviewed. In particular, the role of working memory processes, as opposed to 

cognitive processes, are reviewed. 

In a cognitive architecture, memory represents knowledge obtained either through learning or 

provided by a domain expert. Memory representation is key to the success and efficiency of the 

core functions of a cognitive architecture. The effectiveness of the central executive in memory 

recall, action selection and action execution are directly affected by the structure and content 

of the long-term memory in working memory. However, associated research in autonomous 

vehicle control often refers to “knowledge”, “information” or just data, as the input to an 

autonomous vehicle control process. Controllers govern the behaviour of the autonomous 

vehicle and are often described in procedural (as opposed to cognitive) terms. In this chapter, 

working memory representation and cognitive reasoning are reviewed in terms of knowledge 

representation and autonomous vehicle control, respectively. 

In section 2.1, popular approaches for the discovery and representation of knowledge are 

reviewed. section 2.2 review autonomous vehicle control approaches which uses procedural 

control methods and section 2.3 review autonomous vehicle control approaches which uses 

cognitive control methods.   

A critical review of the various approaches and main differences, between these approaches 

and the methodology proposed in this study, is given at the end of the chapter. 

 

2.1 Knowledge representation 

Knowledge is the basis for successful decision-making, and may be learned (or derived) 

computationally or explicitly defined by a domain expert. Equally important, is how the 

knowledge is obtained, formulated and structured. A complicated format will be 

computationally expensive and error-prone and decision-making may be sub-standard. For 

example, formats, such as modal logic or Hennessy-Milner logic [26, 27], have complex and 

unintuitive structures. The importance of simple knowledge representation structures becomes 

evident if formal reasoning theories are investigated [28]. In this work, three types of reasoning 

are described: deduction, induction, and abduction. These types of reasoning may be useful in 
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humanoid robot or human-robot applications, such as [29-33], they are not particularly suitable 

for remotely-deployed, exploratory autonomous vehicles, because, a subjective overemphasis 

is often placed on some factors, depending on the preferences of the subject doing the reasoning. 

This could lead to unacceptable levels of accuracy in inference, when applied to high-level 

control of autonomous vehicles. 

Knowledge is often defined as probabilistic reasoning models (PRMs) and modelled as 

probabilistic graphical models (PGM) [6, 34]. probabilistic graphical models handle uncertainty 

well and provide a useful structure for statistical inference. Arguably, the most widely used 

probabilistic graphical models for statistical inference are Bayesian networks, Markov 

networks and Markov logic networks. 

Bayesian networks are directed acyclic graphs which expresses causal relationships between 

random variables [6, 34, 35]. The Bayesian network is constructed by creating a node for each 

random variable in the long-term memory. For each causal relationship between two random 

variables, a directed edge is created between the two nodes representing the two random 

variables. Associated with each node is a user-defined conditional probability distribution 

(CPD) which indicates the probability of its states, given the probability of the states of its 

parents. The conditional probability distribution is represented as a conditional probability table 

(CPT). The conditional probability table is a table that has one probability for every possible 

combination of parent and child states. This is an N+1 dimensional table, where N is the number 

of parents. The Bayesian network is used to answer queries, for example, probability-of-

evidence queries [35]: what is the probability 𝑃𝑟(𝑒) of some variable instantiation, 𝑒, given 

some evidence X and Y? In probability–of-evidence queries, 𝐸 =  {𝑋, 𝑌} is the set of evidence 

variables. 

A Markov network is an undirected graph which models the joint distribution of a set of random 

variables. A node is created for each random variable and an edge between two nodes expresses 

the dependency between the two random variables [6, 36-38].  Some nodes in the graph form 

cliques, which are 𝑛-vertex subgraphs of the graph where 𝑛 indicates the number of vertices of 

the clique [39]. For cliques with more than one vertex, i.e. 𝑛 > 1, each pair of vertices is 

connected by an edge. Associated with each clique is a user-defined clique potential function 

which maps instantiations of the random variables in the clique to non-negative real numbers. 

This mapping process is referred to as clique factorization [37, 38]. 

A Markov logic network combines Markov networks and first-order logic (FOL) to “soften” 

the logical constraints of the long-term memory [36, 40]. Formally, a Markov logic network 𝐿 

is defined as a set of pairs (𝐹𝑖, 𝑤𝑖), where 𝐹𝑖 is a formula in first-order logic and a weight, 𝑤𝑖. 

The weight 𝑤𝑖 is a real number, indicating the strength of the logical constraint. The higher the 
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weight, the greater the difference in log probability between a world which satisfies a formula 

and one which does not [6, 40, 41]. The weight 𝑤𝑖 is determined by a user-defined function. 

Together with a finite set of constants 𝐶 (defined by the evidence), a Markov logic network 

defines a ground Markov network 𝑀𝐿,𝐶. A binary node is created for each possible grounding 

of each predicate, appearing in some formula in 𝐿. The value of the binary node is 1 if the 

represented predicate is true, otherwise it is 0. An edge is created between two nodes if, and 

only if, the two corresponding ground predicates appear together in at least one grounding of 

one formula in 𝐿. The ground Markov network, 𝑀𝐿,𝐶, also contains one binary feature for each 

possible grounding of each formula 𝐹𝑖  in 𝐿 . The value of the binary feature is 1 if the 

represented formula is true, otherwise it is 0.  

The main difference between the Bayesian network, Markov network and the Markov logic 

network is what the nodes represent. In a Bayesian network and a Markov network, the nodes 

represent the random variables in the long-term memory. In a Markov logic network, the nodes 

represent the predicates in the long-term memory.  

The descriptions above highlight three common activities when using probabilistic graphical 

models as a statistical formalism: 

a. Construct the network structure (Bayesian network, Markov network or Markov logic 

network) using the formally defined long-term memory and evidence. 

b. Define the network parameters (conditional probability tables for Bayesian networks, 

potentials for Markov networks and weights for Markov logic networks) by applying 

user-defined functions to the knowledge. 

c. Use the network and network parameters to execute statistical inference queries. 

In a dynamic environment, an autonomous system can expect both change and uncertainty in 

the evidence it observes. Therefore, probabilistic graphical models need to be created 

dynamically, to model the world in real-time, using the latest evidence and expert knowledge. 

Considering the activities mentioned above (a to c), if the environment is dynamic, the 

computational cost of using probabilistic graphical models becomes prohibitive [42, 43]. 

For many years various machine learning approaches, such as statistical relational learning 

(SRL) [44], inductive logic programming (ILP)  [45-47] and knowledge-based model 

construction (SMMC) [48, 49] have been used to derive expert knowledge from existing data 

sources. Some machine learning systems have been developed to learn and formulate 

knowledge, for example, FOIL [50] learns Horn clauses from relational data and MADDEN 

[49] performs statistical knowledge extraction from textual data. CLAUDIEN [46] is an 

inductive logic programming engine which computes a set of logically valid clauses from 
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datasets. In [51] a data mining technique is used for knowledge discovery in a multi-objective 

optimization topology. Clustering and association rules are applied sequentially to evaluate the 

Pareto-optimally of potential solutions. Once clustering of the data is complete, the solutions 

are visualized in the objective space. Discovering knowledge computationally is useful where 

the knowledge is encapsulated in vast amounts of data. However, for high-level control of 

autonomous vehicles, bespoke, problem-specific knowledge is required. This knowledge is 

usually defined by a domain expert, according to the design purpose of the autonomous vehicle. 

Whether knowledge is discovered computationally of provided by a domain expert, the 

representation needs to be in a form suitable for computational inference. Popular forms include 

first-order logic (or predicate logic) formulae and Horn clauses. Horn clauses are particularly 

useful, as its syntax is similar to programmatic conditional statements, and therefore easier to 

implement. (Because of its popularity, the syntax for first-order logic formulae and Horn 

clauses are described in more detail in section 3.2). Once the knowledge is effectively 

represented, the representation or variants thereof, can be used in high-level and low-level 

autonomous vehicle controllers. 

 

2.2 Procedural autonomous vehicle control 

Linear temporal logic (LTL), is used in [52], as a formal language to define the tasks of an 

autonomous vehicle, where linear temporal logic is combined with Petri Nets to determine 

optimal movement planning for multiple robots. The problem of high-dimensionality in the 

relationship between task planning, using linear temporal logic and robot motion is investigated 

by Shoukry et al. [53].  Here, linear temporal logic is used to define a set of propositions, 

applicable to all robots, for each region of the workspace. The robots’ movements across 

regions are controlled by the linear temporal logic propositions. 

In addition to high-level autonomous vehicle control, memory representation is also applied to 

low-level control of robots. For example, improving path planning in dynamic environments, 

where obstacles are avoided by prioritizing and predicting the future behaviour of the object 

[54]. In [30], a semi-autonomous high-level controller is proposed for the semi-autonomous 

control of autonomous vehicle teams in urban search and rescue missions. The objective of the 

controller is to reduce the workload of the autonomous vehicle operator. Other cognitive robotic 

approaches, combines inductive logic programming, used for predicate generation, and 

reinforcement learning, to learn optimal behavioural policies in [55]. 

A combination of linear temporal logic and Markov decision processes is used to synthesize 

high-level controllers in [56]. Here the linear temporal logic formulae provide a formal 
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definition of tasks for the autonomous vehicle and the Markov decision processes govern the 

execution of those tasks. However, synthesizing high-level controllers in a dynamic 

environment remains a challenge.  A framework to increase the adaptability of the synthesis 

process, by using a 3-layer top-down hierarchical decomposition of the control problem, is 

introduced. A three step-approach is used to firstly, solve the linear temporal logic problem on 

a finite state automaton (FSA), secondly, find the best policy for transitioning and thirdly, 

synthesize a controller. 

Reinforcement learning (or Q-Learning) of Markov decision process type controllers are 

increasingly being combined with other methodologies to learn high-level controllers to 

accomplish some task. Generally, the objective of Q-Learning is to iteratively select the best 

policy, i.e. state-action, which maximizes the expected discounted reward (Q-value), given the 

current state, the user-defined short-term memory and user-defined rewards. The most popular 

approach is the use of the Bellman equations [57], which calculates the optimal Q-value over 

all policies. In [58], Q-learning is used in combination with a Deep Deterministic Policy 

Gradients (DDPG) algorithm for a UAV to learn a landing task in simulation. In [59], the 

effectiveness of the Q-learning algorithm for autonomous vehicle path planning, is improved 

by using a flower pollinating algorithm to initialize the q-values of the algorithm. These 

approaches mostly rely on traditional, component-based software architecture approaches, to 

govern high-level control of an autonomous vehicle. Research into cognitive robotics (or 

autonomous vehicle control), has seen an increase in research into high-level autonomous 

vehicle control, especially in dynamic and uncertain environments. 

 

2.3 Cognitive autonomous vehicle control 

Emulating the power and adaptiveness of human cognitive reasoning in autonomous vehicle 

control is very attractive. As the understanding of human cognition developed, the interest in 

computation models for cognitive processes increased. This interest led to the development of 

a number of cognitive architectures, with the purpose of simulating human cognitive processes. 

The most well-known are Adaptive control of thought, Adaptive Control of Thought-Rational, 

State operator and result, Semantic pointer architecture unified network and Neural Engineering 

Objects architectures mentioned in the introduction. Other cognitive architectures include 

Sigma ( ∑ ) [60], Learning Intelligent Distribution Agent (LIDA) [61], and Connectionist 

Learning with Adaptive Rule Induction On-line (CLARION) [62], amongst many others. A 

comprehensive survey of 58 cognitive architectures, spanning 20 years, was conducted in [63], 

where it is shown that there is consensus on the various cognitive processes. This is mainly due 

to advancement in research of human cognition; however, the computational architecture of 
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these processes varies greatly. Although there are many similarities amongst the various 

architectures, especially regarding the cognitive processes [64], there are also many differences, 

especially on how memory is represented and processed. 

Some cognitive architectures are developed with a specific focus on humanoid robotics, and 

are closely tied to the physical architecture of the autonomous vehicle, the iCub open-systems 

platform [65] and Cognitive Architecture (COG) [66] are two such architectures. These 

architectures were designed to investigate human neuro-cognitive functions of the brain, while 

some go further and extend the architectures by augmenting it with human emotion 

characteristics [16]. These architectures, although complex, have opened the door to various 

cognitive architectures, specifically for autonomous vehicle control.  

As described in the introduction, the two key factors of cognitive robotics for autonomous 

reasoning and decision-making, are working memory representation and cognitive reasoning 

[67]. However, autonomy in robots deployed in dynamic environments is non-trivial, as the 

environment may vary greatly, this especially applies to the operational environments of 

humanoid robotics [33, 68], human-robot interaction [29, 30, 69, 70], Search and Rescue (SAR) 

[71] and multi-robot systems [72, 73]. Computational architectures, based on neuro-cognitive 

architectures are complex, inflexible and computationally expensive. These architectures 

attempt to mimic human cognitive functionality, which involve numerous complex cognitive 

processes. Moreover, neuro-cognitive processes have to process information dynamically, 

often under a degree of uncertainty. Computational architectures based on neuro-cognitive 

architectures are therefore not easily applied to autonomous vehicle solutions, especially when 

they are deployed in remote locations. It is argued in [74] that high-level autonomous vehicle 

control, where perception, reasoning and decision-making is required, is best achieved with a 

cognitive architecture. Five requirements are listed for intelligent high-level cognitive control: 

1) represent, integrate and use knowledge; 2) recognizing or learn new patterns of knowledge; 

3) reason and solve problems; 4) flexible, adaptive, dynamic, and real-time behaviour; 5) 

interact with humans in a natural way.  For intelligent control, the cognitive architecture is 

viewed in two parts: the architecture and the content. The architecture stays constant, while the 

content is dynamic. The architecture is the algorithmic processes common to all robots, while 

the content is defined as the semantic memory (knowledge), procedural memory (skills) and 

episodic memory (experience) each autonomous vehicle possesses. 

A cognitive architecture to autonomously control a transportation autonomous vehicle for use 

in a factory or warehouse, is developed in [75]. The architecture is based on and extends the 

State Operator And Result architecture. Information is processed from the Current Perception 
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Memory, the Visuo-Spatial Memory and the Goal Memory, prior to passing it to State Operator 

And Result for processing. 

CORTEX, is an autonomous vehicle architecture discussed in terms of use cases and 

autonomous vehicle applications [76]. CORTEX is composed of a number of computational 

models which are selected according to the autonomous vehicle control problem. The main 

feature of the CORTEX architecture is the existence of a unified, dynamic working memory, 

which can represent environmental data and high-level symbols. The executive module 

manages action plan generation and execution between all modules. 

A cognitive architecture which integrates a number of cognitive modules for concept learning, 

knowledge acquisition, language learning, and decision making is introduced in [77]. Concepts, 

language, and actions are learned through trial and error from the state in which the autonomous 

vehicle has no knowledge of the environment. The integration of the various components is 

performed through the use of variables and uses learned models to select the appropriate 

actions. 

The performance of working memory, in syntactic sentence realization is investigated in [78]. 

The role of working memory in grammatical encoding, is experimentally examined using a 

combination of grammatical theory and a computational psychological account of human 

cognition. The adaptive control of thought-R architecture is used to represent the human 

cognitive functionality. 

An architecture for ethical robots inspired by the simulation theory of cognition is developed 

in [79]. The study introduces an architecture which enables robots to autonomously act in a safe 

and ethical manner. An additional ethics layer is added to the architecture and the robot 

controller generates a set of prospective behavioural alternatives. Given an initial task, the 

ethics layer simulates and evaluates the consequences of each alternative, and the results are 

sent to the robot controller. The architecture was tested using a controlled and static 

environment, with behavioural alternatives kept unchanged. It is pointed out that the application 

of behavioural alternatives fits well into the composite state transition presented in this research 

study in section 4.1.2, figure 4.4. 

A review of dynamical approaches to cognitive systems is given in [80]. The focus of the review 

is on concepts, data analysis methods and computational model. Human-autonomous team 

stability and adaptiveness are investigated in [81] and [82]. In these studies, a human operator 

teams up with an autonomous agent, developed using the adaptive control of thought-rational  

cognitive architecture, in a simulated victim locator task scenario. In [83], the authors point out 

that that all messages to the synthetic teammate should not be ambiguous or cryptic, otherwise 
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the synthetic teammate would not understand the text message. This highlights the need for 

simple, well-structured knowledge representation, when a cognitive architecture is used for 

autonomous vehicle control. 

A standard model for the representation of the human mind, is proposed in [84]. The standard 

model combines the key aspects of three standard architectures, Adaptive Control of Thought-

Rational, State Operator And Result and SIGMA. Computational entities to represent these 

aspects are proposed to form the basis for cognitive architectures for robotics. A cognitive 

architecture for inner speech [85], uses the Standard Model of Mind, to simulate inner speech, 

or inner dialogue. The central executive controls the computation which retrieves information 

from long-term memory, and constructs conscience thoughts. The memory structure of the 

solution, is based on the memory structure defined by the Standard Model of the Mind, which 

consist of three types, the short-term memory (STM), the procedural and the declarative long-

term memory (DLTM), and the working memory system (WMS). 

A mathematical model which represents the relationship between bottom-up and top-down 

attention controllers, is presented in [86]. The study focusses on the neuronal functions of 

focussing attention using bottom-up (BU) and top-down (TD) processes in response to input 

stimuli, focussing of attention. Although the study focusses on human cognitive brain 

processes, an important fact is highlighted: for cognitive reasoning, irrelevant memory 

(knowledge) need to be supressed, while the saliency of relevant knowledge (memory) need to 

be increased. This point is especially important for effective high-level control in autonomous 

vehicles and is addressed with knowledge optimization during memory recall, in this research 

study. 

Dual processing of reasoning is defined in two forms: 1) fast-working and implicit, and 2) 

affect-related and slow-working. In [87], a nonlinear dynamical systems theory approach is 

used to investigate the dynamic interactions and transitions among the two forms of processing. 

Dual-process theory treat cognition as informational in nature and as such, human cognition is 

regarded as modular. In this context, modules are defined as being informationally 

encapsulated, domain specific, and automatic, rather than connectionist, i.e. connected 

networks of nodes. The human brain is a nonlinear dynamical system, where interaction is not 

only on neuronal level, but is also strongly influenced by the state of the environment [88]. In 

a dynamical approach, the macroscopic state of a system is represented as a set of differential 

equations with order parameters and control parameters. The order parameters are the 

dependent variables of the dynamic system and control parameters are the independent 

variables of the dynamic system. Order parameters and control parameters guide the system’s 

dynamics. 
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A mobile robot navigation system presents an integrated system using a motivated 

developmental network (MDN) and radial basis function neural network (RBFNN) to mimic 

the supervised learning of the cerebellum and reward-based learning of the basal ganglia, 

respectively [89]. The two systems are integrated to provide a hybrid complex cognition model, 

to navigate a mobile robot in unknown environment. The experimental results of the study show 

that by combining the cerebellum model and basal ganglia model, navigation accuracy is 

improved and learning steps are slightly reduced. Unfortunately, the environment remained 

static during the experiments, therefore, the effectiveness of the proposed method cannot be 

evaluated for dynamic experiments. 

In [90], a visual strangeness-driven long-term memory with autonomous ant colony learning 

algorithm, is proposed for the improvement of the visual cognitive function of intelligent 

robots. The approach combines an incremental self-organizing network as long-term memory 

structure and visual strangeness internal motivation Q learning method, in working memory. 

The proposed cognitive computing model is based on hippocampal-prefrontal memory system, 

learning, pattern recognition and classification, storage and memory. A self-organizing map 

(SOM) is used to store learned Q-values in a neural network, which, along with long-term 

memory, represents knowledge. The knowledge is structured as two parts: perceptual 

knowledge network and perceptual knowledge Q-value network. The perceptual knowledge is 

stored and accumulated separately, and the corresponding Q value is taken in each step. While 

the approach is useful for acquiring new knowledge over time, the knowledge of the robot is 

limited to that of the samples, produced by the domain expert. Therefore, the effectiveness of 

the approach when presented with unknown information, cannot be evaluated. Moreover, time-

sensitive control of the robot will be constrained by the determinism of the contents of its long-

term memory, learned from the samples. 

 

2.4  Critical review 

There is an infinite number of ways knowledge may be represented. Whatever representation 

is chosen, the cognitive reasoning process (or inference engine) has to interpret the information 

contained within the knowledge.  

autonomous vehicles and semi-autonomous robots, remotely deployed in unknown and 

dynamic environments, are often required to make time-sensitive decisions, based on 

continuously changing information. The methods discussed in section 2.1 may prove to be 

sufficient for discovery and formulation of knowledge for high-level autonomous vehicle 

control in a controlled or well-defined environment. However, in an unknown or highly 
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dynamic environment, environmental stimuli may change constantly. Moreover, the expert-

provided knowledge of an autonomous vehicle may have to be modified or augmented in real-

time, often over vast distances. In these types of environments, knowledge representation using 

complex syntax (such as modal logic and linear temporal logic) is computationally expensive 

and error-prone and remote updates will overload communication bandwidths. The syntax of 

these representations is not intuitive, difficult to comprehend and often open to interpretation 

and therefore error-prone. Using these knowledge representations are more suitable in a 

controlled and reasonably static environment and less suitable for real-time, high-level control 

of autonomous vehicles (with the possible exception of humanoid robots).  

first-order logic is based on propositional logic, combined with quantifiers, to form a first-order 

logic formula, which is more suitable for knowledge representation for robots. Although the 

simpler structure will have a reduced cost with regards to communication band-with, it is still 

error-prone, since the syntax is not intuitive, especially in a dynamic operational environment. 

In addition, the logical structure may still be complex and will still require some computational 

resource for inference. Simplifying the first-order logic formula by removing the quantifiers 

and decomposing the formula into a propositional logic formula, is a more suitable 

representation of knowledge for robots. This approach is discussed in more detail in section 

4.1. 

Learning high-level controllers using machine learning techniques, such as Q-learning, may be 

suitable in well-defined or controlled environments. Here a degree of dynamism may be catered 

for by learning a large number of models, in order to cater for as many scenarios as possible. 

However, if the environment is unknown and/or dynamic, it is not always possible to define a-

priori, which features to learn. 

Many of the approaches reviewed above, use machine learning which rely on the specification 

of control parameters. The accuracy and efficiency of approaches, such as machine learning or 

dynamic systems, is directly affected by the parameters supplied. Initially these parameters are 

specified subjectively and are then optimized during learning cycles or repetitive experiments. 

While machine learning approaches deal with some degree of noise in the data, any significant 

noise requires that the parameters be re-optimized. This means most models need to be re-

learned as well. For real-time, high-level control of autonomous vehicles, it is expected that the 

environment may change significantly, leading to a significant change in the information the 

cognitive reasoning process has to deal with. Moreover, since it is expected that reasoning be 

done in real-time, there is no time for re-learning of models.  

The approaches described above all attempt to provide architectures and solutions which 

provide high-level control for robots. Some of these approaches are based on procedural 
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software design. Others are starting to explore machine learning, in combination with 

procedural processes to introduce some intelligence into the control architectures. Others 

attempt to leverage cognitive functionality, based on neuro-cognitive architectures, for 

intelligent control. There are two conflicting approaches towards the design of cognitive 

architectures [9]:  “…to create a model of cognition and gain an understanding of cognitive 

processes and secondly, to build useful systems that have a cognitive ability and thereby provide 

robust adaptive behaviour that can anticipate events and the need for action. The first is 

concerned with advancing science, the second is concerned with effective engineering”. It is 

argued in this study that the advancement of cognitive science should lead the design of a 

practical architecture for cognitive robotics and that the architecture should contain processes 

which will result in “robust adaptive behaviour” by the robot. 

 It is further argued that many of the approaches described in this section are not suitable for 

real-time, high-level control of autonomous vehicles because the methodologies chosen (for 

example machine learning) cannot provide the robust adaptive behaviour, which is 

characteristic in human cognition. When the contemporary methodology is not appropriate, a 

different perspective is required. This research study takes that different perspective by 

focussing on cognitive processes for memory representation and memory recall to enable 

“robust adaptive behaviour” of an autonomous vehicle.  

Figure 2.1 gives a summary of the associated research and shows the relationship between the 

associated research and the research in this thesis. The figure puts both the associated research 

and the research in this thesis in the context of memory representation and memory recall. 
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Figure 2.1 Summary of associated research and research of this thesis. 

An overview of the different approaches and methodologies are given in terms of memory representation and 

memory recall in cognitive reasoning. Associated research is indicated in blue and research in this thesis is 

indicated in orange.  
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Figure 2.1 shows that there is no general standard for cognitive architectures in robotics and 

that most architecture designs are problem-specific. Some architectures follow a component-

based design model, while others follow a hybrid design model, where component-based design 

is combined with machine learning models. It is clear however, that both neuro-cognitive 

architectures and cognitive architectures for robotics, prioritises cognitive processes, with very 

little emphasis on memory structure and process. The role of memory in the cognitive 

architecture is often reduced to simple storage structures. The research in this thesis prioritises 

working memory and working memory process, with a focus on memory representation and 

memory recall for action selection and execution by the central executive. 
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Chapter 3 

Background theory 

The main functions of the robo-cognitive architecture developed in this research study, focusses 

on working memory for real-time cognitive decision-making. The main functions are memory 

representation, memory recall and action selection and execution. This chapter introduces the 

theoretical foundations of the robo-cognitive architecture, including the two most popular 

working memory models suited for robo-cognitive architectures. PSO is used for memory 

optimization in the memory recall process and the methodology of real-time, high-level 

cognitive control of single task robotics, uses a set-based PSO for memory optimization. 

Therefore, an overview of the standard PSO (which forms the basis of all PSO algorithms), and 

set-based PSO, are given. The methodology for the real-time, high-level control for multi-task 

robotics, is based on a cooperative, games-theoretic PSO. An overview of general (but 

applicable) concepts of games theory, as well as the relevant definitions of coalitional games 

theory are presented. Section 3.1.1 introduces a common neuro-cognitive architecture, 

including working memory. Section 3.1.2 describes the Baddeley working memory model, and 

the Cowan attentional focus theory model of working memory. The working memory models 

are used in sections 6.1 and 6.2 for memory recall for single task and multi-task execution, 

respectively. Section 3.2 gives an overview of knowledge representation and section 3.3 gives 

an overview of information entropy, as a measurement of uncertainty in information. 

Knowledge representation and information uncertainty forms the basis for memory 

representation and quantification, developed in sections 4.1 and 4.2, respectively. Section 3.4.1 

gives an overview of standard particle swarm optimization. Section 3.4.2 gives an overview of 

set-based particle swarm optimization, which is used for memory recall in single tasks 

execution in section 6.1 and section 3.5 introduces cooperative game theory, which is used in 

multi-task execution in section 6.2. 

 

3.1 Working Memory in Neuro-cognitive architecture 

The study of working memory and its constituent workings, have been a challenging field of 

study for neuro-scientists for many years. While there are still many outstanding questions, 

there seems to be consensus that working memory is key to cognitive decision-making and 

action selection. Most neuro-cognitive architectures include working memory in some form or 

another.  
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3.1.1 Functional framework for human cognition 

Figure 3.1 illustrates a typical functional framework for human cognition [91]. 

 

Figure 3.1 Functional framework for human cognition (based on [91]). 

Working memory, including the central executive are the core memory processing components, 

leading to action selection and execution. 

 

The central executive is responsible for the cognitive processes of memory classification, 

memory representation, recall, action selection and action execution. Collectively, these 

processes constitute the working memory. 

 

3.1.2 Working Memory Models 

A number of working memory models have been defined over the years. In the functional 

framework for human cognition, introduced by Baars and Nicole [91], working memory 

consists of the central executive and working storage. The working storage is created from 

sensory memory (verbal and visuospatial) and long-term (stored) memory, and is used in the 

action selection and execution process. Memory is defined further as declarative memory 

(semantic and episodic facts) and procedural memory (actions) in [9, 19]. Semantic facts are 

knowledge representing the beliefs, relations and intentions of the world, of humans and of 

objects, provided by a trainer (or domain expert). Episodic memory describes information about 

events and instances which occurred, e.g., what, where and when an event happened and is 
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based on personal experience. In this research study, long-term memory is semantic memory 

and episodic memory is derived from the long-term memory, based on real-time environmental 

stimuli. 

 

There are many definitions for the different types of memory identified in neuro-science. In this 

study, the following descriptions will be used: 

• Cognitive cycle – a period of reasoning, action selection and (possible) action 

execution. 

• Long-term memory (LTM) – semi-permanent information, provided by a domain 

expert. 

• Short-term memory (STM) – dynamic information either provided by a domain expert 

or generated during the action execution of a cognitive cycle. This information becomes 

obsolete after completion of the cognitive cycle. 

• Environmental stimulus (ENV) – a very short-term memory consisting of information 

received from sensory input and used only once during a cognitive cycle. 

• Episodic memory (EM) – limited information, based directly on environmental stimuli, 

obtained during a cognitive cycle. EM is knowledge with a degree of uncertainty (based 

on knowledge quantification) and represents “personal” experience while executing a 

selected action. EM becomes obsolete as soon as new information is received/observed. 

 

A popular and well-referenced model is Baddeley’s model of working memory [20] , shown in 

figure 3.2 and is used in [92] to improve cognitive control in agents. In Baddeley’s model, the 

central executive processes visuospatial, phonological and long-term semantic memory, are 

used to create the episodic buffer. The episodic buffer performs the same role as the working 

storage memory in figure 3.1. 
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Figure 3.2 Baddeley’s Model of Working Memory (based on [20]). 

Central to Baddeley’s model, is the construction of episodic memory from long-term memory 

and sensory information, by the central executive for reasoning and decision-making. 
 

The robo-cognitive architecture for real-time, high-level cognitive control in single-task 

robotics (developed in section 6.1), uses the episodic buffer approach shown in figure 3.2. 

A different approach is presented in Cowan’s attentional focus theory [20] model. In Cowan’s 

model, shown in figure 3.3, instead of types of memory being classified separately and 

distributed according to the cognitive functionality, all memory is stored as long-term memory. 

When memory receives attention, it becomes salient and closely stored memory is activated. 

Activated memory (AM) is a portion of memory which is relevant to the current environmental 

context and may become the focus of attention (FOA). The central executive (CE) uses the 

FOA for action selection and execution. 
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Figure 3.3 Cowan’s attentional focus model (based on [20]). 

Cowan’s model forms “clusters” of activated long-term memory elements, from which suitable 

elements will become the focus of attention for reasoning and decision-making. 
 

The robo-cognitive architecture for real-time, high-level cognitive control in multi-task robotics 

(developed in section 6.2), uses the AM and FOA approach shown in figure 3.3. The AM and 

FOA construction represent memory recall (memory quantification and optimization), 

performed by the central executive. 

For the memory recall cognitive process, the PSO algorithm is selected as memory optimization 

method, due to the simplicity and scalability of its architecture and control parameters. The next 

section provides a brief overview of the standard and set-based PSO algorithms. The set-based 

PSO algorithm forms the basis of the memory recall central executive for cognitive high-level 

control in single-task robotics. 

 

3.2 Knowledge representation 

The structure of memory representation is important for efficient and cost-effective 

computation. Knowledge acquired, either through learning or provided by a domain expert, are 

represented by sentences, constructed from logic formula and stored in a knowledgebase. An 

inference process deduces new facts from the sentences in the knowledgebase.  
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3.2.1 First-order logic 

Another widely used approach is representing knowledge as a set of first-order logic formulae 

which are based on propositional logic, and stored in a knowledgebase. A formal overview of 

first-order logic is given below. 

To assist in the explanation of first-order logic, the following fictional scenario is used: “The 

main objective of a Mars rover is to autonomously explore Mars and finding environmental 

data of water. On-board is a sample analysis at Mars (SAM) lab and a rock drill. The rover 

has the following knowledge, provided by a domain expert: 

• If hematite is found in clay, water may be present 

• If water is present, the lab system selects a tool to collect samples” 

First-Order Language ℒ, is defined as a set of random variables, 𝑉 =  {𝑣1, . . . , 𝑣𝑛}, a finite set 

of connectives ¬, ∧, ∨, ⇒, ⇔, quantifiers ∀, ∃ and a signature 𝛴 = < 𝑃, 𝐹, 𝐶 >. The finite 

set of predicate symbols in 𝛴 are represented by P, where each predicate has an arity 𝑚 and 

𝑚 ∈  ℤ+. A finite set of function symbols, each with arity 𝑛 and 𝑛 ∈  ℤ+, is represented by 𝐹 

and a finite set of constant symbols are represented by 𝐶.  

Given a constant or functor 𝑓 ∈ 𝐹 with arity 𝑛 and (𝑡1, … , 𝑡𝑛) ∈ ℒ, then 𝑓(𝑡1, . . . , 𝑡𝑛) is a term 

in ℒ. Atomic formulas in ℒ are predicates followed by the number of appropriate terms. Given 

a predicate 𝓅 ∈ 𝑃 with arity 𝑚 and (𝑡1, … , 𝑡𝑚) ∈ ℒ, then 𝓅(𝑡1, . . . , 𝑡𝑛) is an atomic formula in 

ℒ. Atomic formulae ℒ are also formed by applying the logical the connectives ¬, ∧, ∨, ⇒,

⇔, to two or more atomic formulae. 

An objective of this study is to simplify the maintenance of the long-term memory. Therefore, 

the knowledgebase will only contain predicate atomic formulae 𝓅(𝑡1, . . . , 𝑡𝑛), where each term 

𝑡𝑖 represents a random variable. No functors will be used. 

Another popular format for knowledge representation, are Horn clauses. Horn clauses can be 

defined in two ways: the disjunction form and the implication form. A Horn clause in 

disjunctive form, has at most one positive literal, and all remaining literals in negated 

disjunctive form. In implication form, the Horn clause has one positive consequence literal and 

all remaining literals in positive conjunctive form. For example, for the sample scenario, the 

following rules may be defined: 
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English Hematite found in clay indicates water is present 

first-order logic ∀ 𝑚, 𝑠   𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐼𝑛(𝑚, 𝑠) ⇒ 𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑤) 

Horn clause ¬𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐼𝑛(𝑚, 𝑠)  ∨  𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑤) 

  

English If water is present in a hematite sample, the lab system selects a 

tool to collect samples 

first-order logic ∀ 𝑚, 𝑠, 𝑜   𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐼𝑛(𝑚, 𝑠) ∧ 𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑜) ⇒ 𝑆𝑒𝑙𝑒𝑐𝑡𝑠(𝑙, 𝑡) 

Horn clause 

(disjunctive form) 
¬𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐼𝑛(𝑚, 𝑠)  ∨ ¬𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑤)  ∨  𝑆𝑒𝑙𝑒𝑐𝑡𝑠(𝑙, 𝑡) 

Horn clause 

(implication form) 
𝑆𝑒𝑙𝑒𝑐𝑡𝑠(𝑙, 𝑡) ← 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐼𝑛(𝑚, 𝑠)  ∧  𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑤) 

(m=mineral; s = sediment; w = water; l = lab; t = tool) 

It is clear from the example that formulae in Horn clauses (implication) format is better suited 

for computation, since the implication form is similar to the conditional “if…then…” statement 

used in programming languages. The Horn clause form is used in the knowledgebase, described 

in section 5.2.1 for the knowledge optimization evaluation. 

“Mineral”, “sediment”, “water”, “lab” and “tool” are described as “entities of interest” and form 

is the environmental stimuli received. This means, environmental stimuli received pertaining 

to any of the entities, will change the belief (quantification) of the predicate of which the entity 

is an argument.  

 

3.2.2 Evidence and logical constraints 

In this study, information acquired about entities of interest, are referred to as “evidence”. For 

example, the lab on-board the fictional rover detects a “mineral = hematite“ and “sediment = 

clay” in a soil sample. The evidential items are the constants (e.g. “hematite” and “clay”), which 

are represented by the variable symbols 𝑚  and 𝑠  (“mineral” and “sediment”). Before 

quantification can take place, the predicate arguments (variable symbols) are replaced by the 

evidence in a process called grounding. Using the example above, the predicate 

¬𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐼𝑛(𝑚, 𝑠) will be ground using the evidence “hematite” and “clay” to become the 

ground predicate, ¬𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐼𝑛(ℎ𝑒𝑚𝑎𝑡𝑖𝑡𝑒, 𝑐𝑙𝑎𝑦). 

Any combination of predicates in the knowledgebase is called a world [93] of the 

knowledgebase. The knowledgebase may have any number of worlds, depending on the subset 

of predicates selected. When the predicates are grounded by the evidence, they become possible 

worlds of the knowledgebase. A possible world represents the state of the knowledge in the 
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knowledgebase at a specific point in time, given the evidence. The formulae in the 

knowledgebase represents a set of hard logical constraints on all possible worlds of the 

knowledgebase [6, 36]. Each formula in the knowledgebase represents a logical constraint. This 

means that a world which violates even one formula has zero probability under inference. 

When there is no uncertainty in the evidence, expert systems use logical formalisms for 

inference. This means each predicate of a formula, given the evidence, evaluates to either true 

or false and thereby either satisfies or violates the formula completely. When there is 

uncertainty in the evidence, expert systems use statistical formalisms for inference on the 

knowledgebase. Each predicate evaluates to true, but with a probability, indicating the degree 

of confidence in the truth of the formula. Therefore, a world which violates a formula is less 

probable, but not impossible. Statistical formalisms “soften” the hard, logical constraints of the 

knowledgebase, by creating a probabilistic reasoning model which enables statistical inference 

on the formulae in the knowledgebase. 

 

3.2.3 Completeness and consistency 

Completeness of the knowledge, indicates the degree of representation of expert knowledge 

within the knowledgebase. If all possible knowledge needed for inference is formulated within 

the knowledgebase, it is said to be complete. However, in dynamic real-world environments, 

completeness of the knowledgebase can never be guaranteed. It is possible to encounter un-

defined objects or unexpected interactions between objects (known or unknown). Therefore, 

when modelling an environment, one of the following principles is followed: the closed world 

assumption (CWA) or the open world assumption (OWA) [6, 94, 95]. The closed world 

assumption is based on a minimum model of the world and assumes the knowledge about the 

environment is complete. This means that, unless it is known that a formula is true, it must be 

assumed to be false. The open world assumption however, assumes that the knowledge 

representing the environment is incomplete. This means that any information not explicitly 

specified, is considered unknown, but not false. 

The knowledge is considered to be consistent, if there are no changes made to any of the ground 

predicates, during inference. While consistency is not a requirement for the representation of 

the knowledge in the knowledgebase, it is important for efficient reasoning. Under the closed 

world assumption, the knowledge base is considered consistent and, by not allowing new 

knowledge to be added, remains consistent. However, in a dynamic environment, the 

knowledge may be augmented with newly encountered environmental data or a domain expert 
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may provide additional knowledge. Therefore, for an autonomous system functioning in a 

dynamic environment, the open world assumption is more suitable. 

In cognitive processing, the knowledgebase is redefined as the long-term memory (see section 

4.1), which is used in the cognitive reasoning process. In memory recall, optimal memory is 

recalled, to assist in action selection and execution, by the central executive.  The PSO 

algorithm is selected as memory optimization method, because of the simplicity and scalability 

of its architecture and control parameters. The long-term memory (knowledgebase) is the 

search space of the PSO. The next section provides a brief overview of the standard and set-

based PSO algorithms. The set-based PSO algorithm forms the basis of the memory recall 

central executive for high-level cognitive control in single-task robotics. 

 

3.3 Information entropy 

Shannon’s seminal work on information entropy [96], provides a means to quantify the amount 

of information gained (or conversely, uncertainty reduction) from an event, once the outcome 

(i.e. probability) of that event becomes known. 

Formally, for a discrete random variable 𝑋 = {𝑥1, … , 𝑥𝑛𝑋} where 𝑥𝑖 ∈ 𝑋 is a state of 𝑋, and 

probability mass function 𝑝(𝑥𝑖), the information entropy of the probability distribution of 𝑋 is 

calculated as: 

 𝐻(𝑋) = −∑ 𝑝(𝑥𝑖) 𝑙𝑜𝑔2 𝑝(𝑥𝑖)
𝑛𝑋
𝑖  (3.1) 

The random variable 𝑋 may be in any of the 𝑛 states at any point in time. The set {𝑥1, … , 𝑥𝑛𝐴} 

is the state space of the problem and the states are mutually exclusive, that is 𝑋 can only be in 

one state at any point in time. The probability of 𝑋 being in state 𝑖, is represented by 𝑝(𝑥𝑖). 

Using the sample scenario for the fictional rover, the quantification of a predicate using 

information entropy can be described as follows: 

Assume the knowledgebase of the rover contains the predicate 𝐼𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑋). If the objective 

is the detection of water, then the random variable 𝑋 represent the state space for the outcome 

of a sample analysis, e.g. “water is present”. A state 𝑥𝑖 ∈ 𝑋 denotes one possible outcome, e.g. 

“water detected” or “no water detected”. Therefore, the state space for the predicate is the set 

{true, false} and has a dimension of 𝑛 = 2. A probability 𝑃(𝑥𝑖) is a function, mapping each 

state 𝑥𝑖  to a real number [97]. The information entropy, 𝐻(𝑋) , is then calculated for the 

probability distribution over the states of 𝑋. When the states of 𝑋 are all equally probable, the 

entropy is maximized. For example, if the probability of water detected in the sample is 𝑥1 =
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0.5 and the probability of no water detected is  𝑥2 = 0.5. Then, assuming a logarithm with base 

2, the entropy 𝐻(𝑋) = 1 (maximum), i.e. 1 bit of information was gained (or uncertainty has 

been reduced by 1 bit). If it is known for certain that water was detected, there can only be one 

state, i.e. “water detected” with a probability of 1. Since the outcome is certain, no new 

information is gained, and the entropy 𝐻(𝑋) = 0 (minimum). 

Since information entropy is a measurement over a probability distribution, the assignment of 

the probability is important. There are two schools of thought for probability assignment, the 

frequentist approach and the Bayesian approach [98]. The frequentist approach assigns a 

probability to an event, based on the long-run frequency of an event over a large number of 

repetitions of an experiment. This approach also implies the availability of data which will be 

used to count the frequencies. The Bayesian approach subjectively assigns a probability as a 

degree of belief about an event. The subjectivity of the assignment risks the introduction of 

unwanted (or incorrect) information during the probability assignment. Neither of these 

approaches is suitable for the assignment of probabilities to the states of the predicate (i.e. 

knowledge item), when the information is dynamic. The maximum entropy principle, discussed 

in detail in section 4.2, provides a more suitable approach for the assignment of a probability 

distribution over the state space of the predicate. The maximum entropy principle only 

considers the information received from the environment and is therefore more accurate. 

 

3.4  Particle swarm optimization 

Particle swarm optimization (PSO) is a swarm intelligence algorithm, inspired by the 

movement and behaviour of a flock of birds searching for food, Eberhart and Kennedy 

developed the standard particle swarm optimization (StdPSO) algorithm [99]. 

3.4.1  Overview of standard particle swarm optimization 

The standard PSO (StdPSO) algorithm is a stochastic optimization algorithm, which has been 

successfully applied to optimization problems in the fields of engineering and robotics [100-

102]. PSO has been successfully applied to problems where the search space is either 

continuous or discrete.  

The swarm of particles moves through a D-dimensional solution space. The position of 

particle 𝑖 in the solution space represents a candidate solution, which is defined as a solution 

vector, 𝐗𝑖 ∈  ℝ
𝐷. The optimality of the candidate solution is determined by a fitness function, 

𝑓(𝐗𝑖) ∈ ℝ. The particle’s velocity represents the step size and direction of its movement and 
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is defined by a vector 𝐯𝑖 ∈  ℝ
𝐷. StdPSO iteratively updates each particle’s velocity and position 

using the following equations: 

 𝑣𝑖𝑗(𝑡 + 1) =  𝓌𝑣𝑖𝑗(𝑡) + 𝑐1𝑟1𝑗 (𝑦𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) + 𝑐2𝑟2𝑗 (�̂�𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) (3.2) 

 𝑥𝑖𝑗(𝑡 + 1) =  𝑥𝑖𝑗(𝑡) + 𝑣𝑖𝑗(𝑡 + 1) (3.3) 

where 𝑣𝑖𝑗(𝑡) represents the jth element of the velocity vector of particle 𝑖, at the tth iteration. An 

inertia weight 𝓌  is applied to the particle velocity. Two key components of the velocity 

equation are, the cognitive component, 𝑐1𝑟1𝑗 (𝑦𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)), and the social component, 

𝑐2𝑟2𝑗 (�̂�𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)), where 𝑦𝑖𝑗(𝑡) represents the jth element of the personal best vector of 

particle 𝑖 at the tth iteration and �̂�𝑗(𝑡) represents the jth element of the global best vector of the 

swarm at the tth iteration. The term, 𝑥𝑖𝑗(𝑡), represents the jth element of the current position of 

particle 𝑖 at the tth iteration. The two positive real numbers 𝑐1 and 𝑐2 are acceleration constants, 

used to scale the contributions of the cognitive and social components. The random 

values, 𝑟1𝑗, 𝑟2𝑗 ~ 𝑈(0,1), add a stochastic element to the cognitive and social components. A 

user-defined inertia weight, 𝓌, is added to the current velocity [103], which, along with the 

acceleration constants, balances the effect between global search and local search.  

The general fitness function for the PSO is defined as 

  𝑓 ∶  ℝ𝑛𝜙 →  ℝ (3.4) 

For a minimization problem, the personal best position at the next iteration is calculated as 

 𝑦𝑖(𝑡 + 1) = {
𝑦𝑖(𝑡)

𝐗𝑖(𝑡 + 1)
 
𝑖𝑓 𝑓(𝐗𝑖(𝑡 + 1)) ≥ 𝑓(𝑦𝑖(𝑡))

𝑖𝑓 𝑓(𝐗𝐢(𝑡 + 1)) < 𝑓(𝑦𝑖(𝑡))
 (3.5) 

and for a maximization problem, the personal best position at the next iteration is calculated as 

 𝑦𝑖(𝑡 + 1) = {
𝑦𝑖(𝑡)

𝐗𝑖(𝑡 + 1)
 
if f(𝑿i(t + 1)) ≤ f(yi(t))

if f(𝑿𝒊(t + 1)) > f(yi(t))
 (3.6) 

For a minimization problem, the global best position at the next iteration is calculated as 

 �̂�(𝑡 + 1) = {
�̂�(𝑡)

𝐗𝑖(𝑡 + 1)
 
𝑖𝑓 𝑓(𝐗𝑖(𝑡 + 1)) ≥ 𝑓(�̂�(𝑡))

𝑖𝑓 𝑓(𝐗𝑖(𝑡 + 1)) < 𝑓(�̂�(𝑡))
 (3.7) 

and for a maximization problem, the global best position at the next iteration is calculated as 

 �̂�(𝑡 + 1) = {
�̂�(𝑡)

𝐗𝑖(𝑡 + 1)
 
𝑖𝑓 𝑓(𝐗𝑖(𝑡 + 1)) ≤ 𝑓(�̂�(𝑡))

𝑖𝑓 𝑓(𝐗𝑖(𝑡 + 1)) > 𝑓(�̂�(𝑡))
 (3.8) 
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The standard particle swarm optimization algorithm is shown in Algorithm 3.1 below. 

Algorithm 3.1 Standard PSO 

1: Initialize an 𝑛𝑥-dimensional swarm, 𝑆; 

2: repeat 

3:  for each particle 𝑖 ∈ 𝑆 

4:   -- set the personal best position 

5:   if 𝑓(𝑥𝑖) > 𝑓(𝑦𝑖) -- see eqs. 3.5 - 3.8 

6:    𝑦𝑖 = 𝑥𝑖; 

7:   endif 

8:   -- set the global best position 

9:   if 𝑓(𝑥𝑖) > 𝑓(�̂�𝑖) -- see eqs. 3.5 - 3.8 
 

10:    �̂�𝑖 = 𝑥𝑖; 

11:   endif 

12:  endfor 

13:  for each particle 𝑖 ∈ 𝑆 

14:   update the velocity using eq. (3.2) 

15:   update the position using eq. (3.3) 

16:  endfor 

17: until stopping condition is true 

 

The objective of the PSO algorithm is to find the solution in the search space which will 

minimize or maximize the fitness function, also called the objective function. The fitness 

function is defined by the designer, based on the type of optimization problem. The algorithm 

repeatedly iterates through all particles in the swarm, each time evaluating the fitness of the 

vector, represented by the position of the particle. If the fitness of the current solution (i.e. 

position) of the particle is better than its personal (previous) best position, the personal best 

position is replaced with the current position. Similarly, if the fitness of the particle’s current 

solution is better than the fitness of the swarm’s best (global best) position, the global best 

position is replaced with the particle’s current position. On conclusion of all iterations, all (or 

most) of the particles should have converged on the best global solution, which is represented 

by the global best position vector. The results should be verified to ensure the swarm did get 

stuck in a local maximum or minimum. This means the swarm has prematurely converged on 

a position it perceives as an optimum, but a better position exists somewhere else in the search 

space. The number of iterations and the stopping condition are defined by the designer. 
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3.4.2  Overview of set-based particle swarm optimization 

When the search space is discrete, the velocity and position update eqs. (3.2) and (3.3) cannot 

be used without re-definition. In [104] and [105] a generic, set-based PSO (SPSO), suitable for 

optimization problems with a discrete search space, is introduced and a survey of discrete set-

based PSO is given in [106]. In SPSO, the search space is the universal set of discourse 𝑈, of 

the optimization problem. The position, 𝑋𝑖(𝑡) of particle 𝑖 is a subset of elements from  𝑈, and 

represents a candidate solution in the search space. The particle velocity, 𝑉𝑖(𝑡), is defined as a 

set of operations {𝑣𝑖,1, . . . , 𝑣𝑖,𝑘} =  {(±, 𝑒𝑛𝑖,1), . . . , (±, 𝑒𝑛𝑖,𝑘)} where 𝑒 ∈ 𝑈 and  𝑛𝑖,𝑗 is the index 

of the 𝑗𝑡ℎ  element of particle 𝑖 . The number of operations is denoted by 𝑘 . The operation 

pair  (±, 𝑒𝑛𝑖,𝑗)  indicates whether the element ( 𝑒𝑛𝑖,𝑗)  should be added to, or subtracted 

from, 𝑋𝑖(𝑡). The result of the operation is a new position, 𝑋𝑖(𝑡 + 1). To remain in accordance 

with standard PSO velocity and position update equations, new set-based operators are defined 

for the generic set-based PSO: 

- Velocity addition (⨁) : 𝑉1 ⨁ 𝑉2 = 𝑉1 ∪ 𝑉2 

- Position difference (⊖) : 𝑋1  ⊖ 𝑋2 = ({+} × (𝑋1\𝑋2)) ∪ ({−} × (𝑋2\𝑋1)) 

- Velocity - scalar multiplication: 𝜂⨂𝑉, 𝜂 ∈ [0,1], is the random selection of ⌊𝜂 × |𝑉|⌋ 

elements from 𝑉 to yield a new velocity. 

- Velocity – position addition: 𝑋 ⊞ 𝑉 = 𝑉(𝑋), where a velocity, 𝑉, is applied element by 

element to the position 𝑋. An element is either added to, or removed from, 𝑋 . The 

following additional operators perform the addition and removal of elements from 𝑋:  

▪   ⨀− for the removal of elements from a position, 

 𝛽⨀−𝑆 = {−} × (
𝑁𝛽,𝑆

|𝑆|
⨂𝑆) 

A number of elements, specified by 𝛽, are randomly selected for removal from the 

set 𝑆, defined by 𝑋(𝑡) ∩ 𝑌(𝑡) ∩ �̂�(𝑡). 

▪  ⨀+ for the addition of elements to a position, 

 𝛽⨀𝑘
+𝐴 = {+} × k-Tournament selection(𝐴,𝑁𝛽,𝐴) 

A number of elements, specified by 𝛽, are selected from the set 𝐴, for addition to 𝑋. 

The set of elements,  𝐴, are defined by 𝑈\ (𝑋(𝑡) ∪ 𝑌(𝑡) ∪ �̂�(𝑡)). The selection is 

done using k-tournament selection process, which ensures that the best performing 

elements are added. The best performing elements are those, which collectively 

maximize the fitness function.  
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The set-based velocity equation is: 

 𝑉𝑖(𝑡 + 1) =  (𝑐1𝑟1⊗ (𝑌𝑖(𝑡) ⊖ 𝑋𝑖(𝑡))) ⊕ (𝑐2𝑟2⊗(�̂�𝑖(𝑡) ⊖ 𝑋𝑖(𝑡)))⊕ 

 (𝑐3𝑟3⊙𝑘
+ 𝐴𝑖(𝑡))  ⊕ (𝑐4𝑟4⊙

− 𝑆𝑖(𝑡))  (3.9) 

where (𝑐1𝑟1⊗ (𝑌𝑖(𝑡) ⊖ 𝑋𝑖(𝑡))) is the cognitive component and (𝑐2𝑟2⊗(�̂�𝑖(𝑡) ⊖ 𝑋𝑖(𝑡))) is 

the social component. The author added two additional components to the standard PSO 

equation: 𝑐3𝑟3⊙𝑘
+ 𝐴𝑖(𝑡)  and 𝑐4𝑟4⊙

− 𝑆𝑖(𝑡) , where  𝐴𝑖(𝑡) = 𝑈\ (𝑋𝑖(𝑡)  ∪ 𝑌𝑖(𝑡)  ∪  �̂�𝑖(𝑡)) 

and  𝑆𝑖(𝑡) = (𝑋𝑖(𝑡)  ∩ 𝑌𝑖(𝑡)  ∩ �̂�𝑖(𝑡)) . The acceleration constants are defined as 𝑐1, 𝑐2  ∈

 [0, 1] and 𝑐3, 𝑐4  ∈  [0, |𝑈|]. The random numbers, 𝑟1 to 𝑟4, are random values sampled from a 

uniform distribution, i.e.  𝑟1, 𝑟2, 𝑟3, 𝑟4 ~ 𝛺(0,1).  

The set-based position update equation is: 

 𝑋𝑖(𝑡 + 1) =  𝑋𝑖(𝑡)  ⊞ 𝑉𝑖(𝑡 + 1) (3.10) 

While the movement of particles through the search space is governed by eqs. (3.2) and (3.3) 

for a continuous search space, eqs. (3.9) and (3.10) govern the movement of particles (sets) 

through a discrete set-based search space. Research involving PSO can be divided into two 

parts: 1) the application of PSO to optimization problems [107-111]  and 2) the improving the 

efficiency of the PSO algorithm itself [112-116]. An example of the former is the use of the 

set-based PSO algorithm for optimal placement of virtual machines in cloud and in [117], a 

saturated control method, using PSO, is developed for three-dimensional spatial tracking of a 

UAV. An example of the latter is improving the performance of the PSO algorithm for dynamic 

optimization problems.  

There is an intuitive similarity between the individual and social behaviour of the particles in a 

swarm, and the individual and social rationality of players in a game. However, despite the 

intuitive similarity, there have been very few attempts to exploit it. Although, PSO has been 

used to find optimality in game-theoretic problems, for example finding a Nash equilibrium 

[118]. However, no relevant research could be found which applies game-theory, specifically 

collaborative game-theory, to the behaviour of a swarm of particles. Therefore, this similarity 

is exploited in section 6.2, where PSO is combined with cooperative game theory, for the real-

time, high-level cognitive control in multi-task robotics. An overview of the applicable games 

theory foundations and definitions are given in the next section. 
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3.5  Cooperative games theory 

Game theory is a context-free mathematical methodology used to model and analyse interactive 

decision making among a group of rational decision makers. The decision of each individual, 

affects the outcome for the group as a whole. Such an interactive scenario is formally modelled 

as a game being played between all the decision makers, i.e. the players of the game. Referring 

to eqs. (3.2) and (3.9), by “remembering” the personal-best solution 𝑦𝑖𝑗(𝑡), the particle exhibits 

individually rational behaviour, while “remembering” the social-best solution �̂�𝑗(𝑡), the swarm 

exhibits socially rational behaviour. 

The study of game theory is divided into two subfields: strategic (or non-cooperative) games 

and coalitional (or cooperative) games [119]. This study will focus on coalitional games which 

model scenarios where players may choose to cooperate, i.e. form a coalition and binding 

agreements, which are likely to maximize the utility they will receive, or defect to another more 

profitable coalition. 

Choosing a game model depends, on the specification of the decision problem, which may be 

strategic or cooperative. However, as noted by [119], some decision problems may require 

aspects of both coalitional and strategic games. There are also some aspects which are common 

to both paradigms. An overview of the fundamentals of games theory, as they relate to the robo-

cognitive architecture, is given below. Comments throughout the section, help to relate a games 

theory concept to the proposed robo-cognitive architecture methodology. 

Common game theory concepts 

An overview of games theory, based on the work of Maschler [119] and Tadelis [120], form 

the basis of the cognitive process of the robo-cognitive architecture.  

The decision problem 

For a player to make a decision, he/she must consider the choices he/she has, what the 

consequence of each choice is and, how the choice will influence his welfare. The decision 

problem has the following features: 

• Actions (𝐴) - represents the player’s choices; 

• Outcomes (𝑋) - represents the consequence of the actions; 

• Preferences, represent the player’s ranking of the set of possible outcomes, from most 

desired to least desired. The preference relation, ≳ describes the player’s preference, 

where 𝑥 ≳ 𝑦 denotes the player’s preference of 𝑥 over 𝑦. 
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In the context of the robo-cognitive architecture, a player is represented by a particle in a swarm 

in the CG-PSO algorithm, and the preference represents “remembering” the best solution 

(individually or socially), based on the utility i.e. fitness of the solution. Just like the cognitive 

and social components govern the trajectory of a particle towards an optimal solution, utility 

and rationality govern the decision of a player in a game. 

 

Utility and rationality 

A player is considered rational when he/she chooses actions which will maximize his well-

being. In other words, the player chooses the actions which result in the most favourable 

outcomes, indicated by the preference relation. 

A utility function (also called a payoff function) assigns a real number to each outcome and is 

used to produce the set of preferences. The payoff function is an ordinal function, defined as:  

Definition 3.1: A payoff function 𝑢: 𝑋 → ℝ represents the preference relation ≳ if, for any pair 

𝑥, 𝑦 ∈ 𝑋, 𝜐(𝑥) ≥ 𝜐(𝑦) iff 𝑥 ≳ 𝑦. The purpose of the payoff function is to rank a player’s 

preference over various outcomes. 

The payoff function extends the features of the decision problem to include the rational 

preferences (utility) over the outcomes. Given the decision problem description above and the 

means to numerically evaluate outcomes, a rational player is defined as follows: 

Definition 3.2: A player facing a decision problem with a payoff function 𝜐(∙) over actions is 

rational if he/she chooses an action 𝑎 ∈ 𝐴 which maximizes his utility, that is, 𝑎∗ ∈ 𝐴 is chosen 

iff 𝜐(𝑎∗) ≥ 𝜐(𝑎), ∀𝑎 ∈ 𝐴. 

Since the objective of the CG-PSO is the formation of coalitions, each with the maximum social 

utility, the particle endeavours to maximize the social utility of the coalition through its 

individual contribution. The particle’s choice is therefore based on the “promise” of an equal 

share in the coalition’s utility. Obviously, the higher the social utility, the bigger the (promised) 

individual payoff.  This characteristic is similar to a particle swarm converging on the global-

best solution. 

Static games of complete information 

In a static game, a set of players independently choose a set of actions once, which in turn 

results in a set of outcomes. A static game has two steps: 
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1. Each player in the game chooses an action independently and simultaneously. This 

means each player chooses an action without knowing the choices of the other players or 

interacting with other players. 

2. Utility is distributed to each player. Once a player has made a choice, the choice results 

in a preferred outcome, which in turn result in utility calculated by the payoff function. 

A game with complete information extends the knowledge of a decision problem for a single 

player to include common knowledge amongst all the players: 

• all the possible actions of all the players; 

• all the possible outcomes; 

• the outcomes of all the players, based on their actions; 

• the preferences of every player, over the outcomes, calculated by the payoff function. 

The notion of rationality and common knowledge is important and fundamental in the 

application of games-theory to particle swarm behaviour. Coalition formation through rational 

individual and social bargaining, forms the foundation of the cognitive process. The social 

behaviour of the particles is influenced by the common knowledge shared amongst the particles.  

The cognitive behaviour of each particle is driven by its rationality. The CG_PSO algorithm 

“shares” the knowledge between all particles by giving each particle a turn to negotiate with 

every other particle and only evaluates its payoff if there is no objection (see definition 6.7 in 

section 6.2.2). 

 

3.6 Conclusion 

The robo-cognitive architecture proposed in this thesis focusses on the cognitive processes, 

memory representation, memory recall, action selection and action execution. The overview 

given in this chapter, forms the theoretical foundation for these cognitive processes. Section 3.1 

provided an overview of the working memory models, used in in neuro-cognitive architectures 

and sections 3.2 and 3.3 gave an overview of knowledge and uncertainty representation which 

will form the basis for memory representation and quantification developed in the robo-

cognitive architecture. Sections 3.4.1 and 3.4.2 gave an overview of both the standard and set-

based particle swarm optimization algorithms. The fundamentals of cooperative game theory 

was discussed in section 3.5. The set-based PSO algorithm and cooperative game theory will 

form the foundation for memory recall in the design and development of robo-cognitive 

architectures, developed in chapter 6 and evaluated in chapter 7. 
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Chapter 4 

Working Memory Representation and 

Quantification 

In section 3.2, an overview was given for knowledge representation, using logic formulae. This 

chapter discusses the development of two robo-cognitive architectures with a novel memory 

representation structure and a novel memory quantification methodology, for real-time, high 

level control of a UAV. Both the memory representation structure and the memory 

quantification algorithm are used in memory recall, developed in sections 6.1 and 6.2. In section 

4.1 working memory representation is formally defined and in section 4.2 memory 

quantification is formally defined and the adaptive entropy fitness quantification (AEFQ) 

algorithm is developed. 

 

4.1 Working memory representation 

The working memory of the robo-cognitive architecture is discussed in the context of high-

level control for a UAV. Figures 4.1 and 4.2 show the states and state transitions of the UAV, 

defined by the domain expert. These state flows are graphical representations of the knowledge 

about the behaviour of the UAV and defines the LTM of the working memory for the UAV. 

Each edge between two states represents a memory item (or knowledge) about transitioning 

from one state to another, and is defined by the domain expert. Each memory item is given an 

identifier, for example, 𝜏10 represents the memory item “arm motors”, i.e. start the motors. The 

assigned identifier makes computation easier and is arbitrarily defined by the designer (see 

figure 4.3). The UAV can perform two functions (or tasks), flight control and gripper control. 

The first diagram represents the flight control task, while the second diagram represent the 

gripper control task. Although one task may influence the state of the other, each task is 

independent from the other. 
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Figure 4.1 UAV Flight control states and state transitions. 

The state flow illustrates all the flight control states of the UAV, while the labelled state 

transitions illustrates valid transitions from one flight state to another. 

 

 

Figure 4.2 Gripper control states and state transitions. 

The state flow illustrates all the control states of the on-board gripper, while the labelled state 

transitions illustrates valid transitions from one gripper state to another. 

 

In order to keep the introduction of the robo-cognitive architecture methodology simple, the 

LTM used in this study, represent only singleton state transitions. That is, there is only one 

unique directional edge between two states. However, composite transitions are possible 

(discussed in section 4.1.2 and shown in figure 4.4). 

Given the states and state transitions, shown in figures 4.1 and 4.2, the LTM for the UAV is 

represented in matrix form. In the LTM, it is assumed that the states are fully connected. In 

other words, there can be a transition from any state to any other state, including itself. 

Obviously, this is not always true, for example, there cannot be a transition from state s6 (flying) 

to state s1 (disarm). The UAV will crash. Therefore, the domain expert defines (“switch on”) 

the valid states by setting the indicator 𝜐  in eq. (4.3) to “true” or 1, depending on the 
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implementation. This makes the LTM more flexible, as transitions could be conditionally 

activated, based on cognitive decision-making. Figure 4.3, shows the LTM, with valid state 

transitions for the UAV application. Each cell 𝜏𝑛 represents a state transition from a state 𝑠𝑖 in 

row 𝑖 to a state 𝑠𝑗 in column 𝑗. Each state transition is assigned a sequence number 𝑛 to act as 

identifier during computation. In this thesis, a sequence number in multiples of 5 are assigned 

to make insertions simpler, but the format of the sequence number is the decision of the designer 

of the LTM. Valid state transitions are defined by the domain expert and are highlighted in blue 

in figure 4.3. 
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s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 

disarmed s1 𝜏5 𝜏10 𝜏15 𝜏20 𝜏25 𝜏30 𝜏35 𝜏40 𝜏45 𝜏50 𝜏55 𝜏60 𝜏65 

armed s2 𝜏70 𝜏75 𝜏80 𝜏85 𝜏90 𝜏95 𝜏100 𝜏105 𝜏110 𝜏115 𝜏120 𝜏125 𝜏130 

airborne s3 𝜏135 𝜏140 𝜏145 𝜏150 𝜏155 𝜏160 𝜏165 𝜏170 𝜏175 𝜏180 𝜏185 𝜏190 𝜏195 

hovering s4 𝜏200 𝜏205 𝜏210 𝜏215 𝜏220 𝜏225 𝜏230 𝜏235 𝜏240 𝜏245 𝜏250 𝜏255 𝜏260 

ascending s5 𝜏265 𝜏270 𝜏275 𝜏280 𝜏285 𝜏290 𝜏295 𝜏300 𝜏305 𝜏310 𝜏315 𝜏320 𝜏325 

flying s6 𝜏330 𝜏335 𝜏340 𝜏345 𝜏350 𝜏355 𝜏360 𝜏365 𝜏370 𝜏375 𝜏380 𝜏385 𝜏390 

descending s7 𝜏395 𝜏400 𝜏405 𝜏410 𝜏415 𝜏420 𝜏425 𝜏430 𝜏435 𝜏440 𝜏445 𝜏450 𝜏455 

yawing s8 𝜏460 𝜏465 𝜏470 𝜏475 𝜏480 𝜏485 𝜏490 𝜏495 𝜏500 𝜏505 𝜏510 𝜏515 𝜏520 

landed s9 𝜏525 𝜏530 𝜏535 𝜏540 𝜏545 𝜏550 𝜏555 𝜏560 𝜏565 𝜏570 𝜏575 𝜏580 𝜏585 

gripdisarmed s10 𝜏590 𝜏595 𝜏600 𝜏605 𝜏610 𝜏615 𝜏620 𝜏625 𝜏630 𝜏635 𝜏640 𝜏645 𝜏650 

griparmed s11 𝜏655 𝜏660 𝜏665 𝜏670 𝜏675 𝜏680 𝜏685 𝜏690 𝜏695 𝜏700 𝜏705 𝜏710 𝜏715 

cargoattached s12 𝜏720 𝜏725 𝜏730 𝜏735 𝜏740 𝜏745 𝜏750 𝜏755 𝜏760 𝜏765 𝜏770 𝜏775 𝜏780 

cargoreleased s13 𝜏785 𝜏790 𝜏795 𝜏800 𝜏805 𝜏810 𝜏815 𝜏820 𝜏825 𝜏830 𝜏835 𝜏840 𝜏845 

Figure 4.3 The LTM of the cognitive architecture for the UAV. 

Each cell represents a memory item, which is defined as a possible state transition between a 

state in a row to a target state in a column. Each cell (memory element) is labelled and valid 

states are highlighted in blue. 

 

In order for the cognitive reasoning process to recall the optimal memory items from the LTM, 

the central executive needs to quantify the memory item, based on the cue received. The 

quantification is then used in the evaluation for optimality by the central executive. The LTM 
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representation and quantification are formally developed in the next sections. Although the 

working memory representation and quantification discussed in this chapter are described 

within the context of real-time, high-level control of a UAV, both the representation and 

quantification may, without the loss of generality, be applied to other autonomous vehicle 

control problems. 

 

4.1.1 Cue definition 

A mission is composed of a set of tasks which must be executed. The tasks of the mission are 

provided by a domain expert and serve as cues to the cognitive process of the autonomous 

vehicle. Each cue (task) controls the state to state transitioning of the vehicle, during the 

mission. The set of cues representing the mission, are defined as, 

 𝛷𝑐 = {𝜑1
𝑐 , 𝜑2

𝑐 , … , 𝜑𝑛𝛷𝑐
𝑐 } (4.1) 

where 𝜑𝑖
𝑐, 𝑖 = 1, . . , 𝑛𝛷𝑐 is the 𝑖𝑡ℎ task of the mission. An example of the use of cues is shown 

in an example in section 4.1.2. 

 

4.1.2 Memory representation 

Formally, the LTM is defined as the set of state transitions which governs the behaviour of the 

UAV (see section 4.1):  

 LTM = {𝜏1, 𝜏2, … , 𝜏𝑛𝐿𝑇𝑀} (4.2) 

where 𝜏𝑘 ∈ LTM, 𝑘 = (1,… , |LTM|) is a memory item, representing a state transition in the 

LTM. Each 𝜏𝑘 represents a state transition in the matrix in figure 4.3.  The state transition is a 

tuple, 

 𝜏𝑘 = (υ, S𝛼, 𝑆𝛽 , 𝐴𝑘 , 𝐹𝑘 , 𝑓𝑗) (4.3) 

where υ = {0,1} indicates whether the transition is valid, 𝑆𝛼 and 𝑆𝛽 are the start and end states 

of the state transition, respectively, 𝐴𝑘 = {𝒶1, … , 𝒶𝑛𝐴𝑘
}  is a set of actions and 𝐹𝑘 =

{𝑝1, 𝑝2, … , 𝑝𝑛𝐹𝑘
} is the trigger formula for the transition, consisting of a set of simple logic 

propositions. The function to which 𝜏𝑘 belongs to is indicated by 𝑓𝑗 ∈ ℱ. 

The ENV stimuli are defined as, 

 𝛷𝑟 = {𝜑1
𝑟 , 𝜑2

𝑟 , … , 𝜑𝑛𝛷𝑟
𝑟 } (4.4) 
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where 𝜑𝑖
𝑟, 𝑖 = 1, . . , 𝑛𝛷𝑟 is the environmental stimulus received during the cognitive cycle. 

The short-term memory items are defined as, 

 𝛷𝑚 = {𝜑1
𝑚, 𝜑2

𝑚, … , 𝜑𝑛𝛷𝑚
𝑚 } (4.5) 

where 𝜑𝑗
𝑚 ∈ [𝑙𝑏𝑚𝑗 , 𝑢𝑏𝑚𝑗], 𝑗 = 1, . . , 𝑛𝛷𝑚 , defines a short-term memory item, constrained to 

specified lower and upper boundaries. short-term memory is defined as initial (or default) 

information provided by the domain expert and may be updated during a cognitive cycle. Both 

𝜑𝑖
𝑟 and 𝜑𝑗

𝑚 are used for memory quantification during a cognitive cycle. 

Each proposition 𝑝𝑙 ∈ 𝐹𝑘, 𝑙 =  (1, … , 𝑛𝐹𝑘) is defined by a domain expert and is a tuple, 

 𝑝𝑙 = (𝜑𝑖
𝑟 , 𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝜑𝑗

𝑚  ) (4.6) 

where 𝜑𝑖
𝑟 and 𝜑𝑗

𝑚 are related by a logical_operator, from the set  { >,<,= }, to form simple 

propositions of the form: 

 (𝜑𝑖
𝑟 > 𝜑𝑗

𝑚), (𝜑𝑖
𝑟 < 𝜑𝑗

𝑚) and (𝜑𝑖
𝑟 = 𝜑𝑗

𝑚) (4.7) 

Any non-numeric argument is discretized to a numeric value, prior to quantification of 𝐹𝑘. 

The indicator 𝓋, the actions 𝒜 and all the propositions 𝑝𝑙 are defined and maintained by the 

domain expert. The trigger formula is always conjunctive, i.e. 𝐹𝑘 = (𝑝1 ∧ 𝑝2 ∧ …). 

The following example illustrates the evaluation of a LTM element, based on cues, 

environmental (sensory) stimuli and short-term memory during the execution of a mission. 

Example: Assume the UAV has taken off and is in a hover state, i.e. 𝑆𝛼 = 𝑠4. One of the tasks 

of a mission, 𝜑1
𝑐 ∈ 𝛷𝑐 is to fly from a home position 𝐻, indicated by the coordinates 𝑥𝐻 , 𝑦𝐻 

and 𝑧𝐻,  to a target position 𝑇, indicated by the coordinates 𝑥𝑇 , 𝑦𝑇 and 𝑧𝑇. During runtime, the 

UAV’s current position, indicated by the coordinates 𝑥, 𝑦, 𝑧, are recorded as environmental 

stimuli. The transition from the “hovering” state to the “flying” state, is subject to some rules. 

The UAV should only fly if it is explicitly allowed to do so, by the domain expert. This is 

indicated by setting the indicator 𝜐 to 1 (se eq. 4.20). In addition, the UAV should only fly to 

the specified destination if it is not there already and the current energy level is above a specified 

minimum level. The state transition, 𝜏225, represents the transitioning from state 𝑠4 (hovering) 

to 𝑠6 (flying), and is evaluated as follows: 

• Input mission cue: 𝜑1
𝑐 =  𝑓𝑙𝑦𝑡𝑜(𝑇); 

• Read environment stimulus: 𝛷𝑟 = {𝜑1
𝑟 = (𝑥, 𝑦, 𝑧), 𝜑2

𝑟 = 𝑣𝑖𝑛}; 

• Read STM: 𝛷𝑚 = {𝜑1
𝑚 = (𝑥𝑇 , 𝑦𝑇 , 𝑧𝑇 ), 𝜑2

𝑚 = 𝑣𝑚𝑖𝑛}; 

• Identify states: From state: S𝛼 = ′𝑠4′ to state 𝑆𝛽 =
′ 𝑠6′; 
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• Action: 𝐴224 = ′𝑓𝑙𝑦𝑡𝑜(𝑥𝑇 , 𝑦𝑇 , 𝑧𝑇)′; 

• Proposition 1: 𝑝1 = (𝜑1
𝑟 < 𝜑1

𝑚); 

 (i.e. rule 1: “the current position is less than target position”) 

• Proposition 2: 𝑝2 = (𝜑2
𝑟 > 𝜑2

𝑚); 

 (i.e. rule 2: “current energy levels are greater than the minimum level”) 

• Function: 𝑓1 = 1 = "𝑓𝑙𝑖𝑔ℎ𝑡𝐶𝑜𝑛𝑡𝑟𝑜𝑙"; 

• Trigger formula: 𝐹224 = (𝑝1 ∧ 𝑝2). 

Given the values above, the state transition (see eq. (4.3)) is prepared as follows: 

𝜏225 = (1, s4, s6, 𝑓𝑙𝑦𝑡𝑜(𝑥𝑇 , 𝑦𝑇 , 𝑧𝑇), (𝑝1 ∧ 𝑝2), 1) 

and will be evaluated and actioned (or rejected), based on the quantification of the trigger 

formula, 𝐹1 (discussed in section 4.2). 

However, the robo-cognitive architecture allows for the definition of composite, rule-based 

transitions between states (shown by the blue line in the example, shown in figure 4.4). This 

makes the high-level control very flexible, as each composite transition allows for any number 

of possible transitions between  S𝛼  and 𝑆𝛽 , each with its own trigger formula. Composite 

transitions also enable a logical combination of the trigger formulae in disjunctive normal form 

(DNF), i.e. a disjunction of conjunctions: ((𝑝1 ∧ 𝑝2) ∨ (𝑝3 ∧ 𝑝4) ∨ … ). 

 

Figure 4.4 Example of a composite state transition. 

The diagram illustrates the definition of multiple transitions between state s4 and state s6. The 

diagram shows that multiple, problem-specific trigger functions and actions may be defined 

between states. 
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Composite transitions allow the definition of any number of problem-specific trigger functions, 

𝐹𝑘 , and corresponding actions, 𝐴𝑘 . This capability greatly extends the cognitive reasoning 

process and therefore, the functionality of the high-level control. 

 

4.2 Working memory quantification 

In order to perform the quantification of a state transition 𝜏𝑘 ∈ LTM, a problem-specific model 

is constructed before it is presented to the maximum entropy principle equation for 

quantification. 

4.2.1 Quantification model construction 

Given a state transition τk ∈ LTM the model is formally defined as a tuple: 

 ℳ𝜏𝑘 = (𝐕, 𝐗, 𝐅, 𝚲) (4.8) 

The set of variables are represented by 𝐕 = {{𝑣ℚ} ∪, {𝑣1
ℙ, 𝑣2

ℙ, … 𝑣𝑛ℙ
ℙ } ∪ {𝑣1

𝔸, 𝑣2
𝔸, … 𝑣𝑛𝔸

𝔸 }} where 

𝑣ℚ is the query variable, 𝑣𝑝
ℙ , 𝑝 = 1,… , 𝑛ℙ is a predictor variable, representing a proposition in 

the trigger formula and 𝑣𝑙
𝔸 , 𝑙 = 1,… , 𝑛𝔸  is an association variable. Note that, since the 

propositions are independent, they will not have any effect on the query variable, unless 

relevant associations are defined between the query variable and appropriate predictor 

variables. The associations are problem-specific and are defined by the user. 

Let 𝑚 𝜏𝑘 = |{𝑣
ℚ} ∪ {𝑣1

ℙ, 𝑣2
ℙ, … 𝑣𝑛ℙ

ℙ }|, and 𝑛𝜏𝑘 = 2
𝑚 𝜏𝑘 , then a 𝑚𝜏𝑘 × 𝑛𝜏𝑘  constraint matrix, 𝐗 

is the state space of the trigger formula and defines all the joint statements of {𝑣ℚ} ∪

{𝑣1
ℙ, 𝑣2

ℙ, … 𝑣𝑛ℙ
ℙ } . A binary constraint function, 𝐹(𝑋 = 𝑥𝑖𝑗) , 𝑖 ∈ 𝑛𝜏𝑘  and 𝑗 ∈ 𝑚𝜏𝑘  assigns a 

boolean constraint to each variable in the state space. Let 𝑛𝑉 = (1 + 𝑛ℙ + 𝑛𝔸), then vector 𝐅 =

 (〈𝐹1〉, 〈𝐹2〉,… , 〈𝐹𝑛𝐹〉), 𝑛𝐹 = 𝑛𝑉  are constraint averages for each of the variables in 𝐕 . The 

vector 𝚲 = (𝜆1, 𝜆2, … 𝜆𝑛𝛬), 𝑛𝛬 = 𝑛𝑉, represents the Lagrange multipliers, calculated for each 

variable in 𝐕. 

Each constraint average 〈𝐹𝑛𝐹〉 ∈ 𝐅 represents the degree of belief in a proposition and is derived 

from real-time information (environmental data) received from the environment. The constraint 

average follows the open world assumption, and is crucial for the accurate quantification of the 

state transition. 

In this thesis, the constraint average is calculated by interpreting a proposition as a degree of 

believe, (probability), derived from a distance calculation. For example, figure 4.5 illustrates 

two example state transitions: 
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Figure 4.5 Example state transitions with corresponding propositions. 

The figure shows two rule definitions for two example state transitions, including the 

corresponding upper and lower bounds. 

 

A constraint average for the proposition is calculated by measuring the progress of the current 

runtime parameter 𝜑𝑖
𝑟, relative to the operational bounds of the mission task.  The result is a 

probability assigned to the proposition. Figure 4.6 illustrates the approach:  

 

Figure 4.6 Method for constraint average assignment to propositions. 

The figure graphically illustrates the method for calculating the constraint average as a 

probability of the progress, relative to the upper and lower bounds, of the current runtime 

parameter, as moves towards the objective. 

 

This approach ensures that the constraint average accurately reflects relevant environmental 

data. This will also ensure that the fitness quantification of the trigger formula for the state 

transition is based on relevant and correct environmental data. 

The rule is translated into a probability as follows: 

Firstly, given the proposition 𝑝𝑙, calculate the total operation distance 𝑑𝑗
𝑚, using the upper and 

lower bounds of the mission argument: 

 𝑑𝑗
𝑚 = 𝑢𝑏𝑗

𝑚 − 𝑙𝑏𝑗
𝑚 (4.9) 

Calculate the current distance 𝑑𝑖
𝑟 of the runtime argument, 𝜑𝑗

𝑟 with respect to the upper and 

lower bounds of the mission parameter,  𝜑𝑖
𝑚 , according to the logical operation of the 

proposition: 
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 𝑑𝑖
𝑟 =

{
 
 

 
 
𝜑𝑖
𝑟 − 𝑙𝑏𝑗

𝑚  ;  𝑖𝑓 𝑝𝑙 = (𝜑𝑖
𝑟 ≤ 𝜑𝑗

𝑚) 

𝑢𝑏𝑗
𝑚 − 𝜑𝑖

𝑟 ;  𝑖𝑓 𝑝𝑙 = (𝜑𝑖
𝑟 ≥ 𝜑𝑗

𝑚)

0                  ;  𝑖𝑓 𝑝𝑙 = (𝜑𝑖
𝑟 ≠ 𝜑𝑗

𝑚)

1                  ;  𝑖𝑓 𝑝𝑙 = (𝜑𝑖
𝑟 = 𝜑𝑗

𝑚)

 (4.10) 

Use (19) and (20) to calculate a real valued distance, in the range [0,1], for the proposition: 

 𝑃𝑟 (𝑝𝑙) =  
𝑑𝑖
𝑟

𝑑𝑗
𝑚 (4.11) 

where 𝑃𝑟 (𝑝𝑙) represent the relative remaining distance of 𝜑𝑖
𝑟, within the boundaries 𝑙𝑏𝑗

𝑚 and 

𝑢𝑏𝑗
𝑚  as a probability. Once the distances for each proposition have been calculated, the 

distances for each of the joint statements can be calculated. To illustrate, let 𝑣ℚ = 𝑝0, 𝑣1
ℙ = 𝑝1 

and 𝑣2
ℙ = 𝑝2, then the state space consists of 23 = 8 joint statements. The joint distances, for 

the predictor variables are calculated as follows: 

 𝑑𝑝1𝑝2 = 𝑑𝑝1 + 𝑑𝑝2  (4.12) 

 𝑑𝑝1𝑝2 = 𝑑𝑝1 + (1 − 𝑑𝑝2) (4.13) 

 𝑑𝑝2𝑝2 = (1 − 𝑑𝑝1) + 𝑑𝑝2 (4.14) 

 𝑑𝑝1𝑝2 = (1 − 𝑑𝑝1) + (1 − 𝑑𝑝2) (4.15) 

The overall distance 𝑑𝑓, represented by the probability distribution over all the propositions of 

the trigger formula, is calculated by: 

 𝑑𝑓 = (𝑑𝑝1𝑝2 + 𝑑𝑝1𝑝2 + 𝑑𝑝2𝑝2 + 𝑑𝑝1𝑝2) (4.16) 

With all the joint distances of the joint statements available, the respective constraint averages 

can now be calculated. Firstly, the constraint average 〈F1〉 of the query variable p0 is set to 1.0. 

The constraint averages for the predictor and association variables are then set as follows: 

 𝐅 = (𝑑𝑝0 ,
(𝑑𝑝1𝑝2+𝑑𝑝1𝑝2)

𝑑𝑓
,
(𝑑𝑝1𝑝2+𝑑𝑝1𝑝2)

𝑑𝑓
,
(𝑑𝑝1𝑝2+𝑑𝑝1𝑝2)

𝑑𝑓
,
(𝑑𝑝1𝑝2+𝑑𝑝1𝑝2)

𝑑𝑓
,
𝑑𝑝1𝑝2
𝑑𝑓

) (4.17) 

Next, the Lagrange multipliers are determined. 

The duality between the Lagrange multipliers and the user-defined constraint averages, allows 

the Legendre transform to be used to derive the Lagrange multipliers: 

  ℒ𝑡𝑟𝑎𝑛𝑠 = 𝚲 = 𝑚𝑖𝑛
𝜆𝑘

(𝑙𝑛 𝑍(𝜆1, 𝜆2, … 𝜆𝑘) − ∑ 𝜆𝑗〈𝐹𝑗〉
mτk
𝑗=1

) (4.18) 

The multipliers are derived by varying the values of  𝜆𝑘  while keeping the constraint 

average,  〈𝐹𝑗〉  fixed, until ℒ𝑡𝑟𝑎𝑛𝑠  reaches a minimum. Table 4.1 shows an example of a 
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quantification model for a trigger formula containing two propositions, represented by the 

predictor variables B and C and the query variable, represented by A. The table also shows the 

association between the query variable and the predictor variables. The associations are 

represented by AB, AC, ABC. The model contains a 𝑚𝜏𝑘 × 𝑛𝜏𝑘  Boolean constraint matrix, 

where 𝑚𝜏𝑘 = 3 and 𝑛𝜏𝑘 = 8. 

Table 4.1 Illustrative example of a quantification model. 

i A B C AB AC ABC 

1 1 1 1 1 1 1 

2 1 1 0 1 0 0 

3 1 0 1 0 1 0 

4 1 0 0 0 0 0 

5 0 1 1 0 0 0 

6 0 1 0 0 0 0 

7 0 0 1 0 0 0 

8 0 0 0 0 0 0 

𝐅 〈𝐹𝐴〉 〈𝐹𝐵〉 〈𝐹𝐶〉 〈𝐹𝐴𝐵〉 〈𝐹𝐴𝐶〉 〈𝐹𝐴𝐵𝐶〉 

𝚲 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 

For each variable, the vector of constraint averages, 𝐅, are calculated (eq. 4.17). Each vector 

element represents the constraint average for a predictive or associative variable. The constraint 

averages are then used to calculate the vector of Lagrange multipliers, 𝚲,  (eq. 4.18). Each 

element of the Lagrange multiplier vector corresponds to the constraint average for a predictor 

or associative variable. Once the model is complete, it is used in the fitness quantification, 

discussed in the next section. 

 

4.2.2 Model-driven quantification 

Given the model ℳ𝜏𝑘 , the probability distribution, 𝐐 = (𝑞1, 𝑞2, … 𝑞𝑛𝐐),  𝑛𝐐 = 𝑛𝜏𝑘over the 

variables (propositions)  of the trigger formula can now be calculated. Given the 𝑚𝜏𝑘 × 𝑛𝜏𝑘 

constraint matrix and let 𝑖 ∈ 𝑛𝜏𝑘 and 𝑗 ∈ 𝑚𝜏𝑘, the MEP is then formally defined as: 

 (𝑞𝑖|ℳ𝜏𝑘) =
1

𝑍(𝜆1,𝜆2,…𝜆𝑘)
𝑒
−∑ 𝜆𝑗𝐹𝑗(𝑋=𝑥𝑖)

mτk
𝑗=1  (4.19) 

 

where 𝑍(𝜆1, 𝜆2, … 𝜆𝑘) = ∑ 𝑒
∑ 𝜆𝑗𝐹𝑗(𝑋=𝑥𝑖)
mτk
𝑗=1τk

𝑖=1   

𝑍 is the partition function which ensures the probabilities are assigned between 0 and 1. The 

Lagrange multipliers are represented by 𝜆𝑗 , 𝑗 = 1,… , 𝑘 and 𝐹𝑗(𝑋 = 𝑥𝑖) assigns a real-world, 

domain-specific constraint, to the state 𝑖 of variable 𝑗. 
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 (Refer to [25], chapters 24 and 25 for a detailed discussion on the mathematical derivation of 

the Legendre transformation and the MEP formula).  

Finally, the fitness of the state transition 𝜏𝑘 ∈ LTM is calculated as, 

  𝛱 = 𝜐 × 𝑞1 (4.20) 

where 𝜐 ∈ 𝜏𝑘  and 𝜐 = 1 indicate a valid state transition and 𝜐 = 0 indicate an invalid state 

transition.  

Note that any of the resulting probabilities (including marginal probabilities) in the distribution 

𝐐 may now be used in the fitness quantification. However, in this study, only 𝑞1 will be used 

for fitness quantification, since its value is conditioned on all the predictor variables, i.e. 

propositions. 

Algorithm 4.1 shows the adaptive entropy fitness quantification method: 

Algorithm 4.1 Adaptive Entropy Fitness Quantification (AEFQ). 

1: Input: : State-transition 𝜏𝑘 eq. (4.3) 

2:  : ENV stimuli, 𝛷𝑟 eq. (4.4) 

3:  : STM, 𝛷𝑚  eq. (4.5) 

4: Output : Fitness quantification, 𝛱 

5: Begin 

6:  Initialize model ℳ𝜏𝑘, given ℱ ∈ 𝜏𝑘 eq. (4.8) 

7:  Calculate weighted constraint averages 𝐅 eq. (4.17) 

8:  Calculate Lagrange multipliers 𝚲, given 𝐅 eq. (4.18) 

9:  Calculate probability distribution 𝐐, given 𝚲 eq. (4.19) 

10:  Calculate the fitness 𝛱, given 𝐐 eq. (4.20) 

11:  Return 𝛱   

12: End 

 

During runtime, algorithm 4.1 is applied for the quantification of a state transition. The selected 

state transition, along with STM and ENV information are passed to the algorithm where the 

information is used define the quantification model, described in section 4.2. The model is then 

used by the MEP equation (eq. (4.19)) to assign a probability distribution over the trigger 

formula of the state transition. The probability distribution is used to assign a fitness to the state 

transition, which is used during the memory optimization process of memory recall. 

Note that, for simplicity, the environmental stimuli are processed as a single set, rather than 

each individual input element. Prior to the constraint average calculation (line 9), the arguments 

of the trigger formula of the state transition are ground using the corresponding sensory input 

parameters. This automation of the grounding process simplifies modification or creation of 

new propositions. 
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4.3 Conclusion 

This chapter discussed memory representation and the quantification methodology in detail. 

The methodology described section 4.1 enables LTM to be structured in an extensible way, 

improving cognitive reasoning and functionality of high-level control. By simplifying the logic 

structure (rules) of the trigger formulae, maintenance or extension of the LTM is greatly 

simplified. This is especially important for remotely deployed autonomous vehicles. Moreover, 

by allowing the multiple state transitions between the same two states, the LTM structure 

greatly extends the reasoning and functionality of the cognitive architecture, in a flexible way. 

By including short-term memory and environmental stimuli in the real-time quantification of 

LTM elements, developed in section 4.2, cognitive reasoning can be performed at a much 

higher accuracy level, taking real-time information in consideration. Since the quantification 

produces a probability distribution across all the propositions of the trigger formula, inference 

can be performed at a much finer level, including using marginal probabilities. The memory 

representation structure and memory quantification methodology will be used in the cognitive 

reasoning process during memory recall, developed in sections 6.1 and 6.2. 
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Chapter 5 

Memory Optimization 

 

The two main functions of memory recall are memory quantification and memory optimization. 

PSO has been chosen for the optimization, due to the simplicity of the algorithm’s architecture 

and the scalability of its parameters. As described in section 3.4.1, PSO is usually applied to 

numeric optimization problems with an algebraic objective function. The search time of the 

PSO is directly related to the size of the search space. The larger the search space, the larger 

the swarm size to cover the search and as a consequence, the longer the swarm will take to 

converge on the optimal solution. If the search time is constrained too much, the PSO may not 

find all the optimal solutions. On the other hand, the time the swarm requires to find all the 

optimal solutions, may be infeasible for a specific problem. These challenges become greater 

under dynamic conditions. In this research study, the optimization problem is defined as finding 

the optimal knowledge which will successfully control a UAV in real-time. This means finding 

the optimal state transitions from the long-term memory, given the ENV information, for every 

relevant state and in real-time. For this problem, the “objective function” of the PSO is 

abstractly defined as the optimal knowledge found (AM) in the search space (long-term 

memory), which is composed of discrete and complex elements (state transitions). The 

approach, therefore, raises three important questions whether PSO would be suitable for the 

optimization stage of the memory recall process, under both static and dynamic conditions: 

1. Will the PSO algorithm find all optimal solutions (completeness)? 

2. Will each memory item be quantified accurately (information gain)? 

3. Will the PSO algorithm find the optimal solutions in time (convergence time)? 

To answer these questions, two PSO algorithms, AEStd-PSO and AESet-PSO, are developed 

and discussed in section 5.1. These algorithms are variants of the StdPSO (section 3.4.1) and 

SPSO (section 3.4.2), adapted for knowledge quantification and optimization. Both algorithms 

use the adaptive entropy-based fitness quantification method (developed in section 4.2) for 

fitness evaluation of potential solutions. Fundamentally, the difference between the two 

algorithms is how particles represent potential solutions in the search space and how the 

trajectories of particles are calculated, i.e. how the particles moves through the search space. In 

the AEStd-PSO algorithm, a particle represents a single solution in the search space. The 

velocity and positioning of the particle is calculated using a sequential index assigned to the 

solution. On the other hand, in the AESet-PSO, a particle represents a set of solutions. Particle 
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velocity and positioning is calculated using set-based operators, redefined to retain the 

cognitive and social influences of the swarm during the optimization process. Two benchmark 

problems are defined to investigate questions 1 – 3 in section 5.2.2. The first benchmark 

problem is used to empirically evaluate these questions under uncertain, but static conditions, 

while the second benchmark problem empirically evaluate these questions under uncertain and 

dynamic conditions. 

 

5.1 Methodology 

Since the objective is to evaluate the PSO algorithms’ suitability for knowledge optimization, 

the data for quantification is synthesized and kept constant. The long-term memory is defined 

as a set of conjunctive normal form predicate logic formulae (as discussed in section 3.2), 

converted from a large set of Horn clause formulae. Each memory item in the long-term 

memory represents one of these logic formulae. Since no inference will be performed in this 

evaluation, the long-term memory is simplified by removing all logical connectives from the 

memory items in the long-term memory. There is also no subsumption of memory items in the 

long-term memory, that is, each memory item in the long-term memory is independent from 

any other memory item. However, the same predicate may occur in more than one memory 

item. Note, for this evaluation, the memory item,  𝜏𝑘 ∈ LTM is defined differently from eq. 

(4.3) in section 4.1.2.: 

 𝜏𝑘 = {𝓅1, 𝓅2, … , 𝓅𝑛|𝜏𝑘|
}; (5.1) 

where  𝓅𝑗 ∈   𝜏𝑘, where 𝑗 = 1,… , 𝑛|𝜏𝑘|, is a predicate of  𝜏𝑘. 

Each predicate 𝓅𝑗, is defined as, 

 𝓅𝑗 ≜ 𝑝𝑟𝑒𝑑 (𝛼1, 𝛼, … , 𝛼𝑛𝓅𝑗
);  (5.2) 

and 𝛼𝑚 ∈ 𝓅𝑗, 𝑚 = 1,… , 𝑛𝓅𝑗, is an argument (or random variable) of  𝓅𝑗 (see section 3.2.1). 

The predicate symbol, 𝑝𝑟𝑒𝑑, is the relation of the arguments, (𝛼1, 𝛼2, … , 𝛼𝑛𝓅𝑗
). The relation 

and the arguments are specified by the domain expert. The number of arguments 𝑚, defines the 

arity of the predicate,  𝓅𝑗. To simplify the identification and addressing of the memory items 

in the LTM, each 𝜏𝑘 is assigned an integer index value, of type ℤ+. This index represents the 

position (or address) of the memory item in the LTM and is used by the PSO for particle 

trajectory calculation. 



 

 55  

 

The objective of the experiments is the evaluation of the PSO algorithms’ suitability for 

knowledge optimization. Two conditions are evaluated: knowledge optimization under static 

conditions and knowledge optimization under dynamic conditions (see experimental evaluation 

in section 5.2). The data used in the datasets is synthesized and remains constant for all 

experiments. During the experiments for static conditions, the environmental stimuli, 𝛷𝑟, and 

short-term memory information, 𝛷𝑚 , are defined, containing all the arguments of all the 

predicates, defined in the control set (see section 5.2.1). Each element of 𝛷𝑟, is set to 0, while 

the 𝑙𝑏𝑗
𝑚  of 𝛷𝑚  is set to 0 and the 𝑢𝑏𝑗

𝑚 is set to a synthesized value, obtained from an 

environmental data file. Under static conditions, the values of both 𝛷𝑟  and 𝛷𝑚  are kept 

constant for all test runs.  For the evaluation of the algorithms under dynamic conditions, three 

data files with synthetic environmental data are used. To simulate dynamism (or volatility) in 

the environmental data, the experiment cycle through the three environmental data files, at a 

predefined rate, defined by a parameter, 𝒱ENV. Under dynamic conditions, each element of 𝛷𝑟, 

is set to 0, while the 𝑙𝑏𝑗
𝑚 of 𝛷𝑚 is set to 0 and the 𝑢𝑏𝑗

𝑚is set to the new synthesised value, 

obtained from the new environmental data file. The approach is described in detail in the 

experimental evaluation in section 5.2. 

5.1.1 The optimized working memory 

The result of the PSO execution is the optimized activated memory. Each element of the 

activated memory represents the optimal memory item, selected from the LTM . For this 

evaluation, the activated memory is defined as, 

 AM =  {𝜏1
∗, 𝜏2

∗, … , 𝜏𝑛AM
∗ } (5.3) 

where 𝜏𝑘
∗ , (𝑘 = 1,… , 𝑛AM), represents an optimal memory item, determined by the fitness 

quantification of the predicates of the memory item. The memory item 𝜏𝑘
∗  is defined as, 

 𝜏𝑘
∗ = (𝑓(𝜏𝑘), 𝜏𝑘) (5.4) 

where, 𝜏𝑘 is a memory item in the LTM, and 𝑓(𝜏𝑘), is the quantification of 𝜏𝑘, calculated by 

the AEFQ algorithm. The resulting AM is a reduced set of weighted memory items, where the 

weight of each memory item, is represented by the quantification 𝑓(𝜏𝑘). 

Knowledge optimization involves searching the discrete search space (LTM) containing a set 

of complex solutions (𝜏𝑘). The search space has a single dimension, indexed with an integer 

value. Each potential solution in the search space is a complex memory item which requires 

quantification, prior to evaluation by the PSO. This optimization problem is significantly 

different from the optimization problems for which the StdPSO and the SPSO were designed. 

Therefore, both the StdPSO and SPSO algorithms are modified to be applied to a knowledge 
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optimization problem. Two variant PSO algorithms, the AEStd-PSO and AESet-PSO, are 

developed for the StdPSO and SPSO, respectively. These two PSO variant algorithms are 

developed in sections 5.1.2 and 5.1.3 below.  

 

5.1.2 The AEStd-PSO Algorithm 

In AEStd-PSO (Algorithm 5.1), a particle, 𝑖, represents a memory item in the LTM, where the 

position of the particle is defined as, xi ∈  ℤ
+, which is the index value of the memory item. To 

calculate the step size and direction of a particle 𝑖 searching a discrete and finite logic search 

space, eqs. (3.2) and (3.3) are modified: 

 𝑣𝑖(𝑡 + 1) =  𝓌𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑦𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(�̂�𝑖(𝑡) − 𝑥𝑖(𝑡)) (5.5) 

 𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (5.6) 

Equations (5.5) and (5.6) are similar to eqs. (3.2) and (3.3), except, the terms of the expressions 

now represent a single dimension only. The term, 𝑥𝑖(𝑡), represents the current position of 

particle 𝑖, which is the integer index of the memory item, in the LTM. The inertia weight, 𝓌, 

acceleration constants, 𝑐1and 𝑐2, and random stochastic parameters, 𝑟1 and 𝑟2, are of type ℝ. 

The resulting velocity, 𝑣𝑖(𝑡 + 1), is of type ℝ as well. However, the particle position is the 

index of a memory item, and must be of type ℤ+. Therefore, before updating the particle’s 

position, 𝑥𝑖(𝑡 + 1), in eq. (5.6), the velocity, 𝑣𝑖(𝑡 + 1), is converted to type ℤ+. The conversion 

is performed as follows: if 𝑣𝑖(𝑡 + 1) is an even number, halfway between two whole numbers, 

the even number is returned, otherwise the next even number is returned. For example, if the 

velocity value is 4.5, it is converted to 4, and if it is 5.5, it is converted to 6. 

 

In StdPSO, the search space is iteratively searched for an optimal memory item, given the 

environmental stimuli. The particles continuously move closer together until they converge on 

the optimal solution. In AEStd-PSO algorithm, an optimal solution is any memory item which 

satisfies the open world assumption, given the environmental stimuli, Φr. That means any 

memory item where 𝑓(𝜏𝑘) > 0. 

The AEStd-PSO algorithm is shown below:  

Algorithm 5.2 Adaptive entropy-based standard PSO (AEStd-PSO) 

(Refer to section 3.4.1 for a detailed overview of the Std PSO algorithm, including 

variables). 

1: Input  : Long-term memory, LTM 

2:    : Environmental information, ENV 

3:    : Short-term memory, STM 
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4: Output : Activated memory, AM 

5:  

6: -- Set the PSO parameters 

7:  𝑁 is the number of particles 

8:  𝓌 is the inertia weight 

9:  𝑐1, 𝑐2 is the acceleration constants 

10:  𝜉 is the number of iterations 

11:  

12: -- Prepare PSO variables 

13:  𝑥𝑖 be position of particle 𝑖 

14:  𝑣𝑖 be the velocity of particle 𝑖 

15:  𝑦𝑖 be the initial particle best position 

16:  �̂� be the swarm best position 

17:  𝜏𝑘 be a memory item represented by particle 𝑖, at index position 𝑥 

18:  𝓅𝑗 be the jth predicate in 𝜏𝑘 

19:  𝑓(𝓅𝑗) be the fitness of predicate 𝓅𝑗 

20:  𝑓(𝑥𝑖)  be the fitness of particle 𝑖   

21:  𝑓(𝑦𝑖) be the pBest fitness of particle 𝑖 

22:  𝑓(�̂�) be the gBest fitness of the swarm 

23:  

24: -- Initialize a swarm of 𝑁 particles, randomly selected from the LTM 

25: -- Activate the swarm 

26: Repeat 

27:  If there is a change in the environmental stimuli (ENV) 

28:   Reinitialize a swarm of 𝑁, randomly selected from the LTM 

29:  Endif 

30:  For  𝑟 = 1, . . . , 𝜉 

31:   For  𝑖 = 1, . . . , 𝑁 

32:    Calculate 𝑣i using eq. (5.5) 

33:    Calculate 𝑥𝑖 using eq. (5.6) 

34:    -- Evaluate the fitness of the particle 𝑖, representing memory item, 𝜏𝑘 

35:    For each predicate 𝓅𝑗 ∈ 𝜏𝑘 

36:     Set parameter 𝛷𝑚, using 𝓅𝑗 arguments (see section 4.1.2) 

37:     Set parameter 𝛷𝑟, using 𝓅𝑗 arguments (see section 4.1.2) 

38:     -- Call the AEFQ process to quantify the memory item 

39:     𝑓(𝑥𝑖) =  𝑓(𝑥𝑖) + 𝐴𝐸𝐹𝑄(𝜏𝑘 , 𝛷
𝑚, 𝛷𝑟) -- see algorithm 4.1 

40:    Endfor 

41:    If 𝑓(𝑦𝑖) <  𝑓(𝑥𝑖)  -- see section 3.4.1 

42:     𝑦𝑖 = 𝑥𝑖 

43:     𝑓(𝑦𝑖) = 𝑓(𝑥𝑖)  

44:    Endif 

45:    If 𝑓(�̂�) <  𝑓(𝑥𝑖) -- see section 3.4.1 
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46:     �̂� =  𝑥𝑖 

47:     𝑓(�̂�) = 𝑓(𝑥𝑖)  

48:    Endif 

49:   Endfor 

50:  Endfor 

51:  -- Upon convergence of the swarm, construct the optimal memory  

52:  -- item, 𝜏𝑘
∗  and add it to the activated memory, 𝐴𝑀 

53:  If  𝑓(�̂�) > 0 

54:   Construct 𝜏𝑘
∗  by concatenating 𝑓(�̂�)  and 𝜏𝑘   -- see eq. (5.4) 

55:   Add 𝜏𝑘
∗  to AM 

56:  Endif 

57: Until cognitive process terminated  -- see section 3.4.1 

 

5.1.3 The AESet-PSO Algorithm 

AESet-PSO (Algorithm 5.2) is a variant of the SPSO, where particles represent sets of candidate 

solutions. The SPSO was designed for the optimization of a discrete, random search space, 

since candidate solutions are randomly selected across the entire solutions space and included 

in a particle set. The inclusion or exclusion of candidate solutions in a set simulates particle 

movement through the search space, as shown in the particle velocity and positioning operators 

defined below. Note that, unlike StdPSO, set-based PSO does not require the LTM to be 

ordered. AESet-PSO interprets the velocity and positioning equations of the standard PSO (eqs. 

(3.2) and (3.3)), in terms of set operations. A particle represents a set of memory items and the 

algebraic operations of eqs. (3.2) and (3.3) are redefined as set-based operations: 

Let: 

 𝑥𝑖 be the set of memory items representing the current position of particle I, 

 𝑦𝑖 be the set of memory items representing the personal best position of particle I, 

 �̂� be the set of memory items representing the global best position of the swarm, 

 𝑐𝑐𝑜𝑔, 𝑐𝑠𝑜𝑐  be the cognitive and social accelerators respectively. 

then 

 𝑣𝑖(𝑡 + 1) = [𝑓(𝑟𝑐𝑜𝑔𝑐𝑐𝑜𝑔) ∪ (𝑑𝑐𝑜𝑔)] ∪ [𝑓(𝑟𝑠𝑜𝑐𝑐𝑠𝑜𝑐) ∪ (𝑑𝑠𝑜𝑐)] (5.7) 

 𝑥𝑖(𝑡 + 1) = 𝑚𝑎𝑥𝜖(𝑥𝑖  ∪  𝑣𝑖(𝑡 + 1)) (5.8) 

where 

Cognitive Difference: 𝑑𝑐𝑜𝑔 ∶ 𝑦𝑖  ∪  (𝑥𝑖\𝑦𝑖) 
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The difference between the particle’s personal best set 𝑦𝑖 and the particle’s current set 𝑥𝑖 is 

defined as the unification of 𝑦𝑖 and the set-theoretic difference between 𝑦𝑖 and 𝑥𝑖. That is, all 

the elements in the particle’s personal best set are retained and the elements in 𝑥𝑖 which are not 

in  𝑦𝑖 are included in the difference set. 

Social Difference:  𝑑𝑠𝑜𝑐 ∶ �̂�  ∪  (𝑥𝑖\�̂�) 

The difference between the swarm’s global best set �̂� and particle’s current set 𝑥𝑖 is defined as 

the unification of �̂� and the set-theoretic difference between �̂� and 𝑥𝑖. That is, all the elements 

the swarm’s best set is retained and the elements in 𝑥𝑖 which are not in �̂� are included in the 

difference set. 

Cognitive Velocity:  𝑣𝑐𝑜𝑔 ∶ 𝑓(𝑟𝑐𝑜𝑔𝑐𝑐𝑜𝑔) ∪ (𝑑𝑐𝑜𝑔)  

The cognitive velocity is derived by a user-defined function, which selects  𝑐𝑐𝑜𝑔  random 

elements from the LTM. A random number 𝑟𝑐𝑜𝑔 is iteratively, i.e. 𝑐𝑐𝑜𝑔 times, selected from the 

range [1, |LTM|] and the element (state transition) at index 𝑟𝑐𝑜𝑔 is added to 𝑑𝑐𝑜𝑔.  

Social Velocity:  𝑣𝑠𝑜𝑐 ∶  𝑓(𝑟𝑠𝑜𝑐𝑐𝑠𝑜𝑐) ∪ (𝑑𝑠𝑜𝑐) 

The social velocity is derived by a user-defined function, which selects 𝑐𝑠𝑜𝑐 random elements 

from the LTM. A random number 𝑟𝑠𝑜𝑐 is iteratively, i.e. 𝑐𝑠𝑜𝑐 times, selected from the range 

[1, |LTM|] and the element (state transition) at index 𝑟𝑠𝑜𝑐 is added to 𝑑𝑠𝑜𝑐.  

Particle Velocity: 𝑣𝑖(𝑡 + 1) =  𝑣𝑐𝑜𝑔 ∪ 𝑣𝑠𝑜𝑐  

The resulting velocity 𝑣𝑖(𝑡 + 1) is the union of the elements of cognitive velocity  𝑣𝑐𝑜𝑔 and the 

elements of the social velocity 𝑣𝑠𝑜𝑐. 

Particle Position: 𝑥𝑖(𝑡 + 1) = 𝑚𝑎𝑥𝜖(𝑥𝑖  ∪  𝑣𝑖(𝑡 + 1))  

In order to preserve the fittest elements from one iteration to the next, an elitism parameter 𝜖, 

is introduced [48]. The elitism parameter specifies the number of fittest elements to include in 

the particle’s new position set. The new position 𝑥𝑖(𝑡 + 1) is derived by selecting the top 𝜖 

elements from the union of the current position 𝑥𝑖 and the velocity 𝑣𝑖(𝑡 + 1). The selection of 

the top 𝜖 elements is denoted by 𝑚𝑎𝑥𝜖(∙) and scales the set of solutions. 

 

Note the absence of the inertia weight applied to the particle’s current velocity. In the standard 

PSO, the inertia weight 𝓌, along with the accelerator constants 𝑐1, 𝑐2 control the granularity of 

the exploration. In set-based PSO, the accelerator constants 𝑐1, 𝑐2 control the granularity by 

specifying the size of the random set of new elements to be added. Similarly, the inertia 

weight 𝓌, would specify the size of the subset of elements (the inertia set) to be selected from 
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the velocity set. However, it would serve no purpose to add the inertia set again, because when 

calculating the new position set, the velocity set is already added in full to the current position 

set. Therefore, when calculating the difference sets 𝑑𝑐𝑜𝑔 and 𝑑𝑠𝑜𝑐 at the next iteration, the new 

position already includes the velocity elements. 

The AESet-PSO algorithm is shown below:  

Algorithm 5.3 Adaptive entropy-based set PSO (AESet-PSO) 

(Refer to section 3.4.2 for a detailed overview of the Set-based PSO algorithm, including 

variables). 

1: Input  : Long-term memory, LTM 

2:    : Environmental information, ENV 

3:    : Short-term memory, STM 

4: Output : Activated memory, AM 

5:  

6: -- Set the PSO parameters, where 

7:  𝑁 is the number of particles 

8:  𝛷 is the particle size 

9:  𝑐1, 𝑐2 is the acceleration constants 

10:  𝜉 is the number of iterations 

11:  

12: -- Let, 

13:  𝑥𝑖 be a set of 𝛷 memory items, represented by particle 𝑖 

14:  𝑣𝑖 be the velocity set of particle 𝑖 

15:  𝑦𝑖 be particle 𝑖‘s best set of memory items 

16:  �̂� be the swarm’s best set of memory items 

17:  𝜏𝑘 be a memory item of particle 𝑖 

18:  𝓅𝑗 be the jth predicate in 𝜏𝑘 

19:  𝑓(𝓅𝑗) be the fitness of predicate 𝓅𝑗 

20:  𝑓(𝑥𝑖)  be the fitness of particle 𝑖   

21:  𝑓(𝑦𝑖) be the pBest fitness of particle 𝑖 

22:  𝑓(�̂�) be the gBest fitness of the swarm 

23:  𝜖 be an elitism parameter  -- see eq. (5.8) 

24:  

25: -- Initialize a swarm of N particles with 𝜑 randomly selected  

26: -- memory items, each 

27:  

28: -- Activate the swarm 

29: Repeat 

30:  If there is a change in the environmental stimuli (ENV) 

31:   --Reinitialize a swarm of N particles with 𝜑 randomly selected 

32:   --memory items, each 

33:  Endif 

34:  --Start iterations 
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35:  For  r = 1, . . . , ξ 

36:   For  i = 1, . . . , n 

37:    Calculate the set 𝑣i  -- using eq. (5.7) 

38:    Calculate the set 𝑥𝑖  -- using eq. (5.8) 

39:    -- Evaluate the fitness of the particle 𝑖, representing memory item, 𝜏𝑘 

40:    For each memory item 𝜏𝑘 ∈  𝑥𝑖  

41:     For each predicate 𝓅𝑗 ∈  𝜏𝑘 

42:      Set parameter 𝛷𝑚, using 𝓅𝑗 arguments -- see section 4.1.2) 

43:      Set parameter 𝛷𝑟, using 𝓅𝑗 arguments  -- see section 4.1.2) 

44:      -- Call the AEFQ process to quantify the memory item 

45:      𝑓(𝓅𝑗) =  𝑓(𝓅𝑗) + 𝐴𝐸𝐹𝑄(𝜏𝑘 , 𝛷
𝑚, 𝛷𝑟) -- see algorithm 4.1 

46:     Endfor 

47:     𝑓(𝑥𝑖) =  𝑓(𝑥𝑖) +  𝑓(𝓅𝑗) 

48:    Endfor 

49:    -- Update personal and global best values 

50:    If 𝑓(𝑦𝑖) <  𝑓(𝑥𝑖) -- see section 3.4.2 

51:     𝑓(𝑦𝑖) =  𝑓(𝑥𝑖) 

52:     𝑦𝑖 = 𝑥𝑖 

53:    Endif 

54:    If 𝑓(�̂�) <  𝑓(𝑥𝑖) -- see section 3.4.2 

55:     𝑓(�̂�) =  𝑓(𝑥𝑖) 

56:     �̂� =  𝑥𝑖 

57:    Endif 

58:   Endfor 

59:  Endfor 

60:  -- Upon convergence of the swarm, construct the optimal memory 

61:  -- item, 𝜏𝑘
∗  and add it to the activated memory, 𝐴𝑀 

62:  If  𝑓(�̂�) > 0 

63:   Construct 𝜏𝑘
∗  by concatenating 𝑓(�̂�)  and 𝜏𝑘   -- see eq. (5.4) 

64:   Add 𝜏𝑘
∗  to AM 

65:  Endif 

66: Until cognitive process terminated -- see section 3.4.1 

 

5.2 Experimental Evaluation 

This section describes the experimental evaluation of the performance of the two PSO 

algorithms. A statistical comparison is performed between the AEStd-PSO and the AESet-PSO 

algorithms, in section 5.2.7. The null and alternative hypothesis defined below, are statistically 

evaluated using the performance measures defined in section 5.2.3. 

For the statistical comparison, the null hypothesis 𝑯𝟎 is defined as: 
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“There is no tendency for the performance of one PSO algorithm to be significantly higher (or 

lower) than the other when optimizing a logical search space under uncertain and dynamic 

conditions”. 

The alternative hypothesis 𝑯𝑨 is defined as: 

“There is a tendency for the performance of one PSO algorithm to be significantly higher (or 

lower) than the other when optimizing a logical search space under uncertain and dynamic 

conditions”. 

 

The performance of each PSO algorithm is evaluated using three LTMs, increasing in size, 

using both static and dynamic environmental data. Section 5.2.1 describes the datasets used in 

the experiments. The benchmark problems and performance measures used in the evaluation 

are described in sections 5.2.2 and 5.2.3, respectively. Section 5.2.4 describes the PSO 

parameters selected for the experiment. 

5.2.1 Datasets 

The Knowledge Base 

To be able to evaluate the performance of the algorithms on a large LTM, an extensive set of 

Horn clauses, produced by the Sherlock system [121], was used in the experiments. The 

Sherlock system constructed the set of Horn clauses programmatically from the internet. The 

dataset was first cleansed by removing duplicate clauses and any garbage data in the dataset. 

The cleansed Horn clauses were then converted to conjunctive normal form formulae, resulting 

in a test LTM that contains 30,912 memory items, 4,821 relations (predicates) and 137 classes 

(arguments). All memory items in the source LTM were grouped, based on context, i.e. all 

related memory items were stored together in the LTM.  Since PSO stochastically explores the 

LTM, two factors influence the performance of PSO: the size 𝒮LTM  of the LTM and the 

volatility,  𝒱ENV, of the environmental data.  𝒮LTM is the number of memory items in the LTM 

and  𝒱ENV is the frequency at which new environmental data is observed in the environment.  

For the experiments, three LTMs of different sizes were created:  𝒮LTM =

{𝑠𝑚𝑎𝑙𝑙,𝑚𝑒𝑑, 𝑙𝑎𝑟𝑔𝑒} , where 𝑠𝑚𝑎𝑙𝑙 ≅ (10,000) , 𝑚𝑒𝑑 ≅ (20,000)  and 𝑙𝑎𝑟𝑔𝑒 ≅ (30, 000) 

memory items in the LTM. The volatility of the environmental data was set as  𝒱ENV =

(𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, ℎ𝑖𝑔ℎ). The frequencies for 𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚 𝑎𝑛𝑑 ℎ𝑖𝑔ℎ are defined in table 5.3. 

The Control Set 

In order to evaluate the AM in a controlled manner, a control set of ten predefined memory 

items was created and inserted at random positions in each of the three test LTMs.  The memory 
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items in the control set act as target memory items for optimization and are used in the 

performance measures. 

Synthetic environmental data 

Dynamic environmental data is simulated by three pre-compiled datasets. Each dataset contains 

a collection of instances with synthesized values, corresponding to the arguments of the 

predicates in the control dataset. Environmental data values were changed between different 

datasets. 

5.2.2 Benchmark problems 

Based on the size (𝒮LTM) of the LTM and volatility (𝒱ENV) of the environmental data mentioned 

above, two types of benchmark problems are defined to evaluate the performance of the PSO 

algorithms and the AEFQ algorithm:  

 

1. Benchmark problem 1 - Optimization of different sizes of LTMs, given uncertain 

environmental data: 

In real-world scenarios, there is often a degree of uncertainty about the environmental data 

received. When quantifying a memory item, this degree of uncertainty impacts the 

quantification of memory items. Therefore, the performance of the optimization process is 

impacted in terms of the completeness and information gain (defined in section 5.2.3 below).  

 

2. Benchmark problem 2 - Optimization of different sizes of LTMs, given dynamic 

environmental data: 

The AM, is produced by optimizing the LTM, using the environmental data available at the 

time of optimization. In real-world scenarios, new environmental data may be observed at any 

time. This new environmental data may be completely new or it may be the same environmental 

data, but with a different degree of certainty. Any change in the environmental data immediately 

invalidates the current AM, because the memory items in the AM were quantified based on the 

previous environmental data. Any inference using the AM, will therefore be invalid. A new 

optimized AM, has to be created each time the environmental data changes. 

 

Each benchmark problem is applied to both AEStd-PSO and AESet-PSO for each LTM size 

parameter (small, med and large) to measure completeness and information gain of the resulting 

AM. The performance measures (defined below) measures the ability of the two PSO 

algorithms to optimize an AM, using the AEFQ algorithm. 
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5.2.3 Performance measures 

For each of the benchmark problems defined above, the following performance measures are 

used: 

1. The completeness (𝜑AM) of the AM, represents the number of memory items in the AM. 

Comparison of this number against the control set indicates how successful the PSO was 

in finding all the relevant memory items. No difference between the number of memory 

items in the AM, and the number of memory items in the control set indicates that the 

PSO has good exploration ability. 

2. The information gain  (ψAM)  of the AM. The maximum information gain of the 

predicate is the maximum entropy, given the environmental data and is derived from the 

maximum entropy of its predicates. Therefore, the information gain of the AM, is the 

cumulative maximum entropy of the memory items it contains. An AM with a high 

information gain indicates that the PSO has good exploitation ability. 

3. The convergence time (τAM), calculated as the elapsed wall clock time until convergence 

of the particles. This performance measure is used in the empirical analysis of the 

execution time of the two PSO algorithms. 

5.2.4 PSO parameter selection 

The PSO algorithm uses a number of parameters which control the movement of particles 

through the search space. Table 5.1 shows the standard PSO parameters selected, based on 

guidelines in [122-124]: 

Table 5.1 Inertia Weight and Acceleration Parameters. 

Algorithm Inertia 

Weight 

𝓌 

Acceleration 

constant 𝑐1 

Acceleration 

constant 𝑐2 

Elitism 

parameter 𝜖 

AEStd-PSO 0.715 1.7 1.7 n/a 

AESet-PSO n/a 3 3 15 

To select appropriate swarm size and exploration parameters, both the AEStd-PSO and AESet-

PSO algorithms were executed for each permutation of the parameters listed in table 5.2. 

Table 5.2 Swarm Size and Exploration Parameters. 

LTM Sizes Swarm Sizes Iterations 

10k 

20k 

30k 

5 

20 

50 

10,000 

20,000 

50,000 

The AEStd-PSO and AESet-PSO algorithms were executed for each permutation of the 

parameters in table 5.2 and the results were evaluated against the control set of memory items. 
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The graphs in figures 5.1 – 5.3 show the results of the experimental runs of both the AEStd-

PSO and AESet-PSO for each of the LTM sizes. The number of particles for each PSO 

algorithm is shown alongside the algorithm in brackets. 

 

Figure 5.1 Parameters selection results for a 10k LTM and 5, 20 and 50 particles. 

The graph shows the difference in completeness between the AEStd-PSO and AESet-PSO 

algorithms on a control set of 10 memory items. 

 

 

Figure 5.2 Parameters selection results for a 20k LTM and 5, 20 and 50 particles. 

The graph shows that, for the control set of 10 memory items, when the search space increases 

to 20k elements and swarm size is below 50 particles, the completeness of the AEStd-PSO 

decreases. 
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Figure 5.3 Parameters selection results for a 30k LTM and 5, 20 and 50 particles. 

The graph shows that, for the control set of 10 memory items, when the search space increases 

to 30k elements and swarm size is below 50 particles, the completeness of the AEStd-PSO 

decreases significantly. 

 

The graphs in figures 5.1 - 5.3 show that the completeness of the AEStd-PSO consistently 

decreases when the swarm size is below 50 particles and the size of the search space increases. 

On the other hand, the AESet-PSO consistently achieve completeness for all swarm sizes and 

all test search spaces. The graphs show that both AEStd-PSO and AESet-PSO are able to 

successfully find the 10 control memory items with a swarm size of 50 particles and 20,000 

iterations. Also, 10,000 iterations would have been sufficient, but since the experiment needs 

to simulate a dynamic change in the environmental data, as described for benchmark problem 

2, 20,000 iterations provide a sufficient time window for the simulation. This means the 

algorithms successfully finds all the control memory items, before the next dynamic change 

occurs. 

Dynamic change in the environmental data is simulated using the volatility parameters 𝒱𝜀  

defined in table 5.3.  

The volatility values are timed in milliseconds. 
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Table 5.3 Volatility parameters for environmental data change. 

PSO Algorithm LTMSize Volatility(ms) 

High Med Low 

AEStd-PSO 10k 10 300 600 

 20k 10 500 1000 

 30k 10 800 1600 

AESet-PSO 10k 100 3500 7000 

 20k 100 4500 9000 

 30k 100 9000 18000 

 

5.2.5 Experimental architecture and processes 

The experiments were executed on an Intel i7 machine with 2.90 GHz Quad Core CPU and 

16Gb RAM with MS Windows 8.1 x64 OS. Figure 5.4 shows the core objects and simulation 

process. A PSO control program uses run-time parameters to input the datasets (LTM, control 

set and evidence vector) and executes each of the PSO algorithms for each benchmark problem. 

For benchmark problem 2, the PSO control program simulates the input of dynamic evidence, 

by periodically introducing a new evidence set, according to the volatility values in table 5.3. 

The output and execution values of the PSO algorithms are logged by PSO control program for 

statistical analysis. 

  

 

Figure 5.4 Experiment components and simulation process. 

A PSO control program governs the application of control parameters, search space and 

evidence data for the two PSO algorithms, AEStd-PSO and AESet-PSO. 
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5.2.6 Experimental execution 

Empirical analysis is performed using algorithms 5.3 and 5.4. To analyse benchmark problem 

1 type problems, i.e. optimization of the LTM under uncertain conditions, 30 identical runs are 

performed for each PSO algorithm. The parameters are selected from tables 5.1 and 5.2. A 

single set of evidence with pre-defined uncertainty was used for each run. The evidence set 

remained unchanged between runs. Algorithm 5.3 shows the statistical analysis process for 

benchmark problem 1. The objective of the process is to test the null hypothesis, 𝐻0, defined in 

the beginning of section 5.2 and repeated here: 

“There is a tendency for the performance of one PSO algorithm to be significantly higher (or 

lower) than the other when optimizing a logical search space under uncertain and dynamic 

conditions”,  

and select an algorithm, based on the sum-of-ranks produced by the Mann-Whitney test. 

Algorithm 5.4 Preferred PSO algorithm selection for benchmark problem 1 

(Refer to the empirical analysis in section 5.2.7 for a detailed explanation of 

the methods of this algorithm). 

1: Begin 

2:  For each LTMSize (𝒮LTM) 

3:  For each performance measure -- see section 5.2.3 

4:   -- Statistically compare AEStd-PSO and AESet-PSO 

5:   Perform Mann-Whitney U test on the performance measure 

6:   If there is no statistically significant difference 

7:    Reject hypothesis 𝐻0 

8:    Endif 

9:    --Select preferred PSO-algorithm using sum of ranks 

10:   Calculate sum-of-ranks  𝜂𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂 = ∑𝑅𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂 

11:   Calculate sum-of-ranks  𝜂𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂 = ∑𝑅𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂 

12:    If performance measure = 𝜑AM𝑂𝑅 𝜓AM 

13:     If  𝜂𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂  >  𝜂𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂 

14:      Select AEStd-PSO 

15:     Else 

16:      Select AESet-PSO 

17:     Endif 

18:    Endif 

19:    If performance measure = 𝜏AM 

20:     If  𝜂𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂 < 𝜂𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂 

21:      Select AEStd-PSO 

22:     Else 

23:      Select AESet-PSO 

24:     Endif 

25:    Endif 
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26:   Endfor 

27:  Endfor 

28: End 

 

To analyse the optimization of the LTM under uncertain and dynamic conditions (benchmark 

problem 2), 30 identical runs are performed for each PSO algorithm. The parameters are 

selected from tables 5.1 and 5.2. Three sets of evidence with defined uncertainty were used for 

each run. The dynamism of the environment was simulated by changing between the three sets 

of evidence with the frequencies defined in table 5.3. To simplify comparison, the evidence set 

remained unchanged between runs. This resulted in three sets of results for each run. To 

quantify the results for each run, the average of the results of the three changes were calculated. 

Algorithm 5.4 shows the statistical analysis process for benchmark problem 2: 

Algorithm 5.5 Preferred PSO algorithm selection for benchmark problem 2 

(Refer to the empirical analysis in section 5.2.7 for a detailed explanation of 

the methods of this algorithm). 

1: Begin 

2:  For each LTMSize (𝒮LTM) 

3:   For each Volatility 𝒱𝜀 

4:   For each performance measure -- see section 5.2.3 

5:    --Statistically compare AEStd-PSO and AESet-PSO 

6:    Perform Mann-Whitney U test on performance measure 

7:    If there is a statistical significant difference 

8:     Reject 𝐻0 

9:     Endif 

10:     --Select preferred PSO-algorithm using sum of ranks 

11:    Calculate sum-of-ranks  𝜂𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂 = ∑𝑅𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂 

12:    Calculate sum-of-ranks  𝜂𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂 = ∑𝑅𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂 

13:     If performance measure = 𝜑AM𝑂𝑅 𝜓AM 

14:      If  𝜂𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂  >  𝜂𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂 

15:       Select AEStd-PSO 

16:      Else 

17:       Select AESet-PSO 

18:      Endif 

19:     Endif 

20:     If performance measure = 𝜏AM 

21:      If  𝜂𝐴𝐸𝑆𝑡𝑑−𝑃𝑆𝑂 < 𝜂𝐴𝐸𝑆𝑒𝑡−𝑃𝑆𝑂 

22:       Select AEStd-PSO 

23:      Else 

24:       Select AESet-PSO 

25:      Endif 

26:     Endif 
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27:    Endfor 

28:   Endfor 

29:  Endfor 

30: End 

 

5.2.7 Empirical analysis 

The objective of the statistical analysis is to assist in the selection of a suitable PSO architecture 

and parameters, for a specific type of environment. This section discusses the statistical 

parameters and analysis of the results of the experimental execution of the two algorithms, AE-

StdPSO and AESet-PSO. The results are analysed statistically to measure of the performance 

of the two PSO algorithms under uncertain and dynamic conditions.  

The Mann-Whitney U-test [125] is a two-tailed test which indicates a significant statistical 

difference between the two PSO algorithms. Using the Mann-Whitney U-test (with a 

significance level α = 0.05  and critical value range [-1.96, 1.96]), statistically significant 

differences between the results of AEStd-PSO and AESet-PSO are tested. The z-value, based 

on a sample mean �̅�𝑈 = 450 and standard deviation 𝑠𝑈 = 67.6, is tested against the critical 

value range to determine whether to reject (or not reject) the null hypothesis. The strength of 

the difference between the AEStd-PSO and the AESet-PSO is also determined by calculating 

the effect size (𝜙) introduced by Cohen [126]:  

 𝜙 =
|𝑧|

√𝑛
 (5.9) 

Cohen defines the effect size to be in the range [0, 1] and classified as small=0.10, medium=0.30 

and large=0.50. 

Table 5.4 contains the analysis results for benchmark problem 1. The hypothesis is tested for 

each LTMSize/performance measure combination, using the statistical analysis process 

described in Algorithm 5.3. 

Table 5.5 contains the analysis for benchmark problem 2. The hypothesis is tested for each 

LTMSize/volatility/performance measure combination, using the statistical analysis process 

described in Algorithm 5.4. 

The convergence time performance measure 𝜏AM is consistently and significantly higher for the 

AEStd-PSO than for the AESet-PSO. Therefore, the analysis of convergence time (𝜏AM) is 

discussed separately, following the analysis of the completeness (𝜑AM) and information gain 

(𝜓AM). 
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The parameter combination represents the conditions of the environment. Both tables show the 

sum-of-ranks, ∑𝑅1 for AEStd-PSO and ∑𝑅2 for AESet-PSO, as well as the z-score. The sum-

of-rank value indicates the success of the PSO algorithm, for a specific parameter combination. 

The higher the sum-of-ranks value, the closer the PSO came to finding all the solutions, 

compared to the control set. The z-score indicates the difference in the distributions of the 

results of each parameter combination. The sum-of-ranks and z-score are both used in the 

Mann-Whitney U-test and effect size calculation. A preferred PSO algorithm is selected by 

comparing the sum-of-ranks ∑𝑅1  and ∑𝑅2 . To assist in the selection of a preferred PSO 

algorithm, the Mann-Whitney U-test statistically tests if there is a significant difference in the 

performance of the two PSO algorithms for a specific parameter combination. If there is a 

significant difference, the null hypothesis 𝐻0 is rejected. The hypothesis is an indication of the 

level of confidence in selecting the preferred PSO algorithm. If 𝐻0  is rejected, the PSO 

algorithm with the highest sum-of-ranks value is the most likely to successfully optimize the 

LTM, for the specific parameter combination. If 𝐻0 is not rejected, the sum-of-ranks values and 

effect size is considered for each performance measure. The effect size 𝜙 indicates the size of 

the statistical difference and is calculated using eq. (5.9). The preferred PSO algorithm is then 

selected subjectively, based on the user-preference. For clarity, the classification of 𝜙 is given. 

 

5.2.8 Results 

In tables 5.4 and 5.5, values shown in bold are the “winning” ones and if there is a significant 

difference between the “winning” and “losing” value, the “winning value” is shown in bold 

italics. 

Table 5.4 Statistical analysis results for benchmark problem 1. 

𝒮LTM 
Performance 

measure 
∑𝑅1 ∑𝑅2 z-score Reject 𝐻0? Preference 

10k 𝜑AM 915.0 915.0 0.00 N equal 

 
𝜓AM 915.0 915.0 0.00 N equal 

 
𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO 

20k 𝜑AM 900.0 930.0 -0.22 N AESet-PSO 

 
𝜓AM 930.0 900.0 -0.22 N AEStd-PSO 

 
𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO 

30k 𝜑AM 885.0 945.0 -0.44 N AESet-PSO 

 
𝜓AM 945.0 885.0 -0.44 N AEStd-PSO 

 
𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO 
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The results for benchmark problem 1, in table 5.4, show that there is no significant difference 

between the two PSO architectures (except for 𝜏AM). The null hypothesis is not rejected for 

completeness (𝜑AM) or information gain (𝜓AM). The reason is, given a stable environment 

where the environmental data do not change, both architectures are able to successfully 

optimize the LTM. The small effect size indicates that the difference between the two PSO 

algorithms is negligible. 

 

Table 5.5 Statistical analysis results for benchmark problem 2. 

𝒮LTM  𝒱𝜀 
Performance 

measure 
∑𝑅1 ∑𝑅2 z-score Reject 𝐻0? Preference 

10k High 𝜑AM 1082.5 747.5 -2.48 Y AEStd-PSO 

  
𝜓AM 1201.0 629.0 -4.23 Y AEStd-PSO 

  
𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO 

 
Med 𝜑AM 1016.5 813.5 -1.50 N AEStd-PSO 

  
𝜓AM 815.5 1014.5 -1.47 N AESet-PSO 

  
𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO 

 
Low 𝜑AM 885.0 945.0 -0.44 N AESet-PSO 

  
𝜓AM 945.0 885.0 -0.44 N AEStd-PSO 

  
𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO 

20k High 𝜑AM 971.0 859.0 -0.83 N AEStd-PSO 

  
𝜓AM 1023.0 807.0 -1.60 N AEStd-PSO 

  
𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO 

 
Med 𝜑AM 1239.0 591.0 -4.79 Y AEStd-PSO 

  
𝜓AM 645.0 1185.0 -3.99 Y AESet-PSO 

  
𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO 

 
Low 𝜑AM 945.0 885.0 -0.44 N AEStd-PSO 

  
𝜓AM 885.0 945.0 -0.44 N AESet-PSO 

  
𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO 

30k High 𝜑AM 1058.5 771.5 -2.12 Y AEStd-PSO 

  
𝜓AM 1092.0 738.0 -2.62 Y AEStd-PSO 

  
𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO 

 
Med 𝜑AM 1202.5 627.5 -4.25 Y AEStd-PSO 

  
𝜓AM 654.5 1175.5 -3.85 Y AESet-PSO 

  
𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO 

 
Low 𝜑AM 870.0 960.0 -0.67 N AESet-PSO 
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Table 5.6 Continued. 

  
𝜓AM 960.0 870.0 -0.67 N AEStd-PSO 

  
𝜏AM 465.0 1365.0 -6.65 Y AEStd-PSO 

  

The results for benchmark problem 2, in table 5.5, show that when optimizing a 10k LTM under 

high volatility, there is a significant difference between the two PSO algorithms. The AEStd-

PSO performs better for completeness (𝜑AM) and information gain (𝜓AM). The reason for this 

is the AEStd-PSO evaluates only a single candidate per particle within the limited timeframe, 

whereas the set-based architecture has to evaluate a set of candidate solutions in the limited 

time frame. The AEStd-PSO is therefore able to evaluate more candidates before the next 

environmental data change. When volatility decreases from Med to Low, there is no significant 

difference between the two PSO algorithms. This is because both architectures have sufficient 

time to evaluate the candidate solutions. The sum-of-ranks ∑𝑅1 and ∑𝑅2 indicate the AEStd-

PSO performing slightly better on completeness, when volatility is Med, but the AESet-PSO 

performs slightly better on information gain when volatility is Low.     

When optimizing a 20k LTM under high volatility, there is no significant difference between 

the two PSO algorithms. The AEStd-PSO performing slightly better on completeness and 

information gain, but the small-medium effect size indicates that the difference is negligible.  

When volatility is Med, there is a significant difference between the PSO algorithms. The 

AEStd-PSO performs better on completeness but the AESet-PSO performs better on 

information gain.  When the volatility decreases to Low, there is no significant difference. 

Although the AEStd-PSO performs slightly better on completeness and the AESet-PSO 

performs slightly better on information gain, the effect size is small, indicating the difference 

to be negligible. 

When optimizing a 30k LTM, there is a significant difference between the two PSO algorithms 

for both High and Med volatility. Under High volatility, the AEStd-PSO performs better on 

both completeness and information gain, while the AESet-PSO performs better on information 

gain when the volatility is Med. When the volatility is low, there is no significant difference. 

Although the AESet-PSO performs slightly better on completeness and the AEStd-PSO 

performs slightly better on information gain, the effect size is small, indicating the difference 

to be negligible. 

The convergence time 𝜏AM for AESet-PSO is consistently higher than that of AEStd-PSO. (see 

figure 5.5 below). This is due to the difference in PSO architecture. In the AEStd-PSO, particles 
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only have to search along a vector (i.e. single dimension) and fitness is evaluated only once for 

each particle. The particles, therefore, reach convergence faster. The AESet-PSO, on the other 

hand, needs to perform a number of set-based operations where fitness is evaluated for each 

element in the set (particle) and more processing time is expended. Figure 5.5 shows the 

magnitude of the time difference between AEStd-PSO and AESet-PSO to reach convergence, 

with both algorithms showing a slight increase in convergence time over the 30 runs. This is 

due to the increase in the size of the LTM. 

 
Figure 5.5 Average convergence time of AE-Std-PSO and AESet-PSO. 

The graph shows the average convergence time of both the AEStd-PSO and AESet-PSO 

algorithms. 

 

It is important to note that a short convergence time would be preferable for algebraic 

optimization problems. However, for optimization problems where the search space consists of 

discrete and complex items, completeness and information gain of the optimization results are 

more important. Since the LTM contains discrete and complex memory items, the more 

important performance measures, such as completeness and information gain. These 

performance measures are used below to evaluate and select an appropriate algorithm. 

The Mann-Whitney U statistic doesn’t indicate the magnitude or direction of the difference. 

Moreover, the difference becomes more important when the search space is volatile. The graphs 

in figures 5.6 - 5.13 serves to show the effect volatility of the search space has on the 

completeness and information gain of the two algorithms. The graphs give an indication of the 

difference between the AEStd-PSO and the AESet-PSO for each statistic (completeness and 

confidence level), where 𝐻0 is rejected, that is, where there is a significant difference. 
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Figure 5.6 Completeness results - small (10k) search space with high volatility. 

The results show that volatility has a dramatic effect on the completeness, even when the search 

space is small. Although the AESet-PSO performs better than the AEStd-PSO algorithm, both 

algorithms perform poorly under highly volatile conditions. 

 

 
Figure 5.7 Information gain results - 10k search space with high volatility. 

The results in this graph show that volatility has a dramatic effect on the confidence level, even 

when the search space is small. Although the AESet-PSO performs better than the AEStd-PSO 

algorithm, both algorithms perform poorly under highly volatile conditions. 
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Figure 5.8 Completeness results - medium size search space (20k) with medium volatility. 

The results show that a reduction in search space size and volatility, significantly improves the 

completeness of the algorithms, with the AESet-PSO performing marginally better than the 

AEStd-PSO. 

 

 
Figure 5.9 Information gain results - medium search space (20k) with medium volatility. 

The results show that a reduction in search space size and volatility, significantly improves the 

completeness of the algorithms, with the AESet-PSO performing marginally better than the 

AEStd-PSO. 
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Figure 5.10 Completeness comparison results - large search space (30k) with high volatility. 

The results show that, although the AESet-PSO performs slightly better than the AEStd-PSO, 

both algorithms perform very poorly on a large and volatile search space. when the search 

space. 

 

 
Figure 5.11 Information gain comparison results - of a large search space (30k) with high 

volatility. 

The results show that, although the AESet-PSO performs slightly better than the AEStd-PSO, 

both algorithms perform very poorly on a large and volatile search space. when the search 

space. 
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Figure 5.12 Completeness comparison results - of a large search space (30k) with medium 

volatility. 

The results in this graph show that by reducing the volatility on a large search space, the 

performance is improved, with the AEStd-PSO performing slightly better than the AESet-PSO 

on completeness. 

 

 

 
Figure 5.13 Information gain comparison results - of a large search space (30k) with medium 

volatility. 

The results in this graph show that by reducing the volatility on a large search space, the 

performance is improved, with similar performance between the AEStd-PSO and AESet-PSO 

algorithms on information gain. 
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5.2.9 Discussion 

There is a significant difference between the two PSO algorithms for the 10k LTM under High 

volatility, for the 20k LTM under Med volatility and for the 30k LTM under both High and 

Med volatility. The effect size of the difference is large. The hypothesis is therefore rejected 

under these conditions. 

When the volatility is High, the AEStd-PSO consistently performs better on both completeness 

and information gain for all LTM sizes. When the volatility is Med, the AEStd-PSO performs 

better on completeness, while the AESet-PSO performs better on information gain for all LTM 

sizes.  When the volatility is Low, there is no significant difference between the PSO algorithms 

for any of the LTM sizes and effect size is generally small. 

For benchmark problem 1, the null hypothesis is not rejected. There is no significant difference 

between the AEStd-PSO and AESet-PSO when optimizing an LTM under uncertain conditions. 

For benchmark problem 2, the null hypothesis is conditionally rejected, subject to 

environmental conditions. Tables 5.6 and 5.7 summarizes the rejection/non-rejection of the null 

hypothesis, for the simulated environmental conditions. 

 

Table 5.7 Hypothesis rejection for 

benchmark problem 1. 

 Performance measure 

LTM 

Size 
𝝋𝐀𝐌 𝝍𝐀𝐌 𝝉𝐀𝐌 

10k N N Y 

20k N N Y 

30k N N Y 
 

Table 5.8 Hypothesis rejection for 

benchmark problem 2. 

 Volatility 

LTM 

Size high med low 

10k Y N N 

20k N Y N 

30k Y Y N 
 

 

The selections are made using sum-of-ranks and effect size in tables 5.4 and 5.5 and the 

hypothesis rejections, summarized in tables 5.6 and 5.7. Tables 5.8 and 5.9 below, show the 

preferred PSO algorithm selections. Environmental conditions, for which the null hypothesis is 

rejected, indicate a significant statistical difference in the performance of the PSO algorithms. 

The sum-of-ranks indicate the magnitude and direction of this difference, where the magnitude 

is interpreted as the degree of confidence in the selection. The PSO algorithm with the greatest 

sum-of-ranks magnitude is selected as the preferred PSO, with a high level of confidence. 

Environmental conditions, for which the null hypothesis is not rejected, indicate no significant 

statistical difference in the performance of the PSO algorithms. However, the sum-of-ranks 

may still show a nominal difference. The PSO algorithm with the greatest sum-of-ranks 

magnitude is still selected as the preferred algorithm, albeit with a low level of confidence.  
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The PSO algorithms in bold italics in table 5.8 indicate the algorithm selected with high degree 

of confidence for benchmark problem 1. PSO algorithms not in bold indicate the algorithm 

selected with a low degree of confidence. 

Table 5.9 PSO algorithm preference for benchmark problem 1 

LTMSize 
performance 

measure 
preferred 

10k 𝜑AM either 

 𝜓AM either 

 𝜏AM AEStd-PSO 

20k 𝜑AM AESet-PSO 

 𝜓AM AEStd-PSO 

 𝜏AM AEStd-PSO 

30k 𝜑AM AESet-PSO 

 𝜓AM AEStd-PSO 

 𝜏AM AEStd-PSO 

 

The PSO algorithms in bold italics in table 5.9 indicate the algorithm selected with high degree 

of confidence for benchmark problem 2. PSO algorithms not in bold indicate the algorithm 

selected with a low degree of confidence. 

Table 5.10 PSO algorithm preference for benchmark problem 2 

  Volatility 

LTMSize 
performance 

measure 
high med low 

10k 𝜑AM AEStd-PSO AEStd-PSO AESet-PSO 

 𝜓AM AEStd-PSO AESet-PSO AEStd-PSO 

 𝜏AM AEStd-PSO AEStd-PSO AEStd-PSO 

20k 𝜑AM AEStd-PSO AEStd-PSO AEStd-PSO 

 𝜓AM AEStd-PSO AESet-PSO AESet-PSO 

 𝜏AM AEStd-PSO AEStd-PSO AEStd-PSO 

30k 𝜑AM AEStd-PSO AEStd-PSO AESet-PSO 

 𝜓AM AEStd-PSO AESet-PSO AEStd-PSO 

 𝜏AM AEStd-PSO AEStd-PSO AEStd-PSO 

 

The statistical analysis shows that both PSO algorithms are capable of optimizing a LTM, given 

temporal environmental data. However, the performance, in terms of completeness, information 
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gain and convergence time of the PSO algorithm is influenced by the environmental conditions. 

When selecting a preferred PSO algorithm, the statistical analysis of the performance of each 

algorithm is used. Tables 5.8 and 5.9 shows the preferred PSO algorithms, based on the 

statistical results, given the various environmental conditions. The PSO algorithms shown in 

bold italics, are selected with “high” confidence, because there is a significant statistical 

difference and the null hypothesis is rejected. The PSO algorithms not in bold, are selected with 

“low” confidence, because there is only a nominal difference and the hypothesis is not rejected. 

When the PSO algorithm is selected with “low” confidence, the effect size is small to medium. 

The selection is then made subjectively, as the performance of both algorithms is similar. 

 

5.3 Conclusion 

The significant difference in the convergence time of the two PSO algorithms, for all 

environmental conditions, is important. If reaction time is a priority for an autonomous system, 

the lag in convergence time for the AESet-PSO may be prohibitive and the AEStd-PSO is 

preferred. On the other hand, since completeness and information gain is more important, the 

AESet-PSO is preferred. 

It is important to note that the level of performance of the AEStd-PSO, as indicated in the 

statistical analysis, can only be achieved if the LTM is ordered prior to optimization, as stated 

previously. Then, all the relevant memory items are in close proximity and the density of the 

converging swarm in the area is able to find all memory items. The AESet-PSO does not have 

this requirement. However, if the environment is dynamic and diverse, it cannot be guaranteed 

that the LTM will be ordered. It is therefore concluded that the set-based PSO will be more 

suitable for the optimization of discrete memory elements in the LTM, since it performed better 

overall on completeness and confidence level. 
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Chapter 6 

Robo-cognitive architectures 

In this chapter, memory representation and quantification, developed in chapter 4, are combined 

with memory optimization, in the cognitive function of memory recall. In section 6.1, an 

architecture for real-time, cognitive control using SPSO for single-task execution, is developed 

and section 6.2, an architecture for real-time, cognitive control using CG-PSO for multi-task 

execution, is developed. The methodology, simulations and performance analysis for both 

architectures are presented in detail in this chapter. The performance of both architectures is 

evaluated using a UAV simulation environment. 

Memory representation and quantification 

In section 4.1, figures 4.1 and 4.2 represent state flows which represents the valid states and 

state transitions of two UAV functions, flight controls and gripper controls. These state flow 

diagrams are provided as a visual reference to the reader, but is implemented in the LTM, shown 

in figure 4.3. The memory represented as the LTM, is used in the memory quantification, 

developed in chapter 4. The quantification is then used by both the SPSO and CG-PSO 

algorithms during memory recall (memory optimization). 

 

6.1 Real-time Episodic Memory Construction in Cognitive Control of 

Autonomous Vehicles 

The architecture developed in this section is based on the Baddeley model for working memory 

and uses the set-based PSO to construct the episodic memory. The episodic memory represents 

the optimal set of memory items, i.e. state transitions, from which the CE selects and executes 

the actions, defined by the memory item (state transition). 

6.1.1  Methodology 

During memory recall, the CE uses real-time environmental stimuli and cues to statistically 

quantify and recall memory items from LTM. Memory optimization during memory recall is 

performed by the SPSO algorithm, and memory item fitness quantification is performed by the 

adaptive entropy fitness quantification (AEFQ) algorithm. The robo-cognitive architecture and 

main functions are shown in figure 6.1. To the best of our knowledge, there has been no attempt 
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to use set-based PSO for real-time optimization of working memory in any robo-cognitive 

architecture. 

 

Figure 6.1 A robo-cognitive architecture, using on Baddeley’s model of working memory. 

Episodic memory is constructed during memory recall. The episodic memory is used by the 

central executive to select the optimal memory element for action selection and execution. 

 

In this approach, the domain expert provides cues (or missions) which defines the objectives of 

the autonomous vehicle. The central executive recalls, quantifies and optimizes semantic 

memory in real-time, subject to the cues and stimuli. Since the process is dynamic and in real-

time, the optimal memory constructed by the central executive is episodic, and used for 

selecting and executing the optimal action. Memory optimization is done using the SPSO 

algorithm. The result of the memory optimization, is the episodic memory, from which the CE 

selects the optimal memory item. Finally, the action defined by the selected episodic memory 

item is executed. 

In this approach, episodic construction, using the AEFQ algorithm and set-based particle swarm 

optimization (SPSO) algorithm, is used for real-time memory recall for high-level, single task 

autonomous vehicle control. Memory representation and quantification, is used in the memory 

recall cognitive process. 
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The AEFQ algorithm employs the MEP to provide a probability distribution over all the 

characteristics of the semantic memory item, for fitness evaluation. In this approach, the 

episodic memory (see Baddeley’s memory model, figure 3.2) represents the optimal set of 

memory items from which the executive uses the probability distribution of each item to select 

the best memory item and execute a suitable action. The performance of the approach is 

evaluated by simulation with two unmanned aerial vehicle (UAV) use cases: 1) flying to a 

charging station for re-charging and 2) delivering a medical package, before flying to a charging 

station. 

6.1.2 Reasoning in the robo-cognitive architecture 

Reasoning in the robo-cognitive architecture is a cognitive process performed by the CE. In 

figure 6.1, it is shown that the CE is composed of two main functions: cognition and reasoning. 

The cognition component is tasked with the statistical optimization of the knowledge from the 

LTM, given the environmental data. The reasoning component is tasked with selecting the 

optimal action 𝜋∗, from the episodic memory, EM. 

The CRP uses the optimal set of solutions (state transition) found by the AE-SPSO to select 

and execute the relevant actions. 

Algorithm 6.1 Cognitive reasoning process (CRP) algorithm 

1: Input : LTM -- Domain expert knowledge 

2:    : Mission parameters, 𝛷𝑚 with tasks, 𝜑𝑗
𝑚 

3:    : Runtime parameters 𝛷𝑟 with evidence , 𝜑𝑖
𝑟 

4: Begin 

5:   -- Execute the mission 

6:   For each task, 𝜑𝑗
𝑚 ∈ 𝛷𝑚 

7:    Repeat 

8:     Input all 𝜑𝑖
𝑟 ∈ 𝛷𝑟 from sensory input 

9:     -- Call the AE_SPSO algorithm to find the optimal solutions 

10:     𝐸𝑀 = 𝐴𝐸_𝑆𝑃𝑆𝑂(LTM,𝛷𝑚, 𝛷𝑟) -- see (Algorithm 5.2) 

11:     -- Select and execute action/s from optimal solution/s 

12:     For each action 𝜏𝑘 ∈ 𝐸𝑀 

13:      For each action 𝒜 ∈ 𝜏𝑘 

14:       For each action 𝒶𝑛 ∈ 𝒜 

15:        Execute action 𝒶𝑛 

16:       Next action 

17:     Next state transition 

18:    Until Task completed 

19:   Next Task 

20: End 
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The robo-cognitive architecture developed in this section enables action selection and execution 

from episodic by the central executive. Each task of the mission is executed sequentially, task-

by-task. The next section discusses the development of a robo-cognitive architecture for multi-

task execution, based on a coalitional game-theoretic approach. 

 

6.2 Real-time Activated memory Construction for Cognitive Control of 

Autonomous Vehicles 

This section introduces a coalitional game theory-based PSO (CG-PSO) algorithm, based on a 

combination of PSO and coalitional games theory. During memory recall, the CE follows 

Cowan’s attentional focus memory model (see figure 3.3), where the CG-PSO produces an 

optimal AM, from which multiple FOAs can be selected for action selection and execution. 

The performance of the CG-PSO algorithm is evaluated by simulation, with two unmanned 

aerial vehicle (UAV) use cases: delivering medical equipment to an incident, and flying a 

security surveillance support mission. 

6.2.1 Methodology 

During memory recall, the CE uses real-time environmental stimuli and cues to statistically 

quantify and recall memory items from LTM. Memory optimization during memory recall is 

performed by the CG-PSO algorithm, and memory item fitness quantification is performed by 

the adaptive entropy fitness quantification (AEFQ) algorithm.  The robo-cognitive architecture 

for multi-task execution and its main functions are shown in figure 6.2. To the best of our 

knowledge, there has been no attempt to combine cooperative game theory and PSO for real-

time optimization of working memory in any robo-cognitive architecture. 
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Figure 6.2 A robo-cognitive architecture, using Cowan’s attentional focus theory of working 

memory. 

Activated memory and focus of attention is constructed during memory recall. From the focus 

of attention, actions are selected for execution by the central executive. 

 

To assist in the description, the architecture is described using a UAV with two functions: Flight 

control and Gripper Control. The robo-cognitive architecture, illustrated in figure 6.2, shows 

the structure and components of the working memory, specifically: 

• Central Executive (CE) – the cognitive process, governing the cognitive components 

in reasoning and decision-making, 

• Long-term memory (LTM),  

• Short-term memory (STM),  

• Environmental stimulus (ENV), 

• Cues represent a mission, composed of a collection of tasks, defined by the domain 

expert, 

• Cue represents a specific task of the mission, 

• AM represents the Activated Memory, 

• FOA represents the Focus of Attention, 
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• Cognitive cycle (C) – a period of memory recall, action selection and action 

execution. 

 

6.2.2 Reasoning in the robo-cognitive architecture 

Reasoning in robo-cognitive architecture is a cognitive process, implemented as a coalitional 

game played by the particles in a swarm. The process governs the construction of AM, from 

which the FOA is identified for action selection and execution by the CE. 

Formally, the coalitional game (with transferable utility) is defined as follows:  

When the worth of the coalition can be distributed amongst its members, the game is called a 

transferable utility (TU-Game). A coalitional game with transferable utility is defined as 

follows: 

Definition 6.1: A coalitional game is a pair (𝑁; 𝜐) such that: 

• 𝑁 = {1,2,… , 𝑛} is a finite set of players. A subset of N is a coalition 𝑆  and the collection 

of all coalitions is denoted by 2𝑁. 

• 𝜐: 2𝑁 → ℝ is a function associating each coalition 𝑆 with a real number 𝜐(𝑆), satisfying 

𝜐(∅) = 0. This function is also called the characteristic function of the game and 𝜐(𝑆) is 

the social welfare of the coalition. 

Contrary to real-world practice, in this study, coalitions may consist of a single player. For ease 

of computation, every particle in a game will initially be in a coalition by him- or herself. 

The maximum amount a coalition 𝑆 can generate through the cooperation of its members is the 

social welfare or social utility 𝜐(𝑆), of the coalition. The coalition’s social welfare is distributed 

amongst its members. The amount of utility a member 𝑥 receives is referred to as the individual 

welfare or individual utility 𝜐(𝑥) the member receives from the coalition; it chooses to join. A 

user-defined payoff function (see definition 3.1), calculates the utility a player will potentially 

receive, when forming a coalition with another player. A player cannot receive a higher payoff 

than the worth of the coalition. 

In this study, the individual utility 𝜐(𝑥), is assigned by the AEFQ algorithm. 

Definition 6.2: Let 𝒰 be a family of coalitional games. A solution concept over 𝒰 is a function 

𝜑 associating every game (𝑁; 𝜐) ∈ 𝒰 with a subset 𝜑(𝑁;  𝜐) 𝑜𝑓 ℝ𝑁. 

A single-valued solution concept, also called a point solution, is a function which assigns to 

each coalitional game, a payoff vector in ℝ𝑁, indicating the individual welfare of each player 

in the game. This function is performed by an arbitrator (i.e. the designer), which decides how 
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to divide the social welfare amongst the players. A solution concept specifies the payoff each 

member receives in a game and defines the players in terms of the coalition structures they form 

and corresponding payoff of both coalitions and players. 

Figure 6.3 shows an example of a coalition structure. In a game, memory items (see eq. 4.3) 

selected from the LTM, during memory recall, are defined as quantified assets. The assets 

“owned” by the player, determine the player’s utility (or worth) and is used during the 

bargaining process. Given a swarm 𝕊 of 𝑁 particles, the objective of the swarm is to maximize 

its collective (social) welfare by cooperatively accumulating the best assets. To achieve this, all 

the particles engage in a coalitional game, (𝑁; 𝑣), possibly resulting in a coalition 𝑆, with social 

utility 𝜐(𝑆), for each function of the problem.  

 
Figure 6.3 An example of a coalition structure. 

In the figure, a coalition structure, composed of three coalitions, each with two members, is 

shown. In the diagram, p = particle (member) and 𝜏 = asset (state transition). 

 

The example shows a coalition structure with 3 coalitions: 𝑆1 = {𝑝1, 𝑝2}, 𝑆2 = {𝑝3, 𝑝4} and 

𝑆3 = {𝑝5, 𝑝6}. formed by a swarm of 6 particles, each with 3 assets. An asset represents a 

memory item, selected from the LTM, during memory recall. The coalition structure represents 

the AM for a specific function of the problem and from which the FOA (optimal asset) is 

selected for action execution. 

 

Coalition structure formation 

During the cognitive cycle, the CG-PSO constructs an imputation (see definition 6.6), by firstly 

constructing the coalition structure ℬ, using algorithm 6.2. The coalition structure contains 

coalitions of particles, where the individual utility (fitness), 𝑓(𝑝) , of each particle, is 

determined by the AEFQ algorithm. Secondly, the payoff vector of the coalition structure is 

derived through the defection process (algorithm 6.3), where particles remain in a coalition or 

defect to another (more profitable) coalition.  

Coalition Structure

Coalition Coalition Coalition

Assets Assets Assets

     1 2 53 4 6, , , ,{ , }p p p p p p

 1 2,p p  3 4,p p  5 6,p p
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1 1 2 3{ , , }p   = 73 8 9{ , , }p   =

4 10 11 12{ , , }p   =
5 13 14 15{ , , }p   =

6 16 17 18{ , , }p   =
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Definition 6.3: A coalition structure ℬ  is a collection of disjoint sets, where each set is a 

coalition 𝑆 ∈ ℬ of players. The coalition structure ℬ is therefore a partition of the set of N 

players. 

The solution concept 𝜑(𝑁; 𝜐; ℬ) represents a set solution concept for the coalition structure ℬ. 

Associated with ℬ , is a set of payoff vectors, where each payoff vector corresponds to a 

coalition 𝑆 ∈ ℬ. The rationality of the payoff distribution is important, as it influences the 

decision of a player to form a coalition or defect from a coalition.  

Definition 6.4: A payoff vector is socially rational if 𝑥(𝑆) ≥ 𝜐(𝑆), that is the total social 

welfare of the coalition 𝑆 is divided amongst its players. 

In the proposed methodology, there is no a-priori “budget” available for distribution amongst 

the members. The social utility of a coalition, defined in definition 6.1, is calculated as the sum 

of the individual utility of its members and each member is “awarded” only the utility he/she 

contributed. Therefore, in the robo-cognitive architecture, coalitions are always socially 

rational, as each member receives at least what he contributed and there is no “unallocated” 

utility. 

Definition 6.5: A payoff vector is individually rational if 𝑥𝑖 ≥ 𝜐(𝑖). Since every player can 

guarantee at least his current individual welfare 𝜐(𝑖) if he/she doesn’t join, it is reasonable to 

assume he/she will demand at least this amount when joining the coalition. (Also see comment 

– definition 3.2) 

In the proposed methodology, this definition is ignored for performance reasons. When a 

particle defects from a coalition it may transfer some of its assets before defecting, thereby 

reducing its individual utility.  However, since the particle joins a coalition, relevant to the 

category of its assets, it may be argued that the particle will receive a bigger payoff because its 

assets are worth more to the coalition it joins. 

When a payoff vector is socially and individually rational, it is called an imputation of the 

coalition and is defined in definition 6.6 below. 

Definition 6.6: Let (𝑁; 𝜐) be a coalitional game, and let   ℬ  be a coalitional structure. An 

imputation 𝑥, for the coalitional structure  ℬ is a vector  𝑥 ∈ ℝ𝑁 which is both socially and 

individually rational for  ℬ. The set of all imputations for  ℬ is denoted by  𝑋(ℬ; 𝜐): 

𝑋(ℬ, 𝜐) ≔ {𝑥 ∈ ℝ𝑁 ∶  𝑥(𝑆) = 𝜐(𝑆)   ∀𝑆 ∈ ℬ,   𝑥𝑖 ≥ 𝜐(𝑖) ∀𝑖 ∈ 𝑁} 

where 𝑥(𝑆) is a vector of payoffs to all players in coalition 𝑆 and 𝜐(𝑆) is the total value of the 

coalition. 

An imputation, 𝑥 ∈ 𝑋(ℬ, 𝜐) is denoted by, 
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 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁) (6.1) 

where  𝑥𝑖 ; 𝑖 ∈ [1, 𝑁] represent the payoff player 𝑖 receives. 

The set of imputations forms the basis for rational bargaining, amongst the particles in the 

swarm. The bargaining set, is a coalitional solution concept and is the set of all imputations in 

X(ℬ, υ) at which every objection of one player against another player in the same coalition in 

the coalitional structure  ℬ, is met by a counter objection. In other words, it is the set of all 

imputations against which unjustified objections are raised and forms the basis for negotiation 

amongst the players. Bargaining may be described as an iterative, negotiation-objection-counter 

objection, process. However, in this study, the performance of the cognitive process is 

important for the high-level control of a UAV.  Therefore, bargaining will be limited to 

negotiation-objection process only, where there is no counter-objection raised by the initiating 

player. This prevents intractable and expensive recursive negotiations between particles. 

Definition 6.7: Let (𝑥, ℬ) be an imputation, and let 𝑘, 𝑙(𝑘 ≠ 𝑙) be two players belonging to 

different coalitions in ℬ. An objection of player 𝑘 against player 𝑙 at 𝑥 is a pair (𝐶, 𝑦) such that: 

1. 𝐶 ⊆ 𝑁 is an alternative coalition containing 𝑘 but not 𝑙: 𝑘 ∈ 𝐶, 𝑙 ∉ 𝐶. 

2. 𝑦 ∈  ℝ|𝐶| is a vector of real numbers satisfying 𝑦(𝐶) = 𝜐(𝐶), and 𝑦𝑖 > 𝑥𝑖 for each 

player 𝑖 ∈ 𝐶. 

where 𝑦  is an alternative imputation (see definition 6.6), 𝑦(𝐶) = 𝜐(𝐶) indicates the social 

rationality (see definition 6.4) of the alternative coalition 𝐶 and 𝑦𝑖 > 𝑥𝑖 indicates the individual 

rationality (see definition 6.5) of all the players in the alternative coalition. The alternative 

coalition is the coalition that will be formed if 𝑘 decides to join. 

This definition states: player 𝑘 raises an objection to player 𝑙’s offer since he/she can potentially 

receive a larger payoff (𝑦𝑖), when he/she joins an alternative coalition 𝐶, than he/she would 

have received (𝑥𝑖), if joining 𝑙’s coalition. The objection is a result of the rational behaviour of 

player 𝑘 in maximizing his utility. 

Definition 6.8: Let (𝐶, 𝑦) be an objection of player 𝑘 against player 𝑙 at 𝑥. The objection is 

justified if player 𝑙 has no counter objection to it. 

As an example of the bargaining process, consider a swarm of four particles: A, B, C and D. 

Particle A requests particle B to join its coalition. Particle B checks with particles C and D, to 

establish whether he/she can do better (rational behaviour) if he/she forms/joins a coalition with 

one of them. If he/she will be better off joining either C or D, he/she will object to particles A’s 

offer. Particle A then approaches particle C with the same request and the process is repeated.  
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How the particles join coalitions are random, based on the potential payoff the candidate 

particle will receive, i.e. the offer of the recruiting particle. 

Let particle 𝑖 be the recruiting particle, and particle 𝑗 be the candidate particle. The potential 

payoff particle 𝑖 offers particle 𝑗, is calculated as, 

 𝑜𝑓𝑓𝑒𝑟𝑖𝑗 = 𝑣(𝑆𝑝𝑖) + 𝑣(𝑝𝑗) (6.2) 

where 𝑜𝑓𝑓𝑒𝑟𝑖𝑗  represents the payoff “promised” to particle j  if he/she joins particle 𝑖 ’s 

coalition. The utility 𝑣(𝑝𝑗) of particle 𝑗 is calculated by summing the total fitness of all assets 

(memory items) owned by particle 𝑗. The fitness of each asset is quantified using the AEFQ 

algorithm. The social utility of particle 𝑖’s coalition is represented by 𝑣(𝑆𝑝𝑖) and is the sum of 

the utility (fitness) of all particles in the same coalition as particle 𝑖. The utility, 𝑜𝑓𝑓𝑒𝑟𝑖𝑗, which 

is offered to particle 𝑗, is the social utility of particle’s 𝑖’s coalition plus the utility particle 𝑗 

will contribute to the coalition if it joins the coalition. 

Given definitions 6.3 – 6.8, the bargaining set can now be defined. 

Definition 6.9: Let (𝑁; 𝜐) be a coalitional game, and let  ℬ  be a coalitional structure. The 

bargaining set relative to the coalitional structure  ℬ, is the set ℳ(𝑁; 𝜐; ℬ) of imputations in 

𝑋(ℬ, 𝜐) at which no player has a justified objection against any other player in the same 

coalition. 

From the bargaining set, a point solution concept [119] can now be defined as, 

 𝜑 = (𝑥; 𝑆1, 𝑆2, . . . , 𝑆𝑛ℱ) (6.3) 

where 𝑥 is the imputation (definition 6.6) and 𝑆j ; 𝑗 ∈ [1, 𝑛ℱ] represent the 𝑗𝑡ℎ coalition in the 

coalition structure ℬ, representing a function in ℱ. 

Each iteration of the CG-PSO is a cognitive cycle, during which bargaining takes place. Each 

particle in the swarm, in turn, bargains with (or requests) every other particle in the swarm to 

join its coalition. During the cognitive cycle, the decision of the particle to join or not join, is 

made based the rationality of the particle. The particle’s individual utility is determined by the 

worth (i.e. fitness) of the quantified assets (i.e. memory items) it owns. The particle’s rationality 

is driven by the offer (eq. 6.2), which is influenced by the particle’s individual utility and the 

coalition’s social utility. 

The bargaining process for the construction of the coalition structure of the imputation 

performed by the CG-PSO algorithm, shown in Algorithm 6.2. 
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Algorithm 6.2 Coalitional game-theoretic PSO (CG-PSO) algorithm 

1: Input : Cues, LTM, ENV, STM 

2: Output: coalition structure, ℬ 

3:  

4: Begin 

5:  Initialize a swarm, 𝕊 of 𝑁 particles, each particle contains 𝑛  

6:   randomly selected state transitions, 𝜏𝑘 ∈ LTM. 

7:  

8:  Initialize coalition structure, ℬ with each particle in its own coalition: 

9:   for each particle 𝑝𝑖 ∈ 𝕊   

10:    set 𝑆𝑖 = {𝑝𝑖} 

11:    add 𝑆𝑖 to ℬ 

12:   endfor 

13:  -- Start negotiation (bargaining) cycle 

14:  repeat 

15:   for each particle 𝑖 ∈ 𝕊 

16:    for each particle 𝑗 ∈ 𝕊 where (𝑗 ≠  𝑖) 

17:     -- particle 𝑖 negotiate with particle 𝑗 to form {𝑖, 𝑗} 

18:     -- calculate an offer from particle 𝑖 to particle 𝑗 using eq. (6.2) 

19:     calculate 𝑜𝑓𝑓𝑒𝑟𝑖𝑗 using (6.2) 

20:     for each particle 𝑘 ∈ 𝕊 where (𝑘 ≠ 𝑗) and (𝑘 ≠  𝑖) 

21:      -- particle 𝑗 negotiates with particle 𝑘 to form {𝑗, 𝑘} 

22:      -- calculate an offer from particle 𝑗 to particle 𝑘  

23:      -- using eq. (6.2) 

24:      calculate 𝑜𝑓𝑓𝑒𝑟𝑗𝑘  

25:      if 𝑜𝑓𝑓𝑒𝑟𝑗𝑘  >  𝑜𝑓𝑓𝑒𝑟𝑖𝑗  

26:       particle 𝑗 objects to particle 𝑖’s offer  -- see def. 6.7 

27:      else 

28:       particle 𝑗 defects from 𝑆j -- using algorithm 6.3 

29:       particle 𝑗 joins 𝑆𝑖 

30:      endif 

31:     endfor 

32:    endfor 

33:   endfor 

34:   until end condition 

35:   return ℬ 

36: end of working memory optimization 

 

The bargaining process causes coalitions of particles to form in a way which maximizes the 

social utility of the coalition. This is similar to the behaviour of the swarm in PSO, where 

particles converge on the global best solution.  
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In order to keep the response time for memory recall as low as possible, bargaining is limited 

to objections only. However, for problems without strict performance constraints, the 

negotiation-objection-counter objection may prove useful for coalition-formation, based on 

more complex negotiations and formation rules. For completeness of the role of the bargaining 

set in coalitional games theory, the definition of a counter-objection is given below. 

Definition 6.10: Let (𝐶, 𝑦) be an objection of player 𝑘 against player 𝑙  at payoff  𝑥𝑖  of the 

payoff vector. A counter objection of player 𝑙 against player 𝑘 is a pair (𝐷, 𝑧) satisfying: 

1. 𝐷 is a coalition where 𝑙 ∈ 𝐷 and 𝑘 ∉ 𝐷. 

2. 𝑧 ∈ ℝ𝐷 and 𝑧(𝐷) =  𝜐(𝐷). 

3. 𝑧𝑖 ≥ 𝑥𝑖, for every player 𝑖 ∈ 𝐷\𝐶. 

4. 𝑧𝑖 ≥ 𝑦𝑖, for every player 𝑖 ∈ 𝐷 ∩ 𝐶. 

This definition states: a counter objection is raised by player 𝑙  if he/she can find another 

coalition D of which he/she (but not 𝑘) is a member and the worth of coalition D is divided in 

such a way that each member of 𝐷\𝐶 receives at least what he/she receives under 𝑥, and each 

member of 𝐷 ∩ 𝐶 receives at least what he/she receives under  𝑦 (offered by 𝑘 in his objection 

to 𝑥). 

The solution concept can now be completed by constructing the payoff vector (imputation). 

 

Payoff vector construction 

To assist in the construction of the payoff vector 𝑥, each coalition is categorized according to 

the assets possessed by its members. Each asset in the search space belongs to a specific 

function 𝑓𝑗 and therefore coalitions will be formed which fully represent a single function, 𝑓𝑗 ∈

ℱ, (referred to as P-coalition, indicating it is a “pure” coalition) or a mix of functions (referred 

to as a D-coalition, indicating members will defect in to join another P-coalition. 

A coalition whose members possess assets only from a single function 𝑓1 is a P-coalition and 

is assigned type 𝐴, a coalition whose members only possess assets only from function 𝑓2 is also 

a P-coalition and is assigned type 𝐵 and so on. A coalition whose members possess assets from 

various functions, is a D-coalition and is assigned a unique type 𝐷 (reserved for these types of 

coalitions). (Category codes used are arbitrary and the decision of the designer). 

Let, 

 𝜔𝑆𝑗 = {
1 ; 𝑖𝑓 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛 𝑆𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝐷_𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛

0 ; 𝑖𝑓 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛 𝑆𝑗 𝑖𝑠 𝐷_𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛
 (6.4) 
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be a payoff weight assigned to a coalition 𝑆𝑗, based on the assets of its members. The social 

utility of coalition 𝑆𝑗 is then defined as, 

 𝜐(𝑆𝑗) = 𝜔𝑆𝑗 ∗ ∑ 𝜐(𝑝𝑖)𝑝𝑖∈𝑆𝑗 ; 𝑖 = 1, . . 𝑁 (6.5) 

which is shared in full with each member particle: 

 𝑥𝑝𝑖 = 𝜐(𝑆𝑗) ; 𝑝𝑖 ∈ 𝑆𝑗 (6.6) 

The payoff weight controls the behaviour of particle’s movement towards maximizing the 

social utility. A positive payoff by the coalition encourages particles to remain in the coalition, 

while particles who receive no payoff is incentivised to defect and join a more profitable 

coalition. 

The payoff vector (imputation) 𝑥, for coalition structure ℬ, is constructed: 

 𝑥 = (𝑥𝑝1 , 𝑥𝑝2 , … , 𝑥𝑝𝑖); 𝑥𝑝𝑖 ∈ 𝑆𝑗 and 𝑆𝑗 ∈ ℬ (6.7) 

The coalition structure ℬ represents the AM for a function. The FOA can only be selected from 

AM represented by P-coalitions. Therefore, for any D-coalitions, a negotiation must take place 

between its members and other relevant P-coalitions. The objective is for particles in a D-

coalition to defect to other, more “profitable” coalitions. Algorithm 6.3 shows the defection 

process: 

Algorithm 6.3 Particle defection process 

1: begin 

2:  given coalition structure ℬ ∈ 𝜑 

3:   For each 𝐷-Coalition ≠ ∅ 

4:    for each particle in type D-Coalition 

5:     Separate assets into function-type sets 

6:     Retain function-type set with the largest number of assets. 

7:     Transfer all other assets to particles in relevant coalitions 

8:     Defect from D-Coalition 

9:     Join relevant P-coalition according to retained assets   

10:    endfor 

11:   endfor 

12: end defection 

 

Finally, after defections, the point solution concept 𝜑 is complete and each coalition 𝑆𝑗 ∈ 𝜑 

represents the AM for a specific function 𝑓𝑗 ∈ ℱ. 
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6.2.1.3 Action selection and execution 

The cognitive process of the robo-cognitive architecture concludes with action select and 

execution by the CE. With the solution concept (containing the coalition structure) constructed, 

the FOA can be set and the CE selects the action/s from 𝐴𝑘 = {𝒶1, … , 𝒶𝑛𝐴𝑘
}, defined by the 

asset. The relevant command/s is/are derived from the selected action/s and sent to the UAV 

controller for execution. 

The complete cognitive reasoning process of the robo-cognitive architecture is shown in 

Algorithm 6.4. 

Algorithm 6.4 Cognitive reasoning process (CRP) 

1: Initialize: 

2:  Cues, 𝛷𝑐      -- see eq. (4.1) 

3:  Long Term memory, LTM -- see eq. (4.2) and (4.3) 

4:  Short term memory, STM -- see eq. (4.5) 

5:  Environmental info, ENV -- see eq. (4.4) 

6:  Activate memory, AM = {} 

7:  

8: begin   -- reasoning process, given a cue from Cues  

9:  for each cue in Cues  

10:   Input environment stimuli, ENV 

11:   Given the cue and ENV, retrieve related STM 

12:   

13:   -- Construct the coalition structure ℬ of 𝜑 

14:   ℬ𝑥 = 𝐶𝐺_𝑃𝑆𝑂(𝐶𝑈𝐸, LTM, ENV, STM) using Algorithm 6.2 

15:  

16:   -- Construct the payoff vector of 𝜑 

17:   for each 𝑆𝑗 ∈ ℬ𝑥 

18:    Categorize coalition 𝑆𝑗 as P-coalition or D-coalition 

19:    Calculate payoff 𝜐(𝑆𝑗) using eq. (6.5) 

20:   Endfor 

21:  

22:   -- Assign utility to each member of ℬ𝑥 

23:   for each 𝑝𝑖 ∈ 𝑆𝑗 and 𝑆𝑗 ∈ ℬ𝑥 

24:    Assign individual utility using eq. (6.6) 

25:   endfor 

26:  

27:   -- Process defections and complete coalition structure construction 

28:   Process defections from D-coalition using Algorithm 6.3 

29:   -- Calculate payoff vector (imputations) (see eq. (6.7)) 

30.   AM = 𝐼𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑥 
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31.  

32.   -- Construct Focus of Attention set 

33.   for each 𝜏𝑘
∗ ∈ AM 

34.    if 𝜏𝑘
∗ = 𝑐𝑢𝑒. 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 

35.     Add 𝜏𝑘
∗  to FOA 

36.    endif 

37.   endfor 

38.  endfor 

39.  

40.  -- Action selection and execution 

41.  for each 𝜏𝑘
∗ ∈ FOA 

42.   for each 𝑎𝑗
∗ ∈ 𝐴𝜏𝑘

∗  

43.    execute action 𝑎𝑗
∗ 

44.   endfor 

45:  endfor 

46. end cognitive process 

 

6.3 Conclusion 

Two robo-cognitive architectures were developed in this chapter. The methodology, developed 

in section 6.1, constructs optimal episodic memory, based on Baddeley’s model of working 

memory, for the real-time, high-level control of an autonomous vehicle.  

The methodology, developed in section 6.2, constructs a focus of attention from activated 

memory, based on Cowan’s attentional focus model of working memory, for the real-time, 

high-level control of an autonomous vehicle. 

The cognitive reasoning processes of both architectures, uses the memory representation (LTM) 

and memory quantification (AEFQ), developed in chapter 4. Both architectures will be 

evaluated by simulation in the next chapter.
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Chapter 7 

Evaluation by Simulation 

In order to evaluate the suitability of the two architectures developed in sections 6.1 and 6.2, 

four practical uses cases are defined. Each use case is executed in an unmanned aerial vehicle 

simulation. This chapter defines the use cases and simulation setup in detail. Each simulation 

is then executed and the results are evaluated and discussed in detail. 

 

7.1 Real-time Episodic Memory Construction in Cognitive Control of 

Autonomous Vehicles 

Two use cases are designed for the evaluation of the robo-cognitive architecture, developed in 

section 6.1. The first use case executes a recharging mission and the second use case executes 

a medical package delivery mission. The architecture provides real-time, high-level control 

using episodic memory construction, based on Baddeley’s working memory model. 

 

7.1.1 Use cases 

Use case 1 

From the Home (I) location, arm (turn on) the motors, ascend to a specified operational height 

and fly to the Charging point (IV), passing over the Collection and Delivery locations. Descend 

on the charging point and disarm (turn off) the motors. As collection and delivery are not 

performed in the mission, these destinations are ignored by the UAV. 

 

Figure 7.1 Use case 1 - unmanned aerial vehicle recharging.  
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Use case 2 

From the Home (I) location, arm (turn on) the motors, ascend to a specified operational height 

and fly to the Collection point (II). Descend and collect the cargo, then ascend to the specified 

operational height and fly to the Delivery point (III). Descend at the delivery point and deliver 

the cargo.  Ascend to a new operational height and fly to the Charging point (IV) for recharging. 

Descend on the charging point and disarm (turn off) the motors. 

 

Figure 7.2 Use case 2 - unmanned aerial vehicle medical equipment delivery. 

 

7.1.2 Simulation setup 

The unmanned aerial vehicle in the simulations, have the states defined in section 4.1, figures 

4.1 and 4.2 and the LTM for the robo-cognitive architecture of the unmanned aerial vehicle is 

the set of state transitions, defined in section 4.1.2 and illustrated in figure 4.3. 

The simulations were executed on an Intel i7 laptop computer with 2.97GHz quad-core CPU, 

16Gb RAM and an Intel HD Graphics 4000 video adapter. Figure 7.3 illustrates the system 

architecture of the simulation environment. The cognitive architectures developed in section 

6.1 are implemented in a C# program, representing the cognitive reasoning process. A 

simulation client program, which passes relevant control commands to the simulator module, 

is developed in C++. Communication between the C++ simulation components and the CRP is 

performed via a Redis cache database, thereby providing functional abstraction. The simulation 

environment for the unmanned aerial vehicle is the Unity games engine. 
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Figure 7.3 The main components of the simulation platform architecture. 

The CRP passes messages based on actions selected by the central executive, to the simulation 

client, via the Redis database middleware. The simulation client formulates and passes the 

control command the simulation engine, which executes the commend. The result, i.e. 

behaviour of the UAV is displayed in the Unity games engine simulation. 

 

For each of the use cases, an annotated video of the simulation is recorded and published to 

YouTube: 

1. Use case 1 - Cognitive Robotics - Autonomous UAV recharging [127] 

2. Use case 2 - Cognitive Robotics - Autonomous medical supplies delivery [128] 

 

7.1.3  Evaluation criteria 

The methodology is evaluated by simulation, where a UAV autonomously executes two use 

cases, one simple and one more complex. The performance measures for each of the use cases 

are: 

1. Success – Measured by inspecting the completeness of the learned state flow, for each 

mission and; 

2. Reasoning – Measured by inspecting the level of velocity control of the UAV, based on 

reasoning about the statistical fitness of each state transition. 
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7.1.4  Simulation results 

7.1.4.1 Use case 1 - results 

Figure 7.4 shows the resulting state flow for use case 1, dynamically constructed by the central 

executive during the execution of use case 1. The start state is state s1, i.e. Motors Off. 

 

Figure 7.4 Resulting state flow of use case 1. 

The diagram shows the applicable states and state transitions, with each transition labelled with 

the task number, relevant command (action) and state transition fitness. 

 

The resulting state flow can be saved and, provided the mission and operational conditions 

remain the same, may be used as a high-level controller to execute similar, subsequent missions. 

To demonstrate the usefulness of the memory item quantification in the dynamic control of the 

velocity of the UAV, the resulting probability distribution produced by the quantification was 

used. In this study, the velocity of the UAV (eq. 7.1), is dynamically derived by multiplying 

the fitness, 𝛱 (eq. (4.20)) by an arbitrary factor, chosen by the designer. 

 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 0.3𝛱 (7.1) 

After running some simulations and observing the behaviour of the UAV, a factor of 0.3 was 

chosen. 

Figure 7.5 below shows the dynamic control of the velocity, derived from the state transition 

fitness. The graph shows the reduction in velocity, in accordance with the reduction in fitness 

of the “fly” state transition, as the UAV nears its destination. 
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Figure 7.5 Dynamic velocity adjustment during use case 1. 

The graph shows automatic adjustment of the velocity (bottom) which corresponds to the 

fitness (top). 

 

On the graph, the target destination (charging) of mission 1 can be seen at task 18. The graph 

shows that the UAV proportionally reduces its velocity as it approaches its destination (see eq. 

7.1). 

Figures 7.6 and 7.7 show some key stages in the simulation for use case 1. The window at the 

bottom shows the central executive finding the optimal state transitions and sending the 

corresponding actions to the simulator. The window on the left shows the results of the 

simulator as it performs the actions received from the central executive. 

Figure 7.6 below, shows the UAV reducing its velocity, using the dynamic velocity adjustment 

derived from the fitness quantification, as the UAV approaches its target. This behaviour is 

used to evaluate performance measure 2 (defined in see section 7.1.3). 
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Figure 7.6 UAV adjusting its velocity. 

The image shows the UAV reducing its velocity, based on the real-time calculation of the 

fitness of the “flyto” state transition, as it approaches its target destination 

 

As the UAV approaches its target, Pr(φi
r < φj

m) is reduced from 0.3 to 0.25 and the velocity 

of the UAV (indicated in the window left) is adjusted accordingly from 8.00 𝑚/𝑠 to 2.00 𝑚/𝑠. 

Figure 7.7 below, shows the successful completion of the mission. This behaviour is used to 

evaluate performance measure 1. 

 

Figure 7.7 UAV reaching its destination and completing the mission. 

When the UAV reached its target destination (the charging point), it descends and successfully 

completes the mission. 
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7.1.4.2 Use case 2 - results 

Figure 7.8 shows the resulting state flow for use case 2, dynamically constructed by the central 

executive during the execution of use case 2. The start state is state s1, i.e. Motors Off. 

 

Figure 7.8 Resulting state flow constructed for use case 2. 

The diagram shows the applicable states and state transitions, with each transition labelled with 

the task number, relevant command (action) and state transition fitness. 

 

The resulting state flow in figure 7.9 shows the dynamic velocity control, derived from the state 

transition fitness. The graph shows the corresponding reduction in velocity every time the UAV 

near its target. 
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Figure 7.9 Dynamic velocity adjustment during mission 2. 

The graph shows automatic adjustment of the velocity (bottom) which corresponds to the 

fitness (top). 

 

On the graph, the three target destinations (collection, delivery and charging) of the missions 

can be seen at tasks 7, 15, and 21. The graph shows that the UAV proportionally reduces its 

velocity as it approaches each of the destinations (see eq. 7.1). 

Figures 7.10, 7.11 and 7.12 shows some key stages in the simulation for use case 2. Figure 7.10 

shows the UAV in process of collecting its cargo. 

 

Figure 7.10 UAV collecting its cargo at the collection point. 
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Figure 7.11 shows the UAV adjusting its velocity in accordance with the fitness of the state 

transition, fly. 

 

Figure 7.11 UAV reducing its velocity as it approaches its target destination. 

 

Figure 7.12 shows the UAV successfully delivering its cargo at the specified target location. 

 

Figure 7.12 UAV successfully delivering its cargo. 
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7.1.5  Discussion 

The domain expert submits the mission definition, the long-term memory, short-term memory 

and initial environmental stimuli to the central executive for execution. Each mission contains 

a list of actions to be performed successfully in order to successfully complete the mission. The 

mission, long-term memory, short-term memory and environmental stimuli are provided in 

extensible markup language (XML) format. After the initial loading of the definitions, 

modification of either the long-term memory, or the mission, means an update of a state 

transition in the long-term memory or an update of the mission and environmental data 

definitions. Changing between missions is simply a number change in the configuration of the 

central executive, which may be performed by the operator or autonomously, based on the 

central executive reasoning. This achieves the one objective of the study, i.e. simplifying the 

maintenance of the knowledge of a remotely deployed autonomous vehicle. 

In the implementation of the central executive, a mission task was repeatedly executed, until 

the task objective has been reached. Due to some lagging in the communication between the 

AirSim simulator and Unity games engine, it was observed that, at high velocity, the UAV 

would overshoot its target destination in the Unity games engine. The delay in the Unity games 

engine to calculate the UAV’s current position, causes the UAV to miss its objectives. 

However, with the autonomous and dynamic velocity control, an unexpected result was 

observed. The UAV would autonomously correct its positioning, by repeating the task, while 

constantly reducing its velocity according to the fitness of the task. At low velocity, the 

positioning of the UAV was quite accurate and it could achieve its objectives. With the 

autonomous velocity control, the UAV was able to successfully reach the charging station in 

use case 1 and was able to successfully collect and deliver its cargo in use case 2. 

The results (figures 7.4 and 7.8) show that the UAV can successfully execute its missions by 

optimizing the expert-provided knowledge and dynamically generating and executing its high-

level controller. The behaviour of the UAV in both use cases are demonstrated in the 

accompanying videos [127, 128]. 

Although this approach is suitable for the successful execution of missions which involve a set 

of tasks to be executed in sequence, one-by-one, most robots can perform multiple tasks, often 

independent and in parallel. For example, a state flow for flight-control, a state flow for camera 

control and a state flow for gripper control. Memory recall, therefore, needs to optimize the 

memory for multiple functions. The SPSO algorithm is able to produce an optimal set of 

memory items, based on a single objective (function). However, multiple objectives are not 

possible with the SPSO, without significant changes to the set-based operators. Changing the 
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set-based operators will result in the SPSO architecture losing the individual and social 

characteristics, typical of swarm behaviour. In order to retain the swarm characteristics, while 

providing memory optimization for multiple objectives, a novel games-theoretic PSO 

algorithm, is developed in the next section. 

 

Performance 

The simulation was executed repeatedly, with consistent results. It was uncertain whether all 

the required actions of the missions would be selected and executed successfully or whether 

some actions would be missed. However, figures 7.4 and 7.5 (for use case 1) and figures 7.8 

and 7.9 (for use case 2) show that the central executive successfully executed all actions of the 

missions submitted by the domain expert. This success was also observed during the simulation. 

Figures 7.5 and 7.9, for use case 1 and 2 respectively, show the successful reasoning for velocity 

control, using statistical reasoning. The figures show the corresponding velocity adjustment, 

based on the fitness (probability).  

In addition, conducting the simulations also showed the following general benefits: 

• The approach is less error-prone and requires less communication bandwidth to 

maintain because, in our approach, knowledge and missions are defined using a simple 

structure. The trigger memory item of state transitions is constructed as a simple 

conjunction of propositions, and is therefore more intuitive to the domain expert. 

Moreover, the knowledgebase and missions can be modified independently, reducing 

errors during the updating process. 

• There is no re-learning of complex statistical reasoning models or networks whenever 

the knowledge or evidence changes because, in our approach, potential solutions are 

evaluated in real-time and a statistical model for reasoning is generated in real-time by 

the MEP. 

• Autonomous behaviour can be controlled more effectively because in our approach, 

the probabilities and marginal probabilities provided by the AEFQ algorithm enables 

finer control of the statistical fitness evaluations of the state transitions. 

• The high-level control provided by the CRP is more representative of human cognition, 

because in our approach, the open world assumption is followed. This means the action 

of a state transition may be less probable, but not impossible. This gives the CRP 

powerful reasoning capabilities. 

• The fitness of a state transition is a true representation of the environment because, the 

MEP applied in our approach, guarantees an accurate probability assignment, based 



 

 108  

 

only on the constraint averages derived from the mission constraints and environmental 

evidence. There are no other subjective control parameters or bias in the fitness 

quantification. 

 

Time Efficiency 

The objective of this study is the real-time, high-level control provided by the CRP. Therefore, 

the time efficiency of the CRP, i.e. the time taken by the AE-SPSO to find an optimal solution 

for a mission task, is evaluated. Optimization algorithms, including the PSO algorithm, are 

known for the extensive time it takes to converge on an optimum. This is especially true for 

large, multi-dimensional and real search spaces. However, in this approach, the search space is 

finite and discrete, allowing the AE-SPSO to find optimal solutions in acceptable and sufficient 

time. Moreover, the control parameters of the AE-SPSO make it easy to scale the performance 

of the PSO when the search space increases. 

Figure 7.13 below, shows the time the CRP took to find an optimal solution for each of the 

tasks of each mission.  

 

 

Figure 7.13 Cognitive reasoning process (CRP) time for use cases 1 and 2. 

The CRP time for use case 1 (mission 1) is shown on top and the CRP time for use case 2 

(mission 2), is shown below.  
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The average CRP time for use case 1 was 0.0785 sec and for use case 2, the average CRP time 

was 0.1477 sec. These times were found to be completely suitable for the high-level control of 

the UAV, while executing its missions. 

 

Simulation constraints  

The performance of the UAV may appear slow in the videos. This is because the complex 

integration architecture of the AirSim simulator and the Unity games engine is not optimal and 

causes a considerable time lag between the simulator and the games engine. 

Similar to the use case 1 behaviour discussed in section 7.1.5, it was observed that, at high 

velocity, the UAV would overshoot its target destination in the Unity games engine. This 

resulted in the target position parameters reported by the AirSim to be inconsistent from that 

reported by the games engine. This caused the UAV to wrongly interpret its position and 

therefore miss its objectives. To improve the performance, a delay was explicitly implemented 

between the execution of mission tasks, in order to give the games engine and simulator time 

to synchronise. Assisted by the explicit delay, the UAV would autonomously correct its 

positioning, by repeating the task, while constantly reducing its velocity according to the fitness 

of the task. At low velocity, the positioning of the UAV was quite accurate and it could achieve 

its objectives. With the autonomous velocity control, the UAV was able to successfully reach 

the charging station in use case 1 and was able to successfully collect and deliver its cargo in 

use case 2. 

It is plausible that a similar problem could occur in a real-world scenario, where a physical 

UAV is used. Therefore, correction control measures for positioning correction will have to be 

developed. These measures would use the fitness quantification, similar to the way velocity 

control is derived, as discussed in section 7.1.4.1 and using eq. (7.1). 

 

7.2 Real-time Activated memory Construction for Cognitive Control of 

Autonomous Vehicles 

Two simulations are designed for the evaluation of the robo-cognitive architecture, developed 

in section 6.2. The architecture provides real-time, high-level control using activated memory 

and focus of attention construction, based on Cowan’s attentional focus theory of working 

memory. 
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7.2.1  Use Cases 

The methodology is evaluated by simulation, where a UAV autonomously executes two use 

cases. In the simulation, a drone station is located at the Surbiton Health Centre for community 

support. 

A domain expert defined two use cases for the UAV. The first mission is a request for a UAV 

to make a delivery of a medical package and is comprised of 25 tasks. The second mission is a 

request for aerial surveillance and is comprised of 15 tasks. During each mission, each of the 

tasks is presented to the cognitive process of the robo-cognitive architecture, as a cue. The UAV 

must successfully reason about each cue and successfully select and execute the command 

derived from the FOA. 

 

Use case 3 

Scenario: There is a request from healthcare personnel for medical equipment to be delivered 

to Surbiton train station as a result of a medical incident. 

The proposed UAVs delivery approach facilitates telemedicine and makes it possible for 

medical professionals to interact with patients remotely, saving time by delivering urgent 

medication, prescription orders for medicine to the doorsteps of surgeries and care homes in 

the community. 

It could reduce overcrowding by making this proposed approach more practical for non-urgent 

patients to receive care in local surgeries closer to home. 

Use case 4 

Scenario: A security incident was reported by a Furniture Company and the police requested 

aerial surveillance of the area. The proposed UAVs delivery approach facilitates on-demand 

surveillance support to local law-enforcement and security personnel. 

 

7.2.2 Simulation setup 

7.2.2.1 Simulation architecture 

Hardware: The simulations were executed on an Intel i7 laptop computer with 2.97GHz quad-

core CPU, 16Gb RAM and an Intel HD Graphics 4000 video adapter. 

Software: The simulations were performed using the Drone-kit Software-in-the-loop (SITL) 

(Python version) quadcopter and the ArduPilot Mission Planner Ground Control Station (GCS). 

Two bespoke components were developed: the UAV cognitive process (UAV-CP), in .NET/C# 
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and a high-level UAV control server (UAV-HC), in Python. The UAV-CP and UAV-HC 

components are integrated using a Redis Cache middleware layer, thereby abstracting the 

autonomous vehicle (UAV in this case) platform from the cognitive process. The UAV-HC 

server listens for messages from the UAV-CP, and passes the relevant low-level control 

commands to the UAV, using MAVProxy protocol. All the components are deployed on a 

computer with the Microsoft Windows 8.1 operating system. 

Figure 7.14 below illustrates the simulation’s software architecture: 

 

Figure 7.14 Simulation platform system architecture for uses cases 3 and 4. 

The cognitive reasoning process (C#), passes a message on to the high-level control component 

(Python), via the Redis database middleware. The high-level control component formulates a 

MAVProxy command which is passes to the DroneKit simulation platform. The result, i.e. 

behaviour of the UAV is displayed in Missionplanner ground control station. 

 

7.2.2.2 Simulation parameters 

In order to measure the time efficiency of robo-cognitive architecture, an arbitrary maximum 

processing time limit (MPt) of 2 seconds is set by the designer for the use cases. Given that the 

evaluations are performed in simulation, a threshold of 2 seconds are deemed a sufficient 

response time for the cognitive processing time (CPt) of the central executive. The lapse time 

of the cognitive processing (memory recall and action selection) is evaluated against this time 

threshold and is assumed efficient if the CPt is below the MPt, for each cue processed by the 

central executive. In order to give the UAV time to complete a task in the simulation, explicit 

time delays were set in the UAV control program. Therefore, evaluating the task processing 

Windows 8.1

DroneKit-SITL

MAVProxy

Missionplanner

UAV-HC.py

MAVLink Cmd

Redis Cache Server

UAV-CP.exe

message

message



 

 112  

 

time (TPt) against the 2 second time limit is of little use to evaluate cognitive performance. 

However, it is still useful, from a practical point of view, to inspect the time it takes the UAV 

to complete a task in the simulation. 

The search space of the simulation is the long-term memory, shown in section 4.1, figure 4.3. 

In order to keep the introduction of the methodology clear and simple, only two UAV functions 

were used. However, it is clear that, without loss of generality, the proposed methodology can 

be scaled to a large number of functions. However, an increase in the number of functions will 

increase the size of the long-term memory. PSO was chosen for optimization in the cognitive 

process, due to its scalability. The three most important PSO runtime parameters, which may 

potentially impact the cognitive processing time, are: 

• Swarm size (number of particles) 

• Particle size (number of elements, when set-based), and; 

• Iterations (for successful exploration) 

The parameter sizes must be scaled according to the size of the search space. In this study, both 

use cases were executed repeatedly, and the PSO parameters adjusted until the CPt was 

consistently less than the MPt. Because the long-term memory for this simulation is relatively 

small, the following parameter values gave acceptable processing times which were below the 

MPt:  

• Swarm size = 3 

• Particle size = 3 

• Iterations = 10 

 

7.2.3  Evaluation criteria 

Performance Measures 

The performance measures for each of the use cases are: 

1. Correctness – Measured by inspecting the specific states, the state transitions and 

transition sequence. The learned state flow is inspected for correctness against the 

reference state flows in figures 4.1 and 4.2. 

2. Cognitive Processing time (CPt) – Measured by inspecting the lapsed time of the 

cognitive process. The CPt is defined as the lapsed time between the receipt of a cue and 

sending the appropriate command to the UAV controller. The CPt represents the 

cognitive processing time (or “thinking” time) of the central executive. 
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3. Cue processing time (TPt) - Measured by inspecting the lapsed time of cue (task) 

processing. The TPt is defined as the lapsed time between the receipt of a cue and the 

UAV completing the task. The TPt represents the complete processing time (or “thinking 

and doing” time) of a task. 

 

7.2.4 Simulation Results 

Overview 

The simulation environment is shown in Figure 7.15. The flight behaviour of the UAV is shown 

in the Mission Planner CGS on the top, while the UAV-CP results are shown in the window on 

the bottom left of the screen. The window on the bottom right shows the results of the UAV-

HC server. Figure 7.15 shows the UAV’s home location (H), the Surbiton Health Centre, from 

where medical equipment and tests are supplied to the community. 

The UAV-CP window shows the stimulus (mission task) and the central executive, composed 

of the active memory (AM), the focus of attention (FOA) and the action selected and sent to 

the UAV. The AM shows the collection of particles and the coalition of which it is a member. 

The relevant assets of each particle are shown as well, along with the particle’s utility, 

quantified by the AEFQ algorithm. The FOA shows the asset receiving the focus. determined 

by its relevance to the stimulus. From the FOA, actions are selected for execution by the central 

executive and passed to the UAV-HC. All the key points of the simulation environment shown 

in figure 7.15. 

Note that, at the start of the simulation, there are two start states, S1 and S10, for the flight-

control function and the gripper control function respectively. 

The results of use case 3 are presented in tables 7.1 and 7.2, including the learned state flow in 

figure 7.16. The results for use case 4 are presented in tables 7.3 and 7.4, including the learned 

state flow in figure 7.17. Tables 7.1 and 7.3 show the results of the cognitive process where 

columns 1 and 2 describes the cues received by the cognitive process (algorithm 6.4). Columns 

3 - 5 shows the results of the AM construction (algorithms 6.2 and 6.3) and column 6 shows 

the FOA, derived from the coalition structure. Tables 7.2 and 7.4 present the results for the 

cognitive processing time and cue processing time, for the two use cases, respectively. 

For each use case, an annotated video of the full mission simulation was recorded and published 

to YouTube: 

1. Use case 3 – Cognitive Robotics - On-demand UAV delivery of COVID-19 equipment [129] 

2. Use case 4 – Cognitive Robotics - On-demand UAV security surveillance support [130] 
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Figure 7.15 Main simulation functions for use cases 3 and 4. 

The image shows the main functions of the simulation environment: 1) the cognitive process; 

2) the UAV high-level controller and 3) the MissionPlanner ground control station. 

 

The points of interest of the simulation environment, shown in figure 7.15, are: 

1. A stimulus, provided to the cognitive process as a cue - Column 2, 

2. The AM of the cognitive process – Column 3, 

3. The FOA of the cognitive process – Column 6, 

4. The action selected by the central executive – Column 7, 

5. The UAV controller executing the command, 

6. The state of the UAV after executing the command, 

7. The attitude of the UAV, displayed in the GCS, 

8. The Head-Up Display (HUD) of the UAV, displayed in the GCS, 

9. The map of the environment, displayed in the GCS. 

 

Use case 3 results (medical supplies delivery) 

Table 7.1 shows the results of the simulation for use case 3 – delivering medical equipment to 

an incident. For this simulation, two functions, flight control and gripper control are applicable. 

8

5

7
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Table 7.1 shows the results for use case 3 – medical supplies delivery. 

Table 7.1 Cognitive reasoning results for use case 3. 

For each cue (task), the results of the cognitive process (memory recall, activated memory, focus of attention and action selection) are shown. (Cues 

relevant to function 1 are shown in blue and cues relevant to function 2 are shown in red. The asset and particle, relevant to the cue, is highlighted in bold) 

(Each “p” represents a specific particle and each “t” represents an asset (memory item) of the particle) 

Cues Activated Memory Focus of Attention Action Selection 

No Cue Optimized LTM (Swarm) Individual Utility Coalition Structure Asset Command 

1 arm 
p1{ } 

p2{ t10(2.0) } 

p3{ t640(2.0) } 

[p1(0.0), p2(2.0), p3(2.0)] { {p3},{p1,p2},{} } t10 - arm arm 

2 takeoff 
p1{ t640(2.0) } 

p2{ t70(2.0), t80(2.0) } 

p3{ } 

[p1(2.0), p2(4.0), p3(0.0)] { {p3,p2},{p1},{} } t80 - takeoff takeoff,10.0 

3 hoverfor 
p1{ t150(1.0) } 

p2{ t640(2.0) } 

p3{ } 

[p1(1.0), p2(2.0), p3(0.0)] { {p3,p1},{p2},{} } t150 - hoverfor hoverfor,1.0 

4 flytoNED 

p1{ t640(2.0) } 

p2{ t225(1.33), t220(1.33), 

t215(1.0) } 

p3{ t235(1.5), t240(2.0), 

t230(1.33) } 

[p1(2.0), p2(3.7), p3(4.8)] { {p3,p2},{p1},{} } t225 - flytoNED flytoNED,-25,-5,-15 

5 hoverfor 

p1{ t345(1.0), t365(1.5), 

t355(1.08) } 

p2{ t640(2.0) } 

p3{ } 

[p1(3.6), p2(2.0), p3(0.0)] { {p3,p1},{p2},{} } t345 - hoverfor hoverfor,1.0 

6 descendto 

p1{ t640(2.0) } 

p2{ t235(1.5), t225(1.33) } 

p3{ t220(1.33), t230(1.33), 

t215(1.0), t240(2.0) } 

[p1(2.0), p2(2.8), p3(5.7)] { {p3,p2},{p1},{} } t230 - descendto descendto,-25,-5,-1 

7 hoverfor 
p1{ t640(2.0) } 

p2{ t425(1.08) } 

p3{ t410(1.0) } 

[p1(2.0), p2(1.1), p3(1.0)] { {p3,p2},{p1},{} } t410 - hoverfor hoverfor,1.0 

8 armgrip 

p1{ t640(2.0) } 

p2{ t220(1.08), t215(1.0), 

t235(1.5), t230(1.08) } 

p3{ t240(2.0), t225(1.08) } 

[p1(2.0), p2(4.7), p3(3.1)] { {p1},{p2,p3},{} } t640 - armgrip armgrip 
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Table 7.1 Cognitive reasoning results for use case 3 - continued 

Cues Activated Memory Focus of Attention Action Selection 

No Cue Optimized LTM (Swarm) Individual Utility Coalition Structure Asset Command 

9 attachcargo 

p1{ t710(2.0) } 

p2{ t700(2.0) } 

p3{ t240(2.0), t230(1.08), 

t215(1.0), t225(1.08), 

t235(1.5), t220(1.08) } 

[p1(2.0), p2(2.0), p3(7.7)] { {p3},{p2,p1},{} } t710 - attachcargo attachcargo 

10 hoverfor 

p1{ t230(1.08), t225(1.08), 

t215(1.0), t235(1.5) } 

p2{ t240(2.0), t220(1.08) } 

p3{ t780(2.0) } 

[p1(4.7), p2(3.1), p3(2.0)] { {p2,p1},{p3},{} } t215 - hoverfor hoverfor,1.0 

11 ascendto 

p1{ t780(2.0) } 

p2{ t220(1.33), t215(1) } 

p3{ t225(1.33), t230(1.33), 

t235(1.5), t240(2.0) } 

[p1(2.0), p2(2.3), p3(6.2)] { {p3,p2},{p1},{} } t220 - ascendto ascendto,-25,-5,-15 

12 hoverfor 

p1{ t300(1.5), t285(1.08), 

t280(1.0) } 

p2{ } 

p3{ t780(2.0) } 

[p1(3.6), p2(0.0), p3(2.0)] { {p2,p1},{p3},{} } t280 - hoverfor hoverfor,1.0 

13 flytoNED 

p1{ t780(2.0) } 

p2{ t215(1), t235(1.5), 

t230(1.33) } 

p3{ t240(2.0), t225(1.33), 

t220(1.33) } 

[p1(2.0), p2(3.8), p3(4.7)] { {p2,p3},{p1},{} } t225 - flytoNED flytoNED,170.0,-266.0,-15.0 

14 hoverfor 
p1{ t345(1.0) } 

p2{ t780(2.0) } 

p3{ t365(1.5), t355(1.08) } 

[p1(1.0), p2(2.0), p3(2.6)] { {p2},{}{p3,p1}, } t345 - hoverfor hoverfor,1.0 

15 descendto 

p1{ t220(1.33), t240(2.0), 

t225(1.33) } 

p2{ t780(2.0) } 

p3{ t215(1.0), t230(1.33), 

t235(1.5) } 

[p1(4.7), p2(2.0), p3(3.8)] { {p3,p1},{p2},{} } t230 - descendto descendto,170.0,-266.0,-5,1 
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Table 7.1 Cognitive reasoning results for use case 3 - continued 

Cues Activated Memory Focus of Attention Action Selection 

No Cue Optimized LTM (Swarm) Individual Utility Coalition Structure Asset Command 

16 hoverfor 
p1{ t780(2) } 

p2{ t410(1.0), t425(1.08) } 

p3{ } 

[p1(2.0), p2(2.1), p3(0.0)] { {p3,p2},{p1},{} } t410 - hoverfor hoverfor,1.0 

17 releasecargo 

p1{ t780(2.0) } 

p2{ t230(1.08), t240(2.0), 

t225(1.08), t220(1.08) } 

p3{ t235(1.5), t215(1.0) } 

[p1(2.0), p2(5.2), p3(2.5)] { {p2,p3},{p1},{} } t780 - releasecargo releasecargo 

18 disarmgrip 

p1{ t230(1.08), t240(2.0) } 

p2{ t830(2.0) } 

p3{ t235(1.5), t215(1.0), 

t220(1.08), t225(1.08) } 

[p1(3.1), p2(2.0), p3(4.7)] { {p2},{}{p3,p1}, } t830 - disarmgrip disarmgrip 

19 hoverfor 

p1{ t230(1.08), t225(1.08), 

t240(2.0), t220(1.08), 

t215(1.0), t235(1.5) } 

p2{ t640(2.0) } 

p3{ } 

[p1(7.7), p2(2.0), p3(0.0)] { {p3,p1},{p2},{} } t215 - hoverfor hoverfor,1.0 

20 ascendto 

p1{ t240(2.0), t225(1.33), 

t215(1.0) } 

p2{ t640(2) } 

p3{ t235(1.5), t230(1.33), 

t220(1.33) } 

[p1(4.3), p2(2.0), p3(4.2)] { {p3,p1},{p2},{} } t220 - ascendto ascendto,170.0,-266.0,-15.0 

21 hoverfor 
p1{ t640(2.0) } 

p2{ t280(1.0), t285(1.08) } 

p3{ t300(1.5) } 

[p1(2.0), p2(2.1), p3(1.5)] { {p1},{p3,p2},{} } t280 - hoverfor hoverfor,1.0 

22 flytoNED 

p1{ t215(1), t225(1.33), 

t220(1.33) } 

p2{ t230(1.33), t240(2.0), 

t235(1.5) } 

p3{ t640(2.0) } 

[p1(3.7), p2(4.8), p3(2.0)] { {p2,p1},{p3},{} } t225 - flytoNED flytoNED,0,0,-15.0 

23 hoverfor 

p1{ t640(2.0) } 

p2{ t345(1.0), t365(1.5), 

t355(1.08) } 

p3{ } 

[p1(2.0), p2(3.6), p3(0.0)] { {p3,p2},{p1},{} } t345 - hoverfor hoverfor,1.0 
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Table 7.1 Cognitive reasoning results for use case 3 - continued 

Cues Activated Memory Focus of Attention Action Selection 

No Cue Optimized LTM (Swarm) Individual Utility Coalition Structure Asset Command 

       

24 land 

p1{ t240(2.0), t230(1.08), 

t215(1.0), t235(1.5) } 

p2{ t640(2.0) } 

p3{ t220(1.08), t225(1.08) } 

[p1(5.6), p2(2.0), p3(2.2)] { {p3,p1},{p2},{} } t240 - land land 

25 disarm 
p1{ t640(2.0) } 

p2{ t525(2.0) } 

p3{ } 

[p1(2.0), p2(2.0), p3(0.0)] { {p3,p2},{p1},{} } t525 - disarm disarm 
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Table 7.2 shows the cognitive process time (CPt) and stimulus process time (TPt), for use case 

3.   

Table 7.2 Processing and execution time for use case 3. 
(Cues relevant to function 1 are shown in blue and cues relevant to function 2 are shown in red) 

Cue CPt (Secs) TPt (secs) Cue CPt (Secs) TPt (secs) 

1  0.271  05.613 14  0.617  06.137 

2  0.359  17.939 15  1.245  21.766 

3  0.226  06.741 16  0.432  07.121 

4  1.081  21.491 17  1.221  09.165 

5  0.545  06.096 18  1.258  09.125 

6  1.151  21.550 19  1.216  07.995 

7  0.444  07.029 20  1.204  21.833 

8  1.220  09.135 21  0.599  06.122 

9  1.461  08.367 22  1.252  45.963 

10  1.225  08.010 23  0.620  07.330 

11  1.222  22.929 24  1.269  19.543 

12  0.617  08.457 25  0.281  09.044 

13  1.255  48.379    

Average: 0.892 14.515 

Function 1 = Flight Control; Function 2 = Gripper Control 

 

Figure 7.16 shows the state flow generated for use case 3. The state flow represents the set of 

actions, selected by the central executive, and sent as commands to the UAV controller, for 

execution. Each transition (edge) between the states, identifies the cue number and the resulting 

command, defined by the state transition (see eq. (4.3) in section 4.1.2). 
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Figure 7.16 Resulting state flow constructed for use case 3. 

The diagram shows the applicable states and state transitions, with each transition labelled with 

the task number, relevant command (action) and state transition fitness. 

 

The two independent functions, applicable to the mission, can be seen on the state flow. The 

state “yawing” is not applicable to either function, and therefore (correctly) remains 

unconnected. 

 

Use case 4 results (Aerial Surveillance) 

Table 7.3 shows the results of the simulation for use case 4 – providing security surveillance 

support at an incident. For this simulation only one UAV function, flight control, is applicable. 
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Table 7.3 Cognitive reasoning results for use case 4. 

For each cue (task), the results of the cognitive process (memory recall, activated memory, focus of attention and action selection) are shown. (Cues 

relevant to function 1 are shown in blue – there are no cues relevant to function 2. The asset and particle, relevant to the cue, is highlighted in bold) 

(Each “p” represents a specific particle and each “t” represents an asset (memory item) of the particle) 

Cues Activated Memory 
Focus of 

Attention 
Action Selection 

No Cue Optimized LTM (Swarm) Individual Utility Coalition Structure Asset Command 

1 arm 
p1{ } 

p2{ t640(2.0) } 

p3{ t10(2.0) } 

[p1(0.0), p2(2.0), p3(2.0)] { {p2}, {p1,p3}, {} } t10-arm arm 

2 takeoff 
p1{ t70(2.0), t80(2.0) } 

p2{ t640(2.0) } 

p3{ } 

[p1(4.0), p2(2.0), p3(0.0)] { {p3,p1}, {p2},{} } t80-takeoff takeoff,10.0 

3 hoverfor 
p1{ t150(1.0)} 

p2{ t640(2.0) } 

p3{ } 

[p1(1.0), p2(2.0), p3(0.0)] { {p2,p3,p1}, {}, {} } t150-hoverfor hoverfor,1.0 

4 flytoNED 

p1{ t235(1.5), t220(1.33) } 

p2{ t640(2.0) } 

p3{ t225(1.33), t230(1.33), t215(1.0), 

t240(2.0) } 

[p1(2.8), p2(2.0), p3(5.7)] { {p3,p1}, {p2}, {} } t225-flytoNED flytoNED,-225,190,-10 

5 hoverfor 
p1{ t640(2.0)} 

p2{ t365(1.5), t355(1.08), t345(1.0) } 

p3{ } 

[p1(2.0), p2(3.6), p3(0.0)] { {p3,p2}, {p1}, {} } t345-hoverfor hoverfor,1.0 

6 flytoNED 
p1{ t640(2.0)} 

p2{ t230(1.33), t215(1.0), t235(1.5) } 

p3{ t225(1.33), t240(2.0), t220(1.33) } 

[p1(2.0), p2(3.8), p3(4.7)] { {p3,p2}, {p1}, {} } t225-flytoNED flytoNED,-320,215,-10 

7 hoverfor 
p1{ t345(1.0), t365(1.5), t355(1.08) } 

p2{ } 

p3{ t640(2.0) } 

[p1(3.6), p2(0.0), p3(2.0)] { {p2,p1}, {p3}, {} } t345-hoverfor hoverfor,1.0 

8 flytoNED 

p1{ t640(2.0)} 

p2{ t225(1.33), t220(1.33) } 

p3{t235(1.5), t240(2.0), t215(1.0), 

t230(1.33) } 

[p1(2.0), p2(2.7), p3(5.8)] { {p3,p2}, {p1}, {} } t225-flytoNED flytoNED,-210,260,-10 

9 hoverfor 
p1{ t640(2.0) } 

p2{ t345(1.0) } 

p3{ t365(1.5), t355(1.08) } 

[p1(2.0), p2(1.0), p3(2.6)] { {p1}, {}, {p3,p2} } t345-hoverfor hoverfor,1.0 
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Table 7.3 Cognitive reasoning results for use case 4 – continued 

Cues Activated Memory 
Focus of 

Attention 
Action Selection 

No Cue Optimized LTM (Swarm) Individual Utility Coalition Structure Asset Command 

       

10 flytoNED 

p1{ t235(1.5), t225(1.33)} 

p2{t215(1.0), t220(1.33), t240(2.0), 

t230(1.33)} 

p3{ t640(2.0) } 

[p1(2.8), p2(5.7), p3(2.0)] { {p3}, {p1,p2}, {} } t225-flytoNED flytoNED,-225,190,-10 

11 hoverfor 
p1{ t640(2.0) } 

p2{ t345(1.0), t365(1.5), t355(1.08) } 

p3{ } 

[p1(2.0), p2(3.6), p3(0.0)] { {p2,p1,p3}, {}, {} } t345-hoverfor hoverfor,1.0 

12 flytoNED 
p1{ t240(2.0), t225(1.33), t215(1.0) } 

p2{ t235(1.5), t230(1.33), t220(1.33) } 

p3{ t640(2.0) } 

[p1(4.3), p2(4.2), p3(2.0)] { {p3}, {}, {p1,p2} } t225-flytoNED flytoNED,0,0,-10,1.33 

13 hoverfor 
p1{ t355(1.08) } 

p2{ t345(1), t365(1.5) } 

p3{ t640(2.0) } 

[p1(1.1), p2(2.5), p3(2.0)] { {p1,p2}, {p3}, {} } t345-hoverfor hoverfor,1.0 

14 land 

p1{ t640(2.0) } 

p2{ t215(1.0), t230(1.08), t235(1.5), 

t225(1.08), t220(1.08), t240(2.0) } 

p3{ } 

[p1(2.0), p2(7.7), p3(0.0)] { {p3, p2}, {p1}, {} } t240-land land 

15 disarm 
p1{ t525(2.0) } 

p2{ t640(2.0) } 

p3{ } 

[p1(2.0), p2(2.0), p3(0.0)] { {p2,p3,p1}, {}, {} } t525-disarm disarm 
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Table 7.4 shows the cognitive process time (CPt) and stimulus process time (TPt), for use case 

4.  

Table 7.4 Processing and execution time for use case 4. 
(Cues relevant to function 1 are shown in blue) 

No CPt (Secs) TPt (secs) No CPt (Secs) TPt (secs) 

1 0.266 5.575 9 0.640 7.308 

2 0.373 16.735 10 1.268 20.659 

3 0.257 7.805 11 0.641 6.212 

4 1.114 47.557 12 1.210 46.919 

5 0.580 7.251 13 0.619 6.124 

6 1.173 22.671 14 1.217 19.469 

7 0.615 7.286 15 0.278 9.118 

8 1.252 24.776    

Average: 0.767 17.031 

Function 1 = Flight Control; Function 2 = Gripper Control 

 

Figure 7.17 shows the state flow generated for use case 4. The state flow represents the set of 

actions, selected by the central executive, and sent as commands to the UAV controller, for 

execution. Each transition (edge) between the states identifies the cue number and the resulting 

command, as defined by the state transition (see eq. (4.3) in section 4.1.2). 

 

Figure 7.17 Resulting state flow constructed for use case 4. 

The diagram shows the applicable states and state transitions, with each transition labelled with 

the task number, relevant command (action) and state transition fitness. 

 

7.2.5 Discussion 

The results of use case 3 and use case 4, are shown in tables 7.1 - 7.2 and 7.3 – 7.4, respectively. 

Referring to table 7.1, column 7 shows the action (command) selected and executed for each 

stimulus received. In column 3, the optimized long-term memory is represented by a swarm of 

s1 s2(1:[arm])

disarmed armed

yawing

s10 s11

cargoattachedgripdisarmed griparmed
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particles, p1, p2 and p3, including the set of quantified assets, assigned to each particle. For 

example, for cue 2 (takeoff), particle 2 is represented by p2{ t70(2.0), t80(2.0) }, where p2 is 

the particle identifier, { t70(2.0), t80(2.0) } is the set of assets, represented by t70(2.0), t80(2.0), 

where t70 and t80 are the asset identifiers, each quantified with a real value of (2.0). In column 

4, the individual utility of each particle (in the swarm) is shown as the rounded sum of its assets. 

The coalition structure resulting from algorithms 6.2 and 6.3, is shown in column 5. For 

example, for cue 2 (takeoff), the coalition structure is represented by {{p3,p2},{p1},{}}, where 

{p3,p2},{p1} and {} are the coalitions 1, 2 and 3, respectively. Coalition 1 has two members, 

p3 and p2, coalition 2 has one member, p1 and coalition 3 is empty. The FOA, shown in column 

6, is derived from the coalition structure and is the optimal asset, given the cue received. From 

the FOA, the central executive selects the corresponding action/s and passes it/them as a 

command/s (with arguments, if applicable) to the UAV controller. The commands passed to 

the UAV controller are shown in column 7. The results of use case 4 are represented in the 

same way in table 7.3. 

 

Correctness 

The state flow, shown in figure 7.16, shows that the robo-cognitive architecture correctly 

executed use case 1 and that the correct transition was learned for each cue received. Figure 

7.16 shows that the correct states were connected for function 1 (flight control) and function 2 

(gripper control), required by the mission. It is also shown that there were no incorrect or 

redundant transitions. The lack of any transitions between any of the states of function 1 and 

states for function 2, shows that independence between the functions was correctly maintained 

by the robo-cognitive architecture. This shows that the robo-cognitive architecture enables the 

UAV to perform multiple independent tasks. 

(Note that, for the two simulations, the robo-cognitive architecture was executed using a 

sequential processing computational architecture. However, minor changes to the robo-

cognitive architecture, in favour of parallel computing, will enable the parallel execution of the 

commands for independent functions.)  

The results in table 7.1 also show that the robo-cognitive architecture reasoned correctly for 

each of the 25 cues of the mission. Inspecting table 7.1 shows that, for each cue in column 2, 

the correct corresponding asset (state transition) received the focus of attention (column 6). 

This allowed the central executive to select the correct action for execution (column 7). 

For example, after descending, the robo-cognitive architecture receives cue number 16 

(hoverfor). The asset t410, (which represent the transition between states s7 and s4), correctly 
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received the focus of attention which enabled the central executive to send the command 

“hoverfor,1.0” to the UAV controller. The robo-cognitive architecture then receives cue 17 

(releasecargo) and the asset t780 ((which represent the transition between states s12 and s13), 

correctly received the focus of attention which enabled the central executive to send the 

command “releasecargo” to the UAV control program. The results in table 7.1 show that all 25 

cues were processed, without repetition or redundancy and figure 7.16 shows that the 25 cues 

were processed in the correct order. It is therefore concluded that use case 3 executed 

completely and correctly. 

The learned state flow (figure 7.17) shows that the robo-cognitive architecture correctly 

executed use case 4, and that the correct transition was learned for each cue received. Figure 

7.17 shows that the correct states were connected for function 1 (flight control) and that there 

were no incorrect or redundant transitions. This is evident in figure 7.17, which shows no 

transitions were learned for any of the states for function 2 (gripper control). The states for 

function 2 remain unconnected. 

The results in table 7.3 also show that the robo-cognitive architecture reasoned correctly for 

each of the 15 cues of the mission. Inspecting table 7.3 shows that, for each cue in column 2, 

the correct corresponding asset (state transition) received the focus of attention (column 6). 

This allowed the central executive to select the correct action for execution (column 7). For 

example, for cue number 2 (takeoff), the asset t80, (which represent the transition between 

states s2 and s3), correctly received the focus of attention which enabled the central executive 

to send the command “takeoff,10.0” to the UAV control program. The results in table 7.3 show 

that all 15 cues were processed, without repetition or redundancy and figure 7.17 shows that 

the 15 cues were processed in the correct sequence. It is therefore concluded that use case 4 

also executed completely and correctly. 

 

Time Efficiency 

The time efficiency of use case 3 is evaluated by inspecting table 7.2, and presented in the graph 

in figure 7.18. 
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Figure 7.18 Cognitive reasoning process (CRP) time for use case 3. 

The cognitive processing time (CPt) is shown on top and the cue processing time (TPt) is shown 

below. 

 

Figure 7.18 shows the measured processing time for both the CPt (top) and the TPt (bottom) 

for each cue received and processed by the robo-cognitive architecture. Table 7.2 and the CPt 

graph, figure 7.18, show that the average cognitive processing time for the whole mission is 

0.892s. The lowest time recorded is 0.226s (cue 3 – “hoverfor”) and the highest time recorded 

is 1.461s (cue 9 – “attachcargo”). It is worth noting the difference in the CPt for the cognitive 

processing of long-term memory items with different trigger functions. For example, the CPt 

for cue 3 (“hoverfor”) is 0.226s, while the CPt for cue 4 (“flytoNED”) is 1.081s. The reason for 

the difference is due to the complexity of the constraint average calculation in the quantification 

algorithm. For example, quantifying the “hoverfor” asset involves a constraint average 

calculation based on a single, real parameter (i.e. hover time), while the quantification of the 

“flytoNED” asset involves a constraint average calculation based on spatial parameters (i.e. x, 

y, z). It should also be noted that the difference applies to each iteration of the CG-PSO and 

cumulatively impacts the overall CPt. However, it is clear that, overall, the CPt is still well 

below the MPt, of 2s. 

The TPt results shown in table 7.2 and figure 7.18, show the total time it took to complete the 

whole mission was approximately 6 mins, which is deemed acceptable for the type of mission. 
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The shortest task took 5.613s and the longest task took 48.379s. The TPt for cues 13 and 22 

show the time it took for the UAV to fly to and back from the target destination. It is concluded 

that use case 4 was successfully completed within an acceptable time. 

The time efficiency of use case 4 is evaluated by inspecting the CPt and TPt values in table 7.4, 

which is represented in the graph in figure 7.19. 

 

 

Figure 7.19 Cognitive reasoning process (CRP) time for use case 4. 

The cognitive processing time (CPt) is shown on top and the cue processing time (TPt) is shown 

below. 

 

Figure 7.19 shows the measured processing time for both the CPt (top) and the TPt (bottom) 

for each cue received and processed by the robo-cognitive architecture. Table 7.4 and the CPt 

graph shows that the average cognitive processing time for the whole mission is 0.767s. The 

lowest time recorded is 0.257s (cue 3 – “hoverfor”) and the highest time recorded is 1.268s (cue 

10 – “flytoNED”). Again, it is worth noting the difference in the CPt for the cognitive 

processing of long-term memory items with different trigger functions. For example, the CPt 

for cue 3 (“hoverfor”) is 0.257s, while the CPt for cue 4 (“flytoNED”) is 1.114s. The reason for 

the difference is due to the complexity of the constraint average calculation in the quantification 

algorithm. For example, quantifying the “hoverfor” asset involves a constraint average 

calculation based on a single, real parameter (i.e. hover time), while the quantification of the 
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“flytoNED” asset involves a constraint average calculation based on spatial parameters (i.e. x, 

y, z). It should also be noted that the difference applies to each iteration of the CG-PSO and 

cumulatively impacts the overall CPt. However, it is still clear that, overall, the CPt is well 

below the MPt, of 2s. 

The TPt results shown in table 7.4 and figure 7.19 show the total time it took to complete the 

whole mission was approximately 4 mins, which is deemed acceptable for the type of mission. 

The shortest task took 5.575s and the longest task took 47.557s. The TPt for cues 4 and 12 show 

the time it took for the UAV to fly to, and back from, the target destination. It is concluded that 

the use case 4 was successfully completed within an acceptable time. 

Note that, explicit time delays were set in the UAV control program, in order to give the UAV 

sufficient time to complete a task. For example, for the “flytoNED” command, a delay of 35s 

was set to give the UAV to get to and from its destination. Therefore, it does not make sense to 

evaluate the TPt against the MPt. However, from a practical point of view, the TPt still provides 

useful information regarding the task execution and mission execution times. 

The approaches followed in the associated research, discussed in chapter 2, varies greatly in 

architectural design, scientific and technological approach, size and complexity. It is therefore 

impossible to do a fair empirical comparison between these approaches and the methodologies 

developed and tested in this chapter. The differences are too significant and mostly 

unquantifiable. Below, the benefits of the proposed robo-cognitive architecture are contrasted 

with the approaches reviewed in chapter 2. 

1. Knowledge is represented using a simple propositional logic structure, which is more 

intuitive for a domain expert to maintain and therefore less error-prone than modal 

logic, linear temporal logic, first-order logic or Horn clause formats. While the 

propositional representation is not as rich as the other representations, it is sufficient 

for real-time, high-level control of an autonomous vehicle. The approach is discussed 

in detail in section 4.1.2. 

2. The simplified knowledge structure simplifies modification and augmentation of the 

knowledge through simple propositional memory item updates. This means less 

computational resources are required, since there are no complex modal logic, linear 

temporal logic, first-order logic or Horn clause memory item resolutions required. This 

also means that modifications or augmentation may be applied on a proposition level, 

which is more intuitive and requires less communication bandwidth. 
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3. The cognitive reasoning process uses knowledge quantification, based on the long-term 

memory and real-time environmental stimuli, for inference in high-level autonomous 

vehicle control. No subjective probabilities, biases or parameters (such as those used 

in machine learning) are applied to the quantification process. This also means that the 

robo-cognitive architecture is more robust to changes in the environment.  

4. The flexibility and adaptiveness of the knowledge representation and quantification 

process mean the robo-cognitive architecture enables autonomous vehicle control, 

based on real-time environmental stimuli. No time-consuming and expensive re-

learning of models or algorithm changes are required when knowledge or 

environmental stimuli changes. 

5. Statistical quantification of a knowledge item produces a probability distribution over 

all the propositions (rules) of the memory item. This allows inference to follow the 

open world assumption (see section 3.2.3), which allows finer-grained statistical 

reasoning to be applied in the inference. This has a major benefit when handling 

uncertainty in the inference. This approach is demonstrated in velocity control result of 

use cases 1 and 2 and shown in figures 7.5 and 7.9. 

6. The robo-cognitive architecture has a relatively simple architecture, as it focusses on 

the working memory and central executive only and does not attempt to completely 

emulate all the neuro-cognitive processes. This greatly reduces the complexity of the 

architecture, but is modular enough to extend with further functionality (e.g. a learning 

module, see future work in chapter 8), if required. 

7. The adaptiveness of the robo-cognitive architecture enables automatic identification 

and parallel execution of multiple functions on the autonomous vehicle, according to 

its mission. Because no complex and computationally expensive bespoke procedural 

processes are used, extending the functionality of the autonomous vehicle is simplified. 

No rebuilding, retesting and redeployment of components are required. 

 

7.3 Conclusion 

The methodology, developed in section 6.1, constructs optimal episodic memory, based on 

Baddeley’s model of working memory, for the real-time, high-level control of an autonomous 

vehicle.  The methodology was evaluated by executing two simulated missions, developed in 

section 7.1. The results of the simulated missions show that the robo-cognitive architecture 
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successfully and completely executed each mission by repeatedly finding and executing the 

optimal task for the mission, given the state of the unmanned aerial vehicle. 

The methodology, developed in section 6.2, constructs a focus of attention from activated 

memory, based on Cowan’s attentional focus model of working memory, for the real-time, 

high-level control of an autonomous vehicle. The methodology was evaluated by executing two 

simulated missions, developed in section 7.2. The results of the simulated missions show that 

the robo-cognitive architecture successfully and completely executed each mission by 

repeatedly finding and executing all the optimal set of tasks for the mission, given the state of 

the unmanned aerial vehicle. 

It is concluded that the two robo-cognitive architectures, based on working memory 

optimization, is suitable for real-time, high-level cognitive control of a multi-functioned, 

autonomous vehicle. 

 



 

 131 

Chapter 8 

Conclusions and future work 

8.1 Conclusions 

In chapter 1, the problem of real-time, high-level control of robots, deployed in dynamic 

environments, was highlighted. A robo-cognitive architecture, providing the main cognitive 

processes for memory representation, memory recall, action selection and action execution, is 

proposed. The cognitive approach raises the following research questions: 

(1) Can working memory be represented in a form which simplifies augmentation and 

modification by domain expert? 

(2) Can working memory be statistically quantified for the evaluation of optimality, during 

memory recall in cognitive reasoning? 

(3) Is the cognitive reasoning capable of correct action selection for both single- and 

multiple, independent (or parallel) tasks? 

The main aim of this thesis is to address these questions by designing, developing and 

evaluating the main cognitive functions in a robo-cognitive architecture. While addressing these 

questions, the following contributions, as listed in section 1.3, were made: 

1. The creation of a novel working memory representation, structured to simplify 

modification and augmentation. 

2. The design and development of a novel adaptive entropy fitness quantification (AEFQ) 

algorithm for the statistical quantification of discrete memory items (knowledge). 

3. The design and development of a cognitive reasoning process for memory recall, using 

an improved set-based particle swarm optimization algorithm (using the AEFQ 

quantification) for action selection for single task execution. 

4. The design and development of a cognitive reasoning process for memory recall, using 

a novel CG-PSO algorithm (and AEFQ quantification) for multiple action selection for 

multiple, parallel task execution. 

5. Confirmation of the suitability of the robo-cognitive architectures in the execution of 

four use cases in simulation. 

Each research question is discussed below: 
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8.1.1 Research question (1) 

The importance of memory representation was discussed in section 1.1 and popular knowledge 

definitions and structures were reviewed in sections 2.1 and 3.2. The reviews showed that 

knowledge may be defined by a domain expert or it may be learned programmatically. It is also 

shown that a popular approach is to structure the knowledge in some probabilistic graphical 

model or network structure for inference. An overview of some popular formats for knowledge 

representation, for example, first-order logic and Horn clauses, are given in section 3.2. Due to 

the complexity and lack of intuitiveness of these representations, a simplified memory 

representation structure, is developed in section 4.1.2. The novel memory representation 

represents the long-term memory and is used in the memory quantification function developed 

for memory recall. Since the memory items in the long-term memory are structured as simple 

conjunctive and/or disjunctive propositional logic terms, maintenance is more cost-effective in 

computation and bandwidth. The simplicity of the representation makes the control logic of 

memory items also more intuitive and therefore less error-prone. As shown in the simulations, 

the validity indicator in eq. (4.3) simplifies the activation of memory items. Only active state 

transitions are (correctly) included in the resulting state flows of the four use cases, shown in 

figures 7.4, 7.8, 7.16 and 7.17. The propositional logic form of the formulae of the memory 

items allows the domain expert to focus on the atomic facts about each memory item, while the 

relations between these facts are simplified through the use of conjunctions and disjunctions 

only. This eliminates the complexity of existential relations, such as those used in modal logic 

or first-order logic. Modifications and augmentations can focus on atomic facts and relations. 

The fully connected long-term memory, therefore, provides a memory representation which is 

more economical, simpler to maintain and is less error-prone. The memory representation 

developed and applied in the use case simulations, confirms contribution 1, described above. 

8.1.2 Research question (2) 

The two main functions of memory recall are memory quantification and optimization. There 

must be a sufficient belief in a memory item before it will be applied in the decision-making 

process. This degree of belief (fitness) is defined as a probability. Given the probability 

assigned to a memory item, it could be quantified using information entropy, discussed in 

section 3.3.  Information entropy (also called information gain) is a means of quantifying the 

level of uncertainty in a memory item, given its probability. However, the probability of a 

memory item is not known a-priori during memory recall. Therefore, the novel AEFQ 

algorithm, developed in section 4.2, assigns probabilities to a memory item before the fitness 

evaluation of the memory item. The AEFQ algorithm uses the maximum entropy principle to 

derive a probability distribution over the propositional terms of the e memory item.  The 
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maximum entropy principle is the maximization of the information entropy, given the 

environmental stimuli. Therefore, a memory item is quantified, not only in terms of its logic 

formula, but in terms of each of its facts (propositional logic terms). This means fitness 

evaluation can be performed on a finer level, using probability calculus, including conditional 

and marginal probabilities. Moreover, the probabilities assigned are “pure”. This means no 

subjective values were introduced, instead, only real-time environmental stimuli are used in the 

calculation. The results of the simulations (sections 7.1 and 7.2) show that the correct memory 

items (state transitions) were selected for action selection and execution. This means only 

memory items with positive fitness were selected. Each edge of the state flows in figures 7.4 

and 7.8 shows the correct memory item and corresponding fitness value. Figures 7.5 and figure 

7.9 shows the fine-grained control of vehicle velocity, controlled by the fitness quantification. 

The figures show the decreasing fitness, as the unmanned aerial vehicle approaches its 

destination. Moreover, figures 7.13, 7.18 and 7.19 show that all use cases were executed within 

the specified time window. Tables 7.1 and 7.3 shows the activated memory, along with fitness 

(utility) for each memory item. In addition, figures 7.16 and 7.17 show the correct and complete 

state flows for use cases 3 and 4. Each edge of the state flow also shows the correct action 

selected. All four use cases were successfully, timeously and completely executed, as 

demonstrated in the videos. The successful completion of the use cases confirms that memory 

quantification and optimization, in memory recall, were successfully performed. The success 

of the AEFQ algorithm, used in the set-based PSO and coalitional game-theoretic PSO 

algorithms during memory recall, confirms contribution 2, as described above. 

8.1.3 Research question (3) 

In chapter 6, two methodologies were developed for the real-time, high-level cognitive control 

of robots: 

• Real-time episodic memory construction for single-task cognitive control in robotics 

(section 6.1) 

• A cognitive architecture using coalitional games-theoretic particle swarm optimization 

for real-time, multi-task control in cognitive robotics (section 6.2) 

In section 6.1, an SPSO and AEFQ methodologies was developed for the real-time construction 

of episodic memory. The central executive selected and executed an action, after selecting an 

optimal memory item from episodic memory. The approach is based on the Baddeley working 

memory model (section 3.1.2), which represents working memory as episodic memory. The 

results of the simulations (section 7.1) show that the correct memory items (state transitions) 

were selected for action selection and execution. Figure 7.4 and figure 7.8 shows the correct 

and complete state flows for the simulations.  Each edge of the state flow also shows the correct 
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fitness. The simulations show that each task of the mission was correctly selected, one by one, 

and executed from episodic memory. Both use cases were successfully, timeously and 

completely executed, as demonstrated in the videos. 

In section 6.2, a CG-PSO methodology was developed for the real-time construction of 

activated memory and focus of attention, from which the central executive selects the 

appropriate action for execution. The approach is based on Cowan’s attentional focus working 

memory model (section 3.1.2), which represent working memory as activated memory with a 

focus of attention. The results of the simulations (section 7.2) show that the correct memory 

items (state transitions) were selected for action selection and execution. Tables 7.1 and 7.3 

shows the activated memory, along with fitness (utility) for each memory item. Figure 7.16 and 

figure 7.17 show the correct and complete state flows of the simulations, including the correct 

action selected from the focus of attention. Figure 7.16 shows two correct, independent state 

flows, one for flight-control and one for gripper control, while figure 7.17 correctly shows only 

the one state flow, for flight-control.  Moreover, figure 7.18 and figure 7.19 shows that the use 

cases were executed within the specified time window. Both use cases were successfully, 

timeously and completely executed, as demonstrated in the videos. 

The success of the set-based particle swarm optimization and coalitional game-theoretic 

particle swarm optimization algorithms during memory recall, confirms contributions 3 and 4. 

The successful completion of all four use cases shows that the cognitive reasoning of the 

cognitive architecture, proposed in this research study, can successfully select and execute 

single tasks sequentially. The results also show that multiple tasks are correctly selected and 

executed (in parallel, if the architecture allows). The successful completion of all four use cases 

confirm contribution 5. 

 

8.2 Future work 

In this research study, the problem of real-time, high-level control of robots, in remote and 

dynamic environments, were investigated. The focus was on effective cognitive processing of 

working memory pertaining to memory representation, memory recall, action selection and 

action execution. This study assumes knowledge is provided and maintained by a domain 

expert, while the cognitive reasoning is left to the autonomous vehicle. During the literature 

review and the development and testing of the robo-cognitive architecture, two specific areas 

were identified for further research. These areas are described below. 
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8.2.1 Reasoning 

The robo-cognitive architecture developed in this research study quantifies a memory item, 

representing a state transition, by calculating a probability distribution over the propositional 

terms of the trigger formula of the state transition. To simplify the introduction of the 

methodology, only one of the probabilities were used for fitness evaluation. However, this 

approach lays, without loss of generality, the foundation for more extensive reasoning in the 

robo-cognitive architecture. An adaptive, cognitive reasoner paradigm, using, the probability 

quantification, will extend the applicability and power of the robo-cognitive architecture 

significantly. The results of the adaptive cognitive reasoner will support decision-making, and 

enable tractability and explanation of the reasoning and decision-making. Explanation of 

inference is an important requirement in artificial intelligence solutions. The adaptiveness of 

the paradigm will allow the reasoning to take new knowledge acquired into account. This 

approach will improve the real-time reactiveness to changing knowledge or a changing 

environment. An adaptive cognitive reasoner, used in conjunction with a learning paradigm 

(section 8.2.2), will also improve the autonomy of an autonomous vehicle. For example, the 

autonomous vehicle could decide if and when to report its findings, instead of being requested 

or instructed. An example of such an application is the exploration of the Mars autonomous 

vehicle, Curiosity. 

8.2.2 Learning 

The approach in this research study assumes knowledge (memory) is initially defined and 

provided by a domain expert. The robo-cognitive architecture focusses on the simplification of 

the representation of the memory, as well as the cognitive processing of this memory. An 

unsupervised learning paradigm, will extend the autonomy of an autonomous vehicle using the 

robo-cognitive architecture, significantly. However, the argument is maintained that knowledge 

cannot be learned from nothing, especially in remotely deployed robots. However, it is argued 

that the simplified memory representation presented in this research study lays the foundation 

for an effective unsupervised learning paradigm. This learning paradigm could build on and 

extend the initial knowledge provided by the domain expert. Problems may be solved 

autonomously, within the functional capabilities of the autonomous vehicle, by employing the 

adaptive, cognitive reasoner (recommended in section 8.2.1) and augmenting the long-term 

memory and the short-term memory. The quantification method of the AEFQ algorithm may 

be extended to take the biases and weights, resulting from the learning paradigm, into account 

during the reasoning process. This extension will drive the reasoning, and therefore, the 

decision-making process. This approach will also assist the domain expert in the definition of 
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initial knowledge, and the efficacy of the initial knowledge may be tested and evaluated using 

experimentation and simulation in a laboratory. 

8.2.3 Collaboration 

The robo-cognitive architecture developed in this research study, provides a cognitive approach 

towards real-time, high-level control of a multi-function autonomous vehicle. Some tasks, 

however, require more than one autonomous vehicle. For example, in the simulations in section 

7.1 and 7.2, the unmanned aerial vehicle delivers a medical package to a target destination. 

There may be situations where the package requires two (or more) vehicles to work together in 

order to transport the cargo successfully. For autonomous vehicles to successfully cooperate in 

a group, there needs to be robust, real-time collaboration between them. By extending the robo-

cognitive architecture with a collaboration function, the autonomous vehicle will be able to 

operate in a group of autonomous vehicles. Memory recall, in the robo-cognitive architecture, 

involves memory quantification, by the AEFQ algorithm, developed in section 4.2. The 

algorithm uses information from the environmental stimuli and short-term memory, to find the 

optimal memory in the long-term memory. By including collaboration information in the 

environmental stimuli and short-term memory, memory quantification and memory 

optimization will take the collaboration information into account when finding appropriate 

memory items from the long-term memory. The collaboration function has to update the 

environmental stimuli and short-term memory in real-time, and this will enable the central 

executive to select and execute actions, appropriate to the state of all autonomous vehicles in 

the group. There are many technical solutions available for sharing of information between 

processes. However, since the high-level control affects the behaviour of the autonomous 

vehicle in real-time, a time-efficient communication protocol must be applied. By extending 

the robo-cognitive architecture, with a collaboration component, autonomous vehicles may be 

deployed in team (multi-agent) or swarm configurations. 
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