
 

 

 

 

ORGANIC-INORGANIC NANOCOMPOSITES FOR 

PHOTOVOLTAIC AND OTHER OPTOELECTRONIC 

APPLICATIONS 

 

 

By 

 

 

 

Yousaf Khan 

 

 

School of Life, Sciences, Pharmacy and Chemistry 

Kingston University London 

 

 

 

2019 

 

 

 

A thesis submitted for the degree of Doctor of Philosophy at Kingston University London, 

Kingston-Upon-Thames, United Kingdom 





 

I 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

II 
 

Abstract 

Novel nanocomposite organic-inorganic compounds have been synthesised with several 

layered inorganic hosts (V2O5, MoO3 and ZnPS3). Three synthetic methods were used; 

direct intercalation taking advantage of any redox chemistry between the host and guest, an 

ion-exchange route in which pre-intercalated alkali metal cations were exchanged for 

organic guest cations and recrystallization of the dissolved host around the organic guest 

species. All methods afforded the intercalation of conducting polymers into the interlayer 

space of the inorganic hosts. Full characterisation of the composites was carried out as well 

as the determination of their (opto)electronic properties. 

 The direct method was used to intercalate polyaniline (AnAn
+
) and 3,4-

ethylenedioxythiophene (EDOT) into V2O5 2-amino-5-phenylpyridine (2A5PhPyr) used an 

acid-base direct intercalation method. AnAn
+ 

and 2A5PhPyr exhibited bilayer structures 

with AnAn
+ 

parallel to the inorganic layers. EDOT, however, produced a monolayer 

intercalate and all three products exhibited similar room temperature conductivities (~10
-2

 

– 10
-3

 Sm
-1

). 

 2A5PhPyr and 5-aminoquinoline (5AQ) were intercalated into V2O5 and MoO3 

using the ion-exchange method. A copolymer of 1,4-phenylenediamine and hydroquinone 

(1,4PDA-HQ) was also intercalated into V2O5 and 1,2-phenylenediamine (PDA) was 

intercalated into V2O5, MoO3 and ZnPS3 by this method. 2-Aminothiazole (2AmThia) was 

intercalated into MoO3 using ion-exchange. PDA and 5AQ exhibited bilayer conformation 

upon intercalation while PDA was a monolayer intercalant in ZnPS3. PDA intercalated 

V2O5 and MoO3 exhibited the highest conductivities (~10
-1

 Sm
-1

) whereas 2AmThia 

intercalated MoO3 exhibited the lowest conductivity (~10
-4

 Sm
-1

).  

 Aniline (An) was intercalated into MoO3 via a novel recrystallization method 

resulting in  room temperature conductivity similar to that of the 2AmThia intercalated 

MoO3 (~10
-4

 Sm
-1

). 

 The novel ion-exchange of ZnPS3 with Mg
2+

 yielded MgxZnyPS3 which exhibited 

substantial interlayer expansion suspected to be due to hydration of intercalated Mg
2+

. The 

Mg
2+

 cations were present in the interlayer spacing and did not occupy the vacant Zn
2+

 

sites.  

 The intercalated materials exhibited p-type properties, unlike their n-type hosts. 

Using aluminium, copper, tin, zinc and FePS3 as blocking contacts, Schottky devices of the 

composite materials exhibited improved semiconductor properties over their host 

materials.  

Prototype photosensitive devices using V2O5/AnAn
+
, V2O5/EDOT, V2O5/2A5PhPyr, 

MoO3/PDA and ZnPS3/PDA were constructed by spin coating the active material  onto n-

type silicon and p-type FePS3 and are reported for the first time. The devices exhibited 

increased photocurrents under ambient light or an incandescent lamp illumination. 

Maximum efficiencies were 0.71% and 0.26% under ambient light and incandescent lamp 

respectively.  The devices exhibited low charge mobilities of ~8 x 10
-10

 m
2
V

-1
s

-1
 and ~3 x 

10
-11

 m
2
V

-1
s

-1
 under ambient sunlight and incandescent light respectively. It was noted that 

the polymer guests in their most conductive forms produced the best semiconducting and 

photoactive devices.  

 Overall, this work provided a proof-of-concept that the low-cost organic-inorganic 

nanocomposite materials synthesised exhibited promising novel optoelectronic properties 

when incorporated into junction devices. 
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1) Introduction 

1.1) Photovoltaic Motivations 

 

Major issues facing the 21
st
 century include the energy crisis, depleting fossil fuel 

resources and their negative environmental effects (1). This is due to population growth 

combined with technological advancement (2)(3) and has given rise to the demand for 

reliable, cost-effective renewable energy sources. However, renewable energy sources still 

account for only 2.5% of all traded energy and around 6% of electricity produced (4,5).  

Solar energy is a free, limitless, long-term source of renewable energy for managing such 

energy and environmental problems (2,6) as it provides more than 10,000 times the energy 

that humans currently consume (7).  A major benefit of the use of solar energy over other 

renewable energy resources lies in the ability to directly harvest sunlight into electricity 

with the use of photovoltaic (PV) solar cells (6,8). At the end of 2011, it was shown that 

the globally installed capacity of PV cells was 67.4 GW and growing. Furthermore, the 

installation of Si-PV cells showed a drop in cost from 4.05 USD/W to 2.21 USD/W in the 

two year period of 2008 to 2010 (9). Commercial PV cells have also shown a higher 

efficiency of 12% (10). There are two classes of semiconducting materials used in today’s 

PV solar cells; inorganic and organic (11–13) and they fall into three generations i) First 

generation p-n junction crystalline silicon solar cells, ii) the second-generation thin-film 

solar cells made from amorphous silicon and other inorganic materials such as CdTe or 

CuInGaSe and finally iii) third generation solution-processed solar technologies which aim 

to lower overall cost of manufacturing while maintaining high solar conversion 

efficiencies. Examples of third-generation PV cells include dye-sensitized solar cells 

(DSSCs), organic photovoltaics and quantum dot solar cells(8,13,14). However, of the 6% 

of electricity generated from renewable energy sources less than 0.5% is generated using 

solar energy. The main drawback which has prevented widespread use of PV devices lies 
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in the high cost (but high efficiencies) of inorganic-based PV devices and the low 

efficiencies (but low cost) of organic/polymer PV devices (15).  

 

1.1.1) Photovoltaic Fundamentals 

 

When a semiconducting material absorbs a photon with at least the energy of its band-gap 

(Eg), an electron is promoted from the valence band to the conduction band forming an 

electron-hole pair. 

 

 

 

 

 

 

 

Upon creation of the electron-hole pair, charge separation is required in order to allow the 

promoted electron to undergo electrical work to power a device. In most cases, this charge 

separation is created by an electric field, which drives the electrons in one direction and the 

positive holes in the other direction (16) at a semiconductor junction. 

 There is a range of different junction types which take advantage of this effect 

including Ohmic, Schottky and P-N junctions.  

 

 

 

 

 

hν 
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Valence band 

Eg 
E ≥ Eg 

Energy 

Figure 1.1 - Absorption of a photon (hν) resulting in the promotion of 
an electron from the valence band to the conduction band to 

produce an electron-hole pair 
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1.1.1.1) Ohmic Junction 

 

Ohmic junctions between semiconductors and metal contacts allow for charge carriers to 

flow from the semiconductor to the metal. For a p-type semiconductor, this contact is 

formed when the work function (Φm) of the metal is larger than the Fermi level of the 

semiconductor in question (Φm > Φs). Figure 1.2 shows the Ohmic junction for a p-type 

semiconductor.  

 

 

 

 

 

After contact, EFM and EFS are now at the same energy and EFM = EFS and no band bending 

is observed at the junction. 
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Figure 1.2 - Metal to p-doped semiconductor Ohmic junction. A) Pre-contact energy level alignment of the 
metals work-function (Φm) and the p-doped semiconductor work-function (ΦS) and the metal and 

semiconductor fermi-level (EFM and EFS). The semiconductor valence and conduction band are also shown (CB 
and VB). B) The Ohmic contact between the metal and semiconductor. 
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1.1.1.2) Schottky Junction 

 

A Schottky junction inhibits the flow of charge carriers from the semiconductor to the 

metal contact (for a p-type material, the opposite is true for an n-type material). This is 

achieved by employing the inverse conditions compared to Ohmic junctions (i.e. the Φm 

would be smaller than the Φs of a p-type semiconductor i.e. Φs > Φm). Figure 1.3 shows the 

Schottky junction for a p-type semiconductor. 

 

 

 

 

 

After contact, EFM and EFS are now at the same energy and EFM = EFS. The difference in 

energy between the now formed junction fermi-level and the p-type semiconductor VB is 

the barrier height of the junction. 
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Figure 1.3 - Metal to p-type semiconductor Schottky junction. A) Pre-contact energy level alignment of the 
metal work-function (ΦM) and the p-type semiconductor work-function (ΦS) and the metal and 

semiconductor Fermi-levels (EFM and EFS). The semiconductor valence and conduction bands (VS and CB) are 
shown. B) The Schottky contact between the metal and semiconductor. 

EFM = EFS 
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1.1.1.3) P-N Junction 

 

A P-N junction is formed when a p-type and n-type semiconductor are brought into contact 

with one another. Here, the charge carriers (holes in the p-type and electrons in the n-type) 

diffuse across the junction and recombine leaving a depletion region where no free charge 

carriers exist. In this depletion region, positive charges are built-up on the n-type side and 

negative charge is built-up on the p-type side. Upon illumination electrons are excited 

across the band-gap (as seen in Figure 1.4) and drift towards the n-type material (whose 

depletion region has built up a positive charge) which results in charge separation. 

 

 

Figure 1.4 - A) The formation of the depletion region at the P-N junction when holes (red) and electrons (blue) migrate 
across the junction resulting in the formation of an electric field. B) The band structure of a P-N junction and its 

operation under illumination 
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1.1.1.4)  Diode Equation 

 

In solar cells, these junctions effectively behave as diodes, where under a reverse bias the 

barrier height at the metal-semiconductor junction increases and prevents the flow of 

charge carriers across the junction. Under a forward bias, the barrier height decreases, 

allowing charge carriers to travel more easily across the junction.  

 As the barrier height decreases, the number of charge carriers crossing the junction 

increases exponentially and as such can be modelled using the ideal-diode equation 

(Equation 1.1). 

       
  
      

Equation 1.1 

 

where: 

- I is the net current measured through the diode. 

- I0 is the dark saturation current of the diode. 

- q is the absolute value of the electron charge. 

- V is the applied voltage across the diode. 

 

However, under illumination, a photogenerated current (Iph) needs to be taken into account 

and thus equation 1 is modified to give Equation 1.2: 

 

           
  
      

Equation 1.2 
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1.1.1.5) Active Material Requirements 

 

However, in order to fully take advantage of the junction types for photovoltaic 

applications, the material in question must be carefully selected to exploit the junction in 

use. Therefore the active material utilised must have some desirable properties that allow 

for its application in photovoltaics. There are several processes that contribute to the 

overall operation of a solar cell, but primarily for the active material these are photon 

absorption, charge separation and charge transport (17–19).   

 

Photon Absorption 

If the semiconductor active material used in a photovoltaic application exhibits poor 

photon absorption, therefore, produces a small concentration of charge carriers. This low 

concentration of charge carriers may not be sufficient enough for the device to exhibit a 

useful photogenerated current. The absorption spectrum and optical properties of a material 

help provide an understanding of its band-gap. 

 

Charge Separation and Transport 

Once a charge carrier has been produced from an adsorption of a photon if the charge 

carriers immediately recombine then not photogenerated current is observed. It is desired 

that once separated the charge carriers diffuse through the material before recombination 

occurs. There are two general types of recombination processes: unavoidable and 

avoidable recombination. Unavoidable recombination is also known as inter-band radiative 

recombination and can occur even in a perfect semiconductor single crystal. The radiative 

recombination process involves the emission of a photon upon recombination of the charge 

carriers. Avoidable recombination usually arises due to imperfections of various kinds in 

the material (such as crystal dislocations and defects). For example, once separated a 

charge carrier may become trapped by an edge-type dislocation. This would result in an 
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increase in the recombination lifetime, an increase large enough to exploit for the diffusion 

of charge carriers. Quantum yields and/or a measurement of the active material efficiency 

in the conversion the absorbed photons into current can provide useful information into the 

active materials charge separation properties. 

 Current-Voltage and electrical measurements can provide an insight into the charge 

transport properties of the overall device. 
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1.2) Inorganic Materials 

 

The first silicon solar cell was reported in 1941 and was made using melt grown junctions. 

This early device showed less than 1% efficiency which has since been substantially 

improved upon, resulting in solar cell efficiencies of 25% (20). This, combined with 

silicon’s abundance, general stability, non-toxic nature and the bandgap of 1.12eV,  has 

resulted in silicon becoming the most popular commercial inorganic material used in solar 

cell devices accounting for roughly 90% of the market share (8). There are high 

manufacturing costs for producing silicon solar cells, however; silicon naturally occurs as 

silicon dioxide (SiO2) in the earth’s crust and requires large amounts of energy to extract 

and purify (10). In an attempt to reduce costs, technology in silicon solar cells evolved 

from bulk crystalline devices to thin-film amorphous silicon materials and nanostructures 

such as nanowires (7,21,22). Although efficiencies have reached upwards of 20%, silicon 

the commonly commercialised amorphous silicon devices still have several drawbacks if 

they aspire to challenge fossil fuel: 

 The main recombination (of electron-hole pairs) centres in amorphous silicon are 

dangling silicon bonds which provide sites for charge carrier recombination, 

although most of these are removable by hydrogenation. 

 Unlike typical p-n junctions of crystalline materials with high diffusion lengths for 

charge carriers (over 200µm), the disordered nature of amorphous silicon results in 

extremely small diffusion lengths (around 0.1µm) causing carrier collection to 

depend on diffusion alone 

 There is still a relatively high production cost due to the requirement for thinner 

silicon wafers(7,21). 
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In an attempt to reduce manufacturing cost, other inorganic materials have become 

commercially available. These inorganic materials are usually alloys of which thin films 

can be formed from a solution or other low-energy methods. These include compounds 

such as CuInSe2 (CIS), Cu(In,Ga)Se2 (CIGS) (10,21), CuInS2 (24) and Cu(In,Ga)S2 (23,24)
 

which have shown an upwards of 20% efficiency particularly for CIGS with a film length 

of 2.5-3.0µm (27) over an area of 0.4cm
2
. These CIS and CIGS compounds have the 

potential to challenge silicon for higher efficiencies, as well as commercial viability due to 

their non-toxicity and low overall synthetic cost. However, the major drawback in these 

materials comes from the cost of Indium (23) and the vapour-deposition of the material at 

high temperatures under selenium vapour is difficult and challenging to control over large 

substrate areas (10). Other Cu alloys have been proposed to avoid the use of In and Se 

include Cu2ZnSnS4 (25,26,28–30), Cu2S (30), CuS2 (24,28) and Cu2O (26)
,
 of which the 

most efficient material (Cu2ZnSnS4) has achieved efficiencies of 5-8% (25,26).  

Other commercially viable inorganic materials used are CdS and CdTe (8,17,24,25,26). 

Although they show promising efficiencies of 16.5% (33) and their low-temperature 

synthesis (10) when compared to the Cu alloys and silicon devices, the major concerns for 

these materials lie in the relative toxicity of cadmium(32,34,35) as well as the scarcity of 

Te(10,35).  
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1.3) Organic/Polymeric Materials 

 

Organic materials provide some advantages over their inorganic counterparts, primarily 

their cheapness in synthesis, fabrication and processability along with their ease of 

tunability of the properties required (36). However, the early organic photovoltaic devices 

(OPV) had poor efficiencies of 10
-3

 to 10
-2 

% (26,30,31,32). Since these early devices, 

OPV’s have been made more efficient reaching up to 10% (39) and in multi-junction 

devices 6% (39). One of the earliest polymer-based materials used was poly(p-phenylene 

vinylene) (PPV) and its derivatives, showing low efficiencies (40–42). The efficiencies 

were improved upon when more readily functionalised conjugated polymers were used, 

such as polyaniline (40,43), polythiophenes (which have a wide range of functionalised 

derivatives) (38,40,41,43–51) and pyrroles (34,37,44,46). The range of thiophene materials 

was further improved by the commercially utilised poly(3,4-ethylene dioxythiophene 

polystyrene sulfonate (PEDOT: PPS) (41,43,51,53–55) along with benzothiophene (BDT) 

(38,56), indacenodithiophene (56)
 
and other fused ring thiophene-based polymers (45). 

Other common polymers used which show similar efficiencies to the thiophenes, anilines 

and pyrroles include carbazole-based polymers (and its derivatives) (38,40,41,55,57,58), 

fluorenes (38,41,51), azoles (42,43,46,53), acenes (46,59) and phenazine based ladder-type 

conjugated oligomers/polymers (43,46,49,52,55,60). Recently, more complex and larger 

systems have drawn attention, including porphyrins(40,46), perylene tetracarboxylic 

acids(42,46,49) and dendrimers(46)
 
(such as thiophene-based dendrimers). Even with their 

advantages over their inorganic counterparts, OPV materials have drawbacks that have 

limited their efficiencies and widespread commercial applications. During the 

encapsulation of the OPV materials in the manufacturing of a commercial PV device, the 

presence of water and oxygen in the active organic layer can cause degradation under 

illumination(61). This is due to the excitation of oxygen to form singlet oxygen (
1
Δg) 

which causes degradation of the polymer and organic material and/or crosslinking (62). As 
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a result, this decreases charge carrier mobility and charge separation in the material, 

leading to significantly decreased efficiencies as well as overall productivity (63). An 

industrial level attempt used to prevent/limit the amount of oxygen and water present lies 

in the development of fast and more efficient encapsulation methods such as roll-to-roll 

processing(64). In their attempt to decrease the trace amounts of oxygen and water, the 

production cost of the OPV devices increased preventing widespread commercial use. 

Table 1.1 shows the structures of the commonly used OPV active materials an example of 

a derivative form. 

Table 1.1 - Commonly used photovoltaic organic and polymers materials and an example of a derivative form 

Polymer Structure Derivative example 

Poly phenylene 
vinylene 

  

Polyaniline 

  

Polythiophene 

  

PEDOT 
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Polypyrroles 

 
 

Carbazole based 

 

 

Fluorene 

 
 

Azoles 

 
 

Acenes 

 
 

Ladder type 
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Polyporphyrins 

  

Perylene 
tetracarboxylic 

acids 

  
Where R = C6H13 

Dendrimers 
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1.4) Intercalation Chemistry 

In chemistry, intercalation refers to the reversible insertion of a guest species into a host 

structure while maintaining the overall structural features of the host. This intercalation can 

occur in lamellar inorganic materials or biochemical compounds (such as the complexation 

of planar molecules into the spirals of DNA). Lamellar structures have been shown as a 

promising family of materials which undergo intercalation chemistry. In these lamellar 

compounds, the layers are bound together by van der Waals forces and so the interlayer 

spacing between the layers can be increased to accommodate guest species. What makes 

intercalated materials an interesting field of study are the changes the guest and host 

undergo (to varying degrees from subtle to extreme) in geometry, chemical, electronic and 

optical properties. It is possible by adjusting the guest and host species as well as guest 

content to tune these properties for some desirable application, which could include tuning 

the conductivity of an insulator from insulating to semiconducting to metallic, or 

exfoliation to form 2-dimensional materials analogous to graphene. A typical intercalation 

reaction scheme is shown in Figure 1.5. 

 

 

Figure 1.5 - A typical intercalation between a lamellar inorganic host (black) and organic guest (blue) 

 

This research aimed to avoid the presence of oxygen and water during the 

polymerisation stage of commonly utilised organic and polymer active material in solar 

cell devices (thereby minimising levels during encapsulation without increase costs) and to 

take advantage of the properties of both inorganic and organic materials. This was 
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achieved by intercalating a range of organic monomers into the interlayer space of layered 

inorganic materials. The host materials selected were the metal oxides vanadium pentoxide 

(V2O5) and molybdenum trioxide (MoO3) due to their wide-ranging intercalation chemistry 

and the transition metal thiophosphates (MPS3) family due to their structural and chemical 

similarities to the transition metal dichalcogenides and their semiconducting properties. 
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1.5) Literature review 

1.5.1) V2O5 composites 

 

Figure 1.6 – Side view of V2O5 layers where the blue atoms are the V
5+

 and orange are the O
2-

  (65) 

V2O5 has a layered structure (65), Figure 1.6, with the vanadium having a d
o
 electronic 

configuration. The basic building block of this oxide is the double chain of edge-sharing 

VO6 octahedra. A chain of these octahedra alternates their apices up and down combining 

to produce the octahedral single-layer structure found in V2O5. One of the terminal bonds 

is a short vanadyl bond while the other V-O bond distance is much longer. The weak V-O 

bond provides the layered V2O5 character(66,67). Due to vanadium’s variable oxidation 

states and its layered structure, V2O5 exhibits a range of intercalation chemistry which can 

be exploited to suit the desired application(68).  

 

1.5.1.1) Small Cation Intercalation 

 

A common intercalant is lithium cations (Li
+
) which can be inserted within the interlayer 

spacing by reacting with Butyllithium (n-BuLi)(66). The vanadium ion is reduced from 

V
5+

 to V
4+

 allowing Li
+
 to intercalate between the layers in order to maintain charge 

balance producing the lithiated vanadium pentaoxide (LixV2O5)(69). Up to 22 mol% has 
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been reported to successfully intercalate into V2O5(70) while the V
4+

/V
5+

 ratio can vary 

between 1-20% while structural integrity is preserved(66). When studied with X-ray 

Absorption Spectroscopy (XAS), lithiated samples of V2O5 (specifically in this case for the 

xerogels) did not show any local environmental changes around the vanadium ion. It was 

only when LixV2O5 is heavily lithiated (x>2) did local changes around the vanadium ion 

environments occur (71,72). Spectroscopic optical analysis of this lithiated V2O5 showed 

two distinct regions appearing which corresponded to two separate phases being present. 

The two regions in the optical analysis appeared between 1.75V - 2.0eV (region 1) and 

0.4V - 0.42eV (region 2) (70). Further analysis supported that region 1 suggested a direct 

forbidden transition and increased with increased lithium content corresponding to the 

lithiated phase of the intercalated material. Region 2, however, suggested and inter-band 

direct allowed transition which did not increase with lithium content corresponding to the 

unintercalated pristine phase of V2O5. In many cases, particularly with xerogels, the V2O5 

is hydrated to form the V2O5.nH2O phase before lithium intercalation. Thermal treatment 

(annealing) can be used to remove water and it was shown that the electrochemical uptake 

of lithium into these xerogels shows better cycling performance of electrochemical Li
+
 

intercalation and deintercalation when the water content was reduced. It was shown that 

heating treatment at 250
o
C showed the most significant decrease in water(73). 

Electrochemistry is another common intercalation method of Li
+
 into V2O5, 

however, in order for best performance, the method required thin films of V2O5 

xerogel(74). The intercalation of lithium electrochemically was examined after 

intercalation, between 3.3 and 2.8 volts, and deintercalation (at 3.4 and 3.8 volts) by 

XPS(74,75). It was shown that there was a reduction of the V
5+

 to V
4+

 during 

electrochemical insertion of lithium ions. During the intercalation, the concentration of V
5+

 

ions was 73% and 65% at 3.3 volts and 2.8 volts respectively which was in agreement with 

0.5 mol of Li
+
 being intercalated per 1 mole of V2O5. The difference in the Li

+
 between the 
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two intercalation steps is due to the quasi-reversible process of intercalation within this 

range. During intercalation the α-V2O5 phase changes to ε-phase in the first intercalation 

step and the γ-phases by the second intercalation step, both phases exhibiting a different 

Li
+
 content intercalation due to their structural differences. The peak intensity of Li 1s core 

level was at its maximum after the second intercalation step. The vanadium 3d state is 

usually the lowest state in its valence band(76–78) and by XPS it was determined that the 

Li 2s electron is transferred into this 3d state causing the reduction of V
5+

. Furthermore, 

Raman studies showed that structural integrity is maintained around the vanadium centres 

for LixV2O5 where 0<x<1. However, the characteristic vanadyl stretching mode at 994cm
-1

 

is the most sensitive to lithium intercalation(79). The results concluded that for x<0.5, all 

Raman bands shifted which is consistent with the interlayer spacing increasing (an increase 

of lattice parameter along the c-axis). This resulted in the peak at 994cm
-1

 shifting to 

984cm
-1

. For 0.5<x<1, this band continues to shift from 984 to 975cm
-1

 as well as the 

appearance of a new vanadyl band appears at 957cm
-1

 corresponding to an increased 

interlayer spacing. From x=0.7 there was a single-phase exhibited which remains 

structurally ordered. An unfortunate side effect of electrochemical intercalation and 

deintercalation results in a build-up of surface contamination of Li-alkyl carbonates(75) 

and lithium oxides(74).  

 Other metal cations (mostly polyvalent) can also be intercalated which 

include K
+
, Na

+
, Mg

2+
, Ca

2+
, Cu

2+
, Zn

2+
, Ba

2+
 and Al

3+
(66). It was shown that 

electrochemically 4, 3.33 and 2.5 equiv of Mg
2+

, Al
3+

 and Zn
2+

 respectively were 

intercalated(80). It was further shown that Mg
2+

 can be intercalated electrochemically in 

two stages, one controlled thermodynamically and one controlled kinetically(81). The x-

ray diffraction (XRD) pattern shows the (020) peak appearing at a lower 2θ position after 

intercalation of Mg
2+

 and returned upon de-intercalation. This demonstrated that the V2O5 

structural integrity was not harmed by that the intercalation and deintercalation of Mg
2+

. 
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Similarly, K
+
 can also be intercalated to provide KxV2O5.nH2O where 0≤x<0.01(82). This 

showed that a small amount of K
+
 intercalates into V2O5. The optical measurements that 

had been carried out showed two optical gaps present in the material. These gaps correlate 

well with the optical study conducted on LixV2O5(70) where the first region was seen 

between 0.37-0.42 eV corresponding with the direct allowed transition for unintercalated 

V2O5.nH2O. The second region was seen between 2.02-2.23 eV which corresponds to the 

intercalated phase of the material. However, unlike the lithium study, it is unknown 

whether the intensity of this transition increases with increasing K
+
 content. Furthermore, 

unlike the lithium study, the width of localised states (band tail) was estimated to values 

within the range of 0.45-0.80 eV.  

 Other small cation systems can be intercalated into V2O5 systems. A useful 

example is the intercalation of NH4
+
 ions into V2O5 xerogel. The resulting intercalated 

material showed a stoichiometry of (NH4
+
)0.5V2O5.nH2O and was synthesised using a 

surfactant-free hydrothermal method(83).  From a pair distribution function analysis, it was 

shown that the intercalation of NH4
+ 

shows interlayer spacing increasing due to the 

intercalation of the NH4
+
 and water molecules. In this case, the redox reaction with NH4I 

was seen as a topotactic reaction(84).  

 

1.5.1.2) Exfoliation – Restacking Intercalation 

 

 A major advantage of small cation intercalation is its application in the exfoliation 

and re-stacking method for the insertion organic molecules into the interlayer spacing of 

the host (65,85,86) (for full organic/polymer structures discussed see Table 1.4 and the end 

of section 1.5.1). Exfoliation and restacking is advantageous in intercalating organic 

intercalants in which intercalation may not occur by chemical methods (via ion-exchange 

or direct methods. Exfoliation can be achieved by agitating a host material which is 
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preintercalated with a small cation, the small cation assists in prying apart the layers. In 

particular, this method becomes extremely powerful or intercalating high molecular 

polymers. In this method, the layers are exfoliated and the exfoliated layers are restacked 

around a guest to achieve intercalation. This was shown to be successful when intercalating 

organic dyes (in this particular case methyl yellow)(87). Here the exfoliation method was 

used with the pre-intercalation of lithium using n-BuLi. Water was then added to the 

solution, it was purposed that the reduced V
4+

 provided an electron to water causing 

hydrogen evolution resulting in the layers exfoliating allowing for re-stacking to occur 

around the methyl yellow dye. It was shown that upon intercalation of lithium, all order 

was lost within the host material; this is somewhat contradictory to the previous study 

mentioned(70) which showed that lithiation via n-BuLi preserved the long-range structure 

of the V2O5. Thermogravimetric analysis (TGA) confirmed the intercalation of methyl 

yellow showing a 17% mass loss between ~250
o
C – 350

o
C. This temperature range for the 

TGA of unintercalated methyl yellow was shown to be between 150
o
C – 250

o
C and this 

increase in this temperature range was a result of the methyl yellow being intercalated in 

between the inorganic layers. In another study, lithiation was not required for the 

ultrasonication and restacking of organic material within the interlayer spacing of the 

V2O5(88). In this study, four different weight percentage of single-walled carbon 

nanotubes were intercalated simply stirring in 40mL of ethanol followed by ultrasonication 

for 60 minutes in the presence of V2O5. The orthorhombic V2O5 structure was unchanged 

upon intercalation of the nanotubes. The thermogravimetric analysis showed a mass loss 

after 450
o
C which signified the burning off of the carbon nanotubes. Similarly, it was also 

shown that the use of n-BuLi or the intercalation of metal cations is not necessary for the 

formation of composite materials and exfoliation may be achieved via a hydrothermal 

route. This process primarily involves dispersing or dissolving the inorganic material in a 

solvent which either has the organic material or the organic material is added afterwards. 
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4-aminopyridine was successfully intercalated via this method which utilises the 

exfoliation-reduction-restacking process(89). In this case, V2O5, 4-aminopyridine and an 

H2O/MeOH (50:50) mixture were sealed in a thick-walled Pyrex tube. The mixture was 

heated to 110
o
C for eight days giving pure black, thin needles with a 92% yield. The V2O5 

dissolved slightly in water producing a dispersed mixture. The methanol present readily 

reduces the dispersed layers to provide lamella anions which re-stack around the organic 

cations. It was suggested that the cation templating effect may be the reason the anion 

layers re-stack around the organic material. The FT-IR showed the pronated pyridine bands 

(3322 and 3172cm
-1

) and stretching vibrations cause by the pyridinium ring (1667, 1600, 

1543cm
-1

). It was suggested that the NH2 group remains unprotonated as the characteristic 

N-H bands remain (3497cm
-1

). In conjunction with the FT-IR, electron spectroscopy 

chemical analysis (ESCA) shows two overlapping V2p3/2 peaks suggesting mixed valence 

states of V
5+

 and V
4
. The XRD suggests an interesting result, the 4-aminopyridine occupies 

the interlayer spacing with its C2 axis perpendicular to the layers. The rings themselves are 

parallel to one another. A similar methodology was utilised for the intercalation of 

alkylviologen dications (90). Once again under hydrothermal conditions, the reaction 

underwent the exfoliation-reduction-restacking procedure to intercalate a range of 

alkylviologen iodide salts of differing alkyl chain lengths. The XRD showed an increase in 

their interlayer spacing with the characteristic (001) peaks being shifted from 5.7Å in V2O5 

and steadily increasing dependent on the alkyl chain length with the dodecylviologen 

iodide composite showing the (001) peaks with a d-spacing of 24.9Å (90). The XRD did, 

however, show a broadening of peaks and fewer peaks the larger the alkyl chain became 

suggesting poorer long-range order. This exfoliation and restacking method in-fact shows 

difficulty in successfully reproducing the well-ordered material when dealing with larger 

organic molecules. Unlike the case of the 4-aminopyridine intercalated system, the FT-IR 

shed some light on the effect of organic materials and their interaction with the V2O5 host 
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material (90). As seen in the previous studies, the peaks that appear above 1000 cm
-1

 in the 

FT-IR correlate to the characteristic guest peaks, however as seen with the metal 

intercalation the bands appearing around and below 1000 cm
-1

 (V=O) and 810 and 560 cm
-

1
 (in and out of plane V-O-V vibrations respectively) have been shifted lower (red-shift) 

compared to pure V2O5 (1020, 820 and 595 cm
-1

). Two potential reasons, the first being the 

interaction between the organic material and the partially reduced vanadium leading to 

weaker V=O and V-O-V bonds and the second candidate being the organic guest 

decreasing the space for the V=O vibrations once intercalated (90). This is a common trend 

during the intercalation of organic guest species. The XPS indeed showed that reduction 

was caused with two peaks appearing for the V2p3/2 corresponding to V
5+

 and V
4+

. 1,1’-

bis(4-carboxybenzyl)-4,4’-Bipyridine (carboxybenzylviologen) was also intercalated in a 

similar way(91) which showed similar results. Similarly, Polyaniline has also been shown 

to be successfully intercalated using this exfoliation method. In this case, it is named as an 

in-situ intercalation-polymerization-exfoliation mechanism(92). The XRD followed the 

trend mentioned previously with an increase in the interlayer spacing and broadening of 

the peaks. Energy-dispersive X-ray spectra (EDS) showed that the samples contained V, O, 

C and N. The FT-IR of the material showed O-H stretching peaks due to the aqueous 

nature of the synthetic route, water had either also intercalated into the interlayer spacing 

with polyaniline or else is loosely bound on the material surface. The expected shifting in 

the characteristic V2O5 peaks does not, however, occur in this material. This could either 

suggest that polyaniline does not decrease the vibrational space in the interlayer spacing 

upon intercalation or more likely is the presence of an unintercalated V2O5 phase. As seen 

previously the peaks above 1000 cm
-1

 correlate to the characteristic guest peaks. For this 

material, the C=C stretching mode of quinoid and benzenoid rings were seen in the IR 

spectrum (see Figure 4.3) suggesting the presence of an emeraldine phase which was 

further supported by the presence of peaks corresponding to C-N and C=N commonly seen 
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for emeraldine. In a recent study (93), aniline was intercalated into the V2O5 using the 

hydrothermal process by taking advantage of microwave-assisted synthesis’, rapid 

volumetric heating and higher reaction rates which in turn resulted in shorter reaction time. 

Poly(diallymethylammonium chloride (PDDACl), poly(allylamine hydrochloride) 

(PAHCl)(94), poly(para-phenylenediamine) (pPDA)(95), 2-phenylethylamine(96) and 4-

phenylbutylamine(97) were successfully intercalated into the V2O5 layers via hydrothermal 

synthesis. The intercalation of PDDACl, PAHCl and pPDA showed the expectant 

interlayer spacing increase along with broadening of other higher angle peaks (such as 

(002), (101) and (110). However, one difference in the XRD data for pPDA was the 

presence of a large amorphous peak in place of the peak corresponding to the interlayer 

expansion suggesting that the re-stacking of the layers occurred randomly giving no 

distinguishable long-range order. The 2-phenylethylamine and 4-phenylbutylamine 

however, showed an increase in the interlayer spacing but the peaks remained sharp and 

strong suggesting good long-range order and preservation of the V2O5 structure. As seen 

previously, the XPS further showed the presence of two vanadium environments.                                                  

 Several methods have been developed in order to deal with the disadvantages 

caused by the exfoliation method in order to maintain the long-range order of the material. 

The most popular being ion exchange(98), direct insertion of the organic material into the 

swollen interlayer spacing and redox intercalation(99,100).  

1.5.1.3) Ion-Exchange Intercalation 

 

In the V2O5 system, ion-exchange occurs between a pre-intercalated small cation (as 

discussed previously in section 1 and the organic guest cation. This was shown to be 

successful in the intercalation of polymer electrolyte systems into V2O5 xerogel(101). Here 

a mixed polymer electrolyte system (a-PEO)20LiOTf  where a-PEO = 

(CH2O)0.1(CH2CH2O)0.9 and OTf = CF3SO3. As expected XRD showed that the interlayer 
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spacing increased, the peaks remained sharp suggesting good long-range order and 

structural integrity of the V2O5 host. After electrical measurements, films of this material 

showed an ionic conductivity in the order of magnitude of 10
-5 

Scm
-1

 at room temperature. 

It was observed that high electronic conductivity occurred parallel to the films while 

conduction pathways perpendicular to the film were closed.  

Aniline hydrochloride was shown to exchange with NH4
+
 (102). Infra-red 

measurements showed a shift in the V2O5 host peaks associated with intercalation as well 

as peaks corresponding to the presence of emeraldine consistent with the previous study 

discussed. The TGA for this material showed the presence of polyaniline due to the 

continual loss in mass over a large temperature range consistent with differing polymeric 

chain lengths. This suggested that the aniline underwent a redox reaction once intercalated 

to produce oligomer and/or polymeric chains without the need of an external oxidant. The 

XPS once again showed two vanadium 2p3/2 peaks around 516.6 eV consistent with redox 

reaction after ion-exchange occurred leading to polymerization. The XPS also showed that 

in the composite material, the peaks for nitrogen shifted by 2 and 8.2eV which was 

concluded to be due to the strong interaction of the nitrogen with the oxygen atoms of the 

V2O5 material. The I-V characteristics of the composite material using silver and 

aluminium electrodes gave typical Schottky diode type behaviour with an increase in 

current when a positive bias was applied and a decrease in current when a negative bias 

was applied. As the organic content in the material decreases, the I-V curve becomes 

increasingly more non-linear. Furthermore, the hysteresis observed in the I-V 

characteristics clearly implied charge storage in the sample. It was concluded that the 

charge would be accumulated at the interface between the organic and inorganic 

components in the material.  
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1.3.1.4) Direct Intercalation 

 

 The direct insertion of polymer material is a very common technique used due to its 

one-pot nature and use of aqueous conditions. This method usually utilises the xerogels of 

V2O5 which is synthesised by mixing V2O5 with water allowing the water molecules to 

swell the interlayer spacing. This swelling allows for larger organic materials to be 

intercalated by directing entering the interlayer spacing or displacing the water. These 

larger molecules can be monomers which then undergo redox polymerisation once 

intercalated. Simple alkylamines (butyl, hexyl and octylamines) were shown to be easily 

intercalated within the interlayer spacing of V2O5(103)  by adding dry V2O5 to a mixture of 

alkylamine in deionized water followed by stirring for 48 hours. The XRD showed that the 

structural integrity was maintained and the butyl, hexyl and octylamine intercalate showed 

an interlayer spacing increase to 13.8Å, 16.4Å and 19.6Å respectively. The FT-IR is 

consistent with the previously mentioned trend with the characteristic V2O5 peaks shifting 

and peaks above 1000 cm
-1

 corresponding to the characteristic peaks for the organic guests 

and in this case the characteristic peaks for N-H and C-H stretching and bending 

vibrations. The lack of an ESR signal showed that the vanadium centres were not reduced 

to V
4+

 in contrast to the previous studies discussed. However, this appears not to be a 

general trend with direct intercalation of V2O5. The intercalation of PEO into V2O5 

gels(104). The EPR spectrum of the material showed a signal for a reduced V
4+

 (which was 

deemed to be in a small concentration) which could occur during the synthesis of the 

hydrogel itself but was concluded to not be a redox-based reaction between the PEO and 

the inorganic host during intercalation as this would lead to a stronger peak consistent with 

intercalation. This material showed a net interlayer distance increase of 4.5Å. Furthermore, 

V2O5 intercalated PEO reacted further with air in a photoreaction using a mercury lamp 

and LiI in acetonitrile(105). The interlayer spacing showed a net increase of 4Å (PEO 
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molar ratio of 1.1), a further 2Å (PEO molar ratio between 1.1 and 3) and no further 

increase for molar ratios above 3. It was shown that lithium ions also intercalated into the 

material without replacing the PEO in the interlayer spacing. The Li
+
 coordinated to the 

PEO, therefore, an increase in the PEO content increased the Li
+ 

potential content in the 

material. The ESR only showed an increase in V
4+

 content during a photoreaction between 

the PEO and the V2O5. This increase was proportional to PEO content confirming a redox 

reaction was occurring. The redox reaction resulted in a conductivity increase from the un-

irradiated to the irradiated material. The room temperature conductivity increased from 10
-

4
 to 10

-2
 Scm

-1
, 10

-5
 to 10

-3 
Scm

-1
 and 10

-6
 to 5x10

-4 
Scm

-1
 for PEO mole fractions of 0.5, 1 

and 1.5 respectively. The significant drop in conductivity for a molar ratio of 1.5 was 

attributed to the increase in the insulating polymer content. A mix of 1:1 molar ratio of 

PEO and Aniline were intercalated into V2O5 (106). The aniline was further polymerized 

by an in-situ redox reaction with the host as has been seen previously. It was determined 

that direct insertion of conducting polymers allowed for control regarding the degree of 

reduction of the vanadium ions. Furthermore, the two polymer component system showed 

to have a larger charge capacity after five electrochemical cycles with approximately 1.2 

times larger capacity for Li
+
 than that of the polyaniline-V2O5 system and 1.5 times larger 

than the xerogel V2O5 parent material. Similarly, PEO was intercalated into V2O5 with 

graphene as a hybrid material via direct insertion(107). It was further shown that the 

material also exhibited multi-electrochromic behaviour. The change in transmittance (ΔT) 

of the graphene PEO material was 26.48% when compared to that of the gel which was 

shown to be 19.64%. Furthermore, the composite material was grown as a film and shown 

to demonstrate a transmittance variation of 30.28% showing good electrochromic and 

photoabsorbance properties. Other polymer electrolytes have also been shown to be 

intercalated directly in the same way as PEO. Poly(vinyl pyrrolidone) (PVP) is an example 

of such a polymer electrolyte in the use of lithium-ion battery applications(108). In this 
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case, the XRD showed a slight increase in the interlayer spacing as expected from 

intercalation. It was concluded this slight increase in the interlayer spacing occurred due to 

the PVP. The peaks seen were more closely related to that in section 1.5.1.2) where they 

were broad suggesting less long-range order. However, the intercalation of PVP did have a 

significant effect on the lithium content present which was quantified using XPS. The 

xerogel showed three lithium-ion states upon intercalation of lithium electrochemically. In 

the unmodified xerogel it was shown that uncoordinated lithium resided in the interlayer 

spacing (41.83% of total Li
+
 content), coordinated to the bridging oxygens (in V-O-V with 

38.67% of total Li
+
 content) and those binding with the oxygen double bond in the V2O5 

(19.50% of the total Li
+
 content). However, with the PVP modification, the XPS data 

showed a much more intense signal with the lithium content now corresponding to 52.82% 

in the interlayer, 32.44% binding with the bridging oxygens and 15.04% binding with the 

oxygen double bonds. The increase in the interlayer spacing showed the presence of PVP 

within the interlayer spacing and thereby increased the reversibility of lithiation in the 

interlayer spacing. It was proposed (no experimental evidence was provided as support 

however) that the H-atoms in the PVP are hydrogen bonded to the oxygens in the V2O5 

shielding the electrostatic interaction the lithium would otherwise experience resulting in 

more lithium being found being uncoordinated than binding to the vanadium oxygens.  

 Utilising the aqueous environment required to produce V2O5 gels the direct 

insertion of conducting polymers has been attempted using polymers such as poly(aniline-

co-N-(-4-sulfophenyl)aniline) (PAPSA)(109) and poly(2-(3thienyloxy)ethanesulfonic acid) 

(PTOESA)(109,110). In both cases, the polymers were dissolved in water and added to the 

xerogels followed by mixing allowing the water-soluble polymers to easily enter the 

already swollen and hydrated interlayer space. Unlike previously discussed, in this case 

after intercalation of PAPSA, the d-spacing of the host material decreased from 13.8Å to 

13.2Å, 11.6Å and 11.3Å for a polymer to V2O5 molar ratios of 0.05, 0.1 and 0.4 
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respectively. This trend was not seen for the PTOESA which showed an initial decrease at 

the lower molar ratio (0.07 molar ratio showed a decrease to 11.8 Å) and then an increase 

in the interlayer spacing for a higher molar ratio (for molar ratio of 0.1 an increase to 12.8 

Å was shown). The TGA further showed the presence of polymer material as discussed 

with previous TGA data. Upon electrochemical oxidation, the colour of the PAPSA V2O5 

compound changed between its initial dark green colour to yellow (similar colour to that of 

the host gel), brown and purple interchangeably showing reversible electrochromic 

properties. In respect to the PTOESA compound, it showed a significant increase in 

conductivity, yet was shown to be not as conductive as a pure conductive polymer. When 

molar ratios of 0.08 and 0.4 to 1 V2O5 where intercalated the conductivities exhibited were 

that of 2.9x10
-6

 and 2x10
-6

 Scm
-1

 respectively. The higher polymer content of 0.96 molar 

ratio exhibited a conductivity of 8.4x10
-7 

Scm
-1

 which could be due to a rougher surface 

and therefore higher particle contact resistance decreasing the conductivity.  

 Other conducting polymers of commercial interest which have been shown to be 

directly intercalated into the interlayer spacing of V2O5 include polyaniline(111) (as well 

as some of its derivatives) and polypyrroles(112) as well as larger organic molecules 

including oligomers and polymers of melanin(113,114), sulfunaylpyridine and 

dithiobispyridine(115). The polyaniline derivatives 4-Anilinoaniline and 4-

Anilinoanilinium Iodide (111) was dissolved in an ethanolic solution and stirred with 

finely powdered V2O5.nH2O. In-situ polymerization was further carried out by treatment of 

the intercalated compounds with CuCl2. The IR spectra of the 4-Anilinoaniline intercalated 

compound showed bands at 1580, 1490, 1300 and 1160cm
-1

 which are characteristic of the 

poly(Anilinoaniline) suggesting in-situ polymerisation occurs once the monomer 

intercalates. In contrast, the IR spectra of the 4-Anilinianilinium Iodide intercalated 

material showed bands at 1600, 1490, 740 and 690cm
-1

 which are characteristic of the 

oligomer like Anilinoaniline as the bands at 740 and 690cm
-1

 are characteristic of the 
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terminal groups in the oligomer. Upon treatment of the 4-Anilinianilinium Iodide 

intercalated material with CuCl2 showed that the oligomer peaks had disappeared and in 

their place, the polymer peaks had appeared signifying that the organic oligomers fully 

polymerised. In comparison, the intercalations of 2- and 4-sulfanylpyridine along with the 

2,2’- and 4,4’-dithiobipyridine were intercalated into the V2O5 using the same method as 

for the polyaniline derivatives mentioned(115). The 2-sulfanylpyridine and 4-

sulfanylpyridine showed an interlayer spacing increase of 3.6Å and 4.4Å respectively. 

However, the intercalated 2,2’- and 4,4’-dithiobipyridine are present mostly in their 

protonated form but not in their oligomeric or polymeric forms. The XPS further showed 

that the vanadium sites had been reduced upon intercalation as previously discussed. Using 

the PM3 method of calculation to optimize the structure of the organic guests within the 

interlayer spacing of V2O5(115), the protonated dithiobipyridine molecules were shown to 

lie parallel to the V2O5 layers which explained the increase in the interlayer spacing could 

occur due to bilayer like structures of the polymers occurring.  

 In a slightly different fashion, pre-intercalated small cations can be utilised also to 

directly insert molecules into the interlayer spacing of V2O5 as was seen with the Melanin 

like structure of 3,4-Dihydroxyphenylalanine(113,114)
 
where the guest species chelates 

with these ions instead of exchanging with them. The XRD showed a slight increase in the 

interlayer spacing from the gel host from ≈11.8Å to ≈13.8Å. An interesting feature, 

however, is the broadening of the higher angle peaks, as discussed previously. This showed 

structural integrity in the direction of the c-axis but less longer-range order in the a- and b-

axis. The TGA suggested a mass loss of approximately 2.5% between 280-350
o
C which 

was credited to the organic phase in the interlayer spacing, although suggesting there may 

not be much present. The conductivity of the intercalated material showed an increase from 

the room temperature conductivity of the gel host from 1.1±0.2x10
-4

 to 5.2±1.0x10
-3

 Scm
-1

. 

The intercalated material displayed an EPR g-value increase from g=1.957 for the gel host 
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to g=1.969 corresponding to anisotropic behaviour which was suggested to show that the 

lamellar structure being preserved, which does not correspond to the findings from the 

XRD. It was suggested that the organic melanin like molecule had not been oxidised due to 

the absence of the intrinsic melanin radical peak which appears at g≈2.0037 in the ESR. 

The electrochemistry of this material showed that the hybrid material led to stabilisation of 

the electrochemical response for inserting of Li
+
 electrochemically. This was concluded to 

be due to the enhanced Li
+ 

diffusion through the film owing to a decrease in steric and 

electrostatic effects
 
because of the increased interlayer spacing. The presence of the 

organic material also allowed for the creation of channels between subsequent inorganic 

and organic layers facilitating the diffusion of the metal cation.  This is particularly useful 

for the intercalation of organic molecules in which in-situ polymerisation may not be the 

direct goal or else for monomers that may not directly be intercalated via a redox method. 

 

1.5.1.5) Redox Intercalation 

 

Many studies have taken advantage of the redox chemistry of vanadium for the 

insertion and in-situ polymerisation of conducting polymers. Common conducting 

polymers grown within the interlayer spacing include polyanilines, polythiophenes and 

polypyrroles. In this case, the organic material is oxidised providing an electron to the V
5+

 

centres reducing them to V
4+

. This leaves a net negative charge on the inorganic layers 

which is balanced by the organic material intercalating within the interlayer spacing. This 

furthermore facilitates the polymerisation process in-situ via radical polymerisation. 

 Polyaniline was first intercalated using the redox method(116) in which the 

polyaniline was inserted and polymerised in the protonated form. It was subsequently 

shown(117) that the interlayer space increased by 5.2Å corresponding to a monolayer of 

polyaniline and the overall inorganic structure preserved, suggesting a topotactic process. 
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The IR spectra showed peaks in the regions of 1000-1600cm
-1

 corresponding to the 

emeraldine salt of polyaniline while the peaks below 1000cm
-1

 are characteristic to the 

V2O5 peaks. SEM and TEM images showed homogenous film formation. Furthermore, 

molecular oxygen appeared to play an important role in the polymerisation of the 

intercalated aniline as it was shown that oxygen indeed only participates in the 

intercalative polymerisation reaction and increases the reaction rate while allowing for the 

V2O5 structure to maintain its integrity. From gel-permeation-chromatography (GPC) is 

was shown that the number-average molecular weight for the intercalated polymer was 

14,000 and the weight average molecular weight was 30,000 daltons. The conductivity of 

this material was shown to be that of 10
4
 times higher than for pristine V2O5. In 

comparison, the intercalation of aniline into mesostructured porous V2O5(118) showed a 

conductivity for the host to be 6.4x10
-7

 Scm
-1

 while the polyaniline intercalated material 

showed initially of 3.2 x 10
-4

 Scm
-1

 but after being exposed to air and allowed to age for 

four months this increased to 3.0x10
-2

 Scm
-1

. Furthermore, porosity measurements using 

nitrogen adsorption showed a decrease in the total pore volume from 0.21 cm
3
g

-1
 in the 

host material to 0.09 cm
3
g

-1
 in the intercalated material. In contrast, after intercalation the 

BET and Barret-Joyner-Halenda (BJH) average pore diameter (nm) increased from 3.12 to 

10.70 and 4.73 to 13.99 respectively. The intercalation of V2O5 with PANI has led to the 

filling of small mesopores resulting in a total pore volume and a larger average pore 

diameter with the overall surface area reduced. However, structurally the mesostructured 

composite materials show wider and weaker peaks in the XRD indicating short-range 

order(119,120).  The three-dimensional structure of the composite material was studied 

using atomic pair distribution functional analysis(121). It was shown that there are three 

potential conformations of the polymer within the interlayer spacing of V2O5 similar; 

bilayer structure, tri-layer structure or chain-like structures which are orientated 

perpendicular to the V2O5 layers and the distance between each polymer chain is ~3.4Å. 
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The polyaniline intercalated V2O5 composite material had several factors that affected its 

application in many devices; i) composition, ii) temperature used for intercalation and iii) 

the atmosphere used in intercalation(122). In an attempt to improve on this, substituted 

anilines have been shown to intercalate using the redox intercalation method. Poly-o-

methoxyaniline is a polymer formed in such a manner with the V2O5 xerogel (123)
 
where 

the role of the methoxy group is to allow for easier reduction of the aniline backbone. 

Upon successful intercalation, the interlayer spacing increase from the host material from 

11.9 Å to 14.4 Å suggesting loss of water replaced by the poly-o-methoxyaniline. The EPR 

spectrum further showed signals that appeared from the polymer assigned to the free 

polarons as well as line broadening due to the presence of paramagnetic vanadium ions as 

seen in Figure 1.7.  

 

 

Figure 1.7 - EPR spectrum for V2O5 intercalated poly-o-methoxyaniline with the hydrated host, inset (123). 

 

Similar to the polyaniline discussed previously in this section the conductivity 

showed an increase from1.4±0.3 x 10
-4

 Scm
-1

 in the pure host matrix to 2.1±0.4 x 10
-1 

Scm
-

1
 in the polymer intercalated material. This trend is further shown in the intercalation of 

poly(N-propane sulfonic acid aniline) (PSPAN)(124) upon which the conductivity 

increased from the V2O5 xerogel (4.2x10
-6

 Scm
-1

) to 5.9x10
-4

 Scm
-1

. After allowing to age 
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in the presence of oxygen for 2 months, the conductivity increased further to 1.2x10
-2

 Scm
-

1
. The redox intercalation can be used for more complex polymer systems such as poly(N-

[5-(8-hydroxyquinoline)methyl]aniline) (PNQA)(125) where the extracted polymer 

showed a number average polymer weight of 2800 and a weight average molecular weight 

of 7049. The conductivity of the material showed an increase upon PNQA intercalation 

2x10
-6

 Scm
-1

 to 1.9x10
-4

 Scm
-1

. 

 This method and the applications of the composite materials are also similar when 

dealing with the polypyrroles and polythiophenes. The intercalation of polypyrroles have 

shown calculated specific capacities for the electrochemical insertion of Li
+
 to be 279 Ah 

kg
-1

(119) which is considerably higher than that for pristine V2O5. As with the composites 

in sections 1.5.1.1) – 1.5.1.3), it was concluded that the polymer prevents the trapping of 

the lithium ions due to the shielding the polymer provides against the interaction of lithium 

and the oxygen atoms in the inorganic chain. Polypyrrole intercalated bentonite/V2O5 as 

ternary composites exhibited a conductivity increase with increasing polypyrrole 

content(126). It was determined that the environment of intercalation affects the 

electrochemical properties of the hybrid material, for example, the acidic environment of 

the pyrrole solution upon intercalation was shown to have an effect on the overall 

conductivity exhibited(127). When intercalation was carried out in an HCl, H2SO4 or 

oxalic acid conditions no sharp or broadened peaks were seen in the XRD which either 

suggested complete exfoliation and/or the main component of the synthesised material was 

the polymer. However, in HClO4 or acetic acid, the interlayer expansion increased from 

11.39 Å in the host to 13.91 and 13.41 Å respectively. The specific capacity for Lí
+
 

electrochemical intercalation was further shown to be 98 mAhg
-1

 for the pure polypyrrole 

intercalated material and this increased when the reaction occurred in HClO4 to 135 but 

decreased to 60 mAhg
-1

 with acetic acid. 
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In order to improve on the properties of polypyrrole intercalated V2O5 as a cathode 

material for Li-ion batteries the use of pyridinesulfonic acid (PSA) as an additive was 

investigated(128).  Adding PSA (1:1 with Ppy) to the system showed the specific capacity 

rise to 160 mAhg
-1

 from 89 mAhg
-1

 for the pure Ppy intercalated material(128). It was 

concluded this occurred due to increased spacing between oxide layers due to the presence 

of the bulky PSA. The SO3
-
 functional groups of the PSA favoured the polymerization of 

polypyrrole within the interlayer spacing of the oxide material.  

Polythiophene, which is insoluble in water and unable to form protonated salts for 

ion-exchange has therefore been polymerised in-situ using the redox chemistry approach. 

Thiophene oligomers are preferred for this over thiophene itself due to the oligomers (e.g. 

bithiophene or terthiophene) having lower oxidation potentials. 2,2’-bithiophene has been 

shown to successfully intercalate and polymerise within the interlayer spacing of V2O5 

xerogels(129). The intercalation occurs under reflux for 24 hours with 30mL of a 0.04mL 

acetonitrile solution of 2,2’-bithiophene. The XRD shows interlayer spacing of 14.70Å 

with the decrease in the xerogel interlayer spacing (as mentioned earlier ~19Å) is due to 

removal of water. It was concluded that the polythiophene is present in a bilayer structure 

in this material. At room temperature the conductivity was ~0.1 Scm
-1

 (4 orders of 

magnitude larger than that for pristine V2O5 gel). The EPR showed a broad signal at 

g≈1.963 arising from the V
4+

 centres confirming the redox mechanism of synthesis with no 

V or 
1
H hyperfine being seen in the spectrum. The problem arising from the use of 

thiophenes is the limited solvent systems available and the use of the dimer or trimer. 

Therefore, substituted thiophenes are used such as 3,4-ethylenedioxythiophene (EDOT). 

EDOT has a lower oxidation potential than thiophene allowing for direct redox insertion of 

EDOT and better solubility in a wider range of solvents including aqueous conditions. 

Although the redox mechanism is used, two different experimental methods can be 

employed. The first is standard reflux intercalation(130) or the use of a microwave 
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reactor(131) in a similar fashion for hydrothermal synthesis. For the reflux method, EDOT 

was dissolved in distilled water and refluxed in the presence of V2O5 with molar ratios 

between 0.02 and 0.6. The XRD showed that at lower molar ratios (0.02-0.08) the 

interlayer spacing increases to 13.84 Å - 14.02Å similar to that seen for thiophene 

intercalation. However, due to the easier oxidation potential of EDOT driving the redox 

reaction, at higher molar ratios (0.4-0.6) of the intercalated EDOT polymer (PEDOT) we 

see that the interlayer spacing increases further to 17.8-19.04Å which suggests that the 

phase present within the interlayer spacing is twofold; i) monolayer PEDOT at lower molar 

ratios and ii) PEDOT bilayer at higher molar ratios. In contrast to this, the synthesis of the 

nanocomposite via microwave irradiation shows the intercalation of EDOT corresponds to 

a monolayer conformation the interlayer spacing increasing to 13.79Å - 14.15Å depending 

on the radiation time. The FTIR spectra showed polymerised EDOT (PEDOT) peaks 

appeared within the range of 1049-1600 cm
-1

 as well as the expected peaks shift of the 

characteristic V2O5 peaks below 1000 cm
-1

 typical for intercalation.  These changes were 

concluded to be attributed to the presence of the V
4+

 centres due to the redox reaction 

occurring. The TGA showed an initial loss occurring around 100
o
C suggesting the 

presence of reversibly bound water. There was then a continuous weight loss up to ~420
o
C 

which is attributed to the organic material being broken down. This continuous mass loss is 

proposed that the oligomer/polymeric form of EDOT is present showing in-situ 

polymerisation had occurred. In terms of the conductivity of the materials, it was shown 

that the reflux intercalation produced a more conductive material at higher molar ratios due 

to the bilayer like structure. The conductivity before refluxing and microwave-assisted 

methods for pristine V2O5 was 8.78 x 10
-5 

Scm
-1

 and 6.78 x 10
-5

 Scm
-1

 respectively. 

However, the conductivity for the microwave-assisted material increases and after 8 

minutes of irradiation to 4.46 x 10
-3

 Scm
-1

. Comparing this with the refluxed method, we 

find that at molar fraction of 0.04 of EDOT the conductivity has increased to 6.97 x 10
-3
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Scm
-1

 and after increasing to 0.4 molar ratio the conductivity has further increased to 9.82 

x 10
-2

 Scm
-2

 and again increased further to 1.01 x 10
-1

 Scm
-1

 for the molar ratio of 0.6 

when reacted with V2O5 under reflux (132–134). Similarly, the morphology was of great 

interest (with platinum nanoparticles dispersed on its surface)(135) for catalysis for 

methanol oxidation. The SEM and TEM showed porous morphology with good dispersion 

of the platinum nanoparticles on the PEDOT composite material surface showing an 

average platinum particle size of 2.3nm. Furthermore, it was shown that the platinum 

PEDOT/V2O5 material exhibited a high catalytic activity of 28 mAcm
-2

 for methanol 

oxidation with a platinum loading of 10 µgcm
-2

. This is due to the presence of the reduced 

vanadium sites which favour methanol oxidation showing that under certain conditions 

there may be a loss of reduced vanadium sites. Another modified thiophene which has 

shown to be intercalated in a similar method is 2,5-dimercaptothiophene (DTh) which is 

polymerised in situ (PDTh)(136). Upon intercalation, the interlayer spacing increased to 

13.4Å suggesting that the PDTh is likely in a monolayer conformation as similarly seen for 

PEDOT intercalation. The discharge capacity for this material was shown to be ~260 

mAhg
-1

 which is lower than that of the PEDOT intercalated V2O5. 

 Other monomers can be used with either aniline or thiophenes to produce binary 

polymer structures intercalated into the interlayer spacing such as poly(2,5-dimercapto-

1,3,5-thiadiazole) (PDMcT)(137). In this study, PDMcT was intercalated into the host 

material as well as being co-intercalated with polyaniline. The XANES spectral features 

suggested that during intercalation little change occurs in the chemical bonding and 

environment of the vanadium ions. The strong peak at 5471 eV is typical for the vanadium 

oxides due to the 1s to 3d transitions. Changes in the intensity and energy position are 

associated with any deviations from the octahedral symmetry and vanadium ion oxidation 

state. It was shown that after intercalation the peak shifts to lower energy signifying the 
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reduction of V
5+

 to V
4+

. The redox intercalation method is useful for utilising a one-pot 

reaction provided that the organic material has a low oxidation potential. 

 

1.5.1.5) Layer by Layer Intercalation 

 

 Another method used to synthesise nanocomposites is the layer-by-layer technique. 

In this technique, cationic and anionic species are assembled in a multi-layer architecture. 

This was shown in the intercalation of polyaniline into V2O5 xerogel(138–140). A typical 

experiment consists of dipping an inert substrate alternatively in a cationic solution of the 

organic material and an anionic solution of the V2O5. The anionic solution of V2O5 was 

obtained by hydrolysis of VC9H21O4 in pure water. The FT-IR spectrum shows a broader 

band due to the hydrogen bonding between guest and host. The Raman spectrum for the 

material show peaks corresponding to emeraldine. The spectrum was found to change 

depending which material was the topmost layer. When V2O5 was the topmost layer the 

intensities for the peaks appearing at 1330cm
-1

 and 1486cm
-1

 decreased These peaks 

resemble those for oxidised PANI (pernigraniline) as the V2O5 contributes to the oxidation 

in-situ as seen in all the previous synthetic methods. Meanwhile, when the emeraldine 

material is the top layer, these peaks are characteristic of the emeraldine PANI form. This 

showed that there are strong interactions between the emeraldine and V2O5 and it was 

further seen that V2O5 can lead to over-oxidation of the emeraldine to the pernigraniline 

form. This means that there may be two forms present in the material, the more conducting 

V2O5/emeraldine phase and the insulating V2O5/pernigraniline phase. The electrochemical 

properties of the material measured by cyclic voltammetry showed V2O5 exhibiting the 

intervalence transition between V
4+

 to V
5+

 at a potential of -0.85 V. The prominence of this 

peak increased with increasing concentration of V
4+

 present. Whereas, the pure PANI 

shows redox peaks which correspond to the interconversion between the neutral and 
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emeraldine forms. It was shown that in the composite material the PANI reduction was 

incomplete which could be associated with the V2O5/pernigraniline phase due to its higher 

resistive path.  

The major drawback of this method as compared to that of oxidative intercalation 

for V2O5 lies in the use of cationic organic materials and anionic inorganic materials which 

lead to the potential over-oxidation of the organic materials. This results in a material 

which has a resistive phase. Furthermore, it can be extremely challenging controlling the 

exact height of each layer. 
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Table 1.2 - The advantages and disadvantages of the different intercalation methods in V2O5 systems 

Intercalation 

Method 

Advantages Disadvantages 

Cation Intercalated Host Precursor 

Small Cation 

Intercalation 

 Used as precursors for organic guest intercalation 

 Maintains high control of the host structural integrity 

 Intercalation is reversible with little effect on the host 

structural integrity. 

 The resulting materials synthesised using the small cation 

precursors show a limited control over the structural integrity 

of the host material. 

Precursor Based Intercalation 

Exfoliation – 

Restacking 

 A wide range of guest species can be used 

-  Small and large organic guests can be intercalated 

including polymers 

 In-situ polymerisation can occur for organic guests 

with low oxidation potentials. 

 One-pot synthesis 

 There is very little control of the host structural integrity due 

cto the poor control over the restacking of the host layers. 
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Ion – Exchange 

 A wide range of guest species can be used 

- Small and large organic guests can be intercalated 

including polymers 

 Monomers with low oxidations potentials are readily 

polymerised in-situ without the requirement of an 

external oxidant. 

 Produces materials with significantly higher 

conductivity than the host 

 Can be carried out in aqueous conditions. 

 Medium control of the host structural integrity. 

 Requires guests to be present in a cationic form in solution. 

 

Non-Precursor Based Intercalation 

Direct 

 A wide range of guest species can be used 

- Small and large organic guests can be intercalated 

including polymers 

 Can be a one-pot synthesis 

 Variable control over the host structural integrity 

 If host precursors used the metal ions can remain within the 

layers which may limit the materials applications 

 For non-precursor intercalation the hydrated xerogel is utilised 
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 If a host precursor used polymer materials show 

chelation allowing for large guest species to be 

intercalated, useful for certain applications (i.e. 

battery) 

 Useful for non-cationic guest species 

 Useful for intercalating guests with a high oxidation 

potential 

 Can produce a more conducting material when 

compared to the host material 

 

which affects control of the host structural integrity, hydrated 

xerogels are the most common precursor. 

 

Redox 

 One–pot synthesis 

 Polymerisation occurs within the interlayer spacing 

without the need of an external oxidant 

 Produces materials with a  significantly higher 

 Requires guest species to have a low oxidation potential 

 Medium control over the host structural integrity 
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conductivity than the host 

 Useful for intercalating conducting polymers  

 Can be carried out in non-organic solvent/aqueous 

conditions 

 Can be carried out in an oxygen atmosphere 

Layer-by-Layer 

 High structural control over the host structural 

integrity  

 Can produce materials with significantly higher 

conductivity than the host 

 Useful for producing thin-film intercalated materials. 

 Can be used to intercalate high molecular weight 

polymers 

 Buildings layers of films as opposed to directly intercalating 

materials into the interlayer spacing of the host. 

 Requires organic guests to be in their polymeric form 

 Layer thicknesses are difficult to control 

 Requires solutions of the host and guest materials preferably in 

ionic form in a volatile solvent  

 Can cause over-oxidation of conductive polymers leading to a 

low conductive/highly resistive material. 
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Table 1.3 - Intercalation method summary 
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Precursor 
✔ ✔ ✔   

Non-Precursor 
  ✔ ✔ ✔ 

 
     

Small guest intercalation 
✔ ✔ ✔ ✔ ✔ 

Large guest intercalation (e.g. 

polymers) 

✔ ✔ ✔  ✔ 

Intercalation of very high 

molecular weight polymers 

    ✔ 

Polymerisation in-situ w/o 

external oxidant 

 ✔ ✔ ✔  

One-pot synthesis 
  ✔ ✔  

Host structural integrity 
Low Medium Variable Medium High 

Aqueous conditions 
✔ ✔  ✔  

High conductivity 
 ✔  ✔  

Low conductivity 
✔  ✔  ✔ 

Guest species intercalated in 

cationic form 

 ✔  ✔ ✔ 

Non-cationic guest intercalation 
✔ ✔ ✔ ✔  

Guests w/ high oxidation 

potentials 

✔ ✔ ✔  ✔ 

Guests w/ low oxidation potentials 
 ✔  ✔  

Synthesis carried out in air 
✔   ✔ ✔ 

Produces thin films 
    ✔ 
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Table 1.4 - Polymer materials and their intercalation method/s in V2O5 

Polymer Structure Intercalation Method/s 

Multi-Method Intercalation 

Polyaniline 

 

Exfoliation – Restacking, 
Ion-Exchange and Layer-by-

Layer 

Polypyrroles 

 

Direct and Redox 

PEO 

 

Ion-Exchange and Direct 

Exfoliation – Restacking Intercalation 

Methyl Yellow  

 
 

Carbon Nanotubes 

 

4-Aminopyridine 

 

PDDACl  
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a) Dodecylviologen 
 

b) Carboxybenzyl-viologen 
 

 
a) Dodecylviologen  

 
b) Carboxybenzyl-viologen  

 

 
 

a) R = C12H25 

 

b) R =  
 
 

PAHCl 

 

pPDA 

 

2-phenylethylamine 

 

4-phenylbutylamine 

 

Direct Intercalation 

Butyl, Hexyl and Octylamine 

 

Graphene 
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PVP 

 

PAPSA 

 

PTOESA 

 

4-Anilinoaniline 

 

3-4 Dihydroxyphenylalanine 

 

2- and 4- sulfanylpyridine 

 

2,2’-dithiobispyridine and 
4,4’-dithiobispyridine 
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Redox Intercalation 

Poly-o-methoxyaniline 

 

Poly(N-propane sulfonic acid 
aniline) 

 

Poly(N-[5-(8-
hydroxyquinoline)methyl]aniline] 
 

 
R = Poly(N-[5-(8-

hydroxyquinoline)methyl]aniline] 
(cont) 

 R =  

Polythiophene 

 

PEDOT 

 

Poly(2,5-
dimercaptothiophene) 

 

PDMcT 
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1.5.2) MoO3 composites 

Similar to V2O5, molybdenum trioxide (MoO3) also contains metal ion centres exhibiting 

good redox chemistry and has shown a range of intercalation capabilities with Li
+
 being 

very commonly utilised
(59)

. Unlike V2O5, however, the orthorhombic phase of MoO3 (most 

commonly used phase for intercalation chemistry) has a layered structure which consists of 

double layered octahedral held together by covalent forces in the 100 and 001 direction and 

the interlayer spacing arises from the layers stacking by Van der Waals forces in the 010 

direction (this structure is illustrated in Figure 1.8)(141). 

 

Figure 1.8 - Side view of MoO3 layers where the yellow atoms are the Mo
6+

 and orange atoms are the O
2- 

 

1.5.2.1) Small Cation Intercalation 

 

Similarly to V2O5 metal cations have also been shown to successfully intercalate into the 

interlayer spacing of MoO3 including Li
+
, Mg

2+
, Na

+
 and K

+
 as well as H

+
. These 

intercalated metal cation composite materials have given rise to an interest in battery 

technologies as well as the possibility of ion-exchange or exfoliation of MoO3 in the 

synthesis of organic-inorganic composites(65,142). There are two traditional methods for 
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the intercalation of these materials into MoO3, i) electrochemical insertion and ii) redox 

chemistry. 

Most common intercalation via electrochemical insertion is with Li
+
. As was seen 

with the V2O5 materials, this Li
+ 

cations can be hydrated(143). Typically IR peaks for 

MoO3 appear between 1000-400 cm
-1

 with the Mo=O stretching and bending mode of Mo-

O-Mo appearing at 988 cm
-1 

and 584 cm
-1 

respectively. Upon intercalation of Li
+
, the 

bands in the region of 1200-1080 cm
-1

 correspond to the stretching modes of the 

intercalated Li
+
 vibrating against their nearest neighbouring oxygens of MoO3(143). This 

intercalation leads to an increase in the interlayer spacing where an interlayer spacing of 

1Å corresponds to a molar ratio of 1 Li
+
 to one 1 MoO3. The XRD showed the crystalline 

structural integrity of the host was maintained during the intercalation of lithium. 

Furthermore, this lithiated MoO3 was shown to exhibit high ion mobility with a chemical 

diffusion coefficient for the Li
+
 ions reaching a value of 3 x 10

-9
 cm

2
 s

-1
. The XPS 

study(144) showed that Mo
6+

 is reduced during intercalation to Mo
5+

 in a similar fashion to 

the reduction of the vanadium sites in V2O5. It was also shown that there was a reduction in 

the oxygen environment with two peaks appearing for the O1s core level confirming the 

interactions between the Li
+
 and the oxygen in the MoO3 upon intercalation.  

Lithium intercalation can also be achieved by the reaction of MoO3 and n-

butyllithium (n-BuLi) in hexane solution under an inert atmosphere producing 

LixMoO3(145). For this method typically, a molar ratio of 0<x<1.55 is achieved(146). This 

method of intercalation is convenient due to the fact that the Fermi level of the MoO3 is 

located below the conduction band (mostly dominated by the Mo d states) and has a band-

gap of 3.1 eV(147–149). This is comparable to the decomposition potential of n-BuLi (-2.5 

eV) resulting in spontaneous Li
+
 intercalation. Furthermore, since n-BuLi serves as a good 

lithiating agent (at concentrations of greater than 0.4M exfoliation of the MoO3 layers 

occurs due to excessive Li
+
 content) intercalation begins at the edges of the MoO3 before 
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proceeding to the core allowing for the structural integrity and crystallinity of the host to 

be maintained(148).  

 Hydrogen ions (H
+
) intercalate into uncommon sites in MoO3(150) with three 

distinct phases present. Type 1 has molar ratios of 0.2-0.4 H
+
 to MoO3, type 2 molar ratios 

of 0.85-1.04 and type 3 having molar ratios of 1.55-1.72(151). The interlayer spacing 

between layers does not increase as the H
+
 ions are found in the basal planes between 

neighbouring oxygen atoms rather than in the interlayer spacing itself
 
(150–152). 

 In a similar manner, sodium dithionite (Na2S2O4) is also a good reducing agent and 

is commonly used to intercalate Na
+
 into the interlayer spacing of MoO3 as it can be 

conveniently reacted under aqueous conditions. A typical method involves reacting a 

MoO3 powder with Na2S2O4 aqueous solution (1M). The interlayer spacing increases from 

6.93Å to ~11.4Å due to hydrated Na
+
 ions being present. The XRD showed that structural 

integrity and crystallinity is maintained upon intercalation(153,154).  

 Intercalation of K
+
 was achieved by reaction of hydrated MoO3 with KBH4. The 

intercalation of K
+
 does not change the structural integrity or crystallinity of the 

material(142). The lithium, sodium and potassium intercalated materials are commonly 

used as precursors for ion-exchange reactions. 

 Magnesium ions (Mg
2+

) have been shown to intercalate into MoO3 via the 

electrochemical route (81,155,156). It was shown that the molar ratio of Mg
2+

 could be 

varied between 0.05 and 0.4. The increase in the interlayer spacing correlated with the 

molar ratio (0.05 to 0.4) of Mg
2+

 intercalated. The IR spectrum of MgxMoO3 shows the 

characteristic MoO3 peaks (that appear below 1000 cm
-1

) shifting as discussed above for 

Li
+
 intercalation. However, the intensity for the peak at 806 cm

-1
 is shown to decrease 

during the same molar ratio range but is no longer present after the molar ratio increases 

above 0.2. The decrease in the peaks is due to the interaction of the magnesium ion with 
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the bridging oxygen (Mo-O-Mo) and with the M=O oxygen. The diffusivity was in the 

order of 10
-17

 – 10
-18

 cm
2
s

-1
(81,156).  

 In recent years it has been shown that zero-valent transition metals have been 

intercalated into the interlayer spacing of MoO3. Cu(157), Sn and Co(158) have shown this 

phenomenon. In the case of Cu, it was shown that a molar ratio of 0.12 (3% atomic 

percentage) Cu to MoO3 successfully intercalated into MoO3 nanowires while preserving 

morphology. From the XRD the interlayer spacing showed a contraction from 2.322Å to 

2.309Å while maintaining the MoO3 overall crystallinity. This contraction was suspected to 

be due to the guest intercalant, in which the Cu exhibits some electron sharing with the 

MoO3 layers due to its zero-valent state as was confirmed by XPS. For this material, the 

Mo 3d3/2 and 3d5/2 peaks are broadened upon intercalation. This is not seen in cation 

insertion as the interaction between the anionic layers and the cationic intercalant is mostly 

electrostatic. However, this is not the case in the intercalation of Sn and Co whereupon 

intercalation, there was an interlayer expansion. This expansion was shown to be reversible 

upon intercalation-deintercalation-re-intercalation of Sn and Co. The increase in the 

interlayer spacing is dependent on the molar ratio of Sn and Co. The Raman spectra further 

showed intercalation was successful for Cu as the vibrational peaks shifted to lower 

wavenumbers corresponding to less vibrational space available for the terminal oxygens. 

Electron energy loss spectroscopy (EELS) helped confirm that the Cu was in the zero-

valent state as there were no additional peaks present in the Cu
0
MoO3 material while peaks 

appeared for Cu
+
 and Cu

2+
 intercalation which could intercalate favouring a redox 

mechanism.  

 The intercalation of metal cations into the interlayer spacing of MoO3 is used as a 

precursor to intercalate other cations (usually organic) into MoO3.  
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1.5.2.2) Ion-Exchange Intercalation 

 

Ion-exchange method of intercalation is a very common and reliable method which does 

not have an adverse effect of the overall crystalline structure of the MoO3. This was shown 

in the intercalation of polyoxycations(159). The NaxMoO3 was synthesised using the redox 

method mentioned previously with Na2S2O4. The sodium intercalated precursor showed an 

interlayer spacing of 11.5Å, which increased further upon ion-exchange with aluminium 

polyoxycations to 18.9Å. Interestingly this interlayer spacing increase was larger than the 

sum of the size of the two components of the composite (the MoO3 interlayer spacing of 

6.97Å and the Al polyoxycation ~9Å). This suggested that although the overall structure 

remained crystalline, the MoO3 layers would have shifted due to the presence of the 

intercalant. In a similar fashion, Bi-polyoxycations were also intercalated in this fashion 

with an interlayer spacing increasing from 11.5Å to 13.8Å.  

 More interestingly, polymers can be intercalated in this fashion such as poly(p-

phenylene vinylene) (PPV)(160) by intercalating the monomer precursors and 

polymerising in-situ. This was particularly convenient as PPV precursors cannot undergo a 

redox reaction and therefore not yield intercalation. Since most ion-exchange mechanisms 

require a water-soluble cation, PPV is insoluble in water and therefore direct insertion of 

the high molecular weight polymer is difficult. The interlayer spacing was shown to be 

13.3Å with a net increase of ~6.4Å from that of the pure MoO3 after ion-exchange. The IR 

spectrum further showed that in-situ polymerisation was successful due to the peaks 

appearing at 3024 and 964 cm
-1

 correspond to the conjugated form of PPV as well as the 

typical shifting of the host peaks as previously discussed. PEO is also a non-redox 

intercalative polymer which is intercalated in a manner similar to PPV(161,162). In this 

unusual situation, the intercalation of the polymer is in fact assisted by the insertion of the 

sodium or lithium ions. The polymer replaces the water molecules and “chelates” with the 
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metal cations in between the MoO3 layers before exchanging with them. It was shown that 

there was two forms of PEO present, a monolayer and bi-layer structure with interlayer 

expansions to 12.9Å and 15Å respectively. Hydrogen bonding was shown to exist between 

the polymer and the oxygen atoms in the interstitial Mo=O bonds corresponding to PEO-

MoO3 interactions. Polystyrene was also intercalated as a polymer rather than through its 

monomer precursor(163). This was achieved by the use of surfactant due to the fact that 

styrene was unable to be charged. The surfactant (didodecyldimethyammonium) 

exchanged with the sodium ions, swelling the layers further, to allow the entire polymer to 

be incorporated into the interlayer spacing. This polymer intercalated material showed an 

interlayer spacing increase to ~30.5Å (varying between 29.5Å to 36.5Å when repeated). 

The dodecyltrimethylammonium compound itself can be intercalated with a bromide 

counter ion(164) ion exchanging with either the sodium or hydrogen intercalated MoO3. A 

large increase to 22.9Å in the interlayer spacing was observed similar to the intercalation 

of polystyrene. This was due to the Keggin like cluster structure formed by the intercalant 

held together via hydrogen bonding with water.  

 This ion-exchange method can also be extended for producing conducting polymers 

in-situ (as many exhibits poor to very low solubility’s) by intercalating the monomers 

which then undergo a redox reaction once intercalated with the MoO3 layers. This is 

carried out by ion-exchanging the metal cation (for example Na
+
 as previously discussed) 

with the protonated monomer precursor. This is followed by either the monomer’s redox 

polymerising upon entering the interlayer spacing with MoO3 or else the polymerisation is 

driven by the use of an external oxidising agent (such as ammonium persulphate) after the 

monomer as successfully intercalated. A simple common polymer intercalated in this 

manner is polypyrrole(165–167) whereupon pyrrole was ion-exchanged with the hydrated 

sodium ions, ferric chloride (FeCl3) or ammonium persulphate was added to drive the 

polymerisation to completion. Upon ion-exchange, the interlayer spacing showed an 
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increase to 14.7Å (a net increase of 7.8Å when compared to MoO3). This significant 

increase in the interlayer spacing corresponds to one of two cases; i) the polypyrrole chains 

aligning perpendicular to the plane of the MoO3 layers or ii) bilayer formation of the 

polymer chains which are parallel to the MoO3 plane. The overall crystallinity and integrity 

of the layered host structure were maintained during this reaction. The room temperature 

resistivity of this material was shown to be 258 Ω cm. With the MoO3 being present as the 

major component in the composite, the transport properties were dominated by the MoO3. 

The main challenge facing polypyrrole intercalation lies in the ease of polymerisation 

when protonating the pyrrole in acidic conditions before it has had a chance to be 

intercalated. In comparison, PANI is a widely used conducting polymer and has shown to 

successfully be intercalated, including substituted PANI’s such as poly(o-anisidine), via 

ion-exchange(166,168–170). In both cases, the PANI and the poly(o-anisidine) were 

protonated to form their hydrochlorides before ion-exchanged with sodium ions. 

Ammonium persulphate was then used as the external oxidising agent. The interlayer 

spacing increased to ~13.6Å for both PANI and poly(o-anisidine) which corresponded to 

the polymer chains organising themselves perpendicular to the planes of the inorganic host 

(as confirmed by solid-state NMR(171)). This method was extended to more complex 

conducting polymer/organic semiconducting structures such as poly(5,6,7,8,-tetrahydro-1-

naphthylamine) (PTHNA)(172,173) and 5,10,15,20-tetrakis(N-methyl-4-

pyridino)porphyrin(166). The PTHNA composite showed an interlayer increase to 14.3Å 

(a net increase of 4.9Å compared to the NaMoO3 and 7.4Å in relation to the MoO3 host). 

The 5,10,15,20-tetrakis(N-methyl-4-pyridino)porphyrin meanwhile showed an interlayer 

spacing increase to 13.4Å corresponding to a net increase of 4.0Å with respect to the 

sodium precursor and 6.5Å with the host MoO3. The PTHNA was also intercalated via ion-

exchange in its hydrochloride form. It was shown that the interlayer spacing for this 

intercalant was larger than that for PANI (with an interlayer spacing for the PTHNA 
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intercalant of 14.3Å with a net increase of 4.9Å in respect to the sodium intercalant). From 

XPS analysis a reduction of Mo
6+

 to Mo
5+ 

was shown due to the oxidative polymerization 

that the PTHNA precursor initially underwent immediately after being ion-exchanged and 

before the addition of ammonium peroxodisulfate as the external oxidant. The molar ratios 

of the Mo
6+

 and Mo
5+

 were calculated from the peak areas and shown to be between 91.8 - 

87.1% for Mo
6+

 and 12.9 - 8.3% for Mo
5+

. The lower Mo
5+

 content resulted in a more 

resistive material overall.  

Another commonly utilised method of intercalation of the organic materials is 

direct intercalation of the polymer. These direct methods are analogous to the methods 

used in V2O5 (see section 1.3.1.3) and include direct insertion of the organic material via 

hydrothermal, exfoliation and sol-gel methods. 

 

1.5.2.3) Direct Intercalation 

 

 The direct intercalation of organic materials was shown to work well for cubane 

clusters(174) and dimethyl sulphoxide (DMSO)(175). The Cubane clusters were 

intercalated by the treatment of the MoO3 with cubane clusters in acetonitrile at 100
o
C. 

This resulted in the intercalation of the cluster into the interlayer spacing with a molar ratio 

of 0.15 to 1 MoO3. The interlayer spacing increased from 6.9Å to between a maximum of 

15.5Å (for Fe(η-MeC5H4CH2CH2NH2)-(η-C5H5)]
2+

 cubane cluster) and a minimum of 

10.3Å for (for Fe4(η-C5H5Me)4-(µ
3
-S)4 cubane cluster). DMSO was shown to intercalate 

into MoO3 by simply dissolving the MoO3 in hot DMSO and allowing for the MoO3 to 

recrystallise out. The interlayer spacing showed an increase between 7.70Å-8.27Å. It was 

then shown that this material could be used in a very similar mechanism to the ion-

exchange whereby the DMSO could be directly exchanged when the intercalated material 

was placed in a solution containing an excess of the desired organic intercalant. In this 
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case, these were solutions of pyridine (py), pyridine N-oxide (pyo) and triphenylarsine 

oxide (AsPh3). The py, pyo and AsPh3 intercalated MoO3 showed interlayer expansions of 

11.48Å, 9.51Å and 11.95Å respectively. In the case of the pyo intercalant, it was stated 

that the material showed poor crystallinity while maintaining crystallinity for the 

intercalation of py and AsPh3. The infra-red specifically showed that the main change 

occurred for the Mo-O-Mo bridging region (800-720cm
-1

). Butylamine, dodecylamine and 

hexadecylamine showed to intercalate into the MoO3 layers in a similar manner to the 

pyridine compounds with interlayer spacings expanding to 15.13Å, 30.86Å and 38.74Å 

respectively(176). The expansion is dependent on the chain length. Upon intercalation, the 

peaks for the CH2 and –NH vibrations appear at 2850 cm
-1

 and 2916 cm
-1

 for the CH2 

stretch and at 1628 cm
-1

 for the –NH (bending) while the characteristic MoO3 peaks are 

shifted as seen previously. It was suggested from this data that the alkylamines adopt a 

double layer orientation where the chains are stacked on top of one another but are 

perpendicular to the inorganic plane. Nicotinamide also showed a similar interaction once 

intercalated with two possible coordinations taking place due to the orientation. The first 

was the hydrogen bonding between the oxygen in the inorganic layers and the N-H group 

while the other showed coordination between the metal and the oxygen in the C=O. When 

the N-H hydrogen bonded with the oxygen, the interlayer spacing increased to 13.2Å. 

Meanwhile, when the C=O was interacting with the layers the interlayer spacing increased 

to 11.2Å. It is suggested that the N in the aromatic ring showed interactions with the Lewis 

acid sites (the Mo
6+

 cations) in the oxide suggesting a degree of acid-base like reaction 

occurring in-situ. It seemed to be particularly the case when hexamethylenetetramine 

(hmta) was intercalated. Upon intercalation, the hmta showed an interlayer increase to 

10.1Å. This supposed behaviour to show interaction with the Lewis acidic sites of the 

oxide layers was also proposed for 1,10-phenanthroline(177) and pyrrolidine 

dithiocarbamate (pdc)(178). 1-pyrrolidinecarbodithioic acid ammonium salt was used with 
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an increased interlayer spacing of 12Å. The orientation of the pdc anion in the interlayer 

spacing is perpendicular to the planes of the MoO3 layers. Due to this orientation, the C-S
-
 

group interacts with the Lewis acid sites of the inorganic oxide. Due to the perpendicular 

orientation of many of these intercalates, one would have expected the 1,10-phenanthroline 

to potentially intercalate perpendicular to the planes. However, due to this interaction with 

the Lewis acid sites, it was shown that there are three potential orientations this molecule 

can adopt. In the first, the nitrogen groups are interacting with the Lewis acid sites. The 

second is the ring system lying parallel to the planes of the MoO3 leading to an interlayer 

spacing of 11.6Å in the first case and 7.7Å in terms of the second case. Diethylenetriamine 

(DETA), 2-(2-aminoethoxy) ethanol (AEE) and 2-(2-aminoethylamino) ethanol 

(AEAE)(179) were also intercalated in this manner. It was shown that the MoO3 

vibrational bands were shifted to lower wavenumbers due to the limited space for the 

Mo=O stretching. From the XRD patterns, the (001) peak shifts from the 6.9Å for MoO3 to 

10.56Å, 9.38Å and 8.38Å for DETA, AEE and AEAE intercalated composites 

respectively. The materials maintained a good crystalline structure and structural integrity. 

 Similar to that shown in V2O5 polyaniline(180) as well as the long chain 

poly(tetramethyl-p-phenylenediamine dihydrochloride)(181) were also intercalated using 

direct intercalation into MoO3. With the inclusion of polyaniline, a 13.7Å interlayer 

spacing increase with a net increase of 6.7Å was seen corresponding to the polymer 

backbone being orientated roughly perpendicular to the planes of the MoO3 layers. It was 

determined that there were two phases present; a major phase with a number average 

molecular weight (Mn) of the polymer was 4850 and average molecular weight (Mw) of 

24200 while a minor phase showed a Mn of 280 and Mw 294 (corresponding to the trimer 

formation). For the minor phase the low average molecular weight was indicative of the 

amount of monomer available and the restrictive space in the interlayer spacing for 

polymerisation. However, the conductivity of the PANI as the intercalated material showed 
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three orders of magnitude increase in the room temperature conductivity compared to 

MoO3, rising from 2x10
-6

 Scm
-1

 for pure MoO3 to ~3x10
-3

 Scm
-1

. This is consistent with 

the presence of doped polyaniline in the emeraldine form. This room temperature 

conductivity is still, however, lower than that for bulk emeraldine. The Seebeck effect is 

measured by the Seebeck coefficient which is a measure of the induced thermoelectric 

voltage as a response to a temperature gradient across the material. In the polyaniline 

intercalated MoO3, the Seebeck coefficient was shown to be relatively small, ~+8.6µVK
-1

 

measured at 345K and this decreased linearly with decreasing temperature to ~+4.6µVK
-1

 

at 235K and from the gradient, it was implied that the composite material is intrinsically p-

type. The polyaniline derivative poly(tetramethyl-p-phenylenediamine dihydrochloride) 

(PTMPD) showed two potentially intercalated phases with interlayer spacings of 22.6Å 

and 11.3Å. The interlayer spacing of 22.6Å could correspond to a bilayer structure of the 

PTMPD while the 11.3Å is more consistent with a monolayer where the chains are in a 

fairly perpendicular orientation. The stoichiometry of this composite was determined as 

PTMPD0.23MoO3(H2O)0.31.   

  

1.5.2.4) Exfoliation – Restacking Intercalation 

 

Other common direct intercalation methods include exfoliation/re-stacking and 

hydrothermal methods. The exfoliation/re-stacking method is analogous to that used for the 

V2O5 with some minor alterations. In the case of the V2O5, we saw that it was 

advantageous to initially pre-intercalate with a metal cation or other small organic cations 

before carrying out the exfoliation (usually by ultrasound). In the case of the MoO3, it was 

shown that in intercalating substituted pyridines (pyridine, 4-methylpyridine, 4-

propylpyridine, 4-phenylpyridine, 4-benzylpyridine and 4-carboxypyridine) the MoO3 

could be directly exfoliated by ultrasound at room temperature for 5-150 hours in the 
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presence of the organic intercalant solutions(182). Upon re-stacking it was shown that the 

interlayer spacing expanded for pyridine, 4-methylpyridine and 4-propylpyridine to 10.6Å, 

11.7Å and 13.7Å respectively with the increase dependant on the size of the substituted 

group. This suggested that the intercalated material was orientated perpendicular to the 

planes of the MoO3 layers. The IR spectrum confirmed successful intercalation as the 

shifting of the characteristic MoO3 peaks were seen as discussed previously. Meanwhile, 

the peaks appearing in the region of 1400cm
-1

 to 1700cm
-1

 are associated with the 

substituted pyridines. Due to the re-stacking nature, the XPS showed a singular Mo 

environment corresponding to Mo
6+

 suggesting the substituted pyridines did not undergo a 

redox reaction in-situ with the inorganic layers. This method was successful for the 

intercalation of the polymer linear poly(ethyleneimine) (LPEI), with weight average 

molecular weight of 40,000-60,000(183). In this case, the sodium or lithium intercalated 

precursor was used for the exfoliation. The interlayer expansion showed an increase in 

11.6Å with a net increase of 4.7Å once the polymer was intercalated. In general, this is 

consistent with the intercalation of monolayer polymer structure within the interlayer 

spacing as previously discussed. The material retained its crystalline structure upon 

intercalation showing that the layers re-stacked in an ordered fashion. The interaction 

between the polymer and inorganic layers suggested that the protonated polymer was 

present as the polymer was intercalated in its hydrochloride form. By titration, they 

showed that there was indeed a low extent of protonation of the amine groups in the LPEI. 

This supported the conclusion that the LPEI was solvated within the interlayer spacing. 

The closely related structure of polyamidoamine (PAMAM) dendrimers further showed 

that for the smaller dendrimer structures an interlayer expansion of 11.8-12Å was observed 

while the larger structures showed an interlayer expansion between 13.4-15.1Å. Analogous 

to the LPEI the larger PAMAM structures adopt a bilayer conformation within the 

interlayer spacing while the smaller structures adopt a monolayer-like conformation as 
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seen with polyanilines. This was further shown with the TGA where the % organic mass 

present in the smaller structures was shown to be 12-14%, whereas for the bilayer larger 

structures this content doubled to 22-24%.  

 Another modification to the exfoliation and re-stacking method lies in stabilising 

the exfoliated layers and controlling the re-stacking with the use of a surfactant. This was 

used to intercalate poly(p-phenylene) (PPP) into MoO3(184). The surfactant used in this 

case was dodecyltrimethylammonium hydroxide and the method involved intercalating the 

monomer followed by in-situ polymerisation. However, it must be noted that the surfactant 

is co-intercalated into the layers with the PPP. This showed that the interlayer expansion 

increased to 23Å for the co-intercalated PPP and surfactant. This suggested that the PPP 

monomer pre-polymerisation was stacked perpendicular to the planes of the MoO3 layers. 

Upon polymerisation and the removal of the surfactant by heating, the interlayer spacing 

decreased to 11.96Å suggesting a monolayer structure of the PPP was present in the 

interlayer spacing. It was further shown that the para polymer was present and no 

crosslinking occurred as the IR bands show those for 806 cm
-1

 and 1482 cm
-1

 which 

corresponded to the C-H stretches for the para-substituted phenyl rings and the shifted 

characteristic MoO3 peaks further suggested intercalation was successful. 

 The hydrothermal method is similar to that which was seen in the V2O5 and is 

similar to that of the exfoliation and re-stacking synthetic method where the inorganic 

layers are dissolved in a solution and regrown around an organic guest species. Bipyridine 

is a small conjugated molecule that has shown to successfully intercalate into the MoO3 

interlayer spacing. 2,2’-bipyridine(185,186) was intercalated at temperatures of 160-200
o
C 

where it was shown that the nitrogen in the 2,2-bipyridine chelates with the terminal 

oxygen groups of the MoO3 which was seen in the IR spectrum as bands appeared for the 

chelated bipyridine and the inorganic oxygen N-O bonds. The 4,4’-bipyridine analogue 

and 1,2,4-triazole
 
(187–189) was shown to show similar intercalation chemistry to the 2,2’-
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bipyridine and showed an interlayer expansion between 11.22 Å - 11.37Å suggesting 

monolayers were formed which arranged perpendicular to the planes of the MoO3 layers 

for the bipyridine while the triazole conformed to double layer stacked conformation. As 

with 2,2’-bipyridine, the nitrogens act as ligands chelating with the Mo metal centres in the 

case of both guest species. The triazole compound showed bidentate-bridging chemistry by 

coordinating through the 1,2 nitrogen sites. In both cases, the shifting of the characteristic 

MoO3 peaks suggested successful intercalation had occurred as discussed previously. The 

peaks above 1000 cm
-1

 correspond to the organic guest species. XPS data showed that even 

during the hydrothermal method, due to the chelation of the nitrogen atoms some of the 

Mo
6+

 was reduced to the Mo
5+

. However, intercalation of the bipyridine resulted in the 

lateral reduction of the overall unit cell dimensions and cracking in the lattice structure 

which was caused by the bipyridine chelating with the inorganic layers causing 

aggregation of the inorganic layers. The similar structure pyrazine (compared with 

pyridine) also intercalates in such a fashion in which the nitrogens chelate with the 

Mo(190). Pyrazine, which has structural similarities to pyridine, is small enough 

(molecular length 5.8Å compared to the MoO3 interlayer spacing of 6.9Å to successfully 

intercalate without causing an increase in the interlayer spacing of the MoO3 even though it 

intercalates perpendicular to the planes of the MoO3 layers. In such a case it is clear that 

XRD may not provide sufficient details regarding successful intercalation but did show 

that the overall structural integrity of the material was maintained, which may suggest any 

pyrazine is surface based. Raman data, however, showed peaks for the symmetric 

stretching modes of the aromatic ring of pyrazine at 714 cm
-1

 and 932 cm
-1

. As discussed, 

typically seen in IR and Raman there are shifts in the host peaks corresponding to a 

decrease in the vibrational space available due to intercalation. This was specifically 

shown for the terminal Mo=O and O-Mo-O where net shifts of 5 cm
-1

 and 3 cm
-1

 were 

seen. This is due to the chelating of the nitrogen to Mo as seen in the bipyridines. 
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Furthermore due to the chelating of the nitrogen to Mo, as seen with the bipyridines, the 

XPS showed the formation of the reduced Mo
5+

 ions being present. Although not 

discussed, the cause of Mo
5+

 centres may have been from the hydrothermal process and not 

due to any redox reactions caused by the guest hydrazine. From the photoluminescence 

spectrum, MoO3 shows a single strong peak appearing at 332 nm. Upon intercalation, 

however, this single peak disappears and two new peaks are now present at 320 nm and 

351 nm. This showed blue-shift with respect to the pure MoO3 which is attributed to the 

presence of the pyrazine. This study was extended to other pyrazine based organic guests 

along with pyrazine and pyridines; the thiazole-based conjugated molecules; quinoxaline, 

dimethylpyrazine (DMPz), 2-(4-pyridyl)benzimidazole) (4-PBIM), 2-(2-ol-3-

pyridino)benzimidazole (OPBIM), 2-(3-pyridyl)-benzimidazolium (3-HPBIM) which were 

co-intercalated with other metal cations such as Ag, Cu and Co. Here the oxide layers 

adopted a nearly perfect stochiometry after intercalation. For the intercalation of 

quinoxaline, DMPz, 4-PBIM, OPBIM and HPBIM the interlayer spacing increased to 

12.32Å, 10.21Å, 13.54Å, 10.95Å and 10.13Å respectively. This suggested that the organic 

guest continued the trend for intercalants into MoO3 where they orient themselves 

perpendicular to the planes of the MoO3. This is facilitated by the fact that the nitrogen 

groups would chelate to Mo. The crystallinity in all cases was maintained and the lattice 

parameters only changed in the direction which corresponded to the increase in the 

interlayer spacing. Following on from the intercalation of complex single organic 

molecules, the direct intercalation of polymers via hydrothermal conditions was shown for 

the cases of poly(diallyldimethylammonium chloride) (PDDACl) (Mw 100,00-200.000) 

and poly(allylamine hydrochloride) (PAHCl) (Mw 15,000)(191). Two material 

compositions were obtained by this method showing a stoichiometry of 

[PAHCl]0.18[PAH]0.38MoO3 and [PDDACl]0.26[PDDA]0.24MoO3. Through elemental 

analysis, it was shown that there was partial intercalation of the chloride anions into the 
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interlayer spacing. The PAH shows an interlayer spacing increase of 22.4Å suggesting the 

formation of a bilayer like structure due to its linear backbone. Upon intercalation of the 

PDDACl, meanwhile, the interlayer spacing increased to 11.2Å suggesting monolayer 

formation. However, in the case for PAHCl, it was shown that the crystalline structure was 

maintained well during intercalation which was not the case in PDDACl in which the 

peaks broadened and became diffuse. Alternatively, the higher molecular weight of PDDA, 

with respect to PAH, caused by several different expanded peaks around the 11.2Å peak 

leading to the appearance of a single diffuse peak. The FTIR showed the presence of both 

NH3
+
 and NH2 groups and therefore potential H-bonding to be occurring within the 

structure of PDDACl which may lead to regions of spiral-like conformations in the 

interlayer spacing which may lead to the appearance of the mentioned diffuse peak. Due to 

the guests being intercalated as the polymer there was no indication of chelation or Lewis 

acid like interactions between the polymers and the MoO3 host which is consistent with 

that fact that it would be less energetically favourable to form these interactions rather than 

interactions within the polymer’s own structure. The TGA further confirmed the presence 

of the polymers and mass loss only began to show after ~250
o
C and continued until ~550-

600
o
C which corresponded to the polymer whereas the mass loss at ~750-800

o
C which is 

characteristic for MoO3 sublimation. The UV-Vis diffuse reflectance spectrum(190) 

showed the characteristic band between the 200 nm and 360 nm region characteristic for 

MoO3 while the shoulder appearing ~290 nm was associated with charge-transfer 

transitions for the structure where the polymer was present. This was further confirmed 

with the presence of additional bands between 300 nm and 400 nm usually associated with 

the presence of Mo
6+

 ions in a crystalline arrangement. This suggested that the crystalline 

structure of individual MoO3 layers was still preserved and that the broad peaks shown in 

the XRD were attributed to the intercalation of the polymer. Meanwhile, the absorption 

bands at 600 and 930nm were associated with the Mo
5+

 to Mo
6+

 intervalence polaronic 
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charge transfer transitions while the bands occurring at 800 nm, 1440 nm, 1270 nm and 

1500nm correspond to the d-d transitions of Mo
5+

 ions found in a distorted polyhedron 

environment in the MoO3 solid. This sheds light on the mechanism of the intercalation 

slightly as even during hydrothermal conditions the method of intercalation causes some 

reduction of the MoO3 material.  

A widespread commercially applied polymer that has also been shown to be 

intercalated in such a manner as the PDDACl and PAH polymers is PEO which was 

applied for Li
+
 electrochemical intercalation as seen previously for PEO intercalated 

V2O5(192). This PEO, in this case, was intercalated into MoO3 nanobelts. In this case, the 

layers were first swelled in aqueous conditions before the addition of the PEO via 

exfoliation - restacking. The composite that formed showed no immediate change in the 

interlayer spacing which had expanded to 13.85Å. The crystallinity was shown to have 

been maintained throughout the reaction. There were, however, no peaks in the IR 

spectrum indicated to the presence of H2O with signals between 3600 cm
-1

 and 1600 cm
-1

 

corresponding to PEO suggesting that the swollen layers did not restack around water after 

exfoliation. 
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Table 1.5 - The advantages and disadvantages of the different intercalation methods for MoO3 intercalation 

Intercalation 

Method 

Advantages Disadvantages 

Cation Intercalated Host Precursor 

Small Cation 

Intercalation 

 Used as precursors for organic guest intercalation 

 Maintains high control of the host structural integrity 

 Intercalation is reversible with little effect on the host 

structural integrity. 

 The resulting materials synthesised using the small cation 

precursors show a limited control over the structural integrity 

of the host material. 

Precursor Based Intercalation 

Ion – Exchange 

 A wide range of guest species can be used 

- Small and large organic guests can be intercalated 

including polymers 

 Monomers with low oxidations potentials are readily 

polymerised in-situ without the requirement of an 

 Difficulty in controlling the degree of structural integrity of the 

host and the medium to high integrity is case by case. 

 Requires guests to be present in a cationic form in solution. 
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external oxidant. 

 Produces materials with significantly higher 

conductivity than the host 

 Can be carried out in non-organic solvent/aqueous 

conditions. 

 Medium to high structural integrity of the host 

maintained. 

Exfoliation – 

Restacking 

 A wide range of guest species can be used 

-  Small and large organic guests can be intercalated 

including polymers (and very high molecular 

weight polymers) 

 In-situ polymerisation can occur for organic guests 

with low oxidation potentials. 

 Variable conductivity of resultant material when 

 In cases where surfactant used, the surfactant can also be 

intercalated into the layers along with the desired guest species 

affecting properties (such as conductivity) 

 Very low to medium structural integrity of the host material 

and the degree of structural integrity is difficult to control 
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compared to the host material 

 One-pot synthesis 

 Can show some medium control over host structural 

integrity. 

Non-Precursor Based Intercalation 

Direct 

 A wide range of guest species can be used 

- Small and large organic guests can be intercalated 

including polymers (and very high molecular 

weight polymers) 

 Usually one-pot synthesis 

 If a host precursor used polymer materials show 

chelation allowing for large guest species to be 

intercalated, good for some applications (i.e. battery) 

 Useful for non-cationic guest species 

 Overall, a variable host structural integrity from very low - 

medium with difficulty in controlling the degree of structural 

integrity, usually on a case by case basis. 

 If host precursors used the metal ions can remain within the 

layers which may limit the materials applications 
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 Can produce a more conducting material when 

compared to the host material 

 Useful in the use of guests which are non-polar and 

insoluble in polar solvents (such as water) 

 Can result in high structural integrity of the host. 

 Does not require xerogel precursor 
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Table 1.6 - Intercalation methods summary 
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D
irect 

    

Precursor 
✔ ✔ ✔ 

Non-Precursor 
  ✔ 

 
   

Small guest intercalation 
✔ ✔ ✔ 

Large guest intercalation (e.g. polymers) 
✔ ✔ ✔ 

Intercalation of very high molecular weight 

polymers 

 ✔ ✔ 

Polymerisation in-situ w/o external oxidant 
✔  ✔ 

One-pot synthesis 
 ✔ ✔ 

Host structural integrity 

Medium 

to High 

Very low 

to medium 

Variable 

Non-organic/aqueous conditions 
✔   

Surfactant use, surfactant can remain 

intercalated 

 ✔  

High conductivity 
✔ ✔ ✔ 

Low conductivity 
 ✔  

Guest species intercalated in cationic form 
✔   

Non-cationic guest intercalation 
 ✔ ✔ 

Synthesis carried out in air 
 ✔  
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Table 1.7 – Polymer materials and their intercalation method/s in MoO3 

Polymer Structure Intercalation Method/s 

Multi-Method Intercalation 

Polyaniline 

 

Ion-Exchange and 
Exfoliation - Restacking 

Pyrroles 

 

Direct and Exfoliation -
Restacking 

PEO 

 

 
Direct and Exfoliation – 

Restacking 
 

Ion-Exchange 

Polyoxycations and Bi-
polyoxycations 

 
[AlO4Al12-(OH)24(H2O)12]

7+
 

 

PPV 

 

Polystyrene 

 

Polypyrrole 

 

Poly(o-anisidine) 
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PTHNA 

 

5,10,15,20-tetrakis(N-methyl-
4-pyridino)porphrin 

 

Direct Intercalation 

Cubane cluster 

 

DMSO 

 

Pyridine N-oxide 

 

Triphenylarsine oxide 
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Butyl, dodecyl and 
hexadecylamine 

 

Nicotinamide 

 

hexamethylenetetramine 

 

1,10-phenanthroline 

 

Pyrrolidine dithiocarbamate 

 

1-pyrrolidinecarbodithioic 
acid ammonium salt 

 

DETA 

 

2-(2-aminoethoxy ethanol) 

 

2-(2-aminoethylamino) 
ethanol 
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PTMPD 

 

Exfoliation - Restacking 

4-methylpyridine, 4 
propylpyridine, 4-
phenylpyridine, 4-

benzylpyridine and 4-
carboxypyrdine 

 

2,2’ – Bipyridine and 4,4’-
Bipyridine 

 

LPEI 

 

PAMAM 

 

PPP 

 

1,2,4 Triazole 
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Pyrazine 

 

Quinoxaline 

 

DMPz 

 

4-PBIM 

 

OPBIM 

 

3-HPBIM 

 

PDDACl 

 

PAHCl 
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1.5.3) MPS3 Intercalation 

 

 

Figure 1.9 - MnPS3 layers where the green atoms are the Mn
2+

, the red atoms are S
2-

 and the blue atoms are the P
4+ 

The members of the family of MPS3 (M = transition metal ion, usually first row) have 

drawn interest as functional materials due to their intermediate band-gaps which are 

between 1.3eV to 3.5eV(65,193). They all have the common defining structure feature in 

which (P2S6)
4-

 sub-lattices appear within each layer. In fact, this family of materials are 

more accurately described as slightly distorted CdCl2 and CdI2 type structures with the 

ordered occupation of the octahedral holes by the metal cation and the P2. Interestingly 

with increasing overall net change in electronegativity between different metal cations and 

the (P2S6)
4-

, the structure changes from CdI2 type to CdCl2 type(194). The van der Waals 

gaps in these materials vary between 3.22-3.24Å and are much wider than the closely 

related MS2 class of materials(193,194). The effect of intercalating these compounds with 

either metal cations or organic materials leads to the potential of fine-tuning this class of 

materials for various applications such as energy storage (electrochemical or otherwise), 

solid state electrolytes and catalysis(193,195).  
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1.5.3.1) Metal Cation Precursor Intercalation 

 

 As seen with the oxide materials, metal-cation intercalation can be used directly or 

as a precursor to the intercalation of organic or larger cation species(196). Commonly 

intercalated metal cations include lithium(197), potassium(198,199), sodium(198). N-BuLi 

was used to intercalate Li
+
 into FePS3 and NiPS3 (197)

 
as seen previously with V2O5 while 

potassium and sodium were intercalated into CdPS3 by reactions with KCl and NaCl in the 

presence of a buffer solution of K or Na-EDTA (where EDTA is a chelating species for the 

Cd
2+

 cation in solution driving ion-exchange)
 
(198,199). N-BuLi is a readily used reducing 

agent for the MPS3 compounds with smaller bandgaps such as FePS3 (1.5eV), NiPS3 

(1.6eV), FePSe3 (1.3eV) and even potentially MnPSe3 (2.5eV)(197,200–202) due to the 

small bandgap correlating well with the reduction potential of the n-BuLi(148). For the 

larger band gap compounds which include MnPS3 (3.0eV)(200,203), CdPS3 

(3.5eV)(200,204) and ZnPS3 (3.4eV)(197,200) ion-exchange is more favourable. In both 

cases, the intercalated metal-cations are used to ion-exchange with the organic cation 

desired. 

 Lithium content in the FePS3 and NiPS3 was shown to be variable between 0.2-0.5 

molar concentration with respect MPS3 while the interlayer spacing was shown to have a 

net increase of 5.8Å and it was suggested that this was consistent with the presence of 

bilayer water around the lithium ions (197). Under these conditions, it was shown that both 

materials underwent partial lithiation while the overall crystallinity of the material was 

maintained. The resistivity of both materials was also shown to decrease when the 

materials were reacted with n-BuLi for longer reaction times (i.e. higher Li
+
 content). The 

FePS3 showed an initial resistivity of 2.5 x 10
4
 Ω cm and this decreased after a reaction 

time of 120 hours to 2.95 x 10
1
 Ω cm. Meanwhile, the NiPS3 showed an initial resistivity 

of 10
9
 Ω cm and this decreased after 60 minutes reaction time to 1.84 x 10

1
 Ω cm (197). In 

both cases, the trend suggested a higher conductive material with greater lithium content 



 

78 
 

and the room-temperature Seebeck measurements indicated that these intercalated 

materials show n-type conductivity. The K
+
 and Na

+
 intercalated materials further showed 

an increase in the interlayer spacing upon intercalation to 9.43Å (net increase of 2.63Å) 

and 12.10Å (net increase of 5.3Å) respectively into MnPS3. From this, it can be seen that 

K
+
 is likely to be present in the hydrated form coordinated to a monolayer of water 

(198,199) whereas the Na
+
 possibly showed bilayer hydration. Na

+
 was in a hydrated state 

when intercalated into CdPS3
 
due to the increase in the interlayer spacing correlating to the 

hydrated radius of Na
+
. The dc conductivity of the Na

+
 intercalated compound was 10

-6
 

Scm
-1

 at 300K and an Arrhenius activation energy of 65.27 kJmol
-1

 for the dc ionic 

conductivity. Due to the insulating nature of the CdPS3 layers, the conductivity was said to 

be due entirely to the interlamellar hydrated Na
+
 being highly mobile. It was suggested that 

was only possible with the water molecules as they allowed for a more ionic conducting 

medium for the Na
+
 (198)

.
 

 It was further shown that non-alkali metal cations can also undergo intercalation. A 

range of paramagnetic transition metal ions underwent ion-exchange with Cd
2+

 in CdPS3 

(205). However, these transition metal ions are not located in the interlayer spacing (as 

seen with alkali metal cations) and occupy the vacant cation sites left upon removal of the 

Cd
2+

 ions. XRD did not show noticeable changes to in interlayer spacing and instead, EPR 

was utilised to monitor the presence of any cations. It was shown that Ni
2+

 underwent no 

exchange under aqueous conditions and showed slight signs of exchange when pyridine 

was used as a solvent. Co
2+

 showed no exchange in either aqueous or pyridine conditions. 

Mn
2+

, however, showed rapid intercalation at room temperature in both solvent systems. 

This can be understood since the Mn
2+ 

solvated complexes are less energetically stable 

than the exchanged Cd
2+

 solvated complexes and therefore Mn
2+

 is more readily 

exchanged for Cd
2+

. Meanwhile, Co
2+

 complexes in aqueous medium show similar 

stability to Cd
2+

 solvated complex and therefore ion-exchange is less likely to occur as 
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both are energetically stable. However in pyridine, when Co
2+

 exchange was attempted it 

was deemed that the pyridine solvated Co
2+

 complexes are slightly less stable than the Cd
2+

 

pyridine complexes (after the exchange in pyridine solution) and therefore we see the 

slight exchange occurring between the two cations. Furthermore, in both water and 

pyridine, it is more energetically favourable for Ni
2+

 to form solvated complexes than Cd
2+

 

in the same solvated environments, therefore, no ion-exchange occurs between the two. 

However, when the CdPS3 is pre-intercalated with K
+
 there are some changes to this trend. 

The Co
2+

 now showed rapid exchange at room temperature in aqueous conditions replacing 

the K
+
 ions before entering the Cd

2+
 vacancies. However, no ion-exchange was exhibited 

between Co
2+

 and K
+
 when pyridine was used as a solvent. On the other hand, due to Mn

2+
 

complex stability in an aqueous medium, the Mn
2+

 only enters the vacancies after heating 

to remove the solvent in both aqueous and pyridine solvent systems. It is therefore shown 

that solvent choice may play a role in the intercalation of metal cations into the interlayer 

spacing for the MPS3 with larger bandgaps and that solvation energy may reverse the effect 

of crystal field stabilization in these systems. 

 

1.5.3.2) Organic Cation Precursor Intercalation 

 

 As with the metal oxides, using the alkali-metal intercalated MPS3 materials as 

precursors, larger complexes and organic materials can be further intercalated via the ion-

exchange mechanism. The ion-exchange method is a widely used method for intercalating 

larger materials into the interlayer spacing. This was first shown with the intercalation of 

cationic metallocene ions. The commonly used metallocenes in these reactions are Co(η
5
-

C5H5)2
+
 (CoCp2) and Cr(η

5
-C6H6)2

+
 (CrBz2) (see Table 1.10 for full structure) which were 

intercalated into MnPS3 and CdPS3 by exchanging with the potassium precursor (in 

MnPS3) and sodium precursor (in CdPS3)(206). For both inorganic materials, upon 
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intercalation of both metallocenes, the net increase in the interlayer spacing was 5.76Å for 

CrBz2 and 5.32Å for CoCp2. For vibrational studies, the key vibrational band in the infra-

red appears at ~570cm
-1

 which is assigned to the νd(PX3) vibrational motion. This peak 

splits upon intercalation of the metallocenes giving two new speaks found ~600cm
-1

 and 

560cm
-1

 which is different from the shifting of peaks seen in the oxide materials. This is 

due to the fact that the metal ions do not coordinate to the sulfur as they did with the 

oxides. Instead, one peak is assigned to the sulfur for the intercalated phase of the material 

while the other is for the unintercalated phase of the material. It was shown that this peak is 

not related to any site distortion which is enhanced and larger in the intercalated material 

than in the unintercalated material due to the good resolution in the corresponding Raman 

spectrum (~570–560cm
-1

). Furthermore the cationic forms of the CrBz2 and CoCp2 peaks 

appear after intercalation and are found between 3100-700cm
-1

 outside the range of the 

MPS3 range (below 700cm
-1

) and the peaks appearing correspond to that of the halide salts 

of CrBz2 and CoCp2 (for example the CH modes of the Cp ring would appear for neutral 

species at 778cm
-1

 and 828cm
-1

 whereas in the ionic form these are shifted to 860 and 

893cm
-1

 respectively). It was further shown that the orientation of these guests show that 

the ring systems lie parallel to the inorganic layers(207). This is a common orientation for 

organometallic complexes and was also shown to be the case for nickel(II) cyclopolyamine 

complex in MnPS3(208), manganese(III) macrocyclic complexes in MnPS3 and 

CdPS3(209)
 
 and crown ether complexes(210). The intercalation of these organometallic 

complexes is also shown to be extended to show intercalation for Cr(en)3 (where en = 1,2-

diaminoethane), Ru(bpy)3 (where bpy = bipyridine) and  Cp(diphos)COFe (where diphos = 

1,2-bis(diphenylphosphino)ethane) into the potassium and sodium pre-intercalated 

MnPS3(198). Unlike the case for CrBz2 and CoCp2 only partial exchange occurs for the 

organometallic compounds and the alkali metals in some reactions. Upon intercalation, the 

potassium pre-intercalated interlayer spacing (9.43Å) increases to 11.20Å for Cr(en)3, 
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15.2Å for Ru(bpy)3 and 17.8Å for Cp(diphos)COFe. However, only partial intercalation 

occurred in the cases of Ru(bpy)3 and Cp(diphos)COFe where potassium content decreased 

from a molar ratio of 0.4 to 0.1 and 0.18 respectively. Full ion exchange occurred for 

Cr(en)3. For the sodium pre-intercalated upon exchange with Cr(en)3, Ru(bpy)3 and 

Cp(diphos)COFe the interlayer spacing was shown to be 11.03Å, 15.2Å and 17.8Å. In 

each case, there was only partial exchange with the sodium ions with sodium ion content 

decreasing to between 0.5-0.1. The trend was similar to that of CrBz2 and CoCp2 as there 

was the characteristic peak splitting of the peak appearing at 570cm
-1

 as well as the peaks 

for the organometallic appearing above 700cm
-1

 shifted due to their presence in their ionic 

form. However, in the case of NiPS3 phosphorus vacancies were instead seen upon 

intercalation of sodium and then further ion-exchange with CrBz2 and CoCp2(211) which 

appeared to occur in this isolated case. However, it has also been shown that the pre-

intercalation with alkali-metal is not required prior to introducing organic guests into the 

interlayer space. Direct intercalation of PyH
+
 has been demonstrated into FePS3 with a 

stoichiometry showing Fe0.88PS3(pyH
+
 + py)0.36. The intercalation was confirmed by an 

increase in the interlayer spacing (to 9.725Å), which suggested the rings were orientated 

perpendicular to the inorganic layers, as well as the splitting of the peak at 570cm
-1

 in the 

infra-red spectrum(212). It was further elaborated that the pyridine molecules underwent 

condensation reactions to form the 4,4’-bipyridyl molecules and protons. These protons 

then protonated the remaining neutral pyridines allowing for the ion-exchange mechanism 

to occur. Furthermore, ESR studies showed that for pure MnPS3 the intercalation of 

pyridine caused no change in the oxidation state of the Mn
2+

 and there was no crystal field 

effect felt by the ion(213) suggesting no direct interactions between the pyridine and 

inorganic layers exist (which is contrary to what occurred in the metal oxides). Overall 

upon intercalation, the crystal structure remains unchanged with only increases occurring 

in the c-axis direction. However, three distinct phases appear each owing its presence due 



 

82 
 

to the angle at the which pyridine in orientated within the interlayer spacing(214). This was 

extended to show that bipyridine could also be intercalated into MnPS3 when protonated 

exchanging with the Mn
2+

 and intercalating into the interlayer spacing either in the planar 

or perpendicular orientation(215) with similar results as to the intercalation of the singular 

pyridinium ions. This two-phase appearance of either a planar or perpendicular orientated 

pyridine based molecule is further shown in substituted pyridines such as 4-aminopyridine 

which also undergoes ion-exchange when protonated (in this case with acetic acid)(216) 

where the planar orientation shows a net interlayer increase of 3.4Å while the 6.0Å for the 

perpendicular orientation.  

 

In the case of both alkali-metal ions or pyridine, these intercalated materials are more often 

than not utilised as precursors for intercalation of more complex organic structures due to 

their potential conductive or chelating effects as was seen with the metal oxides.  

1.5.3.3) Precursor Ion-Exchange Intercalation 

 

The more complex substituted structure of stilbazolium based derivates, e.g. 4-[2-

(4-dimethyl-aminophenyl)ethenyl]-1-methylpyridinium cation (DAMS
+
), have been shown 

to intercalate in this fashion in aqueous conditions. DAMS
+
I
-
 is utilised with the DAMS

+
 

substituting for the precursor cation. DAMS
+
 was exchanging for K

+
(217,218)

 
with

 
the 

interlayer spacing increasing to 12.51Å suggesting that the rings were aligned 

perpendicular to the inorganic layers in a similar fashion as was seen with the oxide 

materials. The lattice parameters only changed in the direction associated with the 

interlayer spacing. This was further shown to also be the case when pyridinium ions were 

exchanged with the DAMS
+
(219). This intercalation was confirmed with the IR which 

showed the characteristic peaks for DAMS
+
 above 1000cm

-1
 and for the characteristic 

CdPS3 the peak to split as mentioned previously confirming intercalation meanwhile for 
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the intercalation into MnPS3 the peak splitting was shown to be three which appeared at 

608cm
-1

, 588cm
-1

 and 555cm
-1

. The splitting of this peak corresponds to the presence of 

the interlamellar metal vacancies due to the ion-exchange that occurred. The UV-Visible 

spectra for both Mn and CdPS3 intercalated DAMS
+
 showed peaks at 585nm with a 

shoulder appearing at 540nm(217) and was further shown to be a broad band which may 

be contributing from the organic material(220). Furthermore, a range of substituted N-

methylstilbazolium cations into FePS3 showed an increase in the interlayer spacing to 

between 12-21Å further giving support to the perpendicular orientation of the aromatic 

rings as the interlayer spacing increased when larger groups were substituted on the 

aromatic rings(221). It was suggested here that the dipolar interactions between guest 

molecules due to the substituted groups allowed for the rings to lie parallel to one another 

while being perpendicular to the inorganic layers. However, when MnPS3 has intercalated 

with 4-[4-(diethylamino)-R-styryl]-1-methylpyridinium (DEMS) cations, the absorption 

spectrum showed an intense charge-transfer band at 488nm which was concluded to be 

between the organic and inorganic components and appeared red-shifted in the solid 

state(222). The charge-transfer peaks in the absorption spectra of the DAMS (and their 

derivatives) was only occurring for the Mn and CdPS3 intercalated compounds whereupon 

further deconvolution of the spectrum the first peak usually found ~500nm corresponded to 

pure MPS3 phases whereas the red-shifted and narrower peaks was deemed to be due to the 

interacting molecular dipoles between the inorganic and organic components. This was 

shown to be contrary to ZnPS3 intercalated materials were the UV-absorption spectra for 

the organic region correspond closely to the solution based spectra for the organic material 

showing no dipole-dipole interactions within the system(223–226). This extends beyond 

the DAMS based materials to other conjugated guests species such as triarylpyrylium 

cations(227), N-methylated pyridospiropyran (228)
 
and 1-(N-methylpyridinio-4-yl)-2- (N-

methylpyrrol-2-yl)ethane cations(229)
 
intercalated under similar conditions.  
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 Building on the intercalation of conjugated systems, conductive conjugated 

molecules and/or polymers have been shown to successfully be intercalated into the MPS3 

systems analogous to the metal oxide systems. Tetrathiafulvalene (TTF) salts have shown 

to successfully intercalate into the MPS3 systems by exchange with K
+
 or 

tetraethylammonium cations in CdPS3, MnPS3 and FePS3 respectively(230,231). This 

produced an increased interlayer spacing of 12.15Å in the CdPS3 and MnPS3 composites 

(molar ratio of 0.42 TTF to 1 MPS3) and 12.02Å in the FePS3 (molar ratio of 0.18 TTF to 1 

MPS3) composite materials. Upon insertion of the organic cations, the conductivity of the 

composite materials increased. The MnPS3-TTF composite showed a room temperature 

conductivity of 2.3 x 10
-3

 Ω
-1

cm
-1

 increasing from 3x10
-9 

Ω
-1

cm
-1

 for the MnPS3 and 1x10
-8 

Ω
-1

cm
-1

 for the KMnPS3. Meanwhile, for the FePS3 composite, the room temperature 

conductivity was reported to be ≈3 Ω
-1

cm
-1

 and the conductivity was reported to increase 

with decreasing temperature indicating a metallic behaviour. It was concluded this increase 

in conductivity was due to the charge-transfer that would result in the mixed valency 

between the organic and inorganic species. Building on this the modified TTF, 

bis(ethylenedithio)- tetrathiafulvalene (BEDT-TTF) salts were shown to be more 

conducting than that for TTF alone (232,233). The room temperature conductivity of 

BEDT-TTF salt single crystals can reach up to 200 Scm
-1

(234) allowing for the synthesis 

of potentially more conductive composite materials. BEDT-TTF can be intercalated into 

MnPS3 by exchange with bpy and yields an expanded interlayer spacing of ~10.5Å with 

the overall conductivity being 10
5
 times greater than that for pure MnPS3 being in the same 

order of magnitude to that for the TTF composites(235,236). From EPR experiments it was 

in-fact deemed that the protonated form did intercalate between the layers and the 

synthesised composite’s magnetic properties were neither similar to its intercalant nor 

similar to the pure MnPS3(237). Furthermore, it was shown that the BEDT-TTF cations 

exchanged for 1,10-phenanthroline in FePS3 with a net increase in the interlayer spacing of 
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4.0Å and was oriented parallel to the inorganic layers. However, the conductivity of the 

compressed pellet of the BEDT-TTF FePS3 compound was shown to be ~10
-7

 Scm
-1

 which 

is in the same order of magnitude of the pristine FePS3 (238). In this case, the parallel 

orientation of the organic intercalant may in fact not produce the dipole-dipole interaction 

required for sufficient charge transfer to occur.  

Building upon this work a range of polymeric materials were shown to intercalate 

into the MPS3 compounds which include the polyethylene oxide (PEO) and polyethylene 

glycol (PEG). It was shown that these, in fact, undergo partial exchange with K
+
 and Na

+
 

in MnPS3 and K
+
 in CdPS3(239). From a 2 molar ratio of the metal cations with the MPS3 

phase, upon intercalation of PEG the potassium and sodium content decreased to molar 

ratios of 0.21 and 0.38 respectively and for PEO decreased to 0.2 and 0.35 respectively in 

MnPS3. For intercalation in CdPS3, PEO and PEG intercalation resulted in a decrease of K
+
 

content to 0.27 for both PEO and PEG (from the initial 2 molar ratio of metal cations) 

while the interlayer spacing for both systems showed an increase to ~15Å. Furthermore, 

NiPS3 shows similarities when intercalated with PEG as the interlayer spacing increases 

from 6.45Å to 14.98Å. The sodium content also decreased to approximately 0.3-0.5 in a 

molar ratio to the MPS3(240). It could be suggested that complete exchange may not occur 

due to PEO and PEG polymers chelating and coordinating with the metal cations as was 

similarly seen in V2O5 and MoO3. In the lithiated MPS3 systems in which Li
+
 are 

exchanged with PEO (and other polymer systems such as polypropylene oxide), it was 

shown that little lithium is lost but PEO is still intercalated into the system suggesting the 

same chelating effect as mentioned previously(241,242). Here it was shown that the 

interlayer spacing for the PEO intercalated material increased to 14.4-15.09Å and the ionic 

conductivity was that of 1.3x10
-7 

Scm
-1

 while the dc electronic conductivity is that 1x10
-7

 

Scm
-1

 (determined from Nyquist diagrams). The overall electronic conductivity may be 

several orders of magnitude greater than the measured value due to the preferential 
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alignment of the layers to be perpendicular to that of the current path. These materials 

showed ohmic behaviour from the current-voltage measurements sweeping between the 

ranges of -1 to +1V. It was assumed that the electronic mobilities were higher than ionic 

mobilities and the electrodes are ohmic and therefore ionic contribution is blocked and the 

dominating contribution arrives from the electronic transport. The conductivities of these 

materials can be further improved when conductive polymers are introduced into the 

interlayer spacing. PANI was shown to intercalate and partially exchange with potassium 

in both MnPS3 and CdPS3(243,244). Upon intercalation, two conformations of PANI were 

found. In PANI intercalated MnPS3 the interlayer spacing increased from 6.8Å to 14.42Å 

which corresponds to the helical chain conformation. Meanwhile, the CdPS3 intercalated 

material showed an increase of 3.6Å to a spacing of 10.15Å which corresponds with the 

PANI chains orientated such that the phenyl rings are lying parallel to the inorganic sheets. 

In its neutral form, the conductivity was shown to be in the order of magnitude of 10
-7

 

Scm
-1

 for both the Mn and Cd compounds. In its conductive emeraldine form, it is shown 

that this conductivity increases to between 2x10
-5

 and 6x10
-5

 Scm
-1

. Furthermore, these 

materials showed photoconductive properties when the materials were pressed into 

cylindrical disks of 13mm diameter and 0.3mm thickness under 10
-3

 torr and were 

illuminated using a halogen lamp of 50 mW/cm
-2

. In the case of the MnPS3 intercalated 

material, under illumination, the current increased from ~6.0x10
-7

 to ~6.4x10
-7

 Scm
-1

. 

Upon removal of the light source (after 180s) decay in the conductivity was observed with 

the current returning to its original conductivity after a further 200s. The same effect was 

seen for the CdPS3 intercalated material. Here the conductivity increased under 

illumination from ~8.8x10
-7

 to ~10.4x10
-7

 Scm
-1

 and after removal of the light source (after 

80s) the decay in the conductivity was observed and the conductivity returned to its initial 

value. This was attributed to the MPS3 phase of the material the illumination causes the 

generation of free holes in the P-S hybrid valence band and the electrons in the metal 3d eg 
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states. The P3pz band then acts as the recombination level for the holes and electrons. In 

comparison, the conductivity of the emeraldine intercalated MPS3 showed greater 

conductivity than that of pure MPS3 but lower than that of the pure bulk emeraldine 

polymer. It is considered that the shorter chain lengths and the intercalation of the polymer 

(into the insulating or poor semiconducting inorganic phase) contributes to an overall 

decrease in the conductivity of the material. However, the intercalation of the polymer 

material further caused metallic vacancies to form in the host lattice which may improve 

the conductivity of the overall material considering the layers tendencies to lie 

perpendicular to the dc current flow. The main drawback of the ion-exchange method, in 

general, is the multiple steps that are required to intercalate the more interesting organic 

guests, these steps can cause greater defects in the overall crystalline structure (i.e. step 

defects) which are not as easily seen in the XRD data that may cause decreased or hinder 

conductive and/or other properties such as providing sites for current leakages (series or 

shunt resistance sites). However, from a photovoltaic perspective, these defects may allow 

for extended lifetimes of excitons being formed at a device junction enhancing the 

photoconductive properties of the composite material. 

1.5.3.4) Direct Intercalation 

 

 One simple method for overcoming such problems is to directly intercalate organic 

materials into the interlayer spacing in a number of ways. This method does not change the 

overall stoichiometry of the inorganic layers and allows for organic materials to be directly 

inserted into the layers. One simple way is to simply immerse the inorganic crystals in a 

solution of the organic materials that contain a high excess of the desired guest species. 

This was shown to work well for alkylamines(245) where MgPS3, ZnPS3 and MnPS3 

crystals were placed in 10M alkylamine solutions. The interlayer spacing increase was 

independent on the alkylamine chains and increased for all three to ~10.5Å and it was 
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proposed that there was a double layer structure forming where two chains lined up parallel 

to each other but perpendicular to the inorganic layers such that the amine groups appeared 

closest to the sulphide layer. This was further shown to be the case for metallocenes where 

only cobaltocene complexes showed intercalation into MnPS3, ZnPS3, FePS3 and NiPS3 

with a net increase in the interlayer spacing of 5.32-5.96Å. These were achieved in a 

similar fashion to the alkylamines where excess cobaltocene was dissolved in toluene and 

then reacted with the inorganic host(246). After the intercalation of cobaltocene into CdPS3 

the overall bandgap of the material was smaller than that of pure CdPS3 while ESR 

measurements showed that two phases of cobaltocene were present, neutral and 

cationic(247). It was suggested that the direct intercalation causes the oxidation of the 

neutral cobaltocene complexes for example in the CdPS3 powder as the oxidation can be 

catalysed by surface states generated by the formation of steps and/or other surface defects. 

Common methods for the intercalation of conjugated organic species directly can involve 

vapour intercalation as seen with the intercalation of pyridine into CdPS3(248). Here, 

CdPS3 and a stoichiometric amount of pyridine were placed in an evacuated ampoule and 

heated to the boiling point of pyridine. It was seen that the crystal size affects the kinetics 

(and thermodynamics) of intercalation. The flexibility of smaller crystals and the rigidity 

as crystals become larger leads to easier interlayer expansion in smaller crystals as they a 

less hindered by the bulk crystal. These expansions in smaller crystals result is less crystal 

strain throughout bulk material and intercalation and intercalant permeation (through 

diffusion) occurring more efficiently. It was further shown that when pyridine was 

intercalated into CdPS3, the changes to the photoluminescence and emission peaks of 

CdPS3 were dependant on the water content present during the intercalation process(201). 

The maximum of the excitation peak shifts by ~0.5eV to lower energy while the original 

photoluminescence bands of the host are no longer present in the spectrum. This shows 

that the intercalated guest had some electronic or charge transfer based interaction with the 
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inorganic host. Pyridine further also intercalates into MnPS3 using the vapour based 

intercalation method(249). Expanding on this the pyridine dimer, 2,2’-bipyridine (bpy) 

molecules also undergo vapour intercalation. It was shown that in NiPS3 the interlayer 

expanded to 9.83Å(250) while in MnPS3 the interlayer expansion was that of 15.769Å and 

in both cases the crystalline structure of the material was shown to be well maintained. 

This was due to the bpy being intercalated such that it lies approximately perpendicular to 

the inorganic planes. The conductivity of the NiPS3 bpy compound was shown to be that of 

4.5x10
-13

 Scm
-1

. As with the ion-exchange mechanism, by intercalating larger (or more 

conjugated organic) species and polymers into the interlayer spacing may improve the 

desired properties of the composite materials such as increased conductivity. 1,10-

phenanthroline which orientated itself in a similar manner to the bpy molecule when 

intercalated with an expanded interlayer spacing of ~15.12Å in MnPS3 (net increase of 

~8.6Å). The DAMS
+
 cations also intercalated in such a manner in which the interlayer 

spacing increases to 12.75Å where it was shown that unlike the bpy and the 1,10-

phenanthroline the DAMS
+
 molecules form bilayer like structures lying parallel to one 

another and to the inorganic sheets.  

 

1.5.3.5) Exfoliation – Restacking Intercalation 

 

Another useful method of intercalation is the exfoliation and re-stacking (analogous to that 

of V2O5 and MoO3) of the MPS3 phase around larger more complex organic materials such 

as dye like porphyrin-based salt, meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (H2T4) 

intercalated into MnPS3(251). The re-stacking proved to yield a highly ordered crystalline 

phase with an expanded interlayer spacing of 12.1Å. This increase in size is smaller than 

that of the H2T4 length dimension (17.5Å, with H2T4 molecular dimensions being 17.5Å x 

17.5Å x 4Å) and hence it is not expected that the H2T4 lies perpendicular to the MnPS3 



 

90 
 

layers. The XPS data showed a strong interaction between the H2T4 material and the 

inorganic layers which caused the H2T4 to adopt the flattened orientation between the 

layers. The exfoliation and re-stacking are particularly useful when intercalating high 

molecular weight polymer materials such as LPEI and PEO(183,252) into MnPS3 and 

CdPS3. The LPEI intercalated increasing the interlayer spacing to that of ~10.5Å 

suggesting a helical-like structure. Whereas the PEO intercalated via the same method 

showing an increase to between 15.2-15.9Å. The TGA showed that the polymer material 

degraded between 241-377
o
C in MnPS3 and 221-377

o
C in CdPS3 with the overall material 

showing a gradual mass loss over these ranges corresponded into a 17% and 13% mass 

loss respectively.  

Melt intercalation of the high molecular weight of PEO into Mn and CdPS3 further 

shows similar results(253). PEO, LPEI and polyvinylpyrrolidone (PVP) can also be 

directly intercalated using the template preparation in NiPS3(254). Although there was a 

similar expanded interlayer peak in the XRD data as seen in previous cases corresponding 

to successful intercalation, the broadening of all peaks showed random stacking of the 

inorganic layers in all axial directions around the polymer chains similar to the restacking 

synthesis in V2O5 and MoO3. The intercalation of spiropyran on the other hand in MnPS3 

instead took advantage of the photochromic properties of the organic guest(255). This was 

synthesised using a direct solution based method where a surfactant was used to maintain 

small micelle-like structures of the layered MnPS3 before the guest was introduced and the 

surfactant removed allowing for the layers to re-stack around the organic guest species. 

However, unlike previous methods, this produced a very broad peak around 14Å and 

strong crystalline phases corresponding to the pure MnPS3. This suggests that the re-

stacking is disordered along the direction of the interlayer spacing and/or there is a mix of 

amorphous poorly ordered material and highly crystalline pure host. The produced 

nanoparticles were around 10-20nm in size and agglomerated in hyperbranched structures. 
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This composite material further showed photochromic activities showing that the guest 

species induces photoactivity in the material. Prior to any irradiation, the material was pale 

yellow and no band above 350nm was shown in its spectrum suggesting that the organic 

guest was in its closed non-photochromic form. However, upon irradiation at 365nm for 10 

minutes the material rapidly turned violet and a new peak appearing around 560nm grew 

and was observed corresponding to the organic open form. When irradiated once again at 

550nm this colouration disappeared and the peak at 550nm showed rapid decay hence the 

open form returned to the closed form. This further showed that under irradiation these 

organic-inorganic composites can be air stable.  

Overall, the most commonly used method for intercalation into V2O5 includes 

direct (hydrothermal and redox methods) while the preferred methodology for intercalation 

organic materials into MoO3 either hydrothermal or ion-exchange methods. For both oxide 

materials, these methods yield the composite materials with the most structural integrity as 

well as a wider variety of organic guests. Due to the redox intercalation of lithium or 

sodium into the metal oxides, the layers exhibit a significant increase in the conductivity of 

the layers as well as the highly well-maintained crystallinity and this increased 

conductivity is further shown upon exchange with organic species particularly polymer and 

organic semiconductors.  For MPS3 it was shown that the ion-exchange method yields the 

best control of the overall structural integrity of the nanocomposite materials while direct 

intercalation yields poor conductivity and less crystalline structure along the c-axis.  
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Table 1.8 - The advantages and disadvantages of the different intercalation methods for MPS3 intercalation 

Intercalation 

Method 

Advantages Disadvantages 

Host Precursor 

Small Cation 

Intercalation 

 Used as precursors for organic guest intercalation 

 Maintains high control of the host structural integrity 

 Intercalation is reversible with little effect on the host 

structural integrity. 

 Organic precursors can be used which are intercalated as 

cations 

 Affects stoichiometry of host due to the ion-exchange 

mechanism. The degree of change in the host stoichiometry 

can have an effect on the desired property of the final material. 

Precursor Based Intercalation 

Ion – Exchange 

 A wide range of guest species can be used 

- Small and large organic guests can be intercalated 

including polymers (including high molecular weight 

polymers). 

 Can produce materials with significantly higher 

 Overall, there is a range of conductivities present which is 

dependent on the nature of the guest material. 

 Ion-exchange can cause further effects on the host’s 

stoichiometry 
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conductivity than the host 

 Can be carried out in non-organic solvent/aqueous 

conditions. 

 Medium to high structural integrity of the host maintained. 

 In some cases, initial ion-exchange can lead to chelation of 

the polymer with remaining ions, good for certain 

applications. 

 The host can be prepared as a single crystal for 

intercalation 

 Can cause crystal defects such as step defects which are 

difficult to see in XRD which can lead to a negative effect on 

the conductivity. 

 

Exfoliation – 

Restacking 

 A wide range of guest species can be used 

-  Small and large organic guests can be intercalated 

including polymers (and very high molecular weight 

polymers) 

 Can show high control of the host structural integrity 

 Although high structural integrity of the host can be achieved, 

overall, however, the degree of control is difficult and a range 

of structural integrities can be possible from very low to high. 

This occurs on a case to case basis. 

 This method usually exhibits little to no change in conductivity 

from the host material. 
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Non-Precursor Based Intercalation 

Direct 

 A wide range of guest species can be used 

- Small and large organic guests can be intercalated 

including polymers (and very high molecular weight 

polymers) 

 One-pot synthesis 

 Good for intercalating single crystals 

 Useful in the use of guests which are non-polar and 

insoluble in polar solvents (such as water) 

 Medium to high structural integrity of the host. 

 Maintains host stoichiometry  

 Requires a high excess of guest species in respect to the host 

material 

 Crystal size can have an effect on the intercalation energetics 

 Efficiency of intercalation is dependent on the specific MPS3 

host in question 

 Electrical and photoinduced properties are dependent on the 

nature of the organic. 
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Table 1.9 - Intercalation method summary 
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D
irect 

    

Precursor 
✔ ✔  

Non-Precursor 
  ✔ 

 
   

Small guest intercalation 
✔ ✔ ✔ 

Large guest intercalation (e.g. polymers) 
✔ ✔ ✔ 

Intercalation of very high molecular weight 

polymers 

✔ ✔ ✔ 

One-pot synthesis 
  ✔ 

Host structural integrity 

Medium 

to High 

Very low 

to High 

Medium to 

high 

Aqueous conditions 
✔   

Single Crystal Intercalation 
✔  ✔ 

Single Crystal Defects Present 
✔  ✔ 

High conductivity 
✔  ✔ 

Low conductivity 
 ✔  

Properties dependant on guest 
✔ ✔ ✔ 

Affects host stoichiometry 
✔  ✔ 

Synthesis carried out in air 
 ✔  
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Table 1.10 – Polymer materials and their intercalation method/s in MPS3 

Polymer Structure Intercalation Method/s 

Multi-Method Intercalation 

PEO 

 

Ion-exchange and 
Exfoliation-restacking 

Organic Cation Precursors 

Bis(cyclopentadienyl)cobalt(II) 
(Cobaltocene) 

 

Nickel (II) cyclopolyamine 

 

Cr(en)3 

 

Ru(bpy)3 

 

Cp(disphos)COFe 

 



 

97 
 

4,4’-bipyridine 

 

Ion-Exchange 

DAMS+ 

 

Substituted N-
methylstilbazolium 

 

DEMS+ 

 

N-methylated 
pyrisdospiropyran 

 

1-(N-methylpyridino-4-
yl)2-(N-methylpyrrol-2-

yl)ethane 

 

TTF 

 

BEDT-TTF 
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PEO 

 

PEG 

 

PPO 

 

Polyaniline 

 

Direct Intercalation 

Alkylamines 

 

Pyridine 

 
2,2’-Bipyridine 

 

Exfoliation - Restacking 

H2T2 
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LPEI 

 

PEO 

 

PVP 
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1.5.4) Summary 

The application of intercalation chemistry has yielded the synthesis of a wide range of 

organic-inorganic nanocomposite materials by taking advantage of a variety of synthetic 

techniques. It is apparent that the major focus of the application of these materials is 

directed towards battery (e.g. as lithium-ion battery cathode materials) and sensor-based 

applications (such as the applications in VOC sensors). The applications of organic-

inorganic nanocomposites for the application in photovoltaic and/or optoelectronic systems 

is an area of little research and development for the application of these materials has yet to 

be fully realised due to the range of host and guest combinations possible. This thesis 

examines the feasibility of these nanocomposite systems for photoconductive and 

photovoltaic applications and presents a proof-of-concept that these materials provide a 

worthwhile area of research in photovoltaic and optoelectronic technologies. 

 For all three host inorganic materials, the most common intercalation 

syntheses are Exfoliation – Restacking, Ion-exchange and Direct methods. Exfoliation – 

Restacking and Ion-exchange yield minimal control over the long-range structural integrity 

of the host after intercalation (primarily in the direction perpendicular to the host layers, 

the c-axial direction) whereas Direct methods provide a better degree of control. The use of 

a precursor in Ion-exchange intercalation requires the use of the monomer salt. For V2O5, 

redox and layer-by-layer intercalation have shown to be successful in the intercalation of 

organic guest species. Redox intercalation only provides control over the structural 

integrity on a case-by-case basis whereas layer-by-layer intercalation is limited by the 

solubility of the bulk polymer.  

 Based on this, as well as the ease of lithium intercalation into V2O5 and 

MoO3, Ion-exchange intercalation was the method chosen to synthesise the nanocomposite 

materials. Although for many applications structural integrity is required, in a photovoltaic 

or optoelectronic application any defects in the c-axial direction may allow for 
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recombination lifetimes of excitons to be extended allowing charge carriers to diffuse 

throughout the material and be collected at the device electrodes. Furthermore, the choice 

of intercalants ranged from previously synthesised materials (such as EDOT intercalation 

into V2O5) to the novel organic intercalants: aminoquinoline, amino phenylpyridine, 

aminothiazole, diaminopyridines into both oxide hosts. A strategy for the redox 

intercalation of emeraldine into the interlayer of V2O5 by utilising a mix of neutral and salt 

aniline forms is also explored in this thesis. ZnPS3 was selected as the MPS3 material of 

choice due to its wide band-gap and novelty of organic intercalation into the ZnPS3 

systems where ion-exchange with a metal cation was also the choice of method for the 

same reasons as described for the metal oxide hosts. 
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2. Aims 

The aims of this research are to;  

1) Seek improvements in the performance of existing conducting polymers as 

electronic device materials by: 

a. Selecting inorganic materials as favourable host cavities in which to grow 

or contain conjugated polymers to produce semiconducting nanocomposites 

b. Using chemically modified organic monomers to improve the molecular 

organisation and energy-conversion efficiency of the semiconducting 

components 

2) To assess the effectiveness of the nanocomposites in the interconversion of optical 

and electrical energy as electronic device materials. 
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3) Methodology 

The synthesis and analytical measurements described in this chapter were performed by the 

author at Kingston University with only the XPS experiments conducted by Dr Joe Bear at 

University College London (UCL). 

 

3.1) Nanocomposite Synthesis 

3.1.1) V2O5 nanocomposites synthesis 

 

3.1.1.1) Emeraldine V2O5 (V2O5/AnAn
+
) 

In a typical reaction, to a solution of Aniline (Sigma-Aldrich) (0.0256g, 2.7491x10
-4 

moles) and Aniline Sulfate (Sigma-Aldrich) (0.03908g, 1.375x10
-4 

moles) in distilled water 

(100mL), V2O5 (Sigma-Aldrich) (0.5g, 2.7491x10
-3 

moles). This yielded a molar ratio of 

1:0.2 between V2O5 and total aniline content (aniline and aniline sulfate combined). The 

reaction was refluxed for 24hours with the reaction mixture turning green upon 

completion. The reaction was then centrifuged to obtain the dark green/black solid. This 

was followed by washing with copious amounts of distilled water until the supernatant 

liquid turned colourless. This resulting solid was then dried under vacuum at 60
o
C for 

12hours with a yield of 0.47g with a calculated empirical formula AnAn
+

0.22V2O5 (see 

section 4.1.1.3). 

 

3.1.1.2) 2-amino-5-Phenylpyridine (2A5PhPyr) V2O5 (V2O5/2A5PhPyr) – Acid-Base 

reaction 

In a typical reaction, to a solution of 2A5PhPyr (Fluorochem) (2.340g, 0.0137 moles) 

dissolved in distilled water (100mL) V2O5 fine power (Sigma-Aldrich) (0.5g, 0.002749 

moles) was added This yielded a molar ratio of 1:5 between V2O5 and 2A5PhPyr. The 
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reaction was refluxed for 24hours with the reaction mixture turning a very pale red colour 

and was centrifuged in order to collect the dark red solid. This was followed by washing 

with copious amounts of water until the supernatant liquid was colourless. The solid was 

dried for 12hours at 60
o
C under vacuum with a yield of 0.47g with a calculated empirical 

formula 2A5PhPyr0.18V2O5 (see section 4.1.1.3) 

 

3.1.1.3) 3,4-ethylenedioxythiophene (EDOT) V2O5 (V2O5/EDOT) 

In a typical reaction, to a solution of EDOT (Sigma-Aldrich) (0.0782g, 5.498x10
-4

 moles) 

dissolved in distilled water (100mL) V2O5 fine power (Sigma-Aldrich) (0.5g, 0.002749 

moles) was added. The reaction was refluxed for 24hours with the reaction mixture turning 

a very pale yellow colour and was centrifuged in order to collect the dark red solid. This 

was followed by washing with copious amounts of water until the supernatant liquid was 

colourless. The solid was dried for 12hours at 60
o
C under vacuum with a yield of 0.48g 

with a calculated empirical formula EDOT0.23V2O5 (see section 4.1.1.3) 

 

3.1.1.4) N-BuLi V2O5 (LixV2O5) 

In a typical reaction, V2O5 fine power (0.5g, 0.002749 moles) was placed in dry hexane 

(18ml). The mixture was then evacuated and purged with dry nitrogen several times. To 

this mixture, 1.6M n-BuLi in hexane (6mL, 9.6 x 10
-3

 moles) was then added to the 

mixture. The reaction was carried out under a nitrogen atmosphere and stirred for 2hours at 

room temperature. Upon addition of the n-BuLi, the reaction mixture immediately turned 

black. After 2hours the reaction was quenched with methanol and centrifuged to obtain a 

black solid. The solid was washed three times with dry hexane and dried in a vacuum oven 

with to obtain a yield of 0.48g. 
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3.1.1.5) O-phenylenediamine hydrochloride V2O5 (V2O5/PDA) 

In a typical reaction, PDA (Sigma-Aldirch) (5.6442g, 0.05219 moles) was added to a 

150mL HCl solution (0.2M). The solution was purged with nitrogen for 20min before 

LixV2O5 precursor (0.48g) was added. The reaction was carried out under a nitrogen 

atmosphere and left for 24hours at room temperature. The reaction mixture turned deep red 

and was centrifuged in order to collect the black solid. This was followed by washing with 

copious amounts of water until the supernatant liquid was no longer red. The solid was 

dried for 12hours at 60
o
C under vacuum with a yield of 0.41g with a calculated empirical 

formula PDA0.26V2O5 (see section 4.1.1.3) 

 

3.1.1.6) 2-amino-5-phenylpyridine V2O5 (LiV2O5/2A5PhPyr) Ion-Exchange 

In a typical reaction, 2A5PhPyr (Fluorochem) (5.1063g, 0.030 moles) was added to a 

150mL HCl solution (0.2M). The solution was purged with nitrogen for 20min before 

LixV2O5 precursor (0.48g) was added. The reaction was carried out under a nitrogen 

atmosphere and left for 24hours at room temperature. The reaction mixture turned a pale 

red and was centrifuged in order to collect the black solid. This was followed by washing 

with copious amounts of water until the supernatant liquid was colourless. The solid was 

dried for 12hours at 60
o
C under vacuum with a yield of 0.41g with a calculated empirical 

formula 2A5PhPyr0.23V2O5 (see section 4.1.1.3) 

 

3.1.1.7) 5-aminoquinoline (5AQ) V2O5 (V2O5/5AQ) 

In a typical reaction, 5AQ (Fluorochem) (4.3251g, 0.030moles) was added to a 150mL 

HCl solution (0.2M). The solution was purged with nitrogen for 20min before LixV2O5 

precursor (0.48g) was added. The reaction was carried out under a nitrogen atmosphere 

and left for 24hours at room temperature. The reaction mixture turned a very deep red 

colour and was centrifuged in order to collect the black solid. This was followed by 
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washing with copious amounts of water until the supernatant liquid was colourless. The 

solid was dried for 12hours at 60
o
C under vacuum with a yield of 0.43g with a calculated 

empirical formula 5AQ0.26V2O5 (see section 4.1.1.3) 

 

3.1.1.8) Phenylene-1,4-diamine (1,4PDA)/hydroquinone (HQ) V2O5 (V2O5/1,4PDA-

HQ) 

In a typical reaction, to a solution of phenylene-1,4-diamine (Sigma-Aldrich) (2.7282g, 

0.015
 
moles) and hydroquinone (Sigma-Aldrich) (1.65165g, 0.015

 
moles) in a 150mL 

solution of HCl (0.2M). The solution was purged with dry nitrogen for 20min before 

LixV2O5 precursor (0.48g) was added. The reaction was carried out under a nitrogen 

atmosphere and left for 24hours at room temperature. The reaction mixture turned a very 

pale red colour and was centrifuged in order to collect the black solid. This was followed 

by washing with copious amounts of water until the supernatant liquid was colourless. The 

solid was dried for 12hours at 60
o
C under vacuum with a yield of 0.42g with a calculated 

empirical formula (1,4PDA-HQ)0.19V2O5 (see section 4.1.1.3). 
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3.1.2) MoO3 nanocomposites synthesis 

3.1.2.1) Aniline MoO3 recrystallisation (MoO3/An) 

In a typical reaction, to a solution of MoO3 (Sigma-Aldrich) (0.2g, 1.3895x10
-3

 moles) 

dissolved in 500mL of water (4 weeks) aniline (Sigma-Aldrich) (0.0259g, 2.7789x10
-4

 

moles) was added. The solution was purged with nitrogen for 30mins before the water was 

removed under reduced pressure at 70
o
C. The resulting solid was very pale pink in colour 

and washed with copious amounts of water to remove any excess aniline from the surface 

of the solid. The resulting solid was then added to a solution of ammonium persulfate 

(Sigma-Alrich) (0.6341g, 2.7789x10
-3 

moles) dissolved in 100mL of distilled water for 12 

hours. The resulting red solid was washed with copious amounts of water before being 

dried for a further 12 hours at 60
o
C under vacuum with a yield of 0.15g with a calculated 

empirical formula An0.19MoO3 (see section 4.1.2.3). 

 

3.1.2.2) N-BuLi MoO3 (LixMoO3) 

In a typical reaction, MoO3 (Sigma-Aldrich) fine power (0.5g, 3.4737x10
-3

 moles) was 

placed in dry hexane (Sigma-Aldrich) (21ml). The mixture was then evacuated and purged 

with dry nitrogen several times. To this mixture, 1.6M n-BuLi (Sigma-Aldrich) in hexane 

(3mL) was then added to the mixture. The reaction was carried out under a nitrogen 

atmosphere and stirred for 2 hours at room temperature. Upon addition of the n-BuLi, the 

reaction mixture immediately turned a deep dark blue/black colour. After 2 hours the 

reaction was quenched with methanol and centrifuged to obtain a deep dark blue/black 

solid. The solid was washed three times with dry hexane and dried in a vacuum oven to 

obtain a yield of 0.49g. 
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3.1.2.3) PDA MoO3 (MoO3/PDA) 

In a typical reaction, PDA (Sigma-Aldrich) (3.6813g, 0.03404moles) was added to a 

150mL HCl solution (0.2M). The solution was purged with nitrogen for 20min before 

LixMoO3 precursor (0.49g) was added. The reaction was carried out under a nitrogen 

atmosphere and left for 24 hours at room temperature. The reaction mixture turned deep 

red and was centrifuged in order to collect the black solid. This was followed by washing 

with copious amounts of water until the supernatant liquid was no longer red. The solid 

was dried for 12hours at 60
o
C under vacuum with a yield of 0.44g with a calculated 

empirical formula PDA0.2MoO3 (see section 4.1.2.3). 

 

3.1.2.4) 2A5PhPyr MoO3 (MoO3/2A5PhPyr) 

In a typical reaction, 2A5PhPyr (Fluorochem) (5.1063g, 0.030moles) was added to a 

150mL HCl solution (0.2M). The solution was purged with nitrogen for 20min before 

LixMoO3 precursor (0.49g) was added. The reaction was carried out under a nitrogen 

atmosphere and left for 24 hours at room temperature. The reaction mixture a pale red 

colour and was centrifuged in order to collect the black solid. This was followed by 

washing with copious amounts of water until the supernatant liquid was no longer pale red. 

The solid was dried for 12 hours at 60
o
C under vacuum with a yield of 0.45g with a 

calculated empirical formula 2A5PhPyr0.18MoO3 (see section 4.1.2.3). 

 

3.1.2.5) 2-Aminothiazole (2AmThia) MoO3 (MoO3/2AmThia) 

In a typical reaction, 2AmThia (Fluorochem) (3.0042g, 0.030moles) was added to a 

150mL HCl solution (0.2M). The solution was purged with nitrogen for 20min before 

LixMoO3 precursor (0.49g) was added. The reaction was carried out under a nitrogen 

atmosphere and left for 24 hours at room temperature. The reaction mixture turned a very 

pale yellow colour and was centrifuged in order to collect the black solid. This was 
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followed by washing with copious amounts of water until the supernatant liquid was 

colourless. The solid was dried for 12 hours at 60
o
C under vacuum with a yield of 0.46g 

with a calculated empirical formula 2AmThia0.23MoO3 (see section 4.1.2.3). 

 

3.1.2.6) 5AQ MoO3 (MoO3/5AQ) 

In a typical reaction, 5AQ (Fluorochem) (4.3251g, 0.030moles) was added to a 150mL 

HCl solution (0.2M). The solution was purged with nitrogen for 20min before LixMoO3 

precursor (0.48g) was added. The reaction was carried out under a nitrogen atmosphere 

and left for 24 hours at room temperature. The reaction mixture turned a very deep red 

colour and was centrifuged in order to collect the black solid. This was followed by 

washing with copious amounts of water until the supernatant liquid was colourless. The 

solid was dried for 12 hours at 60
o
C under vacuum with a yield of 0.43g with a calculated 

empirical formula 5AQ0.17MoO3 (see section 4.1.2.3). 
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3.1.3) MPS3 nanocomposites synthesis 

3.1.3.1) ZnPS3 

Crystalline ZnPS3 was synthesised in an evacuated ampoule at high temperature (450-

490
o
C temperature gradient was used) by a literature method(256) from stoichiometric 

amounts of Zinc sulphide (ZnS) (Sigma-Aldrich), red phosphorus (Sigma-Aldrich) and 

sulphur (Sigma-Aldrich) for 1 week. The resulting grey-white crystalline material was then 

washed with 0.1M HCl, water and finally acetone before being dried under vacuum at 

60
o
C for three hours. The dried product was then washed with copious amounts of xylene 

before being dried once again at 100
o
C under vacuum for 12 hours.  

 

3.1.3.2) Magnesium ZnPS3 (MgxZnPS3) 

ZnPS3 (200mg, 1.04mmol) was added to a 10:1 molar ratio of aqueous magnesium 

chloride solution in distilled water (60mL). The mixture was purged with nitrogen and left 

stirring for 4 weeks under a nitrogen atmosphere. The temperature was maintained 

between 80-100
o
C during the reaction period. The resulting grey-white product was 

washed with distilled water before being collected by centrifugation and dried under 

vacuum at 60
o
C for 12 hours. The colour of the material remained grey-white throughout. 

A yield of 192 mg was obtained with a calculated empirical formula Mg0.18Zn0.66P1S2.65 

(see section 4.1.3.3). 

 

3.1.3.3) PDA ZnPS3 (ZnPS3/PDA) 

PDA (Sigma-Aldrich) (1.6368g, 15.14mmol) was added to a 0.2M HCl solution (90mL). 

The solution turned a pale red colour and was purged with nitrogen for 30mins. The 

magnesium precursor, MgZnPS3, (0.1155g) was then added to the mixture and the reaction 

was left stirring for 3 days under a nitrogen atmosphere at room temperature. The grey-
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white solid turned pale red/pink immediately upon addition with the PDA solution turning 

red. The pale red/pink product was washed with copious distilled water until the 

supernatant liquid was colourless and the product was then collected by centrifugation and 

dried under vacuum at 60
o
C overnight. The colour of the resultant dried material was pale 

red/pink. The dried product was then reacted with a 1:1 molar ratio of ammonium 

persulfate solution (60mL) for 1 day. The product remained pale red/pink in colour was 

washed with copious amounts of distilled water before being collected centrifugation. The 

resulting pellet was then dried under vacuum at 60
o
C for 12 hours PDA0.1Zn0.53P1S2.24 (see 

section 4.1.3.3). 

 

3.2) Nanocomposite Characterisation 

3.2.1) X-Ray Diffraction 

X-ray Diffraction was carried on a Bruker-AXS D8 Advance instrument with Cu Kα 

radiation (λ = 1.504Å) and all samples were ground using pestle and mortar beforehand. 

For the ZnPS3, MgZnPS3 and ZnPS3/PDA compounds, the samples were mounted on 

double-sided adhesive tape due to insufficient amount of material to occupy the complete 

area of the sample holder. 

 

3.2.2) ATR-IR and Raman Spectroscopy 

ATR-IR was carried out on all samples which had been pre-ground using pestle and mortar 

using a Nicolet iS5 spectrometer with an ID1 transmission attachment with 16 scans over 

the range of 650 cm
-1

 to 4000 cm
-1

. 

Raman Spectroscopy was carried out on a Renishaw InVia Raman Microscope with 

WiRE 3.3 software and Renishaw MS20 encoded mechanical stage. An argon 514 nm 

laser was used and it was found the optimum laser power for the experiment to be 1%.  
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3.2.3) Thermogravimetric Analysis (TGA) and Inductively Coupled Plasma-Atomic 

Emission spectroscopy (ICP-AES) 

TGA experiments were carried out on a Mettler Toledo at a rate of 12 
o
Cmin

-1 
between the 

temperatures of 25
o
C – 600

o
C under a nitrogen atmosphere.  

For ICP-AES (ULTIMA 2C, Jobin Yvon Horiba) the vanadium, molybdenum and 

zinc content were quantified in triplicate. For determination of the V2O5 and MoO3 

nanocomposite stoichiometries, 0.001g of sample were added to 10 mL of ≥69% HNO3. 

Digestion took place at room temperature and after digestion the digested solutions were 

diluted to 7% HNO3. From the ICP-AES the stoichiometry was calculated by determining 

the total vanadium content in the digested nanocomposite sample (assuming the 

stoichiometry of the vanadium host to be V2O5) and comparing this to the theoretical 

maximum vanadium content if no organic intercalant was present (which was the total 

vanadium content measured in the digested pristine V2O5 sample). It is assumed that there 

may be undigested sample and the theoretical maximum vanadium content is the vanadium 

content detected in the pristine host. This is, therefore, the maximum vanadium content 

possible for detection in all samples. The difference in vanadium content was concluded to 

arise due to the presence of the organic guest. For determination of the ZnPS3 

nanocomposite stoichiometries, 0.001g of sample were added to 10 mL of neat aqua regia. 

After digestion the digested solutions were further diluted 10 fold. The stoichiometry was 

calculated as described for the V2O5 and MoO3 samples where the total zinc content for the 

pristine host was taken as the maximum zinc content possible for detection in all digested 

samples. 
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3.2.4) Optical Spectroscopy 

UV-Visible reflectance spectroscopy (Agilent Technologies Cary 7000, Cary series UV-

Vis-NIR spectrophotometer using the integrating sphere attachment) was carried out on all 

samples which were pre-ground using a pestle and mortar. The samples were deposited 

(spun-coated) onto a glass slide and placed in the beam path. 

 

3.2.5) X-ray Photoelectron Spectroscopy (XPS) 

XPS measurements were carried on a Thermo Scientific Kα spectrometer using 

monochromated Al Kα radiation. The instrument was calibrated using carbon (C1s) 

binding energy, 284.8 eV. Survey scans were collected in the binding energy range of 100 

eV to 1500 eV. High-resolution peaks were used for the principal peaks of V(2p), O(1s) 

and Li(1s). The high-resolution peaks were fitted using CASA XPS software with Shirley 

backgrounds. 

 

3.2.6) Electron Spin Resonance (ESR) 

ESR spectroscopy (Bruker active spectrum micro ESR) was carried out on all samples 

which were pre-ground using pestle and mortar. The spectrometer was calibrated using a 

DPPH standard with a calibration error of the DPPH g-factor value of ±0.0002 for all 

samples. ~0.07g of sample was placed in a melting point tube (which was pre-scanned to 

ensure no peaks were present), the melting point tube was then placed in the main ESR 

tube and inserted into the ESR spectrometer cavity.  
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3.3) Electrical and Device Measurements 

3.3.1) Room Temperature Conductivity 

Room temperature conductivity was carried out using the four-probe method Van der 

Pauw method (257). The polycrystalline and powdered materials were pressed into disks 

(13mm diameter). The disks were placed in a PTFE cell and four copper electrodes were 

spring-loaded and placed around the perimeter of the sample to make the four-probe 

measurements. A digital micrometre was used to determine the sample thickness and a 

Keithley 195 current source and Keithley 197 electrometer were used to make the 

electrical measurements.  

 

3.3.2) Seebeck Coefficient 

All Seebeck coefficient measurements were measured using an in house built apparatus. 

For samples with sufficient enough material, thin pellets were pressed for the 

determination of the Seebeck coefficient. Two copper electrodes were placed across from 

one another on the pellet surface. A wire connected to an external power source was 

wrapped around one of the copper electrodes and a thermocouple. A voltage was passed 

through the wire coil and the temperature measured using the thermocouple after the 

temperature of the electrode and sample had equilibrated. Figure 3.1 diagrammatically 

shows the Seebeck coefficient set-up. 

 

 

 

 

 

Figure 3.1 – The schematics of the experimental setup to measure the Seebeck coefficient where the copper 
electrodes (dark red) are placed on the sample (green) pellet surface. One copper electrode is attached to a 

thermocouple (yellow) to measure the temperature when a voltage is applied through a wire (red). 
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3.3.3) Dielectric Constant 

All dielectric constant measurements were carried out using the Leader LCR-745G 

capacitance bridge, which was zeroed with only the connecting leads attached. For samples 

with sufficient enough material, a known amount of material was pressed into sufficiently 

thin pellets of known dimensions. The pellet was placed between two identical copper 

electrodes and the capacitance was measured. The pellet was removed and the two 

electrodes (separated by an air gap equal to the pellet thickness) and the capacitance of the 

air was measured. The ratio of the two capacitance measurements resulted in the 

determination of the nanocomposite material dielectric constant. Equation 3.1 to Equation 

3.3 were used to determine the dielectric constant of the air and the material and Figure 3.2 

shows the experimental setup. 

 

 

 

 

 

Figure 3.2 – The schematics of the experimental setup to measure i) the capacitance of the nanomaterials (green) and 
ii) the capacitance of air. 

 

        
        

 
 

Equation 3.1 

where: 

- Csample is the capacitance of the sample  

- εsample is the dielectric constant measured for the sample. 

- A is the sample surface area 

- d is the distance between the electrodes (for all purposes this is the length of the 

pellet) 

i ii 
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Equation 3.2 

Where: 

- Cair is the capacitance of air  

- εair is the dielectric constant measured for air. 

- A is the sample surface area 

- d is the distance between the electrodes (for all purposes this is the length of the 

pellet) 

from which the material dielectric constant is determined from  

 

   
       

    
 

Equation 3.3 

 

3.3.4) Schottky Diode Device current-voltage (I-V) and capacitance-voltage (C-V 

Measurements) 

The Schottky devices were constructed using two different methods; pressed pellet devices 

and evaporated devices (see Figure 3.3 for the Schottky device architecture) 

 

1) Pressed Pellet Devices 

The nanocomposite material was placed onto the metal electrode foil and pressed together 

under 10 tons of pressure between two metal dies. An indium tin oxide (ITO) coated on 

PET (Sigma-Aldrich) was then pressed onto top nanocomposite material for the I-V and C-

V measurements. 
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2) Evaporated Metal Contact Devices 

For the materials with sufficient amount of material, the metal electrode foil was 

evaporated under vacuum onto the nanocomposite pellet. The metal contact was limited to 

a surface area of 0.78 mm
2
 (i.e. 1mm diameter). The pellet face without the metal contact 

was then placed onto a copper foil when conducting the I-V and C-V measurements. 

 

I-V measurements were carried out using a Keithly multi-meter between a minimum of -30 

V and a maximum of 30 V with a 2 mA current limit at 0.05 V intervals. C-V 

measurements were carried out on a Leader LCR-745G at 1 kHz. 

 

 

 

 

Figure 3.3 – A typical Schottky pressed and evaporated device architecture showing the copper electrode (orange), 
nanocomposite material (green) and ITO coated on PET (grey)  

 

3.3.5) Photosensitive Device Construction and I-V Measurements 

The photosensitive devices were constructed using two p-type silicon wafers (the largest 

had a surface area of ~4.4 x 10
-3

 m
2
 and the smallest had a surface area of ~1.26 x 10

-3
 m

2
) 

and a FePS3 substrate. The nanocomposites were dispersed into 50 ml of isopropanol. This 

mixture was then centrifuged to remove the larger more coarse particles and leaving a 

dispersion of the finer material in solution. This solution was then deposited onto the p-

type silicon wafers by spin coating.  

 For V2O5/AnAn
+
 coated on FePS3, on a FePS3 single crystal the nanocomposite 

material was cast from the solution of finely dispersed nanocomposite material in 

isopropanol. 
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 After spin coating or casting the photosensitive devices were constructed by 

placing the nanocomposite covered substrate with the uncovered side of the substrate in 

contact with a copper electrode and the nanocomposite covered substrate in contact with an 

ITO coated on PET strip of equal surface area of the substrate, a clear plastic plate was 

then sandwiched upon this device with a dual purpose: i) to reflect and minimise heating of 

the device sample under illuminated conditions and ii) to keep the ITO coated PET in as 

intimate contact with the nanocomposite material as possible. 

 For the FePS3 coated with V2O5/AnAn
+
, the device was placed under a magnetic 

field of 0.3T. The device was placed parallel (Para Mag) and perpendicular (Perp Mag) to 

the magnetic field. 

 

 

 

 

 

Figure 3.4 – A typical photosensitive device architecture showing the copper electrode (orange), silicon/FePS3 
substrate (black), nanocomposite material (green) ITO coated on PET (grey) and the plastic plate (white) 

 

 

 

 

 

 

Figure 3.5 – i) Top view of the V2O5/AnAn
+
 FePS3 device where the green component in the composite material and 

the white component in the plastic encasing, ii) side view of the V2O5/AnAn
+
 FePS3 device where the red component is 

the copper electrode, green component is the composite material and the grey component is the transparent ITO 
electrode and the white components are the plastic encasing 
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Figure 3.6 – i) The parallel set up of the device and magnetic (Para Mag) and ii) the perpendicular set up of the device 
and magnetic (Perp Mag) 

1) 1-V Measurements 

I-V measurements were performed using a Keithley multimeter (as previously used for the 

Schottky Device I-V measurements in Section 3.3.4) for all devices. The device I-V 

character was determined between the ranges of -8 V and 8 V (to prevent heating of the 

device the voltage was limited to within this range) at intervals of 0.05 V with a 2 mA 

current limit. It was also observed that under illuminated conditions some of the devices 

exceeded the current limit above 8 V and therefore this voltage range was restricted for all 

devices. For all devices, the I-V measurement in dark conditions (Dark) were carried out in 

a black box. For determining the change in the I-V character under ambient light (A.Light), 

the device was placed out of the box to allow the A.Light to illuminate the device. The 

devices were further illuminated using a tungsten incandescent lamp (Lamp). The 

incandescent lamp was placed 30 cm away from the device. 

 

3.3.6) Device Modelling 

Graphpad was used to model the Schottky device I-V plots with the diode equations. There 

were no restrictions applied on I0 and the n value was restricted to between 0<n<5. 

 

 

 

i ii 
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4) Results and Discussion 

4.1) Characterisation 

4.1.1)  V2O5 Intercalation 

4.1.1.1) X-ray Diffraction (XRD) 

Table 4.1 - Table to show the interlayer spacing and change in interlayer spacing of the V2O5 composite materials 

Method 
Interlayer 

spacing/(Å) 
Interlayer spacing 

change/(ΔÅ) 2θ (o) Intensity/peak shape 

Direct 
Intercalation        

V2O5 4.373 / 20.9   

V2O5/AnAn+ 12.80 8.43 6.8 
Strong sharp peak with a 

broad shoulder 

V2O5/2A5PhPyr 12.16 7.79 9.8 
Medium intensity and 

broad 

V2O5/EDOT 9.02 4.65 7.0 
Strong sharp peak with a 

broad shoulder 

         

Ion-exchange        

LiV2O5 12.62 8.25 6.8 Strong sharp peak 

V2O5/PDA 9.02 4.65 9.6 Strong broad peak 

LiV2O5/ 
2A5PhPyr 12.27 7.90 7.0 Strong broad peak 

V2O5/5AQ 13.38 9.01 6.6 
Medium peak with broad 

shoulders 

V2O5/1,4PDA-
HQ 9.60 5.23 8.6 Strong broad peak 

 

From Table 4.1, Figure 4.1 and Figure 4.2, we can see that both direct and ion-exchange 

methods yield an increase in the interlayer spacing suggesting intercalation has occurred. 

When directly intercalated with AnAn
+
, 2A5PhPyr and EDOT the interlayer spacing 

increases by 8.43, 7.79 and 4.65Å respectively. For V2O5/AnAn
+
 and V2O5/2A5PhPyr, this 

degree of increase has previously been seen(115,121,130) and therefore could correspond 

to one of two cases; i) the polymer backbone is orientated perpendicular to the V2O5 plane 

or ii) the polymer intercalants are parallel to the V2O5 plane are but are stacked to form a 

bilayer. Since the EDOT intercalation showed approximately half the increase in the 
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interlayer spacing, when compared to that of AnAn
+
 and 2A5PhPyr, it suggests that the 

EDOT polymer exists as a monolayer in the interlayer spacing and parallel to the inorganic 

layers. V2O5/AnAn
+
 and V2O5/EDOT further showed large disperse shoulders (between 2θ 

values of 6.6 – 14.6
o
 and 6.6 – 15.6

o
 respectively) in the XRD which presumably 

correspond to the presence of amorphous material. However, the higher angle peaks 

present are weaker compared to the interlayer spacing peak but are still sharp peaks. This 

suggests that the overall structural integrity of the crystalline host has been maintained. 

The disperse shoulders could, therefore, arise from the changes in the (001) plane along the 

c-axis. The intercalation of the guest species could result in effects that could cause this 

shoulder to arise in the diffractogram such as any shearing or screw dislocations of the 

layers during intercalation (which would produce a similar effect to random re-stacking of 

layers). Another possibility is incomplete intercalation producing a distribution in the 

interlayer spacings. From these possibilities, the latter appears to be more likely for the 

EDOT material as characteristic (001) peaks for V2O5 (~2θ = 20
o
) remains present in the 

diffractogram. This is not the case, however, for the intercalation of 2A5PhPyr. In this 

case, we would expect an acid-base reaction between the V2O5 acidic oxide and the basic 

2A5PhPyr. The peak corresponding to the interlayer expansion is sharp with no broad 

shoulder suggesting regular structure along the c-axis. On the other hand, the peaks 

appearing at higher 2θ values have now either disappeared or broadened. This suggests that 

the short-range order along the other axes may have been compromised during the 

reaction. This is particularly prominent for the (020) peaks (~2θ = 16
o
) where it has 

disappeared in AnAn
+
 and EDOT materials, it is now a large broad peak for 2A5PhPyr. 

The characteristic (001) peak, however, is still present. A possible explanation is presence 

skew dislocations of various degrees of skewing such that consecutive layers are no longer 

parallel. This effect would allow for an unaltered 001 plane but potential alterations in the 

other planes. 
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Figure 4.1 - X-ray Diffractograms for A) V2O5 host, B) V2O5/AnAn
+
, C) V2O5/EDOT and D) V2O5/2A5PhPyr synthesised via direct intercalation 
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Figure 4.2 - X-ray Diffractograms for E) LiV2O5, F) V2O5/PDA, G) LiV2O5/2A5PhPyr, H) V2O5/5AQ and I) V2O5/1,4PDA-HQ synthesised via ion-exchange  
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In the case of the ion-exchanged intercalants (Figure 4.2), the lithiated V2O5 

showed partial intercalation (the presence of two phases; an un-intercalated phase and an 

intercalated phase) of the lithium ions as the 001 V2O5 peak is still present (as is many of 

the peaks appearing at higher angles). Due to the presence of sharp strong peaks in the 

diffractogram, the structural integrity of the overall inorganic material was well 

maintained. 

Here we can compare the two V2O5/2A5PhPyr materials synthesised by direct 

intercalation and by ion-exchange. A broad strong peak appears in the XRD (2θ = ~5-12
o
) 

for the intercalation via ion-exchange compared to the sharper peak (2θ = 7.05
o
) exhibited 

via direct intercalation. Partial intercalation could lead to such a peak being shown in the 

diffractogram where only the Li
+
 preintercalated phase exhibits intercalation to varying 

degrees via ion-exchange. The appearance of a medium-strong diffuse peak (usually found 

between 2θ = ~7 – 10
o
) along with peaks which correspond well with pure V2O5 appears to 

be a common phenomenon during the ion-exchange reactions. For the intercalation of 

PDA, 5AQ and HQ-PDA there is a strong broad peak (peaking at 2θ = 9.8
o
) corresponding 

to partial intercalation with strong sharp peaks appearing at higher angles. In both 

2A5PhPyr and PDA cases, the higher angle peaks correspond well with that of pure V2O5 

which also suggests that there are two phases present; the partially intercalated V2O5 and 

pure V2O5.  

Overall the X-ray diffraction data show that there has been a successful interlayer 

expansion which corresponds to the organic guest species being present. However, it is 

clear that the ion-exchange method is more prone to give rise to incomplete intercalation. 

On the other hand, the direct intercalation methods are prone to partial intercalation 

occurring where the material appears to lose its short range order due to the rise of defects 

such as skewing dislocations. 
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4.1.1.2) Infra-red and Raman Spectroscopy 

The Infra-red and Raman vibrational transitions for V2O5 intercalation via direct and ion-

exchange methods are shown in Table 4.2, Table 4.3 and Table 4.4 respectively (see 

Appendix A.1 and A.2 for full spectra). Peaks appearing below, or very close to, 1000cm
-1

 

correspond to the V2O5 phase of the material. When intercalated, the host material peaks 

are shifted to higher wavenumbers along with the appearance of organic guest peaks which 

can provide some insight into the presence of organic materials in the interlayer spacing. In 

the direct intercalated materials, for AnAn
+
 the peaks appearing between 3300-2800cm

-1
 

correspond to C-H stretching and O-H stretching of the guest molecules. The O-H 

stretching vibration is present due to the aqueous nature of the reaction and corresponds to 

any loosely bound water molecules still present on the surface or in the interlayer spacing. 

The peak appearing at 1466cm
-1

 corresponds to C=C stretching mode of the quinoid ring. 

 

Figure 4.3 – Benzenoid and Quinoid ring systems present in polyaniline. 

 

The peaks appearing between 1400-1300cm
-1

 are assigned to the stretching from the C-N 

and C=N bonds. The 1107cm
-1

 peak is associated with the V=O stretching mode shifted 

from 991cm
-1

 in the pure host. Finally, the 816 and 597 cm
-1

 features correspond to the V-

O-V stretching modes. Overall, some peaks have shown to shift and some characteristic 

V2O5 peaks remain unshifted. This suggests that there is still unreacted V2O5 present. 

Furthermore, the Raman peaks have also been shown to shift which is consistent with the 

presence of intercalated material in the interlayer spacing constricting space for the 

inorganic vibrations. The appearance of both shifted and un-shifted peaks are seen for the 

Benzenoid Ring                                           Quinoid Ring 
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direct intercalation of 2A5Ph2Pyr and EDOT. For the 2A5Ph2Pyr, it is seen that the peaks 

appearing at 1346 and 1660 cm
-1

 correspond well to NH2 stretching modes whereas the 

closely related peaks of 1619 and 1621 cm
-1

 correspond to the presence of NH3
+
. This 

suggests that there are two forms of the amine group present, protonated and neutral forms. 

The shifting of the peaks as seen in the AnAn
+
 corresponds to the intercalation has 

occurred. The vibrations found at 1518 and 1338 cm
-1

 can be associated with the EDOT 

ethylenedioxy group. Both nanocomposites show a mix of the original V2O5 peaks and 

new shifted peaks in the region below 1100 cm
-1

. This shows that there is partial 

intercalation of the organic monomers with two phases, the first being unreacted V2O5 

while the other involves the composite material.  

This was further seen in the Raman data where there is a mix of peaks 

corresponding to the presence of the characteristic un-shifted V2O5 peaks as well as new 

peaks corresponding to the intercalated shifted peaks. This shows the presence of the two 

phases. This was also seen in the XRD data (Table 4.1, Figure 4.2 and Figure 4.3) and 

confirms that these changes in the IR and Raman data are indicative of intercalated organic 

guest in the interlayer spacing. This may further suggest that the material is present in its 

oligomeric or polymeric forms as the peaks corresponding to the quinoid ring system are 

only present upon polymerisation with the oligomer or polymer being present in its 

protonated (p-type) form. However, the IR and Raman data alone cannot confirm this. The 

IR and Raman spectra become slightly more complex in the case of the ion-exchanged 

V2O5 composite materials. Upon intercalation of Li
+,

 we immediately see changes in both 

the IR and Raman data. The peak appearing at 991 cm
-1

 appears to split into two different 

peaks in the lithiated V2O5 (995 and 970 cm
-1

). This is consistent with intercalation as this 

peak corresponds to the V=O stretching mode. This stretching mode has less vibrational 

space upon intercalation of Li
+
 which interacts with oxygen in the inorganic layers. 
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Furthermore, the peak normally at ~600 cm
-1

 shifts to ~590 cm
-1

 upon Li
+
 intercalation 

corresponding to red-shift of the V-O-V vibrations. 

Table 4.2 - Infra-red and Raman wavenumbers (cm
-1

) for V2O5 intercalated compounds via direct intercalation 

    Direct Intercalation   

V2O5 V2O5/AnAn
+
 

V2O5/ 
2A5PhPyr V2O5/EDOT Assignment 

IR Raman IR Raman IR Raman IR Raman Organic Guest 

    3331.3           

C-H, O-H and NH2, =NH 
stretching 

    2969.4           

    2930.8           

    2882.6           

                  

        1660.1       

NH3
+
 stretching         1619.8       

        1557.0       

        
 

  1517.7   Ethylenedioxy group 

                  

    1466.7           Quinoid and benzene  
C=C stretching     1407.4           

    
 

            

    1378.4           
C-N, C=N and  

NH2 stretching      1340.1   1346.8   1338.8   

    1306.0           

                  

        1276.6   1244.7   

C=C quinoid  
stretching 

    1159.7   1154.8   1217.9   

        1140.1       

    1127.9           

                  

                Inorganic Host 

                

V=O stretching 
    1107.1   1002.9   1106.0   

991.1 997 950.4 993 918 995 979.6 992 

    816.3       922.6   

                  

781.0 705 
 

693 734.4 698 766.2 698 

V-O-V stretching  
and bending 

665.8 532 627.6 409 597.6 525 697.4 410 

630.5 488 608.6 283 556.4 483 694.0 286 

599.9 408 597.3 195   406 546.1 198 

565.2 307 587.9 142   294   140 

548.4 285 576.3     285     

  202 560.2     197     

  146 544.4     145     

    537.3           
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Table 4.3 - Infra-red and Raman wavenumbers (cm
-1

) for V2O5 intercalated compounds via ion-exchange intercalation 

        Ion-exchange   

V2O5 LiV2O5 V2O5/PDA LiV2O5/2A5PhPyr V2O5/5AQ V2O5/1,4PDA-HQ Assignment 

IR Raman IR Raman IR Raman IR Raman IR Raman IR Raman Organic Guest 

        3333.42   3305.55   3300 
 

3209.59   NH2, =NH 

        2969.39   3079.19   3080 
 

    
NH3

+
,  

NH2
+ 

and NH
+
         2931.19         

 
    

        2882.75         
 

    

                  
 

    
N-H bending and N=C=S stretching 

                  
 

    

            1666.3     
 

  1651 

NH2 , >NH, NH3
+ 

 
bending and  
Benzene C-C 

            1621.15   1638.77 
 

    

              1608   
 

1613.57 1605 

                  
 

    

            1550.69     
 

1564.05   

                  1546   1537 

                  
 

      

        1466.2   1475.25     
 

1488.85   Benzenoid C=C  
stretching         1407.51   1444.64     

 
1423.28   

        1378.32       1362.89 1370 1360.94 1364 

Quinoid C=C  
stretching 

        1344.11   1348.01     
 

  1321 

        1306.1         
 

    

        1159.68   1275.22     
 

1290.11 1268 

        1127.87   1156.15     
 

1175.3 1176 
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Table 4.4 - Infra-red and Raman wavenumbers (cm
-1

) for V2O5 intercalated compounds via ion-exchange intercalation 

        Ion-exchange   

V2O5 LiV2O5 V2O5/PDA LiV2O5/2A5PhPyr V2O5/5AQ V2O5/1,4PDA-HQ Assignment 

                        Inorganic Host 

        1107.97   1018.58         997 

V=O stretching 991.11 997 995.37 982 950.48 993 957.94 998 966.29 980 981.86   

    970.03         995         

                          

781.01 705 780.54 698 816.33 689   861         

V-O-V stretching and bending 

665.8 532 591.87 544 632.74 407 797.66 710 781.66   765.29 710 

630.53 488 565.32 477 608.21 286 760.16 530 599.09 682 630.95 583 

599.91 408 545.61 430 573.55 189 718.36 484 570.09 524 598.04 513 

565.16 307   288 558.77 140 694.41 411 565.45 417 555.94 411 

548.43 285   157 545.54   642.04 307 549.68 284   286 

  202     537.05   596.37 288   145   148 

  146         570.33           
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 The observation of both shifted and unshifted vibrational modes of LiV2O5 

compared to the pure host corroborates with the XRD data in suggesting a mixture of two 

phases. When the Li
+
 is exchanged for PDACl2 we find the IR spectrum changes 

accordingly. The peak new appearing at 3333 cm
-1

 corresponds to the NH stretching mode 

from either NH2 or =NH groups. The peaks at 2969 and 2931 cm
-1

 confirms to the 

presence of an NH3
+
 group while the peak at 2882 cm

-1
 corresponding to the NH stretching 

mode in either NH2
+
 or NH

+
 groups. This suggests that PDA was present with both neutral 

with protonated amine groups. Meanwhile, the peaks appearing at 1407 and 1466 cm
-1

 

correspond to the C=C benzenoid ring system while those appearing at 1378, 1340 and 

1306 cm
-1

 correspond to the C=C quinoid ring system suggesting a polymerised system 

which is partially protonated giving rise to an intercalated doped polymer. However, the 

doped organic guest appears to have produced the ladder-like oligomer phase due to the 

presence of a mix of NH3
+
 and NH groups in which NH is formed due to the 

polymerisation whereas NH3
+
 groups correspond to protonated NH2 groups in 

unpolymerised precursors. These potential coupled forms of the PDA in the interlayer 

spacing in Figure 4.4 are shown. The peaks below 1156 cm
-1

 correspond to the V2O5 peaks 

and as seen before, the peak at 1018 cm
-1

 corresponds to V=O stretching while the rest of 

the peaks can be seen to undergo red-shift corresponding to the limited V-O-V and V=O 

stretching phases. In the Raman spectrum, we see a mix of shifted and unshifted peaks 

which is indicative of a mixed phase of unintercalated and intercalated V2O5. The other 

composite materials followed this trend, peaks appearing from 3000 cm
-1

 and higher 

corresponded to NH2
 
or =NH stretches while peaks appearing between ~1700-1200 cm

-1
 

correspond to the benzenoid and quinoid ring systems. Peaks appearing below 1100 cm
-1

 

are a mix of shifted and un-shifted peaks suggesting that in all nanocomposite materials 

there is a mix between two phases which include the intercalated phase and the 
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unintercalated phase. Furthermore, unlike in the PDA case, the 2A5PhPyr, 5AQ and 

1,4PDA-HQ Raman shows peaks appearing between 1000 cm
-1 

– 1700 cm
-1

. 

 

 

 

Figure 4.4 – I) Polymerised PDA to produce a substituted polyaniline form, II) Polymerised PDA with two phases 
present; a non-ladder phase and a ladder oligomer phase and III) Fully polymerised PDA producing the Ladder like 

polymer 

 

These peaks are correlated to the presence of the organic guest. The red-shift is associated 

with the presence of an intercalated guest, however, there are some instances where a blue 

shift is observed. This may occur when the layers expand due to the intercalation (or any 

layer based defects such as a skew defect) but no the organic material was unable to 

penetrate far enough in between the layers producing essentially an expanded interlayer 

spacing with no guest species. This would result in a blue shift due to the V=O peaks now 

having more space to vibrate.  

 When comparing the IR and Raman data for both direct and ion-exchange 

intercalation with the XRD data presented we can determine that the cause of the interlayer 
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expansion is due to the presence of an organic guest species which is suspected to be in its 

oligomeric or polymeric form. 

 

4.1.1.3) TGA and ICP-AES 

 

Figure 4.5 - % Weight Loss via TGA and ICP-AES for V2O5 intercalated materials after the initial mass loss due to 
water. The error bars in the ICP-AES where obtained in-situ via three consecutive measurements as described in 
section 3.1.4).  

 

Figure 4.5 shows the total percentage loss in mass determined by TGA and ICP-AES 

independently (for full TGA data see Appendix A.3). Shown here is the % by mass of the 

guest species in the composite material. From the ICP-AES the stoichiometry was 

calculated by determining the total vanadium content in the digested sample (assuming the 

stoichiometry of the vanadium host to be V2O5) and comparing this to the theoretical 

vanadium content if no organic intercalant was present (which is the total vanadium 

content in the digested pristine V2O5 sample). The difference in vanadium content was 

concluded to arise from the presence of the organic guest. Thus, the stoichiometry was 

determined to be Li0.21V2O5, AnAn0.22V2O5, PDA0.26V2O5, 5AQ0.15V2O5, 

2A5PhPyr0.18V2O5 (Acid-Base reaction) 2A5PhPyr0.23V2O5 (ion-exchange), (1,4PDA-

HQ)0.19V2O5 and EDOT0.23V2O5 
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 We can initially see that for both TGA and ICP-AES analysis the V2O5/PDA 

composite showed the largest guest content followed by the V2O5/AnAn
+
 and V2O5/EDOT. 

The initial loss in all samples in the TGA around 100
o
C is related to any loosely bound 

water on the surface or in the interlayer spacing due to the aqueous nature of the reactions. 

However, the continuous loss shown in all the samples suggests that the materials are 

oligomeric/polymeric (as suspected from the IR and Raman data) as there is a gradual loss 

in mass over the measured temperature range. If the organic guests remained in the 

monomer form one would expect all the guest species to be removed around a single 

temperature and not over a large range. The presence of the oligomeric or polymeric form 

could explain the diffuse peaks seen in the XRD data. These diffuse peaks may be caused 

by defects in the inorganic host but alternatively may arise due to the morphology of the 

oligomeric or polymeric chains for example if the chains were in a helical orientation in 

some regions of the material or lying parallel to the inorganic layers. This would lead to 

the material exhibiting a distribution in the overall expanded interlayer spacing caused by 

intercalation. 

 

4.1.1.4) Optical Spectroscopy 

Table 4.5 - Optical band-gaps determined from UV-Visible spectroscopy tauc plots 

  Optical band-gap (eV) 

Compound Composite material Host Tauc Plot Region Literature V2O5 (258) 

V2O5 N/A 2.33 2.3-2.38 

V2O5/AnAn+ 3.69 2.35   

V2O5/2A5PhPyr (AB) 3.70 2.46   

V2O5/EDOT 3.70 2.37   

V2O5/PDA 3.72 2.36   

(Li) V2O5/2A5PhPyr 3.71 2.42   

V2O5/5AQ 3.69 2.37   

V2O5/1,4PDA-HQ 3.64 Not present   

 

The calculated optical band-gaps for the composite materials are shown in Table 4.5 (see 

Appendix A.4 for full UV-Visible reflectance spectra and their associated Tauc plots) with 
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Figure 4.6 and Figure 4.7 showing an example of the V2O5 and V2O5/2A5PhPyr tauc plots 

where the optical band length is determined by extrapolation of the linear part/s of the plot. 

Overall it is shown that the intercalated materials have a larger band-gap than that for pure 

V2O5 host (which shows good correlation with the literature band-gap range). This could 

be due to two possibilities. The most plausible explanation lies in the fact that as the 

organic material is intercalated into the interlayer spacing, it is disrupting the band-

structure of the bulk inorganic. Thereby there is less band overlap between inorganic layers 

leading to a larger band-gap. 

 

Figure 4.6 - Tauc plot for V2O5 

 

Figure 4.7 - Tauc plot for V2O5/2A5PhPyr showing two regions present 
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The second possibility lies in that the increase in the band-gap is due to poor conduction – 

valence band overlap occurring between the organic guests (which are understood to be in 

their protonated phases demonstrated from the IR and Raman data, therefore may be 

present in the interlayer spacing as conductive oligomeric or polymeric guests) and the 

inorganic host materials. If the material is determined to be semiconducting then this 

would result in the material exhibiting indirect semiconductor properties as illustrated in 

Figure 4.8.  

 

 

Figure 4.8 - The direct and indirect semiconductor band-gaps 

 

The band-gap of the intercalated materials, in general, is found to be between 3.64-3.71 

eV. In all but the 1,4PDA-HQ intercalated material, there was a remnant peak in the region 

characteristic of the host material. In some cases, this peak is extremely small in the tauc 

plot when compared to the peak of the composite material. From the tauc plots, we can 

determine that any changes in the overall properties of the material are caused by the 

presence of the intercalant. In the case of the V2O5/1,4PDA-HQ, the lack of the V2O5 peak 

could suggest that in this material the partial intercalation phase seen in the X-ray 

diffractogram may be a major phase. 

From the UV-Visible spectra, we can further see shoulders to the main absorption 

edge of the composite material appearing between 350-390nm in all the intercalated 
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materials. This shoulder corresponds to charge transfer occurring between the organic 

guest and the inorganic host material. This change in the bandgap signifies that the organic 

guest that had been intercalated (as concluded from the previous characterisations 

techniques) has an effect on the overall band structure of the material with the new 

intercalated material and not treated as two separate phases. 

 

4.1.1.5) X-ray Photoelectron Spectroscopy 

XPS is a surface sensitive spectroscopic technique which provides information regarding 

the potential reduction of the vanadium nuclei as well as information regarding any 

intercalates. 

 

Figure 4.9 - The XPS scan for V2O5 host showing V2p3/2 environment (black) fitted with a single environment (517.42 
eV) corresponding to V

5+
 (orange). The peak at 525 corresponds to the V2p3/2 

0

1000

2000

3000

4000

5000

6000

512517522527

In
te

n
si

ty
 (

a.
u

.)
 

Binding Energy (eV) 

Background

V2p scan

V2p3/2 fit



 

137 
 

 

Figure 4.10 - The XPS scan for V2O5 host showing O1s environment (black) fitted with a single environment (530.22 
eV) corresponding to O

2-
(orange) 

Figure 4.9 and Figure 4.10 show the XPS scans for the vanadium and oxygen 

environments in the pure host V2O5. In Figure 4.9 the vanadium peak appearing at ~517.4 

eV corresponds to V2p3/2 for V
5+

 which matches literature values (259,260) and has been 

fitted for a single environment. Figure 4.10 shows that the O1s peak appears ~530.2 eV 

which also matches literature value 517.40eV  (261,262) and shows a single environment. 

 

 

Figure 4.11 - XPS scan for V2O5/AnAn
+
 synthesised via direct intercalation showing the V2p3/2 environment (black) 

fitted with two environments (orange; 517.22 eV and blue; 515.82 eV) 
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Figure 4.12 - XPS scan for V2O5/AnAn
+
 synthesised via direct intercalation showing the O1s environment (black) fitted 

with three potential environments (orange; 530.12 eV, blue; 531.72 eV and red; 533.32 eV) 

 

 

Figure 4.13 - XPS scan for V2O5/AnAn
+
 synthesised via direct intercalation showing the N1s environment (black) fitted 

with two potential environments (orange; 399.62 eV and blue; 401.12 eV) 

Figure 4.11, Figure 4.12 and Figure 4.13 show the XPS scan V2p3/2, O1s and N1s 

environments respectively in the V2O5/AnAn
+
 material. Compared with pure V2O5 (Figure 

4.9 and Figure 4.10) there are noticeable changes. In Figure 4.11, the major V2p3/2 peak 

appears at ~517.4 eV as was seen in Figure 4.9 matching well with the literature value. 

However, the minor peak (V2p3/2 fit 2) appears at ~516 eV which corresponds well to 

literature value for V
4+

 (263) showing that there was indeed a redox reaction occurring 

between the inorganic host and the organic guest in which the V
5+

 was reduced to V
4+

. In 
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relation to this, we now have a peak appearing for the N1s (Figure 4.13) at ~400 eV which 

would arise from the organic guest. This corresponds well with both neutral and protonated 

forms of polyaniline (401.0 eV in the neutral form 399.50 eV in the protonated form) 

(264,265). Due to the noise-to-peak-ratio, two environments were fitted but it has been 

shown for emeraldine that four environments can be potentially seen appearing at 398.5, 

399.5, 400.8 and 402.2 eV for a highly resolved N1s signal corresponding to the presence 

of the bipolaron, polaron and neutral amine and non-emeraldine phases(265). When 

combining the evidence gathered from previous techniques Figure 4.13 tells us that the 

aniline-based guest that is present in the interlayer spacing is indeed in the emeraldine form 

which was seen in the IR and Raman which showed presence of the quinoid rings which 

may give rise to the signal seen in the ESR (Figure 4.41) whereas the TGA and ICP-AES 

showed the guest being present the oligomeric/polymeric form. This is further corroborated 

by the ESR for this material (Figure 4.41, pg. 158) in which the single symmetric peak was 

concluded to arise from the inorganic phase of this material and would be likely to be 

formed from any redox chemistry between the inorganic phase and the organic phase 

giving rise to delocalised polarons or bipolarons present in the emeraldine material. Figure 

4.12, on the other hand, shows the O1s signal can be fitted with three potential 

environments. The main peak (O1s fit 1) appears at ~530.2 eV which corroborated well 

with the literature values mentioned in Figure 4.10. However, the two minor environments 

appear at ~531 (O1s fit 2) and ~533 (O1s fit 3) eV respectively. Fit 3 corresponds closely 

with the O1s of water (533.10 eV) (266) and as seen in the TGA this may either be due to 

loosely bound water molecules on the surface or in the interlayer spacing. Fit 2, however, 

may be due to any interactions of hydrogen bonding that is occurring from the V=O 

oxygen and the N-H hydrogen from the emeraldine guest which was demonstrated to exist 

for certain orientations of organic guests containing amine groups (in section 1.5.1) 

limiting the V=O vibrational space. This sheds a little more light on the nature of the 
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intercalation discussed in the XRD data where it was observed that there was a broadening 

of the interlayer expansion peak, the oligomeric or polymeric guest species may not lie 

ideally parallel to the inorganic layers in the interlayer spacing.  The guest oligomer or 

polymer backbone may be twisted (such as a helical orientation of the backbone) giving 

rise to various different d-spacings throughout the material. 

 

 

Figure 4.14 - XPS scan for V2O5/2A5PhPyr synthesised via direct intercalation showing the V2p3/2 environment (black) 
fitted a single environment (orange; 517.42 eV) 

 

 

Figure 4.15 - XPS scan for V2O5/2A5PhPyr synthesised via direct intercalation showing the N1s environment (black) 
fitted with two potential environments (orange; 399.52 eV and blue; 401.92 eV) 
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Figure 4.16 - XPS scan for V2O5/2A5PhPyr synthesised via direct intercalation showing the O1s environment (black) 
fitted with three potential environments (orange; 530.22 eV and blue; 531.92 eV and red; 533.42 eV) 

Figure 4.14, Figure 4.15 and Figure 4.16 show the XPS scans for the V2p3/2, N1s and O1s 

environments respectively for the V2O5/2A5PhPyr material. Figure 4.14 appears to show 

that the best fit for the signal resides with a single fit. In comparison to the V2O5/AnAn
+
 

material (Figure 4.11) which showed two environments (V
5 

and V
4+

) this does not appear 

to be the case in this material, therefore, it may be possible that the direct intercalation that 

was shown in the XRD data did not occur via a redox reaction based solely XPS data 

presented (a surface specific technique). However, in the intercalated material, there are at 

least two nitrogen environments which would be expected from the nitrogen of the amine 

group and the nitrogen in the aromatic ring. From the IR, TGA and ICP-AES it was 

concluded that the material was indeed in its oligomer or polymeric form. Figure 4.16 

suggests that there may be an interaction between the guest and the oxygen of the V=O or 

V-O-V as these peaks appear to match that for the V2O5/AnAn
+
 material (Figure 4.12). 

This suggests that fit 1 seen in Figure 4.16 corresponds to that of V2O5 oxygen while fit 3 

arises from any surface bound water molecules. Fit 2 is possibly the interacting hydrogen 

bond between the hydrogen of the amine group and the oxygen from V=O. As stated above 

with the V2O5/AnAn
+
 material, the fact that the organic intercalant would have to twist its 

conformation in order for this hydrogen bonding to occur and appear in the signal could 
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lead to the broadening of the shifted interlayer spacing (001) peak in the XRD data. 

However, the IR, Raman, ESR (Figure 4.42), TGA and ICP-AES data was concluded to 

suggest that the organic material was in fact polymerised within the interlayer spacing of 

V2O5. From this XPS it is conclusive of the fact that any polymerisation did not occur via 

the redox mechanism seen for V2O5/AnAn
+
. The mechanism may, therefore, have 

undergone an acid-base like mechanism whereby the 2A5PhPyr (acting as a base when 

solvated) could have chelated with the V2O5 (which may show some acid oxide 

characteristics in the aqueous conditions) which would further facilitate redox chemistry 

with the V
5+

 centres. However, it is noticeable in Figure 4.14 only V
5+

 is present. It must 

be noted that XPS is a surface specific technique and therefore it is possible that any V
4+

 

present in the surface layers may have been quenched and oxidised most likely during the 

washing and cleaning process.  

 

 

Figure 4.17 - XPS scan for V2O5/EDOT synthesised via direct intercalation showing the V2p3/2 environment (black) 
fitted with two environments corresponding to V

5+
 (orange; 516.18 eV) and V

4+
 (blue; 517.38 eV) 
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Figure 4.18 - XPS scan for V2O5/EDOT synthesised via direct intercalation showing the S1p environment (black)  

 

Figure 4.19 - XPS scan for V2O5/EDOT synthesised via direct intercalation showing the O1s environment (black) fitted 
with three environments (orange; 530.18 eV, blue; 531.68 eV and 533.18 eV) 

Figure 4.17, Figure 4.18 and Figure 4.19 show the V2p3/2, S2p and O1s environments for 

the V2O5/EDOT material. Figure 4.17 matches the V2p3/2 environments seen for 

V2O5/AnAn
+
 (Figure 4.11) confirming intercalation occurred through the direct redox 

intercalation method which is in contrast to that seen for V2O5/2A5PhPyr (Figure 4.14). 

Figure 4.18 suggests that there is no S content in the material, however, due to XPS being a 

surface sensitive technique this could be explained by suggesting that there is very little 

organic material intercalated near the surface of the V2O5 material. As such, the varying 

degree intercalation that may be occurring could lead to the diffuse shifted (001) peak 
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exhibited in the XRD for this material. Furthermore, Figure 4.19 at first glance appears to 

be the same as for the previous materials discussed with fits 1 and 3 corresponding to the 

oxygen from the oxide and surface-bound water respectively. However, in this particular 

case, we do not expect to see any hydrogen bonding occurring from the organic intercalant 

and the oxygen from the host. Therefore fit 2 does not correlate with the conclusions drawn 

from the previous material and is, in fact, corresponding to the oxygen present in the 

organic guest species(267). 

 

 

Figure 4.20 - XPS scan for LiV2O5 showing the V2p3/2 environment (black) fitted to two environments (orange; 517.09 
eV and blue; 515.69 eV) 

 

Figure 4.21 - XPS scan for LiV2O5 showing the Li1s environment 
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Figure 4.22 - XPS scan for LiV2O5 showing the O1s environment (Black) with a possible three environments fitted 
(orange; 529.79 eV, blue; 531.59 eV and red; 533.19 eV) 

Figure 4.20, Figure 4.21 and Figure 4.22 show the XPS scan for LiV2O5 showing the 

V2p3/2, Li1s and O1s environments respectively. In Figure 4.20 we see that there are two 

V2p3/2 environments appearing in the same peak positions as that seen in Figure 4.11 

suggesting that there is indeed a redox reaction with n-BuLi reducing V
5+

 to V
4+

. Due to 

the low atomic mass of lithium, it is difficult to detect in the XPS hence the difficulty in 

fitting the data in Figure 4.21, however, a real peak appears to be present (noisy 

nonetheless) suggesting the successful insertion of Li
+
 into V2O5. However, as seen in 

Figure 4.12, the O1s environments in Figure 4.22 can be potentially fitted into three 

environments. However, unlike in Figure 4.12 in which the material was synthesised under 

aqueous conditions, the peak that would usually be associated with the presence of H2O 

(O1s fit 3) could in fact arise due to the small Li
+
 being able to interact with the bridging 

oxygen (V-O-V) in V2O5 as well as the V=O (O1s fit 2).  
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Figure 4.23 - XPS scan for V2O5/PDA synthesised via ion-exchange showing the V2p3/2 environment (black) and the 
two fitted environments (orange; 516.70 eV and blue; 515.30 eV) 

 

 

Figure 4.24 - XPS scan for V2O5/PDA synthesised via ion-exchange showing the Li1s environment 
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Figure 4.25 - XPS scan for V2O5/PDA synthesised via ion-exchange showing the O1s environment (black) with three 
potential environments fitted (orange; 529.7 eV, blue; 531.8 eV and red; 533.2 eV) 

 

Figure 4.26 - XPS scan for V2O5/PDA synthesised via ion-exchange showing the N1s environment (black) and the two 
fitted environments (orange; 399.9 eV and blue; 398.4 eV) 

Figure 4.23, Figure 4.24, Figure 4.25 and Figure 4.26 show the XPS scans for the V2p3/2, 

Li1s, O1s and N1s environments respectively. Immediately it is clear from Figure 4.24 that 

there is no Li
+
 remaining in the sample unlike in the case of LiV2O5 (Figure 4.21) 

suggesting ion-exchange had successfully removed the Li
+
 ions. From Figure 4.26 we can 

see that there are two potential N1s environments as was seen in V2O5/AnAn
+
 (Figure 

4.13) with the peak positions corresponding well with the literature described in Figure 

4.13 for an oligomeric or polymeric form of emeraldine suggesting successful intercalation 

of the organic cation exchanging with the Li
+
 and polymerisation to form a conductive 
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phase (Figure 4.4). This further supports the conclusions drawn from the TGA and IR data 

where the TGA suggested oligomeric or polymeric organic intercalant present and the IR 

strongly suggested this material to be present in a conductive form, however from the XPS 

due to the potential at least more than one environment we can suggest that when 

combined with the IR data that the PDA polymerised with some phases resembling 

emeraldine while others resemble the ladder form. Interestingly, Figure 4.23 shows two 

V2p3/2 environments that were seen in V2O5/AnAn
+
 (Figure 4.11) and LiV2O5 (Figure 

4.20) corresponding to V
5+

 (main component V2p3/2 fit 1) and V
4+

 (minor component 

V2p3/2 fit 2). When compared to the V2O5/AnAn
+
 and LiV2O5 scans, the O1s environment 

has shown some changes. Figure 4.25 also shows three O1s environments but the two 

minor environments (O1s fits 1 and 2) are more pronounced than in the previous samples 

but the signals appear in the same positions suggesting that these signals are caused by the 

same mechanism with the signal appearing at 529.7 eV corresponding to the oxygen in the 

inorganic layers. The signal appearing at 533.2 eV can correspond to oxygen from any 

surface bound H2O molecules while the signal at 531.8 eV appears to correlate to hydrogen 

bonded oxygen in the inorganic layers and the hydrogen from the amine groups of the 

organic guest. Unlike in the previous samples, the intensities of the peaks are much 

stronger, the intensity could be indicative of the amount present this particular sample was 

more hydrated on the surface than the previous samples) in the sample. By that logic, in 

this particular sample, we may be seeing far more hydrogen bonding occurring because of 

the presence of the polymerised protonated amine groups on PDA as well as this sample 

having more surface hydration than the previous samples. 
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Figure 4.27 - XPS scan for LiV2O5/2A5PhPyr synthesised via ion-exchange showing the V2p3/2 environment fitted to 
one environment (orange; 517.05 eV) 

 

 

 

 

 

 

Figure 4.28 - XPS scan for LiV2O5/2A5PhPyr synthesised via ion-exchange showing the Li1s environment 
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Figure 4.29 XPS scan for V2O5/2A5PhPyr synthesised via ion-exchange showing the N1s environment (black) with one 
fitted environment (orange; 399.84 eV) 

 

Figure 4.30 - XPS scan for V2O5/2A5PhPyr synthesised via ion-exchange showing O1s environment (black) with three 
fitted environments (orange; 529.85 eV, blue; 532.05 eV and red; 533.45 eV) 

Figure 4.27, Figure 4.28, Figure 4.29 and Figure 4.30 show the XPS scans for the LiV2O5 

/2A5PhPyr V2p3/2, Li1s, N1s and O1s environments respectively. In Figure 4.11, 

interestingly, there is a single vanadium environment in the same position as for V2O5 

(Figure 4.9) and V2O5/2A5PhPyr synthesised via an acid-base reaction (Figure 4.14) unlike 

in the previous figures in which two V environments are present (corresponding to V
4+

 and 

V
5+

). As mentioned previously for V2O5/2A5PhPyr, XPS is a surface specific technique 

and therefore since no V
4+

 is present this suggests that any V
4+

 that was formed from 

lithiation was subsequently oxidised back to V
5+

 likely during the washing procedure 
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where this electron was quenched or by a redox reaction with the organic guest species. In 

Figure 4.28, it is clear that no Li
+
 remains in the material and from Figure 4.29, the strong 

presence of Nitrogen suggests successful intercalation of the organic guests. However, 

although a single environment appears to show the best fit, it is likely more than one peak 

which is masked due to the noise of the signal as one could expect two separate signals 

from the N in the aromatic system and the polymerised amine group (reminiscent of a 

polyaniline like structure). From the IR and TGA, we know that the organic intercalant in 

this material is in its oligomeric or polymeric form. As such, it is possible that a redox 

reaction may have occurred between the inorganic and organic materials in which the 

electron that would then be present in the inorganic layer was removed returning it back to 

its neutral form due to the variable oxidation states of V. Figure 4.30 shows the same three 

O1s environments as discussed the previous materials. 

 

 

Figure 4.31 - XPS scan for V2O5/5AQ synthesised via ion-exchange showing V2p3/2 environment (black) with fitted 
with a single environment corresponding to V

5+
 (orange; 517.08 eV) 
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Figure 4.32 - XPS scan for V2O5/5AQ synthesised via ion-exchange showing Li1s environment (black)  

 

 

Figure 4.33 - XPS scan for V2O5/5AQ synthesised via ion-exchange showing the N1s environment (black) and the two 
fitted environments (orange; 399.98 eV and blue; 400.78 eV) 
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Figure 4.34 - XPS scan for V2O5/5AQ synthesised via ion-exchange showing O1s environment (black) with three fitted 
environments (orange; 529.98 eV, blue; 531.88 eV and red; 533.38 eV) 

Figure 4.31, Figure 4.32, Figure 4.33 and Figure 4.34 shows the XPS scans for the 

V2O5/5AQ material. It can be seen that successful ion-exchange has occurred as there is no 

lithium present. However, Figure 4.31 shows a single vanadium environment. The lack of 

the V
4+

 peak is similar to that for V2O5/2A5PhPyr and LiV2O5/2A5PhPyr and therefore is 

likely due to the surface specific nature of XPS and concluded that any V
4+

 in the surface 

layers may have been quenched during the washing process. The presence of the organic 

was confirmed in the previously discussed techniques and as seen in the previous samples 

two nitrogen environments are seen in Figure 4.33. These peaks closely resemble that for 

V2O5/AnAn
+
 (Figure 4.13) in respect to peak positions suggesting that the intercalated 

material may contain protonated amide groups similar to that in structure with 

V2O5/AnAn
+
 in its oligomeric or polymeric form (as concluded from the IR, TGA and 

ICP-AES). The oxygen environments Figure 4.34 are as discussed for the previous samples 

confirms that the interlayer expansion seen in the XRD for this material is a result of 

successfully intercalating the guest into the interlayer spacing. 
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Figure 4.35 - XPS scan for V2O5/1,4PDA-HQ synthesised via ion-exchange showing V2p3/2 environment (black) with 
two fitted environments (orange; 517.18 eV and blue; 515.88 eV) 

 

 

Figure 4.36 - XPS scan for V2O5/1,4PDA-HQ synthesised via ion-exchange showing Li1s environment (black)  
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Figure 4.37 - XPS scan for V2O5/1,4PDA-HQ synthesised via ion-exchange showing N1s environment (black) with a 
single environment (orange; 399.78 eV) 

 

 

Figure 4.38 - XPS scan for V2O5/1,4PDA-HQ synthesised via ion-exchange showing O1s environment (black) with three 
fitted environments (orange; 530.18 eV, blue; 531.68 eV and red; 533.18 eV) 

Figure 4.35, Figure 4.36, Figure 4.37 and Figure 4.38 show the XPS scans for the 

V2O5/1,4PDA-HQ material. As with the general case seen in the previous materials, Figure 

4.35 shows two peaks for the V2p3/2 environments corresponding with V
5+

 and V
4+

. From 

the XRD, IR and Raman data we have seen that the organic material was intercalated into 

the interlayer spacing and from Figure 4.36 we see no Li
+
 ions remaining when compared 

to the corresponding region in LiV2O5 (Figure 4.21) showing a successful exchange 

between the organic cation and the Li
+
. Figure 4.37 shows a singular environment for N1s 
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fitted, it should be noted a singular environment was the best fit due to the noisy signal 

obtained. As seen in previous materials it is possible that there exist two or more 

environments in this signal. More telling is Figure 4.38 which on first inspection is 

identical to the O1s environments seen throughout the XPS data, however, due to the 

potential copolymer nature of this material (in the IR data the carbonyl C=O peak persists 

confirming its presence in the organic guests species and the oligomeric/polymeric nature 

of the material confirmed in the TGA and ICP-AES) the O1s peaks appearing at 531.68 eV 

and 533.18 eV can, in fact, be attributed to the ketone carbonyl O1s seen in a variety of 

polymer materials (268). The fact that these peaks are seen in polymer-based materials 

further lends evidence to the TGA for suggesting that a copolymer between 1,4PDA and 

HQ occurred within the interlayer spacing of V2O5. 

 

4.1.1.6) Electron Spin Resonance Spectroscopy (ESR) 

The pure V2O5 host showed no ESR peak present.  

 

Figure 4.39 - LiV2O5 ESR spectrum 

Figure 4.39 shows that ESR spectrum for the lithiated V2O5 precursor material. The 

spectrum centred at a g value of 1.974 with a peak-to-peak width of 90 Gauss and 

resembles that of the γ-phase of the material(269). When compared to the host material 
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there is a strong singlet signal suggesting that the suspected mechanism of electron-

exchange between the n-BuLi and the inorganic host has occurred resulting in the 

formation of the V
4+

 centres. The low g-factor compared to that for the free electron (g-

factor = 2.00232) suggests the signal is arising from the reduced V
4+

 centres. Furthermore, 

there is no hyperfine splitting present and as such the electron is undergoing no coupling 

with any vanadium nuclei. The sharpness of the peak suggests that there is a degree of 

localisation occurring in this system, which is supported by the lack of hyperfine structure 

present. Any asymmetry and enhanced broadening exhibited in the spectrum could could 

arise from any structural defects caused by the intercalation process (i.e. any stacking 

defects in the c-axial direction or screw defects in the bulk and/or surface based) or due to 

the presence of the V
4+

 centres which may be insufficient enough concentration to be 

considered as impurities leading to the material being treated as an inhomogeneous 

material. It is less likely that other vanadium oxides have formed (such as the VOx family) 

contributing to the asymmetry or enhanced broadening as these systems were not present 

in the UV-Vis or XRD data.   

 

 

Figure 4.40 - V2O5/EDOT ESR Spectra 
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In Figure 4.40, it is shown that the spectra for direct intercalated EDOT into V2O5 

interlayer spacing resulting in a singlet single (i.e. no hyperfine splitting) which, similar to 

the case in Figure 4.39, the signal arises from the inorganic phase for a localised electron.  

The signal is centred with a g value of 1.971 and a peak to peak width of 168 Gauss which 

is broader than that shown to the lithium intercalation (Figure 4.39). This peak to peak 

width corresponds to the presence of the δ-V2O5 phase (269). However, as for Figure 4.39, 

the g-factor values below that for the free electron is suggestive that the peak arising from 

the V
4+

 reduced centres. The broadening of the peak could further be enhanced due to 

stacking defects or irregular interlayer spacing in the c-axial direction (and/or on the 

surface) as well as the homogenous broadening similarly exhibited in the LiV2O5 material 

due to the mix of V
5+

 and V
4+

 centres. This is supported in the XRD data where the peak 

corresponding to the interlayer expansion is diffuse which could be explained as a range 

stacking orientations, skewing defects or other c-axial defects. The single peak suggests 

that the electron present is not undergoing interaction with vanadium nuclei and therefore 

no hyperfine structure is present and is likely to be localised. 

 

Figure 4.41 - V2O5/AnAn
+
 ESR spectrum 

Figure 4.41 shows the spectra of the AnAn
+
 intercalated V2O5 via the direct intercalation. 

The signal is centred at a g value of 1.974 with a peak to peak width of 129 Gauss. There is 
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also the presence of a shoulder located at a g value of 1.997 (3474 Gauss). The peak to 

peak width suggests the presence of the δ-V2O5 phase (269). Some asymmetry is evident in 

the amplitude of the spectra as well as broadening. As seen in the previous ESR spectra the 

asymmetry and broadening are likely to be attributed to any stacking defects that may be 

present in the c-axial direction. Once again the presence of the single peak (i.e. no 

hyperfine splitting) the electron is not exhibiting any interactions with the vanadium nuclei 

but due to the low g value as seen previously suggests that the electron is localised on the 

inorganic phase of the material. On the other hand, the spectra could be a combination of 

two different signals (i.e. a combination of a narrow and broad peak) that could arise from 

two different phases of the inorganic material, as seen previously (269). The XRD data 

supports this as the diffuse peak correlating to interlayer expansion could be diffuse due to 

the differing inorganic phases in the bulk material. Furthermore, compared to the previous 

spectra this spectrum exhibits a weaker signal such that one could conclude that the 

concentration of the unpaired electrons present is small. This could be explained by the 

fact that a small concentration of the monomer reacts via a redox reaction with the V2O5 

upon which once the layers are swelled, the remaining monomers (protonated and neutral) 

in solution are able to intercalate and react with the intercalated monomers previously 

oxidised rather than undergoing further redox reactions the V2O5. 
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Figure 4.42 -V2O5/2A5PhPyr (AB) ESR Spectrum 

Figure 4.42 shows the ESR spectrum for the V2O5/2A5PhPyr synthesised via acid-base 

direct intercalation and is centred at a g value of 1.966 with a peak-to-peak width of 118 

Gauss, as seen previously this peak to peak width is closely related to the presence of the 

δ-V2O5 phase (269). As with the previous spectra, this material also exhibits a broadened 

and asymmetric peak.  This broadening could be due to any defects (on the surface or bulk 

along the c-axial plane) that may have occurred during the intercalation process. This was 

seen in the XRD where the peak appearing for the characteristic (001) has broadened along 

with the peak corresponding for the interlayer spacing expansion. The asymmetry is 

reminiscent to that for the LiV2O5 material (Figure 4.39) and due to its g-factor value being 

lower than that for the free electron it is likely that this peak is attributed to a localised 

electron in the inorganic phase of the material. Although the XPS suggested that no V
4+

 is 

present, this ESR signal is representative of the property of the bulk material and not 

surface specific (as with XPS) suggesting that the V
4+

 in the surface layers have been 

quenched (oxidised) to the V
5+

 likely to occur from the washing process in the synthesis. 

The V
4+

 given rise to this peak in the ESR may, therefore, be found at a depth in the 

material beyond that of the detectable by XPS. 

 

-40

-30

-20

-10

0

10

20

30

40

50

3200 3300 3400 3500 3600 3700 3800

In
te

n
si

ty
 (

a.
u

.)
 

Magnetic Field (G) 



 

161 
 

 

Figure 4.43 - V2O5/PDA ESR spectrum 

Figure 4.43 shows the ESR spectrum of the V2O5/PDA material synthesised via ion-

exchange. The spectrum is centred at a g-factor value of 1.9648 with a peak-to-peak width 

108 Gauss. This peak to peak width is representative of the δ-phase, as seen previously 

(269). The low g-factor value, when compared to that of the free electron, suggests that the 

localised electron is present in the inorganic phase of the material and any redox chemistry 

caused by the organic guests during intercalation post-ion-exchange may increase the 

concentration of unpaired electrons. The lack of any hyperfine further suggests this 

localised electron is not interacting with any vanadium nuclei. As with the previous 

spectra, we observe peak broadening with a slight asymmetry present. This suggests that 

the unpaired electrons reside in the inorganic host. The major component to the asymmetry 

and broadening, as seen in the previous spectra, arises from any defects occurring from the 

intercalation reaction (in the c-axial direction and/or surface based). These defects are seen 

in the XRD data for this material where the expanded interlayer spacing peak is a large 

diffuse peak with some small sharp peaks. 
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Figure 4.44 – LiV2O5/2A5PhPyr ESR Spectrum 

Figure 4.44 shows the ESR spectrum for the LiV2O5/2A5PhPyr synthesised via ion-

exchange. The spectrum is centred at a g value of 1.9756 with a peak-to-peak width of 38 

Gauss with a shoulder appearing in the negative region at a g-factor value of 1.9282 (3594 

Gauss). This spectra resembles that for the LiV2O5 (Figure 4.39) and as such the 

narrowness of this peak is closely related to that for the γ-phase for V2O5, as seen 

previously (269). The g-factor value lower than that for the free electron suggests that this 

electron is localised and present on the inorganic phase of the material. The full spectrum 

peak to peak width (including the shoulder is 108 Gauss). This shoulder appears to be more 

defined than that seen in Figure 4.41 and appears in the negative region as opposed to the 

positive region seen in Figure 4.41. The spectrum exhibits an asymmetric nature (minimum 

peak intensity of ~-93 and a maximum intensity of~261) as well as peak broadening. As 

seen in the previous spectra, this asymmetry is likely due to any c-axial defects and/or 

other defects (such as screw defects) on the surface. Again, as with the previous spectra, 

the XRD gives some insights as the expanded interlayer spacing peak is broad and diffuse 

suggesting that there is the presence of c-axial defects in this material. The appearance of 

the shoulder could be the overlapping of two different signals, with different line shapes 

and hence the signal appearing is a result of a combination of the two different signals 
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which could result in the enhanced asymmetry as compared to the previous spectra. From 

XRD, IR and Raman data it was concluded that there are two phases present in this 

material; the intercalated phase and the pure phase. It may be conceivable that the two 

peaks arise as a combination of peaks from the γ-phase from the intercalated V2O5 phase of 

the material pure host material which may also have some V
4+

 centres remaining from the 

Li
+
 intercalation. As with V2O5/2A5PhPyr (Figure 4.42) although the XPS suggested that 

no V
4+

 is present, this ESR signal is representative of the property of the bulk material and 

not surface specific (as with XPS) suggesting that the V
4+

 in the surface layers have been 

quenched (oxidised) to the V
5+

 likely to occur from the washing process in the synthesis. 

The V
4+

 given rise to this peak in the ESR may, therefore, be found at a depth in the 

material beyond that of the detectable by XPS. 

 

 

Figure 4.45 - V2O5/5AQ ESR spectrum 

Figure 4.45 shows the ESR spectrum for the V2O5/5AQ material also synthesised via ion-

exchange. The spectrum is centred at a g value of 1.976 and a peak-to-peak width 43 Gauss 

with a shoulder appearing located with a g-factor value of 1.931 (3586 Gauss) with full 

peak-to-peak width (including shoulder) of 100 Gauss. Compared to the previous 

composite material ESR spectra, the spectrum in Figure 4.45 is the narrowest and the 43 
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Gauss peak width corresponds to that for the γ-phase for the V2O5 as seen previously 

(269). The g-factor value. The narrow peak is similar to that in both LiV2O5/2A5PhPyr 

(Figure 4.44) and LiV2O5 (Figure 4.39) and more enhanced when compared to the other 

spectra. As such this asymmetry is associated with any c-axial defects (such as screw 

defects) and/or surface based defects (such as dislocations). The shoulder appearing in this 

spectrum appears to be found in the same region as that seen in Figure 4.44 and as such 

allows us to determine that this shoulder is not related to the main peak in the negative 

region and could indeed be arising from a different signal. Hence, as with the case in 

Figure 4.44, this signal may be a combination of two separate signals with differing line 

shapes. As with that in Figure 4.44, the XRD, IR and Raman data showed that there are 

two phases in this material, though still subjected to the effects of some defects (some of 

the characteristic V2O5 peaks in the XRD appear broad). It may be conceivable that the two 

peaks arise as a combination of peaks from the γ-phase from the intercalated V2O5 phase of 

the material pure host material which may also have some V
4+

 centres remaining from the 

Li
+
 intercalation. As with V2O5/2A5PhPyr (Figure 4.42) although the XPS suggested that 

no V
4+

 was present, this ESR signal is representative of the property of the bulk material 

and not surface specific (as with XPS) suggesting that the V
4+

 in the surface layers have 

been quenched (oxidised) to the V
5+

 likely to occur from the washing process in the 

synthesis. The V
4+

 given rise to this peak in the ESR may, therefore, be found at a depth in 

the material beyond that of the detectable by XPS. 
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Figure 4.46 - V2O5/1,4PDA-HQ ESR spectrum 

Figure 4.46 shows the ESR spectrum of the V2O5/1,4PDA-HQ synthesised via ion-

exchange. The spectrum is centred with a g value of 1.971 with a peak-to-peak width of 98 

Gauss with three shoulder peaks appearing in the positive region with g value maximum 

values of 2.064 (3440 Gauss), 2.104 (3356 Gauss) and 2.146 (3294 Gauss) with a full 

peak-to-peak width of 286 Gauss. The spectrum as a whole (including the shoulder peaks) 

appears to be symmetric suggesting that similar to Figure 4.39 the unpaired electrons are 

found in the organic guest species. The narrowness of the initial peak-to-peak region (the 

narrowest of all V2O5 composite spectra) is closely related to that of the δ-phase for V2O5 

and the low g-factor value suggests that we are seeing a signal arising from a localised 

electron on the inorganic host material. However, the shoulders in this could arise from due 

to the copolymer formation between the p-phenylenediamine and hydroquinone(270) the 

symmetry of the OH on the hydroquinone part of the oligomer or polymer (as determined 

from the TGA and ICP-AES) may not be magnetically symmetric. As such these peaks 

could arise due to 
1
H hyperfine coupling. This would suggest that there are two signals 

being exhibited in this material, the first that of the inorganic phase and the second that for 

the organic phase, which is unlike that for the previous spectra. Another possibility for the 

rise of these peaks could be due to a combination of various defects leading to several 
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differing phases in the inorganic leading to this peak being a combination of several peaks. 

As with V2O5/2A5PhPyr (Figure 4.42) although the XPS suggested that no V
4+

 is present, 

this ESR signal is representative of the property of the bulk material and not a surface 

based analysis as seen with the XPS. 

 

 Summary 

Overall it has been shown that intercalation of the organic guest species into the 

interlayer spacing of V2O5 was successfully carried out. A full characterisation of the 

literature synthesised material V2O5/EDOT has been presented in this chapter as well as a 

novel method for synthesising emeraldine intercalated V2O5 (V2O5/AnAn
+
) utilising a one-

pot synthesis method which has previously not been reported by literature (section 1 where 

the common method for emeraldine growth involves substituted aniline monomers and 

doping after intercalation (and in some cases followed by the ageing process in the 

presence of oxygen) which may take several days to weeks to achieve. The novel 

compounds V2O5/2A5PhPyr, V2O5/PDA, LiV2O5/2A5PhPyr, V2O5/5AQ and 

V2O5/1,4PDA-HQ have been synthesised and fully characterised confirming the successful 

intercalation of the organic monomers within the V2O5 interlayer spacing. The increase in 

the interlayer spacing in the XRD data (Figure 4.1) corresponds to the presence of the 

intercalated organic guest species which is further corroborated with the XPS data. In the 

case of both direct intercalation and ion-exchange methods, the materials exhibit defects in 

the c-axial direction and a medium degree of control over the structural integrity of the 

host material during the intercalation process. This is further supported in the infra-red and 

Raman data (Table 4.2 - Table 4.4) in which the presence of the organic peaks and the 

shifted host peaks are typical for intercalated V2O5 (as previously discussed in section 1. 

Furthermore, the optical band-gap for the materials also change and in the case of these 

materials increases which have been concluded due to poor band overlap between the 
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organic and inorganic leading to the possible formation of indirect semiconducting 

material. The UV-visible data (Table 4.5) further show that the host region persists 

suggesting incomplete intercalation occurs in these materials which are also seen in the 

XRD where the characteristic host peaks remain along with the expanded 001 peaks. The 

organic intercalant has been shown to be fully polymerised within the interlayer spacing of 

the host confirmed with the TGA and ICP-AES independently. Along with these physical 

changes, chemical changes are shown to have occurred. The ESR and XPS data suggest 

that upon intercalation (for both methods in the general case) a redox mechanism is present 

at some point in the synthesis between the organic guest and inorganic host leading to a 

conducting material. The XPS shows that the V
5+

 ions are reduced to V
4+

 ions and that 

upon intercalation there are three oxygen O1s environments. From the characterisation 

carried out, any electrical/photovoltaic properties these materials exhibited (see Section 

4.2.1) is likely to arise due to the nature of the organic material within the interlayer 

spacing.  From the presented data the following reaction schemes are proposed; 

Scheme 1 - Direct Intercalation 

                              
                  

 

Scheme 2 - Direct Intercalation 

i)                             
                    

ii)           
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4.1.2) MoO3 Intercalation 

4.1.2.1) X-ray Diffraction 

Table 4.6 - Table to shows the interlayer spacing and change in interlayer spacing for the MoO3 intercalated 
compounds 

Method 
Interlayer 

spacing (Å) 
Interlayer spacing 

change (ΔÅ) 2θ (o) Intensity 

Ion-exchange        

MoO3 6.75 / 13.1 Strong sharp peak 

LiMoO3 9.20 2.45 9.6 Strong sharp peak 

MoO3/PDA 13.18 6.43 6.6 Strong sharp peak 

MoO3/2A5PhPyr 12.98 6.23 7.2 Strong sharp peak 

MoO3/5AQ 12.80 6.05 6.7 

Strong sharp peak 
with a diffuse 

shoulder 

MoO3/2AmThia 13.38 6.63 6.6 Strong sharp peak 

Recrystallization     

MoO3/An 12.27 5.52 7.1 

Strong Sharp peak 
with a diffuse 

shoulder 

 

From Table 4.6 and Figure 4.47 we can see that in all cases intercalation increases the 

interlayer spacing of the host MoO3. Upon reaction with n-BuLi, the new intercalated 

material LixMoO3 not only showed an increase in the interlayer spacing when compared 

with the host but also maintained its crystalline ordered structure due to the sharpness of 

the peaks present. Upon ion-exchange with the organic guest monomers, it was shown that 

the crystalline ordered structure was maintained overall.  

There is an increase in the interlayer spacing during ion-exchange for the synthesis 

of MoO3/PDA composite with an overall interlayer spacing change 6.43Å (020 peak 

appearing at 2θ ≈ 6.7Å). This suggests that the guest species is oriented planar and parallel 

to the host inorganic layers. Overall the MoO3/PDA material shows good structural 

integrity upon ion-exchange. This maintaining of the structural integrity is further shown 

for the MoO3/2A5PhPyr and MoO3/2AmThia materials with interlayer spacings of 12.98Å 

(a change of 6.23Å with the 020 peak appearing at 2θ ≈ 6.8Å) and 13.38Å (a change of 

6.63Å with the 020 peak appearing at 2θ ≈ 6.9Å) respectively. It had been mentioned in a 
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previous study (170) that this increase in interlayer spacing is characteristic of the oligomer 

or polymer backbone lying perpendicular to the plane of the inorganic layers. The peaks in 

the XRD that corresponds an increased interlayer spacing are, overall, sharp and strong as 

opposed to broad and diffuse (which could arise as a result of varying interlayer spacings 

which can occur if the intercalant is in a double layer conformation). The absence of a 

broad and diffuse peak for the expanded (020) would suggest a monolayer conformation of 

the intercalant. Furthermore, the sharp and well resolved expanded (020) peaks suggest 

good long structural order.  

For MoO3/5AQ the shifted (020) peak corresponds to the interlayer spacing of 

12.80Å (a change of 6.05Å with the 020 peak appearing at 2θ = 6.8Å). In the case of 

MoO3/5AQ, the (020) exhibits a slightly broadened or diffuse character that does not 

further show other discerning peaks. This may be due to structural defects in the c-axial 

direction (such as screw defects or step defects) due to intercalation. Some of the 

characteristic MoO3/5AQ peaks at higher 2θ angles are still sharp but weaker which may 

suggest that there may be a small unintercalated phase present in this material. In 

MoO3/An the shifted (020) peak corresponds to the interlayer spacing of 12.27Å (a change 

of 5.52Å with the 020 peak appearing at 2θ = 7.1Å). The expanded (020) peak in 

MoO3/An is weaker than the previous MoO3 materials but also sharp which may suggest a 

minor amorphous phase could exist in the MoO3/An material.  

 Overall the X-ray diffraction data shows that there has been successful 

interlayer expansion which corresponds to the organic guest species being present. The 

sharp characteristic (020) suggests that there is little to no defects arising from the 

intercalation reaction, except a small degree occurring for that in MoO3/5AQ. 
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Figure 4.47 - XRD diffractograms for the MoO3  intercalated materials for A) MoO3, B) LixMoO3, C) MoO3/PDA, D) MoO3/2A5PhPyr, E) MoO3/5AQ, F) MoO3/2AmThia and G) MoO3/An
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Table 4.7 - Infra-red and Raman wavenumbers (cm
-1

) for MoO3 intercalated materials 

MoO3 LiMoO3 MoO3/PDA MoO3/2A5PhPyr MoO3/5AQ MoO3/2AmThia MoO3/An Assignment 

IR Raman IR Raman IR Raman IR Raman IR Raman IR Raman IR Raman Organic Guest 

          2884 3376   3367   3109   3566   
C-H, O-H and NH2,  

=NH stretching 
          2796 3301   3240       3037   

          2659 3182           2943   

                              

        2119           2119       
                               

        1991 1992                 

NH2, >NH, NH3
+ bending  

and benzene C-C and N=C stretching 

            1667               

                1635 1635         

            1622       1621       

        1613               1615   

            1598 1595   1591     1590   

                1589   1582     1585 

                        1576   

        1557   1550   1564   1550       

                1517           

                              

        1489 1498 1498   1471 1464 1489   1487   

Benzenoid C=C stretching         1457   1437   1431           

        1417 1403             1417   
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Table 4.7 (cont) - Infra-red and Raman wavenumbers (cm
-1

) for MoO3 intercalated materials 

MoO3 LiMoO3 MoO3/PDA MoO3/2A5PhPyr MoO3/5AQ MoO3/2AmThia MoO3/An Assignment 

IR Raman IR Raman IR Raman IR Raman IR Raman IR Raman IR Raman Organic Guest 

        1370   1339 1351 1362 1362     1324   

Quinoid C=C  
stretching 

                1306         1317 

                            

          1254 1275   1249 1221 1270       

            1246               

            1221   1219           

                            

          1162 1154               

                        
 

  

                              

                            Inorganic Host 

                        1096   

M=O stretching           1030             1031   

    1000   1006   1006   1005   1005       

971 997   977       995       993   993 Mo-O-Mo bending 
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Table 4.7 (cont) - Infra-red and Raman wavenumbers (cm
-1

) for MoO3 intercalated materials 

MoO3 LiMoO3 MoO3/PDA MoO3/2A5PhPyr MoO3/5AQ MoO3/2AmThia MoO3/An Assignment 

IR Raman IR Raman IR Raman IR Raman IR Raman IR Raman IR Raman 
Inorganic Host  

and Organic Guest 

        955 972 971 968 943   952   945   

M=O stretching 

    915     924 943           922   

        900   933   901           

            913               

808 820 816       898 822     804 820 884 819 

            838           841   

            830               

        729 798 761   783       735   

          777     700       704   

          736                 

                    677 667   667 C-S stretching 

646 668 667   667 654 667           661   
M=O stretching 

    630       644               

597   600   601 605 603   600   596   617   Mo-O-Mo bending 
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Table 4.7 (cont) - Infra-red and Raman wavenumbers (cm
-1

) for MoO3 intercalated materials 

MoO3 LixMoO3 MoO3/PDA MoO3/2A5PhPyr MoO3/5AQ MoO3/2AmThia MoO3/An Assignment 

IR Raman IR Raman IR Raman IR Raman IR Raman IR Raman IR Raman Organic Guest 

        579 587             577   Mo-O-Mo Bending 

        572   569   546       557   

Mo=O stretching 

    561   568                   

    557   561                   

    552   554 555 553     485         

548   547   548                   

        542 275                 

        534                   

        531                   

        528                   

  476   
 

              474   468 

  380   456       337       378   379 

  368   360       292       338   338 

  339   348       250       283   286 

  285   319       155       237   240 

  248   264       127       215   216 

  220   228               197   197 

  201   200               148   149 

  158   181               125   124 

  130   139               112   114 

  118   
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4.1.2.2) Infra-red and Raman Spectroscopy 

The infra-red and Raman vibrational transitions for the MoO3 intercalated materials are 

shown in Table 4.7 (see Appendix B.1 and B.2 for full spectra). Peaks appearing within the 

region 1000-400 cm
-1 

correspond to the MoO3 phase of the material
 
where majority of the 

peaks correlate to the Mo=O stretching modes with peaks around 600 cm
-1

 corresponds to 

the Mo-O-Mo bending modes. Upon intercalation of Li
+
, we see these peaks shifting 

wavelengths consistent with the presence of an intercalated phase (as previously discussed 

in section 1.5.2) for V2O5). The new peaks appearing below 1100 cm
-1

 correspond to the 

new intercalated phase Mo=O vibrational transitions whereas other peaks have shown to be 

directly shifted (e.g. 971 cm
-1

 shifts to 1000 cm
-1

). This occurs due to the interaction 

between the Li
+
 ions and the Mo=O oxygen leading to reduced vibrational space for this 

stretching mode. Some peaks in the IR correlate to the pristine host MoO3 which suggests 

that there are two phase present in this material which difficult to determine from the XRD 

due to a loss in the MoO3 characteristic peaks at higher 2θ angles. However, for LixMoO3, 

more noticeably, the Raman data shows a more significant shift which is indicative of the 

intercalated phase. The trend in the shifting of the peaks in the IR and Raman are also 

consistent when Li
+
 are exchanged for the organic cations.  

The IR spectrum of MoO3/PDA shows a new peak appearing at 1457 cm
-1

 

corresponding to the benzenoid ring system while the peaks appearing at 1417 cm
-1

 and 

1370 cm
-1

 correspond to the quinoid ring system. This would suggest that the organic 

intercalant is in an oligomeric or polymeric form with some regions in their protonated 

phase (seen previously in Figure 4.4). 
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Figure 4.4 – I) Polymerised PDA to produce a substituted polyaniline form, II) Polymerised PDA with two phases 
present; a non-ladder phase and a ladder oligomer phase and III) Fully polymerised PDA producing the Ladder like 

polymer 

 

Furthermore, the presence of the secondary amine, >NH, bending modes appearing at 1557 

cm
-1

 and 1489 cm
-1

 along with -NH3
+
 or –NH2 suggesting  the presence of the non-ladder-

like oligomeric or polymeric structure (a similar structure to that seen in Figure 4.4 with 

terminal NH3
+
 or –NH2 groups on the benzene ring).  

However, there is still the presence of non-shifted peaks which further suggests that 

a MoO3 phase may still be present in MoO3/PDA. This is similarly shown in the 

MoO3/PDA Raman spectrum where peaks appearing above 1000cm
-1

 correspond to the 

presence of the polymer in the material and the shifting to lower wavenumbers corresponds 

to the presence of the polymer in the interlayer spacing restricting the Mo=O and Mo-O-

Mo stretching and bending modes.  

III 

II 

I 
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This trend is further seen in the other MoO3 intercalants (including the intercalation 

of polyaniline via recrystallization). For the intercalation of 2A5PhPyr, 5AQ, 2AmThia 

and An the presence of a secondary amine, >NH, and the possible –NH3 or –NH2 groups 

confirms that the structure of these oligomer or polymer materials is analogous to that of 

image I in Figure 4.4 with some regions of the oligomer or polymer being protonated and 

the polymerisation occurring through the primary amine.  

For MoO3/AmThia the presence of the C-S stretching mode (appearing at 677 cm
-1

 

in the IR) and C=N (appearing at 1621 cm
-1

) confirms the presence of the AmThia in the 

material. 

 In some cases (e,g. MoO3/2A5PhPyr) extra peaks are observed in the spectrum 

which could arise from a mix of blue and red-shifted peaks with respect to the MoO3 host 

peaks. The blue-shifted peaks can arise where the Li
+
 has been removed but the layer 

(through step defects for example) may remain expanded leading to an increase in 

vibrational space for the Mo=O bonds. 

 Similarly, for MoO3/An the presence of the organic peaks are analogous to that 

seen in MoO3/PDA and confirms that once dissolved in water, the MoO3 layers restack 

around the organic guest species leading to the increased interlayer spacing observed in the 

XRD data. However, unlike the case for the ion-exchange mechanism, this method results 

in a random stacking of the inorganic layers leading to the broader diffuse peaks compared 

to that for the materials synthesised via ion-exchange. 

The interlayer expansion observed from the XRD is caused by the presence of the 

organic guest species which in these systems are also suspected to be its oligomeric or 

polymeric forms. 

 

 

 



 

178 
 

4.1.2.3) TGA and ICP-AES 

 

Figure 4.48 - % Weight Loss via TGA and ICP-AES for MoO3 intercalated materials after the initial mass loss due to 
water. The error bars in the ICP-AES where obtained in-situ via three consecutive measurements as described in 

section 3.1.4). 

Figure 4.48 shows the total percentage loss in mass determined by TGA and ICP-AES 

independently (for full TGA data see Appendix B.3). From the ICP-AES the stoichiometry 

was calculated using the same method as that for V2O5 materials. From the ICP-AES the 

stoichiometry was calculated by determining the total Mo content in the digested sample 

(assuming the stoichiometry of the Mo host to be MoO3) and comparing this to the 

theoretical Mo content of the host (which is the total Mo content in the digested pristine 

MoO3 host). The difference in Mo content between the host and the composite material 

was concluded to arise from the presence of the organic guest. The stoichiometries were 

then determined to be PDA0.2MoO3, An0.19MoO3, 2A5PhPyr0.18MoO3, 5AQ0.17MoO3 and 

AmThia0.23MoO3. We initially see that for both TGA and ICP-AES analysis that the guest 

content is consistent in all materials. The initial loss in mass for all samples around 100
o
C 

in the TGA is related to either loosely bound water on the material surface or in the 
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interlayer spacing due to the aqueous nature of the reactions. As in the V2O5 systems, the 

continuous gradual loss in mass over the remaining temperature range thereafter reflects 

the guest species oligomeric or polymeric nature (as previously concluded from the IR and 

Raman data). If the guest species were not oligomeric or polymeric in form one would 

expect the guest species to be removed around a single temperature and not over a large 

range. As discussed previously (section 1.5.2) the stoichiometry’s determined here are 

consistent with that related to either a non-planer polymer backbone (i.e. a helical like 

structure in the interlayer spacing) or a double layer like conformation. This would explain 

the large increase in the interlayer spacing observed in the XRD data. 

 

4.1.2.4) Optical Spectroscopy 

Table 4.8 - Optical band-gaps determined from UV-Visible spectroscopy tauc plots for the MoO3 composite materials 

  Optical band-gap (eV) 

Compound Calculated Optical Band-gap Lit (271,272) 

MoO3 3.16 3.05 - 3.2 

MoO3/PDA 3.45   

MoO3/2A5PhPyr 3.57   

MoO3/AmThia 3.68   

MoO3/5AQ 3.66   

MoO3/An 3.78   

 

The calculated optical band-gaps for the MoO3 composite materials are shown in Table 4.8 

(see Appendix B.4 for full UV-Visible reflectance spectra and their associated tauc plots) 

with (Figure 4.50, Figure 4.51 and Figure 4.51) showing an example of the absorption 

spectrum of MoO3/PDA and the tauc plots of MoO3 and MoO3/PDA respectively where 

the optical band-gap is determined by extrapolation of the linear part of the tauc plots. 

Overall it is shown that the intercalated materials exhibit a larger band-gap than that for the 

pure MoO3 host (which shows good correlation with the literature band-gap range). The 

most plausible explanation lies in the fact that as the organic material is intercalated into 
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the interlayer spacing, it is disrupting the band-structure of the bulk inorganic. The 

resulting decrease in the band overlap between inorganic layers leads to a larger band-gap.  

 

  

Figure 4.49 – UV-Vis Absorption spectrum for MoO3/PDA 

 

 

 

 

Figure 4.50 - Tauc plot for MoO3 
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Figure 4.51 - Tauc plot for MoO3/PDA 

For the MoO3 composite materials, a small peak or shoulder approximately around ~ 470 

nm to 530 nm (region A in Figure 4.49) which does not persist in the tauc plots is present 

in the UV-Visible spectra. In the MoO3 composite this peak or shoulder appears with an 

energy between ~ 2.25 eV to 2.76 eV which is not associated with the MoO3 host material. 

It is more likely to be a charge-transfer analogous to that of the V2O5 systems occurring 

between the inorganic host and the organic guest species. However, in the MoO3 systems 

this charge-transfer peak is more prevalent than in the V2O5 systems which may suggest 

that there is a better band overlap between host and guest in the MoO3 systems. This is 

further demonstrated in the increase in the band-gap of these MoO3 materials, which 

exhibits a band-gap increase to a much lesser extent to that of the V2O5 systems. The band-

gap of the MoO3 intercalated materials is found to be within the range of 3.45 eV – 3.78 

eV with no remnant peak in the region characteristic of the host material with the amount 

of band-gap increase dependant on the specific organic guest present. The lack of 

unintercalated host material was previously seen in the XRD data. As with the V2O5 

systems, from the tauc plots it can be determined that any changes in the overall properties 

of the material are caused by intercalation.  
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4.1.2.5) X-ray Photoelectron Spectroscopy (XPS) 

 

Figure 4.52 – XPS scan for the MoO3 host showing the Mo3d environments (black) with Mo3d5/2 (orange) and Mo3d3/2 
(blue) environments fitted with a single environment respectively (orange; 233.18 eV and blue; 236.28 eV) 

 

 

Figure 4.53 – XPS scan for the MoO3 host showing the O1s environment (black) fitted with a single environment 
(orange; 530.78 eV) 

Figure 4.52 and Figure 4.53 show the XPS scans for the molybdenum and oxygen 

environments in the pure host MoO3. In Figure 4.52 the Mo3d5/2 peak appears at 233.18 eV 

and Mo3d3/2 peak 236.28 eV is consistent with the literature values (233.1 eV and 236.3 

eV respectively) (273,274) with both fitted for a singular environment correlating to Mo
6+

 

present. Figure 4.53 shows that the O1s peak appears 530.78 eV consistent with the 
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literature value for this oxygen environment in the host (275) and is fitted to a singular 

environment. 

 

 

 

Figure 4.54 – XPS scan for LiMoO3 host showing the Mo3d environments (black) with Mo3d5/2 (orange and purple) 
and Mo3d3/2 (blue and red) environments fitted with a two environments respectively (orange; 233.18 eV, purple; 

231.18 eV, blue; 235.78 eV and red; 234.28 eV) 

 

 

Figure 4.55 - XPS scan for LiMoO3 showing the Li1s environment 
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Figure 4.56 – XPS scan for LiMoO3 host showing the O1s environment (black) fitted with three environments (orange; 
530.78 eV, blue; 531.78 eV and red; 533.08 eV) 

Figure 4.54, Figure 4.55 and Figure 4.56 show the XPS scan for LiMoO3 showing the 

Mo3d, Li1s and O1s environments respectively. In a similar fashion to LiV2O5 (Figure 

4.20), the Mo3d peaks in Figure 4.54 both show two environments present. The main 

environments (orange and blue) correspond to the presence of Mo
6+

 (orange and blue fitted 

peaks appearing at 233.18 eV and 235.78 eV respectively which relate closely with the 

peaks seen in the pure host material in Figure 4.52). The new environments (purple and red 

fits) correspond to the presence of reduced Mo
5+

 appearing at 231.18 eV (Mo3d5/2) and 

234.28 eV (Mo3d3/2) which correlates well with the literature value for these two peaks 

(231.1 eV and 234.2 eV respectively)(276). This suggests (as in the case of LiV2O5) that 

the reaction with n-BuLi follows a redox reaction resulting in the reduction of Mo
6+

 to 

Mo
5+

 which further supports the fact that the signal appearing in the ESR for this material 

(Figure 4.76) arises from a localised electron in the inorganic layers. Due to the low atomic 

mass of lithium, it is difficult to detect in the XPS hence the difficulty in fitting the data in 

Figure 4.55, however, a real peak appears to be present (noisy nonetheless) suggesting the 

successful insertion of Li
+
 into MoO3. There are similarities in the peaks arising for the 

O1s environment in this material and that seen for LiV2O5 (Figure 4.22) where the peak 

appearing for fit 3 is close to that for the O1s peak for water molecules (533.10 eV) (266) 

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

525530535540545

In
te

n
si

ty
 (

a.
u

.)
 

Binding Energy (eV) 

Background

O1s scan

O1s fit 1

O1s fit 2

O1s fir 3



 

185 
 

which from the TGA could be from any loosely bound water molecules on the sample 

surface.  

 

 

Figure 4.57 – XPS scan for the MoO3/PDA showing the Mo3d environments (black) with Mo3d5/2 (orange) and 
Mo3d3/2 (blue) environments fitted with a single environment respectively (orange; 233.08 eV and blue; 236.28 eV) 

 

 

Figure 4.58 - XPS scan for MoO3/PDA showing the Li1s environment 
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Figure 4.59 – XPS scan for MoO3/PDA showing the O1s environment (black) fitted with three environments (orange; 
530.58 eV, blue; 532.18 eV and red; 533.48 eV) 

 

 

Figure 4.60 – XPS scan for MoO3/PDA host showing the N1s environment (black) and fitted with a single environment 
(orange; 399.08 eV) 

Figure 4.57, Figure 4.58, Figure 4.59 and Figure 4.60 shows the XPS scan for MoO3/PDA 

showing the Mo3d, Li1s, O1s and N1s environments respectively. Figure 4.58 shows no 

presence of Li
+
 indicating complete exchange, and an N1s signal (Figure 4.60) is now 

present from the organic intercalant. However, the Mo environments (Figure 4.57) appear 

to correlate well for those for Mo
6+

 host material (Figure 4.52) and are unlike those seen 

for the reduced Mo
5+

 peaks seen in LiMoO3. It must be noted that due to XPS being a 
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surface specific technique, the Mo
5+

 centres may not be found within the detection depth of 

this technique. Figure 4.59 shows three O1s environments which match closely to those 

seen in LiMoO3 and are analogous to that for the MoO3/PDA’s V2O5 counterpart. The main 

peak (fit 1) appearing ~530 eV corresponds well to that for the host O1s environment 

(Figure 4.53) whereas the two minor environments correspond well to those seen for 

LiMoO3 (Figure 4.56). Fit 2, appearing ~532 eV, appears to correspond to a small change 

in the O1s environment due to interaction with the intercalated organic material. Fit 3, 

appearing ~533 eV, corresponds to O1s appearing from any loosely bound water 

molecules which may cause the initial mass loss appearing at ~100
o
C in the TGA. the N1s 

environment (Figure 4.60) seen for MoO3/PDA does not appear to be as noisy as its V2O5 

composite counterparts. The single environment (appearing at ~ 399 eV) corresponds well 

to neutral polyaniline the like structure (264,265). 

 

 

Figure 4.61 – XPS scan for MoO3/2A5PhPyr showing the Mo3d environments (black) with Mo3d5/2 (orange) and 
Mo3d3/2 (blue) environments fitted with a single environment respectively (orange; 232.8 eV and blue; 236 eV) 
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Figure 4.62 - XPS scan for MoO3/2A5PhPyr showing the Li1s environment 

 

 

 

 

Figure 4.63 – XPS scan for MoO3/2A5PhPyr showing the O1s environment (black) fitted with three environments 
(orange; 530.4 eV, blue; 532.1 eV and red; 533.4 eV) 
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Figure 4.64 – XPS scan for MoO3/2A5PhPyr host showing the N1s environment (black) and fitted with a single 
environment (orange; 399 eV) 

Figure 4.61, Figure 4.62, Figure 4.63 and Figure 4.64 shows the XPS scan for 

MoO3/2A5PhPyr showing the Mo3d, Li1s, O1s and N1s environments respectively. As 

previously seen for MoO3/PDA (Figure 4.57), MoO3/2A5PhPyr exhibits a singular Mo
6+

 

environment (Figure 4.61 where Mo3d5/2 appears ~ 232.8 eV and Mo3d3/2 appears ~ 236 

eV). These peaks correspond well with the literature values for the host Mo
6+

 environments 

(Figure 4.52) suggesting no reduced Mo
5+

 present. The ESR, on the other hand, for this 

material suggested there was a small presence of reduced Mo
5+

 in the bulk material 

(similar to that seen for V2O5/2A5PhPyr). It would appear, therefore, that due to the 

surface specific nature of XPS, this XPS spectrum is suggesting potential oxidation of the 

surface of this material. This most likely to have occurred during the washing stages of this 

material and any Mo
5+

 present in the material is further than the detection depth for this 

XPS analysis. The Li1s environment is also similar to that seen for MoO3/PDA (Figure 

4.58) where the XPS spectrum shows no presence of the Li
+
 and therefore suggests that the 

Li
+
 were successfully exchanged for organic intercalant. The O1s environment (Figure 

4.63) is also similar to that seen for MoO3/PDA where three environments are now seen in 

contrast to the host MoO3 O1s environment (Figure 4.56). The MoO3/2A5PhPyr O1s fit 

(appearing ~ 530.4 eV) appears to correspond well with the literature value seen previously 
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for the MoO3 O1s environment. Fit 2 (appearing at ~ 532 eV) and fit 3 (appearing at ~ 533 

eV) further correspond well to the environments seen previously where fit 2 corresponds to 

an intercalant interacting with the MoO3 oxygen and fit 3 corresponds to that for loosely 

bound water molecules on the material surface (or intercalated). Furthermore, similar to 

MoO3/PDA (Figure 4.60) once again the N1s environment for MoO3/2A5PhPyr exhibits a 

singular fit. However, there is a small shoulder appearing ~ 400 eV which may correspond 

to another N1s environment. Two environments are expected in this material, one for the 

pyridine nitrogen and one for the amine group. The two environments may appear to be 

very close and as such the broad peak being exhibited in this spectrum could be a result of 

a combination of the two expected environments. 

 

 

Figure 4.65 – XPS scan for MoO3/5AQ showing the Mo3d environments (black) with Mo3d5/2 (orange) and Mo3d3/2 
(blue) environments fitted with a single environment respectively (orange; 232.63 eV and blue; 235.84 eV) 
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Figure 4.66 - XPS scan for MoO3/5AQ showing the Li1s environment 

 

 

 

 

 

Figure 4.67 – XPS scan for MoO3/5AQ showing the O1s environment (black) fitted with three environments (orange; 
530.24 eV, blue; 531.81 eV and red; 533.24 eV) 
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Figure 4.68 – XPS scan for MoO3/5AQ host showing the N1s environment (black) and fitted with a single environment 
(orange; 398.74 eV) 

Figure 4.65, Figure 4.66, Figure 4.67 and Figure 4.68 shows the XPS scan for MoO3/5AQ 

showing the Mo3d, Li1s, O1s and N1s environments respectively. As seen in the previous 

spectra, the Mo3d environment is fitted for a single environment for both Mo3d5/2 and 

Mo3d3/2 (peaks appearing at ~ 233 eV and 236 eV respectively). These peaks match 

closely with those for the host MoO3 and literature values for Mo
6+

 environments (Figure 

4.52). This spectrum suggests that there is no reduced Mo
5+

 present in the material 

(specifically no Mo
5+

 is present within the detection depth for the XPS technique). 

Furthermore, as seen with all composite materials synthesised by ion-exchange (including 

the V2O5 materials) Figure 4.66 shows no Li
+
 present in the material as expected. 

Combined with the previous characterisation techniques, this is indicative of a successful 

ion-exchange mechanism between the Li
+
 ions and the 5AQ cations. The O1s 

environments (Figure 4.67) however, are slightly different from those seen in the previous 

spectra. The three environments (fit 1, 2 and 3) appear in the same positions as those of the 

previous spectra suggesting that the main peak (fit 1) corresponds to the MoO3 oxygen 

environment while fit 2 corresponds to any oxygen interacting with the organic intercalant 

causing a small change in the oxygen environment and fit 3 corresponds to loosely bound 

water on the surface or in the interlayer spacing of the material. The difference between 
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this spectrum and that for the previous MoO3 composite materials lies in the intensities of 

these environment fits. It must be noted that the dip at the apex of the scanned peak makes 

fitting the data more complex than for the previous spectra. It is shown that there appears 

to be a large amount of interaction occurring between the 5AQ intercalant and the MoO3 

oxygen and that this sample could be the most hydrated of the samples thus far. Once 

again, the N1s environment (peak appearing at ~ 398 eV) corresponds to a single neutral N 

environment and appears in the same position as the previous N1s XPS spectra. As with its 

V2O5/5AQ counterpart, the noise-to-signal ratio makes fitting more than one fitting 

difficult. There could, therefore, be more than a single N environment present in the 

material corresponding to the organic phase of the composite.  

 

 

Figure 4.69 – XPS scan for MoO3/AmThia showing the Mo3d environments (black) with Mo3d5/2 (orange) and Mo3d3/2 
(blue) environments fitted with a single environment respectively (orange; 232.64 eV and blue; 235.74 eV) 
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Figure 4.70 - XPS scan for MoO3/AmThia showing the Li1s environment 

 

 

Figure 4.71 – XPS scan for MoO3/2AmThia showing the O1s environment (black) fitted with three environments 
(orange; 530.32 eV, blue; 531.84 eV and red; 533.24 eV) 
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Figure 4.72 – XPS scan for MoO3/2AmThia host showing the N1s environment (black) and fitted with a single 
environment (orange; 398.62 eV) 

Figure 4.69, Figure 4.71 and Figure 4.72 shows the XPS scan for MoO3/2AmThia showing 

the Mo3d, Li1s, O1s and N1s environments respectively. Once again it is shown that there 

is a single environment for the Mo environment (Mo3d5/2 peak appearing ~ 232 eV and 

Mo3d3/2 peak appearing at ~ 235 eV) and correspond well to the environments found for 

the pure host MoO3 and literature values (Figure 4.52). Once again this suggests that there 

was limited to no redox chemistry between the organic intercalant and the inorganic host 

material. Furthermore, there appears to be no Mo
5+

 centres present in this material (or at 

least within the detection depth for this analysis). The reduced Mo
5+

 was likely re-oxidised 

during the washing procedure. The oxygen environments are once again similar to those 

seen in the previous spectra with three environments now present upon intercalation. The 

three environments corresponding to the MoO3 oxygen environment (fit 1 ~ 530 eV) MoO3 

oxygen interacting with the organic intercalant (fit 2 ~ 531 eV) and any oxygen from any 

loosely bound water molecules on the surface or in the interlayer spacing of the material 

(fit 3 ~ 533 eV). The N1s environment also shows a single fitted environment (Figure 

4.72) but due to the signal-to-noise ratio compared to the other spectra it is possible that 

more than one fitted environment is present corresponding to the protonated phase of the 

organic intercalant (as seen in the IR and Raman data).  
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Figure 4.73 – XPS scan for MoO3/An showing the Mo3d environments (black) with Mo3d5/2 (orange) and Mo3d3/2 
(blue) environments fitted with a single environment respectively (orange; 233 eV and blue; 236.2 eV) 

 

 

 

Figure 4.74 – XPS scan for MoO3/An showing the O1s environment (black) fitted with two environments (orange; 
531.2 eV and blue; 533 eV) 
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Figure 4.75 – XPS scan for MoO3/An host showing the N1s environment (black) and fitted with two environments 
(orange; 399 eV and blue: 402.4 eV) 

Figure 4.73, Figure 4.74 and Figure 4.75 show the Mo3d, O1s and N1s environments 

respectively for MoO3/An synthesised via recrystallization. In Figure 4.73 we see that once 

recrystallized within the MoO3 structure there appears to be no redox chemistry with the 

inorganic layers as no Mo
5+

 was detected via XPS (or within the detection depth of the 

technique). The peaks appearing in Figure 4.73 are close to those for the host MoO3 

environments relating to Mo
6+

 (Figure 4.52). Since we know that polyaniline is present in 

the interlayer spacing (determined previously from IR, Raman, TGA and ICP-AES 

analysis) it likely that polymerisation occurred while the aniline monomer was in solution 

with the inorganic layer growing around the oligomeric or polymeric form of aniline in 

solution resulting in the synthesised material. This, however, does not immediately rule out 

the possibility of the polyaniline not being present in its doped emeraldine form. From 

Figure 4.75 it can be seen that there are at least two nitrogen environments which are 

dissimilar to the previous spectra of the MoO3 composite materials. The peaks of the two 

environments (appearing at ~ 399 eV and 402 eV) which corresponds closely to that for 

the emeraldine form of polyaniline (264,265) as previously seen in V2O5/AnAn
+
. It is 

likely that due to the noise-to-signal ratio that more than two environments could be fitted 

which may correspond to further polaron features of emeraldine. The IR and Raman 
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spectra showed the presence of the benzenoid and quinoid ring systems along with the 

presence of NH3
+
 and >NH

+
 further suggesting that the oligomeric or polymeric 

polyaniline is present in its emeraldine form. The O1s Figure 4.75 is further different from 

that from the previous spectra. Here, it is seen that there a minimum of two oxygen 

environments present. The two environments (appearing at ~ 531 eV and 533 eV) 

correspond to the oxygen in the MoO3 interacting with any organic intercalant and that for 

the present MoO3 oxygen environment respectively as seen in previous spectra. It must be 

noted that the broad shoulder that appears after the apex between ~ 532 eV and 533 eV 

could contain another oxygen environment similar to that seen for the previous spectra. 

 

4.1.2.6) Electron Spin Resonance Spectroscopy (ESR) 

The ESR spectrum of the pure host MoO3 showed no peaks. 

 

Figure 4.76 - LiMoO3 ESR spectrum 

In Figure 4.76, the ESR spectrum of LixMoO3 shows a single asymmetric peak centred at a 

g-factor value of 1.9727 with a peak-to-peak width of 69 Gauss. The spectrum is similar to 

that seen for the LixV2O5 material (Figure 4.39). The spectrum also exhibits a similar 

asymmetry to that for LixV2O5 suggesting successful redox reaction with n-BuLi. The 

sharpness and low g-factor value compared to that for the free electron (g-factor = 
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2.00232) suggests that the signal arises from a localised electron in the inorganic host and 

as such the formation of the reduced Mo
5+ 

centres. The fact that the peak does not exhibit 

any hyperfine structure suggests that the electron transfer has reduced the Mo
6+

 to Mo
5+

 is 

not experiencing any nuclear interaction with Mo ions. This further supports the presence 

of a localised electron in the inorganic layers from the redox reaction. The asymmetry and 

any enhanced broadening exhibited in the spectrum could arise from any structural defects 

caused by the intercalation process such any stacking, screw or dislocation defects in the 

bulk and/or surface of the material. Furthermore the concentration of Mo
5+

 centres may be 

enough to be considered as impurities leading to the material being treated as an 

inhomogeneous material. It is unlikely that other Mo oxides may have been formed 

contributing to the asymmetry as the presence of these systems were not present in the UV-

Vis or XRD data. 

 

Figure 4.77 - MoO3/PDA ESR spectrum 

Figure 4.77 shows the ESR spectrum MoO3/PDA in which we can see two distinct 

features. The first is a weak but sharp peak centred at a g-factor value of 2.00383 with a 

peak-to-peak width of 7.91 Gauss. The second feature is a broader weaker asymmetric 

signal centred at a g-factor value of 1.929 (3558 Gauss). The second feature appears to be a 

much weaker signal (in respect to the sharper first feature). This broad peak is possible to 
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be part of a hyperfine structure, however, it is possible that the hyperfine structure is weak 

and not be discernible from the background. Due to this the broad peak is treated as not 

relating to any hyperfine structure. However due to the high g-factor value of the sharp 

peak compared to that for the free electron (g-factor = 2.00232) suggests that this peak 

arises from a localised electron on the organic material. The XPS for this material Figure 

4.57 showed no presence of the Mo
5+

 analogous to some of the V2O5 systems which also 

did not exhibit a reduced V
4+

 peak. The peak in Figure 4.77 is arising from an unpaired 

electron in the organic, it is possible that the reduced Mo
5+

 was oxidised back to Mo
6+

 by 

donating its electron to the organic guest. This would thus make the organic guest an anion 

(n-type). However, it will be demonstrated (in section 4.2.2) that the MoO3 composites 

exhibit p-type behaviour. As such, a neutral MoO3 and n-type organic intercalant should 

exhibit n-type behaviour in the bulk material overall. A more likely scenario is the 

oxidation of these Mo
5+

 centres during the washing process or from being in the presence 

of air of a long period of time resulting in the reformation of the Mo
6+

 and the organic 

intercalant remaining in its p-type phase. 

 

 

Figure 4.78 - MoO3/2A5PhPyr ESR spectrum 
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An asymmetric peak with a shoulder is seen in Figure 4.78 for MoO3/2A5PhPyr. The 

spectrum is centred with a g-factor value of 1.97545 with a peak-to-peak width of 47.82 

Gauss. The shoulder appearing in the negative region appears at a g-factor value of 

1.93085 (3598.84 Gauss). The spectrum appears to be very similar to that seen for 

LiV2O5/2A5PhPyr (Figure 4.44) except for this peak is significantly weaker than that for 

its V2O5 counterpart. As seen previously for LixV2O5 the low value for the g-factor when 

compared to that for the free electron (g-factor = 2.00232) and the sharpness of this peak 

suggests that the signal arises from a localised electron on the inorganic phase of the 

material. The presence of no hyperfine structure further suggests that the electron resulting 

in the formation of the Mo
5+

 centres is not interacting with any Mo nuclei including its 

own nucleus. The intensity of this peak is similar to that for V2O5/AnAn
+
 (Figure 4.41) and 

as such a similar conclusion can be drawn that the concentration of unpaired electrons in 

this material could be small. Due to the UV-Vis data showing a single phase of MoO3 it is 

unlikely that other reduced Mo oxide phases are present and unlikely that this shoulder in 

the ESR arises due to the presence of a different MoOx phase. The appearance of the 

shoulder could be resultant either from a different MoO3 phase present in the material 

arising as a consequence of the intercalation reaction or an axial system. As seen with the 

analogous V2O5 systems, the broadness and asymmetry exhibited in the spectrum could be 

due to any defects in the c-axial direction (stacking defects for example) or from other 

defects (such as screw, dislocations or step defects). As seen for MoO3/PDA, the XPS of 

this material (Figure 4.61) also exhibited no Mo
5+

 environments and therefore the same 

conclusions can be drawn as was for MoO3/PDA that due to the XPS being a surface 

specific technique showed no Mo
5+

 on the surface whereas the ESR signal is representative 

of the bulk material which may contain Mo
5+

 centres. It is unlikely that the Mo
5+

 is 

oxidised back to Mo
6+

 by donation of its electron to the organic intercalant as the signal in 

this spectrum arises from the inorganic phase. It is more likely that this oxidation occurring 
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during the washing process or due to the material being in contact with air for a prolonged 

period of time. However, in this case, it may have only occurred in the surface layers and 

thus the Mo
5+

 giving rise to this signal may lie deeper in the bulk material than possible for 

detection via XPS. 

 

 

Figure 4.79 - MoO3/5AQ ESR spectrum 

In Figure 4.79 we see the ESR spectrum for the MoO3/5AQ material. The spectrum is 

centred with a g-factor value of 1.97614 and is asymmetric with a shoulder appearing in 

the negative region which is less pronounced than that seen in Figure 4.78. The peak-to-

peak width of the signal is 40.52 Gauss. The same conclusions are drawn from this 

spectrum as with Figure 4.78 due to the similarities between the two. Furthermore, it is 

noticeable that this spectrum is analogous to its V2O5 counterpart (V2O5/5AQ, Figure 

4.45). As such, due to the low value for the g-factor when compared to that for the free 

electron (g-factor = 2.00232) and sharpness of the peak and its analogous structure to 

V2O5/5AQ, it is likely that the signal arises from a localised electron in the inorganic 

phase. The lack of any hyperfine structure further suggests that this electron is not 

interacting with any nuclei in the inorganic phase. The shoulder in the negative region 

could arise from the presence of a different MoO3 phase that is exhibited due to the 
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changes in the c-axial direction from the intercalation reaction. The asymmetry and 

broadening of the peak are once again attributed to any structural defects in the c-axial 

direction (stacking defects for example) or from other defects (such as screw, dislocations 

or step defects). As seen previously for MoO3/2A5PhPyr, the XRD and UV-Vis for this 

data shows no evidence for the presence of any other MoOx phases present and therefore it 

is unlikely that this shoulder arises due to the presence of these other oxide impurities. 

Again, the absence of the Mo
5+

 in the XPS of MoO3/5AQ suggests that the ESR signals 

must originate from a paramagnetic species below the detection limits of the XPS or from 

regions deeper than the escape depth of the photo-electrons. It is unlikely that the Mo
5+

 is 

oxidised back to Mo
6+

 by donation of its electron to the organic intercalant as the signal in 

this spectrum arises from the inorganic phase. It is more likely that this oxidation occurring 

during the washing process or due to the material being in contact with air for a prolonged 

period of time. However, in this case, it may have only occurred in the surface layers and 

thus the Mo
5+

 giving rise to this signal may lie deeper in the bulk material than possible for 

detection via XPS. 

 

 

Figure 4.80 - MoO3/AmThia ESR spectrum 
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The ESR spectrum for MoO3/AmThia (Figure 4.80) is asymmetric with two shoulders 

appearing at lower field strength (3496.58 Gauss) that do not appear to be related to the 

main feature in the spectrum. It is possible that these peaks are related to a hyperfine 

structure however it may be that some of the hyperfine structure is not discernible from the 

background. As such it is difficult to determine whether these shoulders are related to a 

hyperfine structure. The main feature is centred at a g-factor value of 1.93246 with a peak-

to-peak width of 73.35 Gauss. The spectrum appears to be similar to that seen in the 

previous samples in relation to the asymmetry of the main peak. Due to the low value for 

the g-factor when compared to that for the free electron (g-factor = 2.00232) and sharpness 

of the peak suggests that the main feature is related to that of a localised unpaired electron 

in the inorganic phase. Once again this spectrum exhibits a weak peak suggesting a low 

concentration of the unpaired electron present in the inorganic phase which may suggest 

that there was limited redox chemistry between the organic intercalant and the MoO3 host. 

The shoulders are analogous to the shoulders seen for the V2O5/1,4PDA-HQ system 

(Figure 4.46) which were attributed potential 
1
H hyperfine structure. It is possible for such 

a structure to exist in this material if an unpaired electron was found in the organic phase. 

It was previously confirmed that the AmThia in this system is in an oligomeric or 

polymeric form (from the TGA and ICP-AES) as well as the IR and Raman data 

confirming the presence of a protonated (p-type) phase of the organic guest species. As per 

the previous spectra, the asymmetry and any enhanced broadening of the main peak could 

be attributed to any c-axial defects or other defects (such as screw or dislocations). 

However, when comparing such a conclusion with that of the XRD data, the sharpness of 

the XRD peaks are such that such defects are less likely to be present in this material 

(unlike in the V2O5 systems). As seen from the previous ESR spectra, the XPS of this 

material (Figure 4.69) also exhibited no Mo
5+

 environments and therefore the same 

conclusions can be drawn as was for the previous ESR spectra. It is unlikely that the Mo
5+
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is oxidised back to Mo
6+

 by donation of its electron to the organic intercalant as the signal 

in this spectrum arises from the inorganic phase. Therefore if this mechanism does occur, 

the hyperfine 
1
H structure would arise from the organic guest. It is more likely that this 

oxidation is occurring during the washing process or due to the material being in contact 

with air for a prolonged period of time. However, in this case, it may have only occurred in 

the surface layers and thus the Mo
5+

 giving rise to this signal may lie deeper in the bulk 

material than possible for detection via XPS. 

 

 

Figure 4.81 - MoO3/An ESR spectrum 

However, unlike the previous spectra, when aniline was intercalated via the 

recrystallization method to form MoO3/An the ESR spectrum (Figure 4.81) appears to 

show no signal on first glance. On further inspection, it could be suggested that there is an 

extremely weak peak centred at a g-factor value of 2.00299 with a peak-to-peak width of 

16.84 Gauss. However, it is likely that there is no peak present in this spectrum and that 

under the conditions for recrystallization from an aqueous solvent, there appeared to be no 

redox chemistry between the intercalated aniline and the MoO3 material.  
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 Summary 

Overall it has been demonstrated that intercalation of the organic guest species into 

the interlayer spacing of MoO3 was successfully carried out. A full characterisation of the 

literature synthesised material MoO3/An has been presented using a novel intercalation 

method (via recrystallization from an aqueous solvent medium) not previously reported. 

The novel composite materials MoO3/PDA, MoO3/2A5PhPyr, MoO3/5AQ and 

MoO3/AmThia have been synthesised and fully characterised confirming the successful 

intercalation of the organic monomers within the MoO3 interlayer space. The increase in 

the interlayer spacing in the XRD data (Figure 4.47) corresponded to the presence of the 

intercalated organic guest species. The sharpness of the expanded (020) peak (unlike those 

seen in the analogous V2O5) suggested that the overall structural integrity was maintained 

throughout the composite materials upon intercalation. The ESR data suggested that there 

may have been some c-axial defects being exhibited in the materials which were not seen 

in the XRD and therefore it is likely that any defects were minimised during the synthesis 

and are only seen in the ESR due to the sensitivity of the technique. Furthermore the IR 

and Raman data (Table 4.7) supports the presence of the organic material within the 

interlayer spacing as the shifted host peaks are typical for intercalated MoO3 (seen 

previously seen in section 1.5.2)). The organic peaks present suggest that the organic 

intercalants are in their protonated (p-type) phases and due to the presence of the 

benzenoid and quinoid ring systems are oligomeric or polymeric in form. The calculated 

optical band-gaps for these materials also change upon intercalation and follow the trend 

seen in their analogous V2O5 systems where intercalation causes an increase in the optical 

band-gap. This was concluded to be due to poor band overlap between the organic and 

inorganic leading to the possible formation of an indirect semiconducting material. 

Furthermore, the expansion of the interlayer spacing could also result in the inorganic 

material exhibiting a band structure more similar to that seen for a single or multi-layer 
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system. In some cases the host region persists suggesting incomplete intercalation has 

occurred in these materials (which was seen in the IR and Raman data with a mix of 

shifted and unshifted host vibrational modes). The TGA and ICP-AES further confirmed 

independently that the organic intercalant was in its oligomeric or polymeric form within 

the interlayer spacing of the host material.  

 Along with these changes, the ESR and XPS data showed some changes in the 

chemical environment of these materials. Upon ion-exchange the XPS showed no Mo
5+

 

present, however, the ESR showed that a small concentration of these reduced Mo centres 

could exist beyond detection limit of XPS (due to XPS being a surface specific technique). 

The re-oxidation of any reduced Mo
5+

 centres on the surface layers of the material is 

determined to be likely to occur during the washing stages of the synthesis. Though the 

changes in the ESR and XPS generally showed a similar trend suggesting that any 

electrical and/or photoconductive properties of these materials (see section 4.2.2) is likely 

to arise due to the changes in the nature of the organic material within the interlayer 

spacing and not due to the inorganic host (as concluded for the V2O5 systems).  

 From the characterisation, ion-exchange and recrystallization mechanisms are 

proposed; 

 

Scheme 1 – Ion-exchange mechanism 

i)                                                   

 

ii)                                                 

                 
                       

 

* It is during this step re-oxidation of this reduced Mo
5+

 could occur on the material 

surface. 
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Scheme 2 – Recrystallization mechanism 

i)           
     
→                

ii)                       
    
→                    
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4.1.3) ZnPS3 Intercalation 

4.1.3.1) X-ray Diffraction 

Table 4.9 - Table to show the interlayer spacing and change in interlayer spacing for the ZnPS3 intercalated 
compounds 

  
Interlayer 

Spacing (Å) 
Interlayer spacing change 

(ΔÅ) 2θ (o) Intensity/Morphology 

ZnPS3 6.32 / 14.0 Strong sharp peak 

MgxZnPS3 10.39 4.07 8.4 
Strong peak with a 

diffuse shoulder 

ZnPS3/PDA 8.02 1.70 8.7 Strong sharp peak 

 

From Table 4.9 and Figure 4.82 we can see that the ion-exchange between the Mg
2+

 ions 

from solution and Zn
2+

 ions of the host inorganic layers yield successful intercalation of 

the Mg
2+

 into ZnPS3. It is suspected that the Mg
2+

 ions are located within the interlayer 

spacing rather than occupying the vacant Zn
2+

 sites. This has been concluded as the 

expanded (001) peak appearing for MgxZnPS3 at 2θ = 8.5
o
 corresponds to a change in 

interlayer spacing of 4.07 Å. The minimum diameter of a hexa-hydrated Mg
2+

 has been 

reported to be approximately 5.72Å(277). Therefore partially hydrated Mg
2+

 (present due 

to the aqueous nature of the reaction) could be present in the interlayer spacing leading to 

the expansion seen (the presence of a hydrated Na
+
 has been previously reported to be 

intercalated into the MPS3 compounds(199)). A weak peak appears ≈ 6Å (at 2θ ≈ 14
o
) 

correlating strongly to the initial 001 of the pristine host material. The MgxZnPS3 material, 

therefore, exhibits two phases, the first is the Mg
2+

 intercalated phase while the second 

corresponds to the pristine ZnPS3 host. The broad shoulder that appears around the 

expanded (001) peak suggests that there may be some c-axial defects (such as screw 

defects) that have occurred during the ion-exchange process. Since it has been suspected 

that the intercalated cation is partially hydrated, the diffuse broad peak could correspond to 

phases in the material where there are differing degrees of hydration leading to the material 

exhibiting a range of interlayer spacing. Although less likely to be observed, the lack of 

occupation of the vacant Zn
2+

 sites could further lead to the appearance of some expanded 
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(001) as the (001) peak corresponds to the distance between Zn
2+ 

in adjacent layers. 

Therefore with vacancies present, some of the (001) peaks would appear to be shifted due 

to a greater difference in distance between Zn
2+

 ions situated further apart when vacancies 

are present compared to ZnPS3 with no Zn
2+

 vacancies. 

When the MgxZnPS3 material was further reacted with PDA, once again structural 

changes are observed. Noticeably the characteristic (001) peak of ZnPS3 has returned 

showing that one phase of this material is the pristine ZnPS3 host. Furthermore, a new 

strong peak appears at 8.02 Å (2θ = 10.9
o
) not corresponding to the expansion associated 

with Mg
2+

 intercalation and it is concluded this peak corresponds to an interlayer 

expansion due to the organic intercalant. The organic cation appears to exchange with the 

Mg
2+

 and also displace any water molecules located in the interlayer spacing. A weak peak 

appears at 2θ = 8.09
o
 in a similar position to the expanded 001 peak seen for Mg

2+
. This 

may suggest that not all of the Mg
2+

 have been exchanged.  

The change in the interlayer spacing shown in ZnPS3/PDA (1.70 Å) correlates well 

with the Van der Waals radius of carbon which is approx. 1.4Å(278). It can be concluded 

therefore that once exchanged with Mg
2+

, the organic intercalant is orientated parallel to 

the inorganic host layers rather than perpendicular or in a bilayer fashion as previously 

seen for intercalation in the oxides (see sections 4.1.1) and 4.1.2). 

Overall it has been shown from the XRD data that Mg
2+

 successfully intercalate 

into ZnPS3 and that the organic PDA cations exchange with Mg
2+

. 
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Figure 4.82 – X-ray diffractograms for A) ZnPS3 host, B) MgxZnPS3 and C) ZnPS3/PDA 
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4.1.3.2) Infra-red and Raman Spectroscopy 

Table 4.10 - IR and Raman wavenumbers (cm
-1

) for ZnPS3 intercalated compounds where νd = asymmetric stretching 
mode, νs = symmetric stretching mode, δs = symmetric bending mode, δd = asymmetric bending mode, T’z or xy = 
Translational mode in z or xy plane and R’z or xy = rotational mode in the z or xy plane. 

ZnPS3 MgZnPS3 ZnPS3/PDA Lit  (ZnPS3) (206) Assignment 

IR Raman IR Raman IR Raman IR Raman   

  3387      O-H stretch 

    2924     

  1634  1621    NH2, >NH,  
NH3

+ bending      1573   

    1495 1475   

         

     1374   Benzenoid C=C  
and Quinoid C=C 

 stretching 
     1257   

     1160   

    1032    

         

710    784    C-H aromatic bending 

  616  620 602   νd (PS3) 

        

595 577 586 563 595 585 571 577 

  569  580    

562        

  555      

545      510  

       568 

  514     525 

  495      

         

452  454    451  T'z (PS3)  
and νd (P-P)  

 386  377    387 νs (PS3) 

      312 310 δs (PS3) 

 277  273   274 277 δd (PS3) 

 256     259 257 T'xy (PS3) 

   233     R'xy (PS3) 

 225      225 

      199 200 T'xy (PS3) 

      182  

      140 150 R'xy (PS3) 

      120 130 T' (M) 

       79 R'z (PS3) 

      75 55 T' (M) 
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The vibrational frequencies for the ZnPS3 compounds are shown in Table 4.10. In general, 

peaks appearing below 600 cm
-1

 in the IR and Raman corresponds to the inorganic host 

material whereas those above 600 cm
-1

 are modes of the organic intercalant. It was seen 

that the intercalation of Mg
2+

 ions resulted in the appearances of new peaks in both the IR 

and Raman spectra (see Appendix C.1 and C.2 for full spectra). The peaks below 600 cm
-1

 

correspond to the ZnPS3 vibrational modes whose corresponding peaks have either split (as 

discussed previously in section 1.5.3) typically indicating intercalation into the MPS3 host 

compounds. Furthermore, it was concluded from the XRD that the Mg
2+

 ions are suspected 

to be present in the interlayer and not occupying the vacant Zn
2+

 sites. The splitting of 

peaks would only occur where the Mg
2+

 ions are located within the interlayer spacing 

rather than being located in the Zn
2+

 vacancies due to the increase in the interlayer spacing. 

For example, in MgxZnPS3 the initial ZnPS3 peak appearing at 595 cm
-1

 appears to have 

split into two peaks appearing at 616 cm
-1

 and 586 cm
-1

 which remains in ZnPS3/PDA 

where the two peaks appear at 620 cm
-1 

and 580 cm
-1

. The peaks appearing centred at 3387 

cm
-1

 and 2924 cm
-1

 for MgxZnPS3 and ZnPS3/PDA respectively are associated with the O-

H stretching peaks either arising from any residual moisture physically bound to the 

surface of the material or else the water molecules found within the interlayer spacing. 

This also seen in the Raman spectra of ZnPS3 and MgxZnPS3 where shifts in the Raman 

peaks (e.g. 577 has been shifted to 563 and 386 shifts to 377) suggest Mg
2+

 is located in 

the interlayer spacing rather than within the vacant Zn
2+

 sites. Shifting in the Raman peaks 

is typically seen in intercalated MPS3 compounds (as discussed previously in section 

1.5.3). Upon ion-exchange between Mg
2+

 and PDA cations we further see changes in the 

infra-red spectra. The peaks appearing between 1700 cm
-1

 and 1500 cm
-1

 corresponds a 

mix of >NH, NH2 and NH3
+
 which (as seen previously for V2O5 and MoO3) may suggest 

that the polymerised PDA could have a mix between several forms within the interlayer 

spacing (shown previously in 4.1.1). The peaks between 1500 cm
-1

 and 1000 cm
-1
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correspond to a mix of benzenoid and quinoid structures. From this, it can be concluded 

that there was successful polymerisation of PDA using an external oxidant (ammonium 

persulphate in this case) and is in a conductive form with some phases of the polymer 

being in the ladder-type form while others being a polyaniline like structure with NH3
+
 

groups remaining as previously seen in Figure 4.4.  

 

 

 

Figure 4.4 – I) Polymerised PDA to produce a substituted polyaniline form, II) Polymerised PDA with two phases 
present; a non-ladder phase and a ladder oligomer phase and III) Fully polymerised PDA producing the Ladder like 

polymer 

Furthermore, noticeable changes are observed in the Raman spectra compared to both 

ZnPS3 and MgZnPS3. We can see peaks appearing at higher wavenumbers (above 1000 

cm
-1

) which have only appeared due to the presence of the organic guest in the interlayer 

spacing. Interestingly, however, the Raman spectroscopy confirms for the ZnPS3/PDA 

material two phases are present; the ZnPS33/PDA material and the pure pristine host ZnPS3 

which is also evident in the XRD data. However, it is difficult to determine whether any 

Mg
2+

 is still present in this material as suspected from the XRD 
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4.1.3.3) TGA and ICP-AES 

 

Figure 4.83 - % weight loss via TGA and ICP-AES for the ZnPS3/PDA composite after the initial mass loss due to water. 
The error bars in the ICP-AES were obtained in-situ via three consecutive measurements as described in section 3.1.4. 

Figure 4.83 shows the total percentage loss in mass determined by TGA and ICP-AES 

independently (for full TGA data see Appendix C.3). Shown here is the % by mass of the 

guest species in the composite material. From the ICP-AES data the stoichiometry was 

calculated by determining the total Zn content in the digested sample (assuming 

stoichiometry to be ZnPS3) and comparing this to the theoretical Zn content if no organic 

intercalant was present. The difference in the zinc content was concluded to arise from the 

presence of the organic guest.  

The stoichiometry of the host from the Zn, P and S concentrations was calculated 

by to be Zn0.93P1S2.7. This shows a near stoichiometry of the host material where the small 

differences to the ideal ZnPS3 stoichiometry may arise due to incomplete digestion and 

therefore this is was taken as the maximum zinc content detectable. Similarly, the 

composite material stoichiometry were calculated to be Mg0.18Zn0.66P1S2.65 and 

PDA0.1Zn0.53P1S2.24. It is clear that there is a deviation from the ideal ZnPS3 stoichiometry 

in both intercalated materials due to the ion-exchange mechanism being utilised. From this 

we can propose accompanying any non-intercalated pristine ZnPS3 host, the loss in Zn
2+
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ions and the lack of occupation of these sites from the exchanged cations leads to some 

non-stoichiometric inorganic host being present with an overall combined (of pristine and 

intercalated phases) potential stoichiometry being Mg0.54Zn1.98P2S7.95 (with rounding to 

give integers for the host Zn2P2S8) in the Mg
2+

 intercalated material and Mg0.4Zn2.12P4S8.96 

(with rounding to give integers for the host Zn2P4S9). The non-stoichiometry of the 

materials could arise from different phases of the ZnPS3 being present. In the MgxZnPS3 

material, this non-stoichiometry could explain the broad shoulder that appears around the 

expanded (001) peak in the XRD as being potentially related to interlayer spacing of 

different inorganic host phases. In the TGA for both materials, the initial loss around 

100
o
C is associated with any loosely bound water on the surface due to the aqueous nature 

of the reactions. The continuous loss of mass in several steps seen in the TGA for the 

MgZnPS3 could be associated with the loss of water that is coordinated with the Mg
2+

 ions 

located in the interlayer spacing. As these water molecules are being lost, the remaining 

water molecules are bound stronger to the Mg
2+

 ion and would require more energy to 

remove. For the ZnPS3/PDA material the continuous loss in mass over the remaining 

temperature range relating to that of the presence of oligomeric or polymeric intercalant. 

This is supported also by the IR and Raman evidence showing the presence of the polymer 

or oligomers. If the organic guest remained in its protonated monomer form, one would 

expect all the guest species to be removed around a narrow range of temperatures and not 

as a continual loss over a wide range. The oligomeric or polymeric guest species is likely 

to be found in a monolayer conformation lying parallel to the inorganic layers. This is due 

to the interlayer spacing increase of 1.70Å which correlates to the van der Waals radius of 

carbon. If certain regions of the guest were to be found in, for example, a helical 

conformation than this would lead to a range of interlayer spacing being exhibited by the 

material which can be interpreted as a broad or diffuse peak (as previously seen in the 

oxide materials).  
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4.1.3.4) Optical Spectroscopy 

Table 4.11 - Optical band-gaps determined from for the ZnPS3 compounds 

 
Band gap (eV) Tauc plot r-value 

ZnPS3 3.30 1/2 (direct allowed transition) 

MgZnPS3 (I) 3.81 1/2 (direct allowed transition) 

MgZnPS3 (II) 3.50 1/2 (direct allowed transition) 

ZnPS3/PDA (III) 2.41 2 (indirect allowed transition) 

ZnPS3/PDA (IV) 1.96 2 (indirect allowed transition) 

 

 

 

Figure 4.84 – Tauc plot for ZnPS3 host 

  

Figure 4.85 – Tauc plot for MgxZnPS3 
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Figure 4.86 – Tauc plot for ZnPS3/PDA 

The calculated optical band-gaps and their associated tauc plots are shown in Table 4.11 

and Figure 4.84, Figure 4.85 and Figure 4.86 where the optical band-gaps were determined 

by extrapolation of the linear part/s of the plot. The optical band-gap for ZnPS3 has been 

shown to correspond well with the literature values(197,200,279). Upon intercalation of 

the Mg
2+

 ion two regions can be seen in the UV-Vis spectrum (regions I and II in Figure 

4.85). The major phase (region I) corresponds to a band-gap of 3.8eV while the minor 

phase (region II) corresponds to a band-gap of 3.5eV. It is concluded that the intercalated 

MgZnPS3 material is the major phase (at least the phase in this material which exhibits an 

increase in the interlayer spacing) while the minor phase is that of pure pristine ZnPS3. 

This increase in the interlayer spacing is attributed to the fact that the layers would have 

weaker electronic interactions and therefore are exhibiting a band-gap more closely 

associated with a single layer (monolayer) ZnPS3. It was therefore determined that no 

interactions occur between the Mg
2+

 and the ZnPS3 layers, specifically there is no 

interaction between the Mg
2+

 and the PS3
2-

 cluster. This was also suggested by IR, Raman 

and XRD data where it was concluded that Mg
2+

 does not occupy the Zn
2+

 vacancies. If 

Mg
2+ 

occupied the vacant Zn
2+

 sites there would be ionic interactions between the Mg
2+
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and PS3
2-

 clusters that would yield a decrease in the overall band-gap (as seen in systems 

such as MgPS3 due to the more ionic nature between the Mg
2+

 and the PS3 cluster) and not 

an overall increase. Substitution of the Mg
2+

 for PDA causes a further change in the band-

gap. Once more there are two regions present and in contrast to the precursor materials 

where the tauc plot corresponds to a direct-allowed transition, ZnPS3/PDA has a band gap 

that corresponds to an indirect allowed transition (r-value of 2). The two regions (III and 

IV) corresponds to band-gaps of 2.41 eV and 1.96 eV respectively. Furthermore, the 

overall shape of the spectra is noticeably different to pristine host and Mg intercalated 

material which correlates to the noticeable changes in the XRD, IR and Raman data. This 

change in the spectrum could arise from two likely possibilities. The first is the presence of 

the polymer (as concluded from the TGA-ICP) which is in a conducting form (as seen in 

the IR and Raman data). In contrast to the oxide composites, the ZnPS3/PDA may show 

better band overlap between the inorganic and organic species. Also, as previously 

discussed from the TGA and ICP-AES analysis, if the ZnPS3 host is now present in a non-

stoichiometric form this could also lead to changes in the spectrum resulting from a 

different band-gap. For ZnPS3/PDA it is quite possible that the change in the spectrum 

arises from a combination of these two likely possibilities. 

 Overall it is shown that there are chemical and physical (optical spectroscopic) 

changes occurring during intercalation from the pure pristine host, to the intercalation of 

Mg
2+

 and finally exchange between the metal cation and the organic guest cations. 

 

 

 

 

 



 

220 
 

4.1.3.5) Electron Spin Resonance Spectroscopy (ESR) 

The ESR of pure ZnPS3 shows no peak present. 

 

Figure 4.87 - ESR spectrum of MgZnPS3 material 

The ESR spectrum of MgxZnPS3 (Figure 4.87) also shows no signal which may indicate 

that the intercalation of Mg
2+

 maintains the neutral charge of the overall material. It is 

difficult to conclude from this whether the vacant Zn
2+

 sites result in any possible 

rearrangement to a non-stoichiometric structure as potentially discussed in the TGA and 

ICP-AES results from this spectrum 

 

Figure 4.88 - ESR spectrum for the ZnPS3/PDA composite material 
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However, when the exchange of Mg
2+

 with the organic guest changes the spectrum and a 

strong symmetric singlet centred at a g-factor value of 2.003477 with a peak-to-peak width 

of 2.34 Gauss is now present. The symmetric, narrow nature and g-factor value close to 

free-electron value suggest a localised electron (or an unpaired electron resulting from a 

positive hole). The absence of a hyperfine structure suggests that the electron from which 

this signal results from is not interacting with any magnetic nuclei. There are two potential 

possibilities for the rise of the signal, the first is the presence of this electron in the organic 

polymer due to the use of an external oxidant (in this case APS) and since it has been 

previously concluded from the IR data that this polymer is in a conductive phase. This is in 

contrast to that of the oxide ESR spectra, the asymmetry, broadness and low g-factor 

values which are attributed to the electron present in the inorganic phase. In the case of the 

ZnPS3/PDA if the electron is present on the organic guest it could suggest the conductive 

phase of the organic guest where no hyperfine is exhibited due to the conductive electron 

results in the hyperfine being averaged to zero. If this signal arises from the inorganic 

phase of the material it could be from any non-stoichiometry present in the inorganic phase 

where the vacant Zn
2+

 sites can be treated as electron deficient (i.e. the inorganic being 

deemed to be a p-type material) and therefore any unpaired electrons arise due to the 

combination of the non-stoichiometry and vacant Zn
2+

 sites. This non-stoichiometry has 

been discussed previously in the ICP-AES data and could further explain the unusual 

nature of the UV-Vis spectrum. This is more likely due to the spectrum suggesting that this 

electron is non-conducting (as we have seen with the V2O5 and MoO3), would not show 

any hyperfine structure and would be constrained to the vacancy due to the poor 

conductive (and lack of redox chemistry of d
10

 Zn) of the inorganic material. 
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From the characterisation, ion-exchange mechanisms are proposed; 

 

Scheme 1 – Mg
2+

 ion intercalation 

i)                
                       

   

 

Scheme 2 – Metal cation and monomer intercalation 

ii)                                                            

   
   

 

Scheme 3 – Monomer polymerisation 

iii)                                          
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4.2) Electrical and Photoelectric Measurements 

4.2.1) V2O5 Nanocomposite Materials  

4.2.1.1) Room Temperature Conductivity 

Table 4.12 - Room temperature electrical conductivity for V2O5 composite materials 

Material Conductivity, σ (Sm-1)  

V2O5 2.8 x 10-5 

    

Direct   

V2O5/AnAn+ 9.8 x 10-2 

V2O5/2A5PhPyr 5.6 x 10-3 

V2O5/EDOT 3.4 x 10-2 

    

ion-exchange   

V2O5/PDA 1.5 x 10-1 

LiV2O5/2A5PhPyr 1.3 x 10-3 

V2O5/5AQ 4.0 x 10-2 

V2O5/1,4PDA-HQ 6.5 x 10-4 

 

The room temperature conductivities were measured at room temperature (293K average) 

(temperature measured at the time of the experiment) and are shown in Table 4.12. It is 

clear that the host V2O5 has a low conductivity (corresponding to a poor semiconductor) 

which increases upon insertion of the organic intercalant. This increase is between one and 

four orders of magnitude. The increase in the conductivity is attributed to a combination of 

two factors, namely the formation of the V
5+

/V
4+

 pairs in the inorganic layers and the 

presence of conductive organic intercalants (as concluded from the characterisation of 

these materials in Section 4.1.1). The most conductive material was shown to be 

V2O5/PDA, which was synthesised via ion-exchange. This was followed by V2O5/AnAn
+
, 

V2O5/EDOT and V2O5/5AQ. The least conducting material was V2O5/1,4PDA-HQ which 

may have been due to the possibility of co-polymer formation(270) which in this particular 

case leads to limited chain lengths of the intercalated conducting polymer, and as a result, 

the material could exhibit a lower conductivity than the other composite materials. 
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4.2.1.2) Seebeck Coefficient  

Table 4.13 - Seebeck Coefficients for some V2O5 composite materials and their doping type 

Material Seebeck Coefficient (µVK-1) Material type 

V2O5 -385 to -436(280) n-type 

V2O5/AnAn+ 268 p-type 

V2O5/2A5PhPyr (AB) 148 p-type 

V2O5/EDOT 73 p-type 

V2O5/1,4PDA-HQ 119 p-type 

 

In general, the V2O5 composite materials show positive Seebeck coefficients (see 

Appendix A.5) in contrast to the pristine host V2O5. The materials are therefore designated 

as p-type semiconductor materials, with V2O5/AnAn
+
 exhibiting the largest value and 

V2O5/EDOT the lowest. In general, the increase in the Seebeck coefficient could be due to 

the presence of the polymers in the interlayer spacing of the inorganic material. In a similar 

trend to that seen for their conductivities (Table 4.12), the intercalated polymers appear to 

dominate in contributing to the observed positive Seebeck coefficients of the composite 

materials. The p-type nature of these materials appears to follow that of the intercalated 

polymer materials in which (from section 4.1.1) these polymers are concluded to be in their 

protonated forms, in contrast to the host V2O5. Overall it appears that the intercalation of p-

type conducting polymers leads to an increase in both Seebeck coefficient and room 

temperature conductivity. 
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4.2.1.3) Schottky Device I-V Curves  

 

 

Figure 4.89 - I-V graph for V2O5  with Al contact 

Pristine V2O5 exhibits ohmic properties with no rectification. 

 

 

Figure 4.90 - I-V graph for V2O5/AnAn
+
 with Zn contact 
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Figure 4.91 - I-V graph for V2O5/AnAn
+ 

with Al contact 

 

 

 

Figure 4.92 - I-V graph for V2O5/AnAn
+
 with Cu contact 

-500

-400

-300

-200

-100

0

100

200

300

400

500

-15 -10 -5 0 5 10 15

µ
A

 

V 

-40

-30

-20

-10

0

10

20

30

-40 -30 -20 -10 0 10 20 30 40µ
A

 

V 



 

227 
 

 

Figure 4.93 - I-V graph for V2O5/AnAn
+
 with Sn contact 

 

Figure 4.94 - I-V graph for V2O5/AnAn
+
 with FePS3 contact 

Figure 4.90 - Figure 4.94 show the I-V graphs for the V2O5/AnAn
+
 composite material 

diodes with various metallic contacts. For all I-V graphs, it is shown that within a small 

potential difference range (from -2.5 to 2.5V) the graphs exhibit rectifying behaviour. This 

is different from the V2O5 host material’s behaviour. As concluded (in section 4.1.1) the 

polymer materials were successfully intercalated into the interlayer space of V2O5; 

therefore the changes in the I-V graphs are a result of the presence of the particular 

polymer intercalant. In the case of V2O5/AnAn
+

, any changes to the I-V character of the 

host material would be caused by the presence of AnAn
+
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shown to be that with the Cu contact and the most rectifying was with the Sn contact. The 

two most conducting devices had Zn and Sn contacts. The rectification ratios between the 

maximum and minimum measured voltage for Figure 4.90 - Figure 4.94 are 1.02, 1.41, 

1.14, 1.39, 1.07 and 1.00 respectively. 

 

 

Figure 4.95 - I-V graph for V2O5/2A5PhPyr with Zn contact 

 

 

Figure 4.96 - I-V graph for V2O5/2A5PhPyr with Al contact 
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Figure 4.95 and Figure 4.96 show I-V graphs for the V2O5/2A5PhPyr composite 

(synthesised via direct intercalation) and it is clear that with a Zn contact (Figure 4.95), the 

diode exhibits rectifying properties. With an Al contact, however, there is again a non-

linear relationship within a small potential difference range (-2.5V to 2.5V), after which we 

reach a saturation point where the material exhibits a linear I-V relationship. In the reverse 

bias region, the relationship remains non-linear. As with the V2O5/AnAn
+
, the deviation 

from the V2O5 I-V character is associated with the presence of the polymer intercalant 

2A5PhPyr. 

 

 

Figure 4.97 - I-V graph for V2O5/EDOT with Zn contact 
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Figure 4.98 - I-V graph for V2O5/EDOT with Al contact 

 

Figure 4.99 - I-V graph for V2O5/EDOT with Cu contact 
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Figure 4.100 - I-V graph for V2O5/EDOT with Sn contact 

Figure 4.97 to Figure 4.100 show the I-V graphs for the V2O5/EDOT composite material. 

With a Cu contact (Figure 4.99), the I-V graph was shown to exhibit ohmic behaviour 

while with an Al contact (Figure 4.98) the material exhibited rectifying behaviour. 

Meanwhile, the Zn (Figure 4.97) and Sn (Figure 4.100) contacts showed the most 

rectifying behaviour with rectification ratios of 1.1 and 1.43 respectively.  

 

 

Figure 4.101 - I-V graph for V2O5/PDA with Zn contact 
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Figure 4.102 - I-V graph for V2O5/PDA with Al contact 

 

Figure 4.103 - I-V graph for V2O5/PDA with Cu contact 

Figure 4.101 to Figure 4.103 shows the I-V graphs for V2O5/PDA and all three cases 

exhibit ohmic properties, unlike those for the previous diodes.  
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Figure 4.104 - I-V graph for V2O5/Li2A5PhPyr with Zn contact 

 

Figure 4.105 - I-V graph for V2O5/Li2A5PhPyr with Al contact 

From Figure 4.104 it can be seen that LiV2O5/2A5PhPyr also exhibits close to ohmic 

behaviour, as observed for the V2O5/PDA composite material. However, with the Al 

contact in Figure 4.105, the material appears to have a slight rectifying behaviour and (as 

will be discussed) also provides informative capacitance measurements.  
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Figure 4.106 - I-V graph for V2O5/5AQ with Zn contact 

 

 

 

 

Figure 4.107 - I-V graph for V2O5/5AQ with Al contact 

In Figure 4.106 and Figure 4.107, we can see that V2O5/5AQ exhibits ohmic characteristics 

with both Zn and Al contacts. 
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Figure 4.108 - I-V graph for V2O5/1,4PDA-HQ with Zn contact 

 

Figure 4.109 - I-V graph for V2O5/1,4PDA-HQ with Al contact 

Figure 4.108 and Figure 4.109 show the I-V graphs for V2O5/1,4PDA-HQ composite 

material devices. In Figure 4.108 it is clear that the diode device exhibits non-linear 

properties under a forward and reverse bias. However, in Figure 4.109, the forward bias 

appears to show non-linear behaviour below 4 V and becomes linear >4 V. Under reverse 

bias, appears to reach its breakdown voltage at -2.5 V.  
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The I-V curves can be further modelled using a modified version of the ideal diode 

equation which will henceforth be called the non-ideal diode equation (Equation 4.1); 

 

     ( 
      

     ) 

Equation 4.1 

where: 

- I is the net current measured through the diode. 

- I0 is the dark saturation current of the diode. 

- q is the absolute value of the electron charge. 

- V is the applied voltage across the diode. 

- k is the Boltzmann constant. 

- T is the temperature (in Kelvin) 

- n is the ideality factor (which is usually between 1 and 2). 

- Rs is the series resistance estimated from the gradient of the linear most part of 

the I-V plot. 

 

Similarly, Equation 4.1 can be rearranged to give: 

 

  
 

 
      (

 

  
  )       

Equation 4.2 

 

When Equation 4.2 is fitted (using Graphpad) against a V vs I plot of the I-V curve, n and 

I0 can be extracted from the model. In general, n is 1 for indirect gap semiconductors and 2 

for direct gap semiconductors.  
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Thus, once I0 has been determined, one can calculate the Schottky barrier height (Φ) for 

the diode junction using Equation 4.3: 

 

          
  
   

Equation 4.3 

where: 

- I0 is the dark saturation current of the diode. 

- A is the diode junction area. 

- A
*
 is the Richardson’s constant (1.20173 x 10

6
 Am

-2
K

-2
) 

- k is the Boltzmann constant. 

- T is the temperature (in Kelvin) 

- Φ is the diode junction barrier height. 

 

Furthermore, rearranging Equation 4.3 yields the following expression for calculating Φ: 

 

      (
  

     
)    

Equation 4.4 
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The calculated values of I0 and n are reported in Table 4.14 and Φ in Figure 4.110; 

Table 4.14 - I0 and n values for the non-ohmic Schottky devices 

Zn Contact I0 (µA) n 

V2O5/EDOT 18.61 1.53 

V2O5/AnAn+ 85.76 1.14 

V2O5/2A5PhPyr 0.186 0.82 

      

Al Contact I0 (µA) n 

V2O5/EDOT 157.75 1.49 

V2O5/AnAn+ 16.55 1.52 

V2O5/2A5PhPyr 5.64 1.47 

V2O5/AmThia 1.84 1.34 

      

Cu Contact I0 (µA) n 

V2O5/EDOT 2.43 1.47 

V2O5/AnAn+ 0.3 1.49 

      

Sn Contact I0 (µA) n 

V2O5/EDOT 17.49 1.27 

V2O5/AnAn+ 35.9 1.51 

      

FePS3 Contact I0 (µA) n 

V2O5/AnAn+ 0.0175 0.81 

 

 

Figure 4.110 - Calculated barrier heights, Φ, for the non-ohmic Schottky diode junctions 

 

V2O5/EDOT V2O5/AnAn+ V2O5/2A5PhPyr V2O5/AmThia
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Figure 4.111 - Average ideality factor, n, for all V2O5 Schottky devices (Ave all) and for devices omitting n<1 (Ave 
omitted) 

From Table 4.14 it is observed that utilising the non-ideal diode equation, calculating n 

yields an average value of 1.34 when including the two devices which showed a slight 

deviation with n<1 (V2O5/2A5PhPyr with a Zn contact and V2O5/AnAn
+
 with a FePS3 

contact). As there are only two cases of devices with n<1 these n values could be 

considered as outliers and are either due to a modelling error or a problem in the 

construction of the device. Upon omitting the n value for n<1 the average value is 1.43 

(Figure 4.111) with a maximum value of 1.53 (V2O5/EDOT and V2O5/AmThia devices 

with an Al contact) and a minimum of 1.14 (V2O5/AnAn
+
 device with an Al contact). The 

ideality factor indicates likely asymmetry between electronic bands for excitation and/or 

recombination. This band asymmetry for the general case was previously shown in Figure 

4.8. This would suggest that for the V2O5 devices (including those with values of n<1) the 

organic and inorganic components exhibit poor band overlap in the composite materials,  

as was concluded from the optical spectroscopy data for the V2O5 materials (Table 4.5). 

The average Φ was shown to be 0.63eV, with the lowest being 0.54eV (V2O5/EDOT with 

an Al contact) and the highest being that for V2O5/AnAn
+
 with FePS3 (0.78eV).  

The calculated dielectric constants (εr) shown in Table 4.15 were used in the 
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make sufficiently stable pellets, an average εr was used in the calculation of the dopant 

densities for the non-ohmic Schottky devices where εr could not be calculated.  

 

Table 4.15 - Dielectric constants for composite materials 

Material εr 

V2O5/AnAn+ 13.47 

V2O5/EDOT 10.52 

MoO3/PDA 5.52 

    

Average 9.836 

 

Starting with Equation 4.5: 

  
 
   

  
  

 

     
    

 

Equation 4.5 

where: 

- εr is the dielectric constant of the composite material. 

- ε0 is the vacuum permittivity (8.854 x 10
-12

 Fm
-1

). 

- A is the depletion region area (m
2
). 

- e is the electron charge (C). 

- Nd is the dopant density (m
-3

). 

- C is the capacitance (F
-2

). 

- V is the voltage (Volts). 

 

Equation 4.5 can be rearranged to yield an expression for Nd shown in Equation 4.6: 

    
 

     
  

  
 
   

  

 

Equation 4.6 
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Table 4.16 shows a comparison of the dopant densities calculated from the 

capacitance-voltage measurements (see Appendix A.6) between the pressed pellet Schottky 

devices and the evaporated contact Schottky devices (those with non-ohmic properties).  

 

Table 4.16 - Dopant density comparison between the pressed Schottky devices and the evaporated metal contacts 
Schottky devices 

Dopant Densities (Nd)  (m-3) 

Material Pressed Evap Ratio 

Al Contact    

AlV2O5/AnAn+ 2.62E+14 1.58E+14 1.656 

AlV2O5/EDOT 1.68E+15 1.77E+15 0.947 

AlV2O5/2A5PhPyr 1.79E+13 1.01E+13 1.776 

        

Cu Contact    

CuV2O5/AnAn+ 1.37E+14 1.42E+14 0.967 

CuV2O5/EDOT 4.5E+14 3.57E+14 1.259 

 

 

Figure 4.112 and Figure 4.113 graphically represent the data shown in Table 4.16. It can be 

seen that Nd values for the evaporated metal contacts and the pressed contacts are within 

the same order of magnitude with a small overall difference. The material with the largest 

dopant density was shown to be V2O5/EDOT, while the smallest dopant density belonged 

to V2O5/2A5PhPyr.  

 The Schottky devices made using Cu and Al contacts showed an average Nd of 3.86 

x 10
14

 m
-3

. On closer inspection V2O5/2A5PhPyr with an Al contact displayed the lowest 

Nd of 5.12 x 10
11

 m
-3

 followed by V2O5/AmThia also with an Al contact (Nd of 5.12 x 10
12

 

m
-3

). The devices with the highest Nd using both Cu and Al contacts were those for 

V2O5/AnAn
+
 and V2O5/EDOT. This could be due to AnAn

+
 and EDOT being the most 

conductive guest species in the V2O5 interlayer space and being intercalated via a direct 

redox reaction with the host. These two materials were also pressed onto Cu and Sn 

contacts to make device structures that both exhibited Nd in the order of 10
14

 m
-3

 

(comparable with the overall Nd average). Therefore it is suggested that the dopant density 
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is not affected by the method of polymer insertion into V2O5 as both direct and ion-

exchange methods cause reduction of V
5+

 (as seen from the XPS data in Section 4.1.1). 

Therefore it appears that the Nd is proportional to the concentration of reduced V
5+ 

sites. 

However, it must be noted that within the three materials synthesised via direct 

intercalation, AnAn
+
 and EDOT showed a significantly larger Nd than that for 2A5PhPyr 

which was synthesised via acid-base mechanism. Therefore it can be proposed that redox 

intercalation produces the highest concentration of the reduced V
4+

 centres which may 

contribute to the larger Nd exhibited.  

Table 4.17 - Dopant densities for all Schottky device contacts 

Contact Dopant Density (m-3) 

Zn   

V2O5/AnAn+ 3.32E+14 

V2O5/2A5PhPyr 2.76E+14 

V2O5/EDOT 3.63E+14 

  

Al   

V2O5/AnAn+ 2.62E+14 

V2O5/2A5PhPyr 5.12E+11 

V2O5/EDOT 1.68E+15 

    

Cu   

V2O5/AnAn+ 1.37E+14 

V2O5/EDOT 4.50E+14 

    

Sn   

V2O5/AnAn+ 6.68E+14 

V2O5/EDOT 3.28E+14 

    

FePS3   

V2O5/AnAn+ 1.30E+14 
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Figure 4.112 - Comparison of dopant densities between the pressed pellet devices and the evaporated pellet devices 

 

 

Figure 4.113 - Comparison of dopant densities for the pressed pellet devices and the evaporated pellet devices 
(omitting AlV2O5/EDOT) 
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4.2.1.4) Photosensitive devices 

The prototype photosensitive devices were made by spin-coating the photoactive 

composite material onto n-type silicon and an ITO counter electrode. The most conductive 

materials, with the highest dopant density, were evaluated for their optoelectronic 

properties. These materials were V2O5/AnAn
+
, V2O5/2A5PhPyr, V2O5/EDOT as well as 

V2O5/AnAn
+
 which had been cast onto FePS3. The devices were illuminated under ambient 

light (A.Light) and also under an incandescent lamp (Lamp). 

 

Figure 4.114 - I-V graph for V2O5/AnAn
+
 photovoltaic device under dark, A.Light and Lamp illumination 

 

 

Figure 4.115 - ExpandedI-V graph for V2O5/AnAn
+
 photovoltaic device under dark, A.Light and Lamp illumination 
between 0-2V 
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Figure 4.114 and Figure 4.115 show the changes in the I-V graph for the device using 

V2O5/AnAn
+
 as the photoactive material. It is noticeable that in dark conditions the I-V 

graph for the device exhibits rectifying properties. When illuminated under A.Light there is 

little change under reverse bias. However, under forward bias, there is a noticeable 

increase in the current. A significant change in the rectifying behaviour is observed when 

the device is illuminated under Lamp conditions, with a significant increase in the forward 

current compared to that for illumination under A.Light. 

 

 

Figure 4.116 - I-V graph for V2O5/EDOT photovoltaic device under dark, A.Light and Lamp illumination 

The increase in current when illuminated is also seen when the V2O5/EDOT material is 

used as the active material (Figure 4.116), and rectifying behaviour is again observed. 

Interestingly there appears to be little or no change under either A.Light or Lamp 

conditions up to 2V. After this, the current increases under illuminated conditions.  
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Figure 4.117 - I-V graph for V2O5/2A5PhPyr photovoltaic device under dark, A.Light and Lamp illumination 

Figure 4.117 shows the same trend for V2O5/2A5PhPyr. The I-V graph for the material 

once again exhibits rectifying behaviour and at low voltages and there appears to be no 

significant change under positive bias up until 2V. At this point, a trend similar to that seen 

in Figure 4.116 is exhibited where under A.Light illumination there is a small increase in 

the current showing some photoconductive properties; however, under Lamp conditions 

we again see a much larger increase in the current. 

 

 

Figure 4.118 - I-V graph for FePS3 V2O5/AnAn
+
 photovoltaic device under Dark, A.Light and Lamp conditions 
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The I-V curve for V2O5/AnAn
+
 cast onto FePS3 (a p-type semiconductor) follows a similar 

trend, shown in Figure 4.118. However, in this case, it can be seen that there is little or no 

current under Dark conditions and there is a significant increase in the current when under 

both A.Light and Lamp conditions. Under illumination, there also appears to be a non-

linear nature to the I-V curve. 

 

 

Figure 4.119 - I-V graph for FePS3 V2O5/AnAn
+
 device under Dark, A.Light and Lamp conditions and applied parallel 

(Para Mag) and perpendicular magnetic (Perp Mag) fields. 

 

 

 

 

 

 

 

Figure 3.5 – i) Top view of the V2O5/AnAn
+
 FePS3 device in the plastic encasing, ii) side view of the V2O5/AnAn

+
 FePS3 

device architecture shows the copper electrode (red) composite material (green), the transparent ITO electrode (grey) 
and the plastic encasing (white). 
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Figure 3.6 – i) The parallel set up of the device and magnetic (Para Mag) and ii) the perpendicular set up of the device 
and magnetic (Perp Mag) 

 

 

Figure 4.120 - I-V graph for FePS3 V2O5/AnAn
+
 device under Dark, applied parallel (Para Mag) and perpendicular 

Magnetic (Perp Mag) fields 

 

 

Figure 4.121 - I-V graph for FePS3 V2O5/AnAn
+
 photovoltaic device under applied parallel (Para Mag) and 

perpendicular magnetic (Perp Mag) fields 
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Interestingly, Figure 4.119 - Figure 4.121 show the effects of placing the device under dark 

conditions in a magnetic field (see Figure 3.5 and Figure 3.6) for device structure and 

magnet orientation. Within a small voltage range, placing the device parallel or 

perpendicular to the magnetic field results in an increase in current, though not quite as 

much as when the device is illuminated. Here it is possible that the presence of the 

magnetic field assists in charge separation after the creation of electron-hole pairs which, 

placed under a bias, could lead to the increase in current observed. Furthermore, when the 

material is placed under Para Mag conditions, the device appears to exhibit a greater 

rectification than when placed under Perp Mag conditions. Over a much larger voltage 

range, we can see that the Perp Mag configuration consistently exhibits a larger current 

than that for the Para Mag conditions. Para Mag configuration continues to exhibit a larger 

rectification ratio, however. Perp Mag is shown to exhibit non-ohmic properties under 

higher voltages.  

Table 4.18 - Table 4.22 show the change in photocurrent current (ΔI) caused by 

illumination under forward bias. 

Table 4.18 - ΔI for Silicon V2O5/AnAn
+
 photosensitive device between A.light - Dark and Lamp - Dark conditions 

V2O5/AnAn+ 

Voltage (V) 0.25 0.5 0.75 1 1.25 1.5 1.75 4 

ΔI (µA) A.Light - Dark 0.661 1.948 4.216 7.79 12.354 18.45 26.57 126 

ΔI (µA) Lamp - Dark 2.722 6.574 12.35 20.51 32.044 48.64 71.26 706.5 

 

 

Table 4.19 - ΔI for Silicon V2O5/EDOT photosensitive device between A.Light - Dark and Lamp - Dark conditions 

V2O5/EDOT 

Voltage (V) 1 4 6 8 

ΔI (µA) A.Light - Dark 1.917 20.39 54.1 104.6 

ΔI (µA) Lamp - Dark 0.575 144.22 407.9 611.6 
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Table 4.20 - ΔI for Silicon V2O5/2A5PhPyr photosensitive device between A.Light - Dark and Lamp - Dark conditions 

V2O5/2A5PhPyr 

Voltage (V) 2 4 6 8 

ΔI (µA) A.Light - Dark 7.781 29.85 31.77 31.2 

ΔI (µA) Lamp - Dark 5.551 76.6 181.81 349.56 

 

Table 4.21 - ΔI for FePS3 V2O5/AnAn
+
 photosensitive device between A.Light - Dark and Lamp - Dark conditions 

V2O5/AnAn+ 

Voltage (V) 0.05 0.5 1 1.5 2 4 6 8 

ΔI (µA) A.Light - Dark 0.04255 0.6334 1.4371 2.373 3.412 8.854 15.91 21.04 

ΔI (µA) Lamp - Dark 0.0033 0.653 1.487 2.456 3.524 10.38 17.74 29.85 

 

Table 4.22 - ΔI for FePS3/AnAn
+
 photosensitive device under magnetic conditions 

V2O5/AnAn+  

Voltage (V) 0.1 0.5 1 1.5 2 4 6 8 

ΔI (µA)  
Perp Mag - Dark 0.04452 0.2798 0.6214 1.015 1.500 3.601 6.105 7.845 

ΔI (µA) Para  
Mag - Dark 0.005191 0.04526 0.1028 0.1849 0.2967 0.9357 2.555 4.431 

         Voltage (V) 0.1 0.5 1 1.5 2 4 6 8 

ΔI (µA)  
Para Mag – Perp Mag 0.03961 0.2345 0.5186 0.8298 1.203 2.666 3.55 3.414 

 

From Table 4.18 - Table 4.22 the power generated when the device is illuminated (Pout, as 

a function of voltage) can be calculated by multiplying ΔI by the voltage. Figure 4.122 

shows the power vs voltage plot for V2O5/AnAn
+
 (see Appendix A.7 for full power vs 

voltage plots). 
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Figure 4.122 - The power vs voltage plot for V2O5/AnAn
+
 Si device under A.Light illumination 

 

From the Pout vs V plots, a device efficiency (Eff) at the maximum Pout observed can be 

determined. For all devices, the maximum Pout was observed at the maximum voltage 

applied to the device. The Eff was calculated using Equation 4.7: 

 

         
    

   
      

Equation 4.7 

 

where Pin is the total power being input into the device from the illuminating radiation. Pin 

was calculated by converting the average measured lux value of the illumination source to 

Power (W) using Equation 4.8: 
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where: 

- Lux is the measured illuminance (lm/m
2
) 

- A is the surface area of the photosensitive device 

- η is the luminous efficacy (lm/w) 

 

The intensities in Lux for A.Light and Lamp illumination conditions were measured to be 

3540 lm/m
2
 and 5982 lm/m

2
 respectively. The Si and FePS3 device surface areas for the 

large Si device, small Si device and for the FePS3 device were 4.418 x 10
-3

 m
2
, 1.257 x 10

-3
 

m
2
 and 6.23 x 10

-4
 m

2
 respectively. The average η for A.Light and Lamp was taken to be 

105 lm/m
2
 (281) and 16 lm/m

2
 (282) respectively. Table 4.23 shows the calculated Pin for 

each device surface area. 

Table 4.23 – Calculated Pin for the three device surface areas 

Large Si Device Surface Area 

Illumination Pin (W) 

A.Light P(W) 0.15 
Lamp P(W) 1.65 

  Small Si Device Surface Area 

Illumination Pin (W) 

A.Light P(W) 0.042 
Lamp P(W) 0.47 

  FePS3 Device Surface Area 

Illumination Pin (W) 

A.Light P(W) 0.021 
Lamp P(W) 0.24 

 

Using the results obtained in Table 4.23 and applying Equation 4.7, Table 4.24 and Figure 

4.123 show the calculated maximum efficiencies. It must be noted that these are the 

efficiencies observed at the maximum voltage and may not represent the practical Eff 

value of the device in question which is expected to be lower than this value. 
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Table 4.24 – Calculated device Eff (%) for the Si and FePS3 photosensitive devices 

  Large Si Device Small Si Device FePS3 device 

Material V2O5/AnAn+ V2O5/EDOT V2O5/2A5PhPyr V2O5/AnAn+ 

A.Light Illumination         

Max Power Volt 8 8 8 8 

Max Power (W) 1.430E-03 8.368E-04 2.496E-04 1.923E-04 

Eff (%) 0.96 0.56 0.59 0.92 

          

Lamp Illumination         

Max Power Volt 4 8 8 8 

Max Power (W) 2.826E-03 4.893E-03 2.796E-03 2.388E-04 

Eff (%) 0.17 0.30 0.59 0.10 

 

 

Figure 4.123 – Calculated device Eff (%) for the Si and FePS3 photosensitive devices (the device type is stated in the 
parentheses) 

 

A general trend is noticeable where the devices exhibit a greater Eff under A.Light 

illumination than for the Lamp illuminated conditions. This is consistent with the 

absorption edges and optical band-gaps determined in Section 4.1.1 where the absorption 

edges for the V2O5 composites were observed to occur within the range of 350nm to 

390nm which would lie within the near UV to the blue region of the electromagnetic 

spectrum. The maximum solar spectral irradiance at the Earth’s surface is between 350 nm 

to 600 nm (centred at ~500 nm) (281) whereas the spectrum of Lamp peaks at ~800 nm, 

with most of its emission occurring in the near infra-red and infra-red region (283). 
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Therefore it is likely that the formation of charge carriers from photon absorption is 

occurring from the absorption of light in the blue and near UV regions of the spectrum 

resulting in the difference in Eff between that seen under A.Light and Lamp illuminated 

conditions. A notable exception is that for V2O5/2A5PhPyr Si device (where the active 

material is coated onto the smaller device surface area), the material displays similar 

device Eff under both A.Light and Lamp conditions. The V2O5/AnAn
+
 exhibited the 

highest Eff in both the Si and the FePS3 device when illuminated under A.Light. Of the 

three active materials (V2O5/AnAn
+
, V2O5/EDOT and V2O5/2A5PhPyr) it appears that 

V2O5/AnAn
+
 is the most efficient material under all conditions. Considering the non-

optimised nature device architecture and construction, it is assumed here that there is a 

uniform film of the active materials of which all are in intimate contact with the Si or 

FePS3 substrate. It may be that the V2O5/AnAn
+
 films produce the most intimate contact 

and therefore exhibit higher device Eff. It is also possible, though less likely, that 

V2O5/AnAn
+
 may absorb a wider wavelength range and therefore allow for a greater 

generation of charge carriers. 

 Further analysis of the device ΔI vs V plots can provide information regarding the 

photoconductivity and charge carrier mobility (CCM) of these devices. The ΔI vs V plots 

were modelled with a second-order polynomial (Equation 4.9) and an exponential function 

(Equation 4.10) of the form of: 

             

Equation 4.9 

 

where the parameters A, B, and C are constants and; 

       
 

Equation 4.10 

where the parameters A and k are constants. 
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ΔI vs V plots showing a better fit to Equation 4.9 are favoured over Equation 4.10 

as an exponential increase in the ΔI with increasing voltage may be caused by charge 

carriers not produced as a result of photon absorption. It is possible that any charge carriers 

which are generated when the device is under Dark conditions may become trapped, due to 

a layer-based defect in the inorganic such as step or screw defects or example. These 

trapped charge carriers would not be able to recombine at any interfaces and may also not 

be able to travel through the material (between active material particles) leading to either 

Shockley-Read-Hall, trap-assisted recombination or surface recombination (which are 

possible in organic-inorganic systems) (284). Upon illumination, these trapped charge 

carriers may become free and therefore contribute to the ΔI observed (however small or 

large that may be) but this contributed current is, in principle, not the primary 

photocurrent.  

 

 

Figure 4.124 – Full ΔI vs V plot for V2O5/AnAn
+
 Si Device under A.Light illumination 

In Figure 4.124 we can see two distinct regions for V2O5/AnAn
+
 Si device, the first being 0 

V to 4 V where there appears to be a non-linear relationship between ΔI and V. The second 

region appears between 4 V to 8 V exhibiting a linear relationship between ΔI and V. This 
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is assumed to be due to the device resistance limiting the current (ohmic region). The 

modelling was therefore restricted to the first region. 

 

Figure 4.125 – ΔI vs V plot for V2O5/AnAn
+
 Si Device under A.Light illumination between 0V to 4V where I) shows the 

second-order polynomial fit II) shows the attempted fit for an exponential curve 

 

Figure 4.125.I and .II shows the ΔI for the device illuminated under A.Light; the best fit 

occurs for the second-order polynomial function (R
2
 = 0.9975) in Figure 4.125.I whereas it 

becomes difficult to obtain a good fit for a purely exponential function (Figure 4.125.II). 

For the device illuminated under Lamp, the full range of 0 V to 4 V was used. 

 

 

Figure 4.126 - ΔI vs V plot for V2O5/AnAn
+
 Si Device under Lamp illumination between 0V to 4V where I) shows the 

second-order polynomial fit II) shows the fit for an exponential curve 

Figure 4.126.I and .II shows ΔI for the V2O5/AnAn
+
 Si device under Lamp illumination for 

both polynomial and exponential functions. Unlike Figure 4.125, both functions show an 
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excellent fit to the data (R
2
 values of 0.9986 and 0.9980 respectively) with the polynomial 

function exhibiting a better fit. 

 

Figure 4.127 – ΔI vs V plot for V2O5/EDOT Si Device under A.Light illumination where I) shows the second-order 

polynomial fit II) shows the fit for an exponential curve 

Figure 4.127.I and .II shows ΔI for the V2O5/EDOT Si device under A.Light illumination 

and the second-order polynomial shows the best fit to the data (R
2
 = 0.9943) whereas the 

exponential function is less well fitted (R
2
 = 0.9274). 

 

Figure 4.128 - ΔI vs V plot for V2O5/EDOT Si Device under Lamp illumination where I) shows the second-order 

polynomial fit II) shows the fit for an exponential curve 

Figure 4.128.I and .II shows ΔI for the V2O5/EDOT Si device under Lamp illumination, 

where the best fit is that for the polynomial (R
2
 = 0.9865), while the exponential fit has R

2
 

= 0.9087. 
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Figure 4.129 - Full range for V2O5/2A5PhPyr for the ΔI for the device under A.Light illumination 

As seen previously in Figure 4.124, Figure 4.129 shows the full range of ΔI for the 

V2O5/2A5PhPyr Si device under A.Light illumination where two distinct regions are 

present. The first region occurs between 0 V to 4 V where a nonlinear relation between ΔI 

and V exists. The second occurs between 4 V to 8 V and appears to show that ΔI exhibits 

little change with increased positive potential. For modelling, both the polynomial and 

exponential functions were fitted to the first region. 

 

Figure 4.130 - ΔI vs V plot for V2O5/2A5PhPyr Si Device under A.Light illumination between 0V to 4V where I) shows 

the second-order polynomial fit II) shows the fit for an exponential curve. 

Figure 4.130.I and .II shows the ΔI for the V2O5/2A5PhPyr Si device under A.Light 

illumination between 0 V to 4 V. The exponential function exhibits the best fit (R
2
 = 

0.9894) while that for the polynomial fit is R
2
 = 0.9694.  

2 4 6 8 10

-10

0

10

20

30

40

V


A

1 2 3 4 5

-10

0

10

20

30

40

V


A

y = Ax2 Bx +C

A = 3.159, B = -5.850, C = 1.785

R2 = 0.9694

1 2 3 4 5

-10

0

10

20

30

40

V


A

y = Aexp(k*x)

A = 0.02191, k = 1.804

R2 = 0.9894

I II 



 

259 
 

 

Figure 4.131 – ΔI vs V plot for V2O5/2A5PhPyr Si Device under Lamp illumination between 0V to 4V where I) shows the 

second-order polynomial fit II) shows the fit for an exponential curve. 

Figure 4.131.I and .II shows the ΔI for the V2O5/2A5PhPyr Si device under Lamp 

illumination between 0 V to 4 V. Here the best fit is the polynomial (R
2
 = 0.9993) with the 

exponential function exhibiting a poorer fit. 

 Overall, under A.Light illumination, the V2O5/AnAn
+
 and V2O5/EDOT Si devices 

can be modelled well using a second-order polynomial fit whereas under Lamp conditions 

the V2O5/AnAn
+
, V2O5/EDOT and V2O5/2A5PhPyr devices can be modelled well using 

the second-order polynomial. From the fitted second-order polynomials, an estimated 

photoconductivity can be calculated using Equation 4.11: 

    
  

  
(
 

 
) 

Equation 4.11 

where: 

- Δζ is the photoconductivity in Sm
-1

 

- dI/dV is the gradient at the linear most part of the ΔI vs V plot 

- L is the device height 

- A is the device surface area 
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Table 4.25 shows the estimated photoconductivities of the devices which were fitted well 

to the second-order polynomial. It is immediately obvious that the photosensitive devices 

exhibit low photoconductivities. However, it is shown that the photoconductivities under 

A.Light illumination are of 1 order of magnitude greater than that exhibited when the 

devices are under Lamp illumination.  

 Table 4.25 – Photoconductivities of the Si Devices modelled using the second-order polynomials where σobvs is the 

calculated photocurrent from the I – V plot of the respective material’s photosensitive device. 

 

 

 

 

 

 

 

When comparing this with the Eff (%) in Table 4.24 and Figure 4.123 it is evident that the 

devices with a higher photoconductivity also exhibit a higher estimated maximum Eff. As 

the true Eff are expected to be lower than the estimated maxima, is it clear that in these un-

optimised devices the highest photoconductivities and Eff will be exhibited under A.Light 

conditions. The major factor limiting the photoactivity of the active material and the 

overall device Eff may be the recombination of the excitons being produced. The active 

material film coated on the Si substrate is made up of individual particles of the composite 

material and not a continuous uniform film. Therefore the mobility of the charge carriers 

that are being conducted through the composite material to the electrodes is dependent on 

how efficiently these charge carriers are able to move between the composite particles. If 

the charge carrier mobility (CCM) is therefore poor in the material recombination could 

Si Device 

Material Δσ (Sm-1) Δσ/σobvs 

A.Light Illumination    

V2O5/AnAn+ 2.76E-11 0.43 

V2O5/EDOT 1.45E-10 2.237 

     

Lamp illumination    

V2O5/AnAn+ 8.01E-12 0.036 

V2O5/EDOT 7.23E-11 0.50 

V2O5/2A5PhPyr 1.20E-11 0.69 
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occur.  From the photoconductivity an estimated CCM can be calculated using Equation 

4.12: 

    
  

  
(
 

 
)             

Equation 4.12 

where: 

- ζ is the photoconductivity in Sm
-1

  

- dI/dV is the gradient at the most linear part of the ΔI vs V plot 

- L is the device height (measured between the copper-substrate interface to the 

top of the ITO contact)  (m) 

- A is the device surface area (m
2
) 

- µ is the CCM (m
2
V

-1
s

-1
) 

- (n+p) is the total number of charge carriers created when the device is under 

illuminated conditions 

- e is the electron charge value (C) 

 

Equation 4.12 can be rearranged to provide an expression for determining the CCM: 

 

   
  

       
 

Equation 4.13 

 

(n+p) can be determined under two assumptions;  

- all the composite materials form a uniform film and the entire surface area of 

the film is in intimate contact with the entire surface area of the substrate. 
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- All the photons are absorbed and produce an exciton (a single charge carrier) 

when the device is under illuminated conditions. 

 

From these assumptions one can convert the Pin (Table 4.23) into the total number of 

photons by utilising the following equation; 

       
      

  
 

Equation 4.14 

where: 

- (n+p) is the total number of charge carriers created when the device is under 

illuminated conditions 

- Pin is the absorbed power in watts (Table 4.23) 

- λ is taken to be the wavelength at the maximum intensity of the illuminating 

light (for A.Light this is taken to be ~500 nm and for Lamp ~800 nm) 

- h is the Planck constant 

- c is the speed of light (ms
-1

) 

 

 

 

 

 

 

 

 

 

 



 

263 
 

Figure 4.132 shows the calculated estimated CCM’s for the V2O5 composite material 

devices.  

 

Figure 4.132 – Calculated CCM’s for the V2O5 composite Si devices under A.Light and Lamp illumination 

It is immediately clear that the V2O5 devices exhibit small CCMs but the calculated values 

help to begin in building a picture of the charge separation occurring in the device. It 

should be stated here that the CCM are the minimum values under the assumptions 

explained earlier, so it is expected that the true values will be higher than those calculated 

in Figure 4.132. However, these estimated CCM provide some picture regarding the 

creation of excitons and charge separation occurring in the device itself. We can conclude 

that the very low values of the CCM (which are several orders of magnitude lower than 

that of optimised organic devices (285)) are due to recombination of the charge carriers 

being a dominant mechanism in these devices. This suggests that upon formation of the 

charge carriers (via photon absorption) and due to the un-optimised nature of the 

photosensitive devices, most of these charge carriers are recombined and not efficiently 

separated to be collected at the electrodes. This is expected to be due to the device 

construction where the active composite material is spin-coated. The spin coating of the 

active composite material results in the deposition of a film made up of individual particles 

as opposed to a continuous uniform film of the material, which means that any charge 

V2O5/AnAn+ V2O5/EDOT V2O5/2A5PhPyr

A.Light 4.60E-10 2.42E-09

Lamp 7.52E-12 6.78E-11 1.13E-11

0.00E+00

5.00E-10

1.00E-09

1.50E-09

2.00E-09

2.50E-09

3.00E-09

µ
 (

m
2 V

-1
s-1

) 



 

264 
 

carriers that are formed need to migrate between particles in order to be separated 

effectively. As such, the particles could be treated as defects within the spin-coated film 

which could result in charge carriers being trapped; recombination is then likely to follow a 

Shockley–Read–Hall, trap assisted or surface recombination mechanism. Is it most 

probable that surface recombination is occurring in these devices due to the small CCM 

values resulting in charge carriers travelling a small distance away from the depletion 

region before recombining.  

However, as seen earlier, the devices which exhibit an exponential increase in ΔI as 

a function of V could also undergo an Auger recombination like mechanism where a small 

proportion of any trapped charge carriers produced under dark conditions gain enough 

energy from a recombining charge carrier to be freed and collected at the electrode. In 

practice, this mechanism may only contribute a small increase in the ΔI. 

 

Summary 

Overall, it has been shown that upon successful intercalation of the polymer 

materials (as concluded from Section 4.1.1), the electrical and optoelectronic properties of 

the new materials differ from those of the inorganic host V2O5. The previously synthesised 

composite materials and novel composite materials showed an increase in their electrical 

conductivities compared to the inorganic host, with all composite materials exhibiting p-

type semiconductor properties. It was also shown that all composite materials exhibited 

novel photosensitive effects, with an increase in current when illuminated under A.Light 

and Lamp conditions. It has been demonstrated that intercalation of the polymers increased 

the room temperature conductivities by a minimum of one order of magnitude for 

V2O5/1,4PDA-HQ (synthesised via ion-exchange) and two orders of magnitude for 

V2O5/2A5PhPyr (synthesised via direct intercalation) and LiV2O5/2A5PhPyr (synthesised 

by ion-exchange). This could be due to these intercalated polymers having fewer 
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conductive phases present and therefore limiting the overall material conductivity. The 

most conductive materials, V2O5/AnAn
+
 and V2O5/EDOT, were synthesised by direct 

intercalation exploiting V redox chemistry and exhibited increases of 3 orders of 

magnitude in the room temperature conductivity compared to V2O5. It is expected that 

AnAn
+
 and EDOT are present in a more conductive phase than 1,4PDA-HQ and 2A5PhPyr 

due to the nature of the redox reaction with V2O5. Furthermore, the presence of the An
+
 

cations in the AnAn
+
 was shown to increase the conductivity. V2O5/5AQ (synthesised via 

ion-exchange) also shows a similar conductivity to V2O5/AnAn
+
 and V2O5/EDOT which 

could be due to the increased conjugation due to the presence of its fused ring system. 

Furthermore, the presence of the fused rings could improve its redox chemistry with V 

leading to a more conductive polymer. Therefore, it can be deduced that the conductive 

properties of these materials are independent of the intercalation method in V2O5 and that 

i) the electrical properties are dependent on the nature of the intercalated polymer (the 

degree to which it is in its conductive phase) and ii) the nature of polymer intercalant is 

dominant in determining the electrical properties of the overall composite material. This 

was further demonstrated by the Seebeck coefficient measurements in which the n-type 

property of V2O5 changes upon intercalation and a positive Seebeck coefficient is seen 

relating to an overall p-type nature of the composite materials (as it was demonstrated in 

Section 4.1.1) that the intercalated polymers are in their p-type doped form. Though the 

polymer would be found within the layers of the inorganic host, the inorganic host would 

exhibit n-type nature due to the electron transfer in the intercalation reactions).  

The I-V behaviour of V2O5 devices not only appears to be dependent on the 

intercalant present but also on the type of metal-semiconductor contact used. For example, 

for V2O5/AnAn
+
 there appears to be a largely ohmic relationship when using a Zn, Al and 

Cu contacts but the material showed rectifying behaviour when an Sn or FePS3 contact 

were used. Meanwhile, V2O5/2A5PhPyr (synthesised via direct intercalation) exhibited a 
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rectifying I-V relationship with a Zn contact, but mostly ohmic with Al. Furthermore, 

V2O5/PDA was shown to have the highest room temperature conductivity but exhibited 

ohmic properties with all metal contacts used, whereas V2O5/EDOT was shown to exhibit 

the most non-ohmic properties and exhibited a similar conductivity to V2O5/AnAn
+
 and 

V2O5/5AQ. 

The non-ohmic materials were generally modelled well using the non-ideal diode 

equation (Equation 4.1) determined from the calculated Io and n values, but 

V2O5/2A5PhPyr with a Zn contact and V2O5/AnAn
+
 with a FePS3 contact exhibited n 

values lower than 1. 

Interestingly, for both the evaporated and pressed Schottky devices the dopant 

densities were shown to be within the same order of magnitude, showing that there was 

good intimate contact between the semiconducting material and the metal electrode. 

V2O5/2A5PhPyr (synthesised via direct intercalation) had the lowest dopant density and 

this could be due to the lack of redox chemistry present in the acid-base reaction used for 

the synthesis. It could be suggested that the dopant densities are dependent on both the 

nature of the intercalated polymer and the inorganic host material. From the XPS data, 

V2O5/2A5PhPyr showed a single V
5+

 environment unlike many of the other materials; 

hence the dopant densities could be solely dependent on the nature of the intercalated 

polymer material. Thus overall it appears that the limiting factor in all cases is the poorly 

semiconducting inorganic V2O5 host. 

In terms of devices for the prototype photosensitive devices for the highest dopant 

density non-ohmic Schottky materials, all the devices exhibited rectifying behaviour. In all 

cases, it was shown that the current measured in dark conditions increased when 

illuminated under A.Light conditions and further increased when illuminated under Lamp 

conditions. This showed that all the materials exhibited a photosensitive response. 

V2O5/AnAn
+
 and V2O5/EDOT exhibited the largest responses (which were shown from the 
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ΔI values in Table 4.18 to Table 4.22). This could be due to the fact that the intercalated 

polymers in both materials are in their most conductive phases (as demonstrated in section 

Section 4.1.1) and again although V2O5 appears to be the limiting factor for the electrical 

and photosensitive properties, so the specific polymer and its degree of doping affects the 

overall photosensitivity of these materials.  

An interesting phenomenon shown here for V2O5/AnAn
+
 was the increase in the 

dark current when the device is placed within a magnetic field with using a FePS3 contact. 

Although the increase in the current from that measured under dark conditions to that 

under the magnetic field was not seen to the same extent under illuminated conditions, the 

magnetic field still caused a significant deviation of the I-V character from the dark 

current. When the device orientation was perpendicular, the increase in current was shown 

to be greater than that when the device was orientated parallel. This effect could simply be 

that the magnetic field assisted the charge separation or more likely prevented 

recombination occurring at the interface that occurs in dark conditions leading to a greater 

observed current when a potential difference was applied.  

 From the ΔI vs V plots for the devices under A.Light and Lamp conditions the 

estimated maximum device Eff were calculated (Table 4.24 and Figure 4.123) where the 

photosensitive devices exhibited Eff up to ~1% with the V2O5/AnAn
+
 material exhibiting 

Eff ~0.90% when used as the active material. Although this is an estimation of the 

maximum Eff the device could exhibit, it does provide a good indication of the true Eff as 

it would be expected to be much lower than this calculated value. It is possible that a fully 

optimised device may operate with an efficiency similar to the calculated Eff for these un-

optimised devices. It was evident that there was a significantly lower Eff under Lamp 

illumination which suggested that the material operated poorly around ~800nm and above 

operating better within the blue visible light and near-UV regions of the electromagnetic 

spectrum. 
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 However, unlike in the case for the room temperature conductivities of the 

composite materials, the photosensitive devices exhibit poor photoconductivities in the 

range of 10
-10

 to 10
-12

 Sm
-1

. It is suspected that the low photoconductivities are due to the 

device not being optimised for the best performance. The poor photoconductivities are 

therefore related to the fact that the composite materials were spin-coated onto the Si or 

FePS3 and thus the film obtained was made up of discrete particles of the material forcing 

the photogenerated current to be conducted between particles. In relation to the entire film, 

its non-uniformity could be treated as defects caused by these particles. Thus, any 

conductive charge carriers produced by illumination may become trapped while moving 

between these particles. This trapping may be sufficient enough to result in a form of 

Shockley-Read-Hall, trap assisted or surface recombination mechanisms. This is further 

seen in the calculated device CCM of which for all devices are found in the order of 

magnitude of 10
-12 

to 10
-9

 m
2
V

-1
s

-1
. These low mobilities suggest that there a large number 

of the charge carriers recombining as opposed to being collected at the electrodes. It is 

therefore likely that the low mobilities are due to the charge carriers not effectively 

migrating between the particles that are making the composite material film and could be 

trapped leading to recombination. The low mobilities suggest that the likeliest mechanism 

of recombination will be that of surface recombination between the substrate and the 

composite material. This further provides evidence that the increased current observed 

when the V2O5/AnAn
+
 FePS3 device was placed within a magnetic field is probably due to 

the magnetic field preventing some recombination occurring leading to more effective 

charge separation. These effects are likely to be minimised if a suitable method for the 

deposition of a uniform film leading to a more optimised device architecture. 
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4.2.2) MoO3 Nanocomposite Materials  

4.2.2.1) Room Temperature Conductivity 

Table 4.26 - Room temperature conductivities for the MoO3 nanocomposite materials 

Material Conductivity, σ (Sm-1)  

MoO3 4.3 x 10-5 

  

Direct  

MoO3/PDA 8.1 x 10-1 

MoO3/2A5PhPyr 3.8 x 10-3 

MoO3/5AQ 2.7 x 10-2 

MoO3/2AmThia 7.8 x 10-4 

  

Recrystallisation  

MoO3/An 4.5 x 10-4 

 

The room temperature conductivities at ~293K (measured at the time of the experiment) 

are shown in Table 4.26. The host MoO3 exhibits the lowest conductivity (corresponding 

to the host being a wide-gap semiconductor) and increases upon insertion of the organic 

intercalants. This increase in conductivity is between one and four orders of magnitude. 

The increase is attributed to two main contributions; the first being the formation of the 

Mo
6+

/Mo
5+

 pairs in the inorganic host layer and the second being the presence of the 

organic intercalants (as concluded from the characterisation of these materials in Section 

4.1.2). The most conducting material was shown to be MoO3/PDA (synthesised by ion-

exchange). This was followed by MoO3/5AQ and MoO3/2A5PhPyr, and the least 

conducting materials were MoO3/AmThia and MoO3/An. The low conductivities of the 

MoO3/AmThia and MoO3/An may be due to the materials being present in their least 

conductive phase.  
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4.2.2.2) Seebeck Coefficient 

Table 4.27 - Seebeck Coefficients for some MoO3 composite materials and their doping type. 

Material Seebeck Coefficient (µVK-1) Material type 

MoO3 -200 (286) n-type 

MoO3/PDA 125 P-type 

MoO3/2A5PhPyr 98.14 P-type 

MoO3/AmThia 80.93 P-type 

 

In general, the MoO3 composite materials show positive Seebeck coefficients (see 

Appendix B.5) in contrast to the pristine host MoO3. The materials are therefore designated 

as p-type semiconductors, with MoO3/PDA exhibiting the highest Seebeck coefficient and 

MoO3/AnThia the lowest. The increase in the Seebeck Coefficient could be due to the 

presence of the polymers in the interlayer spacing of the inorganic material. As shown by 

the conductivities (Table 4.26), the intercalated polymers appear to dominate in 

contributing to the observed positive Seebeck coefficients of the composite materials. The 

p-type nature of these materials appears to follow that of the intercalated polymer materials 

(as concluded in Section 4.1.2)  these intercalated polymers are in their protonated forms, 

leading to the conclusion that the intercalation of the p-type conducting polymers leads to 

an increase in both the Seebeck coefficient and room temperature conductivity. 
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4.2.2.3) Schottky Device I-V Curves 

 

Figure 4.133 – I-V graph for MoO3 with Zn contact 

 

 

Figure 4.134 - I-V graph for MoO3 with an Al contact 

Figure 4.133 and Figure 4.134 show that the host MoO3 exhibits ohmic properties with no 

rectification using both Zn and Al contacts.  
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Figure 4.135 - I-V graph of MoO3/PDA with Zn contact 

 

 

Figure 4.136 - I-V graph of MoO3/PDA with Al contact 
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Figure 4.137 - I-V graph of MoO3/PDA with Cu contact 

 

Figure 4.138 - I-V graph of MoO3/PDA with a Ni contact 

Figure 4.135 - Figure 4.138 show the I-V curves for the MoO3/PDA composite material 

diodes with various metallic contacts. Unlike MoO3, all the devices are shown to exhibit 

non-ohmic properties. As concluded (in Section 4.1.2) the polymer materials were 

successfully intercalated into the interlayer space of MoO3; therefore the changes in the I-

V graphs are a result of the presence of the particular polymer intercalant. In the case of 

MoO3/PDA, any changes in the I-V character of the host material are caused by the 

presence of PDA. For Figure 4.135 - Figure 4.138 the rectification ratios between the 

maximum and minimum voltages are 1.45, 1.57, 1.61 and 1.09 respectively.  
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Figure 4.139 - I-V graph for MoO3/2A5PhPyr device with Zn contact 

 

Figure 4.140 - I-V graph for MoO3/2A5PhPyr device with Al contact 

Figure 4.139 and Figure 4.140 show the I-V graphs for the MoO3/2A5PhPyr composite 

material. In both cases, rectifying behaviour is seen. Under reverse bias, the Zn device 

shows non-ohmic behaviour until -3 V. Below -3 V a linear I-V relationship is observed as 

the device reaches a saturation point. The rectification ratios for the Zn and Al devices 

were 1.21 and 1.73 respectively.  
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Figure 4.141 - I-V graph for MoO3/5AQ device with Zn contact 

 

Figure 4.142 - I-V graph for MoO3/5AQ device with Al contact 

Figure 4.141 and Figure 4.142 show the I-V graphs for the MoO3/5AQ Schottky devices 

with Zn and Al contact respectively. With the Zn contact, the device shows a small 

rectifying property while the Al contact exhibits a rectifying property. The rectification 

ratios were 1.18 and 0.93 for the Zn and Al devices respectively. 
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Figure 4.143 - I-V graph for MoO3/AmThia device with Zn contact 

 

Figure 4.144 - I-V graph for MoO3/AmThia device with Al contact 

Figure 4.143 and Figure 4.144 show the I-V graphs for the MoO3/AmThia Schottky 

devices and show a linear (ohmic) relationship when both Zn and Al contacts are used. 

This may be due to a lack of protonation on the polymer intercalant.  

MoO3/An showed poor contact with all metal contacts, resulting in no current 

measurements being possible. 
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Modelling the I-V curves using the non-ideal diode equation (Equation 4.1 and Equation 

4.2), I0 and n can be extracted from the model and are reported in Table 4.28. Using 

Equation 4.4, Φ can be calculated and is shown in Figure 4.145. 

 

Table 4.28 - I0 and n values for the non-ohmic MoO3 composite material Schottky devices 

Zn Contact I0 (µA) n (V) 

MoO3/PDA 13.19 1.45 

MoO3/2A5PhPyr 0.087 1.33 

MoO3/5AQ 1.073 1.58 

      

Al Contact I0 (µA) n (V) 

MoO3/PDA 0.001 1.71 

MoO3/2A5PhPyr 0.037 1.15 

MoO3/5AQ 0.24 1.67 

      

Cu Contact I0 (µA) n (V) 

MoO3/PDA 0.58 1.65 

      

Ni Contact I0 (µA) n (V) 

MoO3/PDA 1.94 1.54 

 

 

Figure 4.145 - calculated barrier heights, Φ, for the non-ohmic Schottky diode junctions 

From Table 4.28 we can see that utilising the non-ideal diode equation and calculating n 

values yields an average value overall of 1.51 with no values n<1. The maximum ideality 

factor was shown to be for MoO3/PDA with the Al contact of 1.71 and the lowest 
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MoO3/2A5PhPyr with the Al contact. Notice that the average ideality factor suggests these 

devices show likely asymmetry between the bands required for excitation and/or 

recombination. This asymmetry (previously shown in Figure 4.8) suggests there may be 

poor band overlap in the composite materials between the organic and inorganic 

components as was previously concluded from the optical spectroscopy data for the MoO3 

materials (Figure 4.49).  

The average Φ was shown to be 0.71 eV, with the highest barrier height being 

exhibited by MoO3/PDA (0.85 eV) with an Al contact and the lowest being MoO3/PDA 

with a Zn contact (0.61 eV).  

 

 From the voltage-capacitance relationship (see Appendix B.6) for the MoO3 

Schottky devices and using the average dielectric constant measured (Table 4.15) the 

dopant densities (Nd) calculated using Equation 4.6 are shown in Table 4.29. A comparison 

of the evaporated and pressed pellet Nd are shown in Table 4.30.  

 

Table 4.29 - Dopant densities for all MoO3 Schottky device contacts 

Device Contact Dopant Density (Nd) (cm-3) 

Zn   

MoO3/PDA 2.07E+14 

MoO3/2A5PhPyr 6.61E+13 

MoO3/5AQ 3.54E+13 

    

Al   

MoO3/PDA 9.12E+14 

MoO3/2A5PhPyr 7.17E+13 

MoO3/5AQ 3.58E+12 

    

Cu   

MoO3/PDA 2.41E+14 

    

Ni   

MoO3/PDA 1.06E+15 
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Table 4.30 - Dopant density comparison between the MoO3 pressed Schottky devices and the evaporated metal 
contact Schottky devices 

Dopant Densities  (cm-3) (Nd) Collated 

Device Pressed Evap Ratio 

Al contact    

MoO3PDA 9.12E+14 3.7E+14 2.467 

MoO3/2A5PhPyr 7.17E+13 4.37E+13 1.639 

    

 Cu contact       

MoO3/PDA 2.41E+14 1.65E+14 1.46198 

 

Pressed pellet contacts and evaporated contacts show comparable dopant densities for the 

Schottky devices. Figure 4.146 shows a graphical representation of Table 4.30. 

 

 

Figure 4.146 - Comparison of dopant densities between the pressed pellet (Pressed) MoO3 devices and evaporated 
pellet (Evap) MoO3 devices 
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smallest Nd (3.58 x 10
12

 cm
-3

) while MoO3/PDA with a Ni contact has the largest Nd (1.06 

x 10
15

 cm
-3

). MoO3/PDA exhibited the largest Nd irrespective of the metal contact used 

with Nd values ~10
14

. 

From this, the same conclusions can be made as was the case for V2O5 where Nd is 

proportional to the concentration of Mo
6+

/Mo
5+

 pairs. Since all the materials were 

synthesised via ion-exchange mechanism it is possible that PDA exhibited better redox 

chemistry with the MoO3 host material upon intercalation which may increase the 

Mo
6+

/Mo
5+

 pair concentration compared to that for the other materials. The extent of redox 

chemistry between the organic intercalant and the inorganic host would then have an effect 

on the material’s Nd. 

 

4.2.2.4) Photosensitive Devices 

The prototype photovoltaic devices were made by spin-coating the photoactive composite 

material onto n-type silicon and using an ITO counter electrode. The MoO3/PDA material 

was shown to be the most conductive and most promising for photosensitive/conductive 

applications (4.2.2.3) and was therefore selected for photovoltaic analysis. 

 

 

Figure 4.147 - I-V graph for MoO3/PDA photovoltaic device under Dark, A.Light and Lamp conditions 
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Figure 4.148 - I-V graph for MoO3/PDA photovoltaic device under dark, A.Light and Lamp conditions between -2 and 2 
V 

Figure 4.147 and Figure 4.148 show the I-V curves for the MoO3/PDA silicon photovoltaic 

device. Overall, under Dark and illuminated conditions there is a nonlinear relationship 

between current and voltage. Between 0 V and 4 V, there is little change in current 

occurring between Dark, A.Light and Lamp conditions. Then after 4 V, there is a 

noticeable deviation from the Dark current when the device is illuminated. Under reverse 

bias, this deviation from the Dark current when the device illuminated is more noticeable. 

Table 4.31 and Table 4.32 show the overall change in current (ΔI) for selected voltages. 

Table 4.31 - Change in the current (ΔI) for Silicon MoO3/PDA photovoltaic device between A.Light - Dark and Lamp - 
Dark conditions under forward bias 

MoO3/PDA 

Voltage (V) 0.05 0.25 0.5 1 1.5 2 4 6 8 

ΔI (µA)  
A.Light - Dark -0.00068 -0.06873 -0.4856 -1.043 -1.779 -3.401 11.39 66.21 168.7 

ΔI (µA)  
Lamp - Dark -0.00078 -0.08737 -0.5847 -0.585 -0.705 -1.793 6.37 148.31 342.7 

 

Table 4.32 - Change in the current (ΔI) for Silicon MoO3/PDA photovoltaic device between A.Light – Dark and Lamp – 
Dark conditions under reverse bias 

MoO3/PDA 

Voltage (V) -0.05 -0.25 -0.5 -1 -1.5 -2 -4 -6 -8 

ΔI (µA)  
A.Light - Dark 0.018 0.1611 0.8103 2.023 0.213 -9.97 -32.81 -57.7 -85.5 

ΔI (µA)  
Lamp - Dark 0.0493 0.1331 0.843 -0.084 -11.92 -33.87 -94.54 -192.12 -257.52 
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As shown in Table 4.31 Table 4.32, under forward bias the photo-effect is most prominent 

≤ 4 V whereas under reverse bias, the deviation begins to occur earlier and it appears that 

the device reaches its breakdown voltage under illuminated conditions. 

As previously seen for the V2O5 composite materials (Section 4.2.1.4), the power 

generated when the device is illuminated (Pout, as a function of voltage) can be calculated 

by multiplying ΔI by the voltage. Figure 4.149 and Figure 4.150 shows the power vs 

voltage plots for MoO3/PDA. 

 

Figure 4.149 – The power vs voltage plot for MoO3/PDA Si device under A.Light illumination 

 

 

Figure 4.150 – The power vs voltage plot for MoO3/PDA Si device under Lamp illumination 
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From the Pout vs V plots, the device efficiency (Eff) as the maximum Pout can be 

determined. The Eff is calculated using Equation 4.7 where the total power being input into 

the large silicon device is 0.15 W and 1.65 W for A.Light and Lamp illuminated conditions 

respectively (previously shown in Table 4.23). Table 4.33 and Figure 4.151 show the 

calculated maximum efficiencies. It must be noted that these are the efficiencies observed 

at the maximum voltage and may not represent the practical device Eff vawhich is 

expected to be lower than this value. 

Table 4.33 – Calculated device Eff(%) for the Si MoO3/PDA photosensitive device 

Material MoO3/PDA 

A.Light Illumination   

Max Power Volt 8 

Max Power (W) 0.00452 

Eff (%) 0.91 

    

Lamp Illumination   

Max Power Volt 8 

Max Power (W) 0.00591 

Eff (%) 0.17 

 

 

Figure 4.151 – Calculated device Eff (%) for the Si MoO3/PDA photosensitive device 
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As seen for the V2O5 composite materials (Section 4.2.1.4), the MoO3/PDA device exhibits 

a greater Eff under A.Light illumination than for the Lamp illuminated conditions. This is 

consistent with the absorption edges and optical band-gaps for the MoO3 composite 

materials (Section 4.1.2.4) which were observed to occur within the range of ~3.4 to ~3.8 

eV. The same conclusions apply for the V2O5 photosensitive devices (Section 4.2.1.4) 

where is it likely that the formation of charge carriers from photon absorption is occurring 

from the absorption of light in the blue and near UV regions. This corresponds well with 

the maximum solar spectral irradiance at the Earth’s surface (centred at ~500nm) (281) 

compared to that for the spectrum of Lamp (peaks at ~800nm). This results in the 

difference observed in the Eff between A.Light and Lamp illuminated conditions. 

 Further analysis of the device ΔI vs V plots can provide information regarding the 

photoconductivities and charge carrier mobility (CCM) of this device. The ΔI vs V plots 

were modelled using a second-order polynomial (Equation 4.9 from Section 4.2.1.4) and 

an exponential function (Equation 4.10 from Section 4.2.1.4). The plots show a better fit to 

the second-order polynomial than over the exponential function (as previously described in 

Section 4.2.1.4) for modelling the V2O5 composite material ΔI vs V photosensitive device 

plots. 

 

Figure 4.152 – ΔI vs V plot for MoO3/PDA Si device under A.Light illumination where I) shows the second-order 
polynomial fit II) shows exponential fit 
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Figure 4.152.I and .II show the ΔI for the device illuminated under A.Light: both functions 

show a good and very similar fit to the plot R
2
 = 0.9821 and R

2
 = 0.9863 for the second-

order polynomial and exponential function respectively.  

 

 

Figure 4.153 – ΔI vs V plot for MoO3/PDA Si device under Lamp illumination where I) shows the second order 
polynomial fit II) shows exponential fit 

 

As similarly seen in Figure 4.152.I and .II, Figure 4.153.I and .II show a good and similar 

fit to both polynomial (R
2
 = 0.9776) and exponential functions (R

2
 = 0.9749).  

 Overall, both Figure 4.152 and Figure 4.153 are well fitted by both second-order 

polynomial and exponential functions, with little to differentiate the two models. It is 

therefore assumed that both Figure 4.152 and Figure 4.153 exhibit a good fit for the 

polynomial function and these are carried forward for calculating the photoconductivities 

and CCM for this device. From the fitted second-order polynomials the estimated 

photoconductivity (Δζ) can be calculated using Equation 4.11 (see Section 4.2.1.4). Table 

4.34 shows the estimated photoconductivities and the relative changes in conductivity for 

the MoO3/PDA device fitted to the second-order polynomial. 

Table 4.34 – Photoconductivities of the Si Devices modelled well with the second-order polynomials where σobvs is the 
calculated photocurrent from the I – V plot of the respective material’s photosensitive device 

Material Δσ (Sm-1) Δσ/σobvs 

A.Light Illumination    

MoO3/PDA 2.43E-11 0.30 

     

Lamp illumination    

MoO3/PDA 5.20E-11 0.47 
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Table 4.34 shows that under both illumination conditions the photoconductivity of the 

device is of the same order of magnitude (10
-11

 Sm
-1

). However, since the Eff (seen in 

Table 4.33 and Figure 4.151) shows a clear difference between A.Light and Lamp 

illumination, it is likely that in the case of the MoO3/PDA the Eff of the device is more 

closely related to the CCM, which is a function of the total number of charge carriers (n+p) 

created when the device is under illumination. 

 Equation 4.13 is used to determine the CCM (see Section 4.2.1.4) and Figure 4.154 

shows the estimated CCM valuess for the MoO3/PDA Si device. 

 

 

Figure 4.154 – Calculated CCM values for the MoO3/PDA Si device under A.Light and Lamp illumination 

It is immediately clear that the MoO3/PDA Si device exhibits small CCM compared to 

those for optimised organic devices (285). On closer inspection, it is shown that 

illumination under ambient light produces a calculated CCM of approximately one order of 

magnitude greater than that under Lamp illumination. This correlation is similar to that 

when comparing the calculated device Eff under the two illumination conditions. Therefore 

the CCM values help begin to build a better picture of the charge separation occurring in 

the device. It is apparent that the Eff calculated is related to the mechanism of exciton 

creation and charge separation occurring in the device itself.  
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 The calculated estimated CCM values are the minimum values under the 

assumptions explained earlier when describing Equation 4.13. It is expected that the true 

value will be higher than those calculated in Figure 4.154. However, the very low CCM 

values suggest that upon formation of the charge carriers, and due to the un-optimised 

nature of the photosensitive devices, most of these charge carriers recombine and are not 

efficiently separated. This is expected to be due to the device construction when the active 

composite material is spin-coated. The spin-coating of the active composite material results 

in the deposition of a film comprising individual particles as opposed to a continuous 

uniform film of the material. This means that any charge carriers that are formed need to 

migrate between particles in order for efficient separation to occur. Therefore, the particles 

could be treated as defects within the spin-coated film and result in the charge carriers 

being trapped; recombination is then likely to follow a Shockley-Read-Hall, trap-assisted 

or surface recombination mechanism. Due to the nature of the composite material film, it is 

probable that surface recombination is occurring in these devices due to the small CCM 

values resulting in charge carriers travelling a small distance from the depletion region 

before recombining. 

 However, if the ΔI vs V plots are to be modelled with an exponential function as 

opposed to the second-order polynomial equation, the MoO3/PDA device could undergo an 

Auger recombination like mechanism where a small proportion of any trapped charge 

carriers (produced under dark conditions) gain enough energy from a recombining charge 

carrier to be freed and collected at the electrode. In practice, this mechanism may only 

contribute to a small increase in ΔI. 

 

Summary 

 Overall, it has been shown that upon successful intercalation of the polymer 

materials (as concluded in Section 4.1.2), the electrical and optoelectronic properties of the 
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new materials differ from those of the inorganic host MoO3. The previously synthesised 

composite materials and the novel ones showed an increase in the room temperature 

electrical conductivity compared to the inorganic host with all the composite materials 

exhibiting p-type semiconductor properties. The intercalation of the polymers increases the 

room temperature conductivity by a minimum of one order of magnitude (MoO3/2AmThia 

and MoO3/An) and a maximum of four orders of magnitude (MoO3/PDA). PDA was 

intercalated in its most conductive phase by design compared to the other intercalated 

polymers, and therefore it is likely that the extent of increased electrical and 

semiconducting properties (compared to the inorganic host) of the materials is due to the 

extent that the polymer is present in its conductive form. MoO3/5AQ showed an increase 

of 3 orders of magnitude in its room temperature conductivity compared to the inorganic 

host. This increase could be due to the increased conjugation due to the presence of its 

fused ring system. The presence of the fused rings could further improve its redox 

chemistry with Mo leading to a more conductive polymer being present in the interlayer 

spacing. The lowest conductivity was that for MoO3/An synthesised via recrystallization. It 

is suspected that the polyaniline intercalant is not in its most conductive form. Therefore, 

since all the composite materials (except MoO3/An) were synthesised via ion-exchange it 

can be deduced that their conductive properties are dependent on the nature of the 

intercalated polymer (the degree to which it is in its conductive phase) which is dominant 

in determining the electrical and semiconducting properties of the overall composite 

material. This was further demonstrated by the Seebeck coefficient measurements in which 

the n-type property of MoO3 changes upon intercalation and a positive Seebeck coefficient 

is seen relating to an overall p-type nature of the composite materials. 

However, MoO3/PDA not only showed the highest conductivity (~10
-1

 Sm
-1

) but 

also exhibited the best semiconducting properties. MoO3/PDA exhibited the highest Nd 

(~10
14

 cm
-3

 for Zn, Al and Cu contacts and ~10
15

 cm
-3

 with a Ni contact) irrespective of the 
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metal contact used for the Schottky device. As seen previously for the V2O5 composite 

materials, the evaporated and pressed Schottky device Nd values were shown to be within 

the same order of magnitude, showing that there was good intimate contact between the 

semiconducting material and the metal electrode. Due to ion-exchange and 

recrystallization synthesis utilised, the Nd values for these composite materials may be 

solely dependent on the amount of reduced Mo
5+

 present in the material formed from the 

Li
+
, and more importantly formed from any redox chemistry between the organic 

intercalant and Mo
n+

. Furthermore MoO3/PDA and MoO3/2A5PhPyr showed the most 

non-ohmic behaviour while the remaining composite materials showed a small deviation 

from the linear nature of the host’s I-V plot (but were still noticeably non-ohmic). 

MoO3/2A5PhPyr, however, did not show the large Nd (~10
13

 cm
-3

) compared with 

MoO3/PDA. The non-ohmic materials were generally modelled well using the non-ideal 

diode equation (Equation 4.1) determined from the calculated I0 and n values with all n 

values being between 1 and 2. 

In terms of prototype photosensitive devices, due to MoO3/PDA exhibiting the 

most desirable conductive and semiconducting properties, it was selected for use in the 

prototype photosensitive device. The MoO3/PDA Si device exhibited novel photosensitive 

effects, with an increase in current when illuminated under A.Light and Lamp conditions. 

It is clear that although the MoO3 host is the limiting factor in terms of the material’s 

overall electrical and semiconductor properties, the inclusion of a conducting polymer and 

partical doping is the cause for the photosensitivity in the MoO3/PDA Si device.  

From the ΔI vs V plots for the photosensitive device under A.light and Lamp 

conditions the estimated maximum device Eff was calculated (Table 4.33 and Figure 

4.151). the photosensitive device exhibited an Eff up to ~1% under A.Light illumination 

and ~0.1% under Lamp illumination. Although this is an estimation of the maximum Eff 

the device could exhibit, it does provide a good indication of the true Eff as it the true 



 

290 
 

practical Eff of this un-optimised device would be expected to be much lower than the 

calculated value. It is possible that for a fully optimised device, the Eff may be similar to 

the calculated maximum Eff for the un-optimised device. It is, however, evident that there 

was a significant difference between the calculated device Eff values under A.Light and 

Lamp illumination. This suggested that the MoO3/PDA composite material operated poorly 

around ~800nm and above and operating better within the blue visible light and near-UV 

regions of the electromagnetic spectrum.  

In contrast to the room temperature conductivity and due to the un-optimised 

design of the photosensitive device, the MoO3/PDA Si device showed poor 

photoconductivity ~10
-11

 Sm
-1

 (Table 4.34), related to the fact that the composite material 

was spin-coated onto the Si and thus the film obtained was comprised of discrete particles. 

This forced the photogenerated current to be conducted between particles. In relation to the 

entire film, its non-uniformity could be treated as defects caused by these particles and the 

unknown geometry. Thus, any conductive charge carriers produced by illumination may 

become trapped at the particle edges while attempting to move between these particles. 

This trapping may be sufficient to result in Shockley-Read-Hall, trap-assisted or surface 

recombination mechanisms. This was further seen in the calculated device CCM where the 

device exhibited a CCM of ~10
-10

 and ~10
-11

 m
2
V

-1
s

-1
 under A.Light and Lamp 

illumination respectively. These low mobilities suggest that a large number of 

photogenerated charge carriers are recombined instead of being separated and collected at 

the electrodes. It is likely that the low mobilities are due to the charge carriers not 

effectively migrating between the discrete particles of the MoO3/PDA spin-coated film 

leading to recombination. The mechanism of recombination, in this case, would likely be 

surface recombination between the substrate and the composite material.  
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4.2.3) ZnPS3 Nanocomposite Materials  

4.2.3.1) Room temperature electrical conductivity 

Room temperature electrical conductivity 

Table 4.35 - Room temperature conductivities for ZnPS3 nanocomposite materials 

Material Conductivity, σ (Sm-1)  

ZnPS3 4.1 x 10-8 

ZnPS3/PDA 3.5 x 10-3 

 

The room temperature conductivities measured at a temperature of ~293K shown in Table 

4.35. The low ZnPS3 conductivity corresponds to that of a wide-gap semiconductor. The 

ZnPS3/PDA showed an increase in conductivity by five orders of magnitude compared to 

the ZnPS3 host, which is mainly attributed to the presence of the polymer material. Unlike 

the cases of V2O5 and MoO3 (where reduced Mo and V ions are present), ZnPS3/PDA was 

synthesised using ion-exchange between Zn
2+

 ions in the host material and the organic 

guest cations. This loss of Zn
2+

 cations in the inorganic layers leaves behind positively-

charged, immobile, localised vacancies. These vacancies are therefore unlikely to give rise 

to the increase in conductivity observed in the composite material. It is concluded that the 

major component contributing to the increase in the composite conductivity is the presence 

of the intercalated conducting polymer (as concluded in Section 4.1.3). 
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4.2.3.2) Schottky Device I-V curves 

 

Figure 4.155 - I-V graph for ZnPS3 with a Zn contact 

 

 

Figure 4.156 - I-V graph of ZnPS3/PDA with Zn contact 

Figure 4.155 and Figure 4.156 show the I-V plot for ZnPS3 and the ZnPS3/PDA composite 

with a Zn contact. Both devices exhibit ohmic behaviour. 
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Figure 4.157 - I-V graph of ZnPS3/PDA with a Cu contact 

Figure 4.157 shows that the ZnPS3/PDA device with a Cu contact exhibits rectifying 

behaviour with a rectification ratio of 1.78. This behaviour is different from that of the host 

ZnPS3, which is probably due to the successful intercalation of the polymer into the 

interlayer space of ZnPS3: therefore any changes in the I-V graphs are a result of the 

presence of the PDA polymer. 

Using non-ideal diode equation (Equation 4.2)  and the Schottky barrier height 

equation (Equation 4.3) to model the non-ohmic ZnPS3/PDA device with a Cu contact, the 

I0, n and Φ can be calculated and are shown in Table 4.36. 

 

Table 4.36 - I0, n and Φ values for the non-ohmic ZnPS3/PDA Schottky device 

Cu Contact I0 (µA) n Φ 

ZnPS3/PDA 4.4 1.66 0.64 

 

Table 4.36 shows that the ZnPS3/PDA device with a Cu contact is modelled well using the 

non-ideal diode equation. The ideality factor of 1.66 suggests there may be asymmetry 

between the electronic bands for excitation and/or recombination. It is therefore possible 

that the organic guest and inorganic host exhibit poor band overlap in the composite 

material, as suggested by the optical spectroscopy data (Table 4.11). The changes in the I-

V plot from ohmic behaviour between the use of the Zn contact (Figure 4.156) and the Cu 
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contact (Figure 4.157) could be explained by suggesting that the Cu contact produces a Φ 

sufficiently large for a depletion region to be formed, allowing the ZnPS3/PDA deivce to 

behave as a Schottky diode. 

 Furthermore, from the voltage-capacitance relationship (see Appendix C.4) for this 

device (using the average dielectric constant measured in Table 4.15) the dopant density 

for this device was calculated using Equation 4.6 and is shown in Table 4.37. 

 

Table 4.37 - Dopant Density for the ZnPS3/PDA Schottky device 

Material Contact Dopant Density (Nd) (cm-3) 

ZnPS3/PDA Cu 7.44E+14 

 

Overall, the dopant density for this material is similar (in magnitude) to that for both the 

V2O5 and MoO3 composite material devices. Since there is no reduction of the Zn
2+

 ions in 

the inorganic host, the Zn
2+

 vacancies and the presence of the conducting polymer 

intercalant (concluded to be in its protonated form in Section 4.1.3.2) are likely to be the 

contributing factors for the measured Nd.  

However, the Zn
2+

 vacancies are expected to be immobile and the host material to 

exhibit non-stochiometry as a result of the synthetic method (as concluded from the ICP-

AES and TGA data in Section 4.1.3.3). As a result, it is concluded that the Zn
2+

 vacancies 

and any non-stoichiometry would be small contributors to the electrical properties that 

ZnPS3/PDA exhibits. The major contributing factor is expected to be the presence of the 

conducting polymer intercalant in the interlayer spacing.  
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4.2.3.3) Photosensitive devices 

The prototype photovoltaic device was made by spin-coating the photoactive composite 

material onto n-type silicon with an ITO counter electrode. The constructed photosensitive 

device was illuminated under ambient light (A.Light) and under an incandescent lamp 

(Lamp) 

 

 

Figure 4.158 - I-V graph for ZnPS3/PDA photovoltaic device under Dark, A.Light and Lamp conditions 

 

Figure 4.159 - I-V graph for ZnPS3/PDA photovoltaic device under Dark, A.Light and Lamp conditions between -2V to 
2V 

Figure 4.158 and Figure 4.159 show the I-V curves for the ZnPS3/PDA silicon 

photosensitive device. It is clear that the device exhibits rectifying behaviour. Between -2 
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V and 2 V (Figure 4.159) there is little no change between the dark and A.Light 

illuminated current. However, under Lamp conditions there is a significant increase in 

current where the device deviates from the behaviour seen under Dark and A.Light 

conditions. Below -2 V, the dark and A.Light currents appear to show little difference, 

while the current under Lamp conditions continues to decrease. Above 2 V however, both 

A.Light and Lamp conditions cause deviations from the dark current. Table 4.38 and Table 

4.39 show the overall changes in current (ΔI). 

 

Table 4.38 - Change in the current (ΔI) for Silicon ZnPS3/PDA photovoltaic device between A.Light - Dark and Lamp - 
Dark conditions under forward bias 

ZnPS3/PDA 

Voltage (V) 0.05 0.25 0.5 1 1.5 2 4 6 8 

ΔI (µA)  
A.Light - 

Dark -0.01398 -0.0031 -0.00587 0.00223 0.0023 0.023 0.919 5.95 21.01 

ΔI (µA)  
Lamp - Dark 0.000654 0.00327 0.08687 0.79334 2.0003 2.637 6.37 12.56 55.92 

 

Table 4.39 - Change in the current (ΔI) for Silicon ZnPS3/PDA photovoltaic device between A.Light - Dark and Lamp - 
Dark conditions under reverse bias 

ZnPS3/PDA 

Voltage (V) -0.05 -0.25 -0.5 -1 -1.5 -2 -4 -6 -8 

ΔI (µA)  
A.Light - Dark 0.0119 0.00394 0.0012 -0.133 -0.072 0.34 0.839 -1.243 -0.877 

ΔI (µA)  
Lamp - Dark 0.06201 -0.0615 -0.2801 -1.455 -2.442 -3.19 -9.602 -17.95 -25.95 

 

From Table 4.38 and Table 4.39, the power generated when the device is illuminated (Pout) 

as a function of voltage) can be calculated by multiplying ΔI by the voltage. Figure 4.160 

and Figure 4.161 shows the power vs voltage plot for the ZnPS3/PDA Si device. As 

previously seen for the V2O5 and MoO3 composite materials (Sections 4.2.1.4) and 4.2.2.4) 

the device efficiency (Eff) at the maximum Pout can be determined from the Pout vs V plots. 
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Figure 4.160 – The power vs voltage plot for ZnPS3/PDA Si device under A.Light illumination 

 

 

Figure 4.161 – The power vs voltage plot for ZnPS3/PDA Si device under Lamp illumination 

 

The Eff is calculated using Equation 4.7 where the total luminous power being input into 

the large silicon device is 0.15 W and 1.65 W for A.Light and Lamp illuminated conditions 

respectively (Table 4.23). Table 4.40 shows the calculated maximum efficiencies. It is 

noted that these are the efficiencies observed at the maximum voltage and may not 

represent the practical efficiencies of the device, which are expected to be lower than these 

value. 
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Table 4.40 – Calculated device Eff (%) for the ZnPS3/PDA Si photosensitive device 

Material ZnPS3/PDA 

A.Light Illumination   

Max Power Volt 8 

Max Power (W) 0.00076 

Eff (%) 0.34 

    

Lamp Illumination   

Max Power Volt 8 

Max Power (W) 0.00104 

Eff (%) 0.22 

 

Unlike the cases for the V2O5 and MoO3 composite materials (where there was a 

significant difference in Eff (%) between A.Light and Lamp conditions) the ZnPS3/PDA 

device exhibits low Eff (%) under both A.Light and Lamp illumination. It is suspected that 

in the case for ZnPS3/PDA, the poorly-conducting host material could be a limiting factor 

in transporting any charge carriers formed from photon absorption. It is also assumed that 

there is a uniform film of the active material in intimate contact with the Si substrate. 

Considering the non-optimised device architecture and construction (via spin-coating) and 

the insulating inorganic host, it is likely that any charge carriers formed may be 

recombined before being collected. Calculating the charge carrier mobility may provide a 

better picture. 

 Further analysis of the device ΔI vs V plots can provide information regarding the 

photoconductivities and CCM of the device. The ΔI vs V plots were modelled with a 

second-order polynomial (Equation 4.9) and an exponential function (Equation 4.10) seen 

previously in Section 4.2.1.4). As discussed in Section 4.2.1.4) and 4.2.2.4), the ΔI vs V 

plots showing a better fit to the second-order polynomial are favoured over the exponential 

equation. A ΔI vs V plot which fits an exponential function may be caused by a non-

primary photocurrent caused by the release of trapped charge carriers. 
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Figure 4.162 – ΔI vs V plot for ZnPS3/PDA Si device under A.Light illumination where I) shows the second-order 
polynomial fit and II) shows the fit for an exponential curve 

 

Figure 4.162.I and .II show the ΔI for the device illuminated under A.Light; the best fit 

occurs for the second-order polynomial function (R
2
 = 0.9801) in Figure 4.162.I compared 

to the exponential fit (R
2
 = 0.9126). 
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Figure 4.163 – ΔI vs V plot for ZnPS3/PDA Si device under Lamp illumination where I) shows the second-order 
polynomial fit and II) shows the fit for an exponential curve 

Figure 4.163.I and .II show ΔI for the device illuminated under Lamp illumination for both 

polynomial and exponential functions. Unlike Figure 4.162, the ΔI vs V plot shows a 

significantly better fit for the exponential function (R
2
 = 0.9880) than for the second-order 

polynomial (R
2
 = 0.9049). 

 From the fitted second-order polynomial (Figure 4.162) an estimated 

photoconductivity can be calculated using Equation 4.11. Table 4.41 shows the estimated 
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photoconductivity calculated for the ZnPS3 device modelled using the second-order 

polynomial. 

 

Table 4.41 – Photoconductivity of the ZnPS3/PDA Si photosensitive device modelled using the second-order 
polynomial where σobvs is the calculated photocurrent from the I – V plot of the respective material’s photosensitive 

device 

Material Δσ (Sm-1) Δσ/σobvs 

     

A.Light Illumination    

ZnPS3/PDA 2.08E-11 0.087 

 

The un-optimised device exhibits poor photoconductivity which may have an impact on 

the exhibited low Eff (Table 4.40). It is clear from the calculated photoconductivity and Eff 

that the factor limiting the photoactivity of the active material and the overall device Eff is 

likely to be recombination of the excitons being produced. The active material film coated 

on the Si substrate is made up of individual particles of the composite material and not a 

continuous uniform film. Therefore the mobility of the charge carriers that are being 

conducted through the composite material to the electrode is dependent on how efficiently 

the charge carriers are able to move between the composite particles. Therefore if the CCM 

is poor in the material, recombination is likely to occur. From the photoconductivity an 

estimated CCM can be calculated using Equation 4.13 (as previously described in Section 

4.2.1.4). Table 4.42 shows the calculated CCM for the ZnPS3/PDA Si photosensitive 

device.  

Table 4.42 – The calculated CCM for the ZnPS3/PDA Si photosensitive 

Material µ 

    

A.Light Illumination   

ZnPS3/PDA 2.07788E-11 

 

 

It should be stated here that the calculated CCM is the minimum value calculated. The true 

practical value is expected to be higher than this. However, the estimated CCM provides 
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some indication regarding the active material and the creation of excitons and charge 

separation in the device. As discussed previously (in Sections 4.2.1.4) and 4.2.2.4), in 

comparison to optimised organic devices (285) the estimated CCM is concluded to be very 

low. When comparing the CCM with the Eff and photoconductivity of the ZnPS3/PDA Si 

device, the calculated values suggest that recombination of charge carriers is dominant in 

this device. This is likely to be due to the un-optimised nature of the photosensitive device 

in which the photoactive material is spin-coated onto Si. The deposited film would be 

made up of individual particles as opposed to a continuous uniform film of the material.  

Any charge carriers formed by photoabsorption are required to migrate between the 

individual particles in order to be separated effectively, so that the particles could be 

treated as defects within the spin-coated film, which may result in the charge carriers 

becoming trapped at the particle edges. Recombination of the charge carriers is then likely 

to follow a Schockley-Read-Hall, trap-assisted or surface recombination mechanism. It is, 

more probable that the the small CCM value indicates that the charge carriers only travel a 

small distance away from the depletion region before recombining.  

 It was observed earlier that the ΔI vs V plot for the device under Lamp illumination 

fitted the exponential function better than the second-order polynomial. In this case, it is 

possible that Auger recombination mechanism is occurring where a small proportion of 

any trapped charge carriers, produced under dark conditions, gain enough energy from 

recombining charge carriers to be freed and collect at the electrode. In practice, this 

mechanism may only contribute to a small increase in the ΔI seen. 

 

Summary 

 Overall, it has been shown that upon successful intercalation of the polymer 

material (as concluded in Section 4.1.3), the electrical and optoelectronic properties of 

ZnPS3/PDA differ from those of the inorganic host ZnPS3. ZnPS3/PDA showed an increase 
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of 5 orders of magnitude in its room temperature conductivity compared to the inorganic 

host. Although the ZnPS3/PDA is expected to contain vacant Zn
2+

 sites (due to the ion-

exchange mechanism) leaving behind positive holes in the inorganic layers, these vacant 

sites would be immobile and unlikely to contribute to the increase in the conductivity. 

Therefore is it more likely that the increase in electrical conductivity is due to the presence 

of the PDA polymer that was intercalated in its conductive phase (as concluded in Section 

4.1.3). The intercalated material had a Nd of ~7 x 10
14

 cm
-3

 which is of the same order of 

magnitude as for V2O5/PDA and MoO3/PDA materials.   

 The presence of the intercalated polymer also affected the composite materials’ 

semiconducting properties. The ZnPS3 Schottky device exhibited ohmic properties, as did 

the ZnPS3/PDA Schottky device using a Zn contact but it showed non-ohmic properties 

when a Cu contact was utilised. It may be that when the Cu contact was utilised, a 

sufficiently large barrier height was established which led to the formation of a depletion 

region between the composite material and the metal contact. The non-ohmic ZnPS3/PDA 

Schottky device (with a Cu contact) was modelled well using Equation 4.1 (as described in 

Section 4.2.1.4) determined from the calculated I0 and n values with the n value being 

between 1 and 2.  

 In terms of the prototype photosensitive device, the ZnPS3/PDA Si device exhibited 

novel photosensitive effects with an increase in current (a generated photocurrent) when 

the device was illuminated under A.Light and Lamp conditions. It is clear that the 

inclusion of a conducting polymer (and the degree of its doping) are major factors for the 

observed photosensitivity in the device. From the ΔI vs V plots for the photosensitive 

device under A.light and Lamp conditions the estimated maximum device Eff was 

calculated (Table 4.40). The photosensitive device exhibited an Eff of 0.34% and 0.22% 

under A.Light and Lamp illumination respectively. These values are estimates of the 

maximum Eff of the device. For a fully optimised device, the Eff may well be closer in 
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value to the estimated maximum Eff for this un-optimised device. However, it is evident 

that unlike for the V2O5 and MoO3 materials, ZnPS3/PDA Si device exhibits a low Eff 

under both A.Light and Lamp illumination. This suggests that the device operates poorly 

around both the blue visible light and near UV regions (A.Light) and around ~800nm and 

above (Lamp) of the electromagnetic spectrum, and it may operate best at an intermediate 

wavelength. 

 The poor Eff is likely to be related to the photoconductivity and charge mobility of 

charge carriers in the device itself. In contrast to the room temperature conductivity, the 

ZnPS3/PDA Si device showed a poor photoconductivity ~10
-11

 Sm
-1

 under A.Light 

illumination. It is expected that the major contributor to the poor photoconductivity is the 

non-optimised design of the photosensitive device. The composite material was spun-coat 

onto Si and thus the film obtained would be made up of discrete particles and as discussed 

earlier and lead to recombination. The CCM for the device was only ~10
-11

 m
2
V

-1
s

-1
 under 

A.Light illumination, which suggests that a large number of photogenerated charge carriers 

are recombined as opposed to being separated and collected at the electrodes 
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5) Conclusion and Future Work 

5.1) Conclusion 

 

Overall, this work presents several novel inorganic-organic nanocomposites, new synthetic 

methods for previously synthesised materials and their novel applications in photosensitive 

devices. 

This thesis reports the synthesis and complete characterisation of a range of novel 

organic-inorganic nanocomposite materials via intercalation chemistry. The nanocomposite 

materials were synthesised by inserting organic monomer compounds into a layered 

inorganic host via direct redox and ion-exchange mechanisms using an aqueous medium. 

Other green solvents can be explored where the intercalation mechanisms are unfavourable 

in the aqueous medium (e.g. if the organic guest species exhibits poor solubility in water). 

Alternative green solvents could include ketones (e.g. acetone and methyl ethyl ketone for 

redox reactions), alcohols (e.g. ethanol and isopropanol or both redox and ion-exchange 

reactions) and ethyl acetate (for redox reactions) (287). The guest monomer species were 

polymerised in-situ to afford the organic-inorganic nanocomposite materials. The results 

obtained in this thesis demonstrate a novel proof-of-concept for the potential of organic-

inorganic nanocomposites as low-cost active materials in photosensitive devices.  

The direct intercalation method obtained the previously synthesised V2O5/AnAn
+
 

(redox reaction using a novel method), V2O5/EDOT (redox reaction) and MoO3/An 

(recrystallization using a novel method) nanocomposite materials and the novel 

V2O5/2A5PhPyr (acid-base reaction) material. The novel method of intercalating both 

neutral aniline and the cationic aniline sulphate was demonstrated to be successful and 

afforded results comparable to that of earlier work (see Section 1.5.1) for intercalating 

emeraldine into V2O5. However c-axial defects were found to be prevalent in all 
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nanocomposites synthesised via direct intercalation. Upon intercalation, a redox reaction 

facilitated the polymerisation of the organic monomer guest species. A novel acid-base 

reaction between V2O5 and 2A5PhPyr was shown to successfully intercalate and 

polymerise the monomer guest species within the interlayer space of V2O5. A novel 

method for aniline intercalation into MoO3 was further demonstrated in which an aqueous 

solution of MoO3 was shown to regrow around the aniline guest species. This intercalation 

allowed for in-situ polymerisation to occur.  

The ion-exchange of LiXV2O5, LixMoO3 and MgxZnPS3 with various organic 

cations afforded the novel nanocomposite materials: V2O5/PDA, V2O5/2A5PhPyr, 

V2O5/5AQ, V2O5/1,4PDA-HQ, MoO3/PDA, MoO3/2A5PhPyr, MoO3/5AQ, 

MoO3/2AmThia and ZnPS3/PDA. The ion-exchange method was found to result in fewer 

c-axial defects when compared to direct intercalation methods. Upon intercalation of the 

organic guests into V2O5 and MoO3 host materials, in-situ polymerisation via a redox 

reaction occurred between the organic guest and inorganic host. An external oxidant (APS) 

was required to facilitate the polymerisation of PDA in ZnPS3 to afford the polymerised 

guest. 

The general trend was that upon intercalation of the polymer into the inorganic host 

layers there were striking improvements in electrical properties (e.g. room temperature 

conductivity, semiconductor property, Schottky device I-V character and photosensitive 

device properties) compared to the host material. The nanocomposites were shown to 

exhibit p-type semiconductor properties compared to the n-type properties of their 

inorganic parent compounds. It was concluded that the presence of the polymer in the 

inorganic host leads to these observed changes. The specific polymer (and whether the 

polymer was designed to be present in its protonated or conductive form) and the degree of 

doping, in the nanocomposite material as a whole, appeared to correlate with the extent of 

improvement of the electrical and device properties. This was shown particularly for 
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AnAn
+
 and PDA (which were designed to be in their most conductive forms upon 

intercalation) where the nanocomposites of these polymers produced the most conductive 

materials and exhibited the best device properties irrespective of the inorganic host.  

From the synthesised nanocomposite materials, V2O5/AnAn
+
, V2O5/EDOT, 

V2O5/2A5PhPyr, MoO3/PDA and ZnPS3/PDA showed the best semiconducting properties 

and were selected for the investigation of their applications in photosensitive devices. The 

non-optimised silicon and FePS3 devices exhibited an increase in the illuminated current 

under both ambient light and an incandescent lamp. The average estimated maximum 

device efficiencies were 0.71% and 0.26% under daylight and the incandescent lamp 

respectively. The devices were shown to perform more efficiently under ambient light and 

it was concluded that these devices absorbed light from mostly the blue to the near-UV 

region of the solar spectrum. As a consequence, they exhibited poor efficiencies under 

higher wavelength visible light to IR regions of the solar spectrum. The estimated 

minimum charge mobility’s for the devices were shown to be 8.26 x 10
-10

 m
2
V

-1
s

-1
 and 

3.38 x 10
-11

 m
2
V

-1
s

-1 
under ambient light and the incandescent lamp respectively. The 

devices exhibited poor charge mobilities with the excitons produced presumed to more 

likely be recombined than separated and collected at the electrodes. However, due to the 

non-optimised nature of the devices, it is difficult to determine the amount of 

nanocomposite in intimate contact with the silicon or FePS3 contacts utilised in the 

photosensitive devices as well as the geometry of the nanocomposites (at the interface with 

the silicon or FePS3). Furthermore, it was assumed in these calculations that all of the 

photons are being absorbed by the device and creating an exciton, in a more realistic model 

it may be likely that only a small fraction of the photons are absorbed by the device. 

Taking this into account, the true device efficiencies are expected to be lower than the 

estimated values calculated but the photoconductive properties and charge mobilities of the 
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nanocomposite materials in the device structure are likely to be significantly larger than the 

estimated values calculated. 

The methods used for the synthesis of the nanocomposite materials can be extended 

to other host structures. For example, the ion-exchange mechanism could be useful if the 

inorganic host does not undergo the desirable redox chemistry. The ion-exchange 

mechanism can be extended to other members of the metal oxides, MPX3 and MX2 

families with varying band-gap and band structures allowing for the tunability of the 

nanocomposite properties. The nanocomposite materials showed promising novel 

photosensitive and photoconductive properties in the non-optimised photosensitive 

devices. This has opened the door and much ground is still left for greater exploration in 

the development of low-cost organic-inorganic nanocomposites as photovoltaic materials. 

 

5.2) Future Work 

This study has demonstrated that there is a bright future for the use of organic-inorganic 

nanocomposites in photovoltaic and other optoelectronic applications, however, their full 

potential is yet to be realised. Although the work presented in this thesis has provided a 

proof-of-concept, showing that these nanocomposite materials may indeed overcome the 

drawbacks of both the organic and inorganic materials alone, there is still much ground left 

to explore. Future work based on that presented in this thesis has been grouped under two 

categories; material optimisation and device optimisation. 

 

5.1.1) Material Optimisation 

It is clear that the choice of the inorganic host material plays an important role in the 

physical and electrical properties of the material. In particular, the choice of inorganic host 

material can limit the overall electrical and device properties of the nanocomposite. The 



 

308 
 

use of insulating/poorly semiconducting host materials may have been a limiting factor in 

the nanocomposites electrical and device properties and therefore not completely ideal as 

host materials. These materials exhibited an increase in the band-gap of the overall 

material as such, photon absorption occurred in the higher energy regions of the visible 

light spectrum. This limited the materials efficiencies and photoconductivity when 

constructed as part of a device.  

A possible strategy to overcome this would be to investigate nanocomposite 

materials which utilise a layered inorganic host that is an excellent semiconducting 

material with a low band-gap (such as NiPS3). Such inorganic hosts may exhibit better 

electronic interaction with their organic guest species leading to a lowering of the band-

gap, allowing for the material to access a wider range of wavelengths for photon 

absorption. On the other hand, if the band-gap increases upon intercalation as a general 

trend, the resulting increased band-gaps may still be small enough to maximise the 

absorption of the solar spectrum at the Earth’s surface.  

A further study into the particular mechanism of the interactions within the 

nanocomposite materials is also required to build a more fundamental understanding of 

energy transfer, the production and mobilities of excitons created from photon absorption. 

It is unclear whether the organic guest is solely responsible for the production of excitons 

or whether there is an interplay between the guest and host species. Such fundamental 

understanding would allow for a better selection of the host and guest species in order to 

tune the resulting nanocomposites materials for photovoltaic applications. 

 

5.1.2) Device Optimisation 

A clear unknown factor in the work presented lies in the relationship between the 

silicon/FePS3 substrate and the active material due to the spin coating method utilised for 
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nanocomposite deposition.  As such the geometry of the nanocomposite materials, the true 

surface coverage and total photon absorption are unknown. Poor geometry of the 

nanocomposite materials at the interface between the nanocomposites and the substrates 

maximises any avoidable exciton recombination. 

It is, therefore, important to develop a method to optimise device construction such 

that the nanocomposites are a single uniform film of known thickness on the selected 

substrate. This may be achieved via molecular beam deposition or vacuum deposition of 

each component (inorganic and organic alternatively) separately. The presence of an as-

close-to-perfect single uniform film of the nanocomposite would help to minimise 

avoidable exciton recombination occurring by limiting recombination sites and more 

importantly minimising defects which would result in exciton trapping and recombination. 

Furthermore, it would allow for sufficient probing into the particular exciton 

recombination mechanism present in these heterojunction like devices. 

It is also clear that the devices are required to be illuminated under known 

wavelengths to be certain of the exact absorption wavelength range and the degree of light 

which is reflected back to build a model to determine the facte of charge carriers and their 

mobilities through the material. 
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Appendicies 

Appendix A – V2O5 Characterisation and Electrical Measurements 

A.1 V2O5 Nanocomposite IR 

 

Figure A.1.1– V2O5 IR spectrum 

 

 

Figure A.1.2 – V2O5/AnAn
+
 IR spectrum 
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Figure A.1.3 – V2O5/2A5PhPyr IR spectrum 

 

 

Figure A.1.4 – V2O5/EDOT IR spectrum 
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Figure A.1.5 – V2O5/PDA IR spectrum 

 

Figure A.1.6 – LiV2O5/2A5PhPyr IR spectrum 

 

 

Figure A.1.7 – V2O5/5AQ IR spectrum 

 

 

Figure A.1.8 – V2O5/1,4PDA-HQ IR spectrum 
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A.2 V2O5 Nanocomposite Raman Spectra 

 

Figure A.2.1 - V2O5 Raman spectrum 

 

 

Figure A.2.2 – V2O5/AnAn
+
 Raman spectrum 
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Figure A.2.3 – V2O5/2A5PhPyr (AB) Raman spectrum 

 

 

Figure A.2.4 – V2O5/EDOT Raman spectrum 
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Figure A.2.5 – V2O5/PDA Raman spectrum 

 

 

Figure A.2.6 – V2O5/PDA Raman spectrum 
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Figure A.2.7 – V2O5/PDA Raman spectrum 

 

 

Figure A.2.8 – V2O5/1,4PDA-HQ Raman spectrum 
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A.3 V2O5 Nanocomposite TGA 

 

Figure A.3.1 - V2O5 nanocomposite Thermogravimetric Analysis (TGA) 

 

A.4 V2O5 Nanocomposite Optical Spectroscopy and Tauc Plots 

 

Figure A.4.1 – Left: V2O5 UV-Vis spectrum, Right: V2O5 Tauc plot 

 

 

Figure A.4.2 – Left: V2O5/AnAn
+
 UV-Vis spectrum, Right: V2O5/AnAn

+
 Tauc plot 
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Figure A.4.3 – Left: V2O5/2A5PhPyr
 
(AB) UV-Vis spectrum, Right: V2O5/2A5PhPyr

 
(AB) Tauc plot 

 

Figure A.4.4 – Left: V2O5/EDOT UV-Vis spectrum, Right: V2O5/EDOT Tauc plot 

 

Figure A.4.5 – Left: V2O5/PDA UV-Vis spectrum, Right: V2O5/PDA Tauc plot 

 

Figure A.4.6 – Left: (Li)V2O5/2A5PhPyr UV-Vis spectrum, Right: (Li)V2O5/2A5PhPyr Tauc plot 
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Figure A.4.7 – Left: V2O5/5AQ UV-Vis spectrum, Right: V2O5/5AQ Tauc plot 

 

Figure A.4.8 – Left: V2O5/1,4PDA-HQ UV-Vis spectrum, Right: V2O5/1,4PDA-HQ Tauc plot 

 

 

A.5 V2O5 Nanocomposite Seebeck coefficient plots 

 

 

Figure A.5.1 – Seebeck coefficient plot for V2O5/AnAn
+
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Figure A.5.2 – Seebeck coefficient plot for V2O5/2A5PhPyr (AB) 

 

 

Figure A.5.3 – Seebeck coefficient plot for V2O5/EDOT 

 

 

Figure A.5.4 – Seebeck coefficient plot for V2O5/1,4PDA-HQ 
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A.6 V2O5 Nanocomposite Capacitance vs Voltage (C-V) plots 

 

 

Figure A.6.1 – Capacitance vs Voltage plot for V2O5/AnAn
+
 pressed Schottky device with Zn contact 

 

 

Figure A.6.2 – Capacitance vs Voltage plot for V2O5/AnAn
+
 Schottky devices with Al contact where left: pressed pellet 

device and right: evaporated contact device 

 

 

Figure A.6.3 – Capacitance vs Voltage plot for V2O5/AnAn
+
 Schottky devices with Cu contact where left: pressed pellet 

device and right: evaporated contact device 
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Figure A.6.4 – Capacitance vs Voltage plot for V2O5/AnAn
+
 pressed Schottky devices with Sn contact  

 

 

Figure A.6.5 – Capacitance vs Voltage plot for V2O5/AnAn
+
 Schottky devices with FePS3 contact 

 

 

Figure A.6.6 – Capacitance vs Voltage plot for V2O5/2A5PhPyr pressed Schottky devices with Zn contact 
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Figure A.6.7 – Capacitance vs Voltage plot for V2O5/2A5PhPyr pressed Schottky devices with Al contact where left: 
pressed pellet device and right: evaporated contact device 

 

 

Figure A.6.8 – Capacitance vs Voltage plot for V2O5/EDOT pressed Schottky devices with Zn contact 

 

 

Figure A.6.9 – Capacitance vs Voltage plot for V2O5/EDOT pressed Schottky devices with Al contact where left: 
pressed pellet device and right: evaporated contact device 
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Figure A.6.10 – Capacitance vs Voltage plot for V2O5/EDOT pressed Schottky devices with Cu contact where left: 
pressed pellet device and right: evaporated contact device 

 

 

Figure A.6.11 – Capacitance vs Voltage plot for V2O5/EDOT pressed Schottky devices with Sn  
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Appendix B – MoO3 Characterisation and Electrical Measurements 

B.1 MoO3 Nanocomposite IR 

 

Figure B.1.1 – MoO3 host IR spectrum 

 

 

Figure B.1.2 – MoO3/PDA IR spectrum 
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Figure B.1.3 – MoO3/2A5PhPyr IR spectrum 

 

 

Figure B.1.4 – MoO3/5AQ IR spectrum 

 

 

Figure B.1.5 – MoO3/2AmThia IR spectrum 
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Figure B.1.6 – MoO3/An IR spectrum 

 

 

B.2 MoO3 Raman Spectra 

 

Figure B.2.1 – MoO3 Raman spectrum 
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Figure B.2.2 – MoO3/PDA Raman spectrum 

 

 

Figure B.2.3 – MoO3/PDA Raman spectrum 
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Figure B.2.4 – MoO3/2A5PhPyr Raman spectrum 

 

 

Figure B.2.5 – MoO3/5AQ Raman spectrum 

 

0

1000

2000

3000

4000

5000

6000

7000

100 600 1100 1600

a.
u

. 

Wavenumbers (cm-1) 

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500

a.
u

. 

Wavenumbers (cm-1) 



 

358 
 

 

Figure B.2.6 – MoO3/2AmThia Raman spectrum 

 

 

Figure B.2.7 – MoO3/An Raman spectrum 
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B.3 MoO3 Nanocomposite TGA 

 

Figure B.3.1 – MoO3 nanocomposite thermogravimetric analysis (TGA) 

 

B.4 MoO3 Nanocomposite Optical spectroscopy and Tauc plots 

 

Figure B.4.1 – Left: MoO3 UV-Vis spectrum, Right: MoO3 Tauc plot 

 

 

Figure B.4.2 – Left: MoO3/PDA UV-Vis spectrum, Right: MoO3/PDA Tauc plot 
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Figure B.4.3 – Left: MoO3/2A5PhPyr UV-Vis spectrum, Right: MoO3/2A5PhPyr Tauc plot 

 

 

Figure B.4.4 – Left: MoO3/5AQ UV-Vis spectrum, Right: MoO3/5AQ Tauc plot 

 

 

Figure B.4.5 – Left: MoO3/2AmThia UV-Vis spectrum, Right: MoO3/2AmThia Tauc plot 

 

Figure B.4.6 – Left: MoO3/2AmThia UV-Vis spectrum, Right: MoO3/2AmThia Tauc plot 
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B.5 MoO3 Nanocomposite Seebeck Coefficient Plots 

 

 

Figure B.5.1 – Seebeck coeffiecient plot for MoO3/PDA 

 

 

Figure B.5.2 – Seebeck coeffiecient plot for MoO3/PDA 
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Figure B.5.3 – Seebeck coeffiecient plot for MoO3/PDA 

 

B.6 MoO3 Nanocomposite Capacitance vs Voltage (C-V) Plots 

 

Figure B.6.1 – Capacitance vs Voltage plot for MoO3/PDA pressed pellet device with Zn contact 

 

 

Figure B.6.2 – Capacitance vs Voltage plot for MoO3/PDA device with Al contact where Left: pressed pellet device and 
Right: evaporated contact device 
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Figure B.6.3 – Capacitance vs Voltage plot for MoO3/PDA device with Cu contact where Left: pressed pellet device and 
Right: evaporated contact device 

 

 

Figure B.6.4 – Capacitance vs Voltage plot for MoO3/PDA pressed pellet device with Ni contact 

 

 

Figure B.6.5 – Capacitance vs Voltage plot for MoO3/2A5PhPyr pressed pellet device with Zn contact 
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Figure B.6.6 – Capacitance vs Voltage plot for MoO3/2A5PhPyr device with Al contact where Left: pressed pellet 
device and Right: evaporated contact device 

 

 

Figure B.6.7 – Capacitance vs Voltage plot for MoO3/5AQ pressed pellet device with Zn contact 

 

 

Figure B.6.8 – Capacitance vs Voltage plot for MoO3/5AQ pressed pellet device with Al contact 
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Appendix C – ZnPS3 Characterisation and Electrical Measurements 

C.1 ZnPS3 Nanocomposite IR Spectra 

 

Figure C.1.1 – ZnPS3 host IR spectrum 

 

Figure C.1.2 – ZnPS3 host IR spectrum, Kulbelka-Munk transformation 

 

Figure C.1.3 – MgxZnPS3 IR spectrum 
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Figure C.1.4 – ZnPS3/PDA IR spectrum 

 

C.2 ZnPS3 Nanocomposite Raman Spectra 

 

Figure C.2.1 – ZnPS3 host Raman spectrum 
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Figure C.2.2 – MgxZnPS3 Raman spectrum 

 

 

Figure C.2.3 – ZnPS3/PDA Raman spectrum 
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C.3 ZnPS3 Nanocomposite TGA 

 

Figure C.3.1 – ZnPS3 nanocomposite thermogravimetric analysis 

 

C.4 ZnPS3 Nanocomposite Capacitance vs Voltage (C-V) Plots 

 

Figure C.4.1 – Capacitance vs Voltage plot for ZnPS3/PDA pressed pellet Schottky device with a Cu contact 
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