Functional plasticity of Th17 cells : implications in gastrointestinal tract function

Garrido-Mesa, Natividad, Algieri, Francesca, Rodriguez Nogales, Alba and Galvez, Julio (2013) Functional plasticity of Th17 cells : implications in gastrointestinal tract function. International Reviews of Immunology, 32(5-6), pp. 493-510. ISSN (print) 0883-0185


The gastrointestinal tract is an active player of the human immune system, participating in the innate and adaptive immune responses, keeping the homeostasis of the human being in a healthy status. However, most intestinal conditions are associated with an altered immune response, which implies the activation of CD4(+) T helper (Th) cells. Based on their cytokine secretion, transcription factor expression and immunological functions, the differentiated Th cells were initially subdivided into different lineages: Th1 (that express the transcription factor T-box (T-bet), secrete interferon (IFN)-γ and protect the host against intracellular infections) and Th2 (that express GATA binding protein 3 (GATA-3), secrete interleukin (IL)-4, IL-5 and IL-13, and mediate host defense against helminths). Later, a new subset was identified, the Th17, which selectively produces IL-17A and is crucial for host defense against extracellular pathogens. More recently, a functional plasticity between the Th1 and Th17 lineages has been described, a process sometimes controversial that seems to play a key role in different inflammatory conditions, including those affecting the gastrointestinal system. This review will summarize the current knowledge regarding the regulation and functional role of Th17 cells in the gut, focusing on these newly identified features of this T cell subset, including plasticity, their relationship with regulatory T cells and their heterogeneity in the inflammatory microenvironment. A better understanding of these issues is critical to elucidate the role of Th17 cells in intestine immunity, and so for the design of novel therapeutic approaches for intestinal diseases specifically targeting Th17 cells.

Actions (Repository Editors)

Item Control Page Item Control Page