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ABSTRACT 
Since the FDA approval of Spritam, there has been a growing interest in the application of 3D printing in 

pharmaceutical science. 3D printing is a method of manufacturing involving the layer-by-layer deposition 

of materials to create a final product according to a digital model. There are various techniques used to 

achieve this method of printing including the SLS, SLA, FDM, SSE and PB-inkjet printing. In 

biomanufacturing, bone and tissue engineering involving 3D printing to create scaffolds, while in 

pharmaceutics, 3D printing was applied in drug development,  and the fabrication of drug delivery devices.  

This paper aims to review the use of some 3D printing techniques in the fabrication of oral solid dosage 

forms. FDM , SLA  SLS , and PB-Inkjet printing processes were found suitable for the fabrication of oral 

solid dosage forms, though a great deal of the available research was focused on fused deposition 

modelling due to its availability and flexibility.  Process parameters as well as strategies to control the 

characteristics of printed dosage forms are analysed and discussed. The review also presents the 

advantages and possible limitations of 3D printing of medicines. 
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1. Introduction 
Although not a new concept, 3D printing or additive manufacturing has discovered a wide range of uses 

in various industries. It is a technique using solid free form fabrication that has found useful applications,  

such as in satellite and jet engines (1), unmanned aerial vehicles  (2), sensors   (3), tailor-made implants   

(1) (2) and scaffolds  (3)  (4) for patients in need of bone or tissue regeneration. 3D printing has been used 

to produce prosthetics, medical devices, and artificial organs (5) (4,6). In recent years, 3D printing has 

generated growing interest in the pharmaceutical field where it has been used to fabricate different drug 

delivery systems and dosage forms, which have been referred to in recent reports as printlets 

Formatting... please wait  (7) (8) (9) . Oral solid dosage forms are the most commonly used forms of 

medications not only because they are simple to manufacture and have nearly accurate dosing, but also 

due to their easy and painless administration that can be achieved without the need for a health care 

professional (10). Oral solid dosage forms therefore generate good adherence and compliance hence 

good patient outcome. 3D printing of oral dosage forms has been widely investigated in  pharmaceutical 

manufacturing  (11).  

3D printing is based on the layer-by-layer concept in the fabrication of objects, which are digitally 

designed. The technology was able to process wide range of materials such as polymers (12), ceramics 

(13), metals (14-18), wood  (19) and organic tissue  (20). 3D objects can also be generated from the 

predefined transformation of smart materials in response to external stimuli through a process, which has 

come to be referred to as 4D printing. External stimuli such as heat, pH, light or magnetic field could be 

used to cause transformations such as changes in geometry and function to give programmable materials  

(21). 3D printing provides novel advantages compared to traditional pharmaceutical processes that 

involve powder preparation, milling, blending, granulation, and compression (22), which lack 

manufacturing flexibility and process capability. It also brings many possibilities for pharmaceutics, such 

as production of personalized, complex and made-on-demand products  (23) . The working principle of 

most  3D printing technologies are very similar. First, the product design, geometry and part sizes are 

generated using a CAD software, converted into a machine-readable format and sliced into printable 

layers. Raw materials are processed into powder, filaments, or binder solutions to be deposited in a layer-

by-layer system to create the physical objects. Finally, certain products may require some form of post-

processing treatment usually involving the removal of support or excess materials. Drug product 

manufacturing makes use of several 3D printed methods depending on raw material, equipment, and 

solidification process (24). Some 3D printing technologies in Table 1 and have been used by the 
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pharmaceutical industry. This paper presents an extensive review on the use of  3D printing technologies 

for the fabrication of oral solid dosage forms  using SLS, SLA, FDM, and PB inkjet printing techniques. The 

general processing concept, potentials, and challenges of each 3D printing tool is analysed and discussed.  

 

Table 1: 3D printing techniques used for the fabrication of oral medicines  

3D Printing technique Consolidation 

source 

Material form Basic consolidation mechanism  

Selective Laser Sintering Laser beam 

 e.g. CO2 Laser  

Powders  Powder is deposited in successive 

layers on a build platform and  fully 

or partially melted with the aid of a 

laser beam.  (25) . 

Stereolithography UV beam Resins  Photocurable liquid resins are 

polymerized by focusing of a UV 

beam on designated paths to cure 

the selected resin areas by 

crosslinking  (26)  

Fused Deposition Modelling Heated nozzle Filaments  Thermoplastic polymer filaments 

are passed through a heated nozzle 

to produce melted polymer matrix 

which is deposited in layers onto a 

build platform  (27) 

Powder bed-Inkjet  Binder/thermal 

energy 

Powders  Layers of materials , usually powder 

are deposited onto a build plate and 

subsequently consolidated using a 

binder solution often referred to as 

ink (28)  
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2. Selective Laser Sintering (SLS) 
SLS  is a 3D printing technology whereby a laser beam is used to fuse particles of powder layer-by-layer 

(Figure 1). Similar to all powder bed 3D printing processes, the concept of selective laser sintering is based 

on the spread of layers of powder of 0.05 to 0.3mm thickness followed by the selective laser beam 

scanning of each layer  (29). The sintered powder creates the part or final structure, whereas the un-

sintered excess acts as the support structure, which is removed by post-printing processing  (30) . SLS has 

many advantages since it is a one-step process. Moreover, the use of additives to bind the object replaces 

the use of the laser, which also provides higher resolution due to low wavelength, making it not only cost 

effective but also eco-friendly and time efficient. However, the high temperature of the process due to 

the laser’s energy may cause the degradation of the active ingredient within the powder (31) (32) 

Formatting... please wait. 

 

Figure 1: - Schematic diagram of selective laser sintering showing the different parts of SLS including 

powder roller, laser beam source, laser scanner and fabrication piston. 
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2.1. Materials used for Selective Laser Sintering 
The starting materials used in SLS must be in form of powder with suitable flow characteristics to allow 

easy deposition of thin layers. The particle size of powder is typically below 180µm (33). SLS  processes a 

wide range of materials including ceramics, polymers, metal, and alloys. The process has shown that it 

cannot only be used to process powder mixed with a low melting temperature material, which can serve 

as a binder, but also has the ability to cause sintering without the need of a binder (14). The sintering 

mechanisms that occurs in selective laser sintering depend on the material used and the desired 

mechanical properties. These mechanisms include solid state sintering used to process ceramic and 

metallic powders and  liquid phase sintering  used in composite materials  (34). Polymers such as 

polyamide, polystyrene, and polycarbonate are the most widely processed materials in SLS  (35)  (29) 

 Factors such as bioavailability, biodegradability and biocompatibility of the powder are of great 

importance in the field of biomedical and pharmaceutical sciences. Two biodegradable thermoplastic 

polymers PCL  and PLLA  were studied by Leong et al  (36), for the fabrication of controlled release tablets. 

The PLLA powder used in this study would not sinter at a low laser power and led the researchers  to 

increase laser power until sintering occurred at 12W. A study by Fina et al  (31), demonstrated the use of 

Kollicoat and Eudragit polymers to formulate tablets because of their pharmaceutical characteristics as 

well as their immediate and modified release profile. The authors used Candurin Gold Sheen mixed  with 

the two materials to help in the printing process. It was shown that, although the laser beam had no 

degradation effect on the Kollicoat/Eudragit-paracetamol powder blends, the addition of Candurin Gold 

sheen to the mixture improved absorption of the laser energy to improve the print ability. Other 

pharmaceutical grade polymers explored include Kollidon and HPMC  (9). A Summary of different 

materials processed by SLS for the manufacturing of oral dosage forms is in Table 2. 

Table 2: - Summary of different polymers used in manufacturing of oral dosage forms using SLS 

Polymer Active ingredient Material(s) added Printing temperature(°C) 

Kollicoat IR (31)  Paracetamol  Candurin® Gold Sheen 90-110 

Eudragit L100-55 (31)  Paracetamol  Candurin® Gold Sheen 90-110 

Polyethylene Oxide (7) Paracetamol Candurin® Gold Sheen 35-50 

Ethyl Cellulose (7) Paracetamol Candurin® Gold Sheen 100-120 

Eudragit RL (7)  Paracetamol Candurin® Gold Sheen 65-85 

HPMC (9) Paracetamol Candurin® Gold Sheen 115-135 
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Kollidon® (9)  Paracetamol Candurin® Gold Sheen 80-100 

Polycaprolactone (36)  Methylene Blue  40 

Poly lactic acid (36) Methylene Blue  60 

 

 

2.2.  Characteristics of Sintered Printlets 
Studies carried out on SLS are mostly geared towards engineering applications while development in the 

area of biomedical science especially tissue engineering or production of DDDs has been less significant. 

To design an SLS printed dosage form, it is important to identify significant parameters, as there are 

several variable process parameters involved in selective laser sintering relating to the powder mean 

diameter,  size distribution, density, layer thickness, binder ratio fraction, and the laser scan speed, power, 

spot size and absorbed energy  (25). The identification of significant parameters and the effect of their 

interaction is necessary for process optimization. Properties of sintered parts affected by printing 

variables include  porosity, yield strength, hardness, surface roughness, and layer thickness. Leong et al  

(36)  investigated the influence of three critical parameters; laser power, laser scan speed, and part bed 

temperature on creating dense wall formation and porous infill of biomedical materials. These parameters 

were used to control the porosity of SLS printed circular discs made for controlled drug delivery by zero-

order release. The objective was to create a disc with two concentric circular regions of varying porosity; 

dense outer region for barrier effect and a porous inner region for drug encapsulation. The study used 

powder blends from two biodegradable thermoplastic polymers; PCL  and PLLA  while Methylene Blue 

(MB) used as a model drug. The results showed that the increase in bed temperature and laser power led 

to a decrease in porosity, while increase in scan speed led to an increase in porosity. After the optimization 

process to obtain porosity above 50%, the parameters chosen for PLLA disc were 60ºC part bed 

temperature, 1270mm/s scan speed and 12W laser power as no sintering was observed on PLLA powder 

at the laser power of 11W and below.  For the PCL disc, 40ºC bed temperature, 5080mm/s scan speed and 

4W and 3W laser power for outer and inner regions respectively were preferred. The final built samples 

evaluated by TGA, DSC and FTIR showed sintering of SLS did not affect the PCL-MB characteristics, 

properties or chemical composition. Thus, it was concluded that this technique has the potential to 

manufacture promising devices for drug delivery and that controlling printing variables is essential to 

control the properties of the printed parts. The above study reported no drug release studies of the DDD, 

however in order to control the rate of release of the device, concentric rings separated from a wall were 
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created to act as diffusion obstacles. This approach was expected to prevent the so-called ‘initial burst’, 

characterised by the release of more than the desired drug concentration when the device is placed in a 

medium for the first time. 

The first report on the use of SLS in the preparation of drug dosage forms for oral use was in 2017 and 

explored the drug release properties of printed tablets (31) . The study investigated the feasibility of 

employing SLS printing for the fabrication of solid oral medicines using thermoplastic polymers. For this 

purpose, Kollicoat IR and Eudragit L100-55 polymers were selected and separately mixed with 5, 20 and 

35% w/w paracetamol resulting in six final formulations to be printed into tablets. The measured porosity 

of printed tablets showed that while Kollicoat porosity was similar for all drug loading, Eudragit porosity 

seemed to reduce with increased drug load. SEM images showed more sintered/melted areas were 

generated within the printlets with increase in drug loading suggesting that the increase in drug content 

produced more sintering of particles and less porous tablets (Figure 2). 

 

Figure 2: (a) SEM images of vertical sections of Kollicoat printlets (top) and Eudragit printlets (bottom) 

showing the effect of increasing drug load (left to right) on the porosity of printlets  (b) drug dissolution  

profiles from  Kollicoat printlets  at 5, 20 and 35% drug loading (K5,K20 and K35) (31)  Formatting... 

please wait 

 An important consideration in the assessment of feasibility of fabrication of dosage form by SLS printing 

is the effect of laser beams on drug stability. No sign of significant degradation among the printlets was 

found as evidenced by the high percentage drug loading similar to the theoretical drug loading and the 

presence of only paracetamol peak on the HPLC chromatogram. The printed tablets also showed low 

friability values (below 1%) making them compliant with the pharmacopeia standard.  Additionally, 

(b) (a) 
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dissolution tests were run for the six formulations. In the case of Kollicoat, complete and faster drug 

release was reached in 2 hours for the formulation with 5% paracetamol in comparison with the 10 hours 

required to dissolve the formulations with 20% and 35% paracetamol. Fina et al provided basis for SLS to 

being a promising tool, opening the door for this technology to be further researched in relation to the 

pharmaceutical field and its potential to produce personalized medicines  (31). Developments in the form 

of fabricating tablets with enhanced drug release characteristics was published again by Fina et al. in a 

study that aimed to produce orally disintegrating tablets. HPMC E5 and Kollidon® VA 64 were used to 

create oral solid dosage forms combined separately with 5% of paracetamol. Different scanning speeds 

(100 mm/s; 200 mm/s; 300 mm/s) were studied on their effect to modify release characteristics of the 3D 

printed tablets and the results seemed to confirm the inverse relationship between laser scan speed and 

porosity as well as their effect on drug release  (36). At a scanning speed of 100 mm/s, particles were 

partially fused together whereas when the speed was increased, particles were mostly loose. Moreover, 

HPMC particles fabricated at 100 mm/s, 200 mm/s and 300 mm/s showed complete dissolution rates at 

4, 3 and 2 hours  respectively. Kollidon tablets presented faster dissolution times, 60 min and 10min, 

depending on the laser speed. As a conclusion, the study suggests that increasing the laser scanning leads 

to a reduction of particles sintering and consequently, a higher overall porosity, which facilitates 

dissolution  (9) 

3. Stereolithography 
Stereolithography is a 3D printing method that involves the layer-by-layer solidification via polymerization 

of liquid resin by a light beam (Figure 3). An ultraviolet or other light source when focused on a tank filled 

with a photosensitive resin causes crosslinking and forms a polymeric matrix  (24). The platform is lowered 

after the curing of each layer and a new layer of uncured polymer resin is deposited on thetop of the 

cured layer for the next curing in a bottom-to-top build approach, see Figure 3. An alternative approach 

involves the curing of resin layer through a transparent plate in the bottom of the resin tray by a light 

source from below. After each layer curing, the platform is raised, and uncured resin is allowed to fill the 

space between the platform and plate allowing subsequent layers to be cured in a top-down approach.  

During crosslinking reaction of resins, the power of the light source, speed of scanning and the quantity 

of monomer and photoinitiator determine the kinetics, which in turn influence the thickness of cured 

layer as well as the time of curing  (37).  Advantages of this printing method include high resolution and 

speed of printing (38), as well as reduced localized heating making it suitable for the printing of 

thermolabile drugs  (26). In addition, the high-resolution capabilities of stereolithography enabled the 
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technique to be used in the fabrication of microneedles patches with high quality similar to those 

fabricated microfabrication techniques such as soft lithography (39), though it was originally used to 

fabricate Nano and Micro patterns for micro electro mechanical systems (39-48).   

Another advantage relevant in the field of pharmaceutics is that this method of printing allows the 

incorporation of miscible materials such as excipients and APIs which may not be polymerisable to be 

entrapped in the polymeric matrix upon crosslinking    (26) (49) 

 

Figure 3: - Schematic representation of stereolithography showing different parts of 3D printer including 

laser/UV source, resin tray and printing platform. 

 

3.1. Photopolymerisable Materials for Stereolithography 
Stereolithography requires the use of photopolymerisable materials, which are not very common in 

pharmaceutical manufacturing. Over the years, a number of photopolymerisable materials have been 
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developed  such as PEGDA, pHEMA , PEGDMA and PPF/DEF   (49).  Hydrogels on the other hand are 3D 

polymer networks that have been well applied in tissue regeneration and engineering due to their high 

water content. They have diffusive and mechanical characteristics that are adjustable, influenced by the 

extent of crosslinking, making them ideal in drug delivery applications  (50). Photopolymerisation of 

hydrogels has been explored extensively in terms of materials and methods and this has led to the 

synthesis of several biocompatible hydrogels of various characteristics. Like PEGDA , alternative bases of 

these hydrogels may include 2-(diisopropylamino)ethyl methacrylate, chitosan derivatives or gelatin-

chondroitin sulphate and hyaluronic acid  (51). As a result, stereolithographic 3D printing was used in 

tissue engineering and scaffolding and has also recently been used to produce microparticles. There have 

only been a few studies on the use of stereolithography in drug delivery, most of which employ PEGDA as 

the polymer of choice for printing. Although hydrogels have proven to be very applicable in the design of 

drug delivery systems with controlled release.  

Other than the photopolymerisable resins, another material, a photoinitiator is also required to trigger 

polymerization on exposure to light by transforming to reactive radicals  (52) (53) Formatting... please 

wait. There are concerns about the potential toxicity of uncured resins that may contain high 

concentration of these radicals with several researchers stating concerns  (24). For example, the 

fabrication of a photoinitiator-free PEGDA scaffold using mask projected excimer laser SLA 3D printing 

method  (54). The scaffold demonstrated better biocompatibility than photoinitiator-containing scaffolds 

by showing no release of toxic chemicals during cell proliferation test. Other studies aimed at improving 

biocompatibility include the use of biobased unsaturated polyesters and soybean oil epoxidized acrylate 

as well as photoinitiators from natural compounds such as riboflavin (55)  (56)   (57) (58).  

3.2. Characteristics and Drug Release Properties of SLA Printlets 
In 2014, Vehse et al (28) fabricated a drug loaded PEGDA scaffolds using diode laser curing. For this study, 

the photopolymerisation initiator DPPO was used to aid the process and the parameters; laser power, 

scan speed and hatch distance were optimized prior to printing. The UV-resistant antiplatelet drug, 

acetylsalicylic acid was mixed with the resin and the strength and drug delivery characteristics of the 

scaffold were analysed. Different concentrations of the drug could be successfully incorporated into the 

scaffold, which was able to release 95% of the drug within 3 hours. The compressive strength of the 

scaffold however reduced with increased drug concentration showing that the drug interfered with 

curing. Ibuprofen loaded hydrogels also based on PEGDA were fabricated by Martinez et al in a study that 

investigated feasibility of producing pre-wetted hydrogels with the same SLA printing technology. This 
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took advantage of the ability of crosslinking to entrap the non-photopolymerisable water component 

within the matrix, allowing for the production of moist drug loaded hydrogels. The formulations contained 

DPPO as the photoinitiator, however produced printlets with irregular shape and led to the replacement 

of the potentially toxic DPPO polymer with a safer and more pharmaceutically used Riboflavin-

triethanolamine combination. Hydrogels comprising mainly of PEGDA displayed excessive brittleness 

leading to the addition of PEG 300 to the formulation to create a plasticizing effect and reduce brittleness. 

Drug release was dependent on water content, as higher water content produced faster drug release.  It 

was concluded that SLA 3DP is a suitable way to create drug loaded hydrogels, suggesting potential for 

use in pharmaceutical manufacturing  (51). 

One of the first SLA printed dosage forms for oral use was the  printlet fabricated with PEGDA by Wang et 

al (15) who explored the feasibility of producing drug loaded tablets with modified-release profiles (Figure 

4). PEGDA and PEG 300 were the primary materials used for this study as photopolymerisable polymer 

and plasticizer respectively in different ratios to prepare the photo-reactive solutions, while 4-

aminosalicylic acid (4-ASA) and paracetamol were selected as model drugs. Drug concentration in the 

photopolymer solution and 3D tablets was determined by HPLC showing no significant difference in drug 

loading between the formulations and theoretical drug loading. Unlike the scaffolds from Vehse et al (51), 

drug release did not depend on the pH of the media but on the concentration of the polymer in the 

photopolymer solution. This may be due to the difference in polymer composition and design of 

formulation between the two studies. This study also showed that the level of crosslinking determined by 

the ratio of PEGDA, affects the rate of drug release. Low percentages of PEGDA displayed a faster drug 

release as formulations with 35% PEGDA released 100% of paracetamol within 10 hours due to less 

crosslinking, whereas formulations containing 65% and 90% PEGDA showed 84% and 76% drug release in 

the same amount of time, respectively  (26). 
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Figure 4: Schematic representation of using SLA to print drug loaded tablets with examples of some SLA 

3D printed tablets (15).  

 

SLA printlets produced by Martinez et al  (59) also used PEGDA resin and paracetamol as the model drug. 

The photoinitiator used was diphenyl(2,4,6-trimethylbenzoyl) 76 phosphine oxide (TPO). Printlets were 

successfully printed with high resolution and crosslinking density. The drug content determination 

showed approximately 3.82% of paracetamol content out of the 4% that was loaded. The printlets also 

had physical dimensions close to the designed dimension. Printlets dimensions for the cylindrical and ring-

shaped polypills formulated in another study by Martinez et al produced a different result, yielding wider 

diameters than targeted. This was possibly due to the printer settings or the liquid formulation (60). The 

attempted use of SLA in the printing of polypills, (Figure 5) have also met with some limitations, including 

diffusion of components between layers of polypills(39) as well as possible drug-polymer interaction (61). 
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Figure 5: (a) Schematic representation of the proposed SLA cylindrical and ring-shaped polypills, (b) 

optical light microscopy imaging and (c) Raman mapping of cylindrical SLA polypill showing the different 

drugs’ layers; prednisolone, chloramphenicol, caffeine, paracetamol, aspirin and naproxen (60) 

 Formatting... please wait 

4. Fused deposition modelling (FDM) 
FDM is a method of 3D printing that involves the layer-by-layer deposition of a molten polymer onto a 

platform to create a 3D object. The deposition of building material is by the feeding of a polymer filament 

into the heated printer-head and nozzle of the 3D printer. Heating into a melted semi-solid form extruded 

onto the printer platform occurs. The nozzle extrudes the polymer along x and y-axis to form a layer and 

the stage lowered to accommodate the next layer. Hence the material build up along z-axis (Figure 6). The 

geometry and size of the printed material is designed  with the aid of CAD software. Common challenges 

avoided are excess residual solvent occurring in inkjet printing by using fused deposition modelling as a 

printing technique. Despite the many advantages of this method in terms of its simplicity, cheap cost and 

easy accessibility  (62), it has limitations such as thermal degradation of ingredients, slow drug dissolution 

speed and poor drug loading  (63)  (64).  

(a) 

(b) (c) 
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4.1 Polymer Filaments for Fused Deposition Modelling 
Starting materials for FDM printing are made of thermoplastic materials and presented in the form of 

filaments produced mainly by hot melt extrusion of polymers. The first commercially available filaments 

produced for FDM printers were plastics such as PLA, ABS, high impact polystyrene (HIPS) and 

polyethylene terephthalate glycol-modified (PET-G) (41). These plastics produced in the dimension range 

of 1.75mm and 2.85-3mm to fit available printer heads, usually have high melting temperatures, and good 

mechanical properties.  This ensures that they can be fed easily into the printer heads and withstand the 

heat and forces exerted by the extruder/printer gears. While there are many commercially available high-

quality filaments suitable for FDM printing, filaments are made from polymers unsuitable for 

pharmaceutical applications. Despite the abundance of pharmaceutical grade polymers, they often 

possess poor thermal and mechanical properties rendering them unsuitable for extruding and printing  

(65). There is therefore currently a growing interest and search for ways to improve the properties of 

available polymers and filaments to make them more printable or pharmaceutically suitable. 

 

Figure 6: Schematic diagram fused deposition modelling showing the different parts of FDM printer; 

filament spool, heated printer nozzle and printing platform. 

Some FDM oral dosage forms were printed using materials such as PLA, PVA and PCL  (66),  (67)  (68)  (69). 

PLA is a biodegradable polymer of great interest due to the many advantages that have been associated 
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with its properties. PLA is a naturally occurring organic polymer produced from a non-toxic renewable 

source. PLA has grown in popularity since being deemed safe (GRAS) (70) by the FDA. It is also eco-friendly, 

biodegradable, recyclable and compostable, however its most attractive quality for application in the field 

of biomedical science is its biocompatibility (70). Although strength is limiting its applications, and 

properties for 3D printing making it one of the most commonly used polymers for fabrication of FDM 

filaments. PLA tensile strength is similar to ABS and used to print accurate parts. Due to its low printing 

temperature, it cools down quickly to prevent collapse, making the printing of sharp corners possible, and 

maintains the integrity of the printed shapes, but remains subject to thermal degradation at higher 

temperatures. A major drawback in the use of PLA for 3D printing of drug formulations is its 

hydrophobicity and slow degradation rate. PLA is relatively hydrophobic having a static water contact 

angle of about 80◦C, which is an undesirable property not only for biomedical applications where it elicits 

inflammatory responses in hosts but also in pharmaceutical drug formulation where dissolution and 

disintegration promotes drug release.  (71)  (72)  (73) 

PVA is another non-toxic, biocompatible and biodegradable polymer that is applied extensively in 

biomedical science. It is a hydrophilic synthetic polymer produced by the polymerisation of vinyl acetate 

via a free-radical mechanism usually in ethanol or methanol. The physical and chemical properties of PVA 

depend on the grade and molecular weight, determined by the percentage hydrolysis (74). PVA not only 

has a good tensile strength, hardness and flexibility but also possesses gas and aroma barrier 

characteristics  (75). It is soluble in water and some water-miscible solvents such as formamide, dimethyl 

formamide (DMF) and dimethyl sulphate (DMSO) however, it is insoluble in other organic solvents, and 

only sparingly soluble in ethanol. In additive manufacturing by FDM, PVA is one of the thermoplastics of 

choice due to the relatively low melting point, which produces a melt viscosity that is high enough to build 

and low enough to extrude. PVA is commonly used to print support materials for complex designs and 

tubes, where removal of support material may prove difficult or impossible as solubility in water allows 

them to be easily dissolved by placing in water overnight. An important limitation to the use of PVA 

filaments/granules in the printing of materials is the hygroscopic nature of the polymer (76).  

One of the drawbacks of FDM printing is the need for thermoplastic polymers and most pharmaceutical 

grade polymers are not thermoplastics. Recent studies explored the feasibility of producing FDM printable 

filaments using pharmaceutical grade polymers. Usually, this requires mixing polymers of pharmaceutical 

grade with excipients to produce processible filaments. Twin-screw extruders are preferred for the 

preparation of these filaments, as they allow homogenous distribution of drugs and excipients. To 
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formulate theophylline loaded caplets, Pietrzak et al  (77) used a mixture of drug, the plasticizers, triacetin, 

TEC, and the polymers; Eudragit RS, Eudragit RL and HPC SSL in different proportions and combinations.  

Melocchi et al  (78) considered the use of insoluble, promptly soluble, enteric soluble and 

swellable/erodible polymers of HPC, HPMC, Eudragit and PVA (granules) for the fabrication of capsule 

shells and coating for immediate and modified release (Figure 7). The processability of filaments extruded 

were modulated using different types and amounts of plasticizers and relied on a trial and error approach 

to produce suitable formulations (60). Other than plasticizers, excipients in the form of pharmaceutical 

grade polymers have been tested and used to adjust polymer properties and produce printable filaments. 

Alhijjaj et al  (63) formed polymer blends using polyethylene glycol and polyethylene oxide to improve 

printability and mechanical flexibility of Eudragit EPO and Soluplus.  (79). On the other hand, Kollidon CL-

F used as a superdisintegrant by Zhang et al  (80) improve dissolution and mechanical properties of some 

3D printed tablets of paracetamol. Other polymers studied include poloxamer and PVP.  

 

 

Figure 7: The use of extruder in the preparation of drug loaded filament showing different release 

profiles (56) 
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4.2. Incorporating APIs into Polymer Filaments for 3D Printing 
4.2.1 Solvent Immersion 
Filaments from pharmaceutical grade polymers incorporated with active pharmaceutical ingredients (API) 

are not commercially available and therefore have to be prepared  (81). Commercially available filaments 

such as PLA, PVA, and PCL have suitable mechanical properties for printing, however the successful 

loading of these filaments with APIs remains a challenge. The first filaments used for FDM printing of oral 

dosage forms were loaded with APIs by soaking commercial filaments in volatile solvent solutions  (82) 

(27) (64) . Goyanes et al  (64) produced amino-salicylic acid loaded filament by immersing commercial PVA 

filament in drug-saturated ethanol. This allowed the drug to passively diffuse into the filament and stay 

trapped on drying.  Although this method was cheap, simple and required no heating, the percentage 

drug content reported for this method was rather low recording 0.004% for 4-ASA and 0.001% for the less 

soluble 5-ASA.  

4.2.2 Hot Melt Extrusion (HME) 
Recently hot melt extrusion (HME) was the main way of producing API loaded filaments. One HME based 

method of drug incorporation involves pelletizing and grinding of commercially available filaments mixed 

with active ingredient(s) prior to a hot melt re-extrusion. The grinding process is important as it ensures 

that the API (powder) and polymer have similar particle sizes. Mixing pellets with drug powder would lead 

to poor encapsulation and subsequently poor drug loading (66). To print budesonide tablets, PVA 

filaments were cut into small cylindrical pellets that were roughly 2mm in length and ground to fine 

powder, which was passed through a sieve of mesh size 1000µm. Budesonide was mixed with the 

powdered polymer and the mixture was extruded using a single screw extruder  (83).  This method 

produced filaments with higher percentage of drug content and good mechanical strength suitable for 

printing. HME also has the added advantage of being able to improve the bioavailability of poorly soluble 

drugs.  

As mentioned previously, the FDM method does not have to rely solely on commercial grade polymer 

filaments but can also use HME to generate custom-made filaments. Most available extruders are in the 

form of single screw extruders and these do not provide enough mixing for homogenised content of 

customized filaments. While number of researches using FDM printed oral dosage forms with 

commercially available filaments has dwindled since 2014, there is an increasing number of researches 

exploring the use of all kinds of pharmaceutical grade polymers for the extrusion of filaments. Using an 

extruder, any kind of polymer is converted to a filament with desired properties. Polymers explored for 

this method include cellulose-based polymers (hydroxypropyl cellulose, HPC SSL)  (80) and methacrylic 
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polymers (Eudragit RL, RS and E). Customisation of filaments from these powdered polymers eliminates 

the need for the pelletizing and shredding required when using commercial filaments as well as the need 

for solvent. Kempin et al  (63) mixed powder blends of polymers (e.g. PEG and PVP) with pantoprazole 

and other liquid excipients (TEC plasticizer) and ensured even distribution of drug in polymer by grinding 

them separately before mixing.  

4.3 Printing and extrusion parameters for FDM filaments 
Using too high extrusion temperature can lead to degradation of thermolabile drugs while using too low 

temperature can cause nozzle blockage  (77). Printing temperature should be high enough to convert the 

polymer filament into a semi-solid form in the printer nozzle but must cool and solidify fast enough at the 

temperature of the printer platform to support the deposition of the next layer of polymer. This usually 

occurs at temperatures between 220°C and 260°C for polymers such as PLA and ABS, which have been 

optimised but not for methacrylic polymers which degrade at a relatively lower temperature of 166°C. 

Pietrzak et al adapted FDM printing for methacrylic polymers by adding a component of high melting point 

of 273°C, theophylline, to the polymer of choice Eudragit RL (printing temp 170°C) and printed caplets at 

temperature below that recommended by printer manufacturer and previous reports  (77) . The FDM 

printing temperature used was also several degrees higher than that used for extrusion of filaments since 

the polymer blend required longer heating time in the HME during filament extrusion than the nozzle 

heating time of the 3D printer. This method would most likely be unsuitable for printing of thermolabile 

drugs. Pantoprazole (MP: 143°C) a more thermo-sensitive, suitable polymer candidates was selected and 

optimized for printing by Kempin et al  (63). The printing temperatures was 100°C and included water 

soluble polymers such as PEG and PVP, while excluding polymers such as PVA and Kollicoat after they 

were shown to require extrusion temperatures above 100°C during testing.  

For the printing of drug loaded PVA tablets by Goyanes et al  (64), the recommended printing temperature 

of commercial PVA polymer was 190-220°C and the melting temperatures of the components of choice 

were 180°, 130°C and 268°C for PVA, 4-ASA and 5-ASA respectively. The drug-PVA filaments were printed 

at 210°C and resulted in drug degradation and reduction in drug content for 4-ASA but not for 5-ASA. For 

a method that required no HME and restricted drug heating to the time spent in the printer nozzle, the 

extensive degradation of the 4-ASA showed the importance of even a brief heating on thermolabile drugs. 

TGA and DSC analysis have proven to be very useful in predicting degradation temperatures of drug-

polymer mixtures  (63). Table 3 compares the melt temperature of polymers and drug to tablet processing 

temperature. 
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Table3: - Comparison of FDM polymers and drug melt temperature to tablet processing temperature 

Polymer  Polymer 

Melt onset 

temp (oC) 

Drug  Drug Melt 

temp (oC) 

Solvent 

drying 

temp(oC) 

HME temp 

(oC) 

Print 

temp(oC) 

PVA  (66)  175 Paracetamol  168 ------ 180 180 

PVA (64) 180 5 ASA 278 60 ---- 210 

PVAFormatting... please 

wait  (82) 

180 Fluorescein 

sodium 

320 60 ----- 220 

PVA (27) 160-170 Prednisolon

e 

203 40  250 

PVP (84) 169 Theophyllin

e  

270 ----- 90 110 

PVP (84) Formatting...  169 Dipyridamol

e  

165 ----- 90 110 

Eudragit®RL PO 

PLA (48)  

145 

150 

Metformin 235 ----- 140-157 170 

PVA Mowiol 4–88® 

Formatting... please wait  

Mannitol  (69)  

195 

170 

glimepiride 217 ----- 190 205 

PVA (85) 175 Paracetamol 

caffeine 

169 

238 

------ 180 200 

PVA (83) 175 Budesonide 250 ------- 170 190 
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Another important challenge in the preparation of loaded filament by HME is the fabrication of filaments 

with adequate mechanical properties. A filament fit for the 3D printer cannot be too brittle, as that would 

cause breakage by the feeding gear  (81). On the other hand, a too soft filament is compressed and pushed 

aside by the gear. Commercial printers are designed to print plastics such a PLA and ABS with mechanical 

properties that can be considered ideal in terms of stiffness, toughness and viscosity. Studies involving 

printing of hot melt extruded filament from polymer blends usually applied a trial and error method to 

generate printable tablets. Sadia et al  (86) assessed compatibility of extruded filaments with nozzle 

printer heads based on the flow of melted polymer from the nozzle. Filaments broke within the printer 

gears due to being brittle, and filaments bent between the gear and nozzle were too flexible. PLA was 

used as a reference to compare commercial filaments to extruded filaments made from different 

combinations of polymers such as HPMC, EC, HPC, Eudragit and Soluplus. To test the filament 

characteristics of the polymer blends, an analyser and a 3-point bend probe set were used to measure the 

stiffness and brittleness of the extruded filaments. The polymer filaments produced were screened and 

optimised based on these characteristics. Another method of filament analysis known as the Dynamic 

micro-indentation test technique was demonstrated by Gioumouxouzis et al  (69) and involved the use of 

a dynamic ultra-micro hardness tester. The tester was fitted with a triangular pyramid indentation tip to 

apply controlled load onto a filament which had been held in place on a surface. The penetration depth 

of this indentation was recorded continuously as a function of load. Nasereddin et al recently developed 

a screening method of determining the filament feedability using a texture analyser  (87). 

4.4 Characteristics of FDM printlets 
While drug dissolution is prompted by the swelling and disintegration in conventional compressed tablets, 

FDM printed tablet dissolve and release drug components primarily by erosion and diffusion. The 

dissolution speed of FDM printed tablets are known to be very low compared to compression-based 

tablets. This is as a result of the nature of polymers used and the compactness of the melted filaments. 

FDM has therefore extensively been applied in many studies to produce modified (extended and 

sustained) release dosage forms  (8) (88) Formatting... please wait. Eudragit-based tablet extended drug 

release over 16-hour period and left an empty insoluble matrix in the dissolution medium, see Figure 8  

(77). Attempts have been made to improve release rate of FDM tablets by selecting polymers, which have 

immediate release properties, formulating polymer blends to include polymers that behave as 

disintegrators, incorporating hydrophilic non-melt fillers into the polymer blends and reducing the infill 

percentage during tablet printing. 
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Figure 8: In vitro drug release of theophylline compared to filament using (A and B) immediate release 

polymers such as HPC SSL and Eudragit E, and (C and D) extended release polymers: Eudragit RS and 

Eudragit RL, their 1:1 mix  (77) (78) 

Although FDM printing has focused mainly on extended release tablets until recently, however more than 

70% of orally administered dosage forms are intended for immediate release   (89). It would therefore be 

of great importance to adapt FDM printing to pharmaceutical materials and drug products that release 

active ingredients immediately. One of the earliest attempts was presented in a study by Pietrzak et al   

(77) which explored the use of FDM and HME 3D printing methods to control the release of theophylline 

tablets from a range of polymers including HPC SSL and Eudragit E which are polymers used for immediate 

drug release. The result of the study showed that although the unprinted polymer filaments of Eudragit E 

and HPC SSL were able to release majority of the drug within 25 minutes, the printed tablets extended 

drug release over a longer period. The poor dissolution of printed tablets was attributed to the loss of 

surface area of the filaments after printing. However, in a subsequent study by Sadia et al  (86) caplets 

formulated by FDM printing of drug-loaded Eudragit EPO showed immediate release of more than 85% of 

the APIs (theophylline, captopril, prednisolone and 5-ASA) within 30 minutes. Similar results were 

obtained by Okwuosa et al  (84) using FDM printing to generate immediate release tablets of dipyridamole 
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and theophylline from PVP filaments. These two later studies unlike the former incorporated non-melting 

fillers into the drug-polymer-plasticizer filament matrix.  

Kempin et al  (63) used five different pharmaceutical grade water-soluble polymers of PVP K12, PEG 6000, 

Kollidon® VA64, PEG 20,000 and poloxamer 407 to produce immediate release tablets of thermosensitive 

pantoprazole. The PEG 6000 and PVP K12 based tablets recorded the shortest release time at 29 mins and 

10 mins respectively. By cutting down the infill percentage to 50% in the PVP K12 tablet, dissolution time 

was reduced to 3 minutes. The use of disintegrants to achieve immediate drug release from compressed 

tablets is well-established in conventional tablets production. However, the addition of disintegrants to 

FDM printed tablets seemed to show little effect on drug release rate. Since most disintegrants credit 

their mechanism of action to water imbibition and swelling, FDM printed tablets appear to prevent this 

process. Sadia et al  (90) attributed this to the possible coating of disintegrant particles by melted polymers 

during printing. 

 

Figure 9: Schematic  illustration of caplets with square-sectioned channels (top-left), photographs 

(centre-left) and rendered images (bottom-left) of caplet designs with decreasing channel sizes and the 

corresponding drug release profile (right)   (90)  

5. Powder-bed Inkjet Printing 
Inkjet printing generally refers to deposition of materials dispersed in a solvent or system of solvents by 

ejecting them onto a substrate through a nozzle (91). Of the three mechanisms used commercially in 

droplet generation  (92), the DoD has been involved in most of the published work about additive 

manufacturing. While EIJ printing has only recently become commercially available, DoD is well reviewed 

and known to be more precise and less wasteful than CIJ printing. This is because droplets generated by 
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DoD have sizes in the 1pl to 1nl range, droplets are mechanically placed in predetermined positions and 

are not steered while in motion. There are two commonly used systems of droplet formation in DoD 

printing; the thermal and piezoelectric printing methods. Piezoelectric applies voltage to a piezoelectric 

material deforming it to cause an ejection of liquid droplet through the nozzle. When it is compared to 

thermal actuation, piezoelectric printing offers more control about droplet formation and does not work 

by generating heat. Therefore, it is more suitable for pharmaceutical applications. In thermal inkjet system 

droplets, on the other hand, are ejected when localised heating of liquid causes bubbles to form and 

expand  (93). This system of printing has the added risk of heat degradation of ingredients in addition to 

the limitations caused by solvent restrictions and poor mechanical strength.  Inkjet printing has been also 

applied in genomics, drug delivery, material screening, biomaterials and life sciences due to the high level 

of precision, automation and reproducibility of the technology  (94),  (95),  (96) (97) Formatting... please 

wait. In drug delivery, inkjet printing was used to load micro-needles  (98), improve dissolution properties 

of poorly soluble drugs and control release of dosage forms by ensuring content uniformity  (93). 

Inkjet printing technology is used in the fabrication of 3D printed objects with high resolution. This is 

achieved through multiple and successive deposition of jetted layers of materials onto a flat platform. 

Studies involving layer by layer inkjet deposition of curable resins and thermoplastics have been reported 

(99)  (100) However there are limited pharmaceutically approved materials that can be used for these 

processes. Usually, for the printing of pharmaceutical dosage forms, the powder bed method of 3D 

printing is employed, as most approved polymers are in form of powder materials.  

In powder bed or drop on solid method of inkjet 3D printing, a binder material is used to join layers of 

powder, which are successively levelled on a powder bed, supported by a piston and contained in a 

cylinder (Figure 10). An inkjet droplet dispensing system, usually piezoelectric or thermal is used to apply 

the binder material on the area of the bed where the printed part is, to join each new layer to the forming 

part. The piston lowers the powder bed after each binder application to allow a new layer of powder to 

be spread on the bed surface. This process is repeated until the designed part is formed and then the 

unbound powder is removed. The printing machine is made up of two horizontal axes X and Y held over 

the vertical piston allowing control of the nozzle movement in three directions (101). Powders used for 

this method of printing include ceramics, metals and polymers. In a 1995 report, Wu et al (28) fabricated 

resorbable polymeric drug delivery devices that displayed controlled drug delivery by specifying the 

composition and position of binder materials as well as the microstructure of the delivery system. 
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Figure 10:  A Schematic diagram of Powder bed-inkjet printing showing the main components of the 

printer including liquid binder, printhead, powder supply and powder bed. 

Parameters such as layer thickness, spacing between printed lines and flow rate of liquid binder control 

the microstructure and subsequently the release profile of printed dosage forms  (28). Katstra et al  (102)  

investigated the feasibility of producing oral drug DDD using pharmaceutical grade ingredients. The study 

aimed to assess the effect of printing parameters on drug dosage, spatial positioning and drug release 

control.  Chlorpheniramine tablets were made using powder bed formed with cellulose powder and spray 

dried lactose as well as binder solutions formed with Eudragit® E-100, Eudragit RLPO or Kollidon PVP. Drug 

release from printed tablets was based on diffusion and erosion. The lag times and release rates of the 

different tablets were dependent on the polymer quantity printed onto the tablets. A fluorescein study 

confirmed the accuracy of droplets placement and demonstrated dosage uniformity of the tablets.  

More complex oral dosage forms fabricated by Rowe et al  (103), tested formulation flexibility by mixing 

different release mechanisms in one formulation. Immediate-extended release tablet were made of 

Eudragit® E-100 and Eudragit RLPO and showed erosion based chlorpheniramine release from the soluble 

E100 polymer section within 30 minutes. The insoluble polymer section released the drug over a 6-hour 

period by diffusion (Figure 11). A batch of 3-layered breakaway tablets formulated and used a mixture of 

Avicel PH301, spray dried lactose and Eudgragit® L100 to form the powder bed. A fast dissolving middle 

layer printed with a solution of Kollidon K-25 in water, separated two drug-polymer layers. The drug-

polymer layers were printed with a binder solution of Eudragit® RLPO in acetone for the placebo layer, 
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which surrounded the drug layer printed with diclofenac, Kollidon K-25 in methanol. These tablets when 

placed in a dissolution medium, split into two after the fast dissolving middle layer completely eroded. 

Another batch of tablets, the dual pulse release tablets, were formulated using the pH dependent release 

polymer, Eudgragit® L-100, as binder and showed two release pulses 4 hours apart. To prepare fast 

disintegrating tablets, Yu et al  (104) prepared powder layers from a blend of paracetamol, lactose, PVP 

K30, mannitol, and colloidal silicon dioxide. The binder solution was prepared with PVP K30 mixed ethanol 

in water and the colour marked with methylene blue. The tablet characteristics ensured fast disintegration 

having a hardness of 54.5 N/cm2, wetting time of 51.7 seconds and disintegration time of 21.8 seconds. 

The friability value was relatively high at 0.92%. 

 

Figure 11:  dissolution profiles of immediate -extended release tablets, breakaway tablets and dual pulse 

release tablets  (103) 

 

A study by Clark et al  (105) investigated the viability of combining inkjet printing with stereolithography 

in the fabrication of oral dosage forms. UV-curing was used previously in inkjet printing industry to provide 

instant polymerization of materials on demand  (105)  however, no previous studies used UV curable inkjet 

formulation in the fabrication of dosage forms for oral use. The ink used was formed from a mix of Irgacure 

2959 photoinitator, ropinirole HCl active ingredient and poly (ethylene glycol) diacrylate (PEGDA) as the 
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photopolymerizable resin. The piezoelectric drop on demand method was used to deposit the ink onto a 

poly(ethylene terephthalate) (PET) film substrate, while a UV laser source attached to the nozzle printer 

head followed the path of the printer head, curing materials as they are deposited. The drug loaded 

tablets showed a high degree of crosslinking and displayed a Fickian drug release profile. 

6. Strategies and approaches for Personalisation of printlets 

Many applications of 3D printing in medicines and medical devices were geared towards production of 

personalised dosage forms, doses, implants and other products which improve patient compliance and 

adherence  (38). One of the many forms of personalisation is the design of multi-layered tablets with one 

or more API in each layer. This would be ideal for treatment of patients with co-morbid illnesses that have 

resulted in polypharmacy.  Fixed dose combination treatment described in other studies are marketed as 

Polycap for cardiovascular diseases with associated co-morbidities. The major limitation to this 

development, however, is the lack of flexibility as the doses are fixed and cannot easily be changed by the 

conventional compaction method. Multi-layered dosage forms (illustrated in 5a) can be fabricated using 

a multi-material 3D printer and in cases where the printer technology is not adapted for multi-material 

printing, modifications to the available printer can be made.  A six layered polypill containing naproxen, 

paracetamol, caffeine, aspirin, chloramphenicol and prednisolone was fabricated by Robles-Martinez et 

al  (60) using the SLA method of 3D printing and the physical characteristics of the polypills as well as the 

influence of geometry and addition of excipients on the rate of drug release was evaluated. Since the 

hardware and software that allow for multi-resin printing are commercially unavailable, certain 

adjustments accomplish the redesign of software and periodic manual changing/replacement of resin. 

The multi-layered printlets successfully fabricated with individual drug components residing majorly in 

their separate compartments evidence of diffusion in the layers containing aspirin, naproxen and 

paracetamol. To prevent diffusion of drug components between layers of a polypill, a segment is printed 

between the different layers of the dosage form using an appropriate barrier polymer. A five-component 

polypill designed based on the commercially available “Polycap” used a segmented tablet strategy to 

ensure the separation of the APIs. Barriers between the sustained release layer and the immediate release 

layer was created using a hydrophobic membrane made of cellulose acetate (106). HPMC was used to 

sustain the release of pravastatin, atenolol and ramipril while the immediate release of aspirin and 

hydrochlorothiazide was achieved with the help of sodium starch glycolate disintegrant.  Preparation of 

release matrix with different concentrations of the same polymer is another way by which drug release 
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can be controlled for printed tablets.  Printing of multi layered dosage forms could provide benefits such 

as reduced cost of treatment and increase patient compliance  (106).  

Additionally, independent drug release between the layers of these printlets can be obtained using 

different means. One way of achieving different release rate between layers is by using polymers with 

different release properties. Bi-layered tablets prepared by FDM printing were formulated to incorporate 

different dose regimen of metformin and glimepiride. The Eudragit layer of the tablet was able to sustain 

release of metformin for 480 minutes, while the PVA layer released the glimepiride within 75 minutes 

(48). Different concentration of the same polymers obtained different release profiles. To prepare bi-

layered guaifenesin tablets   (10),  guaifenesin paste was made of HPMC of different viscosities for the 

sustained and immediate release layers. The printing method applied for this study was the syringe 

assisted extrusion-based 3D printing using a desktop printer with two printer heads and syringe tools.  

While the above studies relied on the nature of the polymers and excipient manipulation to determine 

release behaviour of printed dosage forms especially in term of duration, a more active approach towards 

controlled release can be achieved by designing and fabricating complex geometries, macrostructures and 

microstructures. Goyanes et al  (82) described the effect of infill percentage of FDM printed PVA tablets 

on weight, structure and drug release. Tablets with lower infill were hollower and possessed more cavities. 

These tablets which released the drug primarily by erosion, showed an infill-dependent drug release with 

lower infill tablets releasing drug faster than tablets of higher infill percentage (107). Alternatively, 

channels of defined dimensions can be purposefully created in the FDM printed tablets (see figure 9). 

Sadia et al  (90) was able to design and fabricate FDM caplets incorporated with channels of different 

dimensions (Figure 9). The study showed that with increase in the width of channel, there was an increase 

in the rate of drug release. Fabrication of printlets with openings in the form of gyroid lattices was 

demonstrated and analysed.  A review by Mellocchi et al  (108) discussed the use of FDM printing for the 

fabrication of hollow systems grouped these devises into systems with a single compartment and systems 

with multiple compartments which could be partly empty or filled. Floating hollow systems designed to 

be empty are usually fabricated by reducing infill percentage and would sometimes have the API(s) 

contained in the shells while maintaining the low density and buoyancy required for gastroretention and 

extended drug release   (88). In a partly filled system fabricated by Huanbutta et al  (109), which comprised 

of a cap and a body, API was housed within the core of the device body in the form of an immediate 

release tablet with an orifice at the bottom to control drug release and floating was achieved by creating 

air volume within the top. 
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SLS printing was used to produce cylindrical, gyroid lattices and bilayer structures and the porosity of the 

printlets was determined. It was observed that the openings in the gyroid lattices enhanced their porosity 

giving them a higher porosity value than the cylindrical printlets. The duration of dissolution from the 

gyroid lattice printlets was less than the other fabricated printlets. This was attributed to the increased 

surface area and porosity (7). Yu et al  (104) used drop on demand inkjet-powder bed 3D printing 

technique to produce fast disintegrating tablets by controlling parameters such as droplet spacing and 

line to line spacing. The top six layers and the bottom six layers of the cylindrical shaped tablets were fully 

printed by depositing the binder liquid to fully cover the circular cross-sections that form these layers 

(Figure 12). The twelve middle layers were only partially printed with the binder solution deposited to 

cover only the peripheral rings of these layers thus leaving a lot of free powders in the centre of the 

printlets. 

 

Figure 12: - A schematic diagram of a fast disintegrating PB-inkjet 3D tablet fabricated by selective 

deposition of binder solution with fully printed top and lower layers and partially printed middle layers 

containing the drug in a powder form (103) 

Manipulation of shapes of printlets controlled the drug release profile. Martinez et al  (59) made use of 

SLA 3D printed tablets to study how geometric shapes influence their drug release profiles. Printlets of 

different shapes including pyramidal, cylindrical, spherical, cubical and torusal were fabricated using 

PEGDA. The study demonstrated that at a constant surface area to volume (SA/V) ratio, the different 

shapes of printlets displayed the same release profile.  Torus shaped tablets with increasing SA/V ratio 

were also printed and showed a corresponding increase in dissolution rate. SLA was found to be a suitable 

3DP technology for manufacturing tablets of different shapes with dissolution properties that can be 

controlled by varying SA/V ratios, making the creation of personalized dosage forms possible. Similarly, a 

study by Goyanes et al  (66) described the influence of geometric shapes on drug release in FDM printed 
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tablets. At constant surface area, the order of drug release for different shapes of tablets from the fastest 

to the slowest was pyramid > torus > cube > sphere and cylinder.  

 

7. Benefits and Limitations of 3D Printing Solid Dosage Forms 
 

7.1 Benefits 
7.1.1 On-Demand Manufacturing 
3D printing techniques can allow easy fabrication of quality product within a few minutes. On demand 

manufacturing by 3D printing can be especially useful in situations where time and materials are limited, 

in drug development for quicker optimization as well as in the fabrication of drug products with poor 

stability  (38). This is more possible by the availability of desktop printers. There are already reports on 

inkjet printing of low stability drugs and the use of 3D printing for the production of low stability drugs 

has been proposed.  

7.1.2 Dosage Flexibility 
Customisation of medicines to the needs, preference and characteristics of individual patients is an old 

idea that has flourished with the progress in diagnostics  (110). Dosage tailoring would be especially useful 

in paediatrics where there is a wide weight to age variation. The variability in treatment between 

individuals stemming from the differences in their backgrounds, metabolisms and needs is a widespread 

problem that is managed by grouping patient population based on certain biomarkers. Better 

management through 3D printing is achieved by personalisation. Personalisation and dose tailoring would 

also be helpful in reducing non-compliance resulting from the prescription of multiple medications. 

Medication non-adherence resulting from polypharmacy is reported to reach 35% rate in patients taking 

more than four medications (111). Research has shown a prevalence of polypharmacy among the elderly 

population  (112)  which has been strongly linked to negative consequences including adverse drug 

reactions, interactions and medication non-adherence (113)  (114) . Poor adherence in the geriatric 

population has been associated with complex dosing regimen with community-dwelling elderly patients 

rating between 43 and 100% in non-adherence (115)  (116) .  Personalisation when applied to dosage 

forms via 3D printing allows dose and combination modification to meet individual patient need. Doses 

can be adjusted based on each patients weight and age while also taking into account their 

pharmacogenetics and pharmacokinetics  
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7.1.3 Improved Quality Dosage Forms 
The use of computer-aided designs coupled with the desktop printers is expected to provide better control 

of the several variable parameters involved in 3D printing of tablets. Critical parameters such as scan 

speed, laser power and temperature are controlled by the printer system leading to high reproducibility. 

Furthermore, fewer processing steps are required for product manufacturing by 3D printing compared to 

conventional methods of formulation. In most conventional drug product formulation, steps such as 

granulation, milling, compression, coating and drying are essential and the increased number of steps 

involved in these procedures may lead to higher risk of batch failure  (24) due to increased chances of 

errors. 

7.1.4 Design Flexibility 
While the traditional drug manufacturing methods usually rely on the shapes of relevant moulds to 

determine the shape of tablets, caplets and capsule shells, 3D printing allows innovative product designs. 

The distribution of active ingredients and excipients within the dosage form is controlled and the design 

manipulated to allow multiple active drugs to be strategically incorporated within predetermined sections 

or layers. The properties of a dosage form in terms of macrostructure, microstructure and composition 

can have great influence on drug release. For example, the design of a solid dosage form into highly a 

porous structure can reduce disintegration time, hence enhancing drug release. Colours, shapes and 

flavours are adjusted to suit the paediatric population and oral disintegration can be designed to meet 

the need of geriatric, paediatric and dysphagic patients. 

7.2 Limitations of 3D printing techniques 

The physical appearance of some 3D products may not be appealing to patients. Certain printing 

technologies produce printlets with rough or imperfect surfaces resulting from removal of support 

materials from FDM printlets or porous structure of SLS printlets. Products are not aesthetically pleasing 

to patients, may cause poor patient compliance. Further, some 3D printing techniques such as 

stereolithography require the use of materials which may have unknown health risks. Most approved 

polymer resins and photopolymerization initiators have some suspected carcinogenic risks. This places a 

restriction on the use of these methods in the formulation of oral dosage forms. Another important 

limitation is the need for the use of lasers and high-energy sources in methods such as stereolithography 

and SLS printing which may result in degradation of unstable drugs. Similarly, thermal degradation may 

also restrict the use of FDM printing to thermally stable drugs and excipients. FDM printing is limited by 

the need for thermoplastic polymers and extrusion of filaments. Printing of fast disintegrating tablets 
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using the powder bed printing technique compromises the mechanical strength of printlets causing high 

friability and low hardness. Certain printing equipment are costly such as that used in stereolithography. 

Post printing processes like curing and drying are required in SLS, SLA and powder bed 3D printing, 

lengthening the print duration. 

8. Regulatory challenges and quality control 
Some of the most commonly debated issues on 3D printing of medicines and devices are questions about 

regulation and liability, if the product causes an adverse effect or fails. Is it the manufacturer of the printer, 

ink or the final product (the healthcare professional or the organization they represent)?  (117) Another 

question posed is the level of regulation that 3D printed medicines should be held to. Should regulation 

be similar to those of manufactured or compounded medicines? (118)  

Personalised medicines seem to share a lot more similarities with compounded medicines than 

manufactured dosage forms especially in terms of level of possible risks. Although risks associated with 

customized medicines made for individual patients may not be as hazardous as those of traditionally and 

mass-produced batch medicines made for patient groups, both types of medicines undergo high levels of 

examinations. Care should be taken however, to ensure that safety of use of medicines is balanced with 

ease of access to medicines as both needs are equally important. Sufficient regulations needs to be in 

place to make 3D printed medicines safe for patients, but not enough to discourage the manufacturers, 

frustrate their innovative efforts and subsequently hinder patients access to treatment. 

How should 3D products be tested? With traditionally manufactured products, random samples from each 

product batch are selected for quality control tests with inspections and measurements after 

manufacturing. Although similar methods can be applied to mass-produced 3D printed medicines, the 

same cannot be said for personalised or customized drugs made for individual patients. Since the 

production of personalized products would be at a smaller scale, certain non-destructive tests could be 

carried out on all of the products. Studies on some non-destructive analytical techniques may be useful 

for personalized medicines. Trenfield et al  (119) evaluated the use of process analytical technology (PAT) 

on paracetamol loaded 3D printed tablets. Near infrared spectroscopy was used to develop a calibration 

model that could predict drug concentration across a stated range with impressive linearity and accuracy. 

The study also used Raman confocal microscopy to demonstrate even distribution of the drug within the 

tablet. Similarly, non-destructive quality control was tested on inkjet- printed theophylline formulation 

using hyperspectral imaging technique by Vakili et al  (120) . When non-destructive techniques of testing 

are not available or applicable, more products than needed could be printed, and the destructive quality 
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control tests can be performed on the excess. Otherwise, regulatory measures need to place a lot more 

emphasis on other quality assurance and management steps that lead up to product formation by devising 

approaches to ensure quality throughout the production process. 

 9. Conclusion 

The need for a personalized dosage forms coupled with the technological advancement in additive 

manufacturing technology has led to a growing interest in using 3D printing in manufacturing of dosage 

forms. Incorporation of 3D printing into drug products manufacturing is expected to bring the much-

needed improvement to the conventional methods of production, which are known to be outdated in 

terms of flexibility and efficiency.  

3D printing technologies such as fused deposition modelling, semi-solid extrusion, selective laser 

sintering, inkjet printing and stereolithography have been used in printing oral solid dosage forms. Each 

3d printing technique has offered a number of advantages but yet has limitations still to be overcome. For 

instance FDM was an easy and cheap option for printing oral solid formulations, yet affects the stability 

of thermos-labile drugs and only limited polymers are available for filament manufacturing.  Many current 

research studies aim at matching desired drug characteristics to suitable type of 3D printing or devising 

ways around known limitations. With advancement in 3D printing of pharmaceuticals, there are expected 

changes in the regulatory aspects as most of the current regulations are centred on the over 200-year-old 

traditional medicine manufacturing. It is evident that with all the new and potential developments in 

medications 3D printing will come several regulatory adjustments to accommodate these changes. 
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