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Abstract 

Diabetes mellitus is one of the long known chronic diseases, today over 400 million people are diag-

nosed with diabetes. Yet curing diabetes is a challenge. Over the decades, the approaches of treating 

diabetes mellitus have evolved and polymeric materials have played an integral part in developing and 

manufacturing anti-diabetic medications.  However, injection of insulin remains the conventional ther-

apy for the treatment of diabetes. Oral administration is generally the most preferred route; yet, phys-

iological barriers lead to a challenge for the formulation development for oral delivery of antidiabetic 

peptide and protein drugs. This present review focuses on the role of different types of biodegradable 

polymers (e.g., synthetic and natural) that have been used to develop micro and nano particles based 

formulations for antidiabetic drugs (Type 1 and Type 2) and how the various encapsulation strategies 

impact its therapeutic effect, including pharmacokinetics studies, drug release profiles and efficacy of 

the encapsulated drugs. This review also includes studies of different dosage forms such as oral, nasal, 

inhalation and sublingual for the treatment of diabetes that have been investigated using synthetic 

and natural biodegradable polymers in order to develop an alternative route to subcutaneous route 

for a better control of serum glucose levels. 
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Introduction 
Diabetes mellitus is a metabolic disorder that is characterized by high glucose levels caused by defects 

in insulin secretions and actions.  Diabetes mellitus is one of the long known chronic diseases. Nowa-

days, the number of people with diabetes is estimated to be over 400 million. Diabetes mellitus puts 

its patients at high risks of microvascular and macrovascular complications such as neuropathy, 

nephropathy, retinopathy, and cardiovascular comorbidities. In 2015, the number of deaths reported 

due to diabetes was 1.5 million deaths [1]. 

According to the American Diabetes Association, diabetes mellitus classified into type 1, type 2, ges-

tational diabetes mellitus (GDM), and others. Type 1 diabetes mellitus (T1DM) affects between 5-10% 

of all diabetic patients, with 80-90% are children. T1DM is caused by the destruction of pancreatic B 

cells. On the other hand type two diabetes mellitus (T2DM) is the most common type of diabetes 

affecting more than 90% of all diabetic patients with obesity as a main contributing factor to the con-

dition by increasing the insulin resistance [2,3]. For the treatment of T1DM, insulin via subcutaneous 

(SC) route is the conventional therapy to control blood glucose level, whereas oral antidiabetic drugs 

and insulin are the treatment options for T2DM [4,5]. Over the decades, several anti-diabetic drugs 

(Table 1) developed to help diabetic patients to control their condition. 
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Table 1: List of some medicines used in diabetes (Type 1 & Type 2), Maturity Onset Diabetes of the Young (MODY) and Gestational diabetes 
mellitus (GDM). [6, 7] 

Type of antidiabetic 
drug 

Generic name Branded name Medicinal 
forms 

Diabetes Pharmacokinetic properties 

Biguanides Metformin hydro-
chloride 

RIOMET ® 
(500mg/5m) 

Oral solution Type 2 & GDM 6.5 hours 

Glucophage ® 
(500mg) 

Tablets The apparent terminal elimination half-life is approximately 6.5 
hours. 

Sulfonylureas Glibenclamide Amglidia ® (0.6 
mg/ml) 

Oral suspen-
sion 

Type 2, neonatal& GDM 
(second &third tri-
mester) 

Elimination half-life is 5-10 hours 

Gliclazide Diamicron ® ( 80 
mg ) 

Tablets Type 2 Elimination half-life between 10 - 12 hours 

Glimepiride Amaryl ® 
(1 mg) 

Tablets Type 2 Half-live of metabolites from 3 -6 hours 

Tolbutamide Tolbutamide ® 
(500mg) 

Tablets Type 2 Half-life 4.5 - 6.5 hours 

Glipizide Minodiab® (5mg) Tablets Type 2 & MODY(1,3,&4) Half-life of elimination from 2 - 4  hours 
Thiazolidinediones Pioglitazone Actos ® Tablets Type 2 

 
 
Type 2 
 
 
 
Type 2 
 
 
 
 
Type 2 

Elimination half-life of unchanged pioglitazone 5 -6 hours and 
for active metabolites 16 - 23 hours 

     
Dipeptidylpeptidase-4 
inhibitor 

Vildagliptin Galvus ® Tablets Elimination half-life  approximately 3 hours 
Sitagliptin Januvia ® Tablets The half-life following an oral 100-mg approximately 12.4 hours 
Saxagliptin Onglyza ® Tablets The mean plasma terminal half-life values for Onglyza between 

2.5- 3.1 hours 
Linagliptin Trajenta ® Tablets  

Sodium glucose co-
transporter 2 inhibitor 

Canagliflozin Invokana ® Tablets Half-life is 10.6 ± 2.13 hours for the 100 mg 
Dapagliflozin Forxiga ® Tablets Half-life is 12.9 hours following oral dose of dapagliflozin 10 mg 
Empagliflozin Jardiance ® Tablets Half-life of multiple doses of 5 mg linagliptin is 12 hours 

 
Glucagon-like peptide-1 
receptor agonist 

 
Dulaglutide 
 

 
Trulicity ® 

 
Injection 

 
The mean apparent clearance is 0.111 L/h for the 0.75 mg dose, 
and 0.107 L/h for the 1.5 mg dose. Half-life of dulaglutide for 
both doses is 5 days 

Exenatide Bydureon ® Injection Half-life 2.4 hours 
Liraglutide Victoza ® Injection Mean apparent clearance 1.2 L/h with an elimination half-life of 

approximately 13 hours 
Lixisenatide Lyxumia ® Injection Mean terminal half-life is approximately 3 hours 
Semaglutide Ozempi ® Injection Mean apparent clearance approximately 0.05 L/h and elimina-

tion half-life of approximately 1 week 



6 
 

  
The market sales for antidiabetic drugs was $ 54.6 Billion in 2017 and it has been predicted to increase 

by 10.6% to reach $ 110 Billion in 2024 [3]. The rise in diabetes prevalence necessitates an increase in 

the number of antidiabetic medications and formulations, not only to meet the market’s needs but 

also to enhance the performance of the antidiabetic medications and bypass and challenges [3]. For 

instance, injections of peptides or proteins drugs are generally associated with short half-life; there-

fore, multiple daily injections are required. This can affect negatively on patients’ compliance [4]. On 

the other hand, sustained-release formulations of peptides or proteins drugs are associated with fluc-

tuated release profiles, such as high initial burst drug release. This can result in reaching the maximum 

drug serum concentration after administration and lead to side effects or result in loss of drug for 

sustained release formulations after the initial release of the drug, therefore, leading to loss of thera-

peutic effect [4, 8]. Oral administration is generally the most preferred route [9, 10, 11]. However, oral 

delivery of peptides and proteins drugs are associated with physiological barriers (e.g., low pH in the 

stomach, enzymatic degradations in the gastrointestinal (GI) tract and poor intestinal absorption) 

therefore low bioavailability [9, 10, 11]. In order to overcome such limitations associated with injection 

and oral route, pulmonary delivery of peptides and proteins has been explored [12, 13]. However, this 

route still requires injections to maintain the blood insulin concentrations [12]. The use of biodegrada-

ble nano and microparticles to deliver antidiabetic drugs have a significant impact on the therapeutic 

behaviour of these drugs. Micro and nanoparticles tend to exhibit different roles due to the different 

particle sizes between microparticles (e.g., >1 µm) and nanoparticles (e.g., 1-100 nm). However, the 

definition of micro and nanoparticles sizes can vary [5, 9]. Biodegradable microparticles can maintain 

the stability of protein or peptide drugs and provide controlled drug release. Besides, the microparti-

cles as oral drug delivery systems demonstrate to deliver peptides and proteins drugs by protecting 

them from enzymatic degradation and improve intestinal absorption [5, 9]. Biodegradable nanoparti-

cles facilitate the permeability across the intestinal cells and protect peptides and proteins drugs from 

enzymatic degradation [5, 9]. The present review surveys the role of micro- and nanoencapsulation of 

antidiabetic drugs using biodegradable polymers (e.g., natural and synthetic) and how the various en-

capsulation strategies impact its therapeutic effect (e.g., hypoglycemic effect), including pharmacoki-

netics studies, drug release profiles and efficacy of the encapsulated drugs. 

Biodegradable polymers are classified into synthetic and natural polymers (Figure 1 and Table 2). 

Poly(lactide-co-glycolide) (PLGA), polyglycolic acid, polylactide (PLA), and poly(caprolactone) (PCL) are 

the Food and Drug Administration (FDA) approved synthetic polyesters. They are generally classified 

into three groups based on the polymer degradation kinetics: fast (PLGA, 1-6 months), medium (pol-

yglycolic acid), and slow (PLA and PCL, > 12 months) [14, 15, 16]. 
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Figure 1: A schematic presentation of natural and synthetic biodegradable polymers.

Biodegradable polymers
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Synthetic

Poly(γ-glutamic acid) 

Poly(lactic acid)

Poly(ε-caprolactone)

Poly(lactic-coglycolide)

Poly(alkyl cyanoacrylate) 
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Table 2: Chemical structures of natural and synthetic biodegradable polymers. 

 Polymer Structure /Empirical formula 
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Poly(lactic-co-glycolic acid) 
 

Poly (d,l-lactic-co-glycolic acid)(PLGA) has been widely used as a therapeutic drug delivery system in 

protein or polypeptide formulations due to its good biocompatibility and biodegradability 

[5,16,17,18,19]. This polymer consists of various ratios of lactic acid and glycolic acid [8, 18, 20]. The 

degradation properties of PLGA can be controlled by changing the ratio between lactic acid and gly-

colic acid [20]. However, PLGA tends to generate acidic degradation products that lead to a decrease 

in the pH, causing the inflammatory reaction [16].  It is one of the most used synthetic polymers to 

produce nanoparticles for drug delivery purposes. PLGA allows the production of versatile nanoparti-

cles since it may be combined with other polymers or coated with different ligands, attributing to 

important nanoparticle features that may enhance the uptake of loaded drugs.  

 

Exenatide marketed as Byetta® by Astra Zeneca is a 39 amino acid synthetic polypeptide drug and the 

first glucagon-like peptide-1 receptor (GLP-1R) agonist approved by the FDA in 2005 and European 

Medicines Agency in 2007 for the treatment of type 2 diabetes [17,21, 22]. Byetta® is a short-acting 

GLP-1R agonist with twice-daily SC injection due to its short half-life of 2.4 hours [19, 22]. Therefore, 

in order to increase half-life the polymer based sustained release formulation of exenatide was devel-

oped using PLGA which is now marketed as Bydureon® by Astra Zeneca.  Bydureon® is a long acting 

GLP-1R agonist that is administered subcutaneously once a week [17, 18, 19]. The Bydureon® PLGA 

microspheres (60 µm in diameters) were prepared by water-in-oil solvent evaporation method [12, 

19]. Encapsulating exenatide into microspheres resulted in slow exenatide release through diffusion 

and drug metabolism leading to longer half-life and plasma concentration peak (2 weeks) after admin-

istration [22]. Cai et al. and Moonschi et al. reported that Byduren® demonstrated greater reduction 

in the levels of haemoglobin A1 (HbA1c) compared with twice daily injection of exenatide in the com-

parative trials. Also, Byduren® showed lower hypoglycaemia incidence and lower frequency of side 

effects (e.g., nausea and vomiting) with a low initial drug burst compared with the twice daily ex-

enatide [12, 18].  Ji et al. reported a safety and efficacy study of exenatide once weekly vs exenatide 

twice daily in type 2 diabetes patients in randomised comparator-controlled study. The results showed 

that the level of HbA1c for patients on exenatide once weekly was significantly lower (7.26±0.07%) 

than the patients on twice daily exenatide (7.57±0.05%) at 26 weeks of the study (the average HbA1c 

was 8.7% before commencing the clinical study) (P<0.001). It was also revealed that more patients on 

exenatide once weekly achieved the level of HbA1c ≤7.0% (p=0.003), ≤6.5% (p<0.001), or ≤ 6.0% 

(p=0.003) when compared to patients on exenatide twice daily [23].   
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  Zhu et al. conducted a study using PLGA microparticles to sustain the release of exenatide. Exenatide-

loaded microparticles were prepared by two different methods: ultra-fine particle processing system 

(UPPS) and spray drying. The particle size of microparticles prepared by UPPS was larger (33.21±2.86 

µm) with a higher encapsulation efficiency (EE: 90.16±3.52%) than microparticles prepared by spray 

drying (4.83±1.79 µm, EE: 84.65±2.93%) [17]. Pharmacodynamics of a single injection of Exenatide-

loaded PLGA microparticles prepared by UPPS and spray drying were studied in type 2 diabetes Spra-

gue-Dawley (SD) rats by measuring the body weight gain and blood glucose and compared with the 

negative control group (sterile saline subcutaneously injected twice daily) and the positive control 

group (exenatide solution injected subcutaneously twice daily (15 µg/kg)) [17]. It can be noticed from 

the obtained results that UPPS and spray drying Exenatide-loaded PLGA microparticles with a single 

injection significantly inhibited the increase of the body weight for the first two weeks of the study, 

whereas the SD rats in the negative control (sterile saline) group showed a continuous bodyweight 

increase. Also, the hypoglycemic efficacy after a single injection of UPPS and spray drying exenatide-

loaded PLGA microparticles was up to 18 days which can be considered markedly long [17]. 

 

In addition to the studies for SC route, PLGA based carriers have been studied for inhalation and used 

to sustain the pharmacological effect and reduce the daily doses for the development of inhaled drugs 

formulations for pulmonary delivery [24]. Ungaro et al. investigated the potential of pulmonary deliv-

ery of insulin loaded in PLGA and cyclodextrin (used as an osmotic agent) porous microparticles (VMD: 

26.2±1.2µm) by assessing the in vivo deposition pattern and hypoglycemic activity of insulin loaded 

PLGA- cyclodextrin. The insulin loaded PLGA-cyclodextrin particles were prepared by the double emul-

sion-solvent evaporation technique and administered intratracheally to normoglycemic rats and in-

duced diabetic rats. The in vivo deposition studies showed that insulin loaded PLGA particles reached 

the alveoli surface 30 min after administration and spread over the surface 90 min after administration. 

Upon testing the induced diabetic rats, insulin loaded PLGA (insulin dose: 0.5 IU/kg, p<0.05 and 2 IU/kg, 

p< 0.0001) showed a significant reduction in blood glucose level compared to the control group 

treated with insulin solutions in the absence of PLGA (insulin dose: 4 IU/kg) [25]. Therefore, blood 

glucose levels can be reduced by the use of the PLGA based formulation with low doses. Similarly, 

Hamishehkar et al. evaluated the feasibility of pulmonary delivery for the controlled insulin release by 

preparing a dry powder inhaler formulation containing insulin loaded PLGA microcapsules blended 

with mannitol as a carrier and tested the aerosolization performance of the formulations [26]. Ham-

ishehkar et al. also designed a PLGA microcapsule (VMD 4.04µm) dry powder system for sustained 

delivery of insulin via lungs. Insulin loaded PLGA microcapsules were prepared by oil in oil emulsifica-

tion and solvent evaporation method and administered intratracheally to induced diabetic rats. The 
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pulmonary absorption and bioavailability of insulin was studied by monitoring serum insulin and glu-

cose concentrations in induced diabetic rats. Pharmacokinetic analysis in diabetic rats showed that 

insulin loaded PLGA microcapsules demonstrated a sustainable reduction in glucose serum concen-

tration for up to 48 h and the insulin serum residence time of insulin loaded PLGA microcapsules were 

significantly longer (34.1±1.36 h) than NPH (long acting) insulin administered by SC route (6.32±0.37 

h) (p<0.001). This demonstrated that insulin loaded PLGA microcapsules administered via intratra-

cheal insufflation had longer sustained insulin profile in serum than NPH insulin via SC route therefore 

a prolonged insulin release from PLGA microcapsules. However, reaching the blood circulation from 

PLGA microcapsules was slower than the SC route. Additionally, the safety study assessed by lung 

histology for insulin loaded PLGA microcapsules showed acute inflammation and mild to moderate 

injuries (e.g., thickening of alveolar sacs walls) in rat lungs treated with insulin loaded PLGA microcap-

sules due to a drop in pH in the lung caused by the degradation of PLGA [13]. 

  

Some studies focused on other route, oral delivery of antidiabetic drugs such as insulin. Wu et al. 

designed a two-stage PLGA based oral delivery system for insulin using a capsule coated with pH-

sensitive hydroxypropyl methylcellulose phthalate (HP55) to bypass the barriers in the gastrointestinal 

(GI) tract. Eudragit®RS was also used to facilitate the absorption in the intestine. This study was based 

on nanoparticle delivery system. Insulin loaded into PLGA-Eudragit®RS nanoparticles (particle size: 

374-1426 nm) were prepared by the multiple emulsions solvent evaporation method and adminis-

tered orally to induced diabetic rats. The hypoglycemic effects of the two-stage system were studied 

in the diabetic rats via oral administration (50 IU/kg) and compared with positive control of insulin 

solution by SC injection (5 IU/kg) and negative control of insulin in the absence of nanoparticles via 

oral feeding (50 IU/kg). The results showed that negative control of insulin in the absence of nanopar-

ticles had no hypoglycemic effect, whereas the two-stage system and positive control of insulin solu-

tion by SC injection had a significant hypoglycemic effect in diabetic rats. There was a sharp decrease 

(90% of initial) observed in plasma glucose levels within 2 hours after SC administration of insulin 

solution. On the other hand, there was a slow reduction in blood glucose levels after oral administra-

tion of insulin loaded PLGA/ Eudragit®RS nanoparticles in the enteric-coated capsule and demon-

strated a prolonged hypoglycemic effect [10]. Another study conducted by Malathi et al. developed 

insulin PLGA nanoparticles with the inclusion of D-α-tocopherol poly(ethylene glycol) 1000 succinate 

(TPGS, emulsifier) (particle size in diameter: 120-180 nm) for oral delivery of insulin. The insulin loaded 

PLGA-TPGS nanoparticles were prepared by water-oil-water emulsion solvent evaporation method 

and administered orally to induced diabetic rats (20 IU/kg). The in vivo studies showed that insulin 

loaded PLGA-TPGS nanoparticles suppressed the blood glucose level during the administration and 
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demonstrated a prolonged hypoglycemic effect for up to 24 hours. The serum insulin concentration 

level gradually increased after oral administration of insulin loaded PLGA-TPGS nanoparticles and 

achieved the maximum serum insulin level (6 µIU/dL) at 12 h, whereas control group treated with 

insulin in the absence of PLGA nanoparticles had the maximum serum insulin level (around 3 µIU/dL) 

at 3 h. This study demonstrated that loading insulin into PLGA based nanoparticles protected insulin 

from the enzymatic degradation in the GI tract therefore resulted in the effective and prolonged hy-

poglycemic effect. Also, the particle size of PLGA nanoparticles might have facilitated the absorption 

in intestine [27]. 

 All these reported studies show that regardless of different delivery routes of administration (SC, pul-

monary and oral), PLGA based micro and nanoparticles formulations for antidiabetic drugs have 

demonstrated to sustain hypoglycemic effect when compared to formulations without the use of bi-

odegradable polymers. For example, encapsulating short acting exenatide into PLGA based micro-

spheres led to the marketed formulation of long acting Bydureon®. This strategy has reduced the dose 

significantly from twice daily to once weekly. Therefore, biodegradable polymer-based formulations 

can offer the reduction of the daily doses for antidiabetic drugs. This is advantageous especially for 

patients on injection-based treatments as the frequency of injections can be minimised while the 

bioavialbility and theraperutic efficacy of the drugs can be maintained or enhanced. 

 

 

poly(ε-caprolactone)  

Poly (caprolactone) (PCL) is a semi crystalline polymer with a low glass transition temperature (-54°C) 

[20,28]. This polymer has low toxicity making it suitable for colloidal drug delivery. PCL undergoes 

ester hydrolysis in physiological conditions and degrades. PCL has been used in manufacturing long-

term implantable systems as the rate of its biological degradation is slow. PCL tend to generate less 

acidic degradants compared to PLGA. However, PCL is associated with intracellular resorption path-

ways and the degradation rate is slow (> 12 months) [16, 20, 28, 29]. This leads to the limited use of 

PCL for medicinal applications (e.g., general tissue regeneration) [16, 20, 28]. However, PCL can be 

used in combination with other polymers (e.g., polylactic acid (PLA) and PLGA) for designing drug de-

livery system and controlling drug release profile [20,28,29]. 
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Barakat, Shazly & Almedany reported that oral bioavailability and therapeutic effect of gliclazide could 

be enhanced by incorporating the drug within a blend of PCL and Eudragit RS microparticles. Gliclazide 

formulated as an oral dosage form is a short-acting hypoglycemic drug and used for the treatment of 

type 2 diabetes. However, gliclazide is associated with limitations such as variable absorption rate in 

GI tract; therefore, the maximum dose could go up to 320 mg from 80 mg daily dose. This requires 

developing a formulation for the sustained drug release [29]. Barakat, Shazly & Almedany prepared 

the gliclazide loaded PCL/ Eudragit RS microparticles using a solvent evaporation method and admin-

istered the microparticles orally to the male white rabbits for in vivo evaluations (gliclazide dose: 40 

mg kg-1). The in vivo studies demonstrated that gliclazide loaded PCL/Eudragit RS microparticles had a 

slow reduction in plasma drug level with a peak concentration of 8 hours. In contrast, gliclazide solu-

tion in the absence of microparticles had a rapid reduction in plasma drug levels within 3 hours after 

oral administration [29]. Therefore, the use of PLC with Eudragit RS based microparticle formulations 

can be a feasible approach to maintain the low daily dose.  

 Sheikh Hasan et al. prepared microparticles containing insulin nanoparticles using PCL and PLGA for 

parenteral delivery of insulin. Their particle preparations involved two steps. First, insulin loaded PCL 

nanoparticles were prepared by water-in-oil-in-water solvent evaporation method and then micro-

particles containing insulin loaded PCL nanoparticles were prepared by water-in-oil-in-water solvent 

extraction method. The microparticles containing insulin nanoparticles were administered subcutane-

ously to fasted diabetic rats (20 IU/kg) for in vivo studies. The in vitro drug release study demonstrated 

a significant reduction in insulin initial burst release from PLGA microparticles containing PCL insulin 

nanoparticles (19% release after 15 min and 39% release at 24 h) compared to PLGA microparticles 

containing insulin without PCL nanoparticles (36% release in the first 15 min and 56% release at 24 h) 

and PCL insulin nanoparticles (41% release in the first 15 min and 50% release at 24 h). The in vivo stud-

ies on diabetic rats also showed that PLGA microparticles containing PCL insulin nanoparticles had a 

limited initial burst release within 30 minutes (insulin serum concentration: 433±71 µU/mL) and con-

tinuous insulin release with stable insulin serum levels for up to 72 hours, whereas PCL insulin nano-

particles in the absence of PLGA microparticles demonstrated a significant high insulin serum level 

within 30 minutes (insulin serum concentration: 2389±280 µU/mL)[4]. Both reported studies show 

that formulations of antidiabetic drugs associated with fluctuated release profiles can be overcome 

by the use of PCL polymer based formulations as they exhibit a slow reduction in plasma drug level 

with stable drug serum levels for a longer period.  
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Polyalkyl cyanoacrylates  

  

Poly(alkyl cyanoacrylate) (PACA) is a biocompatible and degradable polymer and the properties of 

PACA are based on the type of PACA side chain and it can be produced from the rapid anionic polymer-

ization of alkylcyanoacrylates upon contact with  water. This polymer has good properties to be used 

in film preparation and as a glue in medical intervention for wound closure. PACA has been used to 

prepare nanoparticles as drug carrier systems [30]. Graf, Rades & Hook reported a study of oral deliv-

ery of insulin using PACA (i.e., poly(ethyl cyanoacrylate)) based nanoparticles prepared by using mi-

croemulsion as templates. The insulin loaded PACA nanoparticles dispersed in microemulsion tem-

plates (insulin loaded nanoparticle sizes: 200-400 nm) were administered intragastrically by gavage to 

fasted induced diabetic rats for in vivo studies (insulin does: 100 IU/kg). The results showed that the 

insulin loaded PACA nanoparticles-based formulation demonstrated a consistent reduction in blood 

glucose level for up to 36 hours after intragastric administration (reduction to 68% of the initial blood 

glucose level achieved at 9 h). In contrast, insulin solution in the absence of nanoparticles and micro-

emulsion templates showed no significant reduction observed in blood glucose level [31]. This study 

showed that although the insulin loaded PACA nanoparticles based formulation demonstrated a sus-

tained glucose reduction for up to 36 hours, the glucose reduction started rather late (e.g. started 9 

hours after intragastric administration) presenting a delay of insulin release [31].  

Poly-γ-glutamic acid  
 

Poly-gamma-glutamic acid (γ-PGA) is a high-molecular-weight polypeptide comprising g-linked glu-

tamic acid units and alpha-carboxylate side chains (Table 1) produced by certain strains of Bacillus 

subtilis. It has non-toxic, biodegradable, and non-immunogenic properties. Besides, PGA has anti-in-

flammatory and antiangiogenic properties.  

Poly-γ-glutamic acid (γ-PGA) is a water soluble biodegradable polymer and has been used to prepare 

nanoparticles for oral insulin delivery [32]. Sonaje et al. studied oral delivery of insulin loaded γ-PGA 

based nanoparticles. The insulin loaded γ-PGA nanoparticles were prepared using an ionic-gelation 

method followed by freeze drying. The freeze dried insulin γ-PGA nanoparticles (nanoparticle size: 

240-260 nm) were then filled into hard gelatine capsules and administered orally to induced diabetic 

rats for in vivo studies. The in vivo study was performed by comparing the blood glucose levels and 

plasma insulin levels between the formulations: insulin solution by SC injection (insulin dose: 5 IU/kg) 
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and oral administration of the freeze dried insulin loaded γ-PGA nanoparticles (insulin dose: 30 IU/kg) 

in induced diabetic rats. The results demonstrated that insulin solution (5 IU/kg) caused a significant 

reduction in glucose level at 2 h (75%) and reached maximum plasma insulin level (Cmax) within 1 hour 

after administration (Cmax: 119.6±7.4 µIUmL-1, AUC: 196.2±34.5 µIUmL-1). In contrast, the freeze dried 

insulin loaded γ-PGA oral formulations demonstrated a gradual and continuous reduction in glucose 

level for up to 10 hours (about 50%) and achieved maximum plasma insulin level at 5 h after admin-

istration (Cmax: 49.9±2.4 µIUmL-1, AUC: 235.8±30.2 µIUmL-1)[33].  Another study reported by Su et al. 

also studied insulin oral delivery using γ-PGA to improve the oral bioavailability of insulin. Insulin 

loaded pH-responsive nanoparticles were prepared using chitosan in conjugation with γ-PGA and di-

ethylene triamine pentaacetic acid (DTPA, a protease inhibitor) and administered orally to the induced 

diabetic rats for pharmacodynamic and pharmacokinetic profile studies. The results show that that 

insulin solution (insulin dose: 5 IU/kg) in the absence of γ-PGA based nanoparticles had a significant 

reduction in the blood glucose level within 2-3 hours and achieved the maximum plasma concentra-

tion at 1 h after SC administration (Cmax: 101.5±6.2 µIU/mL, AUC: 156.3±29.7 µIUmL-1). In contrast, oral 

administration of insulin γ-PGA based nanoparticles (30 IU/kg) showed a slow and prolonged reduc-

tion in blood glucose level for 10 hours and achieved a maximum insulin concentration at 4 h after 

oral administration (Cmax: 39.2±2.8 µIU/mL, AUC: 179.7±32.5 µIUmL-1) [34]. Both studies demonstrated 

a significant effect on blood glucose levels by delivering insulin orally to reach the intestines for ab-

sorption and achieved a prolonged reduction in glucose levels. Therefore, it can be indicated that using 

the γ-PGA nanoparticles based formulations is applicable approach for oral delivery of insulin and 

achieve a sustained hypoglycemic effect. 

Poly lactic acid 
 

Poly(D, L-lactic acid) (PLA) is widely used in drug delivery due to excellent biodegradable, 

biocompatible, and non-toxic properties. Similarly to PLGA, PLA has hydrophobic properties, hence  

requires surface modifications to be able to retain itself in the physiological environment. In addition, 

PLA nanoparticles are extensively studied for drug delivery with a controlled release due to their pros 

such as biodegradability, biocompatibility, and controlled particle size [35,36]. The PLA nanoparticles 

are usually negatively charged due to deprotonated carboxylic groups. Therefore, the repulsion 

between similar charges imparts stability to PLA containing systems in aqueous environments [35,36]. 

Nevertheless, PLA nanoparticles have some drawbacks as a drug delivery system due to their 

hydrophobic nature and low chemical stability. These limitations become significant when PLA 

nanoparticles are employed in oral administration because they are prone to be trapped by mucus via 
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steric or adhesive forces (mucoadhesion) [37]. Besides, PLA nanoparticles are removed rapidly via 

mucociliary clearance. Moreover, PLA particles have reduced stability in gastrointestinal fluids as the 

carboxylic acid groups become protonated at acidic pH causing a reduction in electrostatic repulsion 

between particles which consequently leads to their precipitation in gastric fluid [38, 39, 40, 41]. 

Zhang et al.  used the PLA microsphere to deliver insulin, and polyvinyl sulfate potassium was added 

onto the surface as a film layer to protect the drug. The results showed a slow release of insulin from 

the loaded microspheres in acidic media and after 6 hours, 90% of insulin was released from the 

microspheres. A superior stability of the microspheres in acidic medium was also observed. This can 

be related to the high electrostatic attraction between polylactic acid and the film layers. On the other 

hand, the insulin release in phosphate buffer media (pH 8) was very low over 12 hours. The in 

vitro studies showed that the blood glucose level after intraperitoneal injection to diabetic rats was 

significantly different from that before the injection. However, there was no significant difference in 

the glucose level between 3 and 7 days after the injection. Consequently, the insulin-loaded 

microspheres successfully achieved a reduction in blood glucose levels. This formulation resulted in 

the protection of insulin within the film layer from being degraded by gastric enzymes. Additionally, 

the suitable size of microspheres caused good adherence to the gastric tract, and easy transportation 

to blood circulation. The in vivo results, along with in vitro outcomes, have shown a hypoglycemic 

effect with the insulin loaded microspheres [42]. 

The feasibility of using Pluronic PLA block copolymers as nanocarriers of insulin for oral delivery was 

investigated by Xiong et al. PLA-Pluronic vesicles were prepared using dialysis/nanoprecipitation 

methods for oral route of administration. The radii of these particles under scanning electron 

microscopy (SEM) was shown as 57nm. The in vitro release behavior and hypoglycemic effects of the 

orally-administered formulation were monitored up to 23 hours in fasted diabetic mice. The results 

indicated that the blood glucose concentration of oral insulin-loaded PLA-Pluronic vesicles reduced 

immediately and the highest blood glucose drop was achieved after about 5 hours. Furthermore, the 

blood glucose concentration remained at the same level for at least an additional 18.5 hours showing 

that these vesicles could be a potential candidate for oral insulin vehicles [43]. 

In another study, researchers attempted to formulate repaglinide containing biodegradable 

nanoparticles to decrease the drug-related side effect, which was cost-effective for patients. The 

polymeric nanoparticles were prepared using chitosan, PLA, and PCL by employing the solvent 

extraction method. The nanoparticles were of spherical shape and their size was found to be between 

108-220 nm. The entrapment efficiency was high (81-92%), and the drug release pattern followed 

zero-order kinetics. These nanoparticles were then loaded in a transdermal patch to provide 
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prolonged drug delivery over a week in the diabetic patients. In vivo results showed a 76 fold increase 

in the therapeutic efficacy of repaglinide as compared to conventional oral administration. Moreover, 

the parameters such as arean under curve (AUC), maximum concentration (Cmax), time required to 

reach Cmax (T max), half life (t1/2) and relative bioavailability estimated as 2218 µIU/ml/h, 41.88 µIU/ml, 

36 h and 52.79 h, respectively [44].  

A recently approved FDA drug known as “stevioside” was found to possess good antidiabetic activity, 

but its use is restricted in humans due to its low intestinal absorption. Barwal tried to improve the 

bioavailability of this new therapeutic agent by encapsulating the drug in pluronic-PLA block 

copolymeric nanoparticles. The spherical nanoparticles were prepared via nanoprecipitation method, 

which possessed the size range of 110-130 nm — their drug loading capacity was calculated to be 

16.32 ± 4%. The in vitro results indicated an initial burst release followed by a sustained release profile. 

Around 50% of the drug was released 25 ± 4 hours and completely released in 200 ± 10 hours. The in 

vivo studies of this drug delivery system are yet to be explored [45]. 

Another study reported insulin loaded PLA-di-lauroyl phosphatidylcholine nanoparticles. The 

nanoparticles were 107.5 nm in size (0.14 Polydispersity index, PDI) and had a Zeta Potential (ZP) of -

6mV. The formulation managed to protect the drug from acidic pH with a loading capacity of 18%. 

The in vitro results indicated a 30 % release at pH 2.5 in the first 2 hours while 90% release at pH 6.8 

after 8 hours. The in vivo studies were performed in streptozotocin (STZ)-induced male Sprague-

Dawley rats, which demonstrated a 40% decrease in blood sugar levels in 4 h. Moreover, the 

pharmacological activity at an oral dose of 50 IU/kg was reported to be 11.2%, which was 10 times 

higher than free insulin [46]. 

In another study, glimepiride loaded PLA slow-release nanoparticles were prepared via o/w solvent 

evaporation technique and high-speed homogenizer. The prepared nano formulation possessed a size 

of 442.2 nm while the results of differential scanning calorimetry and fourier transform infrared 

spectroscopy indicated partial interaction between drug and polymer due to hydrogen bonding 

between N-H and carbonyl groups. The drug content and encapsulation efficiency was calculated to 

be 40.27 and 80.55%, respectively. These nanoparticles enhanced the therapeutic outcome of 

glimepiride by increasing drug release. Following first-order kinetics, the optimized batch showed a 

release of 73-78% up to 12 hours [47]. However, the record of animal studies and the route of 

administration was not discussed. 
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In summary, PLA has some advantages and disavantages as a drug vehicle. Although PLA is safe to use 

and produces reduced size particles, the hydrophobic nature of the polymer makes it difficult to 

maintain its structure in gastric fluids therefore, oral delivery using PLA is still a challenge to overcome.   

Chitosan  
 

Chitosan is synthesized by partial deacetylation of chitin and is a copolymer of β-(1 → 4)-2-acetamido-

D-glucose and β-(1 → 4)-2-amino-D-glucose units (Table 1), with the latter usually exceeding 80% [48]. 

It is a biodegradable polymer very suitable for pharmaceutical applications due to its low toxicity, low 

immunogenicity, and good biocompatibility. Chitosan and its derivatives, such as glycol chitosan, suc-

cinyl chitosan, arginine-chitosan, and aminated chitosan, etc. are efficient drug carriers for the oral 

route of administration [49]. 

Many studies have used chitosan to design particular systems to deliver antidiabetic drugs. Eilleia et 

al. conducted a study using microencapsulation technology to protect insulin from gastric and enzy-

matic degradation [50]. Porous microparticles have also been prepared using poly (d,l-lactide-co-gly-

colide) (PLGA) w/o/w emulsion solvent evaporation method. The insulin solution (5 mg/ml in 0.01 M 

HCl) was incubated with  porous PLGA microparticles (10 mg) and the surfaces of PLGA microparticles 

were coated with chitosan by double freeze-drying. Insulin released from the microparticles was ex-

amined for its effect on lowering blood glucose levels. When compared with oral insulin suspension, 

SC insulin and uncoated insulin PLGA microparticles, chitosan-coated insulin PLGA microparticles 

coated with chitosan showed a significant reduction in blood glucose level (15.8% ±4%, P<0.001). The 

blood glucose level rose to 70% after the first hour, then reduced to 50% and was maintained over 8 

hours by using chitosan-coated microparticles. On the other hand, the oral suspension of insulin was 

unable to affect the glucose level due to the enzymatic degradation of insulin in the GI tract. Chitosan 

was believed to adhere to the upper intestinal part where insulin had minimum solubility resulting in 

low insulin absorption and sustained glucose reduction [50]. Zhang et al. concluded similar results of 

maintaining low blood glucose levels owing to the chitosan coating of insulin loaded PLGA nanoparti-

cles [51]. 

Another recent study was conducted by Mumuni et al. to explore the effect of chitosan and mucin 

microparticles on insulin release. Insulin microparticles based on chitosan and snail mucin were pre-

pared by the double emulsion method. The insulin release profile was studied in both acidic and basic 

medium of pH 1.2 and 6.8, respectively. The results showed that more than 80% of insulin was re-

leased over 12 hours in a prolonged mode. The batch with highest chitosan concertation showed a 
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prolonged release profile compared to other formulations, and this could be attributed to the high 

electrostatic interaction between insulin molecules and polymer’s concertation. Mumuni et al. sug-

gested that the combination of chitosan with snail mucin has a synergistic effect. Hence the addition 

of mucin improved the insulin loaded microparticles stability at a low pH. In addition, oral insulin 

loaded microparticles were tested on diabetic rats (Wister rats). Pharmacokinetics study was per-

formed over 12 hours for oral insulin microparticles, solution and SC insulin solution. The results 

showed a reduction in blood glucose level after administration of insulin microparticles for the first 5 

hours and a slow reduction over 12 hours. On the contrary, the administered SC insulin showed a rapid 

reduction within 1 hour whilst the insulin solution showed no significant difference (p > 0.05) [52]. 

The preparation of chitosan microparticles loaded with two antidiabetic drugs namely metformin and 

glibenclamide was investigated by Avram et al. They developed a binary formulation with an enhanced 

swelling degree and loading efficiency of the first-line treatment for patients with T2DM [53]. Metfor-

min, for instance, has 50-60% bioavailability and 0.9 - 2.6 h half-life, which is considered low. There-

fore, multiple daily doses are required to maintain the metformin therapeutic levels in the plasma. 

The use of glibenclamide in T2DM patients is also challenging as the drug has 45% bioavailability due 

to its poor dissolution properties. Glibenclamide doses are 2.5 - 5 mg/day as monotherapy or com-

bined with metformin. Nevertheless, the combination of these medicines can lead to hypoglycemic 

effect, increase weight, and other gastric side effects. Avram et al. prepared three chitosan micropar-

ticles formulations to include single and combined therapies. Chitosan-metformin-glibenclamide mi-

croparticles were larger than chitosan-metformin and chitosan-glibenclamide microparticles. Also, 

these microparticles had the highest swelling degree in distilled water ranged from 226% to 310% 

when compared to chitosan single therapy (179%). Similarly, the highest loading efficiency was no-

ticed in chitosan-metformin-glibenclamide microparticles with therapeutic dose of 15 mg for both 

drugs in 51% and 98% for metformin and chitosan, respectively. This can be a useful approach to pre-

pare combined microparticles to enhance their properties [53, 54]. 

 

The therapeutic effect of insulin was also tested by incorporating the drug in chitosan nanoparticles. 

These nanoparticles were prepared in the presence of tripolyphosphate, a crosslinker, using the ionic 

gelation method (shown in Figure 2) and then the nanoparticles were loaded into the inner aqueous 

phase, comprised of 56% surfactant and 16% water in 28% oil, of w/o microemulsion to provide sus-

tained release. The results indicated an increase in vivo stability and enhanced drug absorption 

through the GI tract. In vitro release study at pH 2.5 revealed that insulin release was significantly low 
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under higher chitosan ratios (p < 0.05). It was also reported that the emulsion-based nano encapsu-

lated system enhanced the protective effect in acidic pH. The in vivo experiments in the Wistar Albino 

rat model demonstrates that these chitosan-coated insulin nanoparticles effectively reduced blood 

glucose levels over a period of 8 h after oral administration [54]. 

 

Figure 2: Ionic gelation method to prepare chitosan nanoparticles. 
 

Similarly, Li-Chu and co-workers prepared chitosan nanoparticles for oral delivery of insulin. Trimethyl 

chitosan (TMC) was combined with fucoidan (FC), a polysaccharide isolated from brown algae, to pre-

pare multifunctional nanoparticles which inhibited the α-glucosidase activity and improved transepi-

thelial permeation of insulin via epithelial cell barrier of the intestine. TMC and FC self-assembled into 

spherical nanoparticles for insulin incorporation and prevented insulin degradation due to a pH-de-

pendent release manner in GI tract fluids. The size of these nanoparticles was 276.7nm, Zeta Potential 

of 28mV, loading capacity, and encapsulation efficiency of 8.6% and 56.4%, respectively. The nano-

particles modified the barrier function of the Caco-2 intestinal epithelial cell monolayer and increased 

paracellular transport of insulin in vitro. These nanoparticles also demonstrated α-glucosidase inhibi-

tory activity with an inhibition ratio of 33.2% at 2 mg/ml. The cytotoxicity results showed that caco-2 

cells possessed the viability of >90% with <300 µg/ml nanoparticles [49].  

Another group of researchers proved extended control of glycemic levels in male albino rats using oral 

insulin chitosan nanoparticles. Insulin folate-chitosan nanoparticles of approximately 288 nm were 

prepared. The entrapment efficiency of these nanoparticles was also reported to be greater than 80%. 

The formulation successfully improved half-life of insulin and enhanced its stability upon exposure to 

gastric enzymes. The system was able to provide a sustained drug release of 38.92 ± 4.52% in PBS pH 

7.4 over 8 hours, with only <10% release at pH 1.2. Moreover, the insulin intestinal permeability and 
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cellular uptake were three times higher than the solution form. No evidence of histopathological al-

terations was recorded, and the nanoparticles demonstrated glycemic control of 8 hours in rats [55].  

Quercetin is another antidiabetic drug that was investigated. Quercetin is a natural bioflavonoid with 

a wide range of pharmacological properties, including antidiabetic activity, but its biomedical applica-

tions are limited due to its poor aqueous solubility, instability, low permeability, and extensive first-

pass metabolic effect. Piyasi et al. studied novel pH-sensitive polymeric nanoparticles using succinyl 

chitosan and alginate. These nanoparticles possessed core-shell with corona morphology loaded with 

quercetin. The nanoparticles were of 91.58 ± 1.14 nm in size, with 0.43 Polydispersity index and -

26.63mV zeta potential values. The drug encapsulation reported being over 90% with 59% loading 

capacity. The in vitro release studies showed that 16-27% of quercetin was release in gastric pH after 

2 hours and 88-89% released in a simulated intestinal fluid due to significant swelling of nanoparticles 

at pH 6.8. In vivo results showed that quercetin loaded particles significantly downregulated the blood 

glucose levels as compared to free quercetin (control) and the blank nanoparticles, which did not show 

any hypoglycemic effects [56]. 

 The studies mentioned here revealed chitosan and its derivatives have been proven successful to 

enhance the drug stability and bioavailability of antidiabetic drugs. As chitosan is associated with low 

immunogenic risks and good biodegradability, therefore it serves as a potential candidate for delivery 

of new antidiabetic drugs especially via oral route of administration. 

 

Alginate  
 

Alginate is a nontoxic, biodegradable polysaccharide obtained from marine brown algae. It is anionic 

copolymer comprised of 1-4 linked β-D-mannuronic acid and α-L-guluronic acid units of different com-

position and sequence depending upon the alginate source. Alginate shows a variable molecular 

weight, which is dependent on the enzymatic control during production and its extraction determines 

its degree of polymerization [57]. Alginates are generally used as an excipient in drug products due to 

its thickening, gel forming and stabilizing properties. However, due to its other desirable properties 

such as biocompatibility, biodegradability, pH sensitivity and mucoadhesiveness alginate also has 

been explored as an oral delivery matrix for proteins [58]. Alginate microspheres can be easily pre-

pared but mechanical stability is an issue (Figure 3). Similarly, drug release is also observed to be too 

fast. To circumvent these issues, polymer-coated alginate microspheres and nanoparticles have 

proved promising results for modified drug delivery (Table 3) [59]. 
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Kar et al. prepared alginate metformin loaded microspheres using ionic gelation technique. The mi-

crospheres were prepared from alginate blended with hydroxy propyl methylcellulose, methylcellu-

lose, chitin and chitosan. The prepared microparticles had 85% entrapment efficiency and controlled 

metformin release for more than 8 hours. Microspheres of alginates blended with hydroxy propyl 

methylcellulose showed ideal release profile compared to other batches [60]. 

 

 

Alginate-metformin microparticles were also investigated by Szekalska et al. who used spray drying to 

prepare the microparticles with the aim of prolonging the residence time of metformin utilizing the 

mucoadhesive properties of alginate. Alginate microspheres were successful in modifying and extend-

ing the release profile of metformin by Fickian diffusion.  Moreover, the effects of alginate-metformin 

microspheres on the glucose uptake and the 𝛼𝛼-amylase enzyme inhibition were assessed by in vitro 

studies performed on Saccharomyces cerevisiae cells of bovine stomach mucosa [61]. It can be noticed 

in F6 which consists of cells incubated with microspheres in 2:1 ratio (drug: polymer) a high glucose 

uptake and the remaining glucose concentration in the medium was the lowest 3.91 ± 0.69% com-

pared to the metformin alone and the control 6.51 ± 1.01%, and 14.72 ± 1.32% (mean ±SD), respec-

tively. Also, F6 microspheres strongly reduced α amylase enzyme activity by 36.34±2.45% compared 

to  metformin effect 5.35 ± 0.32%. Therefore, it was noticed that polymer amount had a strong inhib-

itory effect on the enzyme activity [61]. 

In 2018, Chakra et al. performed a study to sustain metformin release using alginate microspheres 

with gum to prolong the duration of action and minimise the gastric side effects of the drug. The mi-

crospheres were prepared by w/o/w emulsion solvent evaporation method and gum with sodium al-

ginate were used as a matrix and ethyl cellulose as a coating polymer.  The slow release of metformin, 

Figure 3: SEM images of raw powder of sodium alginate (A) , microparticles of spray dried so-
dium alginate (B). 

A B 
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dependant on the gum concentrations in the matrix, was achieved. Microspheres containing a high 

concentration of the gum showed a slow release which can be related to the high viscosity of the 

internal aqueous phase that increased with gum concentration and alginate. However, the increment 

of the gum concentration had a significant impact on drug release which was retarded from 7.53 to 

10.82 hours with time required for 50% of drug release (t50%) and similar trend was noticed with 80%  

[62]. 

Also, Reis et al. used alginate to prepare insulin microparticles using internal gelation emulsification 

method. In this method, a solution of alginate with insulin protein was dispersed into a water immis-

cible solution. The gelation took place in situ by immediate calcium ion release from carbonate com-

plex through a minor pH adjustment. In vitro release study was tested in pH 1.2 and pH 6.8 with a 

gastrointestinal simulated condition. The insulin release study showed a burst release of the drug 

(100%) at 5 min in acidic media and was not inhibited by alginate. Nevertheless, the protection of 

insulin secondary structure after 2 hours in isotonic PBS buffer (pH7.4) was detected which confirmed 

prolong drug efficacy [63]. 

Alginate crosslinked chitosan microparticles were also investigated by researchers. Szekalska et al. 

attempted to modify the drug release of metformin and studied the reduction in blood glucose levels 

in rats for 28 days. During the study the therapeutic efficacy of alginate-cross-linked microparticles 

was compared with non-cross-linked microparticles, commercially available metformin tablets in pres-

ence of placebo and carboxymethyl cellulose sodium salt (Control). The in vivo studies showed a grad-

ual reduction in blood glucose level and a slower metformin absorption after orally administrated of 

non-cross-linked alginate microparticles and chitosan cross-linked alginate microparticles formulation 

to diabetic rats . This could be attributed to the prolonged drug release and the stable plasma drug 

concentration. Although, after 21 days the formulations achieved similar blood glucose level with met-

formin tablet, the effect of the formulations was gradual and stable. Moreover, the results showed a 

reduction of 15% and 33% in blood glucose level after using pure alginate for 3 and 18 days of treat-

ment respectively. Therefore, alginate can be considered as a prospective antihyperglycemic agent. 

Nonetheless, the in vitro release studies showed a burst effect for all the formulations. This can be 

attributed to the hydrophilic nature of free metformin particles that present on the surfaces of the 

microparticles. Also, It was noticed that a sustained release profile was maintained for up to 6 hours 

with cross-linked microparticles compared to non-cross-linked alginate-metformin microparticles. 

This is owing to the swelling behaviour of the microparticles that were produced by the cross-linking 

of chitosan and alginate resulting in prolonged drug release from the swollen matrix. Besides, alginate 
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has the property to convert into alginic acid, in a gel form, at acidic pH, which can control the internal 

water content in the microparticles and affects the release profile [64]. 

Alginate nanoparticles were also investigated to deliver antidiabetic drugs. A study was conducted to 

design alginic acid nanoparticles along with nicotinamide as permeation enhancer for sublingual de-

livery of insulin, with the objectives of achieving good decrease in serum glucose level and increase in 

serum insulin level in diabetic rats. These nanoparticles were prepared using mild and aqueous pro-

cess to avoid any detrimental effects on insulin stability. Alginic acid nanoparticles revealed strong 

bioadhesion compared to insulin solution with entrapment efficiency of 95%. Insulin release from al-

ginic acid nanoparticles followed first-order kinetics. The insulin release profile of these nanoparticles 

was examined over a period of 12 hours which indicated very rapid initial burst (65%) in barely 2 h 

followed by slow release. The hypoglycemic effects and serum insulin levels were evaluated in STZ-

induced diabetic wistar rats. The pharmacological availability and relative bioavailability of these sub-

lingual insulin nanoparticles were compared with insulin SC injection. It was revealed that alginic acid 

nanoparticles at doses 5 IU/kg possessed high pharmacological availability of 100.2% to 125.1%. Sim-

ilarly, the dose-corrected bioavailability with reference to SC injection (1 IU/kg) was also significantly 

higher (20%-25%) [65]. 

In another study, three types of insulin-loaded alginate-C18 nanoparticles were prepared by dropwise 

addition of insulin into alginate solutions under constant stirring and subsequently spray-dried. These 

nanoparticles were further dispersed into sodium alginate solutions to form beads which were then 

coated with tripolyphosphate cross-linked chitosan-oleic acid conjugate to produce multiple fold ef-

fect. These nanoparticles indicated low toxicity level, reduced size and zeta potential thus enhanced 

mucus penetration, intracellular trafficking and minimal insulin reabsorption tendency as a result of 

active COOH/COO– sites of alginate were occupied by C18 conjugate. 

The combination of insulin-loaded nanoparticles and beads in a single dosage form brought a remark-

able blood glucose reduction of 25% in 0.5 hour followed by further decrease of approximately 46% 

within 24 hours, when compared to water, oral insulin, SC insulin and drug free nanoparticles-loaded 

beads. However, these nanoparticle-loaded beads initially showed a higher plasma glucose levels  due 

to a small fraction of polysaccharide of beads being digested and absorbed to cause the surge. The 

use of beads, as carriers of insulin-loaded nanoparticles, prevented premature insulin release in the 

gastric cavity. Instead of using nanoparticles alone, the combined use of nanoparticles and beads as a 

single dosage form increased the blood glucose lowering extent of insulin synergistically and raised 

insulin level in blood. The nanoparticles in beads represented a vehicle that can be used in oral insulin 

delivery [66]. 
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A study was conducted to prepare gliclazide loaded calcium-alginate beads using ionotropic gelation 

method. Alterations in polymer concentration, stirring speed, internal phase volume and type of sur-

factant used in external phase were made which affected the particle size, incorporation efficiency 

and flow properties of the beads. These alginate beads showed swelling and mucoadhesive properties, 

which helped in improving oral delivery of drug. In vitro testing revealed that “swelling” was main 

factor contributing to the control release of drug. In vivo studies were conducted in diabetic rabbits 

and indicated that hypoglycemic effect induced by these alginate beads was remarkably higher than 

conventional gliclazide tablet with a statistically significant difference of p ˂ 0.05. The formulation 

successfully exhibited control release of drug as compared to its tablet form which showed a rapid 

release over 25 hours [67]. 

In another study, calcium-alginate nanoparticles were developed for sustained release of liraglutide. 

These nanoparticles were prepared via ionotropic controlled gelation method and coated with chi-

tosan. The particles were characterised by dynamic light scattering technique, scanning and transmis-

sion electron microscopy. The formulation containing 0.5% alginate, 0.5% chitosan and 0.5% calcium 

chloride in volume ratio of 3:1:1 revealed a size of 100 nm under SEM. The loading efficiency and 

loading capacity of this formulation was 92.5% and 54.16%, respectively. The stability of these nano-

particles was reported to be 92.4% after freeze drying and 72.3% over subsequent storage at 4°C for 

60 days. In vitro release results were carried out in simulated gastrointestinal conditions and drug 

release of 59.1% was observed after 6 hours. These results showed that chitosan coated alginate na-

noparticle for oral delivery of liraglutide is a potential natural biodegradable polymer-based carrier 

system [68].  

Overall, the highly sought-after properties of alginates make this polymer an ideal drug carrier and 

for oral route of administration. However, due to the stability issue of the alginate micro and nano-

particles, it is usually used in combination of other polymers such as chitosan etc, to impart mechan-

ical strength to the system.
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Table 3: Alginate and chitosan nanoparticles for antidiabetic drugs delivery. NPs: nanoparticle(s), L.E: loading efficiency , A.E: association efficiency, 
PVA: polyvinyl alcohol, E.E: encapsulating efficiency, L.E: loading efficiency, L.C: loading capacity, GK: Glucokinase  

Polymeric nanoparticles Drug in-
corporate 

Route of  
Administration 

OUTCOME Reference 

Pharmacokinetic Therapeutic  

Chitosan NPs (300-400 
nm) 
L.E~55% 

Insulin Intranasal ↑nasal absorption Significant rapid in vitro release   
↑in vivo release in albino mice as compared 
to insulin solution 

[69] 

Alginate/chitosan NPs 
(750 nm) 
A.E> 70% 
 

Insulin oral ↑oral absorption 
↑oral bioactivity 

↓basal glucose levels up to 40% for 18 
hours 

[70] 

Chitosan NP Insulin oral ↑Interaction between rat intestinal epi-
thelium & chitosan NPs after 3 hours 
 

↓ Serum glucose levels in streptozotoc in-
induced diabetic rats for 11 hours 

[71] 

Chitosan-mucin NPs 
combined with polox-
amer & PVA 
E.E ~88-92% 
 

Insulin oral Negligible release at pH 1.2 and >80% 
sustained release for 8 hours at pH 7.4 

Fast onset of action in alloxan-induced dia-
betic rats. The NPs provided sustained re-
lease (12 hours) than subcutaneous insulin 
whose effect lasted for 4 hours 

[52] 

Fatty acid conjugated 

Chitosan Nanoparticles 

L.E and L.C >98% 

Insulin Liver-targeted 

SC delivery 

↑Hepatocyte absorption 

↑antidiabetic efficacy 

↑↑ relative pharmacological availability 

than free insulin 

↑↑ Relative pharmacological availability in 
liver than free insulin in diabetic mice 

[72] 
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Polyurethane-alginate/chi-

tosan core shell NPs 

E.E>90% 

Insulin oral Diffusion-controlled and swelling-con-

trolled release sustained over 20 hours 

Slow onset of action but prolonged release and glucose control up to 6-10 hours 

in diabetic mice as compared to SC insulin (reduced blood glucose levels for 2 

hours 

[73] 

Alginate-chitosan NPs 

L.C~87% 

Modified In-

sulin 

oral Insulin protection in simulated gastro-

intestinal fluid (SIF) 

↑in cumulative insulin release (40%) in SIF than non-modified insulin with only 

18% release 

[74] 

Chitosan-pectin biohybrid 

nanoparticles 

L.C ~ 92% 

Metformin In-

tra-

per-

ito-

neal  

↑ Upregulation of IRA, GLUT-2 and GK 

receptor gene expression 

↓TNF-α, IL-6 in pancreas 

 

↑ Glucose utilization in vital organs 

Controlled dyslipidaemia and renal impairment in diabetic rats 

[75] 

Alginate coated Zinc NPs  Metformin oral ↑stability in acidic environment Targeted release in intestine. 

↑Effectiveness due to alginate coating. 

[76] 

Alginate-chitosan NPs 

E.E=52.48% 

L.C=47.01% 

Insulin oral ↓hypoglycemic effect lasted for 4 h 47% Blood glucose levels ↓ in STZ-induced albino rats at 5 h. [77] 
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Poly acrylic acid 
 

Developing controlled release systems is one of the main approaches for different research efforts. 

It was aimed to use biodegradable materials such as poly(d,l-lactic acid) (PLA) or poly(d,l-lactide-co-

glycolide) (PLGA) to control the release of peptide and protein drugs [78]. 

Ibrahim et al. prepared polyacrylic acid and poly (lactide- co -glycolide) based microparticles loaded 

with 5% bovine insulin by multiple emulsion solvent evaporation methods (w/o/w). The microparticles 

were of sizes 40-53 µm with porous surfaces and the encapsulation efficiency between 75.18% -

79.63%. The release study results from polyacrylic acid and poly (lactide- co -glycolide) microparticles 

showed an early loss of 66% and 71% of insulin accordingly during the first 6 hours. This was attributed 

to protein accumulation and the hydrophobic interaction between the protein and polymers. However, 

the insulin amount was high and these results appeared in the stability studies after several weeks 

[42]. Also, polyacrylic acid was used in one of the old studies to prepare microbeads of insulin using 

emulsion solvent evaporation method. The results showed that more than half of the insulin was 

released within the first hour, and in vivo results showed insulin lasts for more than two weeks. 

Gelatin 
 

Gelatin is a natural polymer obtained from animal collagen and possess low antigenicity. It is isolated 

using acid or base hydrolysis of collagen by breaking the hydrogen bonds responsible for the stability 

of collagen [79]. Gelatin has been classified as type A or type B depending upon the type of hydrolysis 

method used in its preparation [79, 80]. Gelatin nanoparticles were first developed in 1978 by Mary 

et al. [81, 82]. 

Inoo, Bando and Tabata conducted a study to assess the insulin secretion by transport subcutaneously 

insulinoma cells and gelatin hydrogel microspheres in the back of rats to assess the insulin secretion 

from both of them. Model β cells were prepared by mixing gelatin hydrogel microspheres with 

insulinoma cells groups to sustain the cells vitality through studying the pathway of oxygen,  nutrients 

and the effect of the mixed hydrogel microspheres on the function of cell aggregates. Chemical cross-

linking of gelatin in w/o emulsion was used to prepare gelatin hydrogel microspheres. The insulinoma 

cells with or without gelatin hydrogel microspheres were loaded in a sac like tool and insulin secretion 

was evaluated before and after the subcutaneous transplantation on 3 and 7 days for all formulations. 

The results showed that insulin secretion was markedly high from the sac like tool containing insulin 
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insulinoma cells aggregates with gelatin microspheres compared with those without the microspheres. 

However, the secreted insulin amount was less after transplantation and it was similar between 3 and 

7 days after transplantation by in vivo studies [83]. 

In another study Inoo, Bando and Tabat used the same obtained gelatin hydrogel microspheres 

previously for in vivo experiments on rat-derived insulinoma cells to compare between the effect of 

gelatin hydrogel microspheres and microspheres-free cell groups on the survival and glucose-induced 

insulin secretion. After 14 days of cultivation at the initial seeding density of 1.0x103 cells/well the 

results showed a good cell survival and reductase action for the cells with gelatin microspheres and a 

notably increment in insulin secretion with cell groups of large sized microspheres compared to the 

middle sized and the cell groups without microspheres. Hence, cell groups combined with large gelatin 

hydrogel microspheres can be considered to prepare the cells for treatment of type 1 diabetes [84]. 

Gelatin was used by Wang, Tabata and Morimoto to prepare animated microspheres for nasal drug 

delivery system of peptide drugs. The in vitro drug release study used to evaluate fluorescein-labeled 

insulin (RITC-insulin) and FITC-dextran as model drugs. The release of RITC-insulin from the animated 

gelatin microspheres was slower than from control gelatin microspheres, with 18.4% and 32.4% within 

30 min, and 56.9% and 75.1% within 8 hours accordingly. However, the release of FITC-dextran from 

both gelatin formulations (animated and the antive) was fast and no significant difference was 

observed between them. The in vitro study was used to test the hypoglycemic effect after intranasal 

administration of the formulations in healthy rats. The results showed a significant reduction in 

glucose level with nasal administration of animated gelatin microspheres in powder form in contrast 

to the intranasal suspension which had no significant effect on glucose level after at insulin dose of 5 

IU/kg [85]. 

Ying-Zheng and his fellows prepared gelatin nanoparticles to investigate safety and bioavailability of 

pulmonary administered insulin. Insulin was attached to the surface of the gelatin nanoparticles which 

were further modified by poloxamer and D, L-glyceraldehyde solution. The ratio of gelatin to 

poloxamer played significant role in determination of physical characteristics such as size, PDI and ZP. 

The insulin loaded nanoparticles with 1:1 ratio had smallest size (250 nm), PDI (0.276) and highest ZP 

values of -21.1 ± 0.6 mV. The nanoparticles possessed a smooth surface with spherical shape. The 

formulation was administered to Sprague–Dawley (SD) rats via intratracheal route. A significant drop 

in initial blood glucose concentration from 100% to 37.5 ± 4.10 % was achieved within 4 h of 

administration of prepared gelatin nanoparticles in comparison with same dose (2 IU/kg) of insulin 

solution on its own where it dropped to only 65.32 ± 4.30%. The bioavailability was also higher (76% 
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with gelatin nanoparticles Vs 42% for insulin solution. In addition, these nanoparticles assured the 

safety of lung by reducing insulin deposition in lungs [86]. 

Another study prepared chitosan-γ PGA hard gelatin nanoparticles using ionic gelation method for 

oral and SC delivery of insulin. The nanoparticles were as small as 241.5nm with 25.6 mV surface 

charge. An oral dose of 30 IU/kg was administered to STZ-induced male Wistar rats which showed 10% 

and 30% reduction in blood glucose levels in 5 hours with a continued hypoglycemic effect of 10 hours. 

The pharmacological activity of 20.1% was observed. The entrapment efficiency and drug loading was 

reported to be 70.6% and 18.3% respectively [87]. 

Similarly, another group of researchers also prepared chitosan and γ PGA gelatin capsule nanoparticles 

coated with Eudagrit via ionic gelation method and performed in vivo studies using STZ-induced rats. 

The formulation provided pharmacological activity of 21% and possessed a size of 250 nm and zeta 

potential of 25 mV. The in vivo results showed 40% decrease in blood glucose level in 4 hours and 

hypoglycemic effect was maintained up to 6 hours [88] . 

Gelatin is an attractive polymer for preparing micor and nanoparticles with good natural abundance, 

high physical stability and low antigenicgenic properties. However, the type of isolation technique may 

affect the purity and physicochemical properties of gelatin which should be considered in choosing 

this natural biodegrable polymer as a drug delivery vehicle. 

Albumin 
 

Albumin is a protein biopolymer and an emerging nanocarrier for protein-based drugs including oral 

delivery of insulin. It is most abundant plasma protein having molecular weight of 66.5kDa. It 

possesses high stability at pH 4 to 9 and thermal stability up to 60 oC. Besides, it has been preferentially 

used as oral drug delivery system for its biodegradable nature, low toxicity and non-immunogenicity 

making albumin an ideal material for drug delivery [89]. 

Mahobia and co-workers prpeared egg albumin nanoparticles to deliver insulin orally. The 

microemulsion method was employed to prepare egg albumin nanoparticles in presence of 

glutaraldehyde as crosslinker. The nanoparticles were then placed in insulin PBS solution (pH 7.4) to 

load the drug. These were then subjected to swell up and absorb the drug until equilibrium was 

achieved. The size of these nanoparticles was reported to be 10-30 nm under Transmission electron 

microscope, while the in vitro cytotoxicity was investigated in fibroblasts and the albumin 

nanoparticles deemed non-toxic. It was observed that increase in albumin content up to a certain limit 
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increased insulin release proportionally. Formulations with 68% drug loading showed a maximum 

cumulative release up to 5mg while formulations with 33% drug loading exhibited 4 mg cumulative 

release [90]. 

Another group of researchers prepared chitosan-albumin coated particles for oral insulin delivery 

using a complex scheme based on emulsification gelation technique. Insulin was incorporated to be 

trapped between alginate-dextran sulphate pockets and a dual coating was applied by dropwise 

addition of chitosan and albumin, sequentially. The particles possessed average size of 300 nm, PDI ≤ 

0.30 and surface charge of -30.6 ± 0.8 mV. The encapsulation efficiency of nanoparticless before 

coating was 72.4± 3.3% while it was reduced to 21.9 ± 2.8 and 30.7 ± 3.4%, after coating with chitosan 

and albumin, respectively. Similarly, the loading degree of nanoparfticles also reduced from 10.1 ± 

2.8% to 4.8 ± 0.4% and 6.2 ± 1.4% after chitosan and albumin coating respectively. The in vitro studies 

showed complete insulin release at pH 5.5 after 2 hours for both chitosan and alginate coated 

nanoparticles but a sustained release at pH 7.4 was observed only with albumin coated particles while 

in chitosan coated nanoparticles, the insulin release was halted due to insolubility of chitosan at that 

pH. In vivo permeability studies were carried out in a triple co-culture of Caco-2/HT29-MTX/Raji B 

model proved that dual coated nanoparticles had increase permeation across intestinal cell and longer 

retention in mucus layer than non-coated nanoparticles [91]. 

A similar type of nanoparticle formulation was developed by Woitiski and co-workers in 2010 where 

hypoglycemic effects of chitosan stabilized alginate-dextran nanoparticles coated with albumin were 

investigated. These were administered orally to wistar diabetic rats. The formulation carried negative 

charge therefore, the bioactivity of insulin was maintained bioactivity and pharmacological availability 

was improved by avoiding enzymatic degradation of insulin and via chemical and physical facilitation 

of permeation through the intestinal membrane. The nanoparticles were 396 nm (PDI 0.6) in size with 

a ZP of -38mV. In vivo results indicated a drop of 40% in blood plasma levels with a sustained 

hypoglycemic effect maintained over 40hours. The oral bioavailability of 13% for a dose of 50 IU/kg 

was three times higher than free insulin. Confocal microscopy confirmed internalization of insulin in 

the small intestinal mucosa [92]. 

An efficient antidiabetic drug, exetanide administered via SC route is associated with noncompliance 

issues. The researchers attempted to coat the drug into a nano-in-micro delivery system in order to 

improve its gastrointestinal stability. The drug was loaded into a Bovine serum albumin (BSA)-dextran 

nanoparticles and tested for dynamic light scattering technique measurements. The size of the 

particulate system ranged from 190-360±4.7nm, PDI of 0.28-0.37 and ZP values of -40.3± 0.9. The 

results were compared with available market SC formulation, Byetta®. The glycemic parameters of 
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this delivery system were investigated in diabetic ob/ob mice (severely obese due to leptin deficiency: 

gene mutation) and results suggested that the new formulation successfully lowered blood glucose 

levels raised insulin levels, decreased glycated hemoglobin and maintained the body weight of the 

mice [93]. 

Overall, albumin can be proposed as a potential future drug carrier as albumin based micro and 

nanoformulations show some promising results in terms of their half-life, excellent binding and 

stability. Nevertheless, using as a drug carrier on large scale, batch variation is expected due to its 

protein nature. 

Conclusion and futuer perspectives: 

Various studies have demonstrated that biodegradable polymer based formualtions controlled drug 

release, limited the initial burst drug release and enhanced hypoglycaemic/hypoglycemic effects when 

compared to conventional formulations that did not use micro or nanoparticles. In this review, micro-

particles studies have generally focused on the controlled drug release in order to reduce the 

frequency of injection, limit the initial burst release and sustain hypoglycaemic/hypoglycemic effect, 

whereas nanoparticles studies have generally focused on oral delivery of antidiabetic peptides (e.g., 

insulin) to enhance the oral bioavialbility. Regardless of different delivery routes of administration (SC, 

pulmonary and oral), PLGA based micro and nanoparticles formulations have exhibited the reduction 

of the daily doses for antidiabetic drugs. This is advantageous especially for patients on injection based 

treatments as the frequency of injections can be minimised while the bioavialbility and theraperutic 

efficacy of the drugs can be maintained or enhanced. Studies reported on nanoparticles have 

demonstrated the protection of insulin from enzymatic degradations and enhanced intestinal 

absorption by encapsulating the drug into the biodegradable syntetic polymers (e.g. PLGA, and γ-PGA). 

Due to the hydrophobic nature of PLA, its structure integrity is difficult to maintain in gastric fluids, 

therefore, using PLA for oral delivery is still a challenge to overcome. Natural biodegradable polymers 

such as chitosan and gelatin have proven successful to control blood glucose levels with a continuous 

hypoglycemic effect. They also exhibit low immunogenic risks, yet these polymers had stability issues.  

It is evident that polymeric nano and microparticles can play a significant role in enhancing drug phar-

macokinetics and enable the antidiabetic drugs to bypass barriers in our body. These polymeric vehi-

cles open the way for new routes of drug administration, offering new opportunities for patenting 

new drug delivery systems. Oral insulin has always been a dream and it is now a step closer to reality. 

In February 2020, Oramed Pharmaceuticals Inc announced the success of its phase 2b clinical trials. 
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An oral insulin developed by the company called ORMD-0801 succeeded to reduce HbA1c by 1.26% 

after 8 weeks of treatment [94].  

This paves the way to explore the oral delivery of other protein and peptide drugs. Polymeric vehicles 

can offer the opportunity to Glucagon-Like Peptide-1 and analog to be delivered orally without the 

need of modifying their chemical structures. Recently, Novo Nordisk and Oramed Pharmaceuticals 

developed oral GLP-1 analog (ORMD-0901) that use an excipient to protect the peptide together with 

protease inhibitor [95, 96]. 

The dose requiements for oral delivery studies are generally high (e.g., 30-100 IU/kg) in comparison 

to SC injections (e.g, 5 IU/kg). This could lead to a high cost of production.  
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