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Abstract

One of the best nondestructive techniques to etalilee buckling behavior of imperfection-
sensitive structures is the vibration correlati@chhique (VCT). This paper presents an
analytical formulation for the free vibration of ially loaded composite lattice sandwich
cylinders (CLSC) and numerical and experimentaidetilons of the VCT applied to such
structures. From an analytical point of view, tlgpiaions are obtained through the Rayleigh-
Ritz method considering first-order shear defororattheory (FSDT). For the numerical
verification of the VCT, three types of linear ambnlinear finite element analyses are
performed. At first, numerical results for the icall buckling load and the first natural frequency
at different load levels are compared with the esgponding analytical ones, validating the
numerical models. Then, the numerical models arenebed considering geometric nonlinearities
and imperfection to simulate the variation of tlmstfnatural frequency of vibration with the
applied load. As well, a nonlinear buckling anadyisi also performed using the Riks method for
a better comparison of the VCT results. In the $astion, four specimens are fabricated using a
new rubber mold and a filament winding machine. iiddally, the experimental buckling test
is carried out, verifying the results of the VCTpapach. The results demonstrate that the
maximum difference between the estimated bucklwad!using the VCT approach and the
corresponding nonlinear and experimental buckloagls is less than 5%, being the VCT result
more accurate than the numerical one. Moreoverptbposed VCT provided a good estimation
of the buckling load of the CLSC, considering a imaxm load level of at least 62.1% of the
experimental buckling load.

Keywords:

Buckling, Vibration Correlation Technique (VCT),roposite lattice sandwich cylinders (CLSC), Analsgtic
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1. Introduction

Putting a core material between two stiffening ski;s a good idea to increase the structural
stiffness in comparison with a conventional solutsnich as increasing the thickness. Composite
sandwich structures are fabricated from inner skome, and outer skin. According to industrial
applications, the core can be designed homogeneouson-homogeneous with various
materials. Composite lattice sandwich cylinders $CI. are one of the most efficient types of
sandwich structures due to their high stiffness#aght ratio, high breakdown strength, and
lower damage growth, which have many applicationthe aerospace [1-3], and offshore [4, 5]
industries. Composite lattice sandwich cylinders discontinuous structures established from
skins, stiffeners, and periodic cells. Hence, they highly efficient and widely used in various
aerospace applications such as rocket interstpgsdoad adapters for launchers, and fuselage
components for airplane [6]. Considering such aapilons, these structures are usually under
axial load, lateral pressure, or both. In this eahtthe buckling analysis plays a fundamental
role in the designing procedure of them, and d@nie of the most important failure analyses.
Many researchers have been focused on bucklingsidndtional analyses of CLSC. Fan et al.
[7] proposed an efficient method to fabricate carbiter-reinforced composite (CFRC)
sandwich shell with filament winding and twice asrag processes. It was shown that the
CLSC has better strength in comparison with aestétl cylinder. A new mold was designed
with foam material to fabricate filament wound gsiiffened composite cylindrical structures by
Buragohain and Velmurugan [8]. It was shown thatSCLhas better mechanical performance
rather than an unstiffened shell (with skin onlg§ia lattice cylinder (with ribs only). Vasiliev et
al. [9] explained the lattice sandwich structut&SC) application in the Russian aerospace
industry. They provided material properties anditation method and design methods of LSC.
Sun et al. [10] provided an analytical method teestigate the buckling behavior of the CFRC
sandwich shell with a grid core under uniaxial coasgion. Five failure modes were introduced
in this paper for composite sandwich cylindershibuld be noted that the analytical method has
been developed for an isotropic shell. Improved ufesturing methods and new designs of the
CFRC sandwich shell were presented by Chen etla]. They concluded that skin and core
thicknesses should be well balanced to have highdegmechanical properties. Free vibration
experiments were accomplished to investigate thehar@cal behaviors of CFRC sandwich
shells with lattice core. It was shown that the L&S a higher fundamental frequency and could
be considered lighter in different astronautic &ations. Han et al. [12] investigated the free
vibration behaviors of the CFRC lattice-core sarmtiwshell with the attached mass. It was
shown that attached mass reduces a natural fregueaoptain et al. [13] introduced a finite
element model (FEM) to evaluate the dynamic andklg behavior of composite lattice
cylindrical shells with elliptical cross-sectiorhe results corroborated that the mentioned FEM
is appropriate for desining composite tubular bediespacecraft. Jiang et al. [14] designed and
fabricated a composite orthogrid sandwich cylindsing interlocking and filament winding
methods, calculating the load-carrying capacity aadural frequencies of the structure. In
another work, the multi-failure criteria for a coagite orthogrid sandwich cylinder were
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presented by them [15]. An analytical study wasfgeered to calculate the failure mode of
CLSC under various fundamental loads by Sun €tL&]. For the failure modes introduced in
Ref. [10], the load-carrying capacity of the sturet was -calculated theoretically and
numerically. They presented a failure mode map ithatseful for designing CLSC. Recently,
Shahgholian-Ghahfarokhi and Rahimi [17, 18] preseérat new analytical approach to study the
buckling behavior of CLSC under uniaxial compressibhe equations were obtained using the
smear stiffener method, classical laminate theGiyT(), and first-order shear deformation theory
(FSDT). It was shown that the proposed analyticaihmd could predict the linear buckling load
of the structure with high accuracy and low compatel cost. In another work[19], they
performed a sensitivity analysis of the free vilmmatof sandwich shells with lattice cores.
According to the above literature review, it candeen that there are many methods to predict
and calculate the buckling behavior of CLSC. Frotpegimental, computational, and economic
costs point of view, many of these methods prelmited results. Thus, there is a great interest
in the development and validation of nondestructiests (NDT) to calculate the buckling load of
such structures from the pre-buckling stage. Tist NDT suggestion based on the correlation
with the vibration response was given by Sommerf2@ in 1905 for conventional structure
like columns. One of the best NDT methods to calkeuthe buckling load of an imperfection-
sensitive thin-walled structure is the Vibrationr&ation Technique (VCT). According to the
VCT, the natural frequencies of a loaded structueemeasured at the unloaded condition. In a
second stage, the vibration frequency variatioateel to the increase of the axially applied load
is recorded, without actually reaching the instgbpoint. In the final stage, the curve fitting is
performed between recorded natural frequenciesapplied loads, and then the buckling load is
calculated. In this method, the vibrational modapghmust be identical to buckling mode shape
to provide high-precision results.

The VCT has been developed by many researcheofentional structures such as columns,
flat plates, and shells by Chu [21], Johnson andd@mmer [22], Radhakrishnan [23],
Chailleux [24], Jubb et al. [25], Singer and Abrasich [26] and Plaut and Virgin [27] in the last
recent decades. A detailed state-of-the-art re@awthe VCT was carried out in chapter 15 of
Ref. [28]. Singhatanadgid and Sukajit [29, 30] presd the VCT to calculate the buckling load
of rectangular thin plates. When the applied loashes close to the buckling load of the plate,
its natural frequency approaches zero. Actual bapndonditions and critical buckling load of
unstiffened plates and cylindrical shells were neated numerically and experimentally by
Arbelo et al. [31]. It was shown that the VCT igpahle to evaluate boundary conditions and
then improving the buckling load. In another woakproposed VCT approach in Ref. [31] was
experimentally validated by Arbelo et al. [32] toegict the buckling load of unstiffened
cylindrical shells. They showed that the propoggpi@ach gives a suitable correlation when the
maximum applied load is higher than 50% of the expental buckling load. Using the VCT,
the buckling load of stringer stiffened curved dangas calculated by Abramovich et al. [33].
Similar to Ref. [32], a reasonable correlation whasained when the maximum applied load is
higher than 50% of the experimental buckling lodte buckling behavior and the modal



analysis of the stiffened CFRP plate were numdyicald experimentally investigated using the
VCT by Chaves-Vargas et al. [34]. Skukis et al][3&sented the experimental VCT to estimate
the buckling load of the unstiffened cylindricakik. It was shown that when the applied load is
greater than 80% of the buckling load a good cati@h is achieved. Shahgholian-Ghahfarokhi
and Rahimi performed a experimental and numeriogkstigation of the VCT approach
proposed in [31] to evaluate the buckling behawiogrid-stiffened composite cylindrical shells.
It was shown that there is a good correlation betweumerical and experimental approaches if
nonlinear effects, such as geometric and thicknegerfection, were considered. Recently,
Franzoni et al. [36] proposed experimental valmlaf the VCT defined in [31] to estimate the
buckling load of unstiffened composite cylindrishlells. In another work, the buckling load of a
pressurized orthotropic cylindrical shell was obéal using the mentioned VCT by Franzoni et
al. [37]. It was shown that the approach proposed3il] provided a better buckling load
estimation for the tests associated with greategnitades of the knockdown factor, which is the
ratio between the experimental buckling load aned thitical buckling load. Furthermore,
analytical and numerical validation of the aforenmioned VCT were introduced by Franzoni et
al. [38]. The authors illustrated the developedyital support through a numerical study based
on theoretical thin-walled unstiffened cylindricsthells. As observed in previous publications
[32, 35-37], the methodology provided suitable lsswhen the maximum applied load level is
higher than 50% of the nonlinear buckling load. I8jtelian-Ghahfarokhi and et al. [39]
presented the experimental and numerical validatbrthe VCT approach to estimate the
buckling load of composite sandwich plates withgsa cores. The authors showed that there is
a good accord between the buckling loads estintatedigh the VCT and the one obtained from
the static test. . In addition, it was shown thdbad level up to 67% experimental load is
sufficient for reasonable estimations.

Although great attention has been paid on the lnghbad prediction of conventional structures
such as beams, simple plates, and shells, thisitpehis still under development for composite
sandwich structures. Besides, analytical, numeramadl experimental VCT for CLSC has not
been spotted in the literature, to the best of dbthors’ knowledge. Therefore, this article
discusses the VCT for predicting the buckling loA€LSC through numerical and experimental
studies. As well, an analytical formulation for thee vibration of axially loaded CLSC is
presented. The analytical formulation is obtainedpleying the Rayleigh-Ritz method
considering FSDT, yielding the dynamic behavioraof axially loaded CLSC and its critical
buckling load. Afterward, three linear and nonlin@americal analyses are considered. The
critical buckling load and first natural frequenfryr different axially applied load levels are
firstly calculated and compared to the analytiesutts for validation of the numerical models.
Then, another FE model is defined considering g&aen@onlinearities and initial imperfections
for obtaining the variation of the first naturaéfuency with the axially applied load. As well,
the nonlinear buckling analysis is also performsohg the Riks method for a better comparison
with the VCT results. Finally, four specimens &bricated using a filament winding setup.
Furthermore, a buckling test is carried out todeatie the results of the VCT approach. Finally,



the obtained buckling load using the VCT is vakhbased on the buckling loads calculated
from the nonlinear Riks method and measured duhagtatic experimental campaign.

2. The considered CL SC geometry

In this paper, the CLSC geometry is consideredhasvs in Fig. 1. Composite lattice sandwich
cylinders composed of an inner skin, an outer sknd a lattice core, which is established from
the many helical stiffeners. Figure 1 presentsrti@n geometrical parameters, i.k.as the
length of CLSCy as the average radius of CLSC, #&nd, andts as the thicknesses of the outer
skin, inner skin, and stiffeners, respectively. Aiddally, w is the stiffener's width. The
considered geometrical parameters are given ineThbl

Inneir Skin Lattice cort Outel Skin

Unit Cell

Fig. 1. The CLSC geomet.



Table 1 The considered geometrical parameters.

Paramete Value
L (mm) 30C
r (mm) 80
to (mm) 1.2t
t; (mm) 1.2t
ts (mm) 3
w (mm) 4
N 3
Nc 3

It should be noted that the lattice core consistsr@any unit cells. The unit cell is selected in
such a way that the whole lattice core can be g¢eeby the repetition of this unit cell. In the
analytical section, which is explained in sectionh equivalent stiffness parameters of this unit
cell are obtained and then utilized to the whotgda core. This is valid as the whole lattice core
can be reproduced from this unit cell. As showrrign 1, a and b are defined as the width and

length of the unit cell respectively. The a is cédted bya = ZNE whereN, is the number of

unit cells in the circumferential direction. Alsthe b is calculated by Ni whereN, is the

number of unit cells in the axial direction.
3. TheVCT implementation procedure
The general steps to implement the VCT on CLSGistex] below [38, 39]:

1. The natural frequency at zero loag,,, and the critical buckling loa#®., of the perfect
structure are calculated. In this papex,, and P, are obtained using both analytical and
numerical methods.

2. The natural frequency variation during axialdiog is obtained. In this paper, the present step
is carried out using nonlinear finite element resul

3. The square of the drop of the load-carrying cipalue to initial imperfectiong” is obtained
from the appropriate characteristic chart. By thagkhe open literature, two general approaches
are available to calculatg for imperfection-sensitive structures, as givelvie

A) First approach:

A linear relationship between tif¢ — p)? and the(1 — f*) was proposed by Souza et al. [40,
41]:

1-p?+A-8)A-fH=1 )

wheref = % andp = fa beingP, the the applied axial loads,,,, the measured frequency at

Per!
P,. Besidesm is the number of axial half-waves ands the number of circumferential waves
(for CLSC).



The drop of the load-carrying capacity due to aiimperfections is defined as the value of
(1 —p)? related to(1 — f*) equaling to one from the linear best-fit betwegén- p)? versus
(1 - f"h), as illustrated in Fig. 2a.

B) The Second appr oach:

According to the limitation of the first VCT poirdeout in [31], a modified methodology has
been introduced in the quoted paper. They prop@sestcond-order curve fitting between
(1 —p)? versus(1 — f2) as shown in Fig. 2b. In this approagh,is defined as the minimum
value of (1 —p)? from graph(1 — p)? versus(1 — f?). Until now, this approach has been
validated for unstiffened plate and shell [32, 38ith and without cutouts [42], grid-stiffened
shell [43], variable angle tow shell [44], lattisandwich plate [39], pressurized orthotropic shell

[37].
Thus, this paper will consider the presented V@Twgstigating their applicability for CLSC.
A
..... Best-fit ... Best-fit
1.04 e Experiment 1OI e Experiment
e (1— p)fif::l =& @ Minimum
¥ Py =) ﬂ._.
) g = .
.. ‘e
- -
§ 2 \» ®
: 52 < e
0 10 -
1—f 0 1 — fQ 1.0

(a) First VCT approac[36, 38, 40

(b) Second VCT approh[31, 32

Fig. 2. Schemac view of different VCT approa..

4. In the final step, the buckling load of shelesimated through the VCT as proposed in [31,

32, 36-39, 42, 43, 45].

PVCT=Pcr(1_\/?)

)

whereP.y is the critical buckling load of the perfect stiwe andP, . is the estimated buckling

load for imperfect structure.



4. Analytical VCT approach for perfect CLSC

As revisited in the literature review, the VCT Hzeen widely used for predicting the buckling
load of structures such as beam, plate, and umséiff shells. Nevertheless, only a few studies
have addressed the analytical aspects of the V@ihghmost of these studies developed for the
conventional structures listed above. For examplanzoni et al. [38] provided analytical
support for the methodology proposed in [31]. Thehars established this support for an
unstiffened cylinder employing the linearized Flagagur'e-Byrne's theory of shells. According
to this explanation, the analytical formulation f@LSC has significant innovations.
Consequently, this section presents the free vibraif an axially loaded CLSC. In a similar
approach to the buckling problem of CLSC, whichspreed by the authors in the Ref. [18], the
free vibration analysis of an axially loaded petrfétSC is carried out in the present paper. This
study allows verifying the numerical results thav& been used for calculating the buckling load
of CLSC.

4.1. Displacement and strain fields of CLSC

This paper utilizes FSDT with the following dispéawgent field obtained from Ref. [17, 18]:

to—t;

u(6,x,t) = up(6,x,t) + (5-)¢x
v(6,x,t) = v(6,x,£) + (£ D) g
w(8,x,t) = wy(8,x,t) 33

whereu, v, andw represent the displacements along x-, y-, andes:ax,, v,, andw, are mid-
plane displacements in longitudinal, circumferdntéand radial directionsp, and ¢, are the
rotation of the middle plane with respect to thatred surface of the CLSC i andx-direction;
and t denotes the time.

According to general strain—displacement relatigrssifior cylindrical shells, mid-plane strains,
curvatures, and shear strain of the CLSC are ceresidbys = [£2, 5, v 2], k = [Kx, Ko, Kxo),
andy = [vxz Yoz], respectively, which are given by [46].

O_Ouo
10dv w
g =12 W

r 060 r
0 _ 6vo 161,1.0

Yx0 = 5% T 750

10
i =;1%L§ dp
o =;aex+a_:
Vxz _%'l' x
Yoz _%(%—Uo)'i'% @)

4.2. Total tiffness of CLSC



The total stiffness of CLSC is calculated from doenbination of the inner skin, outer skin, and
stiffeners’ stiffness. By using the superpositioathod, which is explained in Ref. [47, 48], the
total stiffness of CLSC is obtained:

[S] — [S] outer skin + [S] st + [S] inner skin (5)

where [s]outerskin - [g]imerskin “gnd [s]*t are stiffness of the outer skin, inner skin, atiffesers,
respectively.

4.2.1. Outer/inner skin stiffness
The skin stiffness is obtained as Eq. (6) [18].
I
(S = [B]gkm [D 0“ (4, 5k ©)

WhereAskin| pskin pskin and4 skt gre the stiffness parameters of skin, which cpoeds to
the extensional, coupling, bending, and shear oestyirespectively.

The above components can be calculated based ¢emtiveation theory [49]:

n
k ..
45" = Z 1z = 21) (i) =126)
2. @
1 n
Ki k .
= 2 [Qij 1(22 es1y = 2%k) (L) =126)
=1 (8)
1 n
k P
skln _ 52 Qlj ](23(k+1) ) M Z3k) (i,j =1,2,6)
=] (9)
Ki 5 _ 4 ..
[ASS 1n] = ZZ[QU](] (Z(k+1) % ; (23(k+1) - ng)) (i,j =45 only)
(10)

Where[_Qijk] are the transformation reduced plane stiffnessixydor i,j = 1,2, 6, and [_Qij] are
the transformation transverse shear stiffness rdtn (i,j = 4,5).

In Eq. (10), it is assumed that the transversersdtezsses are distributed parabolically across the
laminate thickness [49]. In spite of discontinisti& the interface between lamina, a continuous

2
functionf(z) = %[1 — (272) ] is used as a weighting function by some authwhsch includes a

factor of 5/4 so that the shear factor calculateddyer orthotropic shell wall is consistent with
the established shear factor from the previous imrkhe homogeneous case.

4.2.2. The stiffness of stiffeners

10



Similar to Eqg. (6), the stiffness of stiffenerolstained as presented in Eq. (11).

(11)

WhereAst, Bst, Dst, andA,*‘are the stiffness parameters of stiffeners, whimlespond to the
extensional, coupling, bending, and shear matriespectively. These matrices are calculated as
[18]:

[ Eic® — 2Gcs®  Ejcs? + 2Gycs? 0
a a
(4] = 24 E;sc? + 2Gysc?  Eys® —2Gysc? 0
b b
E;sc? + Gysc? — Gys®
0 0 1 ltb it
) (12)
[ Eic® — 2Gics?  Ejcs? + 2Gycs? 0
a a
(B]° = A(t, — t) |E;sc? + 2Gesc®  Eys® — 2Gysc? 0
2 b b
0 . E;sc? + Gysc? — Gys®
b
(13)
[ Ejc® — 2Gcs?  Ejcs? + 2Gycs? 0
a a
(D] = A(t, — t)?|E;sc? + 2Gysc®  Eys3 — 2Gysc? 0
8 b b
0 0 E;sc? + Gysc? — Gps®
b : (14)
GlZC
(At =24 b
0 1zS
‘ (15)

wherec = cos (¢), s = sin(¢), and¢ is the stiffener orientation angle with respecthe axial
direction. MoreoverE;, G;;, andG,, are longitudinal, shear in-plane I-t, and shegplane |-z
moduli of the stiffeners, respectively. As welljs the cross-sectional area of the stiffeners.
According to Eq. (6) and (11), the stiffness partarseof the CLSC can be considered as:

[A] — [A]outerskin + [A]st
[B] — [B]outerskin + [B]st

[A] inner skin (16)

+
+ [B] inner skin (17)

11



[D] — [D]outerskin + [D st + D]mnerskm (_’]_8)
[ = (4]0 4]+ [a ] s 9

4.3. Energy Method

To obtain natural frequencies at the different IEacls and the buckling load, the Rayleigh-Ritz
energy method is applied. According to this methothl strain energy U, the work W done by
the external force, and kinetic energy K of the CLi8ust be calculated in the first step.

The total strain energy U of the CLSC by FSDT barderived as [46, 49]

2w L

f f(e T + k. [D]. k" + 2&.[B]. kT +y.[A).yDrdxde

(20)
The potential energy due to the axial externald@ds shown as follows:
1 P
= ——f f (—)2 rdxdf
2) ) (2mr) “ox 1)

It should be noted that is considered as the buckling load in the buckknalysis while it is
considered as applied load in the free vibratioaxaélly loaded CLSC.

The kinetic energy of the CLSC can be obtained as:

fz,r f f ol <6u> (m) +(%_V:>2]rdzdxd9

wherep(z) is the density of the CLSC.

(22

4.3.1. Application of Ritzmethod and solution procedure

In this section, two analyses are considered taiolihe natural frequencies at a different load
level and the buckling load. Therefore, the totargy function[] is calculated by the sum of
strain energy and potential energy due to the @xtdrnal force for the buckling analysis, while
the sum of strain energy, kinetic energy, and gakanergy due to the axial external force for
the free vibration of an axially loaded CLSC. Hentlee following total energy function is
considered for both buckling and vibration analyj§€s 51].

u+w For the buckling analysis

1= {U + W — K  For the free vibration of axially loaded analysis 23

12



According to the Ritz method, admissible functidos the general displacement components
should be considered to satisfy the boundary cmmditand solve the buckling and vibration
analyses. Consequently, Eq. (24) for the bucklinglysis and Eqg. (25) for the free vibration
analysis can be assumed by considering the CLSCtwd simply supported SS3 edges [38].

2 & mm
Uy = Z Z mn COS (Tx) cos(no)
m;l n;l
mm
vy = Z B, sin (T x) sin(n@)
m;l niol
mm
Wy = Z Cpnn Sin (Tx) cos(nB)
m;l n0=01
mim
Oy = Z Z Dy cOS (Tx) COS(ne)
m0=01 nozol
mm
Vo = Z Z ‘mn SIN (Tx) sin(n@)
m=1n=1 (24)
2w mn
Uy = Z Z mn COS (Tx) cos(n8)cos(wp,t)
moo=1 n;l
mm
vy = Z Z By, sin (T x) sin(n@)cos(wy,nt)
m;l niol
mm
Wy = Z Z " m SIN (Tx) cos(n8)cos(wmnt)
m(;l no=01
mmn
0y = Z Z | COS (Tx) cos(nB) cos(wmnt)
m0=01 n0=01
mm
B YR R—
m=1n=1 (25)

whereA, .., Bmns Con Dmn» @NAdE,,,,, are the amplitude coefficients. For the stablalidium,
the total potential energy shall be at the minimdrhis can be satisfied by finding the first
derivative of the total potential enerdgy with respect to the unknown constadts,,, Bnn,
Cin» Dmn @NdE,,,, €quating to zero as below:

a

I1 — o
04, (26)
aI1
oB,, (27)
a1l =12, ..,i
o = Where ( 12, ]) 28)
a

Il — o
aD,,, (29)

13



0]'[_

oE,, (30)
This process results in Eg. (31) for the bucklinglgsis and Eq. (32) for the vibration analysis:

([K.] - P[Kg])A =0 where (4)" = (4,B,C,D,E) (31)

([K.] — w?[M]DA =0 where (4)" = (4,B,C,D,E)
(32)

where [K.], [Ky], and [M] are the stiffness, geometric, and mass matricespectively.
Searching for the stability limit one derives E§1), which is formally equivalent to Eq. (32),
both providing generic eigenvalue problems with ttrétical buckling loads and natural
frequency as the lowest eigenvalues. A MATLAB codas written to obtain the critical
buckling load and natural frequency satisfying trosdition. In this code, the maxima of bath
andn are 100, so 10000 coefficients are calculateddonple analysis.

5. Finite element analyses

In this section, finite element analyses are cdroat to calculate linear buckling load, linear
natural frequency, natural frequencies at the wlffe load levels, and the nonlinear buckling
load. For this purpose, ABAQUS CAE software is stdd. The outer and inner skins are created
by extruding a circle with radii of 81.5 and 78.5nrespectively. Moreover, the outer and inner
skins are established as a laminate consideringeitite-layered lay-up [0, 98] In a similar
manner, stiffeners are modeled as 3D bulks by denisig a proper height and square cross-
section area. The composite lay-up module is usesign the material properties to skins and
stiffeners. The so-called TIE constraints are alsed to stick the stiffeners to outer and inner
skins. The outer and inner skins and stiffenersehaeen meshed using the quadratic planar
elements with 8 nodes S8R and brick elements \ednced integration with 20 nodes C3D20R,
respectively. Convergence analyses were perforpregliding the number and size of elements.
According to the mentioned analyses, the optimake sof the element was defined as
approximately 3.2 mm. Consequently, the total numifeS8R and C3D20R elements were
34930 and 5008, respectively. The final model espnted in Fig. 3. As can be seen, two epoxy
tabs with 15 mm height are fabricated at the togp laottom edges of the CLSC structure for
suitable load distribution in the experimental t& considering the mentioned tabs, all of the
displacements and rotations are zero for the CL8@e® It should be noted that the axial
displacement of the top edge of the CL&@ not zero for the buckling analysis and applying
the axial load. According to this explanation, dteemp-clamp (C-C) boundary conditions are the
most appropriate boundary conditions that desd¢hbeeal conditions.
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Fig. 3. Final FE mode

After making the final model, which has been exmai above, three main analyses were
defined, which are as described in the next sulosect

5.1. Linear buckling and free vibration analyses of the perfect CLSC

The linear buckling and free vibration analysespadgormed to obtain the critical buckling load

P and the natural frequency at the zero load leyg], which are used for the VCT predictions

and a comparison with the analytical results. lo timear analyses, the nominal geometry is
considered without initial geometric imperfectidrhe default Lanczos solver was employed for
the linear buckling and free vibration analyses.

5.2. Nonlinear freevibration of axially loaded CLSC analysis

In this analysis, the geometrical imperfections ateounted for in the FE model. The general
steps for the implementation of this analysis temized below.

-Step 1. The geometric imperfections shall be measured. thisr purpose, there are several
methods [31, 32, 52]. In this paper, the CLSC i8daéid with 10 and 12 grid points in the axial
and circumferential directions. Then, the radigpa@rfections are measured at these grid points.
The geometric imperfection results are shown in &ig

-Step 2: The measured geometric imperfection is imported ihe FE model through shifting the
radial position of each node, using an inverse lated interpolation rule with the five closest
measured points from the imperfection data fileis method is fully explained in Ref. [52].

-Step 3: The axial compressive loads are applied on the Cus® the desired magnitudeor
this purpose, the Newton-Raphson algorithm witfieigl damping stabilization can be used as
a nonlinear solver.
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-Step 4. Once an applied load is reached, the vibrationyaigls performed to calculate the
natural frequencies of the CLSC.
300
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Fig. 4. Geometric imperfection resul

For a better comparison of the VCT results, thelinear buckling analysis is also performed
using the static Riks method. Within this modek thitial imperfections are implemented by
multiplying the eigenmodes obtained from a linazalgsis by a scaling factor.

In this study, the first linear buckling mode, aggested in [53], was used for disturbing the FE
mesh. Moreover, the scaling factor was assumetieammbximum deviation measured in step 1
described in Subsection 5.2, i.e., 0.85 mm. Thithowis described in detail in Refs. [39, 43,
52].

6. Fabrication and experimental buckling test
6.1. Material properties

In this research, the outer and inner skins webedated from glass woven fabric with density
200 gr/nt and room-temperature-curing epoxy matrix. Besifieglass fibers with a density of
2.4 kg/nt and room-temperature-curing epoxy maitrix were usedake the stiffeners as well as
the lattice core. As per to ASTM D-2584, ASTM D30B9ASTM D3410, and ASTM-D3518
standards, the mechanical material propertieshafrdi resin, as well as outer/inner skin, were
obtained. These results are given in Table 2. bhitad, the mechanical material properties of
the stiffeners were calculated using a micromeda®rapproach [54], which is also reported in
Table 2.
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Table 2 Mechanical material properties of the skin anfiesters.

Property Outer and inneSkins Stiffener:
Density (kg/m) P) 1537 1152
E; 6.43 10.91
Young's Modulus (GPa) E, 6.43 1.273
E, - 1.273
Gi, = Gys 0.96 0.457
Shear Modulus (GPa) Gy 1.12 0.565
Poisson’s ratio 915 = 913 0.28 0.304
03 0.087 0.127

6.2. CLSC fabrication method

To fabricate the lattice sandwich structures, savwaethods are available; [7, 8, 39, 43, 55]. In
this paper, the method that has been explaineétaildn Ref. [43], was applied to fabricate the
CLSC. For this purpose, the silicone rubber moliir&ly designed and fabricated using a polexi
glass tool. Subsequently, it was installed ontoptblyethylene mandrel for winding as shown in
Fig. 5. Using a filament winding machine, the stiférs, as well as, lattice core, were fabricated
as shown in Fig. 6a. After this, a layer of fabweas placed on the stiffeners and mixed with
resin. This work continues until the total numbérlayers is reached. Therefore, the grid-
stiffened cylinder, which consists of the outems&ind lattice core, was fabricated as shown in
Fig. 6b. Using a similar way used for the outenskhe inner skin was fabricated separately as
shown in Fig. 6¢c. Finally, the inner skin was plhdaside the grid-stiffened cylinder and was
attached to the inner surface of the lattice céoeprevent the local buckling and suitable force
distribution at the top and bottom edges, two epaxgs were fabricated and placed at the top
and bottom edges of the CLSC. As shown in Figodr fdentical CLSC were fabricated which
were designated as T1, T2, T3, and T4.

6.3. Experimental buckling test

The numerical results of the VCT must be confirhgdhe experimental ones. For this purpose,
buckling experiments were performed and the comedimg experimental buckling loads:xp
obtained. As shown in Fig. 8, the universal comgikestesting machine was used to perform the
buckling test on the CLSC. The fabricated specimeare tested up to the buckling loBgkp

with a loading rate of 2 mm/min. It should be mené&d that the buckling test was repeated four
times to increasing its accuracy and reliabilitigufe 9 presents the load-displacement curves
for four specimens. Besides, the obtained restdtpresented in Table 3.
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(a) Filament winding process (b) Grid stiffened (c) Inner skin
cylinder
Fig. 6. Manufacturing proces
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Fig. 8. Experimental buckling te:
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Table 3 Experimental buckling load of four fabricated CLSC
Specimen number Experimental buckling loadPfxp)
[kN]
T1 40.10
T2 39.75
T3 40.50
T4 40.72
Average 40.27

7. Results
7.1. Analytical and numerical results of the perfect CLSC

The analytical and numerical results for the lineackling load and the first natural frequency at
different load levels of the perfect CLSC are préseé in Table 4. The analytical buckling load
and natural frequencies were obtained from Eq9. 488l (32), respectively. From Table 4, it is
clear that the analytical and numerical reswdts in good agreement, and the maximum
difference between them is less than 1.1%. Beskigs,10 presents the first unloaded vibration
and first buckling modes for perfect CLSC considgriSS3 boundary conditions. From this
figure, it can be noticed that the first unloadedration mode and the first buckling mode
exactly match, which is expected for SS3 boundanydiions [38, 56]. It should be noted that
the buckling and vibration modes were associatéd thie pairsr, n): (1, 3).
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From the above results, it can be concluded treattialytical approach has a high accuracy to
predict the behavior of loaded CLSC. This method loa developed for imperfection-sensitive
CLSC in future works.

Table 4 Analytical and numerical results of the perfectSTL

Variable Analytical FEM |Analytical — FEM|
§= x 100
P, [kN] 50.4¢ 50.11 PEM
cr . -
(L 3) (1, 3) 0.70%
Wmn [HZ] 489.2: 490.95 0.35%
1, 3) (1, 3)
wmn [HZ] at 25% ofP,, 463.1: 464.6( 0.32%
1,3) (1,3)
Wmn [HZ] at 50% ofP,, 431.8¢ 433.54 0.39%
(1, 3) (1, 3)
Omn [Hz] at 75% ofP,, 396.2¢ 393.1¢ 0.78%
(1,3)
Wmn [HZ] at 90% ofP., 362.1( 358.2: 1.08%
(1, 3) (1, 3)

I, Magnitude
+1.001e+00
+9.179-01
+8.344e-01
+7.510¢-01
+6,676¢-01
+5.841¢-01
+5,007-01
+4.172¢-01
+3.336e-01
+2.503¢-01
+1,669-01
+8.34de-02
+0,000e+00

U, Magnitude
+1.001e+00
+9.177e-01
+8.343e-01
+7.509¢-01
+6,674e-01
+5.840e-01
+5.006e-01
+4.171e-01
+3.337e-01
+2.503e-01
+1,66%-01
+8.343e-02
+0,000e+00

1,3) 1, 3)

(a) First buckling mode (a) First unloaded vibratinode
Fig. 10. First buckling and vibration modes of CL¢

7.2. Results of VCT approach for imperfection-sensitive CLSC

Firstly, the linear buckling load and the first ral frequency were obtained considering (C-C)
boundary conditions similar to the previous sectidhe linear buckling load and first natural
frequency are 51.2 kN and 523.39 Hz, respectivARer this, the vibration analyses were
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performed for imperfection-sensitive CLSC from zé&vad until 40 kN with a 5 kN increment.
The natural frequencies at different levels of Biapplied load are given in Table 5.

Table 5 Variations of the first vibration frequency withet applied load.

Axial compressive load (k! 1st Natural frequencies [H

0 523.39
5 513.32
10 502.70
15 491.44
20 479.38
25 466.34
30 455.26
35 443.81
40 419.37

The&? is calculated based on the two VCT approachegitdescin Section 3.
7.2.1. Results of thefirst VCT approach

For the first VCT approacti? was calculated based on a linear best-fit equatitained in the
characteristic char{1 —p)? versus(1 — f*), as shown in Fig. 11. As can be seen, this
procedure resulted in a negative value &y which does not have a physical meaning.
Consequently, the VCT approach proposed by Souzd ¢40, 41] is unable to estimate the
buckling load of CLSC, being not suitable for CLS@uctures. It should be noted that similar
results were presented in [31], where the authare shown that this VCT approach is not
suitable for estimating the buckling load of urfstied composite cylindrical shells.

7.2.2. Results of second VCT approach

According to the second VCT approach introduced\tielo et al. [31, 32]¢% is obtained from
the characteristic charfl — p)? versus(1 — f?), as shown in Fig. 12. The second-order
equation,&? is calculated as the minimum of such an equattoe.fagnitude of? and the
predicted buckling load using the V@ are presented in Table 6. According to Table 6, th
buckling load of the CLSC structure was estimated4&.22 kN, considering a maximum
applied load level of 78.1% of the linear bucklingd 2.,
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Fig. 11. First VCT approach (Proposed by Souza €[40, 41) for CLSC
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Fig. 12. Seconi VCT approach (Proposed Arbelo et al[31, 32) for CLSC

Table 6 Buckling load estimation using the VCT approach.

Parameter Value

Percent of the applied load & 100) 78.1

Second order equati y = 6.32112-4.9217x + 0.99
g 0.037¢

Pycr 41.22 kN
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7.3. Results of nonlinear buckling analysis

Here, the nonlinear buckling load of the imperfétiSC structure was calculated using the Riks
method. By implementing this method, the load propoally factor (LPF) was 0.825, and the
nonlinear buckling loa®yon, Was 42.26 kN.

Besides, the nonlinear numerical and experimenteklng mode shapes are shown in Fig. 13.
As can be seen, the mode shapes are almost ideftwasequently, it can be remarked that the
nonlinear FE model has the ability to estimatelthekling load with high accuracy.

U, Magnitude

+1.574e-03

+1.443e-03

+1.312e-03

+1.181e-03

+1.04%9e-03

+0.182e-04

+7.870e-04

+6,5588-04 11T
+5.247e-04
+3.935e-04
+2.623e-04
+1.312e-04
+0.000e+00

(a) (b)
Fig. 13. (a) Experimental and (b) nonlinear buckling modapss of the CLS.

7.4. Validation of VCT and comparison between obtained results

Table 7 presents a comparison between the expdaambuackling loadPgxp, the predicted
buckling load using the VCT approadtycr, and nonlinear buckling loa®y,,, with the
respective deviation§ (related to the experimental buckling lIoBg:p). The results corroborate
that the difference betweeBycr and Pyo, With Pgxp is 2.36% and 4.94%, respectively.
Furthermore, the difference betweBfr andPy,, is 2.52 %. From the obtained results, it is
clear that there is a considerable agreement batteepredicted buckling load using the VCT
and the experimental and nonlinear buckling lo&dklitionally, the VCT result is much more
accurate than the nonlinear result. Besides, themuan applied load level is 78.1% of the
linear buckling load, therefore, it can be confithtbat the VCT approach could be considered
as a truly non-destructive method to estimate thekling load of CLSC structures with
appropriate accuracy.
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Table 7 Comparison of predicted and experimental bucKiragis.

Parameter Value [KN] 6 [%]
Pexp 40.27

Pycr 41.22 2.36
Pyon 42.26 4.94

7.5. The effect of maximum applied load (Py4x) on VCT results

The maximum applied loadPjax = Pi %X 100) has a great influence on the accuracy of the
EXP

VCT method.Pyax shows the validity, reliability, and applicabiliof the VCT approach. This
parameter is different for different structures atsdoptimal value must be obtained. It was
investigated considering 50%, 80%, 68%, 67%, 508d, &L.76% for stringer stiffened curved
panels [33], unstiffened cylindrical shell [35],idystiffened composite cylindrical shell [57],
composite sandwich plates with iso-grid cores [38ptropic cylindrical shells [38], and
unstiffened composite cylindrical shells [36], resfively. The authors proved that the VCT
approach achieved a very good correlation whemthetioned maximum load applied to the
structures. Consequently, the main goal of thigiGeds to obtain the reasonable maximum
applied load of CLSC. For this purpose, four maximapplied loads, specifically,15, 20, 25,
and 30 kN are selected. These applied loads a®%a3749.7%, 62.1% and 74.5% of the
experimental buckling load, respectively. As shoinnFig. 14, &% is calculated based on a
second-order equation adjusted in the characterdtart (1 —p)? versus(1 — f2) for the
considered axially applied loads; accordingly, hessults are reported in Table 8. Furthermore,
the corresponding predicted buckling loads for e¢h&sur maximum applied loads are also
reported in Table 8. From the above-mentioned t&sitiican be seen that the proposed approach
has a good correlation with less than 3.15% dendftiom the experimental buckling load when
Pyax adopted in the VCT is higher than 62.1%. Additibnahe evaluated VCT failed when
Pypax is lower than 49.7%.
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Fig. 14. Calculatec&® for different maximum applied loa

Table 8 The effect of maximum applied load on the accufahe VCT approach.

Maximum applied loadR;) [kN] Pyax[% g Pycr [KN] 6 [%]

]
15 37.2 0.1640 30.47 24.3
20 49.7 0.1432 31.82 20.9
25 62.1 0.1215 33.35 17.1
30 74.5 0.0567 39.00 3.15

8. Conclusions

In this article, numerical and experimental validias of the VCT approach were presented to
predict the buckling load of a CLSC structure undeiaxial loading. Firstly, the general steps
for the VCT implementation were presented. The aedeinvestigated two VCT approaches,
which have been widely used in the literature fopérfection-sensitive structures. Using the
FSDT and Rayleigh-Ritz method, the formulation floe vibration of an axially loaded CLSC
structure was revisited. Moreover, three types initef element analyses, which are linear
buckling and free vibration, nonlinear free viboatiof axially loaded, and nonlinear buckling
analyses, are performed. At first, the critical King load and first natural frequency for
different load levels are calculated and compacethé analytical results for validation of the
numerical models. Then, the FE model consideringngdric nonlinearities and initial
imperfection were considered to compute the vamabf the first natural frequency with the
axially applied load. Besides, the nonlinear bugklanalysis is also performed using the Riks
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method for a better comparison of the VCT resHteally, four specimens were built using a
silicone rubber mold, and a filament-winding toats well, the buckling test was carried out to
validate the results of the VCT approach. The nfiattings of this article are highlighted below:

1-The calculated buckling load using the VCT apphanonlinear Riks method, and
experimental test are 41.22, 42.26, and 40.27 &bpactively. From the obtained results, there is
a very good agreement between VCT results withineal and experimental results. It can be
remarked that the VCT approach could be consideseda truly non-destructive method to
predict the buckling load of a CLSC structure wagbpropriate accuracy. As well, considering
the experimental results of the CLSC structureeteshe VCT result is much more accurate than
the nonlinear Riks result.

2- The evaluated VCT approach has a good estimuaiieam the CLSC structure has been loaded
up to at least 62.1% of the experimental buckloagl

3- The maximum difference between analytical andhernical results for the perfect CLSC
structure is less than 1.1%. It can be concludatittire analytical approach has a high accuracy
to represent the behavior of loaded perfect CL®@8ire. It should be noted that the mentioned
approach could be developed for imperfection-sees@LSC structure in future works.

4- The first VCT approach, which has been presebtedouza et al. [40, 41], is unable to
predict the critical buckling load of CLSC.
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