IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

2502614

A Stacked LSTM-Based Approach for Reducing
Semantic Pose Estimation Error

Rana Azzam"™, Yusra Alkendi™, Tarek Taha
and Yahya Zweiri

Abstract— Achieving high estimation accuracy is significant
for semantic simultaneous localization and mapping (SLAM)
tasks. Yet, the estimation process is vulnerable to several sources
of error, including limitations of the instruments used to per-
ceive the environment, shortcomings of the employed algorithm,
environmental conditions, or other unpredictable noise. In this
article, a novel stacked long short-term memory (LSTM)-based
error reduction approach is developed to enhance the accuracy
of semantic SLAM in presence of such error sources. Train-
ing and testing data sets were constructed through simulated
and real-time experiments. The effectiveness of the proposed
approach was demonstrated by its ability to capture and reduce
semantic SLAM estimation errors in training and testing data
sets. Quantitative performance measurement was carried out
using the absolute trajectory error (ATE) metric. The proposed
approach was compared with vanilla and bidirectional LSTM
networks, shallow and deep neural networks, and support vec-
tor machines. The proposed approach outperforms all other
structures and was able to significantly improve the accuracy
of semantic SLAM. To further verify the applicability of the
proposed approach, it was tested on real-time sequences from
the TUM RGB-D data set, where it was able to improve the
estimated trajectories.

Index Terms—Deep learning, localization error, long short-
term memory (LSTM), measurement uncertainty, semantic
simultaneous localization and mapping (SLAM), sensor noise.

I. INTRODUCTION

IMULTANEOUS localization and mapping (SLAM) is
S one of the most prevalent research problems in the robot-
ics community. It is defined as the problem of estimating the
trajectory of a robotic vehicle and incrementally construct-
ing a map of its surroundings, provided with measurements

Manuscript received May 23, 2020; revised September 16, 2020; accepted
September 21, 2020. Date of publication October 22, 2020; date of current ver-
sion December 22, 2020. This work was supported by the Khalifa University
of Science and Technology under Award RC1-2018-KUCARS. The Associate
Editor coordinating the review process was Lihui Peng. (Corresponding
author: Rana Azzam.)

Rana Azzam and Yusra Alkendi are with the KU Center for Autonomous
Robotic Systems (KUCARS), Khalifa University of Science and Tech-
nology, Abu Dhabi, United Arab Emirates (e-mail: rana.azzam@Xku.ac.ae;
yusra.alkendi @ku.ac.ae).

Tarek Taha is with the Robotics Lab, Dubai Future Foundation, Dubai,
United Arab Emirates (e-mail: tarek.taha@dubaifuture.gov.ae).

Shoudong Huang is with the University of Technology Sydney, Ultimo,
NSW 2007, Australia (e-mail: shoudong.huang@uts.edu.au).

Yahya Zweiri is with the KU Center for Autonomous Robotic Systems
(KUCARS), Khalifa University of Science and Technology, Abu Dhabi,
United Arab Emirates, and also with the Faculty of Science, Engineering and
Computing, Kingston University London, London SW15 3DW, U.K. (e-mail:
yahya.zweiri @ku.ac.ae).

Digital Object Identifier 10.1109/TIM.2020.3031156

, Shoudong Huang™, Senior Member, IEEE,
, Member, IEEE

perceived from the environment [1]. SLAM serves as a key
enabler of a wide range of applications in mobile robot-
ics, such as search and rescue [2]-[4], autonomous navi-
gation [5], and augmented reality [6]. Semantic SLAM [1]
relies on visual measurements obtained by a vision sensor.
It exploits understanding of the surrounding structure to build
highly expressive maps that are easy for human operators
to understand. It started to captivate a tremendous amount
of attention, especially after the deep learning breakthrough,
which led to advancements in object detection and tracking
techniques [7]. The accuracy of the localization is a critical
success factor in robotic tasks, particularly those involving
interaction with humans. Examples of such tasks are search
and rescue, autonomous driving, and elder care. Due to its
infancy, semantic SLAM is yet to achieve more robustness in
the presence of noisy measurements, such as those occurring
due to inaccurate object pose estimation with respect to the
vision sensor.

The uncertainty of SLAM estimates might arise due to
measurement errors that differ based on the adopted approach
to SLAM. In the case of object-based semantic SLAM,
errors mostly occur when postprocessing the sensory data to
determine the poses of the observed features relative to the
sensor in the environment. This process starts with detecting
the landmark in the environment and determining its bounding
box and then computing its centroid. The centroid of the
landmark is then utilized to compute the relative pose between
the feature and the vision sensor. Furthermore, occlusions
have a significant impact on the accuracy of the estimated
object pose [8]. Occlusions happen when part of the object
is observed in an image, while the rest is either hidden by
other objects in the scene or is out of the field of view of the
vision sensor. Due to the advancements in deep learning-based
object detectors, occluded objects can still be detected and
correctly labeled in an image. Hence, if they are not properly
accounted for, the estimated pose of an occluded object can
be far from the true one and may consequently cause severe
accuracy degradation. In addition, the limitations of the sensors
used to perceive the environment introduce another primary
source of uncertainty.

The approach proposed in this article aims at reducing
the joint effects of several sources of errors on the accuracy
of semantic SLAM estimates. These errors might arise from
limitations of the software and hardware components used to
perform semantic SLAM, from external environmental condi-
tions or unpredictable noise. Formulating a noise model that

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0378-1909
https://orcid.org/0000-0001-6618-5317
https://orcid.org/0000-0001-8267-1681
https://orcid.org/0000-0002-6124-4178
https://orcid.org/0000-0003-4331-7254

2502614

accounts for all such errors is challenging, especially because
some errors occur unexpectedly during data collection and/or
processing. Hence, a stacked LSTM-based neural network is
proposed in this article to learn and capture the error patterns
associated with the trajectory estimates of semantic SLAM.
By comparing the trajectory estimates to the corresponding
ground truth, the network is trained to reduce the error and,
hence, enhance the accuracy of semantic SLAM.

The proposed approach is general; it can be used for any
SLAM system since it operates on trajectory estimates rather
than raw measurements. It targets trajectories of ground vehi-
cles that are usually expressed using three degrees of freedom
in the 2-D space: the vehicle’s position (x, y) and orienta-
tion (). The approach is applicable to any 2-D SLAM prob-
lem. However, the employed neural network was trained on
data obtained using semantic SLAM and, hence, is intended to
improve the accuracy of semantic SLAM trajectory estimates.

The proposed approach can be used in applications that
require accurate localization of the robotic vehicle. For exam-
ple, a more accurate estimate of the trajectory estimated by
semantic SLAM will result in a meaningful and more accurate
map of the environment. Another practical use-case scenario
of the approach presented in this article is in search-and-rescue
applications. If the robots that are employed as first responders
after a particular catastrophe have the ability to accurately
pinpoint their location, it will expedite the process of rescuing
victims, if any, or locating areas that need immediate help.

The contributions of this article are listed as follows.

1) We developed a novel stacked-LSTM-based approach to
identify and reduce pose estimation error in object-based
semantic SLAM. The approach alleviates the combined
effect of predictable and unpredictable noise on the
accuracy of trajectory estimates.

2) We developed an automated search approach to select
the architecture and hyperparameters of the proposed
stacked-LSTM neural network.

3) We extensively tested the proposed approach on sim-
ulated and real-time experiments, where its superior-
ity compared with shallow neural networks (SNN),
deep neural networks (DNNSs), support vector machines
(SVMs), and semantic SLAM was proven.

The rest of this article is organized as follows. Section II
presents recent related research work from the literature. The
proposed approach is introduced in Section III, followed by
experimental validation in Section I'V. Finally, the conclusions
of this work are drawn in Section V.

II. RELATED WORK
A. Deep Neural Networks

Neural networks are trained to exhibit a particular behavior,
suited for the problem at hand, when fed with data. During
training, the internal parameters of the network, referred to
as weights, are adjusted to minimize the discrepancy between
the network’s prediction and the desired output [9]. An SNN
is a network with an input layer, one hidden layer, and an
output layer. Networks with two or more hidden layers are
referred to as DNNs. DNNs are much more efficient than

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

SNNs with regards to the required number of computational
units, especially when modeling a complex problem. This is
attributed to the nonlinear nature of the activation functions
occurring at several layers in the DNN [10].

Furthermore, recurrent neural networks (RNNs) are artifi-
cial neural networks that are capable of informing knowl-
edge from a context. This is attributed to the use of loops,
which allows information to be fed back to the network
after being processed. However, such networks might suffer
from vanishing gradients, which motivated the need for long
short-term memory (LSTM) cells [11]. LSTM cells enable
RNNs to retain information that is essential and discard
them otherwise. This functionality cannot be realized when
using conventional neural networks. DNNs and LSTMs have
been exhibiting state-of-the-art performance in a multitude of
various applications, including computer vision [12]-[14] and
robotics [15]-[17].

B. SLAM and the Intervention of Deep Learning

A rich body of the literature has addressed the SLAM
problem, and a wide range of algorithms exhibiting varying
levels of performance in terms of reliability, accuracy, and
efficiency has been proposed [18]-[20]. The utilization of
deep learning approaches has been witnessed in a substan-
tial share of these approaches in the past few years [1],
and their capability to outperform the classical approaches
has been demonstrated [17], [21]-[24]. In addition, deep
learning-based object detection techniques [25]-[27] promoted
the advancement of object-based semantic SLAM, which relies
on observations of landmarks that can be semantically labeled
in the environment, such as the approaches presented in [28]
and [29]. Obtaining a reliable observation of a landmark in
the environment and accurately pinpointing its position with
respect to the sensor remain a challenge. On a different note,
much less research effort was made in the area of employing
deep learning approaches to improve the accuracy of state
estimation, as discussed in the next section.

C. Enhancing SLAM Estimation Accuracy

The accuracy of state estimation in SLAM applications is
vulnerable to the effects of several error sources. Such errors
occur in one or more stages in the SLAM pipeline, such as
data collection, data processing, and optimization. Most of
the existing works in the literature assume that noise models
always follow fixed distributions that can be mathematically
formulated [30]. Nonetheless, this is not always the case in
practical applications and might lead to severe degradation in
estimation accuracy.

When visual measurements and dead reckoning are used
together to estimate the state of a system, estimation uncer-
tainty may result from visual sensor noise [31], [32], landmark
detection and localization accuracy [33], odometry drift [34],
or failure to arrive at a globally optimum estimate due to mea-
surement noise. The effect of unpredictable nonuniform noise
and external environmental conditions is also inevitable [35].
To enhance the accuracy of localization, the solutions found in

AZZAM et al.: STACKED LSTM-BASED APPROACH FOR REDUCING SEMANTIC POSE ESTIMATION ERROR

the literature can be classified into: 1) controlling the environ-
ment under investigation [36]; 2) sensor data fusion [37], [38];
3) improving measurement covariane estimation [30], [35],
[39], [40]; or 4) correcting measurement errors, which can
be further classified into classical [41]-[44] and learning
approaches [16], [17], [34], [45]-[47].

The work presented in [36] studies the placement of passive
tags, used as landmarks, in the environment, to always keep
the localization accuracy within a particular range. In another
vein, the robustness of indoor localization was supported
by accumulating sensory data, which compensated for the
limitations of the employed sonar sensors, as presented in [37].
Another example of measurement fusion can be found in [38]
where the measurements recorded by multiple IMUs along
with other extroceptive sensors were integrated to improve
localization accuracy. Instead of assuming a fixed measure-
ment noise model, the work proposed in [39] predicts the
noise model based on raw measurements by means of a DNN.
The DNN was able to accurately predict the covariance of
measurements obtained by light and vision sensors. However,
the approach assumes that noise models follow a zero-mean
Gaussian distribution that does not hold all the time, putting
in doubt the generality of the approach. Similarly, the work
presented in [30] relaxes the assumption of a fixed measure-
ment noise model for dead reckoning and QR code detections
by employing a tailored extended Hy, filter. The approach
is general and more computationally expensive than the
extended Kalman filter yet achieves higher accuracy. Similarly,
the approach proposed in [35] improves the accuracy of SLAM
estimates by employing an adaptive Gaussian particle filter
whose job is to compensate for bias in measurements. More
particularly, the approach targets unmodeled, unpredictable
noise patterns that are experienced in marine environments.
A recent noise model learning approach was proposed in [40]
where a DNN was trained to estimate the covariance of inertial
measurements, which are then used in an extended Kalman
filter to perform localization. Evaluation results demonstrated
the applicability of the approach, yet, in its current version,
it works for inertial sensors only.

Several previous studies have addressed the correction of
measurements using classical or learning approaches. In [41],
visual sensor limitations were accounted for by superimposing
camera oscillations to improve the accuracy of visual SLAM.
The work presented in [42] utilizes probabilistic fuzzy logic
to reduce measurement uncertainties occurring due to sto-
chastic and nonstochastic disturbances. This approach handles
dead-reckoning and range measurements and was proven to
outperform ordinary fuzzy logic in terms of improving the
accuracy of positioning and mapping estimates. The work
presented in [43] was able to cope with the occasional
failure of inertial sensors during localization, by means of
a discrete-time H, filter. Localization was supported by a
reference wireless sensor network. In [44], a novel ultrasonic
sensor with self-configuration abilities was developed to cope
with collisions of ultrasonic waves and, hence, enhance local-
ization accuracy. The developed algorithm is also capable of
handling topological changes in the environment in a real-time
manner.

2502614

In [16], a deep learning-based approach is employed to
improve the altitude estimation of a flying robotic vehicle.
Moreover, in [45], the accuracy of the odometry of a wheeled
cart, calculated using its dynamic equations, was improved
using an SNN. The network was trained to compute an
estimate of the vehicle’s traveled distance and orientation.
However, since the network is composed of a single hidden
layer only, it might not capture all patterns of estimation errors
and, hence, cannot generalize well. Correction of odometry
measurements was also addressed in [34] and [46] where the
Gaussian processes were trained based on the discrepancies
between the odometry model and ground truth. The scalability
and accuracy of the model proposed in [46] were achieved
through deep kernel learning. Furthermore, the approach pro-
posed in [17] improves the accuracy of stereo visual localiza-
tion. The authors proposed a loss function based on the Lie
group SE(3) geodesic distance and used it to train a DNN to
more accurately estimate the relative transformation between
subsequent images. The advantages of the proposed approach
over classical visual odometry were demonstrated through
several experiments. However, the DNN operates on images,
which makes the approach computationally expensive and
requires a large DNN structure to achieve the sought perfor-
mance. In addition, an end-to-end learning approach to visual
odometry was presented in [15] where sequential learning was
employed to improve the pose certainty. The DNN operates on
raw images, from which it infers the uncertainty of the poses.
Operating on large amounts of data requires the hardware
to have high computational capabilities. The work proposed
in [47] utilizes deep learning to improve depth estimation,
which is then used to perform dense monocular SLAM. In a
classical factor graph approach, the authors propose to use
multiple objective functions, or factors, addressing several
types of errors to further improve estimation accuracy. These
factors are the photometric, reprojection, and sparse geometric
factors. Combining these factors has resulted in robust motion
estimation when tested on several real-time sequences.

The proposed stacked-LSTM-based approach has the fol-
lowing advantages over the aforementioned methods.

1) It alleviates the effects of all the possible disturbances
experienced while performing SLAM, including mea-
surement errors, sensor failure, data processing faults,
or any other unpredictable noise.

2) It operates on a trajectory rather than raw sensor mea-
surements, such as images. Hence, it can be used
to reduce pose estimation errors irrespective of the
employed sensors.

3) It is efficient since the input to the neural network is a
short segment of the trajectory, which takes much less
time than images to be processed.

4) It does not require any particular arrangement of the
environment. More specifically, it does not depend on
the number, geometry, or placement of landmarks in the
environment.

5) The stacked nature of the LSTM and dense layers along
with the nonlinear activation functions facilitate identi-
fying complex error patterns that could be challenging
to model mathematically.

2502614

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

Dropout (0.1) Dropout (0.1)

A A
1
Input Layer LSTM Layer 1 LSTM Layer : Dense Dense
= #1 ! i Layer Output
x1@ @ % gg U 1 S= L Layer
3200 T ' Fe H @
x3000 o o = Lo ™ .
1 —~
i x4000 | | \ @ @
” . G #2 #2 3
+ x5 ee Inputsize: | (x3) (y3) (65)) r ONT: 11/ s
* X6 @ Seq_length*3 .“ ¥ ¥ ﬂ ! ;’ vy ﬂ) @
x7 e . - i LIRS
X ° i i . #3 P
5 LX) 1 \ , @ (o4
| :
. oo ; | 1 : #255
%o o @@ &) | | e RO
» \CROAE)
X, ° 1 Y § ﬂ‘ 1 | VY : #256
(&9 G30) @30 L 1te L Ire Ll 1 @
1
! 1
Input Trajectory Sequences Neural Network Refined Trajectory

Fig. 1. Proposed deep learning approach.

Factor Graph

Ground Vehicle in Environment

| Gromd Vil n Ewvivamen_|
j i il)
£
!

A Robot Pose \ Motion Constraint

Measurement
Constraint

,E Opti-track camera

Fig. 2.

Landmark

Camera field of view

Semantic SLAM.

III. PROPOSED APPROACH

The deep learning approach proposed in this article is
depicted in Fig. 1. In general, a ground vehicle’s trajectory,
estimated using semantic SLAM, is passed to a neural net-
work, which will identify and reduce possible pose estimation
errors. The semantic SLAM algorithm will be described in
Section III-A along with the error sources that contribute
to reducing the accuracy of pose estimation. Section III-B
details the deep learning-based pose estimation error reduction
approach.

A. Semantic SLAM

The adopted semantic SLAM is designed for ground vehi-
cles and is performed based on measurements from the vehi-
cle’s wheel encoders and an RGB-D camera that is mounted on
top. A factor graph is used to model the problem, as shown
in Fig. 2, where robot poses and map features (landmarks)
are represented as nodes. The graph contains two types of
edges: solid edges between every two consecutive pose nodes,
to represent a spatial constraint (denoted as ept), and dashed
edges between a pose node and a landmark node, to represent

an observation of the landmark at that pose (denoted as epeas)-
Each edge models a nonlinear quadratic constraint, which
can be mathematically formulated, as shown in the following
equation:
T p—1

emot = (X; — g(ur, x1-1)) R, (xr — g(ur, x,-1)) (1)
where g is the motion model, u; is the control command, x;
is the robot pose at time ¢, and R; is the covariance matrix of
the motion noise, which is assumed to be Gaussian

€meas = (sz — h(xy, mj))TQz_l(sz = h(xq, mj))

)
where z,] are measurements, A is the measurement function,
m; is a landmark, and Q, is the covariance matrix of the
measurement noise, which is assumed to be Gaussian.

The goal of graph SLAM is then to find a configuration of
the nodes that minimize the error introduced by the constraints.
In our approach, this is done by means of the incremental
smoothing and mapping algorithm, iSAM?2 [48].

1) Landmark Pose Estimation and Data Association: To
perform semantic SLAM, the vehicle’s relative position to the
observed landmarks must be computed. This is done using
input RGB-D frames. RGB images are passed to the object
detector, you only look once (YOLO) [25]. For each detected
object in an image, YOLO predicts a label and a bounding
box. The relative position between the camera and the detected
object is then computed as the distance between the camera
and the centroid of the object, as proposed in [29]. Briefly,
the input depth image that corresponds to the input RGB image
is converted to a point cloud. The point cloud is segmented in
order to extract the cluster of points that belong to the detected
landmark using a kd-tree search. The geometric centroid of the
cluster is then computed.

Detected objects are associated with landmarks in the map
based on their label, which is predicted by YOLO. Since
multiple objects of the same category might exist in the
environment, the observation is associated with the closest
landmark within a particular distance threshold. If no land-
marks exist within that threshold, a new instance is inserted
in the map.

AZZAM et al.: STACKED LSTM-BASED APPROACH FOR REDUCING SEMANTIC POSE ESTIMATION ERROR

6trans

Srot1r Orotz, ANd 8y s represent the true motion.

Motion corrupted with noise is computed as:

Orot1 = Oror1 + Ea11810t1 143 |8erans!

6“"“"3 = 6trans + EfxaIé‘trmlsl"'at}wmtl"'é‘rotzI

Orotz = Srot2 + €a118r0r2 1+ @2 |8 trans!
Where @, a,, a3 anda, are the motion noise model parameters

Fig. 3. Odometry noise model.

2) Measurement Uncertainty: There are several factors that
contribute to reducing the estimation accuracy when perform-
ing semantic slam. Starting from the inputs, the sensors used to
perceive the environment suffer from limitations that decrease
the accuracy of the obtained measurements. For example,
the uncertainty of RGB-D measurements might be caused by:
1) axial noise [49] that increases when the distance to the
detected object increases; 2) lateral noise [49] that increases
near the image corners; 3) multipath interference [50]; 4) fly-
ing pixels [50]; and 5) the scene’s characteristics, such as
color variations, temperature [50], and illumination conditions.
In addition, odometry drift is affected by the accuracy of wheel
encoders [34], wheel materials, floor flatness, and materials.
Fig. 3 describes the model that was used to simulate odometry
noise and add it to simulated odometry, which is considered
to be perfect with no error.

Furthermore, object detection might result in incorrect labels
or bounding box predictions. If such false detections are
not treated as outliers, the accuracy of pose estimation and
data association is severely affected. Given an accurate object
label and bounding box, the pose estimation module is yet
error-prone. Depending on the structure of the environment
under investigation, object classes, camera position, illumi-
nation conditions, and, most importantly, object occlusions,
the accuracy of segmentation and clustering can be signifi-
cantly reduced.

Modeling such errors can be extremely challenging; there-
fore, guaranteeing a maximum likelihood estimate using the
employed incremental smoothing and mapping technique is
difficult.

The input to the neural network is the trajectory estimated
by the semantic SLAM system. The estimation is based on
observations that may sometimes be inaccurate due to several
sources of error affecting data acquisition and/or processing.
For example, the aforementioned types of RGB-D sensor
noise may degrade the quality of the acquired RGB-D frames,
which will consequently affect the accuracy of the information
obtained from such images. Also, object detection, labeling,

2502614

0 | e
X O : [X
X 0 I o000
30 0000
Xs O : (X N Example dividing trajectory
X O 1 [X) into sequences
x; O : ® -
i . Trajectory pose
O I () Sequence
O 1 o0 Pose to be corrected
1
. 0 : oo Input to neural
O 1 LA network
Xpa O 1 . .
X O : ® Output of neural
i seq. length = 4 network

Fig. 4. Example dividing a trajectory to sequences of length 4.

and segmentation are subject to errors that may negatively
impact the corresponding measurement constraints. In simu-
lated experiments, the noise was simulated and added to the
measurements to mimic the real noise.

The motion measurements and observations are passed to
the optimization algorithm, in the SLAM back end, along with
an estimate of the measurement noise model. The optimization
algorithm then estimates the trajectory to find a configuration
of the poses that minimizes the overall error along the trajec-
tory. The resulting estimate of the robot trajectory still suffers
from estimation errors since it was based on observations
inferred from inaccurate measurements that propagate along
the SLAM pipeline.

The neural network is trained to identify the error patterns in
the final estimate of the robot trajectory by comparing it to the
corresponding ground truth. For every pose, the neural network
exploits a segment of the trajectory that precedes that pose to
determine the pose estimation error and reduce it accordingly.

B. Stacked LSTM-Based Noise Reduction Approach

To find the best-suited neural network architecture, a sys-
tematic search was done in a pool of neural networks of
varying types, depths, and activation functions. Three types
of LSTM networks were explored: simple vanilla LSTM,
stacked LSTM, and bidirectional LSTM. Moreover, a set of
shallow and deep fully connected feedforward neural networks
were investigated. A hybrid of LSTM and fully connected
layers was also considered. The performance of all the tested
networks was evaluated using a data set containing data
generated from the simulated trajectories. The training and
validation results were compared using the absolute trajectory
error (ATE). More specifically, the Euclidean distance between
the ground-truth pose and the corrected pose by the network is
computed for all poses along the trajectory, and the mean error
is used to compare the performance of the different networks.

Each of the tested neural networks takes in a segment of
the trajectory, consisting of the current 2-D pose, along with
a number of previous poses. The length of this segment will,
hereinafter, be referred to as sequence length. An illustrative
example of how a trajectory is divided into sequences of length
4 is depicted in Fig. 4. Each pose in this segment is denoted

2502614 IEEE

TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

O T T T 1T mm T i1 1T T T T T T T T 1

T W 7T 7T 7T 7T T T T 7T 7T T T T T § T

0.16

J —O&— LSTM Layer Size =32 —©— LSTM Layer Size =64 —&— LSTM Layer Size =128 —©— LSTM Layer Size =256 —©— LSTM Layer Size =512

0.14 —
0.12 —

0.08 [~
0.06 [~
0.04 =

®

0.02

0 Vanilla LSTM

-0.02 [~

Mean Absolute Trajectory Error (m)

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Sequence Length

Fig. 5. Mean ATE obtained on the training and validation data sets by different LSTM network architectures.

Dropout (0.1) Dropout (0.1)
- A N
- 12 ~ | 1
Input Layer LSTM Layer 1 LSTM Layer I Dense Dense
[- | #1 | Layer Output
- .(L\._/' L @@ , L]J U LH . W} J IJ P Layer
1 1 1 1] 1 @
1 1 I 1 NLL E _l_:' L E’ _‘L_
FSEFY B e IR = ===y AN e S
1 (o ? L o DR | ! I @
e ! | @
1 -=r " #2 2
@) @) ! !
i #3 T #2
t —l—.—"— t —-l y L]J HJi LIJ : [Ij J LIJ : @ @
_ J ' L E‘_ ue 1 L J_E‘. e \
] | #3
I’_-_-‘l Input Gate . Sum over weight input : i @
a —l Forget Gate o Pointwi Itiplicati ! : #233
[ointwise multiplication [ﬁ @
! |
Output Gate ¢ Sigmoid activation function | 1 256
! I
‘ Cell State t Tanh activation function : 1 @
1
! |

Fig. 6. Proposed neural network architecture.

as X = [Xm, Ym,» 917, and hence, the input is a 2-D array of
poses. It is worth mentioning that the network is not expected
to predict a new pose following the input segment. Rather,
it learns to correct the last pose based on the previous poses
in the segment. Therefore, the output of the neural network is
a three-tuple that represents the pose and is obtained by means
of a dense layer of size three, activated using sigmoid for all
the tested neural networks.

First, a search was conducted to determine the most suited
type of LSTM networks; vanilla, bidirectional, or stacked.
Several LSTM networks with a varying number of units and
sequence lengths were trained and evaluated. The number
of units in each LSTM layer was set to 2" for m €
[5,9]. The sequence length was varied between 10 and 90,
in increments of 10. In addition, stacked LSTM was tested
with two and three LSTM layers. The mean ATE obtained
on the training and validation data sets by all the tested
LSTM network architectures are shown in Fig. 5. Several
architectures performed well and were able to improve the

accuracy of the estimated trajectory. However, the architecture
with two stacked LSTM layers, each with 256 units, with
a sequence length of 30 exhibited the highest performance
among all the considered LSTM networks in terms of reducing
ATE.

In an attempt to further improve the results, one, two, and
three dense layers were added after the LSTM layers, and
various sizes and activation functions were tested, including
sigmoid, swish [51], tanh, ReLU, and linear. Adding a dense
layer of size 256 with a sigmoid activation function resulted in
smoother trajectories with lower mean ATE. The mean ATE
achieved by the other hybrid architectures did not improve.
To aid generalization and overcome overfitting, dropout layers
were added to the architecture.

Fig. 6 depicts the architecture of the adopted stacked LSTM
neural network. The network accepts trajectory segments of
length 30. Each of the poses in a segment consists of a
three-tuple, X =[x, Vi, Inml?, representing the position and
orientation of the vehicle at a time instance. The segment

AZZAM et al.: STACKED LSTM-BASED APPROACH FOR REDUCING SEMANTIC POSE ESTIMATION ERROR

is then passed to two stacked LSTM layers, separated by a
dropout layer, with a dropout probability of 0.1. Each LSTM
layer consists of 256 units. Then, after another dropout layer,
a fully connected layer with 256 neurons, activated by sigmoid,
is added. Finally, a dense layer, activated by sigmoid, is used
to predict the improved pose.

The computational complexity of the proposed model per
time step is O(W), where W is the size of the weight
space. This is attributed to the fact that the time complexity
to update a single weight is O(1). The size of the weight
space is a function of the input size, hidden units, and output
size [11], which were detailed earlier. The total number of
trainable parameters in the proposed model is around 850k
parameters. The architecture of the proposed model and its
hyperparameters, such as the batch size and the number of
training epochs, are fixed. Hence, for N training samples,
the complexity becomes O(N) since one training epoch runs
in O(1).

The proposed neural network will be compared with shallow
and deep fully connected neural networks (SNN and DNN,
respectively) and SVMs. Hence, a pool of SNNs, DNNs, and
SVMs was investigated to search for the best structure from
each paradigm for our problem. The parameters that were
varied for SNN and DNN are the number of neurons per layer
and the activation functions. Different depths of DNNs were
also attempted. As for SVMs, a set of variables, such as the
kernel and its corresponding parameters, were changed, and
the SVM that resulted in the lowest mean ATE across the
training and validation data sets was selected. The search for
the most suited SNN, DNN, and SVM was done to ensure the
fairness of our comparisons.

IV. EXPERIMENTAL VALIDATION

In this section, the proposed approach is validated through
a set of simulated and real-time sequences from publicly
available data sets. The performance of the stacked LSTM
neural network is then compared against other regression
techniques, including SVM, SNN, and DNN, where it proved
to outperform them.

As mentioned earlier, the proposed approach can be applied
to trajectories computed using any 2-D SLAM. However,
the data sets used here were obtained using semantic SLAM.

The rest of this section is organized as follows. The
experimental setup used to record the training data set is
presented in Section IV-A. In Section IV-B, the structure
of the training data sets is described, followed by details
about the training process. After that, the performance of the
proposed approach is analyzed and compared with that of
SNN, DNN, and SVM in Section IV-C. Finally, in Section I'V-
D, the proposed approach is tested on a set of simulated and
real-time experiments, including three SLAM sequences from
the TUM RGB-D data set [52].

A. Experimental Setup

A simulated pioneer 3AT robot with an RGB-D camera
mounted in a front-forward position was used to navigate
in several simulated environments and collect the sensory

2502614

Fig. 7. Simulated environment setup with ground vehicle at its starting point.
l Centroids measurements ® TV monitors * Bottles ¢ Ground vehicle‘
4r
» 4 = * - %]
s
[] x - - g
of - ¢ s
2] *
E
= v
4t x
*
¥
s - 5 - [
-+
8t n
»
*x = ey W, =
10 ‘ ‘ . ‘ : . ,
2 0 2 4 6 8 10 12
X(m)
Fig. 8. Distribution of object measurements from some recorded simulated

experiments in the environment shown in Fig. 7.

data required performing semantic SLAM. A sample of the
simulated environments is shown in Fig. 7 with the simu-
lated robotic vehicle at its starting point. This environment
is 13 x 10 m? and is populated with 37 object instances
of two different categories: 19 TV monitors and 18 bottles.
Other simulated environments were also used where the object
categories include potted plant, table, and person (who are
assumed to be static while recording the experiment).

Several simulated trajectories were recorded in these sim-
ulated environments and then passed to the semantic SLAM
algorithm to generate training data. Since the odometry mea-
surements obtained from simulations are perfect, the odometry
noise model described in Fig. 3 was used to simulate the noise
and add it to the recorded measurements. Another source of
error was observed when passing the RGB frames to the object
detector, YOLO [25], and then performing segmentation to
determine the centroid of the observed object. The centroids
of the detected objects were seen to deviate from their true
positions. This was mainly due to object occlusions since
YOLO was able to detect an object even if part of it is
occluded. Consequently, only the visible part of the object
was used to compute the centroid of that instance, causing an
error in the measurement. The error varies depending on the
size of the object, and hence, the standard deviation of the
noise associated with each object observation was set based
on the object’s dimensions. Object measurements from some
recorded experiments in the previously described simulated
environment are shown in Fig. 8.

2502614

TABLE I

SUMMARY OF TUM RGB-D SEQUENCES USED FOR
EVALUATING THE PROPOSED APPROACH

Name Tajectory Length ~ Trajectory Dimensions

Freiburg_pioneer_slam 40.38m 5.50m x 5.94m

Freiburg_pioneer_slam2 21.735m 4.98m x 5.34m

Freiburg_pioneer_slam3 18.135m 5.29m x 5.25m
TABLE II

HARDWARE SPECIFICATIONS

Computer type:
Processor:

System type:
Operating System:

ASUS STRIX laptop

with Intel core i7-6700HQ @ 2.60GHz x 8
64-bit operating system

Linux — Kubuntu 16.04 distribution

Real-time experiments were taken from the TUM RGB-D
data set [52], where a Pioneer 3AT robot with a Kinect RGB-D
sensor mounted in a front forward position was joysticked in
a large hole. Multiple instances of chairs and tables appeared
in the environment and were used as observations to perform
semantic SLAM. Recordings of experiments are provided with
the corresponding ground truth, which was used during the
training process. Table I summarizes the details about the three
trajectories taken from the data set.

The specifications of the computer used to conduct the
semantic SLAM experiments are listed in Table II.

The semantic SLAM algorithm was implemented using the
robot operating system (ROS) [53] Kinetic on Ubuntu 16.04.
The communication between the simulated/real hardware and
ROS was performed through RosAria and OpenNI for the
ground vehicle and the RGB-D sensor, respectively. The
system software was implemented in C++, where gtsam [54]
and its iISAM2 [48] implementation was used to perform
incremental smoothing and mapping, YOLO [25] was used
for object detection, openCV [55] and depth_image_proc were
used for processing RGB and depth images, respectively, and
point cloud library (PCL) [56] was used to process point
clouds.

B. Data Set Preparation

A total of 18 different simulated trajectories were generated
and used to construct the data set. Every estimated trajectory
was divided into smaller overlapping segments of length 30,
as described in Fig. 4. The ground truth, corresponding to the
last pose in each segment, is set as the target for that input
segment and is referred to as 7T = [x, y,z?]T. In simulated
experiments, the recorded odometry measurements, before
adding simulated noise, are set as the target. In real-time
experiments, ground-truth data were obtained from the data
set online.

The output of the network is an improved estimate of the
robot’s 2-D poses along the trajectory, where each pose is
denoted as Y = [x,, ye,ﬁe]T. It is worth mentioning that,
in the current version of the system, the reduction of pose
estimation error is done offline.

For the neural network to perform well, the data sets need to
be rescaled to a common range. To that end, all the collected

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

data were normalized to the range [0.05,0.95]. The reason
why this particular range is selected is to avoid the problem
of vanishing gradients that occurs when the neurons saturate,
i.e., reach the minimum or maximum value of the activation
function (0 and 1, respectively, for sigmoid), and, hence,
the derivative of the function at that point drops to values close
to zero. Using the same normalization parameters, predictions
were rescaled to the original data range.

Backpropagation [57] was used to train the network in a
supervised manner. The Adam optimizer was employed, with
a learning rate of 0.0001, to minimize the mean absolute
error, over 1000 training epochs. The batch size was set to
100. The building, training, and testing of the different neural
networks were done using Keras [58] with a Tensorflow back
end (version 2.0).

C. Performance Evaluation

In this section, the performance of the proposed stacked
LSTM will be compared with DNN, SNN, and SVM using
a set of simulated trajectories. The data sets were randomly
split into two parts: 80% for training and 20% for validation
to aid the model’s regularization.

To ensure fairness when comparing the proposed approach
to DNN, SNN, and SVM, a similar search strategy was
adopted to find the most suited architecture using the same
training data set. Fully connected SNNs with varying acti-
vation functions, including sigmoid, swish, ReLLU, linear and
tanh, and layer sizes set to 2" for m € [5, 9], were examined.
Along the same lines, fully connected DNNs with depths vary-
ing from two to six layers, layer sizes set to 2" for m € [5, 9],
and activation functions, including sigmoid, swish, ReLU,
linear, and tanh, were investigated. The SNN and DNN that
achieved the lowest mean ATE were selected to be compared
with the proposed approach. The SNN that performed the best
in terms of reducing pose estimation error had 512 neurons
in its single hidden layer and was activated using ReLU. The
DNN, on the other hand, had six hidden layers, each of size
256 neurons, and activated using sigmoid. The third regression
technique that will be compared against the proposed approach
is SVM. More particularly, varying structures of the epsilon
support vector regression model [59] were explored. Several
kernels, including linear, sigmoid, and polynomial with vary-
ing regularization and epsilon parameters, were tested. The
best performing SVM out of the tested pool was of a 5°
polynomial kernel. The predictions of these three models were
compared with that of the proposed stacked-LSTM approach,
as will be presented in the following.

Fig. 9 depicts nine different trajectories, along with which
the performance of the proposed approach is evaluated and
compared with the other alternatives. It is evident that the
proposed stacked LSTM was capable of identifying error
patterns in the input trajectories and significantly improving
them along all the depicted trajectories. DNN predictions have
also shown substantial improvements to the trajectories, yet
there are segments of the trajectories where DNN predic-
tions still suffered from errors. SNN predictions demonstrated
improvements at times, but, especially after turns in the

AZZAM et al.: STACKED LSTM-BASED APPROACH FOR REDUCING SEMANTIC POSE ESTIMATION ERROR

2502614

Semantic SLAM Stacked LSTM

SNN SVM Ground Truth @ Start Position

¥

]
0

6 77 758 &g

X(m) X(m)
(@) (O]
4 8
25 X2
2 e — 7
=
0 2 25 3 6
2 5
E E
> >
4 4
S :
8 2
-10 - 1
2 0 2 4 6 8 10 8 -1
X(m)
(€9)

Fig. 9.
(f) Trajectory 6. (g) Trajectory 7. (h) Trajectory 8. (i) Trajectory 9.

trajectory, predictions exhibited high fluctuations and, hence,
large ATE. SVM predictions were mostly less accurate than
the input trajectories generated by semantic SLAM, and hence,
no improvement to the ATE was observed.

Table III lists the mean ATE achieved by the stacked LSTM
network, SNN, DNN, and SVM along each trajectory. SVM
predictions have not shown any improvement to the mean ATE
along any of the nine trajectories. Stacked LSTM, SNN, and
DNN, on the other hand, were able to reduce the mean ATE
along all the trajectories. However, the proposed approach has
clearly outperformed all the other alternatives, by achieving
the lowest mean ATE along all the trajectories.

D. Performance Analysis on Publicly Available Data Sets

To further verify the applicability of the proposed appro-
ach, the training data set was extended to include more

Training and validation results on simulated trajectories. (a) Trajectory 1. (b) Trajectory 2. (c) Trajectory 3. (d) Trajectory 4. (e) Trajectory 5.

TABLE III

COMPARISON OF MEAN ATE (m) ACHIEVED ALONG THE
TRAJECTORIES IN FIG. 9

Semantic SLAM Stacked LSTM SNN DNN SVM
Trajectory 1 0.20 0.025 0.19 0.048 0.68
Trajectory 2 0.20 0.021 0.16 0.035 0.59
Trajectory 3 0.30 0.025 0.16 0.034 0.68
Trajectory 4 0.26 0.024 0.15 0.040 0.58
Trajectory 5 0.17 0.019 0.095 0.034 0.57
Trajectory 6 0.32 0.024 026 0.037 0.75
Trajectory 7 0.71 0.022 022 0.042 0.86
Trajectory 8 0.24 0.024 0.15 0.047 042
Trajectory 9 0.32 0.025 0.17 0.042 048

simulated and real-time experiments. The latter was taken
from publicly available data sets that are used as a benchmark
by the robotics community, particularly, Freiburg2_Pioneer_
SLAM, Freiburg2_Pioneer_SLAM?2, and Freiburg2_Pioneer_
SLAM3 from the TUM RGB-D data set [52]. These public

2502614 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021
10 10 3 — T
Ground Truth Ground Truth Stacked LSTM output ATE
Semantic SLAM | | gl Stacked LSTM | | 25+ Semantic SLAM output ATE | 4
2 L
6r —
- _ g
4r <
l L
20 05}
0 0 bl bl il dedinialy
15 0 2 4 6 8 10 12 0 2000 4000 6000 8000
X(m) X(m) Poses
Fig. 10. Simulated experiment—sample 1.
12 . " " ; ; 12 3
Ground Truth Ground Truth Stacked LSTM output ATE
10 Semantic SLAM | 4 10 Stacked LSTM | 4 2.5 Semantic SLAM output ATE | 4
8 2
_ _ e
§ § 6 E 15
<
4 1
2 0.5
0 0 it i ispes
12 0 2 4 6 8 10 12 0 1000 2000 3000 4000 5000 6000
X(m) Poses
Fig. 11. Simulated experiment—sample 2.
TABLE IV

data sets resemble a practical use-case scenario where a
ground vehicle performs a maneuver in an indoor environment,
populated with objects. The vehicle is equipped with wheel
encoders and an RGB-D sensor mounted in a front-forward
position, as described in Section IV-A. Vision measurements
and the concurrent odometry are passed to the semantic
SLAM system, which estimates the vehicles’ trajectory in the
environment. The process of acquiring and processing data is
vulnerable to several sources of error that hinder the accu-
racy of the estimated trajectory. To reduce such inaccuracies,
the trajectory is passed to the stacked-LSTM neural network,
which, in turn, identifies and reduces pose estimation errors.
The trajectory is divided into small overlapping segments,
as depicted in Fig. 4 and described in Section III-B. Each
pose along the trajectory is corrected based on the vehicles
preceding poses. In the current version, the correction is done
offline. The same process is applicable to any 2-D SLAM
estimate.

The training data set, including all the simulated and
real-time trajectories, was divided into three parts: 70% for
training, 15% for validation, and 15% for testing. The training
set will be used to optimize the weights of the network
during the training process. The performance of the neural
network on the validation set will be used to further update
the network’s weights after every training epochs. Finally,
an unbiased evaluation of the network will be obtained using

MEAN ATE (m) ACHIEVED BY THE PROPOSED APPROACH ON
THE TRAINING, VALIDATION, AND TESTING DATA SETS

Validation set
0.66
0.026

Training set
0.65
0.021

Testing set
0.66
0.025

Input mean ATE (m)
Output mean ATE (m)

the testing set. Table IV lists the mean ATE that the proposed
approach achieved on the training, validation, and testing sets.
It is evident that the stacked LSTM was able to identify and
significantly reduce the error patterns along the trajectories in
the data set. The mean ATE on the testing data set, which
was not exposed to the network during training, dropped
from 65 to 2 cm. This proves the validity of the proposed
approach on simulated and real-time experiments. Examples of
trajectories from simulated and real-time experiments are
depicted in Figs. 11-15. The leftmost plot in each figure shows
the ground-truth trajectory and the trajectory estimated by
semantic SLAM. The middle plot shows the output of the
proposed approach compared with the ground-truth trajectory.
The rightmost plot depicts the ATE along the trajectory for
both the input to the network and its output. Fig. 15 depicts
the regression plot of the variable ¥ for the sequence depicted
in Fig. 14. Pearson’s regression coefficient R is equal to
0.99996, as shown in the plot. The regression plot for ¥ in
other sequences is very similar.

AZZAM et al.: STACKED LSTM-BASED APPROACH FOR REDUCING SEMANTIC POSE ESTIMATION ERROR

2502614

4 " 4 3
Ground Truth Ground Truth Stacked LSTM output ATE
37 Semantic SLAM | | 37 Stacked LSTM 25 Semantic SLAM output ATE |
2 2
2
~ 1t ~ 1t g
;E’ § E 1.5
or or <
1
-1 -1
2t 2t 0.5 1
3 L L L L 3 L L . L 0 IN LNM AL D it L W
-4 -2 0 2 -4 3 -2 -1 0 1 2 0 200 400 600 800 1000
X(m) X(m) Poses
Fig. 12. Real-time experiment—Freiburg2_Pioneer_SLAM sequence.
3 " 3 3
Ground Truth Ground Truth Stacked LSTM output ATE
2F Semantic SLAM | A 2F Stacked LSTM 2.5 Semantic SLAM output ATE |
Ir 1r 2
~ ~ E
§ 0 § 0 D15
<
-1 -1 1
2 2 0.5
3 ‘ ‘ ‘ ‘ ‘ 3 ‘ ‘ ‘ ‘ 0 J N
-3 2 -1 0 1 2 3 -3 2 -1 0 1 2 3 0 200 400 600 800 1000
X(m) X(m) Poses
Fig. 13. Real-time experiment—Freiburg2_Pioneer_SLAM?2 sequence.
3
3 Ground Truth 3 Ground Truth Stacked LSTM output ATE
Semantic SLAM Stacked LSTM 2.5 Semantic SLAM output ATE |
2 2)
~ ~ E
s s s
<
0 0)
-1 -1 05
20 . 21 0 sl eath ek
-3 -2 -1 0 1 2 -3) -1 0 1 2 0 200 400 600 800 1000
X(m) X(m) Poses

Fig. 14. Real-time experiment - Freiburg2_Pioneer_SLAM3 sequence.

The proposed stacked-LSTM-based approach can generalize
well and is robust to input perturbations. However, the network
may be fine-tuned to learn new noise models that were never
exposed to the network during training and, hence, be able to
recognize a wider variety of pose estimation errors. A portion
of the data obtained from the new environment can be used to
fine-tune the network, which will then be able to reduce pose
estimation error along trajectories recorded under the same
conditions. If the training data set consists of a wide range of
error patterns, the neural network will have more potential to
perform error reduction along previously unseen trajectories.

A possible use-case scenario of the proposed approach is in
search-and-rescue applications. A robot’s mission could be to
find victims in a collapsed structure and then notify the rescue
teams of the victim’s location. While performing semantic
SLAM, the robot can navigate in the environment, and once
a victim is found, the robot’s trajectory is communicated
to the rescue team. This trajectory is first refined, using
the proposed stacked-LSTM-based noise reduction approach,
to pinpoint the robot’s position accurately. This will help
the human responders to arrive at the location in a shorter
time.

2502614

TABLE V
INPUT AND OUTPUT MEAN ATE (m)

Input mean ATE (m) Output mean ATE (m)

Simulated Trajectory 1 (Fig. 10) 1.59 0.051
Simulated Trajectory 2 (Fig. 11) 0.53 0.041
Freiburg2_Pioneer_SLAM Trajectory (Fig. 12) 1.11 0.057
Freiburg2_Pioneer_SLAM?2 Trajectory (Fig. 13) 0.69 0.048
Freiburg2_Pioneer_SLAM3 Trajectory (Fig. 14) 0.52 0.042

: R=0.99996

Output (rad)

! ! ! ! !

-3 -2 -1 0 1 2
Target (rad)

Fig. 15. Regression plot for the orientation variable ¥ for the Freiburg
Pioneer_SLAM3 sequence.

Another use-case scenario of the proposed approach can
be seen in applications that require the robot to map its
surrounding environment. After the robot gathers the required
visual information from the environment, its trajectory is
estimated using semantic SLAM and then passed to the pro-
posed stacked-LSTM-based neural network for possible error
identification and reduction. Reprojecting visual observations
along the corrected trajectory will result in a more accurate and
reliable map of the environment compared with that obtained
directly from the solver.

V. CONCLUSION

The error in estimating vehicle and landmark poses signifi-
cantly hiders the success of semantic SLAM and its usability
in high-accuracy critical applications. Several predictable and
unpredictable sources of uncertainties contribute to forming
such error, including landmark local pose estimation, object
detection, incorrect data association, visual sensor noise, and
odometry drift. The work proposed in this article employs a
novel, general, and efficient deep learning approach to enhance
the robustness of semantic SLAM, by reducing the combined
effect of such errors on the trajectory estimation. A stacked
LSTM-based neural network was developed after conducting
an extensive search among different neural network types

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

and hyperparameters. The architecture was adopted based
on the network’s ability to capture various error patterns
and significantly decrease the estimation error. Simulated and
real-time experiments, including three sequences from the
TUM RGB-D data set, were used to measure the performance
of the proposed approach. The results have proven the ability
of the proposed approach to successfully identify and reduce
pose estimation errors resulting from multiple factors in the
semantic SLAM pipeline. The performance of the neural
network was quantified using the mean ATE. It was compared
with that of SNN, DNN, and SVM on several test sets, and the
maximum estimation error reduction was evidently achieved
by the proposed approach.

The capability of the proposed approach to generalize well
to new semantic SLAM trajectory estimates relies heavily on
the training data set. The data set should include samples col-
lected from different environments, under varying conditions,
and using various sets of sensors. If the network is exposed to
a wide range of error patterns during training, it will have
a higher potential to perform error reduction in previously
unseen trajectories.

The work presented in this article can be extended to 3-D
SLAM that applies to a wider range of robotic vehicles,
such as aerial vehicles. In such a case, the neural network
will be expected to predict more variables and account for
various noise models. It can also be integrated into the online
SLAM algorithm, and hence, error reduction will be performed
right after computing a new SLAM estimate, making it more
efficient.

REFERENCES

[1] C. Cadena et al., “Past, present, and future of simultaneous localization
and mapping: Toward the robust-perception age,” IEEE Trans. Robot.,
vol. 32, no. 6, pp. 1309-1332, Dec. 2016.

[2] X. Chen, H. Zhang, H. Lu, J. Xiao, Q. Qiu, and Y. Li, “Robust SLAM
system based on monocular vision and LiDAR for robotic urban search
and rescue,” in Proc. IEEE Int. Symp. Saf., Secur. Rescue Robot. (SSRR),
Oct. 2017, pp. 41-47.

[3] A. Denker and M. C. Iseri, “Design and implementation of a semi-
autonomous mobile search and rescue robot: SALVOR,” in Proc. Int.
Artif. Intell. Data Process. Symp. (IDAP), Sep. 2017, pp. 1-6.

[4] J. Casper and R. R. Murphy, “Human-robot interactions during the
robot-assisted urban search and rescue response at the world trade
center,” IEEE Trans. Syst., Man, Cybern., B (Cybern.), vol. 33, no. 3,
pp- 367-385, Jun. 2003.

[5] A. Pfrunder, P. V. K. Borges, A. R. Romero, G. Catt, and A. Elfes,
“Real-time autonomous ground vehicle navigation in heterogeneous
environments using a 3D LiDAR,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2017, pp. 2601-2608.

[6] D. Ramadasan, M. Chevaldonne, and T. Chateau, “Real-time SLAM
for static multi-objects learning and tracking applied to augmented
reality applications,” in Proc. IEEE Virtual Reality (VR), Mar. 2015,
pp. 267-268.

[71 Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20
years: A survey,” 2019, arXiv:1905.05055. [Online]. Available:
http://arxiv.org/abs/1905.05055

[8] S. Soetens, A. Sarris, and K. Vansteenhuyse, “Pose estimation errors,
the ultimate diagnosis,” Eur. Space Agency, (Special Publication) ESA
SP, vol. 1, no. 515, pp. 181-184, 2002.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436444, May 2015.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-

wise training of deep networks,” in Proc. Adv. Neural Inf. Process. Syst.,

no. 1, pp. 153-160, 2007.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

[10]

(11]

AZZAM et al.: STACKED LSTM-BASED APPROACH FOR REDUCING SEMANTIC POSE ESTIMATION ERROR

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84-90, May 2017.

C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical
features for scene labeling,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1915-1929, Aug. 2013.

A. Garcia-Perez, F. Gheriss, D. Bedford, A. Garcia-Perez, F. Gheriss,
and D. Bedford, “Going deeper with convolutions,” in Designing and
Tracking Knowledge Management Metrics. 2019, pp. 163—182.

S. Wang, R. Clark, H. Wen, and N. Trigoni, “End-to-end, sequence-
to-sequence probabilistic visual odometry through deep neural net-
works,” Int. J. Robot. Res., vol. 37, nos. 4-5, pp.513-542,
Apr. 2018.

M. K. Al-Sharman, Y. Zweiri, M. A. K. Jaradat, R. Al-Husari, D. Gan,
and L. D. Seneviratne, “Deep-learning-based neural network train-
ing for state estimation enhancement: Application to attitude esti-
mation,” [EEE Trans. Instrum. Meas., vol. 69, no. 1, pp. 24-34,
Jan. 2020.

V. Peretroukhin and J. Kelly, “DPC-net: Deep pose correction for visual
localization,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2424-2431,
Jul. 2018.

R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,” IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255-1262, Oct. 2017.

J. Engel, T. Schops, and D. Cremers, “LSD-SLAM: Large-Scale Direct
monocular SLAM,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (Lecture Notes in Computer Science), vol. 8690. 2014,
pp. 834-849.

R. Gomez-Ojeda, F.-A. Moreno, D. Zuniga-Noel, D. Scaramuzza, and
J. Gonzalez-Jimenez, “PL-SLAM: A stereo SLAM system through the
combination of points and line segments,” IEEE Trans. Robot., vol. 35,
no. 3, pp. 734-746, Jun. 2019.

G. Costante, M. Mancini, P. Valigi, and T. A. Ciarfuglia, “Explor-
ing representation learning with CNNs for frame-to-frame ego-motion
estimation,” IEEE Robot. Autom. Lett., vol. 1, no. 1, pp. 18-25,
Jan. 2016.

D. Eigen and R. Fergus, “Predicting depth, surface normals and
semantic labels with a common multi-scale convolutional architec-
ture,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 2650-2658.

C. Cadena, A. Dick, and I. D. Reid, “Multi-modal auto-encoders as joint
estimators for robotics scene understanding,” in Robotics: Science and
Systems, vol. 12. 2016.

A. Kendall, M. Grimes, and R. Cipolla, “PoseNet: A convolutional
network for real-time 6-DOF camera relocalization,” in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 2938-2946.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. CVPR, Jun. 2016,
pp. 779-788.

Y. Konishi, Y. Hanzawa, M. Kawade, and M. Hashimoto, SSD: Single
Shot MultiBox Detector, vol. 1. Springer, 2016, pp. 398—413.

J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and
S. Birchfield, “Deep object pose estimation for semantic robotic grasping
of household objects,” 2018, arXiv:1809.10790. [Online]. Available:
http://arxiv.org/abs/1809.10790

S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, “Proba-
bilistic data association for semantic SLAM,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2017, pp. 1722-1729.

B. Mu, S.-Y. Liu, L. Paull, J. Leonard, and J. P. How, “SLAM with
objects using a nonparametric pose graph,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Oct. 2016, pp. 4602-4609.

P. Nazemzadeh, D. Fontanelli, D. Macii, and L. Palopoli, “Indoor
localization of mobile robots through QR code detection and dead
reckoning data fusion,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 6,
pp. 2588-2599, Dec. 2017.

P. Ozog and R. M. Eustice, “On the importance of modeling camera
calibration uncertainty in visual SLAM,” in Proc. IEEE Int. Conf. Robot.
Autom., May 2013, pp. 3777-3784.

J. H. Park, Y. D. Shin, J. H. Bae, and M. H. Baeg, “Spatial uncertainty
model for visual features using a Kinect sensor,” Sensors, vol. 12, no. 7,
pp. 8640-8662, 2012.

N. Siinderhauf et al., “The limits and potentials of deep learning
for robotics,” Int. J. Robot. Res., vol. 37, nos. 4-5, pp. 405420,
Apr. 2018.

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]
[56]

[57]

[58]

2502614

J. Hidalgo-Carrio, D. Hennes, J. Schwendner, and F. Kirchner, “Gaussian
process estimation of odometry errors for localization and map-
ping,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017,
pp. 5696-5701.

A. Rao and W. Han, “An adaptive Gaussian particle filter based
simultaneous localization and mapping with dynamic process model
noise bias compensation,” in Proc. IEEE 7th Int. Conf. Cybern. Intell.
Syst. (CIS) IEEE Conf. Robot., Autom. Mechatronics (RAM), Jul. 2015,
pp- 210-215.

V. Magnago, L. Palopoli, R. Passerone, D. Fontanelli, and D. Macii,
“Effective landmark placement for robot indoor localization with posi-
tion uncertainty constraints,” [EEE Trans. Instrum. Meas., vol. 68,
no. 11, pp. 4443-4455, Nov. 2019.

H. Liu, E Sun, B. Fang, and X. Zhang, “Robotic room-level localization
using multiple sets of sonar measurements,” IEEE Trans. Instrum. Meas.,
vol. 66, no. 1, pp. 2-13, Jan. 2017.

M. Zhang, X. Xu, Y. Chen, and M. Li, “A lightweight and
accurate localization algorithm using multiple inertial measurement
units,” [EEE Robot. Autom. Lett., vol. 5, no. 2, pp. 1508-1515,
Apr. 2020.

K. Liu, K. Ok, W. Vega-Brown, and N. Roy, “Deep inference for covari-
ance estimation: Learning Gaussian noise models for state estimation,” in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 1436-1443.
M. Brossard, A. Barrau, and S. Bonnabel, “AI-IMU dead-
reckoning,” IEEE Trans. Intell. Vehicles, early access, Mar. 13, 2020,
doi: 10.1109/TTV.2020.2980758.

M. Heshmat, M. Abdellatif, and H. Abbas, “Improving visual SLAM
accuracy through deliberate camera oscillations,” in Proc. IEEE Int.
Symp. Robotic Sensors Environments (ROSE), Oct. 2013, pp. 154-159.
S. Chen and C. Chen, “Probabilistic fuzzy system for uncertain localiza-
tion and map building of mobile robots,” IEEE Trans. Instrum. Meas.,
vol. 61, no. 6, pp. 1546-1560, Jun. 2012.

H. Hur and H. S. Ahn, “Unknown input Hso observer-based localization
of a mobile robot with sensor failure,” IEEE/ASME Trans. Mechatronics,
vol. 19, no. 6, pp. 1830-1838, Dec. 2014.

J.-W. Yoon and T. Park, “Maximizing localization accuracy via self-
configurable ultrasonic sensor grouping using genetic approach,” IEEE
Trans. Instrum. Meas., vol. 65, no. 7, pp. 1518-1529, Jul. 2016.

J. Toledo, J. Pifieiro, R. Arnay, D. Acosta, and L. Acosta, “Improving
odometric accuracy for an autonomous electric cart,” Sensors, vol. 18,
no. 2, p. 200, Jan. 2018.

M. Brossard and S. Bonnabel, “Learning wheel odometry and IMU
errors for localization,” in Proc. Int. Conf. Robot. Autom. (ICRA),
May 2019, pp. 291-297.

J. Czarnowski, T. Laidlow, R. Clark, and A. J. Davison, “DeepFactors:
real-time probabilistic dense monocular SLAM,” IEEE Robot. Autom.
Lett., vol. 5, no. 2, pp. 721-728, Apr. 2020.

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “ISAM2: Incremental smoothing and mapping using the
bayes tree,” Int. J. Robot. Res., vol. 31, no. 2, pp. 216-235, Feb. 2012.
C. V. Nguyen, S. Izadi, and D. Lovell, “Modeling kinect sensor noise
for improved 3D reconstruction and tracking,” in Proc. 2nd Int. Conf.
3D Imag., Model., Process., Vis. Transmiss., Oct. 2012, pp. 524-530.
O Wasenmiiller and D. Stricker, “Comparison of kinect vl and v2
depth images in terms of accuracy and precision,” in Proc. Asian Conf.
Comput. Vis., vol. 1, 2017, pp. 277-289.

B. Zoph and Q. V. Le, “Searching for activation functions,” in
Proc. 6th Int. Conf. Learn. Represent., ICLR Workshop Track, 2018,
pp. 1-13.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A benchmark for the evaluation of RGB-D SLAM systems,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2012,
pp- 573-580.

A. Koubaa, Ed., Robot Operating System (ROS): The Complete Ref-
erence (Studies in Computational Intelligence), vol. 3. Springer, 2018,
p. 778.

F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Tech. Rep., 2012, pp. 1-26.

G. Bradski, “The OpenCV library,” Dr. Dobb’s J. Softw. Tools, to be
published.

R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),” in
Proc. IEEE Int. Conf. Robot. Autom., May 2011, pp. 1-4.

G. E. Hinton, “Reducing the dimensionality of data with neural net-
works,” Science, vol. 313, no. 5786, pp. 504-507, Jul. 2006. [Online].
Available: https://science.sciencemag.org/content/313/5786/504

F. Chollet et al. (2015). Keras. [Online]. Available: https://keras.io

http://dx.doi.org/10.1109/TIV.2020.2980758

2502614

[59] M. H. Law and J. T. Kwok, “Bayesian support vector regression,” in
Proc. 8th Int. Workshop Artif. Intell. Statist., Key West, FL, USA, 2001,
pp. 239-244.

Rana Azzam received the B.Sc. degree in com-
puter engineering and the M.Sc. degree in research
in electrical and computer engineering from Khal-
ifa University, Abu Dhabi, United Arab Emirates,
in 2014 and 2016, respectively, where she is cur-
rently pursuing the Ph.D. degree in electrical and
computer engineering with a focus on robotics with
the KU Center for Autonomous Robotic Systems
’ (KUCARS).
/\ Her current research interests include artificial
) intelligence and deep learning, and mobile robots
simultaneous localization and mapping (SLAM).

Yusra Alkendi received the M.Sc. degree in
mechanical engineering from Khalifa University,
Abu Dhabi, United Arab Emirates, in 2019, where
she is currently pursuing the Ph.D. degree in
aerospace engineering with a focus on robotics
with the Khalifa University Center for Autonomous
Robotics Systems (KUCARS).

Her current research is focused on the application
of artificial intelligence (AI) in the fields of dynamic
vision for perception and navigation.

Tarek Taha received the M.Eng. degree in computer
control and the Ph.D. degree from the Centre of
Excellence for Autonomous Systems (CAS), Univer-
sity of Technology Sydney, Ultimo, NSW, Australia,
in 2004 and 2012, respectively.

He worked as a Senior Mechatronics Engineer in
a Sydney-based engineering research and develop-
ment company from 2008 to 2013, before joining
Khalifa University, Abu Dhabi, United Arab Emi-
rates, in 2014. He then led the Autonomous Aerial
Lab, Algorythma, before joining the Dubai Future
Foundation, Dubai, United Arab Emirates, to lead the Robotics Lab. His
research interests include autonomous exploration, navigation, and mapping;
machine vision; human-robot interaction; and assistive robotics and artificial
intelligence.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

Shoudong Huang (Senior Member, IEEE) received
the bachelor’s and master’s degrees in mathematics
and the Ph.D. degree in automatic control from
Northeastern University, Shenyang, China, in 1987,
1990, and 1998, respectively.

He is currently an Associate Professor with the
Centre for Autonomous Systems, Faculty of Engi-
neering and Information Technology, University of
Technology Sydney, Ultimo, NSW, Australia. His
research interests include mobile robots simultane-
ous localization and mapping (SLAM), exploration

and navigation, and nonlinear system state estimation and control. He has
published more than 150 articles in the robotics and control area.

Dr. Huang has been serving as an Associate Editor for the IEEE TRANS-
ACTIONS ON ROBOTICS and an Editor for the IEEE/RSL International
Conference on Intelligent Robots and Systems (IROS) Conference Paper
Review Board.

Yahya Zweiri (Member, IEEE) received the Ph.D.
degree from the King’s College London, London,
U.K., in 2003.

He was involved in defense and security research
projects in the last 20 years with the Defence Science
and Technology Laboratory, King’s College London,
and the King Abdullah II Design and Develop-
ment Bureau, Amman, Jordan. He is currently the
School Director of the Research and Enterprise,
Kingston University London, London, U.K. He is
also an Associate Professor with the Department of
Aerospace, Khalifa University, Abu Dhabi, United Arab Emirates. He has
published over 100 refereed journal articles and conference papers and
filed six patents in the USA and U.K. in the unmanned systems field. His
research interests include interaction dynamics between unmanned systems
and unknown environments by means of deep learning, machine intelligence,
constrained optimization, and advanced control.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

