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Abstract 

One of the best nondestructive techniques to evaluate the buckling behavior of imperfection-
sensitive structures is the vibration correlation technique (VCT). This paper presents an 
analytical formulation for the free vibration of axially loaded composite lattice sandwich 
cylinders (CLSC) and numerical and experimental validations of  the VCT applied to such 
structures. From an analytical point of view, the equations are obtained through the Rayleigh-
Ritz method considering first-order shear deformation theory (FSDT). For the numerical 
verification of the VCT, three types of linear and nonlinear finite element analyses are 
performed. At first, numerical results for the critical buckling load and the first natural frequency 
at different load levels are compared with the corresponding analytical ones, validating the 
numerical models. Then, the numerical models are extended considering geometric nonlinearities 
and imperfection to simulate the variation of the first natural frequency of vibration with the 
applied load. As well, a nonlinear buckling analysis is also performed using the Riks method for 
a better comparison of the VCT results. In the last section, four specimens are fabricated using a 
new rubber mold and a filament winding machine. Additionally, the experimental buckling test 
is carried out, verifying the results of the VCT approach. The results demonstrate that the 
maximum difference between the estimated buckling load using the VCT approach and the 
corresponding nonlinear and experimental buckling loads is less than 5%, being the VCT result 
more accurate than the numerical one. Moreover, the proposed VCT provided a good estimation 
of the buckling load of the CLSC, considering a maximum load level of at least 62.1% of the 
experimental buckling load.  
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1. Introduction 

Putting a core material between two stiffening skins is a good idea to increase the structural 
stiffness in comparison with a conventional solution such as increasing the thickness. Composite 
sandwich structures are fabricated from inner skin, core, and outer skin. According to industrial 
applications, the core can be designed homogeneous or non-homogeneous with various 
materials. Composite lattice sandwich cylinders (CLSC) are one of the most efficient types of 
sandwich structures due to their high stiffness-to-weight ratio, high breakdown strength, and 
lower damage growth, which have many applications in the aerospace [1-3], and offshore [4, 5] 
industries. Composite lattice sandwich cylinders are discontinuous structures established from 
skins, stiffeners, and periodic cells. Hence, they are highly efficient and widely used in various 
aerospace applications such as rocket interstates, payload adapters for launchers, and fuselage 
components for airplane [6]. Considering such applications, these structures are usually under 
axial load, lateral pressure, or both. In this context, the buckling analysis plays a fundamental 
role in the designing procedure of them, and it is one of the most important failure analyses.  
Many researchers have been focused on buckling and vibrational analyses of CLSC. Fan et al. 
[7] proposed an efficient method to fabricate carbon fiber-reinforced composite (CFRC) 
sandwich shell with filament winding and twice co-curing processes. It was shown that the 
CLSC has better strength in comparison with a stiffened cylinder. A new mold was designed 
with foam material to fabricate filament wound grid-stiffened composite cylindrical structures by 
Buragohain and Velmurugan [8]. It was shown that CLSC has better mechanical performance 
rather than an unstiffened shell (with skin only) and a lattice cylinder (with ribs only). Vasiliev et 
al. [9] explained the  lattice sandwich structure (LSC) application in the Russian aerospace 
industry. They provided material properties and fabrication method and design methods of LSC. 
Sun et al. [10] provided an analytical method to investigate the buckling behavior of the CFRC 
sandwich shell with a grid core under uniaxial compression. Five failure modes were introduced 
in this paper for composite sandwich cylinders. It should be noted that the analytical method has 
been developed for an isotropic shell. Improved manufacturing methods and new designs of the 
CFRC sandwich shell were presented by Chen et al. [11]. They concluded that skin and core 
thicknesses should be well balanced to have high-grade mechanical properties. Free vibration 
experiments were accomplished to investigate the mechanical behaviors of CFRC sandwich 
shells with lattice core. It was shown that the LSC has a higher fundamental frequency and could 
be considered lighter in different astronautic applications. Han et al. [12] investigated the free 
vibration behaviors of the CFRC lattice-core sandwich shell with the attached mass. It was 
shown that attached mass reduces a natural frequency. Loptain et al. [13] introduced a finite 
element model (FEM) to evaluate the dynamic and buckling behavior of composite lattice 
cylindrical shells with elliptical cross-sections. The results corroborated that the mentioned FEM 
is appropriate for desining composite tubular bodies of spacecraft. Jiang et al. [14] designed and 
fabricated a composite orthogrid sandwich cylinder using interlocking and filament winding 
methods, calculating the load-carrying capacity and natural frequencies of the structure. In 
another work, the multi-failure criteria for a composite orthogrid sandwich cylinder were 
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presented by them [15]. An analytical study was performed to calculate the failure mode of 
CLSC under various fundamental loads by Sun et al. [16].  For the failure modes introduced in 
Ref. [10], the load-carrying capacity of the structure was calculated theoretically and 
numerically. They presented a failure mode map that is useful for designing CLSC. Recently, 
Shahgholian-Ghahfarokhi and Rahimi [17, 18] presented a new analytical approach to study the 
buckling behavior of CLSC under uniaxial compression. The equations were obtained using the 
smear stiffener method, classical laminate theory (CLT), and first-order shear deformation theory 
(FSDT). It was shown that the proposed analytical method could predict the linear buckling load 
of the structure with high accuracy and low computational cost. In another work[19], they 
performed a sensitivity analysis of the free vibration of sandwich shells with lattice cores.  
According to the above literature review, it can be seen that there are many methods to predict 
and calculate the buckling behavior of CLSC. From experimental, computational, and economic 
costs point of view, many of these methods present limited results. Thus, there is a great interest 
in the development and validation of nondestructive tests (NDT) to calculate the buckling load of 
such structures from the pre-buckling stage. The first NDT suggestion based on the correlation 
with the vibration response was given by Sommerfeld [20] in 1905 for conventional structure 
like columns. One of the best NDT methods to calculate the buckling load of an imperfection-
sensitive thin-walled structure is the Vibration Correlation Technique (VCT). According to the 
VCT, the natural frequencies of a loaded structure are measured at the unloaded condition. In a 
second stage, the vibration frequency variation related to the increase of the axially applied load 
is recorded, without actually reaching the instability point. In the final stage, the curve fitting is 
performed between recorded natural frequencies and applied loads, and then the buckling load is 
calculated. In this method, the vibrational mode shape must be identical to buckling mode shape 
to provide high-precision results.  
The VCT has been developed by many researchers for conventional structures such as columns, 
flat plates, and shells by Chu [21], Johnson and Goldhammer [22], Radhakrishnan [23], 
Chailleux [24], Jubb et al. [25], Singer and Abramovich [26] and Plaut and Virgin [27] in the last 
recent decades. A detailed state-of-the-art review on the VCT was carried out in chapter 15 of 
Ref. [28]. Singhatanadgid and Sukajit [29, 30] presented the VCT to calculate the buckling load 
of rectangular thin plates. When the applied load comes close to the buckling load of the plate, 
its natural frequency approaches zero. Actual boundary conditions and critical buckling load of 
unstiffened plates and cylindrical shells were estimated numerically and experimentally by 
Arbelo et al. [31]. It was shown that the VCT is capable to evaluate boundary conditions and 
then improving the buckling load. In another work, a proposed VCT approach in Ref. [31] was 
experimentally validated by Arbelo et al. [32] to predict the buckling load of unstiffened 
cylindrical shells. They showed that the proposed approach gives a suitable correlation when the 
maximum applied load is higher than 50% of the experimental buckling load. Using the VCT, 
the buckling load of stringer stiffened curved panels was calculated by Abramovich et al. [33]. 
Similar to Ref. [32], a reasonable correlation was obtained when the maximum applied load is 
higher than 50% of the experimental buckling load. The buckling behavior and the modal 
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analysis of the stiffened CFRP plate were numerically and experimentally investigated using the 
VCT by Chaves-Vargas et al. [34]. Skukis et al. [35] presented the experimental VCT to estimate 
the buckling load of the unstiffened cylindrical shells. It was shown that when the applied load is 
greater than 80% of the buckling load a good correlation is achieved. Shahgholian-Ghahfarokhi 
and Rahimi performed a experimental and numerical investigation of the VCT approach 
proposed in [31] to evaluate the buckling behavior of grid-stiffened composite cylindrical shells. 
It was shown that there is a good correlation between numerical and experimental approaches if 
nonlinear effects, such as geometric and thickness imperfection, were considered. Recently,  
Franzoni et al. [36] proposed experimental validation of the VCT defined in [31] to estimate the 
buckling load of unstiffened composite cylindrical shells. In another work, the buckling load of a 
pressurized orthotropic cylindrical shell was obtained using the mentioned VCT by Franzoni et 
al. [37]. It was shown that the approach proposed in [31] provided a better buckling load 
estimation for the tests associated with greater magnitudes of the knockdown factor, which is the 
ratio between the experimental buckling load and the critical buckling load. Furthermore, 
analytical and numerical validation of  the afore-mentioned VCT were introduced by Franzoni et 
al. [38]. The authors illustrated the developed analytical support through a numerical study based 
on theoretical thin-walled unstiffened cylindrical shells. As observed in previous publications 
[32, 35-37], the methodology provided suitable results when the maximum applied load level is 
higher than 50% of the nonlinear buckling load. Shahgholian-Ghahfarokhi and et al. [39] 
presented the experimental and numerical validation of the VCT approach to estimate the 
buckling load of composite sandwich plates with iso-grid cores. The authors showed that there is 
a good accord between the buckling loads estimated through the VCT and the one obtained from 
the static test. . In addition, it was shown that a load level up to 67% experimental load is 
sufficient for reasonable estimations.  
Although great attention has been paid on the buckling load prediction of conventional structures 
such as beams, simple plates, and shells, this technique is still under development for composite 
sandwich structures. Besides, analytical, numerical, and experimental VCT for CLSC has not 
been spotted in the literature, to the best of the authors’ knowledge. Therefore, this article 
discusses the VCT for predicting the buckling load of CLSC through numerical and experimental 
studies. As well, an analytical formulation for the free vibration of axially loaded CLSC is 
presented. The analytical formulation is obtained employing the Rayleigh-Ritz method 
considering FSDT, yielding the dynamic behavior of an axially loaded CLSC and its critical 
buckling load. Afterward, three linear and nonlinear numerical analyses are considered. The 
critical buckling load and first natural frequency for different axially applied load levels are 
firstly calculated and compared to the analytical results for validation of the numerical models. 
Then, another FE model is defined considering geometric nonlinearities and initial imperfections 
for obtaining the variation of the first natural frequency with the axially applied load. As well, 
the nonlinear buckling analysis is also performed using the Riks method for a better comparison 
with the VCT results.  Finally, four specimens are fabricated using a filament winding setup. 
Furthermore, a buckling test is carried out to validate the results of the VCT approach. Finally, 
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the obtained buckling load using the VCT is validated based on the buckling loads calculated 
from the nonlinear Riks method and measured during the static experimental campaign.  
 

2. The considered CLSC geometry  

In this paper, the CLSC geometry is considered as shown in Fig. 1. Composite lattice sandwich 
cylinders composed of an inner skin, an outer skin, and a lattice core, which is established from 
the many helical stiffeners. Figure 1 presents the main geometrical parameters, i.e., L as the 
length of CLSC, r as the average radius of CLSC,  and to, ti, and ts as the thicknesses of the outer 
skin, inner skin, and stiffeners, respectively. Additionally, w is the stiffener’s width. The 
considered geometrical parameters are given in Table 1.  

 
Fig. 1. The CLSC geometry. 
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Table 1 The considered geometrical parameters. 
Parameter Value 
L (mm) 300 
r (mm) 80 
to (mm) 1.25 
ti (mm) 1.25 
ts (mm) 3 
w (mm) 4 
Na  3 
NC  3 

 

It should be noted that the lattice core consists of  many unit cells. The unit cell is selected in 
such a way that the whole lattice core can be generated by the repetition of this unit cell. In the 
analytical section, which is explained in section 4, the equivalent stiffness parameters of this unit 
cell are obtained and then utilized to the whole lattice core. This is valid as the whole lattice core 
can be reproduced from this unit cell. As shown in Fig. 1, a and b are defined as the width and 

length of the unit cell respectively. The a is calculated by � = ����� , where �	 is the number of 

unit cells in the circumferential direction. Also, the b is calculated by = 
��, where �� is the 

number of unit cells in the axial direction. 

3. The VCT implementation procedure  

The general steps to implement the VCT on CLSC are listed below [38, 39]: 

1. The natural frequency at zero load 
�� and the critical buckling load Pcr of the perfect 
structure are calculated. In this paper, 
�� and Pcr are obtained using both analytical and 
numerical methods.  
2. The natural frequency variation during axial loading is obtained. In this paper, the present step 
is carried out using nonlinear finite element results.  
3. The square of the drop of the load-carrying capacity due to initial imperfections ξ

2 is obtained 
from the appropriate characteristic chart. By tracking the open literature, two general approaches 
are available to calculate ξ

2 for imperfection-sensitive structures, as given below. 

A) First approach:  

A linear relationship between the (1 − �)� and the (1 − ��) was proposed by Souza et al. [40, 
41]: 

(1 − �)� + (1 − ξ�)(1 − ��) = 1 (1) 

where � = �� ����� and � = �����, being �� the the applied axial load, 
��� the measured frequency at ��. Besides, m is the number of axial half-waves and n is the number of circumferential waves 
(for CLSC). 
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The drop of the load-carrying capacity due to initial imperfections is defined as the value of (1 − �)� related to (1 − ��) equaling to one from the linear best-fit between (1 − �)� versus (1 − ��), as illustrated in Fig. 2a.  

B) The Second approach:  

According to the limitation of the first VCT pointed out in [31], a modified methodology has 
been introduced in the quoted paper. They proposed a second-order curve fitting between (1 − �)� versus (1 − ��) as shown in Fig. 2b. In this approach, ξ

2 is defined as the minimum 
value of (1 − �)� from graph (1 − �)� versus (1 − ��). Until now, this approach has been 
validated for unstiffened plate and shell [32, 36], with and without cutouts [42], grid-stiffened 
shell [43], variable angle tow shell [44], lattice sandwich plate [39],  pressurized orthotropic shell 
[37]. 
Thus, this paper will consider the presented VCTs, investigating their applicability for CLSC.  

 
 

(a) First VCT approach [36, 38, 40] (b) Second VCT approach [31, 32] 
Fig. 2. Schematic view of different VCT approach. 

 
4. In the final step, the buckling load of shell is estimated through the VCT as proposed in [31, 
32, 36-39, 42, 43, 45].  

� !" = �	�(1 − #ξ�) (2) 

 
where �!$ is the critical buckling load of the perfect structure and � !" is the estimated buckling 
load for imperfect structure. 
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4. Analytical VCT approach for perfect CLSC 

As revisited in the literature review,  the VCT has been widely used for predicting the buckling 
load of structures such as beam, plate, and unstiffened shells. Nevertheless, only a few studies 
have addressed the analytical aspects of the VCT, being most of these studies developed for the 
conventional structures listed above. For example, Franzoni et al. [38] provided analytical 
support for the methodology proposed in [31]. The authors established this support for an 
unstiffened cylinder employing the linearized Flügge-Lur'e-Byrne's theory of shells. According 
to this explanation, the analytical formulation for CLSC has significant innovations. 
Consequently, this section presents the free vibration of an axially loaded CLSC. In a similar 
approach to the buckling problem of CLSC, which presented by the authors in the Ref. [18], the 
free vibration analysis of an axially loaded perfect CLSC is carried out in the present paper. This 
study allows verifying the numerical results that have been used for calculating the buckling load 
of CLSC.  

4.1. Displacement  and strain fields of CLSC 

This paper utilizes FSDT with the following displacement field obtained from Ref. [17, 18]: 

(3) 

 %(&, (, )) = %*(&, (, )) + (+,-+.� )/0 

 1(&, (, )) = 1*(&, (, )) + (+,-+.� )/2 
  4(&, (, )) = 4*(&, (, )) 
where u, v, and w represent the displacements along x-, y-, and z-axes;  %*, 1*, and 4* are mid-
plane displacements in longitudinal, circumferential, and radial directions; /0 and /2 are the 
rotation of the middle plane with respect to the neutral surface of the CLSC in θ and x-direction; 
and t denotes the time. 
According to general strain–displacement relationships for cylindrical shells, mid-plane strains, 

curvatures, and shear strain of the CLSC are considered by 5 = [50*, 52*, 702* ], 9 = [90 , 92 ,  902], 
and 7 = [70: , 72:], respectively, which are given by [46].  

 

 50* = ;<=;0  

 52* = >� ;?=;2 + @=�  

 7(&* = ;?=;0 + >� ;<=;2  

 90 = ;AB;0  

(4) 

 92 = >� ;AC;2   902 = 1D E/(E& + E/&E(  

 70: = ;@=E( + /0 

 72: = >� F;@=;2 − 1*G + /2 

4.2. Total stiffness of CLSC 
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The total stiffness of CLSC is calculated from the combination of the inner skin, outer skin, and 
stiffeners’ stiffness. By using the superposition method, which is explained in Ref. [47, 48], the 
total stiffness of CLSC is obtained: 

(5) [H] = [H]outer skin + [H]st + [H]inner skin
 

where [H]outer skin, [H]inner skin, and [H]st are stiffness of the outer skin, inner skin, and stiffeners, 
respectively.  

4.2.1. Outer/inner skin stiffness  

The skin stiffness is obtained as Eq. (6) [18]. 

(6) 
[H]RSTU = V[W]RSTU[X]RSTU0

[X]RSTU[Z]RSTU0
00[W[]RSTU\ 

Where WRSTU, XRSTU, ZRSTU, and W[RSTU are the stiffness parameters of skin, which corresponds to 
the extensional, coupling, bending, and shear matrices, respectively. 

The above components can be calculated based on the lamination theory [49]:  

(7) 
(], ^ = 1,2,6) [WabRSTU] = c[deee]^f]gh(fi>) − hfj�

fk>  

(8) 
(], ^ = 1,2,6) [XabRSTU] = 12 c[deabf]gh�(fi>) − h�fj�

fk>  

 
 
)9( 

(], ^ = 1,2,6) [ZabRSTU] = 13 c[deabf]ghm(fi>) − hmfj�
fk>  

(10) 
(], ^ = 4,5 only) [W[RSTU] = 54 c[de]^r] Fh(r+1) − hr − 43)2 (h3(r+1) − h3r)Gs

r=1
 

 

where [deee]^f] are the transformation reduced plane stiffness matrix, for ], ^ = 1, 2, 6, and  [deeeab] are 

the transformation transverse shear stiffness matrix, for (], ^ = 4, 5). 

In Eq. (10), it is assumed that the transverse shear stresses are distributed parabolically across the 
laminate thickness [49]. In spite of discontinuities at the interface between lamina, a continuous 

function �(h) = t� [1 − F�:u G�
] is used as a weighting function by some authors, which includes a 

factor of 5/4 so that the shear factor calculated for layer orthotropic shell wall is consistent with 
the established shear factor from the previous work for the homogeneous case.  

4.2.2. The stiffness of stiffeners  
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Similar to Eq. (6), the stiffness of stiffeners is obtained as presented in Eq. (11). 

(11) 

[H]Rv = V[W]Rv[X]Rv0
[X]Rv[Z]Rv0

00[W[]Rv\ 

Where WRv, XRv, ZRv, and W[[+are the stiffness parameters of stiffeners, which correspond to the 
extensional, coupling, bending, and shear matrices, respectively. These matrices are calculated as  
[18]: 

(12) 

[W][+ = 2W
wxx
xxx
y z{|m − 2}{+|~�� z{|~� + 2}{+|~�� 0z{~|� + 2}{+~|�� z{~m − 2}{+~|�� 0

0 0 z{~|� + }{+~|� − }{+~m� ���
���
�
 

(13) 

[X][+ = W()� − )a)2
wxx
xxx
y z{|m − 2}{+|~�� z{|~� + 2}{+|~�� 0z{~|� + 2}{+~|�� z{~m − 2}{+~|�� 0

0 0 z{~|� + }{+~|� − }{+~m� ���
���
�
 

(14) 

[Z][+ = W()� − )a)�8
wxx
xxx
y z{|m − 2}{+|~�� z{|~� + 2}{+|~�� 0z{~|� + 2}{+~|�� z{~m − 2}{+~|�� 0

0 0 z{~|� + }{+~|� − }{+~m� ���
���
�
 

(15) 

[W[][+ = 2W �}{:|� 0
0 }{:~� � 

where c = cos  (�), s = sin (�), and � is the stiffener orientation angle with respect to the axial 
direction. Moreover, z{, }{+, and }{: are longitudinal, shear in-plane l-t, and shear in-plane l-z 
moduli of the stiffeners, respectively. As well, W is the cross-sectional area of the stiffeners.  
According to Eq. (6) and (11), the stiffness parameters of the CLSC can be considered as: 
 

(16) [W] = [W]outer skin + [W]~) + [W]inner skin 

(17) [X] = [X]outer skin + [X]~) + [X]inner skin
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(18) [Z] = [Z]outer skin + [Z]~) + [Z]inner skin
 

(19) [W~] = [W~]outer skin + [W~]st + [W~]inner skin 
 

4.3. Energy Method 

To obtain natural frequencies at the different load levels and the buckling load, the Rayleigh-Ritz 
energy method is applied. According to this method, total strain energy U, the work W done by 
the external force, and kinetic energy K of the CLSC must be calculated in the first step.  

The total strain energy U of  the CLSC by FSDT can be derived as [46, 49] 

(20) 

� = 12 � �(5. [W]. 5" + 9. [Z]. 9" + 25. [X]. 9" +

*

��
* 7. [W[]. 7�)D�(�& 

The potential energy due to the axial external force �e is shown as follows: 

(21) 
� = − 12 � � �e(2�D) (E4E( )�


*
��
* Dd(d& 

It should be noted that �e is considered as the buckling load in the buckling analysis while it is 
considered as applied load in the free vibration of axially loaded CLSC. 

The kinetic energy of the CLSC can be obtained as: 

(22) 

� = 12 � � � �(h)[�E%E)�� ++�
-+�



*

��
* �E1E)�� + �E4E) ��] Ddhd(d& 

where �(h) is the density of the CLSC.  

4.3.1. Application of Ritz method and solution procedure 

In this section, two analyses are considered to obtain the natural frequencies at a different load 
level and the buckling load. Therefore, the total energy function ∏ is calculated by the sum of 
strain energy and potential energy due to the axial external force for the buckling analysis, while 
the sum of strain energy, kinetic energy, and potential energy due to the axial external force for 
the free vibration of an axially loaded CLSC. Hence, the following total energy function is 
considered for both buckling and vibration analyses [50, 51]. 

(23) 
∏ = � � + �              For the buckling analysi~                                            � + � − �       For the free vibration of axially loaded analysis     
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According to the Ritz method, admissible functions for the general displacement components 
should be considered to satisfy the boundary conditions and solve the buckling and vibration 
analyses. Consequently, Eq. (24) for the buckling analysis and Eq. (25) for the free vibration 
analysis can be assumed by considering the CLSC with two simply supported SS3 edges [38].  

(24) 

%* = c c W�� cos F �¡ (G cos (s&)¢
�k>

¢
�k>  

1* = c c X�� sin F �¡ (G sin (s&)¢
�k>

¢
�k>   

4* = c c £�� sin F �¡ (G cos (s&)¢
�k>

¢
�k>  

/0 = c c Z�� cos F �¡ (G cos (s&)¢
�k>

¢
�k>  

/2 = c c z�� sin F �¡ (G sin (s&)¢
�k>

¢
�k>  

(25) 

%* = c c W�� cos F �¡ (G cos (s&)cos (
��))¢
�k>

¢
�k>  

1* = c c X�� sin F �¡ (G sin (s&)cos (
��))¢
�k>

¢
�k>   

4* = c c £�� sin F �¡ (G cos (s&)cos (
��))¢
�k>

¢
�k>  

/0 = c c Z�� cos F �¡ (G cos (s&)¢
�k>

¢
�k> cos (
��)) 

/2 = c c z�� sin F �¡ (G sin (s&)cos (
��))¢
�k>

¢
�k>  

where W��, X��, £��, Z��, and z�� are the amplitude coefficients. For the stable equilibrium, 
the total potential energy shall be at the minimum. This can be satisfied by finding the first 
derivative of the total potential energy ∏ with respect to the unknown constants W��, X��, £��, Z�� and z�� equating to zero as below: 

(26) 

E∏EW s = 0 

(27) 

E∏EX s = 0 

(28) 
Where  F  = 1,2, … , ]s = 1,2, … , ^G 

E∏E£ s = 0 

(29) 

E∏EZ s = 0 
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(30) 

E∏Ez s = 0 

This process results in Eq. (31) for the buckling analysis and Eq. (32) for the vibration analysis: 

(31) g[K¦] − �e[K§]j¨ = 0   where  (¨)T = (W, X, £, Z, z) 

(32) 
([K¦] − 
�[M])¨ = 0      where  (¨)T = (W, X, £, Z, z) 
where [K¦], [K§], and [M] are the stiffness, geometric, and mass matrices, respectively. 

Searching for the stability limit one derives Eq. (31), which is formally equivalent to Eq. (32), 
both providing generic eigenvalue problems with the critical buckling loads and natural 
frequency as the lowest eigenvalues. A MATLAB code was written to obtain the critical 
buckling load and natural frequency satisfying this condition. In this code, the maxima of both   
and s are 100, so 10000 coefficients are calculated for sample analysis. 

5. Finite element analyses 

In this section, finite element analyses are carried out to calculate linear buckling load, linear 
natural frequency, natural frequencies at the different load levels, and the nonlinear buckling 
load. For this purpose, ABAQUS CAE software is selected. The outer and inner skins are created 
by extruding a circle with radii of 81.5 and 78.5 mm, respectively. Moreover, the outer and inner 
skins are established as a laminate considering the eight-layered lay-up [0, 90]8. In a similar 
manner, stiffeners are modeled as 3D bulks by considering a proper height and square cross-
section area. The composite lay-up module is used to assign the material properties to skins and 
stiffeners. The so-called TIE constraints are also used to stick the stiffeners to outer and inner 
skins. The outer and inner skins and stiffeners have been meshed using the quadratic planar 
elements with 8 nodes S8R and brick elements with reduced integration with 20 nodes C3D20R, 
respectively. Convergence analyses were performed, providing the number and size of elements.  
According to the mentioned analyses, the optimal size of the element was defined as 
approximately 3.2 mm. Consequently, the total number of S8R and C3D20R elements were 
34930 and 5008, respectively. The final model is presented in Fig. 3. As can be seen, two epoxy 
tabs with 15 mm height are fabricated at the top and bottom edges of the CLSC structure for 
suitable load distribution in the experimental test. By considering the mentioned tabs, all of the 
displacements and rotations are zero for the CLSC edges. It should be noted that the axial 
displacement  of the top edge of the CLSC % is not zero for the buckling analysis and applying 
the axial load. According to this explanation, the clamp-clamp (C-C) boundary conditions are the 
most appropriate boundary conditions that describe the real conditions. 
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Fig. 3. Final FE model. 

After making the final model, which has been explained above, three main analyses were 
defined, which are as described in the next subsections. 

5.1. Linear buckling and free vibration analyses of the perfect CLSC 

The linear buckling and free vibration analyses are performed to obtain the critical buckling load 
Pcr and the natural frequency at the zero load level 
��, which are used for the VCT predictions 
and a comparison with the analytical results. In two linear analyses, the nominal geometry is 
considered without initial geometric imperfection. The default Lanczos solver was employed for 
the linear buckling and free vibration analyses. 

5.2. Nonlinear free vibration of axially loaded CLSC analysis 

In this analysis, the geometrical imperfections are accounted for in the FE model. The general 
steps for the implementation of this analysis are itemized below.  
-Step 1: The geometric imperfections shall be measured. For this purpose, there are several 
methods [31, 32, 52]. In this paper, the CLSC is divided with 10 and 12 grid points in the axial 
and circumferential directions. Then, the radial imperfections are measured at these grid points. 
The geometric imperfection results are shown in Fig. 4. 
-Step 2: The measured geometric imperfection is imported into the FE model through shifting the 
radial position of each node, using an inverse weighted interpolation rule with the five closest 
measured points from the imperfection data file. This method is fully explained in Ref. [52]. 
-Step 3: The axial compressive loads are applied on the CLSC up to the desired magnitude. For 
this purpose, the Newton-Raphson algorithm with artificial damping stabilization can be used as 
a nonlinear solver. 
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-Step 4: Once an applied load is reached, the vibration analysis is performed to calculate the 
natural frequencies of the CLSC. 

 
Fig. 4. Geometric imperfection results. 

 
For a better comparison of the VCT results, the nonlinear buckling analysis is also performed 
using the static Riks method. Within this model, the initial imperfections are implemented by 
multiplying the eigenmodes obtained from a linear analysis by a scaling factor. 
In this study, the first linear buckling mode, as suggested in [53], was used for disturbing the FE 
mesh. Moreover, the scaling factor was assumed as the maximum deviation measured in step 1 
described in Subsection 5.2, i.e., 0.85 mm. This method is described in detail in Refs. [39, 43, 
52].  
 
6. Fabrication and experimental buckling test 

6.1. Material properties 

In this research, the outer and inner skins were fabricated from glass woven fabric with density 
200 gr/m2 and room-temperature-curing epoxy matrix. Besides, E-glass fibers with a density of  
2.4 kg/m3 and room-temperature-curing epoxy matrix were used to make the stiffeners as well as 
the lattice core. As per to ASTM D-2584, ASTM D3039M, ASTM D3410,  and ASTM-D3518 
standards, the mechanical material properties of fibers, resin, as well as outer/inner skin, were 
obtained. These results are given in Table 2. In addition, the mechanical material properties of 
the stiffeners were calculated using a micromechanical approach [54], which is also reported in 
Table 2. 
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Table 2 Mechanical material properties of the skin and stiffeners. 
 Property Outer and inner Skins Stiffeners 
 Density (kg/m3) ρ  1537 1152 
  
Young’s Modulus (GPa) 

 z>  6.43 10.91 
 z�  6.43 1.273 

 zm  - 1.273 
 
Shear Modulus (GPa) 

 }>� = }>m  0.96 0.457 
 }�m  1.12 0.565 

 Poisson’s ratio  «>� = «>m  0.28 0.304 
 «�m  0.087 0.127 

 

6.2. CLSC fabrication method 

To fabricate the lattice sandwich structures, several methods are available; [7, 8, 39, 43, 55]. In 
this paper, the method that has been explained in detail in Ref. [43], was applied to fabricate the 
CLSC. For this purpose, the silicone rubber mold is firstly designed and fabricated using a polexi 
glass tool. Subsequently, it was installed onto the polyethylene mandrel for winding as shown in 
Fig. 5. Using a filament winding machine, the stiffeners, as well as, lattice core, were fabricated 
as shown in Fig. 6a. After this, a layer of fabric was placed on the stiffeners and mixed with 
resin. This work continues until the total number of layers is reached. Therefore, the grid-
stiffened cylinder, which consists of the outer skin and lattice core, was fabricated as shown in 
Fig. 6b. Using a similar way used for the outer skin, the inner skin was fabricated separately as 
shown in Fig. 6c. Finally, the inner skin was placed inside the grid-stiffened cylinder and was 
attached to the inner surface of the lattice core. To prevent the local buckling and suitable force 
distribution at the top and bottom edges, two epoxy rings were fabricated and placed at the top 
and bottom edges of the CLSC. As shown in Fig. 7, four identical CLSC were fabricated which 
were designated as T1, T2, T3, and T4.  

 
6.3. Experimental buckling test  

The numerical results of the VCT must be confirmed by the experimental ones. For this purpose, 
buckling experiments were performed and the corresponding experimental buckling loads �z¬� 
obtained. As shown in Fig. 8, the universal compressive testing machine was used to perform the 
buckling test on the CLSC. The fabricated specimens were tested up to the buckling load �­®� 
with a loading rate of 2 mm/min. It should be mentioned that the buckling test was repeated four 
times to increasing its accuracy and reliability. Figure 9 presents the load-displacement curves 
for four specimens. Besides, the obtained results are presented in Table 3.  
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Fig. 5. Fabrication tools, (a) Polexi glass tool, (b) Silicone rubber mold (c) polyethylene mandrel. 

 

  

 

 

(a) Filament winding process (b) Grid stiffened 
cylinder 

(c) Inner skin 

Fig. 6. Manufacturing process. 
 

(a) 

(b) 

(c) 

(b) 
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Fig. 7. The manufactured CLSC. 

 

 
Fig. 8. Experimental buckling test. 
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Fig. 9. The load-displacement curves for four specimens. 

 

Table 3 Experimental buckling load of four fabricated CLSC. 
Specimen number Experimental buckling load (�̄ °±) 

 [kN]  
T1 40.10 
T2 39.75 
T3 40.50 
T4 40.72 
Average  40.27 

  

7. Results 

7.1. Analytical and numerical results of the perfect CLSC 

The analytical and numerical results for the linear buckling load and the first natural frequency at 
different load levels of the perfect CLSC are presented in Table 4. The analytical buckling load 
and natural frequencies were obtained from Eqs. (31) and (32), respectively. From Table 4, it is 
clear that the analytical and numerical results are in good agreement, and the maximum 
difference between them is less than 1.1%. Besides, Fig. 10 presents the first unloaded vibration 
and first buckling modes for perfect CLSC considering SS3 boundary conditions. From this 
figure, it can be noticed that the first unloaded vibration mode and the first buckling mode 
exactly match, which is expected for SS3 boundary conditions [38, 56]. It should be noted that 
the buckling and vibration modes were associated with the pairs (m, n): (1, 3). 
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From the above results, it can be concluded that the analytical approach has a high accuracy to 
predict the behavior of loaded CLSC. This method can be developed for imperfection-sensitive 
CLSC in future works. 

Table 4 Analytical and numerical results of the perfect CLSC. 
Variable Analytical FEM ² = |Analytical − FEM|FEM ¶ 100 �	� [kN] 50.46 

(1, 3) 
50.11 
(1, 3) 

0.70% 
�� [Hz] 489.24 
(1, 3) 

490.95  
(1, 3) 

0.35% 


��� [Hz] at 25% of �	� 463.12 
(1,3) 

464.60 
(1,3) 

0.32% 


��� [Hz] at 50% of �	� 431.84 
(1, 3) 

433.54  
(1, 3) 

0.39% 


��� [Hz] at 75% of �	� 396.26 393.18 
(1,3) 

0.78% 


��� [Hz] at 90% of �	� 362.10 
(1, 3) 

358.21 
(1, 3) 

1.08% 

 

 

 
 
 
 

(1,3)  

 
 
 
 

(1, 3) 

(a) First buckling mode (a) First unloaded vibration mode 
Fig. 10. First buckling and vibration modes of CLSC. 

 

7.2. Results of VCT approach for imperfection-sensitive CLSC 

Firstly, the linear buckling load and the first natural frequency were obtained considering (C-C) 
boundary conditions similar to the previous section. The linear buckling load and first natural 
frequency are 51.2 kN and 523.39 Hz, respectively. After this, the vibration analyses were 
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performed for imperfection-sensitive CLSC from zero load until 40 kN with a 5 kN increment. 
The natural frequencies at different levels of axially applied load are given in Table 5.  

Table 5 Variations of the first vibration frequency with the applied load. 
Axial compressive load (kN) 1st Natural frequencies [Hz]  
0 523.39 
5 513.32 
10 502.70 
15 491.44 
20 479.38 
25 466.34 
30 455.26 
35 443.81 
40 419.37 
 
The ξ2 is calculated based on the two VCT approaches described in Section 3.  

7.2.1. Results of the first VCT approach  

For the first VCT approach, ξ
2 was calculated based on a linear best-fit equation obtained in the 

characteristic chart (1 − �)� versus (1 − ��), as shown in Fig. 11. As can be seen, this 
procedure resulted in a negative value for ξ2, which does not have a physical meaning. 
Consequently, the VCT approach proposed by Souza et al. [40, 41] is unable to estimate the 
buckling load of CLSC, being not suitable for CLSC structures. It should be noted that similar 
results were presented in  [31], where the authors have shown that this VCT approach is not 
suitable for estimating the buckling load of unstiffened composite cylindrical shells. 
 

7.2.2. Results of second VCT approach  

According to the second VCT approach introduced by Arbelo et al. [31, 32], ξ2 is obtained from 
the characteristic chart (1 − �)� versus (1 − ��), as shown in Fig. 12. The second-order 
equation, ξ2 is calculated as the minimum of such an equation.The magnitude of ξ2 and the 
predicted buckling load using the VCT �·¸¹ are presented in Table 6. According to Table 6, the 
buckling load of the CLSC structure was estimated as 41.22 kN, considering a  maximum 
applied load level of 78.1% of the linear buckling load �	�. 



 

23 
 

 
Fig. 11. First VCT approach (Proposed by Souza et al. [40, 41]) for CLSC. 

 

 
Fig. 12. Second VCT approach (Proposed by Arbelo et al. [31, 32]) for CLSC. 

 

Table 6 Buckling load estimation using the VCT approach. 
Parameter  Value  
Percent of the applied load (� ¶ 100) 78.1  
Second order equation y = 6.3211x2 - 4.9217x + 0.996 
ξ2 0.0379 �·¸¹ 41.22 kN 
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7.3. Results of nonlinear buckling analysis 

Here, the nonlinear buckling load of the imperfect CLSC structure was calculated using the Riks 
method. By implementing this method, the load proportionally factor (LPF) was 0.825, and the 
nonlinear buckling load �Non was 42.26 kN.  
Besides, the nonlinear numerical and experimental buckling mode shapes are shown in Fig. 13. 
As can be seen, the mode shapes are almost identical. Consequently, it can be remarked that the 
nonlinear FE model has the ability to estimate the buckling load with high accuracy.  

  
(a) (b) 

Fig. 13. (a) Experimental and (b) nonlinear buckling mode shapes of the CLSC. 
 

7.4. Validation of VCT and comparison between obtained results 

Table 7 presents a comparison between the experimental buckling load �̄ °±, the predicted 
buckling load using the VCT approach �·¸¹, and nonlinear buckling load �º»U, with the 
respective deviations ² (related to the experimental buckling load �̄ °±). The results corroborate 
that the difference between �·¸¹ and �º»U with �̄ °± is 2.36% and 4.94%, respectively. 
Furthermore, the difference between �·¸¹ and �º»U is 2.52 %. From the obtained results, it is 
clear that there is a considerable agreement between the predicted buckling load using the VCT 
and the experimental and nonlinear buckling loads. Additionally, the VCT result is much more 
accurate than the nonlinear result. Besides, the maximum applied load level is 78.1% of the 
linear buckling load, therefore, it can be confirmed that the VCT approach could be considered 
as a truly non-destructive method to estimate the buckling load of CLSC structures with 
appropriate accuracy.  
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Table 7 Comparison of predicted and experimental buckling loads. 
Parameter  Value [kN] ² [%] �̄ °± 40.27 --- �·¸¹ 41.22 2.36 �º»U 42.26 4.94 
 

7.5. The effect of maximum applied load (�¼½®) on VCT results 

The maximum applied load (�¾¿° = �À�ÁÂÃ ¶ 100) has a great influence on the accuracy of the 

VCT method. �¾¿° shows the validity, reliability, and applicability of the VCT approach. This 
parameter is different for different structures and its optimal value must be obtained. It was 
investigated considering 50%, 80%, 68%, 67%, 50%, and 81.76% for stringer stiffened curved 
panels [33], unstiffened cylindrical shell [35], grid-stiffened composite cylindrical shell [57], 
composite sandwich plates with iso-grid cores [39], isotropic cylindrical shells [38], and 
unstiffened composite cylindrical shells [36], respectively. The authors proved that the VCT 
approach achieved a very good correlation when the mentioned maximum load applied to the 
structures. Consequently, the main goal of this section is to obtain the reasonable maximum 
applied load of CLSC. For this purpose, four maximum applied loads, specifically,15, 20, 25, 
and 30 kN are selected. These applied loads are 37.2%, 49.7%, 62.1% and 74.5% of the 
experimental buckling load, respectively. As shown in Fig. 14, ξ2 is calculated based on a 
second-order equation adjusted in the characteristic chart (1 − �)� versus (1 − ��) for the 
considered axially applied loads; accordingly, these results are reported in Table 8. Furthermore, 
the corresponding predicted buckling loads for these four maximum applied loads are also 
reported in Table 8. From the above-mentioned results, it can be seen that the proposed approach 
has a good correlation with less than 3.15% deviation from the experimental buckling load when �¾¿° adopted in the VCT is higher than 62.1%. Additionally, the evaluated VCT failed when �¾¿° is lower than 49.7%. 
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Fig. 14. Calculated ξ2 for different maximum applied loads. 

 
 

Table 8 The effect of maximum applied load on the accuracy of the VCT approach. 
Maximum applied load (��) [kN] �¼½®[%

] 
ξ2 �·¸¹ [kN] ² [%] 

15 37.2 0.1640 30.47 24.3 
20 49.7 0.1432 31.82 20.9 
25 62.1 0.1215 33.35 17.1 
30 74.5 0.0567 39.00 3.15 

 

8. Conclusions  

In this article, numerical and experimental validations of the VCT approach were presented to 
predict the buckling load of a CLSC structure under uniaxial loading. Firstly, the general steps 
for the VCT implementation were presented. The research investigated two VCT approaches, 
which have been widely used in the literature for imperfection-sensitive structures. Using the 
FSDT and Rayleigh-Ritz method, the formulation for the vibration of an axially loaded CLSC 
structure was revisited. Moreover, three types of finite element analyses, which are linear 
buckling and free vibration, nonlinear free vibration of axially loaded, and nonlinear buckling 
analyses, are performed. At first, the critical buckling load and first natural frequency for 
different load levels are calculated and compared to the analytical results for validation of the 
numerical models. Then, the FE model considering geometric nonlinearities and initial 
imperfection were considered to compute the variation of the first natural frequency with the 
axially applied load. Besides, the nonlinear buckling analysis is also performed using the Riks 
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method for a better comparison of the VCT results. Finally, four specimens were built using a 
silicone rubber mold, and a filament-winding tool. As well, the buckling test was carried out to 
validate the results of the VCT approach. The main findings of this article are highlighted below: 
 
1-The calculated buckling load using the VCT approach, nonlinear Riks method, and 
experimental test are 41.22, 42.26, and 40.27 kN, respectively. From the obtained results, there is 
a very good agreement between VCT results with nonlinear and experimental results. It can be 
remarked that the VCT approach could be considered as a truly non-destructive method to 
predict the buckling load of a CLSC structure with appropriate accuracy. As well, considering 
the experimental results of the CLSC structure tested, the VCT result is much more accurate than 
the nonlinear Riks result.  
2- The evaluated VCT approach has a good estimation when the CLSC structure has been loaded 
up to at least 62.1% of the experimental buckling load.  
3- The maximum difference between analytical and numerical results for the perfect CLSC 
structure is less than 1.1%. It can be concluded that the analytical approach has a high accuracy 
to represent the behavior of loaded perfect CLSC structure. It should be noted that the mentioned 
approach could be developed for imperfection-sensitive CLSC structure in future works.  
4- The first VCT approach, which has been presented by Souza et al. [40, 41], is unable to 
predict the critical buckling load of CLSC.  
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