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GENERAL ABSTRACT 

 

South Asians have a higher risk of cardiovascular disease (CVD) and type 2 diabetes 

(T2D) than white Europeans. The mechanisms responsible remain partially understood 

with physical activity and cardiorespiratory fitness possibly playing a role. Thus, this 

thesis examined ethnic differences in traditional and unconventional CVD and T2D risk 

markers including appetite-related hormones and inflammatory markers as well as free 

fatty acids based on metabolomics methods, between South Asian and white European 

men. Furthermore, this thesis explored associations with objectively-measured physical 

activity/cardiorespiratory fitness and examined effects of acute exercise on subjective 

appetite ratings, appetite-related hormones and ad libitum energy intake. 

In study 1 (Chapter 3), South Asians exhibited lower fasting acylated ghrelin, high-

density lipoprotein and V̇O2 max than white Europeans but higher body fat percentage, 

C-reactive protein, leptin, triacylglycerol, glucose and insulin concentrations. Study 2 

(Chapter 4), revealed higher laurate, myristate, palmitate, γ-linolenate and linoleate 

concentrations in South Asians than white Europeans. Free fatty acids were strongly 

correlated with body fat percentage and total area under the curve for glucose in South 

Asians and with total step counts in white Europeans. Study 3 (Chapter 5) revealed 

similar appetite perceptions, energy intake and appetite-related hormones between ethnic 

groups in response to exercise although subtle differences were identified with South 

Asians exhibiting lower appetite perceptions 2 h after the buffet meal, delta acylated 

ghrelin concentrations at 4 h and lower carbohydrate intake after the exercise. Acute 

exercise increased concentrations of delta acylated ghrelin and total peptide YY and 

induced a transient suppression in appetite perceptions at 4.5 h and stimulation at 6.5 h, 

without provoking energy compensation in both groups. 
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These data demonstrate that South Asian have an adverse cardiometabolic risk profile 

than white European men which may be linked to their lower physical activity and 

cardiorespiratory fitness. Furthermore, these show that South Asians exhibit different 

levels of acylated ghrelin and FFAs metabolic profile than white Europeans and provide 

evidence that acute exercise induces a short-term energy deficit irrespective of ethnicity. 

 

Key words: cardiovascular disease, type 2 diabetes, South Asians, exercise, 

cardiorespiratory fitness, appetite, energy balance, appetite hormones, free fatty acids 
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Chapter 1 – Literature review 
 

1.1 Cardiovascular disease and Type 2 diabetes: definition and aetiology 

1.1.1  Cardiovascular disease 

Cardiovascular disease (CVD) or heart disease is a general term which relates to those 

conditions that affects the heart (cardio) and blood vessels (vascular) and comprises 

several types of disorders including coronary heart disease (CHD), cerebrovascular 

disease, peripheral arterial disease, rheumatic heart disease, congenital heart disease and 

deep vein thrombosis and pulmonary (WHO, 2017). Among all the CVD categories, 

CHD and cerebrovascular diseases are the primary causes of cardiovascular death in both 

developed and developing countries in men and women (Figure 1.1) (Wong, 2014). 

Coronary heart disease refers to a reduced blood flow to the heart mostly due to a 

progressive shrinkage and obstruction of the coronary arteries, condition known as 

cardiac ischemia. If ischemia is severe or lasts too long, it can cause chest pain (angina 

pectoris) or heart attack (myocardial infarction) which eventually leads to heart tissue 

death. Symptoms of a heart attack are various and may include pain or discomfort in the 

centre of the chest or in other areas including arms, left shoulder, elbows, jaw or back 

(WHO, 2017). 

Cerebrovascular disease includes a group of disorders causing limited or no blood supply 

to different areas of the brain. Vessel narrowing (e.g., carotid stenosis) refers to a 

decreased blood flow to the brain causing cerebral hypoxia, condition known as cerebral 

ischemia, which may lead to serious impairment of brain function if the lack of oxygen 

and nutrition is not restored promptly.  
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Figure 1.1. The proportions of cardiovascular deaths caused by ischaemic heart 

disease, cerebrovascular disease, inflammatory heart disease, rheumatic heart 

disease, hypertensive heart disease, and other cardiovascular diseases in 2011 in 

men (A) and in women (B) worldwide. Adapted from Wong (2014). 

 

Additionally, clot formation (cerebral thrombosis), blockage (cerebral embolism), and 

blood vessel rupture (cerebral haemorrhage) are other types of cerebrovascular disorders 

which may provoke a prolonged ischemia and death of brain tissue known as stroke or 

brain attack (WHO, 2017). The most common symptom of a stroke is sudden weakness 

or numbness of the face, arm or leg, most often on one side of the body. Nevertheless, 

other symptoms may include confusion, difficulty speaking or understanding speech, 

dizziness and loss of balance or coordination, severe headache with no known cause and 

fainting or unconsciousness. The effects of cerebrovascular disease depend on which part 

of the brain is injured and how severely it is affected. A very severe stroke, for instance, 

can cause sudden death (WHO, 2017). 
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Coronary heart disease and cerebrovascular disease are predominantly associated to a 

chronic low-grade inflammatory condition of the blood vessels known as 

“atherosclerosis” (Mallika et al. 2007). Atherosclerosis comes from the Greek words 

“athero” (meaning gruel or paste) and “sclerosis” (meaning hardness) and refers to the 

thickened and hardened lesions known as atherosclerotic plaques characterised by the 

progressive accumulation of lipids and fibrous elements in the intimae and media of 

elastic and muscular arteries (Mallika et al. 2007). As a consequence, arteries can be 

narrowed due to the build-up of fatty plaque, which can result in insufficient blood flow 

to organs such as heart and brain causing myocardial infarction or stroke (Lusis, 2000). 

Although a number of hypothesis have been made to explain the genesis of 

atherosclerosis, this condition may be initiated by damage to the endothelium known as 

“injury hypothesis” (Ross, 1993). According to this hypothesis, an intact endothelium 

releases antithrombotic and fibrinolytic factors as well as the vasodilator nitric oxide 

(NO). However, CVD risk factors such as hyperlipidaemia, hyperglycaemia, 

hypertension and smoking may contribute to induce an injury or damage to the 

endothelium cells of the arteries leading to endothelium disfunction and plaque 

formation. Particularly, the damaged endothelium causes abnormal responses such as 

increasing the production of vasoconstricting agents including thromboxane A2 and 

prostaglandins (Ross, 1993). Furthermore, endothelial damage triggers platelets to 

adhere and aggregate at the site of the damage that causes monocytes to enter the tunica 

intima and proliferate within the tunica-media junction of the artery, which contributes 

to the atherogenic changes within the arteries (Ross, 1993). Atherosclerosis is a slow and 

progressive disease that begins early in life with early lesions (fatty streaks) visible in 

childhood (Lusis, 2000). Age progression and prolonged exposure to atherosclerotic risk 
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factors result in the development of fatty streaks into more advanced lesions responsible 

for the artery stenosis and reduced blood flow to organs (Lusis, 2000). 

1.1.2  Type 2 diabetes 

Diabetes refers to a group of metabolic disorders characterised by higher levels of plasma 

glucose resulting from defects in insulin secretion, insulin action, or both (ADA, 2013). 

Diabetes is categorised into type 1 diabetes (T1D) and type 2 diabetes (T2D). Type 1 

diabetes, also known as insulin-dependent diabetes or juvenile-onset diabetes, accounts 

for only 10% of those with diabetes and results from a cellular-mediated autoimmune 

destruction of the pancreatic ß-cells (ADA, 2013). Type 2 diabetes (T2D), known as non–

insulin-dependent diabetes or adult-onset diabetes, accounts for 90% of those with 

diabetes and includes people with insulin resistance (e.g. the pancreas produces insulin, 

but the tissues are unresponsive to it) (WHO, 2016). Apart from these, there is gestational 

diabetes which relates to elevated blood glucose concentrations induced during 

pregnancy. The majority of patients with T2D are obese, and obesity itself is responsible 

for some degree of insulin resistance (ADA, 2013). However, individuals who are not 

obese by conventional weight criteria may have greater percentage of body fat distributed 

predominantly in the abdominal area, which is associated with greater insulin resistance 

(WHO, 2016). Type 2 diabetes leads to complications including blindness, amputation 

and kidney failure and represents a well-established risk factor for CHD and 

cerebrovascular disease with endothelial dysfunction reported to be greater in individuals 

with insulin resistance and associated hyperglycaemia compared with normoglycemic 

individuals (Huang et al. 2016). The mechanism responsible for the increased risk for 

endothelial dysfunction and atherosclerosis in diabetes remain controversial (Kuusisto et 

al. 1994). However, T2D and impaired glucose tolerance (IGT) are often associated with 
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other risk factors such as hypertension, dyslipidaemia and obesity, each of which may 

cause endothelial dysfunction (Meigs et al. 1997). 

1.2 Cardiovascular disease and Type 2 diabetes: statistics 

1.2.1  Global burden 

Cardiovascular disease accounts for more than 17.9 million deaths worldwide each year, 

(~ 31% of all deaths) with the majority of which occurring in low and middle-income 

countries and this figure is estimated to increase to 23.6 million by 2030 (WHO, 2017).  

In the United States, CVD is the leading cause of death killing more than 2000 people 

per day, an average of one person every 40 seconds (AHA, 2016). In addition, one or 

more types of CVD affect an estimated 82.6 million American adults and out of these, 

an estimated 40 400 000 are ≥ 60 years of age. CVD is responsible for half of all deaths 

in the United States with cancer (second largest killer) accounting for only half as many 

deaths. The American Heart Association also estimated that 68% of patients with 

diabetes die of some form of CVD (AHA, 2016). In Europe, CVD represents also the 

main cause of death causing each year 3.9 million deaths and over 1.8 million deaths in 

the European Union (EU) (EHN, 2017). Particularly, death rates from both CHD and 

stroke are generally greater in central and eastern Europe such as Germany, Hungary, 

Poland and Slovakia compared with northern countries such as Denmark, Finland, and 

Sweden and southern Europe including, Italy, Greece and Spain (EHN, 2017). However, 

CVD risk factors such as age-standardised rates of diabetes prevalence, as well as obesity 

and physical inactivity have gone up in Nordic and Southern Europe countries (EHN, 

2017). 
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The prevalence of CHD and stroke, once thought to be a disease of the ‘rich’ is growing 

in low - and middle - income countries which are experiencing a rapid increase of 

mortality and morbidity (Gijsberts et al. 2015). In this regard, CVD events have been 

reported to be more common in South Asia than in high income countries with acute 

myocardial infarction occurring six years earlier in South Asians than in Europe 

individuals, probably due to an earlier onset of risk factors including hyperinsulinemia 

and dyslipidaemia (Misra et al. 2017). Furthermore, the proportion of death, particularly 

in younger adults, is greater in South Asia which increases the years of life lost as a result 

of CVD (Yusuf et al. 2004). According to the Global Burden of disease study in 2015, 

CVD and diabetes in South Asia account for 27% and 4.0% of deaths, respectively, with 

CHD representing the leading cause of death in India, Pakistan, Nepal, and Sri Lanka, 

whereas stroke is the leading cause in Bangladesh (Misra et al. 2017). In India, the largest 

country of South Asia, CHD in the urban population was estimated to grow from 7% to 

13% and in the rural population from 2% to 7% (Prabhakaran and Yusuf, 2011). 

Increasing rates of urbanisation and major economic changes (such as improved 

transportation) have led to changes in lifestyle patterns for a large proportion of people 

in India resulting in lower physical activity and greater body fat and weight leading to 

diabetes, hypertension and dyslipidaemia (Reddy, 1999). 

 

Type 2 diabetes represents the main CVD risk factors and the proportion of people with 

T2D is alarmingly growing in most countries (Figure 2.2). According to the International 

Diabetes Federation, approximately 463 million adults (20-79 years) worldwide are 

living with diabetes, predominantly in low and middle-income countries and it is 

expected to grow to 700 million by 2045 (Figure 1.2) (IDF, 2019). 
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Figure 1.2. Number of adults (20-79 years) with diabetes worldwide. International 

Diabetes Federation, Diabetes Atlas, 9th edition. Copyright permission authorised by 

IDF (2019).  

  

In South Asia, 88 million of people (1 in 11 adults) have diabetes and this figure is 

estimated to increase to 153 million by 2045 (IDF, 2019). Furthermore, the actual number 

of deaths due to diabetes in South Asia has been estimated to be 1 150 3000 people, 

which is significantly greater compared to other western countries including North 

America (301 700 people) and Europe (465 900 people) (IDF, 2019). 

 

Prevalence data in South Asia, however, change according to the country or area of 

residence (urban vs. rural). The prevalence of T2D in urban areas in India is nearly five 

times higher than in rural areas, and this has been observed also in Pakistan, Bangladesh 

and Nepal (Hall et al. 2008). However, the increase rate of diabetes over the years was 

greater in the rural compared to the urban areas. For instance, between 1989 and 2005 

prevalence of diabetes in the urban areas of South India increased from 8.3% to 18.6%, 
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whereas in the rural populations the increase of diabetes was more than 3 times (from 

2.2% to 9.2%) (Misra et al. 2014). Furthermore, amongst all the Indian subcontinent 

countries, India exhibits 77 million cases of diabetes and occupies the first position for 

number of people with diabetes (20-79 years) followed by Bangladesh (8.4 million), Sri 

Lanka (1.2 million) and Nepal (0.7 million) (IDF, 2019). 

1.2.2  United Kingdom 

In the United Kingdom (UK), CVD is responsible for more deaths than any other single 

cause according to the British Heart Foundation (BHF, 2019). Particularly, 7.4 million 

people in the UK are living with CVD which cause 170,000 deaths every year, an average 

one death every three minutes (BHF, 2019). Half of all CVD cases in the UK are due to 

CHD and one-third are due to stroke. Coronary heart disease was responsible for 64,000 

deaths in 2016, one in seven in men and one in twelve in women (BHF, 2019). 

Additionally, CHD is the most common cause of premature death (under the age of 75) 

in the UK (18% in men and 10% in women) with nearly all deaths from CHD caused 

from a heart attack.	The mortality rate from CHD, however, has been decreasing since 

the 1970s, but CHD incidence has been on the rise from the 1980s, particularly in men 

aged 75 and older. 

 

The number of people experiencing complications or dying because of their diabetes in 

the UK is also growing. Type 2 diabetes accounts for around 90% of all diabetes cases 

whereas T1D accounts for only 10% (Diabetes UK, 2019). Approximately 4.7 million 

people in the UK have diabetes, and this include around one million of people who have 

diabetes but have not been diagnosed. The number of people diagnosed with diabetes in 

the UK has more than doubled in 20 years. In 1996 there were 1.4 million people 
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diagnosed while in 2019 there were 3.8 million, and this figure is estimated to increase 

to 5.5 million by 2030 (Diabetes UK, 2019). Compared to individuals without diabetes, 

people with diabetes are two times more likely to have a heart attack, heart failure or a 

stroke. Particularly, diabetes causes 27 000 heart attacks and almost 100 000 cases of 

heart failure (Diabetes UK, 2019). In the UK, diabetes is more common in men than 

women (9.6% compared with 7.6% women) and individuals with a South Asian 

background are two to four times more likely to develop T2D compared with white 

people (Diabetes UK, 2019). 

1.2.3  South Asian population in the UK 

The term South Asian refers to a heterogeneous group who have ancestral origin from 

the Indian subcontinent which includes India, Pakistan, Bangladesh, Nepal, Sri Lanka 

and Bhutan, representing almost a quarter of the world’s population (Sattar and Gill, 

2015). Many South Asians live outside the Indian subcontinent with a large 

representation living in western countries including the United Kingdom (UK), United 

States (USA), Canada and Europe (Sattar and Gill, 2015). According to the 2011 UK 

census, individuals classifying themselves as South Asians born in the UK or in one of 

the South Asian countries represented the largest ethnic minority group (Office for 

National Statistics 2013). Particularly, 4.9% of the entire population in the UK (~ 3 

million people) originates from one of the Indian subcontinent countries.  

 

Migrant South Asians as well as those living in the Indian subcontinent, exhibit greater 

CVD and T2D susceptibility than their western counterparts. Although there is not 

explicit data in the literature reporting comparison of CVD or T2D risk in South Asian 

native versus south Asian migrants, previous data report an increased cardiometabolic 
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risk in the Indian Subcontinent compared with western countries (Misra 2017, IDF, 2019) 

or a greater prevalence of CVD and T2D in South Asian migrants compared with the 

white populations in the countries where they move (Johns and Sattar, 2017). Indeed, in 

the UK, people from south Asian backgrounds are more likely to suffer from CVD and 

have an elevated risk of T2D compared with white European individuals or other ethnic 

groups (BHF, 2019; Johns and Sattar, 2017; SAHF, 2014). According to the South Asian 

Health Foundation (SAHF), 11.2% of the total South Asian population in the UK (~ 431, 

000 people) have diabetes, with T2D including 90% of all diabetes cases (~ 388, 000 

people) (SAHF, 2014). The higher prevalence of T2D amongst the South Asian 

population living in the UK was formally described for the first time in 1985 by Mather 

and Keen in the Southall Diabetes Survey showing a 5-fold higher prevalence of diabetes 

in South Asian than white European individuals living in London (Mather and Keen, 

1985). Nonetheless, more recent estimates revealed a decrease in the prevalence of 

diabetes in South Asians although the risk remains approximately 2 to 4-fold greater 

compared with the white population (Ntuk et al. 2014). Previous studies provide evidence 

of a trend towards greater insulin resistance in South Asians at a younger age than white 

Europeans (Sattar and Gill, 2015). A report from a prospective pregnancy cohort, showed 

10% greater umbilical cord insulin levels on South Asian neonates born in the UK, 

despite showing a lower birthweight, indicating elevated insulin resistance at birth 

(Lawlor et al. 2014). Similar results were also shown in an earlier report comparing South 

Asian babies born in India with white European babies born in the UK (Yajnik et al. 

2002). The greater risk of insulin resistance in South Asians compared to white European 

individuals continues throughout childhood and adulthood with glucose intolerance , 

T2D and CVD typically diagnosed 5 to 10 years earlier and at a lower BMI in South 

Asian than white European individuals (Sattar and Gill, 2015; Khunti et al. 2013; Gholap 
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et al. 2011). South Asians exhibit higher incidence of T2D also into later life than white 

Europeans with 30-40% of UK South Asians diagnosed with T2D by the age of 70 years 

old, at least twice the prevalence of their white European counterpart (Sattar and Gill, 

2015). South Asians have also shown higher prevalence of impaired glucose tolerance 

(IGT) and elevated fasting glucose concentrations compared with whites (Tziomalos et 

al. 2008). Furthermore, it has been reported that the transition from impaired glucose 

tolerance (IGF) to overt T2D is typically quicker in South Asian individuals which may 

explain, at least partially, the earlier onset on T2D in this population (SAHF, 2014).  

 

The higher prevalence of insulin resistance and T2D in the South Asian population 

appears to be the most relevant contributor for their elevated CVD risk (Tziomalos et al. 

2008). Cardiovascular complications such as myocardial infarction or stroke remain 

appreciably higher in the UK South Asian men and women than the white population, 

although the risk differences in diabetes-related cardiovascular complications between 

South Asians and white Europeans have decreased compared to a few decades ago (Johns 

and Sattar, 2017). The SABRE cohort study included 20-year follow-up data from 

patients recruited from the Southall study between 1988 and 1991 and reported greater 

risk of myocardial infarction and stroke in South Asian compared to white European 

participants (Tillin et al. 2013a).  Likewise, over 2 million patients with diabetes in 

England and Wales were included in the UK National Diabetes Audit 2010-2011 that 

reported elevated myocardial infarction, angina, heart failure and stroke in South Asian 

than white European individuals (Health and Social care Information Centre, 2012). 

Furthermore, previous studies have reported a narrower gender difference in CHD risk 

between South Asian women and men living in the UK compared to the overall UK 

population (Hall et al. 2008). Specifically, UK South Asian women experience 46% 
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higher CHD mortality than women in the general UK population whereas the CHD 

mortality in South Asian men is 36% greater men compared with men of other ethnic 

groups (Hall et al. 2008). As with cardiovascular complications, previous population-

based studies investigated ethnic differences in cardiovascular mortality, which 

consistently reported an elevated risk of mortality in South Asian than white European 

individuals (Mather et al. 1998). However, more recent studies have indicated a lower 

mortality risk in the South Asian diabetic population than their European counterparts 

probably due to an earlier detection and treatment of diabetes and CVD risk factors such 

as obesity, hypertension and dyslipidaemia (Johns and Sattar, 2017). Therefore, these 

data suggest that cardiovascular morbidity continues to be elevated compared to the white 

European counterpart whereas there has been a shift in the cardiovascular mortality 

pattern, which has been reversed positively in South Asians.  

 

In the context of describing the greater risk of CVD and T2D amongst South Asian 

individuals, there is not clear evidence suggesting genetic differences between south 

Asians and white Europeans (Bakker 2013; Sattar and Gill, 2015). Please refer to 

subsection 1.3.1.3.1, where an overview of the actual data has been reported. However, 

it is relevant to mention that migration to urban areas from rural areas in the Indian 

subcontinent or from south Asian to western countries, has been reported to induce 

changes in dietary intake and lifestyle which have been associated with greater CVD and 

T2D risk. For instance, assessment of dietary intake in South Asian migrated to western 

countries has shown an elevated consumption of products rich in energy, fat and refined 

carbohydrate in the host than in the country of origin (Shah and Kanaya, 2014). Culture 

also seems to have an impact on the low levels of physical activity amongst South Asian 

people. In this regard, Caperchione et al. (2009) reported that exercise is a foreign 
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concept to the cultural identity of South Asians, and it is seen as marginal in regard to 

the disease process. Additionally, cultural restrictions against South Asian women, 

language barriers, fear of racism or the view of exercise beyond daily work as selfish 

have all been cited as barriers to physical activity among South Asians (Caperchione et 

al. 2009). 

Finally, an additional consideration in the context of comparing the risk of CVD and T2D 

in UK South Asians versus white Europeans, is that the term “South Asian” refers to a 

heterogeneous group with significant differences in diet, culture, religion and lifestyle 

within the South Asian population. Thus, although South Asians generally have a greater 

risk of CHD and T2D than other groups in the UK, there is also a variation in risk for 

these conditions within the South Asian populations. Specifically, the prevalence of CVD 

and T2D risk has been reported to be higher in Bangladeshi men, followed by Pakistani 

and Indian men living in the UK compared with the other UK South Asian populations 

(BHF, 2019; Diabetes UK, 2012). However, for blood pressure, Indians have grater 

prevalence of hypertension followed by Pakistanis and Bangladeshis (Agyemang et al. 

2002). Furthermore, Pakistani and Bangladeshi men born in the Indian subcontinent but 

living in the UK now are more than two times more likely to die from CHD than the 

national average whereas Pakistani women are two and half times more susceptible to 

CHD than the national average (BHF 2019). 

1.3 Risk factors for cardiovascular disease and Type 2 diabetes in South Asians 

The term risk factors refer to those conditions that increase the chances of developing a 

specific disease and are typically classified into modifiable and non-modifiable risk 

factors. Concerning CVD and T2D, examples of conventional modifiable risk factors are 

smoking, physical inactivity, dyslipidaemia, obesity or hypertension whereas age, sex 
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and ethnicity are examples of non-modifiable risk factors. Conventional risk factors for 

CVD and T2D have been reported to not fully explain the heightened cardiometabolic 

risk in South Asian compared with white European individuals (Forouhi et al. 2006; Enas 

et al. 2007). For instance, data from South Asian and white European patients recruited 

from the Southall and Brent population-based study, both conducted between 1988 and 

1991, reported higher CHD mortality in South Asian than white European men after 

adjusting for conventional risk factors including smoking, age, total cholesterol, blood 

pressure, hyperglycaemia or insulin resistance, measured by homeostatic model 

assessment (HOMA) (Forouhi et al. 2006). Additionally, it is well-established that South 

Asians have	greater levels of total and abdominal adiposity, for a given BMI, than white 

Europeans and this has been linked to their excess insulin resistance and T2D (Sattar and 

Gill, 2015; Gholap et al. 2011). Nonetheless, South Asian individuals have shown to be 

more insulin resistant and greatly exposed to T2D even after adjustment for total and 

visceral fat (Chandalia et al. 1999; Sattar and Gill, 2015; Hall et al. 2010) suggesting that 

additional factors may contribute the elevated cardiometabolic risk in this population. 

Thus, continuous effort amongst the scientific community has been observed to examine 

unconventional markers, which may add further information of the elevated CVD and 

T2D susceptibility amongst the South Asian community. In this regard, given chronic 

surplus of energy intake as a possible contributor for body fat accumulation, it is plausible 

that ethnic differences in the short-term regulation of appetite and energy intake may 

underlie the elevated adiposity and associated cardiometabolic risk in the South Asian 

compared with the white population. Particularly, it is possible that the innate phenotype 

of increased adiposity in South Asians is linked with ethnic differences in appetite-related 

hormones such as acylated ghrelin and peptide YY (PYY) concentrations which play a 

key role in the acute regulation of appetite perceptions and food intake (Hussain and 
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Bloom, 2013). Furthermore, circulating concentrations of fasting ghrelin have been 

observed to be lower in individuals with elevated adiposity and exhibiting insulin 

resistance (Le Roux et al. 2005; McLaughlin et al. 2004). However, it is not known 

whether circulating acylated ghrelin and PYY concentrations are different between South 

Asian and white European individuals. Additional parameters including plasma leptin, 

C-reactive protein (CRP), interleukin-6 (IL-6) and free fatty acids (FFAs) have also been 

implicated as mechanisms, which may contribute to increase and accelerate the risk of 

T2D and CVD in South Asians compared with white Europeans (Bakker et al. 2013). It 

is well established that exercise can improve insulin sensitivity and cardiometabolic risk 

profile (ADA, 2013) and the vast majority of published literature advocates moderate-to-

vigorous exercise in promoting short-term energy deficit without inducing compensatory 

effects on appetite feelings, which may relate to the modulation of appetite gut-hormones 

including acylated ghrelin and PYY (Deighton and Stensel, 2014). Thus, physical 

activity may represent an effective strategy to enhance fat loss in South Asians and 

ameliorate their health outcomes if exercise is performed frequently. However, it remains 

unknown how differences in individual ethnicity background modulate appetite 

perceptions, energy intake and appetite-related hormones in response to exercise. Thus, 

the following sections will begin by defining the most relevant conventional risk factors 

related to the greater risk for CVD and T2D in South Asian than white European 

individuals, with a particular focus on those factors likely responsible for the greater 

insulin resistance and T2D risk in South Asians. After this, unconventional risk factors 

will be explored with a particular focus on studies that have been performed in South 

Asian individuals. Finally, the last section will examine appetite-related hormones 

involved in the regulation of appetite and energy intake such as leptin, acylated ghrelin 

and total PYY and review the evidence relating to the modulation of appetite perceptions, 
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energy intake and appetite-related hormones in response to exercise in the general 

population. 

1.3.1  Conventional risk factors 

According to the INTERHEART  report, a large epidemiological case-control study of 

risk factors for CVD conducted in 52 Countries (Asia, Europe, the Middle East, Africa, 

Australia, North America and South America), more than 80% of the person’s 

attributable risk for CHD can be explained by 9 modifiable risk factors, irrespective of 

ethnic background (Yusuf et al. 2004). They comprise low consumption of fruit and 

vegetables, smoking, alcohol consumption, psychological factors, sedentary lifestyle, 

hypertension, dyslipidaemia, abdominal adiposity and diabetes. Age, sex, hereditary and 

ethnicity are the non-modifiable CHD risk factors. Compared with white Europeans, 

South Asians have a higher prevalence of conventional risk factors for CHD, which 

largely explained their earlier onset of CHD (Tziomalos et al. 2008).  Thus, we will 

examine some of the most relevant ones which have been examined in this thesis. 

1.3.1.1 Dyslipidaemia 

Dyslipidaemia is a well-established CVD risk factor and refers to abnormal levels of 

blood lipids including high concentrations of triacylglycerol (TAG), low-density 

lipoprotein cholesterol (LDL-C) and low levels of high-density lipoprotein cholesterol 

(HDL-C) (AHA, 2016). South Asians appear to have an elevated atherogenic lipid profile 

compared with white European individuals. Particularly, they exhibit greater circulating 

TAG and lower HDL-C predisposing them to atherogenesis which may also reflect 

underlying insulin resistance (Chowdhury and Lasker, 2002; Anand et al, 2000; 

McKeigue et al, 1991; Chambers et al, 2001). Additionally, according to the Framingham 
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Offspring Study, concentrations of large HDL particles (more cardio protective) were 

lower in South Asians than white Europeans (Bhalodkar et al. 2004). In contrast, 

concentrations of LDL-C in South Asians are comparable with other populations, 

although LDL particles size has been reported to be smaller in South Asians (Bhalodkar 

et al. 2004). This is critical, as small LDL particles are more susceptible to oxidation, 

hence more atherogenic (Kulkarni et al, 1999). 

1.3.1.2 Hypertension   

Hypertension or elevated blood pressure may be related to different factors such as age, 

family history, obesity, physical inactivity, high sodium intake or ethnicity (AHA, 2016) 

and substantially contributes to high death rates from CHD, cerebrovascular disease and 

renal failure (Joshi et al, 2006). Hypertension is highly prevalent amongst the South 

Asian population (McKeigue et al, 1991; Agyemang and Bhopal, 2002). Specifically, the 

prevalence of hypertension in individuals aged between 18-75, is higher in South Asian 

than in European men whereas inconclusive results were found in relation to the 

prevalence rates of hypertension between South Asian and European women (Agyemang 

and Bhopal, 2002). Furthermore, mean blood pressure and the prevalence of 

hypertension also differed within the South Asian population (Bhopal et al, 1999). 

According to the Newcastle Heart Project study and the 1999 Health Survey of England, 

Bangladeshi males and females aged 25-74, exhibit lower mean systolic and diastolic 

blood pressure than their Pakistani and Indian counterparts (Bhopal et al, 1999). The 

same study also reported lower prevalence of hypertension in Bangladeshi men and 

women compared with Pakistani and Indian males and females.  
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1.3.1.3 Insulin resistance and Type 2 diabetes: current hypothesis for the elevated 

risk in South Asians 

Insulin is an anabolic peptide hormone produced by the β-cells of the pancreatic islets, 

which promotes glucose uptake and utilisation by muscle cells and other tissues. Insulin 

action is the consequence of the binding to its plasma membrane receptor (tyrosine 

kinase), which in turn activates a complex intracellular signalling network (e.g. insulin 

receptor substrate 1 or IRS-1) generating its biological response (Taylor et al. 2012). The 

inability of the target tissues to respond to a known quantity of exogenous or endogenous 

insulin, results in a condition known as insulin resistance which inhibits glucose 

transportation from the bloodstream into most tissues leading to hyperglycaemia and, 

ultimately, to T2D (Taylor et al. 2012). Insulin resistance is another well-established risk 

factor for CHD and ischaemic stroke with evidence showing greater risk of CVD in 

patients with insulin resistance and T2D compared with normoglycemic individuals 

(WHO, 2016).  

The elevated prevalence of insulin resistance and T2D amongst the South Asian 

population seems to be a key contributor to the observed elevated CVD risk in this 

population (Tziomalos et al. 2008). The reason explaining the increased prevalence of 

insulin resistance and T2D in individuals with South Asian background remain unclear, 

although it probably results from the combination of innate and environmental factors. 

Current hypothesis for the mechanisms responsible for increased insulin resistance and 

diabetes in South Asian individuals are summarised in the following sections. 

1.3.1.3.1 Genetic predisposition to diabetes 

Type 2 diabetes is considered as a polygenic condition that involves polymorphisms of 

different genes with a high gene–environment interaction (Radha and Mohan, 2007). 
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Many loci associated with T2D in white Europeans have been verified in studies with 

South Asian individuals but only few differences between the ethnic groups have been 

identified and the differences were not all consistently reported (Bakker et al. 2013). For 

example, an attractive difference may lie in the fat-mass and obesity-associated (FTO) 

gene, which continues to be the strongest known obesity-susceptibility locus in white 

Europeans. Relationships between FTO and T2D have also been identified, although this 

appears to be secondary to obesity (Bakker et al. 2013). In South Asians, however, the 

FTO polymorphism was previously reported to be associated with T2D, independently 

of BMI (Sanghera et al. 2008; Li et al. 2012), suggesting that in South Asians there may 

be a distinctive association between BMI and T2D. Nonetheless, associations between 

FTO and T2D mediated by obesity have been also shown in South Asian individuals 

(Ramya et al. 2011), whereas data from another study conducted in India showed no 

associations between the FTO variants tested and T2D (Chauhan et al. 2011). Therefore, 

to date no clear genetic differences between south Asian and white European individuals 

have been found.  

1.3.1.3.2 Fetal programming 

The fetal programming theory is based on previous studies reporting strong associations 

between low birth size and risk to develop impaired glucose tolerance, T2D and CVD in 

adult life, known as thrifty phenotype or Barker's hypothesis (Hales and Barker, 1992). 

According to the thrifty phenotype hypothesis, there is a mismatch between intrauterine 

and adult life environments. Particularly, an intrauterine disadvantageous environment 

such as maternal malnutrition, induces thrifty mechanisms that sets the metabolism to 

cope with potential future food deficiencies such as reduced capacity for inulin synthesis 

and secretion (Hales and Barker, 1992). While this may be beneficial to cope with 
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potential future food shortages, it increases the risk of T2D later in life in a nutrient rich 

environment typical of the modern society (Hales and Barker, 1992). This theory is based 

on the association between low birth weight and increased risk of T2D later in life 

observed in different ethnic populations (Bakker et al. 2013). In this regard, a meta-

analysis has shown low birthweight (a marker of fetal undernutrition) to be associated 

with greater risk of T2D with each kg increase associated with roughly a 25% decrease 

in diabetes risk (Sattar andGill, 2015). Although South Asians have lower birthweights 

than European populations, an analysis from the Child Heart and Health Study (CHASE) 

conducted in the United Kingdom in people with different ethnicities did not support low 

birthweight per se as an explanation for the emerging ethnic difference in risk markers 

for diabetes (Nightingale et al. 2015). Specifically, in the CHASE study, which examined 

associations between birthweight and risk markers for T2D and CVD in UK-resident 

white European, South Asian and black African-Caribbean children, adjustment for 

birthweight had no effect on ethnic differences in diabetes and CVD markers 

(Nightingale et al. 2015). However, South Asian children demonstrate a greater body fat 

percent at birth compared with white European children (based on skin-folds or cord 

leptin levels, or both) often accompanied by elevated cord insulin levels commensurate 

with greater insulin resistance (Lawlor et al. 2014). In this study, when adjustment was 

made for maternal fasting glucose concentrations, which were greater in the South Asian 

than white European women, the difference between ethnicities in cord leptin halved and 

became non-significant (Lawlor et al. 2014). Therefore, because evidence supporting the 

fetal programming role on diabetes in South Asians remain inconclusive, future studies 

investigating the effects of lifestyle intervention in South Asian compared with white 

European pregnant women would seem worthwhile, with key endpoints including 
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incidence rate of gestational diabetes, birthweight, and importantly, neonatal body 

composition.  

1.3.1.3.3 Pancreatic ß-cell capacity 

Previous evidence has identified ethnic differences in pancreatic ß-cell capacity with 

South Asians experiencing earlier declines in ß-cell function compared with other ethnic 

groups, which may contribute to the greater T2D susceptibility in South Asians (Bakker 

et al. 2013). Petersen and colleagues (2006) investigated both insulin resistance and β-

cell function in young adults East Asian, South Asian, Black, and white Caucasian 

individuals and reported a threefold to fourfold greater prevalence of insulin resistance 

in South Asian men than men of other ethnic groups, despite being matched on lifestyle 

factors and BMI (Petersen et al. 2006). In the same study, the assessment of β-cell 

function in a subgroup of South Asian and white Caucasian men revealed a 30% increase 

in basal β-cell responsiveness in the South Asians group. Nonetheless, this increase in β-

cell function was not enough to compensate for the degree of insulin resistance, as shown 

by a 60% decrease in the insulin sensitivity index (ISI) (a measure of β-cell response to 

insulin resistance), in South Asian men (Petersen et al. 2006). Data from the Whitehall 

study in the UK, examining 230 South Asian and 5749 white European individuals (39-

79 years old), also suggested greater β-cell function in South Asians at age of 50 years 

than white Europeans (Ikehara et al. 2015). Similar findings were also observed in the 

UK Southall and Brent revisited (SABRE) study (Tillin et al. 2013b). However, although 

in the Whitehall study β-cell function increased with age in white Europeans to 

compensate for increasing insulin resistance, this pattern was not observed in South 

Asians who exhibited a decline in β-cell capacity by the age of 60 years onwards (Ikehara 

et al. 2015). These findings were corroborated by a cross-sectional study conducted in 
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the USA showing lower β-cell function in South Asians (mean age 57 years old) than 

white Europeans (mean age 63 years old) (Kanaya et al. 2014). Thus, taken together these 

data suggest greater β-cell insulin production in South Asians at a younger age to 

compensate their peripheral insulin resistance. This may lead with age to a subsequent 

early β-cell exhaustion, which seems to accompany the transition to dysglycaemia and 

eventually to diabetes (Sattar and Gill, 2015). However, it remains unknown whether the 

decline in β-cell function in South Asians results primarily from the adiposity-induced 

insulin resistance or reflects lower inherent β-cell capacity (Sattar and Gill, 2015). 

1.3.1.3.4  Dietary changes 

Urbanization across Asia and migration of South Asians to western countries resulted in 

changes in dietary intake and physical activity levels, which have been associated with 

the rising rates of CVD and T2D diabetes in South Asian individuals (Shah and Kanaya, 

2014). A previous study conducted in southern India reported lower prevalence of 

diabetes in villages (9.2%) compared with 18.6% in the main cities, although villages are 

experiencing an increase in diabetes rates due to the rapid urbanization (Ramachandran 

et al. 2008). Furthermore, previous evidence showed that people living in urban areas in 

India have greater prevalence of diabetes compared to people living in rural areas (7.9% 

vs 2.5%), which is comparable to those South Asians who have migrated to the UK 

(Cheema et al. 2014).  

A nutrition transition, which is mainly characterised by increased intakes of energy dense 

and ultra-processed foods rich in fats and refined carbohydrates, has initially started in 

high-income countries to then spread to low-income countries in the last decades, 

including the Indian subcontinent, as a result of the rapid urbanization in both urban and 

rural areas (Popkin, 2009). Assessment of dietary intake in South Asian migrants to 
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western countries has also shown elevated consumption of products rich in energy, fat 

and refined carbohydrate in the host than in the country of origin (Shah and Kanaya, 

2014). Particularly, the most remarkable changes after migration appear to be a 

substantial increase in energy and fat intake and a switch from whole grains to more 

refined sources of carbohydrates, resulting in a low intake of fibre, with these data 

suggesting that these dietary changes may contribute to their greater cardiometabolic risk 

(Holmboe-Ottesen and Wandel, 2012). A previous study investigating the impact of 

migration on CHD risk factors in British Gujaratis versus their counterparts living in 

Gujarat in India, also reported greater energy intake in the UK group, both in men and 

women (Patel et al. 2006). Furthermore, the high fat intake in South Asian migrants in 

the UK has also been reported in other studies with fat intakes providing 35 to 40% of 

the total energy intake (Landman and Cruickshank, 2001). Additionally, Bakker and 

colleagues (2014) demonstrated greater perturbations in insulin resistance in response to 

short-term high fat overfeeding than European men, which may contribute to 

exacerbating the excess insulin resistance and T2D risk in South Asians (Bakker et al. 

2014). Nonetheless, a few older investigations have shown reduced energy intake in UK 

South Asians than their European counterparts (Vyas et al. 2003; Smith et al. 1993) which 

confirms that the dietary intake patterns of South Asians living in high-income countries 

remain sparse (Holmboe-Ottesen and Wandel, 2012). A further consideration in the 

context of dietary intake assessment in South Asians, is that the aforementioned studies 

based their energy intake investigations on self-reported questionnaires, which represents 

a limitation due to issues of participant recall bias which makes it difficult to accurately 

correspond self-reported intake with actual intake (Dhurandhar et al. 2015).  
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1.3.1.3.5 Physical activity and fitness 

Physical activity refers to any bodily movement produced by skeletal muscles that results 

in energy expenditure. Numerous studies have examined the associations between levels 

of physical activity and risk of T2D, with all of them reporting consistently that regular 

physical activity markedly reduces the risk of this condition (Gill and Cooper, 2008), 

independent of BMI. In this regard, controlling for differences in BMI between active 

and inactive groups has shown to attenuate the magnitude of risk reduction, although 

greater levels of physical activity were still associated with a reduction in T2D risk of 

20–30%, even after adjustment for BMI (Jeon et al. 2007). Furthermore, data from 

interventional studies reported the potential for increasing physical activity to reduce the 

risk of diabetes even in individuals exhibiting no significant weight loss (Pan et al. 1997).  

 

Several studies conducted in UK South Asians reveal lower levels of physical activity 

than their white European counterparts, suggesting that South Asian individuals living in 

high-income countries engage in low habitual physical activity, which is likely to 

contribute to the excess T2D and CHD risk in this population (Fischbacher et al. 2004; 

Williams et al. 2011a; Williams et al. 2011b; Yates et al. 2010; Ghouri et al. 2013; Afaq 

et al. 2019). Lower levels of physical activity were also observed in UK South Asian 

children compared to their white European counterparts (Duncan et al. 2012). The 

reasons explaining the lower physical activity level among South Asian communities 

remain unclear, however it can be postulated that there may be barriers to engage in 

physical activities amongst South Asians. Particularly, physical activity is a foreign 

concept to the cultural identity of South Asians, and it is seen as marginal in regard to 

the disease process (Caperchione et al. 2009). Furthermore, cultural restrictions against 

South Asian women, language barriers, fear of racism or the view of exercise beyond 
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daily work as selfish have all been cited as barriers to physical activity among South 

Asians (Caperchione et al. 2009). 

 

Similarly to dietary intake, it is important to consider that the existing evidence on 

habitual physical activity levels in South Asians has largely been gleaned from self-report 

questionnaires, although data using objective measures is emerging (Afaq et al. 2019; 

Ghouri et al. 2013; Iliodromiti et al. 2016; Duncan et al. 2012). Yates and colleagues 

(2015) in their cross-sectional study investigated differences in levels of physical activity 

between South Asians and white Europeans in the UK, using both objective 

accelerometer and self-report questionnaires, and reported similar levels of physical 

activity between groups when measured objectively although self-reported estimates 

were 40% lower in the South Asian population (Yates et al. 2015). This highlights the 

limitations of using self-reported lifestyle measures and indicates the need of future 

studies using objectively-measured physical activity in South Asians.  

Although recent evidence reported a variation in physical activity levels in UK South 

Asians with second-generation South Asians engaging in greater physical activity than 

the first-generations, South Asians remain still less active than their white counterparts 

(Bhatnagar et al. 2015). According to the physical activity guidelines from the WHO, 30 

min of moderate physical activity per day, for a total of cumulative 150 min per week, 

shows a protective effect on cardiometabolic health in adults (WHO, 2016). However, 

recent findings suggest that South Asians may need to undertake approximately 230 

minutes of moderate intensity physical activity per week, an addition of 10 to15 minutes 

per day, to achieve a comparable CHD risk factor profile of white Europeans who are 

meeting the current WHO physical activity recommendations (Sattar and Gill, 2015). 

Therefore, given the heightened cardiometabolic risk and lower levels of physical activity 
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in South Asian individuals, educational programmes should aim to develop culturally 

suitable strategies to enhance physical activity levels in this ethnic group to optimise 

health outcomes.  

 

Although lower levels of physical activity are likely to contribute to the elevated insulin 

resistance and T2D risk, South Asians have been reported to be more insulin resistant 

than white Europeans even after adjustment for differences in physical activity level 

(Ghouri et al. 2013). A contributing factor that may relate to ethnic differences in 

cardiometabolic risk is the association between physical activity and cardiorespiratory 

fitness.	Cardiorespiratory or cardiovascular fitness, assessed by V̇O2 max, refers to the 

capability of the cardiovascular and respiratory systems to supply oxygen to working 

muscles during sustained physical activity. Increasing evidence suggests that South 

Asian have lower cardiovascular fitness levels compared white European people (Hall et 

al. 2010; Ghouri et al. 2010; Arjunan et al. 2013; Arjunan et al. 2015). Although levels 

of physical activity have shown to be strongly associated with cardiorespiratory fitness, 

there is further evidence that the lower V̇O2 max in South Asians is independent of 

physical activity levels (Hall et al. 2010; Ghouri et al. 2013). Additionally, previous 

studies suggest that cardiorespiratory fitness is an important T2D risk factor (Ghouri et 

al. 2013; Hall et al. 2010). In this regard, Ghouri and colleagues (2013) demonstrated 

that low cardiorespiratory fitness was the single strongest predictor of the excess insulin 

resistance and fasting glycaemia in middle-aged South Asian compared with white 

European men living in the UK (Ghouri et al. 2013). Particularly, this study revealed that 

the lower V̇O2 max explained 68% of the ethnic difference in HOMA-IR. However, 

similar studies are warranted in women. There is also evidence indicating that fat 

oxidation during exercise may be a key feature of the insulin resistance phenotype in 
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South Asians (Hall et al. 2010). Indeed, Hall and colleagues (2010) reported lower fat 

oxidation during submaximal exercise, but not at rest, in South Asian than white 

European men and demonstrated positive associations between lower fat oxidation and 

insulin sensitivity index (Hall et al. 2010). The same study also reported lower insulin 

sensitivity index in South Asians than white European participants, which was abolished 

after adjusting for fat oxidation during exercise. This difference in fat oxidation during 

submaximal exercise observed by Hall and colleagues, however, was not related to the 

reduced skeletal muscle expression of oxidative and lipid metabolism genes, which is in 

agreement with Nair and colleagues (Nair et al. 2008), demonstrating that mitochondrial 

dysfunction cannot account for the observed insulin resistance in South Asians. Although 

the lower fat oxidation seems promising and may contribute to the increased insulin 

resistance in South Asians, so far only two small studies (Hall et al. 2010; Nair et al. 

2008) have examined skeletal muscle oxidation in South Asians. Furthermore, the 

mechanisms underlying the lower fat oxidative capacity in South Asians and how this 

relates to their lower insulin sensitivity remain unknown. Thus, future studies are needed 

before any conclusion can be drawn.    

1.3.1.3.6 Lean and adipose tissue mass 

Skeletal muscle is quantitatively the most relevant site of insulin-mediated glucose 

uptake, most of which is directed towards glycogen synthesis when is not oxidised.  

Previous studies have shown have lower lean tissue in South Asians compared with white 

Europeans, and this may represent an important factor contributing to the elevated insulin 

resistance in this population (Sattar and Gill, 2015). Lear and co-workers (2009), in their 

study demonstrated lower lean mass, greater fat mass and fat-to-lean mass ratio in both 

South Asian male and female, compared with other ethnic groups, including white 

Europeans (Lear et al. 2009). In the same study, higher insulin concentrations and 
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HOMA-IR were observed in South Asians compared with other ethnic groups, even after 

adjusting for body fat, whereas the same ethnic difference disappeared after controlling 

for fat-to-lean mass ratio, suggesting a contribution of lower lean mass to the excess 

insulin resistance in this population (Lear et al. 2009). Similar findings were observed by 

previous studies suggesting that South Asians typically have higher body fat and lower 

skeletal muscle mass at the same or lower BMI in comparison with white Europeans, 

which is known as ‘high body fat-normal BMI-low muscle mass phenotype’ (Misra et al. 

2019).  

 

It is well-established that greater levels of total and abdominal adiposity contribute to the 

pathogenesis of insulin resistance increasing the risk to develop T2D and CHD (Diabetes 

UK, 2019; AHA, 2019). Many studies reported greater percent body fat and 

accumulation of visceral adipose tissue, for a given BMI, in South Asian than white 

European individuals, which contributes to their elevated cardiometabolic risk (Sattar 

and Gill, 2015; Bakker et al. 2013; Misra et al. 2014).  Such differences in adiposity have 

been also observed in childhood and adolescence (Gujral et al. 2013). Raj and colleagues 

(2001) reported greater amounts of total adiposity, visceral fat (measured by abdominal 

computed tomography scan), fasting insulin and lower insulin sensitivity (using the 

insulin clamp technique) in healthy South Asian than white Europeans, matched for age 

and BMI (Raj et al. 2001). In the same study, insulin-mediated glucose disposal was 

negatively associated with both total and visceral fat (VAT) suggesting that total and 

regional adiposity may account for the greater insulin resistance and hyperinsulinemia in 

this population (Raj et al. 2001). These findings corroborated previous data from Banerji 

and colleagues (1999), showing negative correlations between insulin-mediated glucose 

disposal and visceral adipose tissue in a cohort of healthy Asian Indians (Banerji et al. 
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1999). Therefore, considering the greater adiposity in South Asians than BMI-matched 

white Europeans and their greater risk of developing obesity related comorbidities (e.g. 

glucose intolerance and T2D) at lower levels of BMI and waist circumference (Tziomalos 

et al. 2008), the proposed cut-offs values for defining overweight and obesity appear to 

be unsuitable in South Asians. In this regard, the WHO proposed BMI cut off points of 

23 to 24.9 kg·m2 for overweight and ≥25 kg·m2 for obesity, endorsed as ‘public health 

action point’ for South Asian individuals (Tziomalos et al. 2008). These are lower than 

the general guidelines for overweight, (25 to 29.9·kg m2) and obesity (≥30 kg m2) (Misra 

et al. 2014; Tziomalos et al. 2008). Likewise, cut off points of ≥ 90 cm and ≥80 cm for 

waist circumference in South Asian men and women, respectively, have been proposed 

instead of the actual cut-off points of ≥102 cm in men and and ≥88 cm in women (Misra 

et al. 2014; Tziomalos et al. 2008).  

However, although South Asians have greater adiposity and central fat distribution, 

additional studies shown that South Asians remain more insulin resistant and have higher 

insulin concentrations (both fasting and after glucose load) than white Europeans after 

controlling for BMI, total and abdominal adiposity (Sattar and Gill, 2015). For example, 

the cross-sectional study from Chandalia and colleagues (1999), reported lower glucose 

disposal rate in South Asian than white European men, even after adjusting for total body 

fat and truncal skinfold thickness (Chandalia et al. 1999). These findings were also in 

agreement with other studies, suggesting that South Asians are more insulin resistant 

independently of generalised or truncal adiposity (Forouhi et al. 1999, Davey et al. 2000). 

However, according to previous studies, these crude adjustments without discriminating 

between superficial subcutaneous adipose tissue (SSAT) and deep subcutaneous adipose 

tissue (DSAT), may not explain the whole story (Bakker et al. 2013). Sniderman and 

colleagues (2007) suggest that the adipose tissue is divided into primary and secondary 
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compartments, with SSAT being the primary adipose tissue compartment and DSAT and 

VAT representing the secondary compartment, which has been linked with insulin 

resistance and associated adverse metabolic effects (Sniderman et al. 2007). According 

to the overflow hypothesis, South Asians have smaller SSAT compartment than white 

Europeans, resulting to the overflow of fat in the secondary compartments, which leads 

to an earlier and greater accumulation of fat in the DSAT and VAT, elevating the risk of 

T2D and CVD in South Asians (Sniderman et al. 2007). In support of this hypothesis, 

previous cross-sectional studies reported lower or similar SSAT and higher DSAT and 

VAT in South Asian than white European individuals (Anand et al. 2011; Kohli et al. 

2010; Chandalia et al. 2007; Lear et al. 2012). Besides the different adipose tissue 

compartments theorized by Sniderman et al. (2007), it is possible that ethnic differences 

in brown adipose tissue (BAT) volume or activity may also underlie the disadvantageous 

metabolic phenotype and susceptibility to T2D in south Asian individuals. Brown 

adipose tissue has been shown to have a role in energy homoeostasis in humans (Bakker 

et al. 2014). Particularly, in contrast to white adipose tissue, BAT burns triglycerides and 

glucose to generate heat through a process called mitochondrial uncoupling (Bakker et 

al. 2014). However, a limited number of studies have investigated potential differences 

in brown adipose tissue between south Asians and white Europeans with findings 

remaining sparse (Admiral et al. 2013; Bakker et al. 2014). Not only the total and 

distribution of body fat varies between South Asian and white Europeans, previous 

studies report ethnic differences in adipocyte size and functions (Bakker et al. 2013) with 

large adipocytes being shown to predict insulin resistance and type 2 diabetes 

independent of obesity (Weyer et al. 2000). Chandalia and co-workers (2007) reported 

greater abdominal subcutaneous adipocyte size in South Asian compared with white 

European men, with this difference remaining significant even after adjusting for total 
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body fat (Chandalia et al. 2007). In the same study, adipocyte size was also negatively 

correlated with glucose disposal rate (Chandalia et al. 2007). Likewise, Anand and co-

workers (2011) revealed increased adipocyte diameter in healthy South Asian than white 

Caucasian men, and adjustment for adipocyte area reduced the ethnic differences in 

insulin levels (Anand et al. 2011). Furthermore, previous evidence shown that South 

Asians exhibit a higher ratio of small-to-larger adipocytes than individuals of European 

descent (Balakrishnan et al. 2012). Taken together, these data have been interpreted as 

an incapability for small adipocytes to differentiate into mature cells, which leads to an 

increased size of the small pool of large adipose cells, reduced storage capacity of TAG 

in the adipose tissue and early storage in ectopic depots such as skeletal muscle and liver 

(Sattar and Gill, 2015; Bakker et al, 2013). Defect in adipose tissue cells maturation and 

hypertrophic adipocytes are considered dysfunctional which has been associated with 

insulin resistance and appears to be an independent predictor of T2D (Bakker at al. 2013). 

In this regard, ectopic fat can accumulate in the liver as a result of excess circulating free 

fatty acids via the portal vein and systemic circulation, which can lead to non-alcoholic 

fatty liver disease (NAFLD) and hepatic insulin resistance (Hall et al. 2008). Although 

the mechanisms underlying this are not fully clarified, it has been hypothesised that the 

elevated fatty acid delivery to hepatocytes results in hepatic accumulation of fatty acid 

intermediates including ceramides and diacylglycerol. This interferes with insulin 

signalling pathway and inhibits insulin action leading to a reduction of the hepatic 

glycogen synthase and stimulation of gluconeogenesis (Samuel et al. 2004). Limited 

evidence suggest that hepatic lipid accumulation can contribute to insulin resistance in 

South Asians. Particularly, a previous study shown that South Asian men display a three- 

to four-fold increase in the prevalence of insulin resistance than White, East Asian, Black 

and Hispanic groups and this was associated with  a two-fold increase in hepatic 
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triglyceride content in South Asians than the other ethnic groups (Petersen et al. 2006). 

Therefore, given the possible causal relationship between hepatic lipid accumulation and 

hepatic insulin resistance in South Asians, this represents an area where further research 

is needed. 

Dysfunctional adipocytes have been also related to greater levels of leptin and FFAs in 

South Asians (Bakker et al. 2013). In support of this, previous studies observed greater 

concentrations of plasma leptin and free fatty acids in healthy nondiabetic South Asian 

men compared with their white European counterparts of similar age and total and 

abdominal adiposity, suggesting abnormalities of the adipose tissue metabolism (Abate 

et al. 2004; Chandalia et al. 2007). Furthermore, elevated concentrations of the 

proinflammatory cytokines IL-6 and CRP, associated with greater CHD risk, have been 

observed to be higher in South Asians than Caucasians with a similar degree of adiposity, 

which may suggest associations with abnormalities in the adipose tissue metabolism 

(Bakker et al. 2013; Tziomalos et al. 2008).  

1.3.2  Unconventional risk markers 

Along with conventional risk markers, emerging or unconventional risk markers may 

represent significant predictors for CHD and T2D risk in South Asians. These are 

numerous, but we will describe CRP, IL-6, and FFAs which were examined in the present 

thesis.  

1.3.2.1 Inflammatory cytokines 

Inflammation seems to play a key role in all stages of the atherosclerosis process, from 

emergence of the lesion to occurrence of a coronary event (Verma et al. 2006). 

Particularly, elevated levels of inflammatory cytokines including CRP, a circulating 

acute phase protein of hepatic origin and IL-6, a pro-inflammatory cytokine produced in 
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different tissues, such as adipocytes and endothelial cells, can cause down regulation of 

NO production, by inhibiting endothelial nitric oxide synthase (eNOS).  This causes a 

reduction in vasodilation increasing the risk of endothelial dysfunction (Hein et al. 2009). 

Furthermore, elevated plasma CRP concentrations, which levels increase in response to 

primary stimulation from IL-6, reduces the concentration of tissue plasminogen activator 

(tPA), responsible for lysing clots at the vessel wall, and increases plasminogen activator 

inhibitor-1 (PAI-1) levels, which inhibits the fibrinolysis process. This facilitates 

synthesis of thrombi on the endothelial wall, which also increases the risk of 

cardiovascular events (Devaraj et al. 2003).  

The majority of previous studies report elevated plasma CRP concentrations in South 

Asian men and women compared with their white European counterparts (Gujral et al. 

2013; Tziomolas et al. 2008; Anand et al. 2004; Arjunan et al. 2015; Bastard et al. 1999), 

although this finding is not universal (Chatha et al. 2002). Furthermore, previous studies 

have reported elevated CHD risk in South Asian individuals associated with greater 

concentrations of CRP compared with white Europeans (Gujral et al. 2013; Tziomolas et 

al. 2008). In this regard, Chambers and colleagues estimated that higher CRP 

concentrations and related inflammation are associated with a 14% increase in CHD risk 

in Indian Asians compared with white Europeans (Chambers et al. 2001). Previous 

evidence also suggests that low-grade chronic inflammation in South Asians likely reflect 

their greater adiposity and visceral adipose tissue (Chambers et al. 2001; Forouhi et al. 

2006).  However, it has also been demonstrated previously that South Asian individuals 

exhibit greater CRP concentrations than Caucasians despite similar levels of body fat 

(Chandalia et al. 2003). Therefore, it is possible that ethnic differences in CRP 

concentrations may reflects abnormalities in the adipose tissue functions described in 

Chapter 1.3.1.3.6. However, additional work is required to determine independent 
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contribution of adiposity on CRP and associations with adipose cells dysfunction in 

South Asians before any conclusion can be drawn.  

Concentrations of IL-6 have been shown to be higher in individuals with IGT or type 2 

diabetes (Pradhan et al. 2001) and have been shown to modulate insulin resistance either 

by affecting directly the insulin signalling pathway or indirectly via stimulation of 

inflammatory pathways (Tilg et al. 2008). Furthermore, studies in rodents have shown 

that acute infusions of IL-6 induced insulin resistance in both liver and skeletal muscle 

(Kim et al. 2004). Previous studies have reported higher concentrations of IL-6 in South 

Asians than white Europeans (Arjunan et al. 2015) suggesting a possible implication of 

the increased prevalence of insulin resistance in South Asians, although this is not a 

universal finding (Peters et al. 2013). Considering IL-6 released from adipose tissue has 

been identified as a precursor for hepatic CRP secretion and that the greater IL-6 

production from the adipose tissue seems to be more associated with the increase of total 

adiposity (Bastard et al. 1999), it is possible that the ethnic differences in inflammation 

may be mediated by the higher body fat levels in South Asian individuals. In this regard, 

Arjunan and co-workers demonstrated greater plasma IL-6 concentrations in South Asian 

compared with white European, with the ethnic difference disappearing after adjusting 

for percent of body fat (Arjunan et al. 2015). Peters and colleagues (2013) did not observe 

ethnic differences in IL-6 between South Asian and white European men, although the 

same study revealed greater IL-6 in South Asian than white European women (Peters et 

al. 2013). In the same study, additionally, adjustment for visceral fat area or percentage 

body fat eliminated the differences in IL-6 between South Asian and white European 

women, with visceral fat area and body fat percentage explaining up to 30% of the 

difference in IL-6 (Peters et al. 2013). However, data on IL-6 in South Asian compared 
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with white European individuals remain limited and future work is required to ascertain 

the independent contribution of ethnicity and adiposity on IL-6 in South Asians. 

1.3.2.2 Free fatty acids 

Elevated concentrations of FFAs or non-esterified fatty acids (NEFA) has been proposed 

to be an important link between adipose tissue and skeletal muscle/liver insulin resistance 

and may contribute to β-cell dysfunction (Boden, 2002; Boden and Shulman, 2002; 

Abate et al. 2004; Karpe et al. 2011). Despite the mechanisms explaining the link 

between FFAs and insulin remain partly understood, FFAs have been reported to inhibit 

insulin action, particularly by inhibiting insulin-induced glucose transport and/or by 

inhibiting insulin-signalling pathways (Boden et al. 2011). Previous evidence also 

reported elevated circulating FFAs in individuals with T2D and obesity compared with 

individuals who are healthy and lean (Boden, 2011; Capurso and Capurso, 2012). In this 

regard, the contribution of chronically elevated FFA concentration on insulin resistance 

has been demonstrated by acutely normalising the elevated levels of FFA in obese 

patients with T2D, which ameliorated insulin sensitivity from approximately 25% to 50% 

(Boden et al. 2011). Furthermore, a considerable part of the insulin resistance lowering 

effect of thiazolidinediones (TZDs), typically prescribed for reducing insulin resistance 

and improving insulin sensitivity, can be attributed to their lowering of plasma FFA 

levels (Boden et al. 2006), which they do by increasing FFA oxidation (Boden et al. 

2005). 

 

Previous evidence reported higher total FFAs concentration in South Asian than white 

European individuals, which has been linked with the greater insulin resistance and T2D 

risk amongst the South Asian population (Chandalia et al. 2007; Abate et al. 2004). In 

respect of this, the study conducted by Chandalia and co-workers revealed higher total 
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non-esterified fatty acids (NEFA) in non-diabetic South Asian men compared with 

Caucasian men, with the South Asian group exhibiting also larger subcutaneous 

adipocytes size, independent of total or subcutaneous abdominal fat (Chandalia et al. 

2007). Furthermore, the same study exhibited a negative correlation between adipocyte 

size and glucose disposal rate, used as a measure of insulin sensitivity (Chandalia et al 

2007). In a similarly designed cross-sectional study, non-diabetic insulin resistant Asian 

Indian exhibited elevated total FFA concentrations compared with Caucasian men, with 

the ethnic difference in FFA remaining significant after adjusting for total adiposity, 

waist and truncal skinfold thickness (Abate et al. 2004). Thus, the elevated concentrations 

of FFAs and larger adipocyte size in South Asians seems to be irrespective of total body 

fat and adipose tissue distribution, suggesting possible abnormalities in the adipose tissue 

metabolism which may contribute to the elevated insulin resistance and T2D in South 

Asians (Bakker et al. 2013; Sattar and Gill, 2015) as described in Chapter 1.3.1.3.6. 

Previous evidence also suggests that adiposity dysfunction and elevated circulating FFAs 

may induce intracellular lipid deposition in ectopic depots (e.g. skeletal muscle and 

liver), which seems to play a causal role in insulin resistance and T2D in South Asians. 

As reported in Chapter 1.3.1.3.6, ectopic fat can accumulate in the liver as a result of 

excess circulating FFAs via the portal vein and systemic circulation, which can lead to 

non-alcoholic fatty liver disease (NAFLD) and hepatic insulin resistance (Hall et al. 

2008). This interferes with insulin signalling pathway and inhibits insulin action leading 

to a reduction of the hepatic glycogen synthase and stimulation of gluconeogenesis 

(Samuel et al. 2004). Likewise, high levels of circulating FFAs have been reported to 

cause an oversupply of lipid to skeletal muscle leading to an accumulation of 

intramuscular triglyceride and fatty acids metabolites such as long-chain acyl-CoA, 

diacylglyceride and ceramide, which inhibit insulin action (Hall et al. 2008). Evidence 
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from Forouhi and co-workers (1999) shown 30% greater intramuscular triglyceride 

concentrations in South Asian than BMI-matched white European men (Forouhi et al, 

1999). Although it is now accepted that intramuscular triglyceride does not induce 

directly insulin resistance (as opposed to lipid intermediates), it represents a marker of 

cytosolic lipid accumulation (Hall et al. 2010). Therefore, the fact that South Asians have 

exhibited elevated intramuscular triglyceride suggests an impaired skeletal muscle lipid 

metabolism. Furthermore, it has been suggested that the accumulation of lipid 

metabolites in insulin-resistant skeletal muscle is not only induced by elevated FFAs 

concentration and subsequent lipid oversupply, but also by a reduced lipid oxidation in 

skeletal muscles (Hall et al. 2008).  The findings by Hall and colleagues (2010) 

(described in Chapter 1.3.1.3.5) reporting lower fat oxidation during submaximal 

exercise in South Asians and positive associations between lower fat oxidation and 

insulin sensitivity index, appear to corroborate the causal role of lipid accumulation in 

skeletal muscle and insulin resistance in South Asians  (Hall et al. 2010).  

Although elevated concentrations of total FFAs may mediate the insulin resistance in 

South Asian individuals (Abate et al. 2004; Chandalia et al. 2007), not all FFAs 

contribute equally to the insulin resistance process. Indeed, high concentrations of 

saturated fatty acids (SFAs) and omega-6 polyunsaturated fatty acids (PUFAs) have been 

associated with increased levels of glucose and insulin whereas specific PUFA, such as 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to 

improve insulin sensitivity (Rasic-Milutinovic et al. 2012). While previous cross-

sectional investigations have explored the association between individual fatty acids and 

markers of cardiometabolic risk (Imamura et al. 2012; Ferrucci et al. 2006), these studies 

have not investigated ethnic-specific between individual free fatty acids and markers of 

insulin resistance. To the author’s knowledge, only one study investigated ethnic-specific 
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associations between plasma fatty acids and fasting glucose and insulin resistance, 

identifying significant associations in Caucasian, but not in South Asian individuals 

(Ralston et al. 2013). However, this previous study looked at esterified fatty acids (EFS), 

instead of free fatty acids, by carrying out hydrolysis of plasma TAG post-extraction and 

this ignores the fact the rate of lipolysis of triglycerides, which is controlled by 

glucocorticoids and catecholamines, might be important (Xu et al. 2009). Furthermore, 

while this study reported baseline levels of FFAs in South Asian and Caucasians, ethnic-

differences in FFAs were not explicitly examined while associations between fatty acids 

and physical activity/fitness level were not explored. Thus, the examination of individual 

FFAs, instead of total levels of FFAs, in relation to insulin resistance markers in South 

Asians needs further investigation. 

A further important consideration in the context of examination of individual plasma 

FFAs concerns the methods used for the quantification and identification of these 

metabolites. In this regard, the techniques employed to measure concentrations of FFAs 

has progressively grown over the years ranging from microfluorometric and colorimetric 

enzymatic methods, titrimetric determination, thin-layer chromatography (TLC) to 

metabolomics advanced technologies such as gas chromatography (GC) and liquid 

chromatography (LC) based approaches (Song et al. 2019). However, although the 

majority of previous studies examined total NEFA in South Asian compared with 

Caucasian individuals using colorimetric enzymatic methods (Abate et al. 2004; 

Chandalia et a. 2007), actual data suggest that metabolomics-based approaches are more 

appropriate when an accurate measurement of individual FFA concentrations is required 

(Song et al. 2019).  
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1.3.2.2.1 Application of metabolomics for the quantification of free fatty acids 

Metabolomics represents an evolving technology that enables the identification and 

quantification of low-molecular weight metabolites in an organism that are intermediates 

and products in metabolic pathways including lactate, fatty acids and branched-chain- 

and aromatic amino acids (Gonzales-Franquesa et al. 2016). The use of this approach is 

growing in popularity and has been successfully applied to different fields such as 

nutrition research, biomarker screening and disease aetiology (Liu et al. 2010). In this 

regard, the applications of metabolomics appear to be particularly relevant for the 

quantification of known metabolites and for the identification of new metabolites which 

may contribute to diagnose earlier specific diseases and understand the underlying 

mechanisms in addition to standard clinical biomarkers (Lu et al. 2016). 

The metabolic changes linked with a specific condition or disease can be examined by 

using mainly two different metabolomic approaches: targeted and untargeted approach 

(Dunn et al. 2011). Targeted metabolomic is a quantitative approach typically employed 

as a result of a specific question or hypothesis which aims to quantify known metabolites 

related to one or more pathways (Patti et al. 2012). Conversely, untargeted approaches 

are less quantitative as their main purpose is to detect as many metabolites/compounds 

as possible in a given biological sample having little or no knowledge of the expected 

metabolic profiles in order to generate hypothesis (Patti et al. 2012). 

Metabolites include a variety of chemical compounds of different molecular weights and 

functional groups. Although their examination may be achieved using similar techniques 

used in routine chemical analyses, the identification and quantification of individual 

metabolites in complex mixtures requires higher sensitivity and selectivity techniques 

(Dunn and Ellis, 2005). In this regard, LC and GC, coupled with mass spectrometers 
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(MS) represent the most advanced and frequently used techniques (Patti et al. 2012). 

Particularly, previous research examining FFAs in human plasma and associations with 

metabolic disorders such as insulin resistance and T2D, has made considerable use of 

GC and LC coupled with MS (Binbin et al. 2010; Yi et al. 2007; Dai et al. 2015; Liu et 

al. 2010; Ma et al. 2018; Lu et al. 2016; Serafim et al. 2019; Park et al. 2015; Gonzales-

Franquesa et al. 2016; Feng et al. 2017). For example, in the study from Lu and co-

workers (2016), baseline serum FFAs profile using LC-MS approach was compared 

between patients with T2D and healthy control with diabetic patients exhibiting elevated 

myristic, palmitic and stearic acid (Lu et al. 2016). The same study also demonstrated 

positive associations between diabetes risk with different FFAs including palmitic, 

stearic, oleic and linoleic acid (Lu et al. 2016). These studies, however, have not 

investigated ethnic-specific differences in plasma FFAs metabolic profile using between 

South Asian and white European individuals, which was a purpose of the present thesis. 

 

1.4 Regulation of appetite and energy intake 

This section will initially describe the physiological regulation of appetite, illustrating 

the role of peripheral signals and their integration with central mechanisms to regulate 

appetite and food intake. Furthermore, this section will describe leptin and its role in 

regulating long-term changes in energy homeostasis and body fat, but also its 

associations with insulin resistance in South Asian individuals. The roles of acylated 

ghrelin and total PYY in the short-term appetite and energy intake regulation will be 

subsequently described with the last section examining the acute effects of exercise on 

appetite feelings, energy intake and concentrations of acylated ghrelin and total PYY.  
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1.4.1  Physiological regulation of appetite and energy intake 

The regulation of appetite and energy intake results from the integration of central and 

peripheral signals in the hypothalamus and brainstem, which are the main regions of the 

brain involved in the regulation of energy homeostasis (Druce and Bloom, 2006). 

Particularly, neuro-hormonal signals from the gut and adipose tissue converge on the 

hypothalamus providing information about adiposity and acute nutritional state of the 

body (Wren and Bloom, 2007). A vital region of the hypothalamic regulatory system is 

the arcuate nucleus (ARC), which receives different inputs from other hypothalamic 

regions as well as from peripheral hormones which cross the blood-brain barrier at the 

median eminence (Figure 1.3). The neurons in the ARC of the hypothalamus, can be 

grouped into two main populations. They include orexigenic neurons neuropeptide Y 

(NPY) and agouti-related peptide (AgRP), which stimulate food intake and promote 

weight gain, and anorexigenic neurons pro-opiomelanocortin (POMC) and cocaine- and 

amphetamine-regulated transcript (CART), that inhibit feeding and promote weight loss 

(Wren and Bloom, 2007). Stimulation of POMC/CART neurons induces the expression 

of the neuropeptide α-melanocyte-stimulating hormone (α-MSH), which acts on 

melanocortin-3 receptor (MC3) and melanocortin-4 receptor (MC4) receptors in the 

paraventricular nucleus (PVN) (another region of the hypothalamic area), to reduce 

appetite. Conversely, AgRP blocks the actions of α-MSH by inducing antagonistic 

effects on MC3 and MC4 receptors while NPY stimulates feeding mostly through the 

activation of Y1 and Y5 receptors in the PVN (Neary et al. 2004). The nucleus of the 

solitary tract (NTS) is an additional key area in the control of appetite located within the 

brainstem receiving hormonal and neural inputs from the circulation and from vagal 

afferent nerves located in the gastrointestinal tract (Druce and Bloom, 2006) (Figure 1.3). 

In addition to the ARC, NTS and PVN, which have prominent roles in the central 
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regulation of appetite, other integrated pathways also exist (Schwartz et al. 2000). 

Nonetheless, a discussion of these additional pathways is beyond the aim of this thesis, 

but the reader is referred to Schwartz et al. (2000) for an expanded review of the 

hypothalamic neurocircuits regulating energy balance. Different hormones within the 

peripheral circulation provide information about the nutritional and adiposity state of the 

body and can be divided into two main groups: episodic and tonic hormones. Tonic 

hormones (leptin and insulin) produce chronic signals proportionally to adiposity, while 

episodic hormones, such as ghrelin or PYY, change acutely in response to food intake.  
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Figure 1.3. Schematic representation of appetite and energy intake control resulting from the 

integration of central and peripheral signals in the hypothalamus and brainstem. ARC, arcuate 

nucleus; PVN, paraventricular nucleus; LHA, lateral hypothalamic area; CRF, corticotroph 

releasing factor; TRH, thyrotropin releasing factor (form part of integration with energy 

expenditure); NPY, neuropeptide Y; AgRP, agouti related peptide; POMC, 

proopiomelanocortin; CART, cocaine and amphetamine regulated transcript; MCH, melanin 

concentrating hormone; CCK, cholecystokinin; GLP‐1, glucagon‐like peptide 1; PYY, peptide 

YY; Oxm, oxyntomodulin; PP, pancreatic polypeptide. Druce and Bloom (2006).	Copyright 

permission authorised by Professor S. R Bloom.  
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1.4.2  Tonic signals 

Tonic signals are long-acting signals which reflect the levels of energy stores and control 

body weight as well as the amount of energy stored as fat over the long term.  

Together with leptin, insulin is the only other hormone regarded as a tonic appetite 

regulator and although insulin is not secreted directly from the adipose tissue, its 

concentrations circulate in proportion with body fat mass, with phasic increments 

occurring during meals (Woods and Seeley, 1998). Insulin has shown to exert 

anorexigenic effects via the stimulation of POMC and inhibition of NPY and AgRP 

neurones in the ARC of the hypothalamus (Schwartz et al. 2000). Structure and function 

of this hormone as well as differences in circulating insulin concentrations and 

associations with cardiometabolic risk in South Asian and white European men have been 

described in detail in Chapters 1.2.3 and 1.3.1.3. 

1.4.2.1 Leptin 

Leptin is a peptide hormone principally secreted by adipocytes which circulates at 

concentrations proportional to body fat mass. In this regard, obese subjects typically 

exhibit elevated leptin concentrations than normal weight individuals with most of the 

previous evidence reporting positive associations of circulating leptin levels with BMI 

and adiposity (Considine et al. 1996). Leptin plays a key role in providing information 

about nutritional status and subcutaneous fat mass to neural centres located in the 

hypothalamus that control feeding behaviour and energy expenditure (Considine et al. 

1996). Particularly, leptin exerts anorexigenic effects in the ARC of the hypothalamus 

via stimulating POMC neurones and inhibiting NPY and AgRP neurones (Sahu 2003). 

Furthermore, leptin has shown to play a key role in glucose homeostasis, independent of 

body weight, food intake and energy expenditure, promoting insulin-sensitising effect on 
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the whole-body level and glucose uptake (Denroche et al. 2012). It is therefore plausible 

that differences in leptin levels explain, at least partly, the ethnic variations in insulin 

resistance and T2D in South Asian compared with white European individuals. 

Previous studies reported higher leptin levels in South Asian men, women and neonates 

compared with their white European counterparts (Kalhan et al. 2001; Abate et al. 2004; 

Lilja et al. 2010; Mente et al. 2010). The SHARE study, a cross-sectional study of CVD 

risk factors conducted between 1996 and 1998 in 1176 Canadians of South Asian, 

Chinese, Aboriginal and European origin, reported elevated plasma leptin in South 

Asian, men and women, compared with individuals of European descent and revealed 

positive associations of plasma leptin with insulin resistance (Mente et al. 2010). These 

findings were similar with smaller studies conducted previously (Abate et al. 2004; 

Chandalia et al. 2007; Liew et al. 2003). For example, in the report from Liew and 

colleagues (2003) plasma leptin concentrations were elevated in Asian Indian than white 

European men and significantly associated with insulin clearance and fasting insulin 

(Liew et al. 2003).  

Considering circulating leptin levels are directly proportional to body fat mas (Considine 

et al. 1996), it has been suggested that the greater leptin concentrations in South Asian 

than white Europeans is mediated, at least partly, by differences in adiposity (Bakker et 

al. 2013). In support of this, Banerji and colleagues (1999) revealed positive associations 

of plasma leptin with BMI and subcutaneous adipose tissue in healthy Asian Indian male 

(Banerji et al. 1999). Likewise, Liew and colleagues (2003) reported that fasting leptin 

reflected the higher body fat percentage as evidenced by the positive associations 

between leptin and body fat (Liew et al. 2003). However, BMI, waist circumference as 

well as total adiposity and fat distribution appear to not exhaustively explain the higher 

leptin levels amongst South Asians (Gujral et al. 2013).  In the cross-sectional study 
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conducted by Abate and colleagues (2004), South Asian revealed elevated fasting plasma 

leptin concentrations compared with white European men exhibiting similar total and 

abdominal fat (truncal skinfold thickness) than white European men suggesting elevated 

leptin production from adipose tissue irrespective of total/abdominal adiposity (Abate et 

al. 2004). Furthermore, in the SHARE study the waist-to-hip ratio (WHR) and leptin 

showed similar correlation values in both South Asian and European groups (Mente et 

al. 2010), suggesting the possibility of abnormalities in the adipose tissue metabolism in 

South Asians that extend beyond the greater total and abdominal fat (Gujral et al. 2013; 

Mente et al. 2010; Abate et al. 2004). Elevated plasma leptin levels in obesity appear to 

be linked with leptin resistance and may be involved in the pathogenesis of obesity-

related insulin resistance (Abate et al. 2004). Leptin induces lipid oxidation in cells, 

therefore decreased leptin action may predispose to lipids accumulation in skeletal 

muscle, which has been associated with impaired skeletal muscle insulin resistance (Hall 

et al. 2008). While the mechanisms explaining the link between hyperleptinemia and 

insulin resistance is not completely understood, prolonged hyperinsulinemia may induce 

an increase in leptin levels suggesting that insulin resistance and higher concentrations 

of insulin may have a role in promoting hyperleptinemia (Wang et al. 1999). In support 

of this, Abate et al. (2004) demonstrated positive correlation between leptin levels and 

AUC insulin during OGTT in South Asians and white European men, suggesting that the 

elevated insulin concentrations in the South Asian group may have contributed to the 

greater leptin concentrations in South Asian than white European men.  

1.4.3  Episodic signals 

Despite the fact that leptin and insulin play an important role in the tonic regulation of 

appetite, changes in the concentrations of these hormones cannot explain the increase or 
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decrease in appetite perceptions around the meal, which control initiation and termination 

of the meal. In this regard, acute appetite-regulation seems to be mostly mediated by 

neuroendocrine signalling from the gastrointestinal (GI) tract (Druce and Bloom, 2006). 

Short-acting GI signals are characterised by gut hormones such as cholecystokinin 

(CCK) and mechanical factors, such as gastric distension, which typically convey a sense 

of “fullness” leading to postprandial satiation and meal cessation. Additional appetite 

regulating hormones from the gut have been identified, including the appetite-stimulating 

hormone ghrelin and a variety of appetite inhibiting hormones such as PYY, pancreatic 

polypeptide (PP), glucagon-like peptide 1 (GLP-1) or oxyntomodulin (OXM) (Wren and 

Bloom, 2007). The studies in this thesis focused on the measurement of ghrelin and PYY 

and, thus the following sections will describe the structure and function of these two 

hormones, particularly in relation to appetite and energy intake control.   

1.4.3.1 Ghrelin 

Ghrelin is a 28-amino-acid hormone which is mainly synthesised by the endocrine X/A 

cells of the oxyntic glands of the gastric mucosa, responsible for approximately 50 to 

70% of the systemic ghrelin production (Kojima and Kangawa, 2005). To exert its 

biological function and to cross the blood-brain barrier, this peptide requires post-

translational acylation with a medium chain fatty acid, typically octanoic acid, which 

reaction is catalysed by the ghrelin-O-acyltransferase (GOAT) (Ghigo et al. 2005).  

Ghrelin circulates in the bloodstream predominantly in a non-acylated form (80-90% of 

total circulating ghrelin), which is likely to be explained by the abundance of ghrelin than 

GOAT within the ghrelin-producing cells (Ghigo et al. 2005). However, the orexigenic 

actions of ghrelin are exclusively mediated by the acylated form of this gut peptide 

(Neary et al. 2004) whereas the measurement of total ghrelin has been reported to mask 

changes in acylated ghrelin (Hosoda et al. 2004). Therefore, acylated ghrelin is typically 
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targeted in studies examining the effect of exercise on circulating plasma ghrelin 

concentrations in humans (Hosoda et al. 2004).  

 

Ghrelin is the only known orexigenic gut hormone identified so far and it is well-

established that feeding represents the main factor regulating ghrelin secretion 

considering that its circulating levels decline with food intake and rise in response to 

short-term fasting (Cummings et al. 2001). Ghrelin is the natural ligand for the growth 

hormone secretagogue type 1a receptor (GHS-R1a) and appears to be a potent stimulus 

for the growth hormone release (Ukkola et al. 2005). However, ghrelin has received 

specific attention as the only peripheral hormone to stimulate appetite and food intake. 

Particularly, when administered into the central nervous system (CNS), ghrelin 

stimulates food intake more powerfully compared with any other substance investigated 

including NPY, considered previously the most powerful orexigenic factor (Wren and 

Bloom, 2007). Although its signalling mechanisms remain partly unknown, previous 

evidence suggest that ghrelin acts predominantly via arcuate NPY/AgRP neurons, which 

express the GHS-R1a (Wren and Bloom, 2007). Additionally, ghrelin has shown to 

increase appetite and food intake when administered also systemically in both rodents 

and humans (Wren and Bloom, 2007).  

 

Ghrelin has been shown to affect chronic energy homeostasis as frequent central and 

peripheral injections of ghrelin significantly induced body weight and fat mass gain in 

rodents as a result of an increase in food intake and decrease in fat oxidation (Tschöp et 

al. 2000). Furthermore, circulating ghrelin concentrations also appear to reflect body 

weight changes over the longer term, which may suggest a possible role of ghrelin in 

body weight regulation as an adiposity signal in humans. In this regard, ghrelin has been 
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shown to respond to chronic changes in energy balance as circulating ghrelin levels are 

inversely associated with adiposity (William and Cummings, 2005) with previous studies 

reporting low levels in obese populations and elevated in individuals with anorexia 

nervosa (Tschöp et al. 2001). Furthermore, Ravussin and co-workers (2001) reported a 

down-regulation of ghrelin concentrations in response to approximately three months of 

overfeeding and an up-regulation in response to an energy deficit induced via exercise 

for a similar duration (Ravussin et al. 2001). In a different study conducted in female 

mice, Moesgaard and co-workers (2004) reported that obesity induced by 10 weeks of 

high-fat diet markedly suppressed fasting plasma ghrelin concentrations and ghrelin 

mRNA expression in the GI tract, suggesting that feeding and/or weight gain reduced 

ghrelin release (Moesgaard et al. 2004). However, it remains difficult to establish 

whether the changes in plasma ghrelin in these studies are related to weight gain or to 

increased fat in the diet. Nonetheless, although the mechanisms explaining the fluctuation 

of ghrelin concentrations related to changes in body weight are not completely 

understood, there is evidence that the low concentrations of ghrelin observed in obese 

individuals may be related more to insulin resistance than to higher BMI or fat mass 

(Flanagan et al. 2003; McLaughlin et al. 2004). In this regard, McLaughlin and 

colleagues (2004) compared ghrelin concentrations in obese individuals classified as 

either insulin-resistant or insulin-sensitive, based on steady-state plasma glucose 

concentrations (McLaughlin et al. 2004). The results of this study revealed significantly 

lower ghrelin concentrations in the insulin-resistant group and exhibited negative 

correlations of ghrelin with insulin resistance and insulin concentrations. Additionally, 

in the same study multivariate analysis confirmed that both insulin resistance and 

hyperinsulinemia, independently, predicted low ghrelin levels (McLaughlin et al. 2004), 
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with these data suggesting that insulin resistance and hyperinsulinemia may be associated 

with ghrelin suppression independently of adiposity.  

1.4.3.2 Peptide YY 

Peptide YY is a 36-amino-acid peptide which is primarily synthesised and secreted from 

entero-endocrine L cells of the distal GI tract with concentrations increasing from the 

pylorus to the rectum (Adrian et al. 1985). Peptide YY exists in two different forms: the 

integral 36 amino acid peptide PYY1-36, which is cleaved after secretion to give the 

truncated and active 34 amino acid form PYY3-36. In the circulation, PYY3-36 is the 

abundant form of circulating hormone (~65%) whereas PYY1-36 represents ~35% of the 

total circulating PYY (Batterham et al. 2006). In terms of biological effect, PYY1-36 binds 

with similar affinity to all of the functional Y receptor subtypes in humans (Y1-5) while 

PYY3-36 favourably binds to the Y2 receptor (Cabrele and Beck-Sickinger, 2000). In this 

regard, although the appetite-suppressing effects of PYY are thought to be mediated 

particularly by PYY3-36 (Sloth et al. 2007), previous studies have reported strong positive 

correlations between changes in total PYY and PYY3-36 in response to food intake and 

exercise (Tsilchorozidou et al. 2008; Broom et al. 2009). Thus, consistently with the 

available evidence suggesting that total PYY measurements reflect changes in PYY3-36 

(Broom et al. 2009), total PYY was examined in the studies presented in this thesis.  

 

PYY secretion is mainly stimulated by food ingestion, with concentrations starting to 

increase within 15 min of food ingestion, reaching a peak at ~90 min and remaining high 

for approximately 6 hours (Adrian et al. 1985). However, PYY exerts a variety of effects 

on the GI tract. Administration of PYY, for instance, has been shown to increase the 

absorption of water and electrolytes from the ileum after food ingestion and inhibits 
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secretions from the pancreas, stomach and gallbladder as well as delaying gastric 

emptying (Wren and Bloom, 2007). Additionally, peripheral administration of PYY also 

exerts effects on other body systems including reduction of cardiac output, glomerular 

filtration rate, plasma renin, and aldosterone activity (Adrian et al. 1985). However, the 

significance of these numerous physiological actions has not been elucidated. The pattern 

of PYY secretion after a meal suggests that it may be a satiety signal, inducing 

termination of the meal and promoting coordinated GI responses to assist digestion and 

absorption. In humans, intravenous administration of PYY3–36 has demonstrated to 

inhibit food intake in both lean and obese individuals (Batterham et al. 2002). For 

instance, in normal weight men and women, intravenous injections of 0.8 pmol.kg-1.min-

1 PYY3-36 for 90 min exhibited a significant decrease in hunger feelings and an 

approximate 36 % decline in energy intake at an ad libitum buffet meal given two hours 

after the infusion (Batterham et al. 2006). In the same study, examination of food diaries 

revealed inhibition of food intake throughout the 12 h after infusion without any 

compensatory increases thereafter, which resulted in a substantial lower 24 h energy 

intake in comparison with a saline infusion control trial (Batterham et al. 2002). These 

findings have been confirmed to obese participants (Batterham et al. 2003). However, 

the same physiological effects do not occur at similar doses of PYY1-36, which suggests 

that the appetite suppressing effects are mainly mediated by the active form PYY3-36 

(Sloth et al. 2007). The mechanisms whereby PYY3–36 inhibits appetite and food intake 

is thought to be mediated predominantly by acting directly on Y2 receptors (Y2R) in the 

ARC of the hypothalamus (Karra & Batterham 2010). The binding of PYY to the Y2R 

seems to reduce appetite and food intake by inhibiting NPY neurones, which reduces 

orexigenic signalling and also disinhibits POMC neurones to increase anorexigenic 

outputs (Batterham et al. 2002).  
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Peptide YY may also influence chronic energy homeostasis as repeated peripheral 

infusions of PYY3-36 has revealed to significantly decrease adiposity and body weight 

rodents as a result of a reduction in food intake as well as an increase in fat oxidation at 

whole body (Adams et al. 2006). In humans, PYY also responds to chronic changes in 

energy balance as obese individuals have been shown to exhibit reduced fasting and 

postprandial circulating PYY than lean individuals (Le Roux et al. 2006;	Batterham et al. 

2003), although this is not a universal finding (Cahill et al. 2011; Stock et al. 2005). The 

mechanisms underlying a blunted PYY response in obesity, however, are unclear but 

studies conducted in obese mice suggests that circulating levels are decreased as a result 

of impaired postprandial secretion, rather than synthesis, of PYY (Chandarana et al. 

2011). Regardless of the mechanisms, the blunted PYY and satiety response to food 

consumption may contribute to the exacerbation of obesity.		

	

Given the implication of PYY and ghrelin in the energy homeostasis and body weight/fat 

mass control, it is possible that ethnic differences in these hormones as well as in the 

regulation of appetite and energy intake may underlie the well-established elevated 

adiposity and associated cardiometabolic risk in South Asian compared with white 

European individuals. However, no studies to the author’s knowledge have been 

conducted to compare the levels of these hormones between South Asian and white 

European individuals.  

1.5 Effect of exercise on appetite, food intake and appetite related hormones 

 

1.5.1 Appetite and energy intake assessment 

 

Appetite represents the qualitative aspect of feeding behaviour and can be described as 

the momentary disposition of an individual to ingest food and is experienced as perceived 

hunger and desire to eat. Alternatively, although food intake responds to the same stimuli, 
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it refers to the quantitative aspect of the feeding behaviour. The relationship between 

appetite and food intake, however, is not always perfect and actual recommendations 

suggest that both parameters are examined within the same experiment (Gregersen et al. 

2008; Stubbs et al. 2000). 

 

Appetite feelings are normally assessed using visual analogue scales (VAS) measuring 

four different aspects of appetite: hunger, satisfaction, fullness and prospective food 

consumption (Flint et al. 2000). These scales require participants to mark with a 

horizontal line, that is typically 100 mm or 150 mm in length with specific statements at 

each end (e.g. ‘not at all full’/ ‘totally full’). On the other hand, acute appetite studies 

typically measure ad libitum food intake using either a free choice buffet meal or a single 

meal with a predetermined macronutrient composition. Both options can be used within 

the laboratory setting, which allows precise quantifications of food intake by weighing 

food items before and after ingestion. However, some intervention studies may monitor 

food intake using food diaries although self-report measures are particularly prone to 

individual bias, which limits the validity of this method (Livingstone & Black 2003). 

 

Interest in the effects of exercise on appetite and energy intake arises from the 

acknowledgement that physical activity may enhance weight and fat loss (Donnelly et al. 

2009), representing a good strategy for the management of obesity and associated 

complications. Nonetheless, the weight/fat loss response to physical activity is 

determined by the subsequent energy intake, as an increase in food ingestion may negate 

the energy deficit of exercise. Likewise, any compensatory increases in appetite 

perceptions after exercise may contribute to the difficult of maintaining a negative energy 

balance and weight loss. In this regard, although previous evidence suggest that South 
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Asian individuals engage in less habitual physical activity than white Europeans (Sattar 

and Gill, 2015), which is likely to contribute to the excess of adiposity and associated 

cardiometabolic risk in this population (Fischbacher et al. 2004; Williams et al. 2011a; 

Williams et al. 2011b; Sattar and Gill, 2015), no studies have investigated ethnic 

differences in appetite perceptions and food intake responses to acute exercise in South 

Asian and white European individuals.  

 

The following sections will discuss the most relevant studies that investigated the acute 

and chronic effects of exercise on appetite perceptions, food intake and appetite-related 

hormones in the general population 

 

1.5.1.1 Appetite perceptions in response to exercise 

A plethora of studies have examined the effects of single bouts of continuous aerobic 

exercise (≥ 60 % V̇O2 max) on appetite perceptions, with the majority of these studies 

performed in lean and physically active males. The majority of these study have shown 

a transient suppression of appetite perceptions during and shortly after exercise, which 

typically returns to resting control values within 30 to 60 min of exercise cessation 

(Broom et al. 2007; Deighton et al. 2013a; King et al. 2010a); a phenomenon known as 

‘exercise-induced anorexia’ (King et al. 1994). Appetite suppression has been also 

observed during a variety of exercise modes including cycling (Deighton et al. 2013a; 

Douglas et al. 2017), running (Broom et al. 2017; King et al. 2010a) and resistance 

exercise (Broom et al. 2009).  

Most of the studies that have examined appetite feelings in response to exercise have 

adopted an observation period of 2 h post exercise. The majority of these studies have 

shown no differences in appetite during the post-exercise period, after the recovery from 
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exercise-induced anorexia, compared with the resting control trial in both males and 

females (Martins et al. 2007; Hagobian et al. 2013; Larson-Meyer et al. 2012). Additional 

studies have employed longer observation period post exercise (2 – 9 h), and the 

consensus amongst these studies is that appetite does not increase above control values 

(Wasse et al. 2012; Wasse et al. 2013; Broom et al. 2009), although this is not universal 

(King et al. 2011a). Particularly, King and colleagues (2011a) observed higher appetite 

perceptions after 60 min of intermittent swimming compared with the resting control trial 

from 1.5 to 6 h post exercise (King et al. 2011a). These data, however, differed from 

previous studies from the same author using a similar study protocol and participant 

population, but employing running or brisk walking as exercise type (King et al. 2010a; 

King et al. 2010b), suggesting an influence of the exercise mode on the subsequent 

appetite response. 

Excess in adipose tissue is typically characterised by a chronic excess of energy intake 

over energy expenditure, thus it is plausible that appetite regulation in response to 

exercise may differ obese compared with lean individuals. Nonetheless, current evidence 

suggests that aerobic exercise fails to induce acute compensatory changes in appetite 

perceptions in overweight and obese men and women (Martins et al. 2015; Douglas et al 

2017). 

The majority of the aforementioned studies investigated the effects of exercise on 

subsequent appetite and food intake following an overnight fast. This probably stems 

from the fact that performing aerobic exercise following an overnight fast has been 

shown to create a favourable lipolytic hormonal environment, such as reduced plasma 

insulin levels and elevated cortisol and epinephrine concentrations, which enhance 

weight and fat loss (Maughan et al. 2010). However, postprandial exercise has been 
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suggested as more beneficial for weight control, which seems to exhibit more favourable 

effects on appetite regulation than fasted exercise. In this regard, Deighton and colleagues 

demonstrated that 60 min of running at ~70% of V̇O2 max resulted in more prolonged 

hunger suppression when performed ~2 h after a high carbohydrate breakfast (72.9% 

carbohydrate, 9.5% protein, 17.6% protein) rather than after a 10 h overnight fast 

(Deighton et al. 2012). Similar findings were observed by Cheng and colleagues (2009) 

who demonstrated that 50 min of cycling at ~60% of V̇O2 max resulted in a longer 

appetite suppression when performed after breakfast than an overnight fast (Cheng et al. 

2009). Therefore, although more studies are needed before definitive conclusions can be 

drawn, exercising after a meal may represent a viable strategy, in alternative to exercise 

in fasted conditions, for the treatment and management of weight loss.  

1.5.1.2 Energy intake in response to exercise 

Most of the studies mentioned in the previous section also examined the food intake 

response to exercise in a laboratory setting by providing participants with an ad libitum 

meal within 2 h after the exercise test. In agreement with the appetite feeling responses 

reported in the previous section, most of these studies reported no significant changes in 

absolute energy intake after performing aerobic exercise (Douglas et al. 2017; Alajmi et 

al. 2015; King et al. 2010a) or resistance exercise (Broom et al. 2009; Jokisch et al. 2012; 

Balaguera-Cortes et al. 2011) compared with the control trial, in males and females. 

Furthermore, additional studies have also shown no changes in energy intake even when 

the ad libitum meal was provided in a laboratory setting closer (≤ 1 h) (Balaguera-Cortes 

et al. 2011; Gonzalez et al. 2013; Kelly et al. 2012) or more than 2 h after the exercise 

bout (King et al. 2010a; King et al. 2010b; Wasse et al. 2012) in males and females. With 

respect to the latter, previous studies suggest that exercise does not induce energy intake 
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compensation up to 22.5 h after exercise (King et al. 2010a) and this finding is also in 

agreement with those studies that used self-reported measures of food intake which have 

failed to identify any changes in energy intake up to 72 h after exercise (Pomerleau et al. 

2004). The examination of food intake in response to exercise in a laboratory setting also 

allows the quantification of macronutrient intakes which represents an important factor 

considering that an over consumption of a high calories fat may overturn the energy 

deficit of exercise (Lluch et al. 1998). However, a plethora of studies in this regard did 

not observe changes in macronutrients in response to exercise (Shorten et al. 2009; 

Douglas et al. 2017; Kelly et al. 2012; Deighton et al. 2014; King et al. 2010a; King et 

al. 2010b). 

Considering the weight loss response to physical activity depends on subsequent energy 

intake, as elevated food intake may negate the energy deficit induced by exercise, there 

has been a growing interest in examining food intake responses to exercise in overweight 

and obese individuals. In this regard, Douglas and co-workers (2017) demonstrated no 

change in ad libitum absolute energy and macronutrient intake in lean and 

overweight/obese, men and women, aged on average between 37.5 and 45 years old, 6 h 

after performing 60 min running at 60% of peak oxygen uptake (Douglas et al. 2017), 

with this finding corroborating previous evidence (Martins et al. 2015; Hopkins et al. 

2014). Additionally, previous evidence comparing lean and overweight/obese 

individuals have demonstrated that energy intake remains unchanged even when food 

intake is examined closely after exercise (≤ 1 h). In this regard, a previous study reported 

no energy compensations in overweight obese and normal weight females aged on 

average 35 years old, when an ad libitum meal was provided within 1 h after walking on 

a treadmill at moderate intensity (60% maximum heart rate) (George and Morganstein, 
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2003), suggesting that acute exercise induces a short-term energy deficit regardless of 

weight and adiposity status (Dorling et al. 2018).  

Evidence from cross-sectional studies have suggested that energy and macronutrient 

intake may vary after acute exercise according to individual physical activity level 

(Dorling et al. 2018). Although studies comparing energy intake between inactive and 

active individuals after exercise bouts are sparse, low active individuals may increase 

their energy and fat intakes after acute exercise (Dorling et al. 2018). In this regard, 

Larson-Meyer and colleagues (2012) observed that ad libitum energy as well as fat 

intakes after 60 min moderate-to-vigorous running were higher in the low active than the 

high active group (Larson-Mayer et al. 2012). These findings were also in agreement 

with Finlayson and co-workers (2009) who demonstrated higher energy intake and 

greater preference for energy-dense foods in low self-reported physically active 

individuals after performing 60 min moderate-to-vigorous cycling (Finlayson et al. 

2009). Although the reasons explaining the greater energy compensation in low active 

people in response to acute exercise is not completely understood, it may be possible that 

low active individuals perceive exercise as a less enjoyable activity, thus the acutely 

increased food intake post exercise can be experienced as a reward (Dorling et al 2018). 

Alternatively, it is possible that active individuals are better informed on nutrition 

guidelines and opt for more sensible and healthier food choices (Dorling et al. 2018). 

Additional studies have also examined energy intake responses between individuals with 

different habitual physical activity levels, with previous evidence suggesting better 

energy intake adjustment in response to energy balance perturbations in habitual active 

individuals (Dorling et al. 2018). In this regard, different authors reported that individuals 

who habitually exercise exhibit reduced satiety and increased hunger in response to a 

standardised meal than low active individuals (Gregersen et al. 2011; Van Walleghen et 
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al. 2007). This seems to suggest that physically active individuals may ingest greater 

amount of food to compensate for the energy expenditure induced by the habitual 

exercise (Dorling et al. 2018). 

1.5.2  Effects of exercise on ghrelin and PYY 

Observations of the exercise-induced anorexia phenomenon and the short-term energy 

deficit in response to exercise has stimulated considerable interest in in the underlying 

mechanisms explaining these effects. In this regard, an increasing number of studies have 

examined a variety of episodic appetite-regulated gut hormones, which appear to regulate 

feelings of hunger and satiety including ghrelin, known as the only orexigenic gut peptide 

and PYY due to its effects on appetite suppression. However, there are no studies to the 

author’s knowledge that investigated whether differences in individual ethnicity 

background may modulate differently appetite-related hormones in response to exercise. 

In the next section, we will examine the studies that investigated the effects of acute and 

chronic exercise on these hormones in the general population. 

1.5.2.1 Ghrelin 

Earlier research investigating the underlying mechanisms linking physical activity, 

appetite and food intake examined the effects of exercise on total ghrelin concentrations 

which has produced inconsistent findings with studies reporting elevation (Borer et al. 

2009; Christ et al. 2006; Cheng et al. 2009), decrease (Vestergaard et al. 2007; Toshinai 

et al. 2007) and no change (Dall et al. 2002; Martins et al. 2007) of total ghrelin 

concentrations in response to a single bout of exercise. However, total ghrelin has been 

shown to not reflect changes in the active acylated form which is more susceptible to 

acute energy deficit induced by exercise or reduction in food intake (Mackelvie et al. 

2007). In this regard, Marzullo and co-workers (2008) examined differences in acylated 
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ghrelin and total ghrelin concentrations in response to an incremental cycle test to 

exhaustion with acylated ghrelin being suppressed immediately after the cycle test 

whereas total ghrelin remained unchanged (Marzullo et al. 2008). Many studies that 

examined the effect of acute moderate-to-vigorous exercise (≥ 60 % V̇O2 max) on 

acylated ghrelin demonstrated acylated ghrelin suppression during exercise with 

perturbations typically returning to control values within 30 min (Deighton et al. 2013; 

Broom et al. 2009; Kawano et al. 2013; Wasse et al. 2013). However, this is not a 

universal finding with other studies observing no changes in acylated ghrelin in response 

to acute moderate-to-vigorous exercise (Douglas et al. 2017; Douglas et al. 2015; 

Hagobian et al. 2009) with only one study, to our knowledge, exhibiting an elevation in 

acylated ghrelin during the two hours post exercise (Larson-Meyer et al. 2012). On the 

other hand, the acylated ghrelin responses to acute resistance training seem less 

definitive, with limited studies showing either suppression or no change in circulating 

acylated ghrelin concentrations (Dorling et al. 2018).  

Furthermore, many studies demonstrated a simultaneous suppression of acylated ghrelin 

and appetite which may suggest a mediating influence of this episodic gut hormone on 

appetite feelings (King et al. 2010b; Kawano et al. 2013; Unick et al. 2010; Ueda et al. 

2009; Wasse et al. 2012). However, although these studies observed a concordance 

between appetite perceptions and acylated ghrelin in response to exercise, additional 

studies observed different patterns (Wasse et al. 2013; Douglas et al. 2017; Broom et al. 

2017).  For example, in their investigation Douglas and colleagues (2017) did not observe 

acylated ghrelin suppression in response to 60 min of moderate intensity running (59% 

peak V̇O2), whereas there was a marked suppression of appetite perceptions during and 

immediately after exercise (Douglas et al. 2017). The lack of acylated ghrelin suppression 

in this study may be linked to the insufficient intensity of the exercise with previous 
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research identifying exercise intensity as an important determinant of the acylated ghrelin 

response to exercise (Broom et al. 2009; King et al. 2010a).  In this regard, acylated 

ghrelin suppression is typically reported in response to exercise intensity above 60% of 

V̇O2 max (Shubert et al. 2014). Conversely, Broom and colleagues (2017) observed a 

reduction of acylated ghrelin during a single bout of moderate-to-vigorous running (75% 

V̇O2 max) but hunger did not differ between the exercise and control trial (Broom et al. 

2017), which contrasts with previous studies reporting a simultaneous reductions in 

hunger and acylated ghrelin previously described. These dissociations between acylated 

ghrelin and hunger perceptions, however, highlights the complexity of the appetite 

regulation in which different appetite-related hormones and physiological factors are 

involved (Broom et al. 2017). 

The majority of the aforementioned studies investigated the effects of exercise on 

acylated ghrelin following an overnight fast.  However, considering the longer hunger 

suppression induced by exercise performed after a meal compared with exercising after 

an overnight fast previously reported (Cheng et al. 2009; Deighton et al. 2012), it is 

possible that this effect may be mediated, at least partly, by the different concentrations 

of acylated ghrelin. In this regard, however, Cheng and colleagues (2009) did not observe 

any difference in acylated ghrelin between fast and fed exercise whereas Deighton and 

colleagues (2012) did not examine differences in this gut peptide in their study. Although 

the evidence from Cheng and colleagues (2009) appears to suggest no differences in 

acylated ghrelin responses after manipulation of the study protocol, additional 

investigations comparing the appetite responses to fed versus fast exercise may be useful 

for a greater understanding of acylated ghrelin in response to exercise. 
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Very few investigations have explored the effects of chronic exercise on ghrelin 

concentrations by examining differences in acylated ghrelin levels between habitual 

physical active and inactive individuals. For example, Lund et colleague (2013) 

examined appetite-related hormone changes after the ingestion of a standardised liquid 

meal between young inactive men, who had not performed exercise in the last six months, 

and endurance-trained athletes (Lund et al. 2013). In this report, concentrations of fasting 

acylated ghrelin were greater in the active group than the inactive group, whereas 

concentrations of postprandial acylated ghrelin did not differ between groups (Lund et 

al. 2013). In a previous study, middle aged sedentary postmenopausal women, who 

typically exhibit similar fasting ghrelin concentrations than premenopausal women 

(Stojiljkovic-Drobnjak et al. 2018; Iwamoto et al. 2005), exhibited 18% increase in 

fasting total ghrelin concentrations after one year of a regular exercise programme (45 

min of moderate intensity aerobic exercise, for 5 days per week) compared with a group 

of women who only performed 45 min of stretching sessions once per week for one year 

(Foster-Schubert et al. 2004). However, in the same study the authors did not observe a 

significant association between increased physical activity with plasma ghrelin, and the 

elevation of ghrelin was concomitant with the reduction of body weight which may have 

confounded the results. Furthermore, in both studies levels of habitual physical activity 

were measured using self-reported physical activity, which represents a limitation due to 

issues of participant recall bias which makes it difficult to accurately correspond self-

reported with actual physical activity (Prince et al. 2008). Thus, because only a few 

studies have examined acylated ghrelin concentrations in relation to chronic exercise and 

because the actual evidence are based on self-reported physical activity, future studies 

investigating relations between acylated ghrelin concentrations and physical activity 

objectively-measured are needed.   
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1.5.2.2 Peptide YY 

As stated previously, peptide YY is an anorexigenic gastrointestinal hormone acting in 

opposition to acylated ghrelin. The first study to investigate circulating concentrations of 

PYY in response to exercise was performed by Martins and colleagues (2007). In this 

study, 60 min of continuous cycling at 65 % of maximum heart rate induced an elevation 

in plasma total PYY concentrations during and upon completion of cycling in healthy 

males and females. In the same study, a reduction in hunger occurred in parallel with the 

increase of PYY with both parameters returning to control values within 30 min after 

exercise, which suggested a causal role of this satiety hormone in exercise-induced 

anorexia. Similar transient increases in total PYY have been then replicated by other 

studies which have examined the effect of moderate-to-vigorous aerobic exercise (≥ 60% 

V̇O2 max) on total PYY (Broom et al. 2009; Deighton et al. 2013a; Douglas 2015; Wasse 

et al. 2012; Kawano et al. 2013; Douglas et al. 2017). Such transient increases in 

circulating total PYY levels have been also shown in other studies which employed a 

lower exercise intensity (≤ 60% V̇O2 max) (Cooper et al. 2011; Ueda et al. 2009).  

In contrast to the aforementioned studies, other studies have reported no changes in total 

PYY levels after 40 - 45 min of exercise at 70 % of VO2 max (Balaguera-Cortes et al. 

2011; Kelly et al. 2012; Shorten et al. 2009). Although the reasons for such disparity are 

unclear, exercise duration may cause this as these studies used shorter exercise protocols 

than those that have shown an increase in PYY after exercise. Additionally, Balaguera-

Cortes and colleagues (2011) confirmed previous studies in which concentrations of total 

PYY do not change in response to intermittent resistance exercise (Broom et al. 2009). 

Although these findings appear to suggest that a prolonged exercise protocol is needed 

to elevate circulating PYY concentrations, Kawano et al. (2013) demonstrated that 30 



 

64 
 

min of skipping and cycling exercise at approximately 65% of VO2 max induced a 

transient elevation in total PYY upon completion of exercise. Additionally, according 

with the anorexigenic effect of PYY, appetite perceptions appear to decrease during 

exercise when PYY levels are increased (Kawano et al. 2013) but remain unchanged 

when circulating concentrations of PYY are unaffected (Kelly et al. 2012). 

Increase in total PYY in response to exercise have been also observed in 

overweight/obese individuals. In this regard, Ueda and co-workers (2009) investigated 

whether changes in total PYY levels in response to acute aerobic exercise differ between 

obese and normal weight males. Levels of total PYY were reported higher in response to 

exercise in both groups, suggesting an effect of exercise on PYY independent of 

bodyweight. However, this contrasts with a more recent study which reported greater 

total PYY elevation in lean compared to overweight/obese, males and females, in 

response to 60 min running at 59 % peak oxygen uptake (Douglas et al. 2017). The 

implications of this disparity, however, remain unclear and additional work is definitely 

required to ascertain whether total PYY in response to exercise may be mediated by 

differences in adiposity (Dorling et al. 2018).  

A further important consideration is that the aforementioned investigations measured 

total PYY which includes concentrations of both forms: PYY1-36 and PYY3-36. 

Nonetheless, the appetite-suppressing effects of PYY are thought to be mediated 

particularly by PYY3-36 (Sloth et al. 2007). Thus, although strong correlations between 

changes in total PYY and PYY3-36 have been reported (Tsilchorozidou et al. 2008), some 

studies have specifically examined the effect of exercise on PYY3-36. In this regard, the 

effect of exercise on PYY3-36 seems to be similar to total PYY as transient elevations 

have been shown upon completion of prolonged exhaustive running (Russel et al. 2009) 
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but also during and immediately after 60 min of walking and running exercise at 70 % of 

VO2 max (Larson-Meyer et al. 2012). Furthermore, the association between PYY3-36 and 

appetite feelings during exercise also needs additional investigation as an inverse 

temporal pattern has been shown in some (King et al. 2011b; Ueda et al. 2009a) but not 

all studies (Hagobian et al. 2013; Larson-Meyer et al. 2012). 

A limitation concerning the examination of the effect of exercise on circulating PYY 

concentrations, is that the majority of previous work has focused merely on the effect of 

acute exercise with only one study to our knowledge examining the impact of chronic 

exercise on this gut peptide (Lund et al. 2013).  In this report, concentrations of fasting 

and post-prandial total PYY were similar between active and inactive individuals (Lund 

et al. 2013). Therefore, future studies investigating the influence of chronic exercise on 

plasma PYY levels may be relevant in determining how different levels of physical 

activity modulate this gut hormone and appetite and energy intake responses. 

1.6 Summary 

The elevated risk of CVD and T2D in South Asians has been linked to the higher 

prevalence of different traditional risk factors including greater adiposity, insulin 

resistance or dyslipidaemia. However, these risk factors do not exhaustively explain the 

excess cardiometabolic risk in South Asians compared with white Europeans. 

Considering chronic surplus of energy intake as a possible contributor leading to body 

fat accumulation, we theorized that the elevated adiposity and associated cardiometabolic 

risk in South Asians than white Europeans may be linked with ethnic differences in eating 

behaviour and appetite-regulating hormones such as acylated ghrelin and peptide YY 

(PYY) concentrations. Furthermore, fasting ghrelin concentrations have been shown to 

be lower in individuals with elevated adiposity and exhibiting insulin resistance (Le Roux 
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et al. 2005; McLaughlin et al. 2004). Thus, we hypothesised ethnic differences in 

circulating appetite-regulating hormones concentrations, particularly lower levels of 

acylated ghrelin in South Asian than white European men. Furthermore, the examination 

of additional parameters including appetite-related hormones, CRP, IL-6, leptin as well 

as FFAs, based on advanced metabolomics analytical methods, may add further 

information of the elevated CVD and T2D susceptibility amongst the South Asian 

community. Low levels of physical activity and fitness levels in South Asians may 

contribute to exacerbate the elevated adiposity and associated cardiometabolic risk, 

which may be also linked to ethnic differences in appetite regulation and food intake. 

Conversely, acute moderate-to-vigorous exercise has shown to promote short-term 

energy deficit suggesting an important role of physical activity to enhance weight and fat 

loss if exercise is performed frequently; however, the effects of exercise on short-term 

energy balance in South Asians remain unknown. Thus, the aims of the present thesis 

were threefold: (1) investigate ethnic differences in traditional risk markers and 

unconventional parameters for CVD and T2D including acylated ghrelin, PYY, leptin, 

glucose tolerance, insulin, TC, TAG, HDL-C, LDL-C, CRP and IL-6 and explore 

relationships of these parameters with  objectively-measured physical activity and 

cardiorespiratory fitness; (2) examine ethnic differences in the FFA metabolic profile 

based on advanced metabolomics analytical methods such as GC-MS and LC-MS and 

explore relationships with objectively-measured physical activity and cardiorespiratory 

fitness and risk markers for CVD and T2D; and (3) investigate the effects of acute 

exercise on subjective appetite ratings, appetite-related hormones and ad libitum energy 

intake in healthy South Asian and white European men. 
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Chapter 2 – General Methods 

 

This chapter describes the experimental methods employed in the three studies presented 

within this thesis. Specifically, the aims of the present thesis were to: 

• investigate ethnic differences in unconventional parameters for CVD and T2D 

including fasting concentrations of plasma acylated ghrelin and total PYY 

(primary aim). Study 1 (Chapter 3); 

• investigate ethnic differences in traditional risk markers for CVD and T2D such 

as metabolic markers (i.e. plasma concentrations of glucose and insulin) and 

inflammatory markers (i.e. plasma concentrations of CRP and IL-6) (secondary 

aim). Study 1 (Chapter 3);  

• explore associations of unconventional and traditional risk markers for CVD and 

T2D with adiposity and physical activity/cardiorespiratory fitness in South Asian 

and white European men (secondary aim). Study 1 (Chapter 3); 

• examine ethnic differences in the FFA metabolic profile based on metabolomics 

methods (primary aim). Study 2 (Chapter 4); 

• explore relationships of FFA concentrations with adiposity and physical 

activity/cardiorespiratory fitness in South Asian and white European men 

(secondary aims). Study 2 (Chapter 4); 

• investigate the effects of acute exercise on subjective appetite-related hormones, 

appetite feelings and ad libitum energy intake in healthy South Asian and white 

European men (primary aims). Study 3 (Chapter 5); 

• explore associations of appetite measures with adiposity and physical activity/ 

cardiorespiratory fitness in South Asian and white European men (secondary 

aims). Study 3 (Chapter 5). 
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All studies were conducted following the approval of Kingston University’s Ethics 

Advisory Committee, and all volunteers were fully informed about the aims, procedures 

and potential risks before participating in these experiments 

2.1 Participants 

Participants were voluntarily recruited from Kingston University and the general public 

via general notices such as posters, university notice board, social media and by word of 

mouth. Study 1 (Chapter 3) and study 2 (Chapter 4) included the same participant cohort 

whereas in study 3 (Chapter 5) different participants were recruited. Before attending the 

laboratory, participants received by email or by post the following documents: 

§ participation informed consent form (Appendix A) 

§ health screening questionnaire (Appendix B)  

§ pre-screening form for blood sampling (Appendix C)  

§ physical activity readiness questionnaire (PARQ) for exercise screening 

(Appendix D) which is routinely used in exercise studies prior undertaking an 

exercise testing (Thomas et al. 1992) 

§ Standardised breakfast and buffet meal food list (Appendix E) 

Participants were asked to sign and fill the above documents prior to participating in the 

experimental studies to ensure they were suitable to take part in these experiments. 

Furthermore, participants were free to contact the investigators for any clarification 

related to the study before attending the laboratory and it was also reiterated to them that 

they were free to withdraw from the study at any point during the study without giving 

reason. 
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As described in subsection 1.2.2, males are reported to experience greater 

cardiometabolic risk than female individuals in the United Kingdom thus, in all studies 

we targeted male volunteers and aged 19 – 50 years to ensure health suitability for 

undertaking the incremental exercise test to volitional exhaustion for the determination 

of cardiorespiratory fitness (V̇O2 max). Additionally, the inclusion criteria for 

participation were as follows: 

§ non-smoker 

§ no personal history of cardiovascular disease or metabolic disorders 

§ not taking anticoagulant or anti-inflammatory medication 

§ fit and well to participate in the maximal testing following Physical Activity 

Readiness Questionnaire clearance 

§ not dieting or undertaking any extreme dietary habits 

§ weight stable for the last three months, i.e. < 2.3 kg change in body weight (St 

Jeor et al. 1997). 

 

2.2 Anthropometry  

Body mass was measured to the nearest 0.1 kg using a digital scale (Seca Ltd, Hamburg, 

Germany), and stature was measured to the nearest 0.1 cm using a portable stadiometer 

(Seca Ltd, Birmingham, UK). Participants wore light clothing and removed shoes, 

jewellery and all items from pockets for body mass and height measurements. Body mass 

index (BMI) was subsequently calculated as mass (kg) divided by stature squared (m2). 

Waist circumference was measured in duplicate to the nearest 0.1 cm at the midpoint 

between the xiphoid process and the iliac crest using a standard anthropometric 

measuring tape (HaB International Ltd., Southam, UK), and the mean of the two 
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measurements was recorded. Body composition was assessed using air displacement 

plethysmography (BodPod; software version 5.2.0, COSMED, Rome, Italy).  

2.3 Heart rate measurement 

During preliminary tests and main trials, heart rate was monitored using a short-range 

radio telemetry system (Polar FT1, Polar Electro, Kempele, Finland). 

2.4 Rating of perceived exertion 

Rating of perceived exertion was assessed periodically during preliminary exercise tests 

and main trials using the Borg scale (Borg 1973) to determine participant’s level of 

exertion. This scale ranges from six (no exertion) to 20 (maximal exertion). 

2.5 Blood pressure measurement 

Arterial blood pressure	was measured using a digital monitor (Omron M10-IT, Omron 

Healthcare Co. Ltd., Japan) during preliminary screening and measurements were taken 

after a 10 min of seated rest in a semi-supine position in duplicate from the left arm. The 

mean of these measurements was used as the final value. 

2.6 Cardiorespiratory tests 

In all studies, after familiarisation with the electromagnetically braked cycle ergometer 

(Lode Excalibur Sport, Groningen, Netherlands), participants performed an incremental 

exercise test to volitional exhaustion for the determination of maximum oxygen 

consumption (V̇O2 max). In Study 1 (Chapter 3), participants cycled at a self-selected 

pedal rate between 70 to 90 revolutions per minute for 3 min at 50 watts (warm up), 

followed by increments of 6 watts every 15 s until volitional fatigue. However, using this 

protocol most of participants reached their V̇O2 max beyond twelve minutes whereas 
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existing research in the literature suggests that measurement of maximal responses 

should last between 8 and 12 minutes (Pierce et al. 1999). Therefore, the V̇O2 max 

protocol in Study 3 (Chapter 5) was optimised by increasing the initial work rate to 80 

watts per 3 min (warm up), instead of 50 watts, followed by increments of 30 watts every 

3 min until volitional fatigue, which provided V̇O2 max readings within recommended 

protocols time.   

Expired air samples were monitored continuously using an online breath-by-breath gas 

analysis system (Oxycon Pro, Viasys Healthcare Gmbh, Höchberg, Germany). An 

average of the breath-by-breath V̇O2 data was calculated every 15 s, and V̇O2 max was 

recorded as the highest 15 s average. Prior to testing, the gas analysis system was 

calibrated using a 3 L syringe (series 5530, Hans Rudolph Inc, Shawnee, KS, USA) with 

certified reference gases according to the manufacturer’s instruction. Throughout the 

V̇O2 max test, heart rate and rating of perceived exertion were monitored. Oxygen 

consumption, heart rate and peak watts were used to determine the appropriate intensity 

of work during the exercise trial in Study 3. 

2.7 Environmental temperature and humidity 

Prior commencement and throughout each trial, environmental temperature and humidity 

were assessed using a hand-held sensor (THGR810, Oregon Scientific UK Ltd., 

Berkshire, UK). 

2.8 Calculation of energy expenditure  

Oxygen consumption and carbon dioxide production values during exercise trials in 

Study 3 were used to determine energy expenditure and substrate oxidation using the 

equations described by Weir (1990). 
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2.9 Physical activity and dietary control 

Participants were asked to refrain from consuming alcohol, caffeinated drinks and from 

participating in strenuous exercise during the 24 h prior to each visit. Participants were 

also asked to exert themselves minimally when travelling to the laboratory, using 

motorised transport where possible. Prior to visit 1 in Study 1 (Chapter 3), and prior to 

the main trials in Study 3 (Chapter 5), volunteers fasted overnight (no food or drink 

except water) for 9 hours whereas they were required to fast for 3 hours before 

performing the incremental exercise test on the second visit in Study 1. Participants were 

encouraged to consume at least 500 mL of plain water the night before the experimental 

trials to ensure euhydration.  

 

In Study 3 (Chapter 5), a food diary (Appendix F) was completed in the 24 h prior to the 

first trial, with participants required to replicate food and drink intake as closely as 

possible for the 24 h prior to the subsequent trial. Participants were instructed to consume 

identical amounts of food and drink items at identical times during this period to ensure 

dietary standardisation before each trial. 

2.10  Blood sample collection 

On the morning of visit 1 in Study 1 (Chapter 3 and 4) and main trials in Study 3 (Chapter 

5), a fasting venous blood sample was collected from volunteers by a trained 

phlebotomist after resting in a semi-supine position for 15 min. 

 

In Study 1, blood samples were collected from the antecubital vein using a 25 g butterfly 

needle (BD Vacutainer®, Plymouth, UK) whilst participants were in a semi-supine 

position for the measurement of total cholesterol, high density lipoprotein cholesterol, 
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low density lipoprotein cholesterol, triacylglycerol, C-Reactive protein, interleukin 6, 

leptin, acylated ghrelin and total PYY concentrations. Samples were collected into four 

pre-cooled vacutainers: 10.0 mL EDTA, 4.0 mL EDTA, 5.0 mL SST and 6.0 mL heparin 

(BD Vacutainer®, Plymouth, UK). To prevent the degradation of acylated ghrelin, a 40 

μL solution containing potassium phosphate buffer (PBS), p-hydroxymercuribenzoic 

acid (PHMB) and sodium hydroxide (NaOH) was added immediately to the 4.0 mL 

EDTA vacutainer which was then centrifuged at 1500 × g for 10 min at 4°C (Rotina 

420R, Andreas Hettich GmbH & Co., Berlin, Germany). The plasma supernatant was 

dispensed into a storage tube and 100 µL of 1 M hydrochloric acid was added per 

millilitre of plasma to preserve acylated ghrelin (Hosoda et al. 2004). Thereafter, samples 

were spun at 1500 × g for 5 min at 4°C prior to storage at -80ºC. The 6.0 mL heparin and 

10 mL EDTA vacutainers were centrifuged immediately, while the 5.0 mL SST 

vacutainer was left at room temperature for 30 min before centrifugation using the same 

conditions. During the OGTT, whole blood was collected using the finger-prick 

technique into a 20 µL heparin capillary tube (Sanguis Counting, Nümbrecht, Germany) 

for glucose analysis and into a 300 µL EDTA Microvette tube (Microvette® CB 300 K2E, 

Starstedt, Leicester, UK) for insulin analysis. The heparin tube was immediately mixed 

into a separate 1 mL haemolysing solution and then analysed. The EDTA tube was 

immediately centrifuged at 1500 × g for 10 min at 4°C (Eppendorf® Microcentrifuge 

5415R, Eppendorf AG, Hamburg, Germany) and the plasma supernatant was then 

dispensed into aliquots and stored at -80 °C for later analysis. 

 

In Study 3, venous blood samples were collected via a cannula (Vasofix® Safety, B. 

Braun, Melsungen, Germany) inserted into an antecubital vein for the determination of 

acylated ghrelin, PYY, insulin and glucose.  During each trial, all blood samples were 
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collected with the participants rested in a semi supine position with the exception of the 

sample at 3 h time point in the exercise trial, which was taken with the participant seated, 

but not pedalling, on the cycle ergometer at the end of the exercise. Samples were 

collected into four pre-cooled vacutainers: 6.0 mL heparin, 10.0 mL EDTA and two, 4.0 

mL EDTA (BD Vacutainer®, Plymouth, UK). To prevent the degradation of acylated 

ghrelin, same procedure as above was followed for one 4.0 mL EDTA vacutainer. The 

6.0 mL heparin and 10 mL EDTA vacutainers were centrifuged immediately at 1500 × g 

for 10 min at 4°C prior to storage at -80ºC. The other 4.0 mL EDTA vacutainer was 

immediately analysed for determination of haemoglobin and haematocrit. 

To avoid blood clot, the cannula was kept cleaned by flushing it with 10 mL 0.9% Sodium 

Chloride syringe (Becton Dickinson UK Ltd., Berkshire, UK) after each blood sample. 

To avoid dilution of subsequent samples, residual saline was drawn off immediately prior 

to blood collection. 

2.11 Blood analysis 

2.11.1 Haemoglobin and haematocrit  

Blood haemoglobin and haematocrit concentrations were analysed in duplicate using a 

haematology blood counter (Yuminez H500-CT, HORIBA ABX Diagnostic, 

Northampton, UK) to determine plasma volume changes over time (Dill and Costill, 

1974).  

2.11.2 Free fatty acids 

The examination of the free fatty acid metabolic profile was initially conducted at 

Kingston University based on gas chromatography–mass spectrometry (GC-MS). The 

blood samples for the FFA analysis were obtained from the same set of participants 

recruited in Study 1 (Chapter 3). Full details of the FFA analysis based on GC-MS is 
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described in Chapter 4.2.7.1. However, due to inadequate results, liquid 

chromatography–mass spectrometry (LC-MS) was subsequently employed for the 

identification and quantification of FFAs in South Asian and white European participants 

and the analysis was conducted at the University of Strathclyde. Details of the FFA 

analysis based on LC-MS are fully described in Chapter 4.2.7.2. 

2.11.2.1 Chemicals and Solvents 

High-performance liquid chromatography (HPLC) grade acetonitrile (ACN), water, 

acetic acid and hexane were obtained from Fisher Scientific (Leicestershire, UK). A 

mixture of fatty acid methyl ester standards (Supelco 37-component fatty acid methyl 

ester mix) was obtained from Sigma Aldrich (Dorset, UK). The methyl esters were 

hydrolysed with 1 M KOH by heating at 60ºC for 15 minutes, the mixture was acidified 

and extracted into hexane. The hexane stock solution was diluted to the levels required 

for the calibration curves with ethanol. 31H2-palmitic acid which was used as an internal 

standard was obtained from Sigma Aldrich (Dorset, UK). Plasma samples were prepared 

by mixing aliquots of plasma (0.3 ml) with 0.2 ml of acetonitrile containing 8 µg · mL-1 

of internal standard. A calibration series was prepared by mixing the diluted fatty acid 

stock solution with the internal standard to give an internal standard concentration of 4.8 

µg · mL-1 mixed with fatty acid standards in the range 0.8-38. µg · mL-1 (the original 

standard mixture contained fatty acids at different concentrations: 0.2, 0.4 or 0.6 mg · 

mL-1). 

2.11.2.2 Instrumental techniques and column 

Free fatty acids were profiled by using a Dionex 3000 HPLC system interfaced to an 

Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) with 

the aid of a reversed phase column (ACE C4, 150 × 3.0 mm, 3 µm, HiChrom, Reading 
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UK). The mobile phase for the elution of the ACE C4 column consisted of 1 mM acetic 

acid in water (A) and 1 mM acetic acid in acetonitrile (B) at a flow rate of 0.4 mL ∙ min1. 

The elution gradient was as follows: A:B ratio 40:60 at 0 min, 0:100 at 30 min, 0:100 at 

36 min, 40:60 at 37 min and 40:60 at 41 min. 

 

2.11.2.3 Mass spectrometry run conditions 

The nitrogen sheath and auxiliary gas flow rates were maintained at 50 and 17 arbitrary 

units. The electrospray ionisation (ESI) interface was operated in both positive and 

negative modes. The spray voltage was 4.5 kV for the positive mode and 4.0 kV for 

negative mode, while the ion transfer capillary temperature was 275°C. Full scan data 

was obtained in the mass-to-charge range of m/z 75 to m/z 1200 for both ionisation 

modes. The MS system was fully calibrated prior to running the samples according to the 

manufacturer’s guidelines. The resulting data was acquired using the XCalibur 2.1.0 

software package (Thermo Fisher Scientific, Bremen, Germany). 

2.11.3 Appetite-related hormones 

Commercially available enzyme-linked immunosorbent assay kits were used to 

determine concentrations of key appetite regulating hormones such as appetite-

stimulating plasma acylated ghrelin (Bertin Bioreagent, Montigny le Bretonneux, France 

for Study 1; Sceti K.K., Tokyo, Japan for Study 3) and appetite inhibiting hormones 

including total PYY and leptin (Millipore, Billerica, USA). Absorbance was measured 

using a plate reader (Infinite M200 PRO, Tecan Group Ltd., Männedorf, Switzerland) at 

specific wavelengths as specified by the manufacturer. Precision of analysis for acylated 

ghrelin was ensured by the quantification of an internal quality control and for total PYY 

and leptin by the quantification of internal quality controls exhibiting low and high 
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values. The within-batch coefficients of variation for the assays are reported in detail in 

Chapter 3 and 5. 

2.11.4 Metabolic parameters 

Plasma glucose concentrations were analysed in singular using a glucose analyser 

(Biosen C-Line Clinic, EKF Diagnostic, Germany) whereas plasma concentrations of 

insulin was measured using a commercially available enzyme-linked immunosorbent 

assay kit (Mercodia, Uppsala, Sweden) with the aid of a plate reader (Infinite M200 PRO, 

Tecan Group Ltd., Männedorf, Switzerland) to measure absorbance at specific 

wavelengths as specified by the manufacturer. Precision of analysis for insulin was 

ensured by the quantification of internal quality controls (Mercodia diabetic antigen 

control) exhibiting low and high values. The within-batch coefficients of variation 

relating to the assays are reported in Chapters 3 and 5. 

2.11.5 Lipid parameters 

Plasma total cholesterol, high density lipoprotein cholesterol, low density lipoprotein 

cholesterol and triacylglycerol concentrations were analysed in duplicate by enzymatic, 

colorimetric methods using an automated bench top analyser (Pentra 400; HORIBA ABX 

Diagnostics, Montpellier, France). To ensure precision of analysis, internal quality 

controls exhibiting low and high values were run prior to sample analysis. The within-

batch coefficients of variation for the assays are reported in detail in Chapter 3. 

2.11.6 Inflammatory markers 

Commercially available enzyme-linked immunosorbent assay kit was used to determine 

concentrations of plasma C-Reactive protein and Interleukin 6 (high sensitivity kit, IBL 

International, Hamburg, Germany) with the aid of a plate reader (Infinite M200 PRO, 
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Tecan Group Ltd., Männedorf, Switzerland) to measure absorbance at specific 

wavelengths as specified by the manufacturer. Precision of analysis was ensured by the 

quantification of internal quality controls exhibiting low and high values. The within-

batch coefficients of variation relating to the assays are reported in Chapter 3. 

2.12 Data processing and statistical analysis 

The Quan Browser in Xcalibur was used to plot calibration curves (weighted with 1/x) 

and quantify the responses for the samples against the calibration curves in Study 2 

(Chapter 4). Then the levels of FFAs in the samples were calculated from the calibration 

curves by Quan Browser. P values and ratios of the mean values for the fatty acids were 

determined by using Microsoft Excel (Microsoft Office 2013). SIMCA-P version 14.1 

(Umetrics, Umeå, Sweden) was used for multivariate analysis (Trivedi et al. 2012) which 

included Principle Components Analysis (PCA), Orthogonal Partial Least Squares 

Discriminant Analysis (OPLS-DA) and Orthogonal Partial Least Square (OPLSA). PCA 

and OPLS-DA models are powerful statistical modelling tools that provide insights into 

separations between experimental groups and are routinely used in metabolomics studies 

to better support the visualization and interpretation of the data (Yamamoto et al. 2009). 

Particularly, PCA is an unsupervised model employed to explore how variables cluster 

and is considered the main tool used for data reduction to extract meaningful information 

which is achieved by combining variables that correlate with each other into few latent 

variables (components) (Kirwan et al. 2012). PCA is normally employed as the first step 

in the analysis of metabolomics data in order to visualise data and detect outliers (Kirwan 

et al. 2012). OPLS-DA is an unsupervised model used as an alternative method when 

PCA fails to expose group separation and is employed to identify reliable biomarkers that 

have a strong association with separation between groups (Kirwan et al. 2012). The 
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quality of the supervised model is typically assessed via cross-validation procedures to 

determine the degree of significance of the model using internal and external diagnosis 

tools (Triba et al. 2015). In internal validation, R2 represents the percentage of variation 

explained by the model whereas Q2 indicates the percentage of variation in response to 

cross validation. In addition to internal validation tools, the permutation test and cross 

validated analysis of variance (CV-ANOVA) as external diagnosis tools are performed 

to validate supervision model (Worley and Powers, 2013).  

 

Statistical analyses for all the other data in were conducted using the analytical software 

SPSS version 23.0 for Windows (SPSS 23.0, IBM Corp, Armonk, NY, USA). Normality 

of these data were checked using Shapiro-Wilk tests	before statistical analysis. Normally 

distributed data are presented as mean (SD) in text and tables whereas data were natural 

log transformed before analysis if they were not normally distributed. These data are 

presented as geometric mean (95% confidence interval) in text and tables and analysis is 

based on ratios of geometric means and 95% confidence intervals (CI) for ratios. 

Graphical representation of results is presented as mean (SEM) for clarity. Linear mixed 

model (LMM) was used as a statistical model instead of two-way analysis of variance 

(ANOVA). An important assumption of ANOVA is that the covariate is independent 

from the treatment effect (Field, 2017). In Study 1 (Chapter 3) this assumption was 

violated because body fat percentage, used as a covariate in the analysis of the fasting 

plasma concentrations, was significantly different between South Asian and white 

European men. Thus, because the use of this model may not be robust enough when 

assumptions are violated, any effects from the ANOVA such as ethnic differences 

between groups are more likely to disappear (Field, 2017). Conversely, LMM are less 

reliant on assumptions and more robust, thus in study 1 (Chapter 3) it was decided to 
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present both the unadjusted and adjusted models for transparency. The other data were 

also analysed based on the LMM modelling for consistency. Particularly, LMM 

including fixed factors such as ethnicity in Study 1 (Chapter 3) and ethnicity, time and 

trial in Study 3 (Chapter 5) were used to examine differences between ethnic groups. 

Detailed description of the statistical tests used for data analysis are presented in Chapter 

3, 4 and 5, respectively. In study 3 (Chapter 5), appetite perceptions and appetite-related 

hormones concentrations were reported as delta changes instead of absolute values. 

Given the great day to day variability in appetite-related hormones, the use of delta 

changes appears to be more meaningful and indicative of appetite changes throughout 

the day than the raw absolute values themselves. In study 3 (Chapter 5), glucose 

concentrations were also reported as delta changes for consistency. Pearson’s correlation 

(Study 1, Chapter 3) and Spearman’s correlation (Study 3, Chapter 5) coefficients were 

used to examine relationships between variables and statistical significance was accepted 

as P < 0.05. 
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Chapter 3 – Study 1: Ethnic differences in appetite-related hormones 

and risk markers for cardiovascular disease and type 2 diabetes in 

healthy South Asian and white European men 

 

3.1 Introduction 

South Asians represent the largest ethnic minority group in the United Kingdom (UK) 

(~3 million, 4.9% of the population) (Office for National Statistics 2013), and comprise 

individuals originating from the Indian subcontinent. It is well established that South 

Asians have an elevated risk of CVD and T2D both on the Indian subcontinent and after 

migration to Western nations (Sattar and Gill, 2015; Gholap et al. 2011; Khunti et al. 

2013). Furthermore, CVD and T2D manifest 5 to 10 years earlier, at a lower body mass 

index, and are associated with premature complications and mortality in South Asian 

compared with white European individuals (Sattar and Gill, 2015; Gholap et al. 2011). 

 

The elevated risk of CVD and T2D in South Asians has been linked to the higher 

prevalence of insulin resistance and associated CVD risk factors including differences in 

adiposity as well as markers of inflammation and metabolic health (Gholap et al. 2011; 

Joshi et al. 2007). Specifically, South Asians have a greater percent body fat and 

accumulation of visceral adipose tissue for a given BMI compared with white Europeans 

(Lear et al. 2007). Furthermore, compared with other ethnic groups, South Asians are 

more insulin resistant, glucose intolerant, dyslipidaemic and exhibit a less favourable 

inflammatory profile CRP and IL-6 (Gholap et al. 2011; Tziomalos et al. 2008).  

However, these risk markers seem to explain only partially the greater cardiometabolic 

risk in the South Asian population and the mechanisms underlying increased 
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susceptibility of CVD and T2D remain poorly understood (Forouhi et al. 2006). 

Therefore, profiling a greater array of parameters may provide a more holistic insight 

into cardiometabolic health outcomes in South Asian and white European individuals.  

 

A well-established postulation for the increased CVD and T2D risk in South Asians is 

their higher levels of body fatness which may be linked with differences in appetite 

between South Asian and other ethnicities. Several appetite-related hormones have been 

implicated in the short-term regulation of food intake, including acylated ghrelin and 

PYY which exert orexigenic and anorexigenic effects, respectively (Hussain and Bloom, 

2013). However, it is not known whether circulating acylated ghrelin and PYY 

concentrations are different between South Asian and white European individuals. 

Previous evidence has identified ethnic differences in circulating adipokines with 

individuals of South Asian descent exhibiting elevated leptin concentrations compared 

with white European individuals (Mente et al. 2010). Leptin circulates at concentrations 

proportional to body fatness (Considine et al. 1996) and plays a central role in regulating 

long-term changes in energy homeostasis and body fat. 

 

Physical inactivity is estimated to explain >20% of the excess coronary heart disease 

(CHD) mortality in UK South Asians after adjustment for potential confounding factors 

such as socioeconomic status, smoking, diabetes and existing CVD (Williams et al. 

2011a). Low levels of physical activity and cardiorespiratory fitness amongst South 

Asians are likely to contribute to exacerbating the excess insulin resistance and CVD risk 

in this population (Yates et al. 2015; Williams et al. 2011b). Previous observational 

evidence suggests that a higher level of self-reported physical activity is associated with 

a lower risk of CVD and T2D in South Asian individuals (Rastogi et al. 2004; Mohan et 
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al. 2005). However, there is limited evidence examining cardiorespiratory fitness and 

objectively-measured physical activity in South Asians whereas associations between 

these factors and appetite-related hormones remain unknown.  

 

Therefore, the aim of this study was to investigate ethnic differences in appetite-related 

hormones and a variety of traditional risk markers for CVD and T2D such as glucose 

tolerance, insulin, TAG, HDL-C, CRP, IL-6 and leptin in South Asian compared with 

white European men. In addition, this study aimed to quantify objectively the levels of 

physical activity and cardiorespiratory fitness in South Asian and white European men 

and to examine relationships with appetite-related hormones and risk markers for CVD 

and T2D. 
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3.2 Methods 

3.2.1  Participants 

A total of 16 South Asian and 16 white European men matching the inclusion criteria 

listed in Chapter 2.1, volunteered to participate in this study. The study was approved by 

Kingston University’s Faculty Ethics Committee (Ethic approval code: 1516/017) and 

written informed consent was provided by participants before the study commenced. The 

sample size was calculated using G*Power (Faul et al. 2007). Based on previous data 

(Chandalia et al. 2007), it was estimated that a sample size of 16 participants per group 

would have 89% power at the 0.05 level to detect a between-group difference in fasting 

leptin of 1.05 between-subject SDs. The South Asian group comprised eight British 

Asians born in the UK (UK Indian n=5; UK Pakistani n=1; UK Sri Lankan n=2) and 

eight individuals born in South Asia (India n=5; Pakistan n=1; Sri Lanka n=1; Nepal 

n=1). Conversely, the white European group comprised nine British born participants 

and seven individuals originating from European countries (Spain n=1; Italy n=2; France 

n=1; Germany n=1; Poland n=1; Check Republic n=1). Groups were matched for BMI. 

3.2.2  Study design 

Using a cross-sectional observational design, participants attended the laboratory on two 

occasions separated by an interval of 7 to 14 days (Figure 3.1). As described in Chapter 

2.9, participants were asked to avoid strenuous exercise and not to consume caffeine or 

alcohol in the 24 h period prior to visits 1 and 2. Participants were also asked to exert 

themselves minimally when travelling to the laboratory, using motorised transport when 

possible.	Participants also consumed 500 mL of plain water the night before visit 2 to 

ensure euhydration before the exercise test. 
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3.2.3   Visit 1 

3.2.3.1  Anthropometry and blood pressure 

Participants arrived at the laboratory between 08:00 and 09:00 after a 9 h overnight fast 

and completed a 4 h trial. After familiarisation with the laboratory equipment and 

completing the written informed consent form (Appendix A) and screening 

questionnaires (Appendix B, C and D) as detailed in Chapter 2.1, volunteers were asked 

to undergo anthropometric measurement and blood pressure measurements. Body mass, 

stature, waist circumference, BMI, body composition and blood pressure were then 

measured as described in Chapter 2.2 and 2.5.  

3.2.3.2 Fasting metabolic assessment and oral glucose tolerance test 

After completion of the anthropometric and blood pressure measurements, a fasting 

venous blood sample was obtained from the antecubital vein by a trained phlebotomist 

for the measurement of appetite-related hormones, inflammatory markers and lipid 

profiling. A fasting fingertip capillary blood sample was taken to determine insulin and 

glucose concentrations. Participants then consumed a 75 g glucose load (100% dextrose, 

BulkPowderTM, Colchester, UK) dissolved in 300 mL of water, marking the start of the 

oral glucose tolerance test (OGTT). Subsequent fingertip capillary blood samples were 

collected every 30 minutes for two hours (0.5, 1, 1.5 and 2 h) to quantify glucose and 

insulin concentrations whilst participants rested in the semi-supine position. Before 

leaving the laboratory, participants were given an accelerometer, food diary and food 

scale and instructed how to use them to record their physical activity and food intake 

before returning for the second visit.  
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3.2.4 Visit 2 

3.2.4.1 Maximum oxygen uptake test 

After a 3 h fast, participants performed an incremental exercise test to volitional 

exhaustion on an electromagnetically braked cycle ergometer (Lode Excalibur Sport, 

Groningen, Netherlands) for the determination of maximum oxygen consumption (V̇O2 

max) as described in Chapter 2.6. 

3.2.5 Habitual physical activity and sedentary time 

Between visits 1 and 2, participants wore an ActiGraph GT3X+ accelerometer 

(ActiGraph, Pensacola, USA) on the right hip (posterior to the anterior superior iliac 

spine), attached to an elastic belt supplied by the manufacturer for seven consecutive 

days during waking hours (except water-based activities). All devices were initialised to 

record counts and steps and raw data files were analysed using the manufacturer’s 

software (ActiLife v6.2; ActiGraph, Pensacola, USA). Data from participants with at 

least 10 h of daily wear time for at least four days were included in the analysis. A 60 s 

sampling epoch was used throughout and non-wear time, defined as ≥ 60 min of 

consecutive zero counts, was removed from the analysis (Troiano et al. 2008). Physical 

activity was expressed as average counts per minute (CPM) and standard cut-points for 

adults were applied to quantify sedentary time (<100 CPM), light activity (100–1951 

CPM) and moderate-to-vigorous activity (> 1951 CPM) (Freedson et al. 1998). 

3.2.6 Dietary intake 

Participants weighed and recorded their dietary intake on three consecutive days 

including two weekdays and one weekend day. Participants were also asked to take a 

digital photograph of all food and drink items consumed during the three-day assessment 
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period which were matched to the diet record. Three-day diet records were analysed using 

Dietplan 6 software (Forestfield Software Ltd, Horsham, UK). 

3.2.7 Blood sample collection 

Fasting venous blood samples were collected for the measurement of total cholesterol 

(TC), HDL-C, LDL-C, TAG, CRP, IL-6, leptin, acylated ghrelin and total PYY 

concentrations. Full details of blood sample collection are reported in Chapter 2.10. 

A fasting fingertip capillary blood sample was collected to determine baseline insulin 

and glucose concentrations before participants consumed a 75 g glucose load dissolved 

in 300 mL of water, marking the start of the OGTT. Full details of blood sample 

collection for the OGTT are reported in Chapter 2.10. 

3.2.8 Blood analysis 

Plasma concentrations of insulin, acylated ghrelin, total PYY and leptin were measured 

using commercially available enzyme-linked immunosorbent assays. Specifications of 

the analysis and details of the commercially available enzyme-linked immunosorbent 

assay kits are reported in Chapter 2.11.3 and 2.11.4. Data for plasma insulin 

concentrations were analysed in a sub-sample of 8 South Asian and 8 white European 

participants matched for BMI. Plasma TC, HDL-C, LDL-C and TAG concentrations 

were determined by enzymatic, colorimetric methods using a bench top analyser 

(specifications of the analysis and details of the automated bench top analyser reported 

in Chapter 2.11.5). Plasma glucose concentrations were analysed immediately in singular 

using a glucose analyser (specifications of the analysis and details of the glucose analyser 

are reported in Chapter 2.11.4). Samples from each participant were analysed in the same 

run to avoid inter-assay variation. Coefficients of variation for the assay duplicates were 
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as follows: 3.8% acylated ghrelin, 5.1% total PYY, 4.0% leptin, 4.6% CRP, 8.8% IL-6, 

0.4% total cholesterol, 0.9% HDL-C, 0.8% LDL-C, 2.0% TAG and 6.8% insulin. 

3.2.9 Statistical analysis 

Data analyses were conducted using the analytical software SPSS version 23.0 for 

Windows (SPSS 23.0, IBM Corp, Armonk, NY, USA). The homeostasis model 

assessment of insulin resistance (HOMA-IR) (Matthews et al. 1985) and insulin 

sensitivity index (Matsuda et al. 1999) were calculated. Normality of the data was 

checked using Shapiro-Wilk tests. Normally distributed data are presented as mean (SD). 

Data for appetite-related hormones, inflammatory markers and metabolic markers were 

not normally distributed and were natural log transformed before analysis. These data are 

presented as geometric mean (95% confidence interval) and analysis is based on ratios 

of geometric means and 95% confidence intervals (CI) for ratios.  

 

Physical and physiological characteristics and dietary intake were compared between the 

South Asian and white European men using linear mixed models with ethnic group 

included as a fixed factor. Habitual physical activity levels and sedentary time were 

compared between ethnic groups using linear mixed models with wear time included as 

a covariate. The trapezium rule was used to calculate the total area under the curve (AUC) 

for glucose and insulin during the OGTT. Linear mixed models, both unadjusted and 

adjusted for percentage body fat, were employed to examine between-group differences 

in fasting plasma constituents, 2 h glucose and insulin concentrations and AUC values. 

Differences in glucose and insulin concentrations over the 2 h OGTT were examined 

using 2 x 5 (group x time) linear mixed models (unadjusted and adjusted for percentage 

body fat). Absolute standardised effect sizes (ES) (Cohen’s d) were calculated for each 
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variable by dividing the difference between the mean values (South Asian versus white 

European) with the pooled SD. An ES of 0.2 was considered the minimum important 

difference, 0.5 moderate and 0.8 large (Cohen et al. 1988). Ethnicity-specific Pearson’s 

correlation coefficients were used to examine the magnitude of linear association 

between the various predictors (age, body fat percentage, V̇O2 max, sedentary time, 

MVPA) and outcome measures (acylated ghrelin, leptin, insulin sensitivity index, CRP, 

HDL-C). Statistical significance was accepted as P < 0.05. 
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3.3 Results 

3.3.1 Participants characteristics 

The physical and physiological characteristics of the South Asian and white European 

participants are shown in Table 3.1. There were no significant differences between 

groups in stature, body mass, BMI, waist circumference, resting systolic blood pressure 

and resting diastolic blood pressure (all P ≥ 0.172). Compared with white European 

participants, South Asian participants exhibited higher fat mass (ES = 0.66, P = 0.071) 

and body fat percentage (ES = 0.86, P = 0.021). Fat free mass (ES= 1.29, P = 0.001), age 

(ES = 0.72, P = 0.052) and V̇O2 max expressed in absolute (ES = 1.79, P <0.001) and 

relative (ES = 1.36, P = 0.001) terms were lower in South Asians compared with white 

European participants. 

3.3.2 Habitual physical activity and sedentary time 

Habitual physical activity levels and sedentary time in the South Asian and white 

European participants are displayed in Table 3.2. No significant differences were seen 

between the groups for wear time adjusted sedentary time, light activity or MVPA (all P 

≥ 0.169). Wear time adjusted average CPM (ES = 0.65, P = 0.109) and total step counts 

(ES = 0.71, P = 0.142) were meaningfully, albeit not significantly, lower in the South 

Asian compared with white European participants. 

3.3.3 Dietary intake 

Average protein intake tended to be lower in South Asian compared with white European 

participants (ES = 0.64, P = 0.079), resulting in a lower contribution of protein (ES = 

0.70, P = 0.064) and a higher contribution of carbohydrate (ES = 0.65, P = 0.069) to total 

energy intake in the South Asian men. No other significant differences in energy, 
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macronutrient or micronutrient intakes were observed between the South Asian and white 

European participants (all P ≥ 0.083) (Table 3.3). 

3.3.4 Fasting plasma concentrations of appetite-related hormones, inflammatory 

markers and lipid parameters 

Fasting plasma concentrations of appetite-related hormones, inflammatory markers and 

lipid parameters are shown in Table 3.4. Linear mixed models revealed higher fasting 

plasma concentrations in the South Asian compared with white European participants for 

CRP (113%, ES = 0.87, P = 0.019), leptin (187%, ES = 1.11, P = 0.004), TC/HDL-C 

ratio (22%, ES = 0.80, P = 0.030) and TAG (43%, ES = 0.74, P = 0.044). Compared with 

white European participants, South Asian participants exhibited lower concentrations of 

fasting acylated ghrelin (-47%, ES = 1.00, P = 0.008) and HDL-C (-17%, ES = 0.78, P = 

0.035). Fasting plasma concentrations of IL-6 were meaningfully, albeit not significantly, 

higher in South Asian compared with white European participants (57%, ES = 0.86, P = 

0.074). No between-group differences were seen in fasting plasma total PYY, TC or 

LDL-C concentrations (all P ≥ 0.215). Between-group differences in fasting plasma 

constituents were attenuated after adjustment for body fat percentage (P ≥ 0.080), 

although a tendency for a higher leptin concentration in South Asians remained (37%; 

ES = 0.33, P = 0.061). 
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Table 3.1.  Participant characteristics.  

 South Asians (n=16) White Europeans (n=16) 
White Europeans vs. South Asians 

95% CIa Effect size 

Age (years) 30 (8) 36 (8) -11 to 0.04 0.72 

Stature (cm) 176.3 (6.9) 179.3 (4.7) -7.2 to 1.3 0.49 

Body mass (kg) 79.4 (14.6) 80.5 (8.4) -9.7 to 7.5 0.09 

Body mass index (kg·m-2) 25.7 (5.2) 25.2 (3.3) -2.6 to 3.7 0.12 

Fat free mass (kg) 57.4 (5.3) 64.5 (5.7) -11.2 to -3.2b 1.29 

Fat mass (kg) 22.1 (11.0) 16.0 (6.9) -0.5 to 12.7 0.66 

Body fat (%) 26.4 (9.0) 19.5 (7.0) 1.1 to 12.8b 0.86 

Waist Circumference (cm) 87.8 (13.4) 85.5 (6.6) -5.4 to 9.9 0.21 

Resting sBP (mmHg) 120 (11) 122 (10) -10 to 5 0.23 

Resting dBP (mmHg) 78 (8) 77 (11) -6 to 7 0.05 

V̇O2 max (L·min-1) 2.97 (0.55) 4.00 (0.60) -1.44 to -0.61b 1.79 

V̇O2 max (mL·kg-1·min-1) 38 (9) 50 (8) -18 to -5b 1.36 

All values are mean (SD). Data were analysed using linear mixed models.  
sBP, systolic blood pressure; dBP, diastolic blood pressure; V̇O2 max, maximum oxygen uptake. 
a 95% confidence interval of the mean absolute difference between groups. 
b Significant difference between South Asians and white Europeans (P < 0.05). 
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Table 3.2.  Habitual physical activity levels and sedentary time in South Asian and white European men.  

 South Asians (n=13) White Europeans (n=13) White Europeans vs. South Asians 
95% CIa Effect size 

Wear time (min·day-1) 828 (87) 858 (64) -92 to 32 0.39 

Total activity (counts·min-1·day-1) 396 (115) 474 (124) -182 to 19 0.65 

Sedentary time (min·day-1) 546 (82) 528 (66) -16 to 87 0.25 

Light physical activity (min·day-1) 172 (73) 197 (47) -62 to 32 0.41 

MVPA (min·day-1) 53 (15) 57 (24) -21 to 14 0.18 

Total steps (per day) 8759 (1935) 10157 (1981) -2725 to 417 0.71 

All values are mean (SD). Data were analysed using linear mixed models. Models for total activity, sedentary time, light physical activity, MVPA 
and total steps included wear time as a covariate. 
MVPA moderate-to-vigorous physical activity. 
a 95% confidence interval of the mean absolute difference between groups. 
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Table 3.3.  Average daily energy, macronutrient and micronutrient intakes in South Asian and white European men. 

 South Asians (n=16) White Europeans (n=16) White Europeans vs. South Asians 
95% CIa Effect size 

Energy (kcal·day-1) 2136 (527) 2060 (603) -333 to 486 0.12 

Carbohydrate (g·day-1) 252 (75) 217 (105) -31 to 100 0.38 

Fat (g·day-1) 81.5 (30.9) 77.4 (37.5) -20.6 to 29.0 0.12 

Protein (g·day-1) 98.7 (28.5) 123.7 (46.8) -53.0 to 3.1 0.64 

% energy from carbohydrate 48 (19) 41 (10) -0.5 to 13 0.65 

% energy from fat 34 (8) 33 (12) -7 to 8 0.02 

% energy from protein 19 (6) 26 (13) -14 to 0.4 0.70 

Dietary fibre (g·day-1) 15.9 (7.6) 18.8 (13.1) -10.6 to 4.9 0.21 

Calcium (mg·day-1) 723 (470) 691 (311) -256 to 319 0.08 

Magnesium (mg·day-1) 262 (113) 311 (81) -120 to 22 0.50 

Sodium (mg·day-1) 1976 (1066) 2154 (884) -885 to 529 0.18 

Folate (µg·day-1) 256 (142) 229 (66) -53 to 107 0.24 

Vitamin D (µg·day-1) 2.2 (1.9) 5.9 (8.1) -8.0 to 0.5 0.63 

Vitamin C (mg·day-1) 116.3 (83.0) 132.4 (169.9) -112.7 to 80.4 0.12 

All values are mean (SD). Data were analysed using linear mixed models. Energy, macronutrient and micronutrient values were recorded for 3 
days (2 weekdays and 1 weekend). 
a 95% confidence interval of the mean absolute difference between group. 
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Table 3.4.  Fasting plasma concentrations in South Asian and white European men. 

 South Asians 
(n=16) 

White Europeans 
(n=16) 

Model 1a Model 2b 

White 
Europeans vs. 
South Asians 

95% CIc 
Effect size 

White 
Europeans vs. 
South Asians 

95% CIc 
Effect size 

Acylated ghrelin (pg·mL-1) 35.7 (25.8 to 49.4) 67.7 (48.8 to 93.7) -67 to -16%e 1.00 -59 to 5% 0.65 

Total peptide YY (pg·mL-1) 90.3 (80.0 to 101.8) 83.8 (74.3 to 94.5) -9 to 28% 0.31 -9 to 33% 0.39 

Leptin (ng·mL-1) 6.11 (3.76 to 9.92) 2.13 (1.31 to 3.46) 44 to 470%e 1.11 -1 to 91% 0.33 

C-reactive protein (µg·mL-1) 0.89 (0.57 to 1.38) 0.42 (0.27 to 0.65) 14 to 298%e 0.87 -17 to 197% 0.52 

Interleukin-6 (pg·mL-1)d 0.71 (0.49 to 1.03) 0.45 (0.32 to 0.64) -5 to 161% 0.86 -19 to 119% 0.54 

TC (mmol·L-1) 4.37 (4.04 to 4.73) 4.28 (3.96 to 4.63) -9 to 14% 0.13 -11 to 14% 0.03 

HDL-C (mmol·L-1) 1.10 (0.98 to 1.24) 1.32 (1.17 to 1.48) -29 to -1%e 0.78 -22 to 8% 0.36 

TC/HDL-C ratio 3.97 (3.50 to 4.51) 3.25 (2.86 to 3.69) 2 to 47%e 0.80 -8 to 30% 0.35 

LDL-C (mmol·L-1) 2.72 (2.42 to 3.06) 2.45 (2.18 to 2.76) -6 to 31% 0.45 -12 to 25% 0.20 

Triacylglycerol (mmol·L-1) 1.16 (0.91 to 1.48) 0.81 (0.63 to 1.03) 1 to 102%e 0.74 -18 to 48% 0.20 

All values are geometric mean (95% confidence interval). Statistical analyses are based on log-transformed data. Data were analysed using linear mixed 
models. 
 TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol. 
a Model 1: unadjusted, b Model 2: adjusted for body fat percentage; c 95% confidence interval for the ratio of geometric means 
d Data for interleukin-6 available for n = 9 South Asian and n = 10 white European; e Significant difference between South Asian and white European (P < 0.
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3.3.5 Plasma glucose and insulin concentrations during the OGTT 

Plasma glucose concentrations in the fasted state and 2 h post-challenge were not 

significantly different between South Asian and white European participants in the 

unadjusted or body fat adjusted models (all P ≥ 0.190) (Table 3.5). South Asian 

participants exhibited higher insulin concentrations in the fasted state (71%; ES = 1.06, 

P = 0.053) and at 2 h post-challenge (303%; ES = 1.28, P = 0.022) (Table 5). Between-

group differences in fasting (34%; ES = 0.58, P = 0.218) and 2 h post-challenge (110%; 

ES = 0.68, P = 0.082) insulin were diminished after controlling for body fat percentage 

(Table 5). The HOMA-IR was meaningfully, albeit not significantly, higher in the South 

Asian compared with white European participants (66%; ES = 0.94, P = 0.081) (Table 

3.5). The insulin sensitivity index was lower in the South Asian compared with white 

European participants in the unadjusted (61%; ES = 1.22, P = 0.016) and body fat 

adjusted (41%; ES = 0.68, P = 0.055) models (Table 3.5). 

Linear mixed model for glucose OGTT identified a main effect of time (P < 0.001) and 

group-by-time interaction (P = 0.047) but not a main effect of group (95% CI -2 to 26%, 

P = 0.086) (Figure 3.2). Post-hoc analysis of the group-by-time interaction revealed 

higher glucose concentrations in the South Asian compared with white European 

participants at 1.5 h (22%; 95% CI 4 to 44%, ES = 0.77, P = 0.014). The total area under 

the curve for glucose was higher in the South Asian compared with white European 

participants (14%; 95% CI -1 to 30%, ES = 0.69, P = 0.060), but this difference was 

attenuated after adjusting for body fat percentage (5%; 95% CI -8 to 20%, ES = 0.27, P 

= 0.434) (Figure 3.2).  

Linear mixed models for insulin OGTT identified a main effect of group (P = 0.010), 

time (P < 0.001) and a group-by-time interaction (P = 0.025) (Figure 3.2). The main 
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effect of group revealed higher insulin concentrations in the South Asian compared with 

white European participants (211%; 95% CI 38 to 602%, ES = 1.11). The ethnic group 

difference was diminished but remained significant after adjustment for body fat 

percentage (100%; 95% CI 8 to 269%, ES = 0.68, P = 0.030). Post hoc analysis of the 

group-by-time interaction revealed higher insulin concentrations in the South Asian 

compared with white European participants at 0.5, 1, 1.5 and 2 h (all ES ≥ 1.28, P ≤ 

0.013). The total area under the curve for insulin was higher in the South Asian compared 

with white European participants in unadjusted (245%; 95% CI 51 to 690%, ES = 1.61, 

P = 0.006) and body fat adjusted (123%; 95% CI 17 to 326%, ES = 1.04, P = 0.019) 

models (Figure 3.2). 
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Table 3.5.  Plasma glucose and insulin concentrations during the OGTT in South Asian and white European men.  

 South Asians  
(n=16) 

White Europeans 
(n=16) 

Model 1a Model 2b 

White Europeans 
vs. South Asians 

95% CIc 

Effect 
size 

White Europeans 
vs. South Asians 

95% CIc 

Effect 
size 

Glucose       

    Fasted (mmol·L-1) 4.50 (4.28 to 4.74) 4.71 (4.47 to 4.96) -11 to 3% 0.45 -12 to 3% 0.51 

         2 h (mmol·L-1) 4.78 (4.11 to 5.56) 4.16 (3.58 to 4.83) -7 to 42% 0.47 -14 to 35% 0.25 

Insulin       

     Fasted (µU·mL-1) 7.21 (4.90 to 10.60) 4.22 (2.87 to 6.20) -1 to 195% 1.06 -18 to 118% 0.58 

          2 h (µU·mL-1) 23.49 (10.32 to 53.49) 5.84 (2.56 to 13.29) 26 to 1188%d 1.28 -10 to 391% 0.68 

HOMA-IR 1.50 (1.00 to 2.26) 0.91 (0.60 to 1.36) -7 to 195% 0.94 -23 to 109% 0.44 

Insulin sensitivity index 5.62 (3.32 to 9.49) 14.41 (8.53 to 24.36) -81 to -18%d 1.22 -65 to 1% 0.68 

All values are geometric mean (95% confidence interval) for n=32 (glucose) and n=16 (insulin, HOMA-IR, insulin sensitivity index). Statistical 
analyses are based on log-transformed data. Data were analysed using linear mixed models. 
OGTT, oral glucose tolerance test; HOMA-IR, homeostasis model assessment of insulin resistance. 
a Model 1: unadjusted, b Model 2: adjusted for body fat percentage.  
c 95% confidence interval for the ratio of geometric means. 
d Significant difference between South Asians and white Europeans (P < 0.05).
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 Figure 3.2.  Plasma concentrations of (a) insulin (top panels; South Asian n=8, white 

European n=8) and (b) glucose (bottom panels; South Asian n=16; white European 

n=16) during the oral glucose tolerance test. Data points on left panels represent mean 

(SEM) for the South Asian (■) and white European (○) men. Black rectangle indicates 

consumption of glucose load. Data points on right panels represent individual data 

values (○) and the solid line indicates the median (▬).  
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3.3.6 Correlations 

Body fat percentage was positively associated with leptin (r = 0.84 in white Europeans 

and r = 0.88 in South Asians, P ≤ 0.001), and negatively associated with insulin 

sensitivity index in South Asian and white European men (r = -0.76 in white Europeans 

and r = -0.83 in South Asians, P ≤ 0.024) (Table 3.6). Body fat percentage was negatively 

associated with acylated ghrelin (r = -0.73, P = 0.002) and HDL-C (r = -0.81, P = 0.001) 

in white European men, and positively associated with CRP in South Asian men (r = 

0.52, P = 0.035) (Table 3.6). A positive association was also identified between V̇O2 

max and insulin sensitivity index in white European men (r = 0.80, P = 0.016), whereas 

MVPA was negatively associated with leptin in white European men (r = -0.50, P = 

0.044) (Table 6). Sedentary time was positively associated with CRP in South Asian men 

only (r = 0.50, P = 0.041). 
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Table 3.6.  Ethnicity-specific Pearson’s correlation coefficients between the various predictors and metabolic risk markers. 

 Acylated ghrelina Leptin Insulin sensitivity 
index C-reactive proteina HDL-Ca 

 
South 
Asian 

White 
European 

South 
Asian 

White 
European 

South 
Asian 

White 
European 

South 
Asian 

White 
European 

South 
Asian 

White 
European 

Age 0.05 0.40   0.07 -0.03 0.11 -0.14 0.45 -0.01 -0.09 0.38 

Body fat -0.25 -0.73b  0.88c    0.84c -0.83b -0.76b  0.52b 0.16 -0.28 -0.81b 

V̇O2 max 0.37 0.27  -0.01 -0.12 0.28 0.80b 0.29 0.38 -0.06 0.24 

Sedentary time 0.20 -0.13   0.47 0.05 0.04 -0.27  0.50b 0.11 -0.06 -0.19 

MVPA 0.05 0.04  -0.18 -0.50b 0.14 0.42 -0.43 -0.02 0.39 0.18 

a Statistical analysis are based on log-transformed data. 

HDL-C, high-density lipoprotein cholesterol; V̇O2 max, maximum oxygen uptake; MVPA moderate-to-vigorous physical activity. 

b P < 0.05; c P < 0.001. 
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3.4 Discussion 

The novel finding of this study is that healthy South Asian men exhibited lower fasting 

acylated ghrelin concentrations compared with BMI-matched white European men. 

Furthermore, South Asian men exhibited impaired CVD and T2D risk markers compared 

with white European men comprising: (1) elevated fasting concentrations of insulin, 

leptin, CRP, IL-6 and TAG and a higher TC/HDL-C ratio; (2) lower fasting 

concentrations of HDL-C; and (3) higher glucose and insulin concentrations during the 

OGTT. A further key finding is that cardiorespiratory fitness was substantially lower in 

the South Asian men than in the white European men, but no differences between the 

ethnicities was observed in objective levels of physical activity or sedentary behaviour. 

The lower fasting acylated ghrelin concentration in the South Asian compared with white 

European men represents a novel finding of this study. Although the reason for this 

finding is unclear, it may be linked to the ethnic group differences in adiposity. Previous 

research has demonstrated that individuals with obesity exhibit lower circulating 

concentrations of fasting ghrelin than lean individuals (Le Roux et al. 2005). Although 

our findings only revealed a large inverse correlation between body fat percentage and 

acylated ghrelin in the white European men, the ethnic group difference in fasting 

acylated ghrelin concentrations was mitigated after controlling for body fat percentage. 

Therefore, it seems plausible that the lower acylated ghrelin concentration in the South 

Asian men may be linked to the higher body fat levels. These findings appears to support 

the data in Study 3 (Chapter 5), where concentrations of fasting acylated ghrelin were 

not statistically different between South Asian and white European men, with both 

groups exhibiting similar percentage of body fat.  



 

 104 

Similar to previous findings, circulating concentrations of plasma leptin were 

substantially elevated in the South Asian compared with white European men (Mente et 

al. 2010; Abate et al. 2004). Considering circulating leptin concentrations are directly 

proportional to body fat mass (Considine et al. 1996), it is likely that the elevated leptin 

concentrations in South Asian individuals is, at least partly, mediated by differences in 

body fat. In support of this, plasma leptin concentrations were positively associated with 

body fat percentage in the present study, replicating previous findings in South Asian 

individuals (Banerji et al. 1999; Abate et al. 2004). However, South Asian individuals 

have also been shown to exhibit higher concentrations of leptin than Caucasian 

individuals despite a similar body fat percentage (Abate et al. 2004), and the between-

group difference in leptin concentrations in this study was diminished, but not eliminated 

completely, after controlling for body fat percentage. Consequently, it is possible that 

irregularities in adipose tissue metabolism concomitant with insulin resistance may 

contribute to the elevated CVD and T2D risk in South Asians. Despite the between-group 

differences in acylated ghrelin and leptin, the current study did not find any significant 

differences in plasma total PYY between South Asian and white European participants. 

In support of previous findings, higher fasting insulin and elevated glucose and insulin 

OGTT concentrations were also observed in South Asian participants compared with 

white European men (Chandalia et al. 1999; Raji et al 2001; Peters et al 2013). These 

differences are indicative of a greater degree of insulin resistance and are further 

supported by the higher HOMA-IR and lower insulin sensitivity index observed in the 

South Asian participants. It is well established that insulin resistance is a primary 

determinant of the elevated propensity for CVD and T2D in individuals of South Asian 

descent (Sattar and Gill, 2015; Gholap et al. 2011; Tziomalos et al. 2008). One factor 

suggested to contribute to the excess insulin resistance in South Asian individuals 
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represents differences in adiposity and body fat distribution (Sattar and Gill, 2015). In 

accord with our findings, South Asian individuals exhibit a higher body fat percentage 

and lower lean body mass for a given BMI compared with white European individuals 

(Lear et al. 2007). Furthermore, it has been suggested previously that insulin-mediated 

glucose disposal is inversely correlated with total and regional body fat in South Asian 

individuals (Raji et al. 2001; Banerji et al. 1999). However, the greater insulin resistance 

in South Asian individuals has also been shown to persist after adjustment for adiposity 

(Chandalia et al. 1999), and the lower insulin sensitivity index and insulin OGTT in the 

South Asian participants in this study remained after controlling for body fat percentage, 

albeit the magnitude of difference was diminished. This is also in agreement with our 

findings reported in Study 3 (Chapter 5) where South Asians exhibited markedly higher 

fasting insulin and elevated glucose and insulin post-prandial despite having similar 

levels of body fat than white European men. 

The present study also measured circulating concentrations of fasting IL-6 and CRP 

which represent key indicators of chronic low-grade inflammation and have been 

implicated in explaining the excess CHD risk in South Asian individuals (Tziomalos et 

al. 2008). The elevated fasting IL-6 and CRP concentration in South Asian compared 

with white European men supports several previous studies (Anand et al. 2004; Arjunan 

et al. 2015; Bastard et al. 1999), although this finding is not universal (Peters et al. 2013). 

Considering pro-inflammatory IL-6 released from adipose tissue has been identified as a 

precursor for hepatic CRP secretion (Bastard et al. 1999), it is possible that the ethnic 

differences in inflammation may be mediated by the higher body fat levels in South Asian 

individuals. In this regard, the divergent inflammatory profiles between ethnicities in the 

present study were diminished after controlling for body fat percentage, supporting 

previous findings in South Asian and white European individuals (Chambers et al. 2001; 
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Arjunan et al. 2015). However, it has also been demonstrated previously that South Asian 

individuals exhibit higher CRP concentrations than Caucasians despite similar levels of 

body fat (Chandalia et al. 2003). Future work is required to determine the independent 

contribution of ethnicity and adiposity on inflammatory markers in South Asians.  

Consistent with previous studies (Arjunan et al. 2013; Arjunan et al. 2015; Anand et al. 

2000), the South Asian men exhibited a more unfavourable fasted lipid profile compared 

with the white European men encompassing lower concentrations of HDL-C coupled 

with an elevated TC/HDL-C ratio and higher TAG concentration. The reasons explaining 

the adverse lipid profile in South Asian participants have not been fully elucidated, but 

it is proposed that the greater insulin resistance experienced by South Asians may be 

implicated (Gholap et al. 2011; Tziomalos et al. 2008). Specifically, hyperinsulinaemia 

associated with insulin resistance appears to downregulate skeletal muscle lipoprotein 

lipase activity (Pollare et al. 1991), thereby diminishing the clearance of TAG from the 

circulation. Furthermore, insulin resistance is suggested to impair the ability of insulin to 

suppress hepatic release of very low-density lipoprotein (Malmström et al. 1997). 

Regardless of the mechanism, our findings contribute to existing knowledge regarding 

the differential lipid profiles between individuals of South Asian and white European 

descent.  

Previous research suggests that South Asian individuals engage in less habitual physical 

activity than white European individuals, which is likely to contribute to the excess CHD 

and T2D risk in this population (Williams et al. 2011a; Yates et al. 2015; Ghouri et al. 

2013). The existing evidence on habitual physical activity levels in South Asians has 

largely been gleaned from self-report questionnaires (Yates et al. 2015; Williams et al. 

2011b), but data using accelerometry is emerging (Ghouri et al. 2013; Iliodromiti et al. 
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2016) and the objective accelerometer measurement represents a strength of this study. 

Although the similar levels of MVPA and sedentary time between the ethnicities in this 

study appears to contradict the aforementioned studies, the South Asian participants 

accumulated less total activity (CPM) and fewer steps, and stark differences in CVD and 

T2D risk markers were still apparent between the ethnic groups. This is in line with 

previous evidence suggesting that South Asian individuals are more insulin resistant than 

white European individuals even after adjustment for habitual physical activity levels 

(Ghouri et al. 2013). Furthermore, it has been suggested recently that South Asians may 

need to accumulate higher levels of moderate physical activity equating to an additional 

10 to 15 minutes per day to achieve a comparable CHD risk factor profile of white 

Europeans who are meeting the current physical activity recommendations (Iliodromiti 

et al. 2016).  

Despite the similar levels of habitual physical activity between the ethnicities, 

cardiorespiratory fitness assessed by V̇O2 max was markedly lower in the South Asian 

compared with white European participants. This corroborates previous findings 

(Arjunan et al. 2013; Bastard et al. 1999; Hall et al. 2010), and there is further evidence 

that the lower V̇O2 max in South Asian individuals is independent of physical activity 

levels (Ghouri et al. 2013). Given the importance of physical activity as a method of 

enhancing V̇O2 max, these findings add further weight to the proposition that South 

Asians may need to engage in greater physical activity levels than white Europeans to 

optimise health outcomes (Iliodromiti et al. 2016). In addition, it has been demonstrated 

that low V̇O2 max was the strongest predictor of the excess insulin resistance seen in UK 

South Asian compared with white European men (Ghouri et al. 2013), although our 

findings only revealed a positive association between V̇O2 max and insulin sensitivity 

index in the white European men. Nevertheless, it is likely that the lower V̇O2 max in the 
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South Asian individuals may contribute to the heighted cardio-metabolic health risk in 

this population considering that low cardiorespiratory fitness is a well-established and 

strong predictor of all-cause mortality and CVD events (Kodama et al. 2009). 

A further important consideration in the context of chronic disease risk concerns dietary 

intake. Although studies comparing dietary intake patterns between South Asian and 

white European individuals are sparse, South Asians typically increase energy and fat 

intake but also exhibit a switch from whole grains and pulses to more refined sources of 

carbohydrates, which results in a low intake of fibre after migration to European 

countries (Holmboe-Ottesen and Wandel, 2012). In addition, South Asian men have been 

shown to respond to short-term high fat overfeeding with greater perturbations in insulin 

resistance than European men (Bakker et al. 2014). Whilst the current study identified 

lower protein intake in the South Asian men, the assessment of dietary intake using self-

report represents a limitation due to issues of participant recall bias which makes it 

difficult to accurately correspond self-reported intake with actual intake (Dhurandhar et 

al. 2015).  

A limitation of this study concerns the potentially confounding effects of body fat 

percentage which may have accentuated the differences in CVD and T2D risk markers 

between the ethnicities. Although South Asians are known to exhibit a higher body fat 

percentage for a given BMI (Lear et al. 2007), further research is needed to clarify the 

role of adiposity and ethnicity in modulating CVD and T2D risk in South Asians. 

Furthermore, the number of participants in the study was small and the South Asian and 

white European men were not matched for age. However, our findings revealed marked 

differences in CVD and T2D risk markers between the ethnicities despite the South Asian 

men being, on average, six years younger than the white European men, and age was not 



 

 109 

significantly associated with any of the outcome variables in either ethnic group. Finally, 

the population sample was mostly limited to South Asian men originating from India 

and, therefore, further investigations are required in other South Asian groups (e.g., 

Bangladeshis, Sri Lankan and Bhutanese) and in South Asian women.  

In conclusion, the present study provides evidence that healthy South Asian men exhibit 

lower concentrations of acylated ghrelin and an adverse CVD and T2D risk marker 

profile compared with BMI-matched white European men including higher 

concentrations of insulin, TAG, leptin and CRP, and lower concentrations of HDL-C. 

Although objectively assessed physical activity levels and sedentary time were similar 

between the ethnic groups, the lower cardiorespiratory fitness in the South Asian men 

may contribute to the heightened cardiometabolic heath risk in this population. Future 

research that targets the identification of additional parameters of CVD and T2D risk in 

South Asians should be prioritised.  
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Chapter 4 – Study 2: Investigation of Plasma Free Fatty Acids 

metabolic profile based on GC-MS and LC-MS in healthy South Asian 

compared with white European men and association with adiposity, 

physical activity and cardiorespiratory fitness 

 

4.1 Introduction 

Cardiovascular disease (CVD) and type 2 diabetes (T2D) have emerged as major causes 

of morbidity and mortality worldwide (WHO, 2017; IDF, 2019) particularly among 

individuals with South Asian background (Johns and Sattar, 2015). In this regard, South 

Asians who have migrated to western countries, including European or North American 

countries, as well as those living in the Indian subcontinent, exhibit a greater 

cardiometabolic risk compared to their western counterparts (Sattar and Gill, 2015; 

Khunti et al. 2013).  

 

The elevated adiposity, higher prevalence of insulin resistance and associated CVD risk 

factors including differences in markers of inflammation and metabolic health may act 

as catalysts inducing the elevated risk of CVD and T2D in South Asians (Benedetti et al. 

2019; Gholap et al. 2011; Joshi et al. 2007). However, these risk markers do not 

exhaustively explain the greater CVD and T2D susceptibility in South Asian than white 

European individuals and the mechanisms underlying progression to T2D remain unclear 

(Chandalia et al. 2003; Hall et al. 2010).   

In this regard, there is evidence that exercise related factors such as low levels of physical 

activity and reduced cardiorespiratory fitness play an important role in the insulin 

resistance phenotype in South Asians (Biddle et al. 2019; Williams et al. 2011b; Ghouri 
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et al. 2013; Yates et al. 2015; Hall et al. 2010). Additionally, physical activity and 

cardiorespiratory fitness are key factors associated with CVD and T2D with previous 

studies reporting lower physical activity engagement and fitness level amongst UK South 

Asians compared with white Europeans (Ghouri et al. 2013; Williams et al. 2011a; 

Benedetti et al. 2019; Yates et al. 2015). Nonetheless, a great deal of the data available 

on physical activity in South Asians have been acquired from self-reported 

questionnaires which have limited validity, while evidence examining the association of 

objectively-measured physical activity and cardiorespiratory fitness with fatty free acids 

in South Asian individuals remains limited. 

Elevated circulating free fatty acids (FFAs) play a central role in liver and skeletal muscle 

insulin resistance and may contribute to β-cell dysfunction (Boden, 2002; Boden and 

Shulman, 2002; Karpe et al. 2011). Previous evidence reported higher total FFAs 

concentration in South Asian than white European individuals, irrespective of total or 

abdominal adiposity (Chandalia et al. 2007; Abate et al. 2004) which suggests possible 

abnormalities in the adipose tissue in South Asians (Bakker et al. 2013). However, not 

all FFAs contribute equally to the insulin resistance process. Indeed, high concentrations 

of saturated fatty acids (SFA) and omega-6 polyunsaturated fatty acids (PUFA) have 

been associated with increased levels of glucose and insulin whereas specific PUFA, 

such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown 

to improve insulin sensitivity (Rasic-Milutinovic et al. 2012). However, while previous 

cross-sectional investigations have explored the association between individual fatty 

acids and markers of cardiometabolic risk (Imamura et al. 2012; Ferrucci et al. 2006), 

these studies have not investigated ethnic-specific between individual free fatty acids and 

markers of insulin resistance. To the author’s knowledge, only one study examined 

ethnic-specific associations between plasma fatty acids and fasting glucose and insulin 
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resistance, identifying significant associations in Caucasian, but not in South Asian 

individuals (Ralston et al. 2013). This study, however, looked at esterified fatty acids 

(EFS), instead of free fatty acids, by carrying out hydrolysis of plasma TAG post-

extraction and this ignores the fact the rate of lipolysis of triglycerides, which is 

controlled by glucocorticoids and catecholamines, might be important (Xu et al. 2009). 

Furthermore, while this study reported baseline levels of FFAs in South Asians and 

Caucasians, ethnic-differences in FFAs were not explicitly examined while associations 

between fatty acids and body composition and physical activity/fitness levels were not 

explored.  

Metabolomics method represents a promising approach to identify and quantify a large 

variety of metabolites within biological systems that are substrates and products in 

different metabolic or pathological pathways, including fatty acids (Gonzales-Franquesa 

et al. 2016). Particularly, previous research examining concentrations of individual free 

fatty acids in human plasma and associations with insulin resistance and T2D, has made 

considerable use of different analytical techniques for metabolomics analysis including 

gas chromatography (GC) and liquid chromatography (LC) coupled with mass-

spectrometry (MS) (Binbin et al. 2010; Yi et al. 2006; Dai et al. 2015; Liu et al. 2010; 

Ma et al. 2018; Lu et al. 2016; Feng et al. 2017). However, the examination of baseline 

individual concentrations of FFAs based on metabolomics methods between South Asian 

and white European remain unknown.  

Therefore, the aim of this study was to investigate ethnic differences in the free fatty acid 

metabolic profile based on GC-MS and LC-MS in South Asian compared with white 

European men. Furthermore, this study aims to explore associations of FFAs with 

adiposity, glycaemia, levels of physical activity and cardiorespiratory fitness. 
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4.2 Methods 

4.2.1 Participants and Study Design 

The present study was conducted in collaboration with the University of Strathclyde 

where the free fatty acids analysis based on LC-MS was performed. The plasma samples 

used for this analysis were collected at Kingston University from the same set of 

participants recruited in Study 1 (Chapter 3). Therefore, ethic code, full detail of 

participants including body composition, V̇O2 max and physical activity data and study 

design are reported in Chapters 3.2.1 and 3.2.2. Approval of the study was obtained prior 

commencement by the Kingston University’s and University of Strathclyde’s Ethics 

Advisory Committee (Ethic approval code: 1516/017). 

4.2.2 Body composition 

Details of the body composition assessment is reported in Chapter 3.2.3.1.  

4.2.3 Maximum oxygen uptake test 

Details of the protocol, cycle ergometer and gas analysis system used for the 

determination of the maximum oxygen uptake in South Asian and white European 

volunteers are reported in Chapter 3.2.4.1. 

4.2.4 Habitual physical activity and sedentary time 

An Actigraph GT3X+ accelerometer (ActiGraph, Pensacola, USA) was wore in the right 

hip for one week to examine habitual physical activity and sedentary time in South Asian 

and white European participants. Full detail of the device wearing condition, initialisation 

and data analysis are described in Chapter 3.2.5.  
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4.2.5 Plasma samples 

The details of blood sampling and collection have been reported in Chapters 3.2.3.2 and 

3.2.7. Briefly, after completion of the anthropometric and blood pressure measurement 

in Visit 1, a fasting venous blood sample was obtained for the measurement of FFAs. 

The blood sample was collected from the antecubital vein via venepuncture using a 25 g 

butterfly needle (BD Vacutainer, Plymouth, UK) into a precooled 6.0 mL heparin 

vacutainers (BD Vacutainer®, Plymouth, UK). The blood sample was immediately 

centrifuged at 1500 × g for 10 min at 4°C and the plasma supernatant was then dispensed 

into aliquots and stored at -80°C for later analysis. Using the finger-prick technique, a 

whole blood was collected during the OGTT every 30 min for two hours into a 20 µL 

heparin capillary tube (Sanguis Counting, Nümbrecht, Germany) and immediately mixed 

into a separate 1 mL haemolysing solution for glucose analysis.  

4.2.6 Glucose analysis  

Analysis of plasma glucose is described in Chapter 3.2.8. 

4.2.7 Free fatty acids analysis 

The examination of the free fatty acid metabolic profile was based initially on gas 

chromatography–mass spectrometry (GC-MS). However, due to inadequate results, 

liquid chromatography–mass spectrometry (LC-MS) was subsequently employed for the 

identification and quantification of FFAs in South Asian and white European 

participants. Therefore, this subsection describes (1) full details of the methods used for 

FFAs analysis in South Asian and white European men, based on GC-MS and LC-MS; 

and (2) explanation for employing LC-MS, instead of GC-MS for the metabolomics 

analysis. 
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4.2.7.1 Free fatty acids analysis based on GC-MS - Developmental work 

Heparin samples selected randomly from three participants were used for evaluating the 

validity of the sample preparation method and GC-MS conditions for the analysis of 

FFAs. 

The sample preparation included 300 µL aliquot of plasma which was added to 900 µL 

of chloroform/methanol solution (3/1, v/v). The mixture was then vortexed for 60 s and 

centrifuged for 10 min at 4000 g at 4°C to separate the upper organic phase and the lower 

chloroform layer containing the FFAs.  The upper phase was transferred to a different 

tube whereas the phase containing the FFAs was left in the same tube and dried under N2 

gas flow before the addition of the derivate reagent (0.5 mL of 5% H2SO4/HCl/CH3OH). 

The dried tubes were then sealed and placed in a water bath at 70°C for 30 min with the 

tubes mixed every 5 min to optimise the reaction. Then, 500 µL of hexane was added to 

obtain the fatty acid methyl esters (FAMEs), and the tubes were centrifuged for 3 min at 

4000 g at 4°C. The hexane phase containing the FAMEs was transferred to a clean glass 

tube for GC-MS analysis. 

GC-MS analysis was performed using an Agilent 6890N gas chromatograph coupled to 

an Agilent 5793 mass spectrometer (Agilent Technologies, Santa Clara, CA, USA). In 

the gas chromatography system, a BPX5 capillary column (30 m x 0.255 mm I.D. film 

thickness 0.25 µm; Trajan Scientific and Medical, Melbourne, Australia) was used and 

the GC-MS conditions were as follows: (1) initial temperature 50 °C for 1 min; (2) 

temperature was increased to 180°C at the rate of 25°C/min; (3) temperature was 

increased at a rate of 4°C/min to 230°C. The total GC run time was 28 min. Helium 

carrier gas was used at a constant flow rate of 1.0 ml ∙ min-1 and temperature of the 
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injector was 250°C. A sample of 1 µL was injected at a split ratio of 1:5 and the mass 

conditions were as follows: electron energy, 70 eV; ion source temperature, 230°C; full 

scan mode (m/z 45-600) with a scan time of 0.6 s. 

The results following the experiments based on the aforementioned methods were 

unsatisfactory as the chromatogram did not reveal any compounds of interest. Although 

the reasons for this were not clear, the poor results were ascribed to either a lack of 

concentration of fatty acids in the sample injected into the GC or a low sensitivity of the 

MS detection. Therefore, the GC-MS method was optimised by changing the injection 

mode from split to splitless, and subsequently by increasing the sensitivity of the MS 

detection by using SIM (m/z 55, 67, 74 and 79) instead of full SCAN mode (m/z 45-600), 

in splitless mode (Vasconcellos et al. 2015; Dai et al. 2015). However, although the 

attempts in changing the GC-MS methods, fatty acids were still not detected with the 

scarcity of the results linked possibly to the poor extraction yield. Therefore, to increase 

free fatty acid extraction, the sample preparation method was optimised by:  (1) 

increasing the aliquot of plasma to 500 µL, instead of  300 µL;  (2) mixing aliquots of 

500 µL with 0.5 mL of 0.4 mol/L KOH/CH3OH, in addition to 1500 µL of 

chloroform/methanol solution; and (3) extracting the methyl esters products of FFAs by 

adding 2 mL of hexane, instead of 500 µL. The remaining part of the sample preparation 

method was the same to the initial method described above. However, even after 

changing some aspects of the sample preparation method, results did not exhibit 

significant improvement with the FFAs eluding detection.  

Thus, efficacy of the sample preparation and GC-MS conditions were excluded as 

possible reasons causing unsatisfactory results which, instead, were most likely 

explained by the inadequacy of the BPX5 capillary column used in our experiments. 
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Particularly, previous studies examining fatty acids profile reported the use of different 

capillary columns including DB-23, DB-WAX or Agilent select FAMEs (Yi et al. 2006; 

Ma et al. 2018). However, given the paucity of the outcomes by the GC-MS and the 

uncertainty to achieve better results even changing the capillary column, LC-MS was 

then employed for the quantitation of FFAs in South Asians and white European 

participants. The free fatty acid analysis performed using LC-MS produced excellent 

results, reported in 4.3.4, which were subsequently published (Benedetti et al. 2019).  

4.2.7.2 Free fatty acids analysis based on LC-MS 

4.2.7.2.1 Chemicals and Solvents 

Full description of the chemical and solvents used for the free fatty acids analysis based 

on LC-MS is reported in Chapter 2.11.2.1. Briefly, HPLC grade acetonitrile (ACN), 

water, acetic acid and hexane were obtained from Fisher Scientific (Leicestershire, UK) 

whereas a mixture of fatty acid methyl ester standards (Supelco 37-component fatty acid 

methyl ester mix) was obtained from Sigma Aldrich (Dorset, UK). The methyl esters 

were hydrolysed with 1 M KOH by heating at 60ºC for 15 min, the mixture was acidified 

and extracted into hexane.  

4.2.7.2.2 Sample preparation and calibration series 

Full description of the LC-MS sample preparation and calibration series used for 

profiling the FFAs is reported in Chapter 2.11.2.1.  
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4.2.7.2.3 Instrumental technique and LC-MS conditions 

LC-MS analysis was carried out using a Dionex 3000 HPLC interfaced with and an 

Orbitrap Exactive mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). The 

column characteristics and details for the mobile phase have been reported in Chapter 

2.11.2.2. The nitrogen sheath and auxiliary gas flow rates were maintained at 50 and 17 

arbitrary units. The electrospray ionisation (ESI) interface was operated in both positive 

and negative modes. The spray voltage was 4.5 kV for the positive mode and 4.0 kV for 

negative mode, while the ion transfer capillary temperature was 275°C. Full description 

of the LC-MS condition are displayed in Chapter 2.11.2.3.  

4.2.8 Data processing and statistical analysis 

Statistical analysis for participants characteristics, physical activity and plasma glucose 

concentrations is described in Chapter 3.2.9.  

With regard to the free fatty acid analysis, the Quan Browser in Xcalibur was used to 

plot calibration curves (weighted with 1/x) and quantify the responses for the samples 

against the calibration curves. Then the levels of FFAs in the samples were calculated 

from the calibration curves by Quan Browser. P values and ratios of the mean values for 

the fatty acids were determined by using Microsoft Excel (Microsoft Office 2013). 

SIMCA-P version 14.1 (Umetrics, Umeå, Sweden) was used for multivariate analysis 

(Trivedi et al. 2012) which included Principle Components Analysis (PCA), Orthogonal 

Partial Least Squares Discriminant Analysis (OPLS-DA) and Orthogonal Partial Least 

Square (OPLS). Specifically, the quantitative values for the samples were then mean 

centred, and Pareto scaled for PCA, OPLS-DA and OPLS to generate S-plots for 

visualisation of the components. 

 



 

 119 

4.3 Results 

4.3.1 Participants Characteristics 

The physical and physiological characteristics of the South Asian and white European 

participants are reported in Table 3.1, Chapter 3.3.1. 

4.3.2 Habitual physical activity and sedentary time 

The habitual physical activity and sedentary time in South Asian and white European 

participants are reported in Table 3.2, Chapter 3.3.2. 

4.3.3 Plasma glucose concentrations during the OGTT 

Plasma glucose concentrations during the OGTT are displayed Table 3.5 and Figure 3.2, 

Chapter 3.3.5. 
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4.3.4 Free Fatty Acids metabolic profile based on LC-MS 

Figure 4.4 shows a comparison between the fatty acid standard mixture and the fatty 

acids present in a plasma sample. Out of the 37 fatty acids present in the standard, 19 of 

these could be detected in plasma and quantitative values are given in Table 4.1.  

 

 

 

 

 

 

 

Figure 4.4. Chromatogram for the fatty acids detected in plasma compared with a 

chromatogram for the calibration standards (concentration range 3.2 - 9.6 µg∙ml-1). 
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Table 4.1. Concentration of 19 FFAs in plasma from South Asian and white European men. 

Free fatty acid  
South Asians 

(n=16) 

White 
Europeans 

(n=16) 

RT 
(min) m/z P value 

SA/WE 

Ratio of 
Mean conc. 

SA/WE 

Laurate (12:0) 29.8 (12.2) 28.3 (14.5) 8.3 199.169 0.040a 1.092 

Myristate (14:0) 48.0 (44.8) 33.5 (34.3) 11.5 227.200 0.011a 1.478 

Pentadecenoate (16:0) 12.5 (7.9) 12.3 (4.5) 10.9 239.200 0.224 1.032 

Pentadecanoic (15:0) 13.5 (21.5) 12.5 (26.7) 13.3 241.216 0.214 1.111 

Palmitoleic (16:1n-7) 51.3 (66.8) 36.3 (60.5) 12.4 253.216 0.137 1.371 

Palmitate (16:0) 81.0 (33.3) 54.8 (30.6) 15.2 255.232 0.004a 1.487 

γ-Linolenic (18:3n-6) 17.8 (30.1) 13.8 (35.0) 11.6 277.216 0.017a 1.328 

Linoleate (18:2n-6) 322.3 (31.2) 206.0 (44.7) 13.6 279.232 0.005a 1.621 

Oleate (18:1n-9) 633.8 (43.4) 473.5 (42.5) 16.1 281.247 0.081 1.317 

Stearic (18:0) 193.5 (29.8) 155.3 (28.6) 19.2 283.263 0.095 1.227 

Eicosapentaenoic (20:5n-3) 9.3 (19.7) 10.3 (37.9) 11.5 301.216 0.449 0.899 

Eicosatetraenoic (20:4n-3) 25 (30.9) 25.3 (35.9) 13.4 303.232 0.958 0.972 

Eicosatrienoic (20:3n-3) 7.0 (27.2) 6.5 (27.0) 14.8 305.247 0.554 1.059 

Eicosadienoic (20:2n-6) 12.2 (12.3) 11.5 (14.7) 17.1 307.263 0.215 1.068 

Eicosenoic (20:1n-9) 14.0 (24.9) 13.3 (37.6) 19.8 309.279 0.666 1.022 

Arachidate (20:4n-6) 35.3 (59.2) 49.0 (53.4) 23.1 311.294 0.074 0.681 

Docosahexaenoic (22:6n-3) 18.3 (43.0) 25.3 (69.9) 13.1 327.232 0.100 0.683 

Tricosanoate (23:0) 20.0 (53.3) 16.5 (47.2) 28.1 353.341 0.456 1.179 

Lignocerate (24:0) 13.4 (49.5) 10.8 (29.1) 29.6 367.357 0.250 1.225 

All values are mean (RSD %). 

RT, retention time; m/z, mass-to-charge ratio. 
a Significant difference between South Asians and white Europeans (P < 0.05). 
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The P values for the FFAs were validated using correction for multiple comparisons 

(Benjamini et al. 1995), which indicated for the number of variables used that all P values 

<0.05 could be regarded as significant. Linoleic and oleic acid were by some way the 

most abundant FFAs in plasma. Figure 4.5 shows the principal components analysis 

(PCA) plot for 16 South Asian and 16 white European samples based on peak quantities 

of 19 free fatty acids in plasma. PCA was employed as the first step in the analysis to 

explore how the free fatty acids clusters provide insights into separations between South 

Asian and white European men for a better interpretation of the data. However, as shown 

in figure 4.5, many samples were scattered but could not be clearly separated between 

the two ethnic groups. This is because PCA finds a lower dimensional space capturing 

the maximum amount of variance in an input data matrix without losing any useful data. 

Nonetheless, it is also possible the elevated number of samples could have resulted in 

confusion during the samples discrimination between the two groups (Liu et al. 2010). 

After the first screening by PCA, orthogonal partial least squares discriminant analysis 

(OPLS-DA) was used as an alternative method to identify reliable free fatty acids that 

have a strong association with separation between groups (Figure 4.6). Specifically, a 

strong OPLS-DA model (CVANOVA 5.9 x 10-7) could be built which differentiated 

clearly 13 of the South Asian samples from 13 of the white European samples based on 

four of the FFAs (Figure 4.6). The OPLS-DA model explained 54.5% of the variance 

which was greater than that explained by the PCA model (18.5%). As shown in figure 

4.6, the two groups were clearly separated in the OPLS-DA plot, with South Asian 

samples being clustered on the right side whereas the white European samples grouped 

on the left side of the plot. Furthermore, the distance between each participant within the 

same group along the Y axis represents the concentrations for the four fatty acids used in 

this model; participants with similar free fatty acid concentrations are displayed close to 
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each other in the OPLS-DA plot. The cross-validation plot for this model can be seen in 

Figure 4.7 and the loadings plot in Figure 4.8. The loadings are mainly towards the South 

Asian group and the majority of the FFAs in the model showed a higher trend or were 

significantly higher (laurate, myristate, palmitate, γ-linolenic and linoleate) in the South 

Asian group (Table 4.1). 

 

 

 

 

 

 

 

 

Figure 4.5. Principle components analysis (PCA) plot for South Asian (n = 16) and 

white European (n = 16) samples based on peak quantities of 19 fatty acids in plasma. 

The Y axis reflects the variation within the groups while the X axis reflects the variation 

between the groups.  
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Figure 4.6. Orthogonal partial least squares (OPLS-DA) plot showing separation of 13 South 

Asian samples from 13 white European samples based on the concentrations for four fatty 

acids (myristate, linoleate, linolenate and docosapentenoate) in plasma. The Y axis reflects the 

variation within the groups while the X axis reflects the variation between the groups.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Cross-validation plot corresponding to Figure 4.6. The Y axis represents R2 

(circles) and Q2 (square) for the model, and the X axis designates the correlation between 

original and permuted responses data. 
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Figure 4.8. Loadings plot corresponding to the OPLS-DA plot shown Figure 4.6. The 

Y axis displays the loading of the predictive component while the X axis displays the 

loading of the orthogonal component. 

 

4.3.5 Correlations 

It was not possible to produce strong OPLS models when trying to fit the participant 

characteristics such as body mass, BMI or body fat percentage (full details of participant 

characteristics are reported in Table 3.1, Chapter 3.3.1) to the combined white European 

and South Asian groups. In addition, when the white European group was modelled in 

isolation, it was not possible to produce a strong model for any of the parameters in Table 

3.1 presented in Chapter 3.3.1. However, when the South Asian group was modelled on 

its own, valid models could be produced for body mass, BMI, body fat percentage and 

AUC glucose (Figures 4.9, 4.10, 4.11 and 4.14). Conversely, in white European but not 

in South Asian men there was a strong correlation between total step counts and fatty 

acids profile (Figure 4.15).  



 

 126 

4.3.5.1  Correlations between fatty acids and body mass, BMI, body fat percentage 

and AUC glucose 

The strongest correlation was produced for body fat percentage (r2 = 0.92; Figure 4.11) 

where the loadings indicated that that the highest body fat percentage correlated with the 

highest levels of palmitic, linoleic, docosahexenoic and eicosatetraenoic acids (Figure 

4.12). Figure 4.13 shows extracted ion traces for palmitic and eicosatetraenoic acids for 

participants P31 and P8 (both South Asians) who had the highest and lowest body fat 

percentage, respectively. Body mass could also be modelled using an OPLS model and 

just three FFAs to produce a strong model (r2 = 0.86; Figure 4.9). Two of the FFAs, 

docosahexenoic acid and stearic acid, which correlated with body fat percentage were 

also used in the OPLS-DA model (Figure 4.6) for actual against predicted body mass and 

in addition the long chain fatty acid lignoceric acid was included. It was also, perhaps 

not surprisingly, possible to fit an OPLS model for predicted BMI against actual BMI 

using four FFAs; stearate, palmitate, myristate and arachidate (Figure 4.10) although the 

correlation (r2 = 0.79) between predicted and actual BMI was weaker than for OPLS plots 

for body fat percentage and body mass. In addition, for the South Asian group it was 

possible to correlate AUC glucose to four FFAs (palmitate, oleate, eicosatrienoic and 

docosahexenoic acid) (r2 = 0.89; Figure 4.14). 

	

 
 
 
 
 
 
 
 



 

 127 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.9. OPLS of predicted (X axis) vs. actual body mass (Y axis) based on three free 

fatty acids (lignoceric, docosahexenoic and stearic acid) for South Asian men. 

 

Figure 4.10. OPLS plot of predicted (X axis) vs. actual BMI (Y axis) based on four free 

fatty acids (stearate, palmitate, myristate and arachidate) for South Asian men. 
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Figure 4.11. OPLS plot of predicted (X axis) vs. actual body fat percentage (Y axis) based 

on five free fatty acids (palmitate, stearate, linoleate, eicosatetraenoic acid and 

docosahexaenoic acid) for South Asian men. 

 
 

 
 
 
 
 
 
 
 
 
 
 
              
 
 
       
 

Figure 4.12. Loadings plot for Figure 4.11. The Y axis displays the loading of the 

predictive component while the X axis displays the loading of the orthogonal component. 
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Figure 4.13. Extracted ion traces for two markers of higher body fat percentage, palmitic 

acid and eicosatetraenoic acid. The levels of the acids are highest in participant P31 

(South Asian) who had the highest body fat percentage and lowest in participant P8 (South 

Asian) who had the lowest body fat percentage. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4.14. OPLS of predicted (X axis) vs. actual area under the curve (Y axis) 

(AUC) for glucose based on four free fatty acids (palmitate, oleate, eicosatrienoic 

acid and docosahexenoic acid) for South Asian men. 
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It was not possible to produce a strong OPLS model predicting V̇O2 max, waist 

circumference or systolic and diastolic blood pressure for the South Asian or white 

European group. Partial Least Square (PLS) models could also be fitted to the variables 

used for modelling body fat percentage, body mass and AUC glucose, but the fit was not 

quite as strong as for the OPLS models. 

4.3.5.2  Correlations between free fatty acids and total step counts 

In white European but not in South Asian men there was a strong correlation between 

total step counts and fatty acids profile (r2 = 0.96; Figure 4.15) based on six FFAs: 

palmitoleic, linoleic, arachidate, laurate, erucate and nervonate (Figure 4.16). Lower step 

counts were also associated with elevated levels of FFAs, particularly palmitoleic and 

linoleic acids (Figure 4.17). 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. OPLS of predicted (X axis) vs. actual total step counts (Y axis) based on 

six fatty acids (palmitoleic, linoleic, arachidate, laurate, erucate and nervonate) for 

white European men. 
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Figure 4.16. Loadings plot for Figure 4.15. The Y axis displays the loading of the 

predictive component while the X axis displays the loading of the orthogonal 

component. 

 

Figure 4.17. Extracted ion traces for palmitoleic acid and linoleic acid for participant P24 

(white European) who had the lowest step count and participant P14 (white European) who 

had the highest total step counts. 
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4.4 Discussion 

In this study, we conducted a cross-sectional analysis to determine whether the free fatty 

acid metabolic profile differed between healthy South Asian men and with white 

European men. This study also examined associations with physical activity and 

cardiorespiratory fitness levels, in addition to other T2D and CVD risk factors.  

The initial results based on the GC-MS method were unsatisfactory as we could not 

identify any compounds of interest. The sample preparation protocol initially employed 

for the lipid extraction as well as the GC-MS conditions were subsequently optimised to 

exclude that the unsatisfactory results were ascribed to either a lack of concentration of 

fatty acids in the sample injected into the GC or a low sensitivity of the MS detection. 

However, after these adjustments results did not exhibit significant improvement with 

the FFAs eluding detection, which most likely reflect the inadequacy of the capillary 

column used in our experiments. 

Conversely, we could separate majority of the South Asian from most of the white 

European men based on LC-MS method using a strong OPLS-DA model, which provided 

some confidence that these participants had markedly different fatty acid profiles. 

Furthermore, it was possible to fit OPLS models for the South Asian men to predict body 

mass, BMI, body fat percentage and AUC glucose whereas the same models were not a 

good fit for the white European men. Release of fatty acids from adipocytes is under the 

control of glucocorticoids and it might be that there are differences in either 

glucocorticoid concentration or glucocorticoid sensitivity within the two ethnic groups, 

although it has been found that cortisol levels are actually lower in South Asians in 

comparison with white Europeans (Reynolds et al. 2006). However, the lack of fit with 
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the data for the white European group lends some additional confidence that the data was 

not over-fitted which is possible when the sample size is small. 

The plasma free fatty acid composition has been reported to be linked to the risk of T2D 

and CVD (Lu et al. 2016; Warensjö et al. 2005). In the present study, lauric, myristic, 

palmitic, γ-linolenic and linoleic acid were significantly higher in South Asian compared 

with white European participants, which represents a novel finding of this study. 

Previous studies reported that individuals with insulin resistance typically exhibit higher 

levels of SFAs (i.e. palmitate, laurate or stearate), omega-6 PUFAs (i.e. linoleic acid) and 

low concentrations of omega-3 PUFAs such as eicosapentaenoic and docosahexaenoic 

acid (Lu et al. 2016; Warensjö et al. 2005). Given the greater risk of CVD and T2D in 

South Asian than white Europeans (Sattar and Gill, 2015), it was surprising that baseline 

concentrations of γ-linolenic and linoleic acid were higher in the South Asian group. To 

the author’s knowledge, only one previous study explored differences in baseline levels 

of FFAs between South Asians and other ethnic groups, in which γ-linolenic and linoleic 

acid were displayed to be also higher in the South Asian compared with the Caucasian 

group (Ralston et al. 2013). However, the study from Ralston and co-workers focused 

mainly on ethnic-specific associations between individual plasma FFAs and markers of 

insulin resistance, without explicitly examining ethnic differences in baseline 

concentrations of FFAs (Ralston et al. 2013). Although the reasons for this finding 

remain unclear it is possible that differences in habitual food intake between ethnic 

groups in this study may have influenced the results. South Asians typically increase 

consumption of fat intake when moving to western countries, particularly saturated fat-

rich food such as coconut oil, palm oil or semifluid clarified butter (ghee), which is 

reflected in the concentrations in plasma and cell membranes (Holmboe-Ottesen and 

Wandel, 2012). 
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The present study also identified positive associations between AUC glucose and four 

FFAs such as palmitate, oleate, eicosatrienoic and docosahexenoic acid in South Asian 

participants (Figure 4.14). The positive association between palmitate and AUC glucose 

in our study is in agreement with previous research, despite these studies being conducted 

in populations with different ethnic background (Lu et al. 2016; Ebbeson et al. 2010; 

Kusunoki et al. 2007). Although the mechanisms of saturated fatty acids-induced insulin 

resistance remain elusive, altered membrane phospholipid fatty acid composition and 

membrane fluidity and stability may play a role (Ebbeson et al. 2010). We also reported 

positive associations between AUC glucose and oleic acid, which seems to confirm the 

data from Ralston et al. (2013) who identified significant correlations between oleate and 

insulin markers, although in Caucasians but not in South Asian men (Ralston et al. 2013). 

The present study also revealed a strong correlation of FFAs with body fat percentage in 

the South Asian group and between FFAs and physical activity in the white European 

group. Particularly, in the South Asian group greater levels of palmitate, stearate, 

linoleate, eicosatetraenoic and docosahexaenoic acid were positively associated with 

body fat percentage (Figure 4.11). Higher levels of FFAs have been associated with both 

obesity and insulin resistance (Boden, 2011; Langin et al. 2005) thus, it may be possible 

that in the South Asian group a greater body fat percentage resulted in higher levels of 

FFAs, but not in the white European group. However, ethnic differences in factors 

involved in myocellular lipid mobilisation may underlie this response. Two key lipolytic 

enzymes involved in the intracellular triglyceride mobilisation in the body include the 

hormone sensitive lipase (HSL), which is regulated by catecholamine release, and the 

adipose triacylglycerol lipase (ATGL) which is not under the same hormonal control 

(Schreiber et al. 2018). In muscle cells, for example, lipolytic activity of ATGL is 

stimulated by perilipin 5 (PLIN-5), a lipid droplet-associated protein which regulates 
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basal lipolysis (Schreiber et al. 2018). According to previous research, South Asians 

exhibit higher PLIN-5 protein content in skeletal muscle in response to a 5-day high fat 

diet, compared with Caucasian males (Gemmink et al. 2017), which may reflect higher 

lipolysis rates in South Asian individuals. Thus, it is plausible that in our study ethnic 

differences in ATGL/PLIN-5-induced lipolysis may have contributed to the higher levels 

of FFAs linked to body fat in the South Asian group, although further research is required 

before any conclusion can be drawn. Conversely, six FFAs (palmitoleic, linoleic, 

arachidate, laurate, erucate and nervonate) were strongly associated with total step counts 

in the white European group only, and palmitoleic and linoleic acid were also associated 

with lower step counts suggesting that fatty acid metabolism is less responsive to physical 

activity in South Asian than white European men. This finding might reflect the fact that 

the FFAs release is promoted more by HSL, which responds to corticosteroids and 

catecholamine release (Schreiber et al. 2018). Catecholamines also promote peroxisome 

proliferation (Russel et al. 2013) which could result in lower levels of FFAs correlating 

with higher total step counts. 

The present study was limited by the small number of participants and the South Asian 

population was mostly limited to men originating from India. Additionally, the potential 

confounding effects of body fat percentage may have accentuated the differences in FFAs 

between ethnic groups. Therefore, further work should be performed to investigate 

differences in FFAs metabolic profile in other South Asian groups (e.g., Bangladeshis, 

Sri Lankan and Bhutanese) and in South Asian women compared with body fat-matched 

white European individuals. Furthermore, investigating FFAs in response to exercise 

and/or food intake and how and explore how these responses correlate with 

cardiometabolic risk markers may elucidate the role of exercise and energy intake in 
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modulating individual plasma FFAs concentrations and in optimising health outcomes in 

South Asians. 

In conclusion, the current study provides evidence that levels of circulating FFAs are 

different between South Asians and white European men. Using an OPLS models, FFAs 

were strongly correlated with body fat percentage and AUC for glucose in South Asian, 

whereas total step counts were strongly correlated with lower levels of FFAs in white 

European men. This may suggest that the different FFAs metabolic profile may be linked 

with the elevated T2D risk in South Asians than white Europeans and that fatty acid 

metabolism is less responsive to physical activity in South Asian men in comparison to 

white European men. 
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Chapter 5 – Study 3: Effects of moderate-vigorous cycling on appetite, 

ad libitum energy intake and appetite-related hormones in healthy 

South Asian and white European men 

5.1 Introduction 

Cardiovascular disease (CVD) represents the main cause of death globally (WHO, 2017) 

as well as in the United Kingdom (BHF, 2019) and type 2 diabetes (T2D) represents the 

main CVD risk factors (IDF, 2019). South Asians have a heightened risk of CVD and 

T2D compared to white Europeans, irrespective of their place of living, with both 

conditions manifesting at younger age in the South Asian population (Sattar and Gill, 

2015; Gholap et al. 2011; Tziomalos et al. 2008). Although there seems to be a shift in 

the pattern of mortality risk between ethnicities with diabetic UK South Asians 

experiencing lower cardiovascular and all-cause mortality rate than their white European 

counterparts, the rate of cardiovascular complications such as myocardial infarction or 

stoke in British South Asians with diabetes continue to be higher than white Europeans 

(Johns and Sattar, 2017).    

 

There is clear evidence that South Asians have a greater percentage of body fat and intra-

abdominal adipose tissue for a given body mass index (BMI) compared with white 

European individuals which contributes to the elevated CVD and T2D risk in this 

population (Lear et al. 2012; Hall et al. 2010).  The reasons for these are uncertain. It is 

possible that this innate phenotype of increased adiposity may be linked with differences 

in food intake and appetite regulation between South Asian and white European 

individuals. Several appetite-related hormones play a key role in energy homeostasis and 

weight control, including acylated ghrelin and peptide YY (PYY) which are mediators 
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of hunger and satiety, respectively (Hussain et al. 2013). Recent work from our 

laboratory reported lower concentrations of fasting acylated ghrelin, but not differences 

in fasting total PYY levels, in South Asian than white European men, which may be 

linked to the greater adiposity in South Asians (Study 1, Chapter 3), but further work is 

required to confirm this. 

 

Given the important role of physical activity in the management of obesity and weight 

control, there has been considerable interest in the effects of exercise on appetite 

perception and energy intake in response to exercise and in the underlying mechanisms 

linking physical activity, appetite and weight management. In this regard, a plethora of 

studies have investigated the appetite and energy intake responses during and after acute 

bouts of continuous aerobic exercise (50-70% V̇O2 max, 30-90 min), with the majority 

of these studies showing a transient suppression of appetite perceptions during and 

shortly after exercise, known as ‘exercise-induced anorexia’ (Deighton and Stensel, 

2014). Furthermore, single sessions of exercise have consistently been shown to suppress 

acylated ghrelin concentrations and increasing levels of anorexigenic appetite-related 

hormones including total PYY, without stimulating subsequent changes in absolute 

energy intakes (Shubert et al. 2014). 

However, it remains unknown how differences in individual ethnicity background 

modulate appetite perceptions, energy intake and appetite-related hormones in response 

to exercise. Furthermore, since observational evidence suggests that South Asian 

individuals engage in less habitual physical activity than white European individuals, 

which is likely to contribute to their elevated CVD and T2D risk (Rastogi et al. 2004; 

Williams et al. 2011b; Yates et al. 2015), research to examine the impact of exercise on 

appetite regulation, energy intake in this population is warranted. 
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Therefore, the aim of this study was to investigate the effects of acute exercise on 

subjective appetite ratings, appetite-related hormones and ad libitum energy intake in 

healthy South Asian and white European men. 
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5.2 Methods 

5.2.1  Participants 

Following approval from Kingston University’s Ethics Advisory Committee (approval 

ethic code: 1617/034), 15 South Asian and 15 white European men aged 19–50 years 

provided written informed consent to participate in this study. The present study has been 

also registered as a clinical trial according to the protocol registration and results system 

(PRS) (registration number: NCT03698786). Based on previous preliminary data 

reported in Study 1 (Chapter 3), it was estimated that a sample size of 15 participants per 

group would have 83% power at the 0.05 level to detect a between-group difference in 

fasting acylated ghrelin of 1.11 between-subject standard deviations (SDs). The sample 

size was calculated using G*Power (Faul et al. 2007). Groups were matched for age and 

BMI. The South Asian group comprised seven British Asians born in the UK (UK Indian 

n=4; UK Pakistani n=2; UK Bangladeshi n=1) and eight individuals born in South Asia 

(India n=4; Pakistan n=2; Bangladesh n=1; Nepal n=1). Conversely, the white European 

group comprised nine British born participants and six individuals originating from 

European countries (Germany n=3; Spain n=1; Italy n=1; France n=1). One South Asian 

participant dropped out without giving any specific reason, thus it was excluded from 

analysis. This participant was therefore replaced with another South Asian man in order 

to have 15 South Asians and 15 white Europeans. All participants were non-smokers, 

had no personal history of cardiovascular/metabolic disease, were not taking any 

anticoagulant or anti-inflammatory medication and were not dieting. Before physical 

testing, the Physical Activity Readiness Questionnaire (PAR-Q) (Thomas et al. 1992) 

was completed by all participants to screen for possible contraindications to exercise. 

Table 1 shows the key participant characteristics. 
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5.2.2  Preliminary testing 

Before the main trials, participants visited the laboratory to undergo preliminary 

assessments and to be familiarised with the laboratory environment and study 

procedures. Specifically, participants completed questionnaires assessing general health 

status, contraindications for blood sampling and habitual physical activity levels 

(International Physical Activity Questionnaire (IPAQ)) (Craig et al. 2003). At this visit, 

the participants verbally confirmed acceptability of the standardised breakfast and ad 

libitum buffet meal subsequently provided during the main experimental trials. 

Body mass, stature, waist circumference, BMI, body composition and blood pressure 

were then measured as described in Chapter 2.2 and 2.5. Participants then completed an 

incremental exercise test to volitional exhaustion on an electromagnetically braked cycle 

ergometer (Lode Excalibur Sport, Groningen, Netherlands) for the determination of peak 

oxygen uptake (V̇O2 peak) as described in Chapter 2.6. Throughout the cardiorespiratory 

test, heart rate was monitored every 3 min using a HR monitor (Polar FT1, Polar Electro, 

Kempele, Finland). Oxygen consumption, HR and peak watts were used to determine the 

exercise intensity of the main trial. 

5.2.3  Experimental procedure 

Participants completed two, 7 h trials (control and exercise) in a randomised crossover 

design with at least 7 days between each trial. Figure 5.1 shows the trial protocol. 

Participants were asked to refrain from consuming alcohol, caffeinated drinks and from 

participating in strenuous exercise during the 24 h prior to each trial. Participants were 

also asked to consume 500 mL of plain water the night before the exercise trial to ensure 

euhydration. A food diary was completed in the 24 h prior to the first trial, with 
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participants required to replicate food and drink intake as closely as possible for the 24 h 

prior to the subsequent trial. 

On the morning of each trial, volunteers arrived at the laboratory at approximately 08:30 

after a 9 h overnight fast. Particularly, all participants were informed to not ingest any 

food or drink, apart from water, after 11 pm of the night before attending the laboratory. 

Furthermore, participants were informed to exert themselves minimally when travelling 

to the laboratory, using motorised transport where possible. Upon arrival, participants 

rested in a semi-supine position whilst a cannula was inserted into the antecubital vein 

by a trained phlebotomist, and a standardised breakfast meal was then consumed within 

15 min. The 7 h trial commenced at the start of the breakfast (0 h). In the exercise trial, 

participants rested throughout apart from completing 60 min of continuous cycling at 

70% of V̇O2 peak between 2 and 3 h. Samples of expired air were collected at 15, 30, 45 

and 60 min during exercise using an online breath-by-breath gas analysis system (as 

described above) to monitor the exercise work-load. Heart rate and ratings of perceived 

exertion (RPE) (Borg, 1973) were also recorded at this time. Energy expenditure and 

non-protein respiratory exchange ratio (RER) for the estimation of substrate utilisation 

were calculated from oxygen uptake and carbon dioxide production (Weir, 1990) during 

the exercise bout. A buffet meal was provided at 4 h and participants were free to 

consume ad libitum for 30 min. Identical procedures were followed in the control trial 

except that no exercise was performed. 
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5.2.4  Self-reported physical activity 

Raw data from the long form IPAQ were assessed following the questionnaire guidelines 

(Craig et al. 2003) and expressed as metabolic equivalent (MET) minutes per day spent 

in walking, moderate-to-vigorous physical activity (MVPA) and total physical activity. 

Total time spent sitting expressed as minutes per day was also reported. Data from 

participants with the sum total of all walking, moderate and vigorous time greater than 

960 minutes (16 hours) were excluded from the analysis (Craig et al. 2003). 

5.2.5  Appetite perceptions 

During each trial (exercise and control) perceptions of appetite (hunger, satisfaction, 

fullness and prospective food consumption) were assessed before starting the 

standardised breakfast meal and at 30 min intervals using 100 mm visual analogue scales 

(VAS) (Flint et al. 2000). An overall appetite rating was calculated as the mean value of 

the four appetite perceptions after reversing the values for satisfaction and fullness 

(Stubbs et al. 2000). 

5.2.6  Standardised breakfast and ad libitum meal 

The standardised breakfast consisted of a sandwich (55 g white bread, 23 g cheese, 10g 

mayonnaise and 40 g ham), 60 g chocolate muffin and 250 ml orange juice. For five 

South Asian participants ham was replaced with isocaloric tuna due to religious beliefs. 

The energy and macronutrient content of this meal was 2853 kJ, 46% carbohydrate, 14% 

protein and 40% fat.  

The ad libitum buffet meal was set up identically for each trial and consisted of granola, 

oats, corn flakes, white bread, semi skimmed milk, orange juice, cheese, ham/tuna, 

butter, margarine, mayonnaise, salted crisps, chocolate bars, cereal bars, cookies, 
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muffins, apples, oranges and bananas. All food pre-weighted and being presented in 

excess of expected consumption. Participants were told to eat until satisfied and that 

additional food was available if required. The buffet meal was consumed in isolation 

with no distraction and the use of computers or mobile phones was prohibited to 

minimise any influence on food consumption. At the end of the buffet meal, leftover food 

was weighed, and absolute energy intake and macronutrient composition of the food 

consumed was determined by calculating the weighted difference of each food item 

before and after each meal. In the exercise trial, relative energy intake was calculated as 

follows: absolute energy intake minus the net energy expenditure of exercise. Water was 

available ad libitum throughout the trials. 

5.2.7  Blood sampling 

Venous blood samples were collected via a cannula (Vasofix® Safety, B. Braun, 

Melsungen, Germany) inserted into an antecubital vein. Blood samples were collected at 

0, 0.75, 2, 3, 4, 4.75 and 7 h for the determination of acylated ghrelin, PYY, insulin and 

glucose concentrations. Full details of blood sample collection are reported in Chapter 

2.10. 

5.2.8  Analytical methods 

Plasma concentrations of acylated ghrelin, total PYY, and insulin were measured using 

commercially available enzyme-linked immunosorbent assays. Specifications of the 

analysis and details of the commercially available enzyme-linked immunosorbent assay 

kits are reported in Chapter 2.11.3 and 2.11.4. Plasma glucose concentrations were 

analysed immediately in singular using a glucose analyser (specifications of the analysis 

and details of the glucose analyser are reported in Chapter 2.11.4). Haemoglobin and 

haematocrit were analysed immediately in duplicate using a haematology blood counter 
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(Yuminez H500-CT, HORIBA ABX Diagnostic, Northampton, UK). The within batch 

coefficients of variation for the assays were as follows: 7.3 % acylated ghrelin, 3.2 % 

total PYY, 2.4 % insulin and 3.3 % glucose. 

5.2.9  Statistical analysis 

All statistical analyses were conducted using the analytical software SPSS version 23.0 

for Windows (SPSS 23.0, IBM Corp, Armonk, NY, USA). Normality of the data was 

checked using Shapiro-Wilk tests. Normally distributed data are presented as mean (SD). 

Data for self-reported physical activity and fasting plasma concentrations were not 

normally distributed and were natural log-transformed before analysis. These data are 

presented as geometric mean (95% confidence interval) and analysis is based on ratios 

of the geometric mean and 95% confidence intervals (CI) for ratios. The trapezium rule 

was used to calculate the time averaged total under the curve (tAUC).  Concentrations of 

plasma appetite-related hormones and metabolic markers are presented relative to 

baseline concentrations (delta) and time-averaged total area under the curve (tAUC) for 

these markers are also presented as delta values for consistency. Correction of plasma 

values for plasma volume changes did not alter the interpretation of the results and the 

unadjusted data are reported for simplicity. Habitual physical activity expressed as 

walking, MVPA, total physical activity and total sitting were compared between ethnic 

groups using linear mixed models including awake time as a covariate.  

Participants characteristics, exercise responses and self-reported physical activity levels 

were compared between the South Asian and white European men using linear mixed 

models with ethnic group included as a fixed factor. Differences in fasting plasma 

concentrations, baseline appetite perceptions, time-averaged tAUC and 

energy/macronutrient intakes were examined using linear mixed models with ethnic 
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group (South Asian, white European) and trial (exercise, control) modelled as fixed 

factors. Differences in appetite perceptions, appetite-related hormones, glucose and 

insulin concentrations over time were examined using linear mixed models with ethnic 

group, trial and time as fixed factors. Ethnicity-specific Spearman’s correlation 

coefficients using the mean difference between trials were used to examine the 

magnitude of linear association between the various predictors (age, body fat percentage, 

V̇O2 peak, appetite ratings) and outcome measures (acylated ghrelin, total PYY and 

insulin). Bivariate Spearman’s correlations were also used to determine associations 

between total carbohydrate oxidation during exercise and absolute energy intake in South 

Asian and white European men. Absolute standardised effect sizes (ES) (Cohen’s d) were 

calculated for each variable by dividing the difference between the mean values (South 

Asian versus white European) with the pooled SD. An ES of 0.2 was considered the 

minimum important difference, 0.5 moderate and 0.8 large (Cohen, 1988). Statistical 

significance was accepted as P < 0.05. 
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5.3 Results 

5.3.1  Participant characteristics 

The physical and physiological characteristics of the South Asian and white European 

men are shown in Table 5.1. The 95% CI for age, body mass, BMI, fat mass, body fat 

percentage, waist circumference and resting diastolic blood pressure overlapped zero (all 

P ≥ 0.064). However, standardised ESs were small-to-moderate for age, body fat 

percentage, waist circumference and resting diastolic blood pressure (ES = 0.26–0.44) 

and a moderate-to-large ES was observed for body mass (ES = 0.73). Compared with 

white European men, South Asian men had lower stature (ES = 1.16, P = 0.003), fat free 

mass (ES = 1.09, P = 0.006), resting systolic blood pressure (ES = 0.90, P = 0.020) and 

V̇O2 peak expressed in absolute (ES = 1.70, P < 0.001) and relative (ES = 0.99, P = 

0.007) terms. 

5.3.2  Self-reported physical activity 

Awake time adjusted total physical activity was lower in South Asian than white 

European men (ES = 0.78, P = 0.030) whereas total MVPA was meaningfully, albeit not 

significantly, lower in South Asians than white Europeans (ES = 0.78, P = 0.051) (Table 

5.2). South Asian men exhibited, on average, greater sitting time than white Europeans 

(ES = 0.72, P = 0.064), although the difference did not reach significance (Table 5.2). 

Walking (ES = 0.54, P = 0.116) and awake time (ES = 0.52, P = 0.165) were similar 

between groups (Table 5.2). 

 



 

 149 

Table 5.1.  Participant characteristics. 

 South Asians (n=15) White Europeans (n=15) 
White Europeans vs. South Asians 

Mean difference (95% CIa) Effect size 

Age (years) 29 (8) 33 (10) -4 (-11, 3) 0.44 

Stature (cm) 173.7 (6.8) 181.5 (6.6) -7.8 (-12.9, -2.8) b 1.16 

Body mass (kg) 76.0 (12.5) 85.5 (14.4) -9.5 (-19.5, 0.6) 0.73 

Body mass index (kg·m-2) 25.4 (4.5) 26.1 (3.8) -0.6 (-3.7, 2.4) 0.17 

Fat free mass (kg) 59.6 (8.8) 68.5 (7.5) -8.9 (-14.9, -2.8) b 1.09 

Fat mass (kg) 17.6 (8.0) 17.5 (10.7) 0.1 (-7.0, 7.1) 0.01 

Body fat (%) 22.4 (8.3) 19.3 (8.3) 3.2 (-3.0, 9.4) 0.37 

Waist Circumference (cm) 84.8 (9.8) 87.6 (11.5) -2.8 (-10.8, 5.1) 0.26 

Resting sBP (mmHg) 116 (12) 125 (8) -9 (-16, -1) b 0.90 

Resting dBP (mmHg) 77 (9) 75 (7) 2 (-4, 8) 0.26 

V̇O2 peak (L·min-1) 3.10 (0.61) 4.12 (0.59) -1.02 (-1.47, -0.57) b 1.70 

V̇O2 peak (mL·kg-1·min-1) 41 (7) 49 (9) -8 (-14, -2) b 0.99 

All values are mean (SD). Data were analysed using linear mixed models with group (South Asian vs. white European) included as a fixed 
factor.  

sBP, systolic blood pressure; dBP, diastolic blood pressure; V̇O2 peak, peak oxygen uptake 

a 95% confidence interval for the mean absolute difference between the groups. b Main effect of group (P < 0.05). 
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Table 5.2. Self-reported habitual physical activity levels and sitting time in South Asian and white European men. 

 South Asians  
(n=15) 

White Europeans 
(n=15) 

White Europeans vs. 
South Asians 

Mean difference (95% 
CIa) 

Effect 
size 

P value 

      

Walking (met∙min-1∙day-1) 90 (51, 158) 214 (120, 376) -44% (-73, 16%) 0.54 0.116 

Total MVPA (met∙min-1∙day-1) 184 (93, 357) 489 (249, 951) -63% (-86, 1%) 0.78 0.051 

Total PA (met∙min-1∙day-1) 395 (279, 558) 770 (545, 1090) -40 (-62, -5%) b 0.78 0.030 

Total sitting time (min∙day-1) 331 (264, 413) 265 (212, 332) 34% (-2, 84%) 0.72 0.064 

Awake time (min∙day-1) 589 (509, 681) 680 (588, 786) -13% (-30, 6%) 0.52 0.165 

All values are geometric mean (95% confidence interval). Statistical analyses are based on log-transformed data.  

Data were analysed using linear mixed models with group (South Asian vs. white European) included as a fixed factor.  Models for walking, 
total MVPA, total PA and total sitting included awake time as a covariate. 

MVPA moderate-to-vigorous physical activity; PA physical activity. 
a 95% confidence interval for the ratio difference of geometric means between the groups. 
b Main effect of group (P < 0.05). 
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5.3.3  Exercise responses  

Exercise net energy expenditure (ES = 1.54, P < 0.001), total fat oxidation (ES = 0.93, P 

= 0.018), total carbohydrate oxidation (ES = 1.07, P = 0.007) and absolute exercise work 

rate (ES = 1.69, P < 0.001) were lower in South Asian than white European men (Table 

5.3). All other exercise responses were similar between ethnic groups (all P ≥ 0.128) 

(Table 5.3).  

5.3.4  Ad libitum energy and macronutrient intakes 

Energy and macronutrient intakes during the ad libitum meal are shown in Table 5.4. 

Main effects of group revealed lower absolute energy intake (ES = 1.03, P = 0.003), 

relative energy intake (ES = 0.65, P = 0.017), carbohydrate intake (ES = 0.83, P = 0.015) 

and fat intake (ES = 1.02, P = 0.003) in South Asian compared with white European men. 

A main effect of trial for relative energy intake revealed exercise was lower than control 

(ES = 1.37, P < 0.001). A group-by-trial interaction for carbohydrate intake (P = 0.014) 

revealed lower intake in South Asians (mean difference (95% CI) -20 (-49, 10) g, ES = 

0.38, P = 0.184) and higher intake in white Europeans (mean difference (95% CI) 34 (5, 

64) g, ES = 0.50, P = 0.025) after exercise. No other main effects or group-by-trial 

interactions were identified for ad libitum energy and macronutrient intakes (all P ≥ 

0.063). 
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Table 5.3. Cycling exercise responses in South Asian and white European men.  

 South Asians 
(n=15) 

White Europeans 
(n=15) 

White Europeans vs. 
South Asians 

Mean difference 
(95% CIa) 

Effect size 

Heart rate (beats∙min-1) 159 (12) 154 (11) 5 (-4, 13) 0.43 

RPE (6-20) 13.7 (2.1) 13.9 (1.9) -0.3 (-1.8, 1.2) 0.20 

Respiratory exchange ratio 0.94 (0.02) 0.92 (0.04) 0.02 (-0.01, 0.04) 0.63 

Exercise intensity (% of V̇O2 peak) 67 (4) 69 (5) -3 (-6, 1) 0.56 

Work rate (Watts) 115 (21) 161 (32) -46 (-66, -25) b 1.69 

Work rate (% max power) 59 (6) 58 (7) 2 (-3, 6) 0.23 

Total fat oxidation (g) 13.7 (7.5) 21.9 (9.9) -8.2 (-14.9, -1.5) b 0.93 

Total carbohydrate oxidation (g) 106.7 (19.2) 136.5 (34.6) -29.8 (-50.9, -8.7) b 1.07 

Fat oxidation (% total energy expenditure) 20 (9) 22 (10) -2 (-9, 5) 0.21 

Carbohydrate oxidation (% total energy expenditure) 73 (8) 69 (10) 4 (-3, 11) 0.44 

Net energy expenditure (kJ) 2475 (469) 3324 (624) -849 (-1268, - 430) b 1.54 

All values are mean (SD). Data were analysed using linear mixed models with group (South Asian vs. white European) included as a fixed 
factor.  
RPE rating of perceived exertion; V̇O2 max maximum oxygen uptake. 
a 95% confidence interval for the mean absolute difference between the groups. 
b Main effect of group (P < 0.05). 
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Table 5.4.  Ad libitum energy and macronutrient intakes in South Asian and white European men. 

 South Asians  
(n=15) 

 
White Europeans  

(n=15) 

 
White Europeans 
vs. South Asians 
Mean difference 

(95% CIa) 

Control vs. Exercise  
Mean difference 

(95% CIa) 
 Control Exercise  Control  Exercise  

Absolute Energy intake (kJ) 5902 (1564) 5773 (1244)  7441 (1901) 8010 (2478)  -1888 (-3088, -687) b 220 (-474, 914) 

Relative Energy intake (kJ) 5902 (1564) 3298 (1103)  7441 (1901) 4686 (2485)  -1464 (-2649, -278) b -2679 (-3369, -1989) c 

Carbohydrate intake (g) 166.4 (55.3) 146.8 (47)  190.7 (54.2) 224.8 (80.7)  -51.1 (-91.4, -10.8) b,d 7.2 (-13.7, 28.1) d 

Fat intake (g) 58.9 (15.5) 60.2 (14.2)  83.5 (30.5) 82.3 (28.1)  -23.3 (-37.8, -8.8) b 0.1 (-9.5, 9.6) 

Protein intake (g) 53.7 (18.8) 62.7 (35.1)  65.9 (20.3) 68.7 (20.5)  -9.1 (-24.1, 5.8) 5.9 (-4.8, 16.6) 

All values are mean (SD). Data were analysed using linear mixed models with group (South Asian vs. white European) and trial (exercise vs. 
control) included as fixed factors.  
a 95% confidence interval for the mean absolute difference between the groups or trials. 
b Main effect of group (P < 0.05) 
c Main effect of trial (P < 0.001) 
d Group-by trial interaction (P = 0.014) 



 

 154 

5.3.5  Appetite perceptions 

Fasting overall appetite ratings at baseline were similar across groups and trials (main 

effect group P = 0.156; main effect trial P = 0.871; group-by-trial interaction P = 0.323) 

(Table 5.5). Linear mixed models for overall appetite identified a main effect of time (P 

< 0.001), group-by-time interaction (P = 0.013) and trial-by-time interaction (P = 0.014), 

but not a main effect of group (mean difference (95% CI) -2 (-7, 4) mm, ES = 0.07, P = 

0.521) or trial (mean difference (95% CI) -1 (-2, 1) mm, ES = 0.02, P = 0.590) (Figure 

5.2). Post hoc analysis of the group-by-time interaction revealed lower overall appetite 

in South Asian than white European participants at 6.5 h (mean difference (95% CI) -8 

(-18, -0.1) mm, ES = 0.58, P = 0.047). Post hoc analysis of the trial-by-time interaction 

revealed that overall appetite ratings were lower at 4.5 h (mean difference (95% CI) -11 

(-18, -3) mm, ES = 0.51, P = 0.004) and higher at 6.5 h (mean difference (95% CI) 8 (1, 

15) mm, ES = 0.53, P = 0.024) in the exercise than in the control trial. Time-averaged 

total area under the curve for overall appetite ratings were similar across groups and trials 

(main effect group P = 0.483; main effect trial P = 0.637; group-by-trial interaction P = 

0.452) (Table 5.6). 
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    Table 5.5. Fasting overall appetite, appetite-related hormone and glucose concentrations in South Asian and white European men. 
 

 South Asians  
(n=15) 

 
White Europeans  

(n=15) 

 
White Europeans 
vs. South Asians 
Mean difference 

(95% CIa) 

 
Control vs. Exercise  

Mean difference 
(95% CIa)  Control Exercise  Control  Exercise  

   Overall appetite (mm)  82 (13) 79 (18)  73 (14) 76 (12)  6 (-3, 16) -1 (-6, 5) 

   Acylated ghrelin (pg·mL-1) 38.6 (28.9, 51.5) 34.8 (26.1, 46.5)  52.2 (39.1, 69.7) 42.7 (32.0, 57.0)  -22% (-48, 16%) -14% (-22, -5%) c 

   Total peptide YY (pg·mL-1) 90.3 (74.9, 108.9) 94.0 (77.9, 113.3)  88.5 (73.4, 106.7) 88.9 (73.8, 107.2)  4% (-19, 33%) 2% (-8, 14%) 

   Insulin (µU·L-1) 6.5 (5.0, 8.4) 8.0 (6.1, 10.3)  4.8 (3.7, 6.3) 4.2 (3.3, 5.5)  59% (12, 125%) b,d 4% (-11, 21%) d 

   Glucose (mmol·L-1) 5.5 (5.3, 5.8) 5.8 (5.5, 6.1)  5.6 (5.4, 5.9) 5.8 (5.5, 6.0)  0% (-6, 6%) 4% (0, 7%) c 

Values for overall appetite ratings are mean (SD). Values for appetite-related hormones and glucose are geometric mean (95% confidence interval) and statistical 
analyses are based on log-transformed data.  
Data were analysed using linear mixed models with group (South Asian vs white European) and trial (exercise vs control) included as fixed factors.   
a Normally distributed data: 95% confidence interval for the mean absolute difference between the groups or trials; and log transformed data: 95% confidence 
interval for the ratio difference of geometric means between the groups or trials.  
b Main effect of group (P < 0.05). 
c Main effect of trial (P < 0.05). 
d Group-by trial interaction (P = 0.030). 
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Figure 5.2. Overall appetite perceptions in South Asian (n=15) and white European (n=15) men during the control (South Asian -○-; white European -□-) 

and exercise (South Asian -●-; white European -■-) trials. Values are mean (s.e.m.). Black rectangle indicates standardised breakfast, open rectangle 

indicates exercise, and grey rectangle indicates ad libitum buffet meal. aLower in exercise than control trial (trial-by-time interaction, P = 0.004), bHigher 

in exercise than control trial (trial-by-time interaction, P = 0.024), cLower in South Asian than white European men (group-by-time interaction, P = 0.047). 
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Table 5.6. Time averaged total area under the curve for overall appetite, appetite-related hormone and glucose concentrations in South Asian and white 
European men. 
 

 South Asians  
(n=15) 

 
White Europeans  

(n=15) 

 White Europeans vs. 
South Asians  

Mean difference 
(95% CIa) 

Control vs. 
Exercise  

Mean difference 
(95% CIa) 

  Control Exercise  Control  Exercise  

Overall appetite 22.8 (4.5) 21.9 (3.9)  23.2 (4.3) 23.4 (4.6)  -0.9 (-3.8, 1.9) -0.4 (-1.8, 1.2) 

Acylated ghrelin (pg·mL-1 h) -5.26 (7.70) -4.27 (5.59)  -5.67 (5.60) -3.52 (5.70)  -0.17 (-4.40, 4.06) 1.57 (-0.35, 3.50) 

Total peptide YY (pg·mL-1 h) 7.80 (6.93) 9.79 (9.58)  6.11 (13.14) 9.80 (8.13)  0.83 (-4.77, 6.44) 2.84 (-1.87, 7.54) 

Insulin (µU·L-1 h) 15.57 (8.19) 15.98 (12.85)  5.81 (2.76) 7.56 (3.95)  9.10 (3.70, 14.50)b 1.08 (-1.47, 3.63) 

Glucose (mmol·L-1 h) 0.27 (0.23) 0.28 (0.28)  0.04 (0.31) 0.19 (0.25)  0.15 (0.02, 0.29)b 0.08 (-0.07, 0.23) 

All values are mean (SD). Data were analysed using linear mixed models. Data for appetite-related hormone and glucose are reported as delta values. 
a 95% confidence interval for the mean absolute difference between the groups or trials. 
b Main effect of group (P < 0.05).
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5.3.6  Plasma concentrations of appetite-related hormones and glucose 

5.3.6.1 Acylated ghrelin 

Fasting acylated ghrelin concentrations were not significantly different between groups (ES = 

0.46; P = 0.211) but were lower in the exercise than the control trial (ES = 0.27, P = 0.006) 

(Table 5.5). Delta acylated ghrelin concentrations are displayed in Figure 5.3 and linear mixed 

models identified a main effect of trial (P = 0.006), time (P < 0.001) and group-by-time 

interaction (P < 0.001). Delta acylated ghrelin concentrations were similar between groups 

(mean difference (95% CI) 0.1 (-9.3, 9.4) pg mL-1, ES = 0.01; P = 0.986) (Figure 5.3) whereas 

absolute acylated ghrelin concentrations were meaningfully, albeit not significantly, lower in 

South Asian than white European men (mean difference (95% CI) -25.5 (-46.3, 3.4) pg mL-1, 

ES = 0.54; P = 0.076) (Table 5.7). The main effect of trial revealed higher delta acylated ghrelin 

in the exercise than in the control trial (mean difference (95% CI) 3.6 (1.1, 6.2) pg mL-1, ES = 

0.18, P = 0.006) (Figure 5.3), whereas absolute acylated ghrelin levels were lower in the 

exercise than in the control trial (main effect of trial; mean difference (95% CI) -10.1 (-14.6, 

5.3) pg mL-1, ES = 0.19, P < 0.001) (Table 5.7).  Post hoc analysis of the group-by-time 

interaction revealed lower delta acylated ghrelin in the South Asian compared with the white 

European men at 4 h (mean difference (95% CI) -18.6 (-29.7, -7.4) pg mL-1, ES = 0.84; P = 

0.001). Likewise, a group-by-time interaction was identified for absolute acylated ghrelin 

concentrations (P = 0.006), with South Asian revealing lower acylated ghrelin at 3 h and 4 h 

than white European men (all ES ≥ 0.75, P ≤ 0.038) (Table 5.7). Time-averaged tAUC for delta 

acylated ghrelin was similar across groups and trials (main effect group ES = 0.03, P = 0.934; 

main effect trial ES = 0.26, P = 0.105; group-by-trial interaction P = 0.539) (Table 5.6). 

5.3.6.2 Total PYY 

Total PYY concentrations at baseline were similar across trials and groups (main effect group 
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P = 0.760, main effect trial P = 0.681, group-by-trial interaction P = 0.749) (Table 5.5). Linear 

mixed models for delta total PYY identified a main effect of trial (P = 0.012), time (P < 0.001) 

but not group (mean difference (95% CI) 2.3 (-10.5, 15.1) pg mL-1, ES = 0.07, P = 0.716) or 

any interaction effects (P ≥ 0.317) (Figure 5.3). The main effect of trial revealed higher delta 

total PYY concentrations in the exercise than in the control trial (mean difference (95% CI) 6.2 

(1.4, 11.0) pg mL-1, ES = 0.19, P = 0.012). Absolute concentrations of total PYY were higher 

in the exercise than in the control trial (main effect of trial; mean difference (95% CI) 5.0 (1.5, 

8.7) pg mL-1, ES = 0.14, P = 0.004) but similar between groups (ES = 0.09, P = 0.756) (Table 

5.7). Time-averaged tAUC for delta total PYY was similar across groups and trials (main effect 

group ES = 0.09, P = 0.763; main effect trial ES = 0.29, P = 0.227; group-by-trial interaction P 

= 0.714) (Table 5.6). 

5.3.6.3 Insulin  

Fasting insulin concentrations were similar between trials (ES = 0.07, P = 0.614) but were 

higher in South Asian than white European men (ES = 0.92, P = 0.011) (Table 5.5). A group-

by-trial interaction (P = 0.030) for fasting insulin revealed higher concentrations in South 

Asians (ratio difference (95% CI) 23 (-1, 52)%, ES = 0.40, P = 0.058) and lower values in white 

Europeans (ratio difference (95% CI) -12 (-29, 9)%, ES = 0.26 , P = 0.220) (Table 5.5) in the 

exercise compared with the control trial. Linear mixed models for delta insulin identified a main 

effect of group (P = 0.003), time (P < 0.001), and group-by-time interaction (P < 0.001) but 

were similar between trials (mean difference (95% CI) 2.6 (-2.1, 7.4) µU L-1, ES = 0.07; P = 

0.276) (Figure 5.3). The main effect of group revealed higher insulin concentrations in South 

Asian than white European men (mean difference (95% CI) 19.8 (7.4, 32.1) µU L-1, ES = 0.54, 

P = 0.003) (Figure 5.3). Post hoc analysis of the group-by-time interaction revealed higher 

insulin concentrations in the South Asian than white European participants at 0.75 h, 2 h, 4.75 

h and 7 h (all ES ≥ 0.57, P ≤ 0.011). Absolute concentrations of insulin were also higher in 

South Asians (main effect of group; mean difference (95% CI) 96.6 (39.7, 177.7) µU L-1, ES = 
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0.63, P < 0.001) (Table 5.7). Particularly, South Asians exhibited greater absolute 

concentrations of insulin at 0h, 0.75h, 2 h, 3h, 4h, 4.75 h and 7 h (group-by-time interaction; all 

ES ≥ 0.65, P ≤ 0.038) (Table 5.7). Time averaged tAUC for delta insulin was higher in South 

Asian than white European men (ES = 1.16, P = 0.002) but similar between trials (ES = 0.12, 

P = 0.393) (Table 5.6). 

5.3.6.4  Glucose 

Fasting glucose concentrations were similar between groups (ES = 0.05; P = 0.869) but were 

higher in the exercise than in the control trial (ES = 0.38, P = 0.043) (Table 5.5). Linear mixed 

models for delta glucose identified a main effect of group (P = 0.027), trial (P = 0.052), time 

(P < 0.001), group-by-time (P = 0.008), and trial-by-time (P = 0.011) interactions (Figure 5.3). 

Delta glucose concentrations were higher in South Asian than white European men (mean 

difference (95% CI) 0.35 (0.04, 0.65) mmol L-1, ES = 0.27, P = 0.027) and higher in the exercise 

trial than the control trial (mean difference (95% CI) 0.19 (-0.001, 0.38) mmol L-1, ES = 0.15, 

P = 0.052) (Figure 5.3). Post hoc analysis of the group-by-time interaction revealed higher delta 

glucose in South Asians than white Europeans at 0.75 h and 2 h (both ES ≥ 0.72, P = 0.001) 

whereas post hoc analysis of the trial-by-time interaction revealed higher delta glucose in the 

exercise than in the control trial at 3 h and 4.75 h (both ES ≥ 0.60, P ≤ 0.039). Absolute glucose 

concentrations were also higher in the South Asian than white European men at 0.75h and 2h 

(group-by-time interaction; all ES ≥ 0.67, P ≤ 0.008), and in the exercise than in the control 

trial (mean difference (95% CI) 6.6 (3.7, 9.5) mmol L-1, ES = 0.31, P < 0.001), particularly at 

3h, 4.75h and 7h (trial-by-time interaction; all ES ≥ 0.55, P ≤ 0.038) (Table 5.7). Time-averaged 

tAUC for delta glucose was higher in South Asian than white European men (ES = 0.55, P = 

0.024) but similar between trials (ES = 0.28, P = 0.297) (Table 5.6). 
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5.3.7  Correlations 

Age was positively associated with fasting insulin in South Asian (r = 0.520, P = 0.047) and 

with time averaged tAUC for insulin in white European men (r = 0.714, P = 0.003) (Table 5.7). 

There were no other significant correlations between the various predictors and baseline or 

exercise-induced changes in tAUC values for acylated ghrelin and total PYY (P ≥ 0.089). Total 

carbohydrate oxidation during exercise was positively associated with absolute energy intake 

at the subsequent buffet meal in South Asian (r = 0.722, P = 0.002) but not in white European 

men (r = 0.240, P = 0.409). 
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Figure 5.3. Plasma concentrations of (a) delta acylated ghrelin (top panel), (b) delta total PYY (bottom panel), (c) delta insulin (top panel) and (d) delta 

glucose (bottom panel) in South Asian (n=15) and white European (n=15) men during the control (South Asian -○-; white European -□-) and exercise (South 

Asian -●-; white European -■-) trials. Values are mean (s.e.m.). Black rectangle indicates standardized breakfast, open rectangle indicates exercise, and 

grey rectangle indicates ad libitum buffet meal. aLower in South Asian than white European men (group-by-time interaction, P = 0.001), bHigher in South 

Asian than white European men (group-by-time interaction, all P ≤ 0.011), cHigher in exercise than control trial (trial-by-time interaction, P ≤ 0.039).  
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Table 5.7: Plasma Absolute concentrations of appetite-related hormone and glucose in South Asian and white European men during the control and exercise trial. 

 South Asians  
(n=15) 

 
White Europeans  

(n=15) 

 
White Europeans vs. 

South Asians 
Mean difference 

(95% CIa) 

 
Control vs. Exercise  

Mean difference 
(95% CIa) 

 Control Exercise  Control  Exercise  

   Acylated ghrelin (pg·mL-1) 28.9 (22.9,36.6) 26.4 (20.9. 33.4)  39.4 (31.2, 49.8) 34.9 (27.6, 44.2)  -25.5% (-46.3, 3.4%)d -10.1% (-14.6, -5.3%)c 

   Total peptide YY (pg·mL-1) 107.6 (93.1, 124.2) 115.4 (99.9, 133.2)  106.5 (92.2, 123.0) 109.5 (94.8, 126.5)  3.1% (-15.6, 26.1%) 5.0% (1.5, 8.7%)c 

   Insulin (µU·L-1) 23.5 (18.3, 30.3) 25.2 (19.6, 32.4)  11.6 (9.1, 14.9) 13.2 (10.3, 16.9)  96.6% (39.7, 177.0%)b,d 10.2% (0.2, 21.2%)c 

   Glucose (mmol·L-1) 6.0 (5.7, 6.4) 6.3 (6.0, 6.7)  5.6 (5.3, 5.9) 6.1 (5.7, 6.4)  5.8% (-1.6, 13.8%)d 6.6% (3.7, 9.5%)c,e 

All values are geometric mean (95% confidence interval) and statistical analyses are based on log-transformed data. 

Data were analysed using linear mixed models with group (South Asian vs white European), trial (exercise vs control) and time (7 h trial) included as 
fixed factors.   

a95% confidence interval for the ratio difference of geometric means between the groups or trials. 

bMain effect of group (P < 0.05). 

cMain effect of trial (P < 0.05). 

dGroup-by time interaction (P < 0.05). 

eTrial-by time interaction (P < 0.05). 
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Table 5.8. Ethnicity-specific Spearman’s correlation coefficients between the various predictors and appetite-related hormones. 

 
         Fasting                          Delta AUC                        Fasting                         Delta AUC                         Fasting                        Delta AUC     
  acylated ghrelin              acylated ghrelin                  total PYY                       total PYY                           insulin                            insulin 

 
South 
Asian 

White 
European 

South 
Asian 

White 
European 

South 
Asian 

White 
European 

South 
Asian 

White 
European 

South 
Asian 

White 
European 

South 
Asian 

White 
European 

Age 0.21 0.19 -0.061 -0.19 -0.14 0.22 -0.45 -0.24 0.52a 0.04 0.22 0.03 

Body fat -0.27 0.27 -0.025 0.375 0.25 0.24 -0.28 0.27 0.19 0.30 0.26 0.71a 

V̇O2 max 0.05 0.01 -0.11 -0.24 -0.05 0.01 0.38 0.08 -0.20 -0.02 0.14 0.11 

Baseline appetite 0.41 -0.45 0.36 0.36 -0.01 -0.31 0.06 0.21 -0.26 -0.14 -0.01 0.05 

AUC appetite -0.03 0.34 -0.12 -0.29 0.23 0.17 0.18 -0.32 -0.41 0.25 -0.28 0.26 

   AUC, area under the curve; V̇O2 max, maximum oxygen uptake; MVPA moderate-to-vigorous physical activity 
    a P < 0.05  
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5.4 Discussion 

The primary finding of this study was that appetite perceptions, energy intake and 

appetite-related hormones in response to acute exercise were similar between South 

Asians and white European men. However, subtle differences in appetite-measures 

between the groups were detected with South Asian men exhibiting lower: (1) appetite 

perceptions 2 hours after the buffet meal; (2) delta acylated ghrelin concentrations at 4 h; 

and (3) carbohydrate ingestion at the buffet in response to exercise. Furthermore, 60 min 

of moderate-to-vigorous intensity cycling increased concentrations of delta acylated 

ghrelin and total PYY and induced subtle changes in appetite perceptions such as 

transient suppression in appetite perceptions at 4.5 h and stimulation at 6.5 h, without 

provoking energy compensation in South Asian and white European men. Overall, these 

findings demonstrate that exercise induces an energy deficit irrespective of ethnicity and 

suggest similar exercise-induced responses in appetite perceptions and appetite-related 

hormones between South Asian and white European men. 

To the authors’ knowledge, the present study is the first to compare acute exercise effects 

on appetite responses between healthy South Asian and white European men. Our results 

demonstrate that subjective feelings of appetite were similar between the ethnic groups 

in response to 60 min moderate-to-vigorous cycling. However, a subtle difference in 

appetite perceptions between ethnicities was detected at 2 h after the ad libitum buffet 

meal with South Asians exhibiting lower appetite ratings than white European men across 

both trials. Although this represents a subtle difference in appetite feelings between 

groups, this difference may be the result of the greater appetite feelings in white European 

participants due to their greater net energy expenditure during exercise. Compared with 

the control trial, subtle differences in appetite perceptions including a transient appetite 
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suppression at 4.5 h (1.5 h post-exercise) and stimulation at 6.5 h (3.5 h post-exercise) 

were observed with exercise in both ethnic groups. Existing evidence suggests transient 

appetite suppressions during and immediately after moderate-to-high intensity exercise, 

which typically returns to resting control values within 30 to 60 min of exercise cessation 

(Broom et al. 2007; Becker et al. 2012; Martins et al. 2007; Douglas et al. 2017). In most 

of these studies, however, exercise was performed following an overnight fast whereas 

studies investigating appetite feelings in response to postprandial exercise revealed a 

prolonged and more substantial appetite suppression after exercise compared with the 

fasted exercise and control trial (Deighton et al. 2012; Cheng et al. 2009). In this regard, 

Cheng et al. (2009) demonstrated that cycling for 50 min at 60% of V̇O2 max 2 h after a 

standardised meal suppressed appetite feelings for a longer period of time than 

performing the same exercise after an overnight fast. Likewise, Deighton et al. (2012) 

demonstrated that running for 60 min at 70% of V̇O2 max approximately 2 h after a 

standardised breakfast also prolonged appetite suppression than performing the exercise 

trial after an overnight fast. Therefore, it is plausible that the transient appetite 

suppression at 4.5 h (1.5 h post-exercise) in the exercise than control trial in our study 

reflects the prolonged appetite suppression effects induced by exercise performed 

postprandially. In contrast, the transient appetite stimulation at 6.5 h (3.5 h post-exercise), 

may relate to the extra energy expended during the exercise.   

The present study investigated differences in circulating acylated ghrelin in South Asian 

and white European individuals in response to exercise. Although the mechanisms 

underlying appetite responses to exercise are still unclear, previous studies suggest that 

suppression of circulating acylated ghrelin concentrations during exercise, with 

perturbations typically returning to control values within 30 min, may contribute to the 

acute exercise-induced appetite suppression (Deighton and Stensel, 2014). In the present 
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study, however, delta acylated ghrelin was not decreased during or immediately after 

exercise which may be explained by the timing of exercise after the standardised 

breakfast given that at 2 h acylated ghrelin values were still lower than baseline and this 

may have influenced the response of this gut hormone during exercise. Furthermore, the 

present study revealed greater delta acylated ghrelin concentrations in the exercise 

compared with the control trial which differs from previous studies reporting lower or no 

change in absolute or delta acylated ghrelin concentrations during or shortly after 

exercise (Broom et al. 2017; Wasse et al. 2013; Deighton et al. 2013a). This disparity, 

however, is most likely induced by the elevated fasting (baseline) acylated ghrelin 

concentrations in the control than in the exercise trial, and by the method used to 

represent the data (delta change instead of absolute concentrations). Indeed, normalising 

the acylated ghrelin values across the 7 h for the baseline levels (delta) resulted in a 

downwards shift of the control values, particularly after both meals, which accentuated 

the difference in delta acylated ghrelin across 7 h between trials.  In support of this, the 

examination of the absolute data revealed lower absolute acylated ghrelin concentrations 

over the 7 h trial in the exercise than in the control trial, which seems to reflect the lower 

fasting (baseline) acylated ghrelin in the exercise than in the control trial. In this regard, 

although individual variability in fasting acylated ghrelin concentrations has been 

previously reported (Larson-Meyer et al. 2012), it remains unknown how baseline 

concentrations were different between trials. 

The present study also examined differences in acylated ghrelin between South Asian 

and white European men. Preliminary evidence from our laboratory reported lower 

fasting acylated ghrelin concentrations in South Asian than white European men at rest 

(Study 1, Chapter 3), whereas in the present study fasting values were not statistically 

different between groups, although values were visibly lower in South Asian than white 
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Europeans. In our previous research South Asians exhibited an elevated adiposity than 

white European men and the ethnic group difference in fasting acylated ghrelin levels 

was mitigated after controlling for body fat percentage.  Conversely, in the present study 

body fat percentage did not differ significantly between groups which may explain why 

fasting acylated ghrelin levels were not statistically lower in South Asian compared to 

white European participants. Delta acylated ghrelin concentrations were similar between 

ethnic groups suggesting no differences in this gut peptide across both trials between 

South Asian and white European men. However, it is possible that these data also result 

from the use of delta change to represent the data as the absolute data revealed a 

meaningfully, albeit not significant, lower acylated ghrelin concentrations in South Asian 

than white European men across both trials. The different results of the absolute data 

compared with the delta values, however, may reflect the tendency for resting acylated 

ghrelin concentration to be lower in South Asians than white Europeans at baseline 

(fasting), which influenced the absolute concentrations throughout the trials. Indeed, 

normalising the acylated ghrelin values throughout for the baseline (delta), shifted the 

curves down for the white European, due to their higher fasting values, more than for the 

South Asian group. Furthermore, the grater meal induced suppression particularly after 

breakfast (0.75 h) was cancelled out by the greater elevation before the buffet meal (4 h) 

in white European men, resulting in similar mean delta acylated ghrelin concentrations 

across the 7 h trial between groups, thus no main effect of ethnicity for delta values. The 

lower concentration of delta acylated ghrelin in South Asian men observed before the ad 

libitum buffet meal, in line with the absolute data, represents an important finding of the 

present study. Based on previous studies, insulin resistance and compensatory 

hyperinsulinemia are shown to be inversely associated with acylated ghrelin 

concentration, independently of BMI and adiposity (Flanagan et al. 2003; McLaughlin et 
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al. 2004; Becker et al. 2012; Hazell et al. 2015). In this study, South Asians exhibited 

higher fasting insulin and elevated postprandial glucose and insulin concentrations 

compared with BMI-matched white European men, which are indicative of a greater 

degree of insulin resistance. Therefore, it is plausible that the different levels of acylated 

ghrelin before the buffet meal in this study reflects the insulin resistance phenotype in 

South Asians (Sattar and Gill, 2015). Furthermore, the inversely association between 

insulin and acylated ghrelin concentrations irrespective of adiposity, would support the 

trend of lower fasting acylated ghrelin in South Asian than white European men with 

similar body fat percentage observed in the present study. 

It is well-established that South Asian individuals are more insulin resistant than white 

Europeans which has been linked to their greater percent body fat (Sattar and Gill, 2015; 

Gholap et al. 2011). However, it has been suggested that the greater insulin resistance in 

South Asians is only partly explained by differences in adiposity with studies showing 

greater fasting or postprandial insulin in South Asians even after adjustment for adiposity 

(Ghouri et al. 2013; Sattar and Gill, 2015; Chandalia et al. 1999). This is in agreement 

with our findings where South Asians exhibited higher fasting insulin and elevated 

glucose and insulin post-prandial despite having similar levels of body fat than white 

European men. There is evidence that exercise-related factors such as low levels of 

physical activity and cardiorespiratory fitness and reduced capacity for fat oxidation 

during exercise are key features of the insulin resistance phenotype in South Asians (Afaq 

et al. 2019; Biddle et al. 2019; Ghouri et al. 2013; Yates et al. 2018; Hall et al. 2010). 

Specifically, Hall and colleagues (2010) demonstrated positive associations of 

cardiorespiratory fitness and fat oxidation during submaximal exercise with insulin 

sensitivity index in South Asian men (Hall et al. 2010). Additionally, in the same study 

the lower insulin sensitivity index in South Asians than white European participants was 
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abolished after adjusting for cardiorespiratory fitness and fat oxidation during exercise, 

although the mechanisms explaining the lower capacity for fat oxidation in South Asians 

and how this relates to their insulin resistance remain unclear. Regardless of the 

mechanisms, the reduced cardiorespiratory fitness and fat oxidation during exercise in 

South Asians in this study supports previous work regarding the differential 

cardiorespiratory fitness and capacity for fat oxidation during exercise between South 

Asians and white European men. 

Concentrations of fasting total PYY and across the 7 h trial were similar between South 

Asian and white European men supporting our previous findings (Benedetti et al. 2019). 

Furthermore, in agreement with previous investigations, delta PYY concentrations were 

greater in the exercise than in the control trial (Martins et al. 2007; Kawano et al. 2013; 

Douglas et al. 2017), over the 7 h trial. In this study the greater delta total PYY in the 

exercise compared with the control trial appears to be driven by the increase of total PYY 

after the exercise bout and the ad libitum buffet meal, although we did not identify any 

exercise by time effect. Considering previous studies reporting increase in total PYY 

concentrations concomitantly with a reduction in hunger (Douglas et al. 2017), it is 

possible that the increase in total PYY concentrations contributed to the appetite 

suppression observed in this study immediately after the buffet meal, although 

perturbations in PYY appear to not explain the transient appetite stimulation at 6.5 h,	

since PYY did not change at this time point. However, it warrants mention that other 

satiating hormones as well as physiological factors not examined in the present study, 

mediate exercise-induced appetite responses (Hussain and Bloom, 2013) which may 

contribute to explain the transient appetite changes observed in the present study. 
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An important consideration in the context of the benefits of physical activity for the 

management of weight and fat loss concerns subsequent energy intake response. For 

weight/fat loss to occur, a sustained negative energy balance is required, and the majority 

of previous evidence has demonstrated no energy compensation in response to an acute 

bout of exercise during the following meal (Deighton et al. 2014; Alajmi et al. 2015; 

Douglas et al. 2017). In agreement with this, in the present study South Asian and white 

European participants did not exhibit exercise-induced changes in absolute energy intake 

at the ad libitum meal, whereas relative energy intake was lower after exercise. Taken 

together, these data suggest that exercise induces a short-term energy deficit in South 

Asian and white European men. However, our finding that carbohydrate intake after 

exercise was reduced in South Asian men and increased in white European men is 

intriguing. Although this difference may be merely related to the lower net energy 

expenditure over the 60 min cycling in South Asian than white European men, previous 

evidence demonstrated a positive association between carbohydrate oxidation during 

exercise and energy intake at a test meal provided 60 min after a bout of cycling 

performed at 70% of maximum heart rate (Hopkins et al. 2014). In agreement with these 

findings, we identified a strong positive association, in South Asian but not in white 

European men, between total carbohydrate oxidation during exercise and absolute energy 

intake at subsequent the buffet meal. Therefore, the lower carbohydrate oxidation in 

South Asian men during exercise may be speculatively linked with lower glycogen 

depletion which elicited a lower compensatory drive to ingest food and restore glycogen 

stores at the buffet meal. The present study also revealed lower absolute energy intake 

across both trials in South Asian than white European men which may be explained by 

the ethnic differences in fat free mass. Specifically, in the present study South Asian 

exhibited a lower fat free mass (also known as lean body mass) than white European men 



 

 172 

which is in agreement with previous data (Hall. et al. 2010; Ghouri et al. 2013; Sattar and 

Gill; 2015). Furthermore, several studies have shown that fat free mass is an important 

determinant of resting metabolic rate, daily energy expenditure and day-to-day food 

intake (Blundell et al. 2011; Weise et al. 2013; Hopkins et al. 2017). In this regard, Weise 

et al. (2013) demonstrated that ad libitum energy intake (measured objectively in a 

laboratory environment) were positively associated with fat free mass in lean and obese 

individuals. These data were in line with those by Blundell et al. (2011), who reported 

that self-selected meal size and total daily energy intake were positively correlated with 

lean body mass in overweight and obese individuals. Thus, it is possible that the lower 

absolute energy intake in South Asian men in our study may reflect their lower fat free 

mass which induced a lower drive to ingest food at the buffet meal than white European 

counterpart. 

Although this research provides novel findings on the effects of exercise on appetite 

regulation and food intake in healthy South Asian men compared with white European 

men, a limitation of this study is that acylated ghrelin and total PYY were the only gut 

hormones related to appetite examined. Thus, additional gut hormones should be 

considered for further research comparing exercise-induced appetite responses in South 

Asian and white European individuals. Secondly, the timing of the exercise 2 h after the 

standardised breakfast may have influenced acylated ghrelin responses as the 

concentrations of this hormone was still lower than the fasting values at the start of 

exercise. Lastly, the population sample was mostly limited to South Asian men 

originating from India and Pakistan, therefore, further investigations are required in other 

South Asian groups (e.g., Bangladeshis, Sri Lankan, Nepalese and Bhutanese) and in 

South Asian and white European women.  
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In conclusion, overall a single bout of acute moderate-to-vigorous intensity exercise 

induced similar appetite responses between South Asian and white European men 

although some subtle differences were observed where South Asians exhibited lower 

appetite feelings 2 h after the buffet meal and lower levels of delta acylated ghrelin before 

the buffet meal compared with white European men. Furthermore, exercise did not 

provoke any compensatory changes in energy intake in both groups on the day of 

exercise. These findings provide evidence that acute exercise induces a short-term energy 

deficit irrespective of ethnicity and suggest similar exercise-induced responses in 

appetite perceptions and appetite-related hormones between South Asian and white 

European men. 
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Chapter 6 – General discussion 

 

This final chapter aims to integrate and discuss the main findings of the studies presented 

in this thesis. Previous research suggests that South Asians have an elevated risk of CVD 

and T2D than white European individuals, which has been associated to the higher 

prevalence of different risk factors including greater adiposity, insulin resistance or 

dyslipidaemia (Gholap et al. 2011; Khunti et al. 2013).  However, these traditional risk 

factors have been reported to not fully explain the elevated risk of CVD and T2D in South 

Asian compared with white European individuals (Forouhi et al. 2006). Therefore, this 

thesis investigated ethnic differences in traditional and unconventional CVD and T2D 

risk markers such as CRP, IL-6, leptin, FFAs as well as appetite-related hormones in 

relation to physical activity/cardiorespiratory fitness and compared appetite measures in 

response to acute exercise in South Asian and white European men. 

6.1 Acylated ghrelin and total PYY 

Ethnic differences in the short-term regulation of appetite and energy intake may underlie 

the well-established elevated adiposity and associated in South Asian than white 

European men. In this regard, the first Study 1 (Chapter 3) revealed lower fasting acylated 

ghrelin concentrations in the South Asian compared with the white European group, 

which represents a novel finding of this study. Although the reason for this finding is 

unclear, it may be linked to the ethnic group differences in adiposity observed. In this 

regard, previous research has demonstrated that individuals with obesity exhibit lower 

circulating concentrations of fasting ghrelin compared with lean individuals (Le Roux et 

al. 2005). Although our findings only revealed a large inverse correlation between body 

fat percentage and acylated ghrelin in the white European men, the ethnic group 
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difference in fasting acylated ghrelin concentrations was mitigated after controlling for 

body fat percentage. Therefore, it was suggested that the lower acylated ghrelin 

concentration in the South Asian men may be associated to the higher body fat levels 

observed in this group. The findings from Study 3 (Chapter 5) appear to support these 

results, where concentrations of fasting acylated ghrelin were not statistically different 

between South Asian and white European men, with both groups exhibiting similar 

percentage of body fat. Thus, it is plausible that ethnic differences in fasting 

concentrations of this gut hormone observed in Study 1 (Chapter 3) may reflect the 

differences in adiposity between ethnic groups. This thesis also examined ethnic 

differences in plasma total PYY between South Asian and white European men. Despite 

the between-group differences in acylated ghrelin in Study 1 (Chapter 3), the same study 

did not reveal significant differences in fasting total PYY and this finding was supported 

in Study 3 (Chapter 5), suggesting no ethnic-differences in concentrations of this gut 

peptide.  

However, whereas the mechanisms explaining the fluctuation of ghrelin concentrations 

related to changes in body weight/fat remain unclear,	 there is evidence showing that 

decreased ghrelin levels observed in obesity may be related more to insulin resistance 

than to higher BMI or fat mass (Flanagan et al. 2003; McLaughlin et al. 2004). In this 

regard, McLaughlin and colleagues (2004) demonstrated lower ghrelin concentrations in 

the obese insulin-resistant group compared with the obese insulin-sensitive group 

(McLaughlin et al. 2004). Additionally, the same study exhibited negative correlations 

of ghrelin with insulin resistance and insulin concentrations, with these data suggesting 

that insulin resistance and hyperinsulinemia may be associated with ghrelin suppression 

independently of adiposity (McLaughlin et al. 2004). In line with this, Study 1 (Chapter 
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3) revealed elevated fasting insulin in South Asian than white European participants, 

which may have contributed to the lower acylated ghrelin in the South Asian group.  

6.2  Glucose and insulin  

Study 1 (Chapter 3) also revealed higher glucose and insulin OGTT concentrations in 

South Asian than white European men, supporting previous research (Gholap et al. 2011; 

Tziomalos et al. 2008; Peters et al 2013). These differences are indicative of a greater 

degree of insulin resistance and were further supported by the higher HOMA-IR and 

lower insulin sensitivity index observed in Study 1 (Chapter 3) in the South Asian 

participants. One factor suggested to contribute to the excess insulin resistance in South 

Asian individuals represents their greater total/abdominal adiposity and lower lean mass 

compared with white Europeans (Sattar and Gill, 2015). In support of this, the findings 

of Study 1 (Chapter 3), revealed higher levels of body fat and lower lean body mass for 

a given BMI compared with white European individuals (Lear et al. 2007). However, the 

greater insulin resistance in South Asians may persist after adjustment for total and 

abdominal adiposity (Sattar and Gill, 2015), as shown in study 1 (Chapter 3) where 

insulin sensitivity index and insulin OGTT remained significantly higher in South Asian 

than white European participants after controlling for body fat percentage. This was also 

demonstrated in Study 3 (Chapter 5) where South Asians exhibited markedly higher 

fasting insulin and elevated glucose and insulin post-prandial concentrations despite 

having similar levels of body fat than white European men. 

6.3  Leptin 

Discriminating only for total and abdominal adipose tissue may hide other factors 

intrinsic of the adipose tissue in South Asian individuals. Particularly, previous evidence 

suggests greater fat accumulation in the deep subcutaneous adipose tissue (DSAT) and 
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visceral adipose tissue (VAT) in South Asians, which has been linked with insulin 

resistance and associated adverse metabolic effects (Sniderman et al. 2007). Furthermore, 

South Asians exhibit dysfunctional adipocytes characterised by defect in adipose tissue 

cells maturation and hypertrophic adipocytes compared with white Europeans, which has 

been associated with greater risk of insulin resistance and T2D (Sniderman et al. 2007; 

Bakker at al. 2013; Sattar and Gill, 2015). Dysfunctional adipocytes have also been 

related to greater levels of plasma leptin in South Asians than Caucasians, independent 

of total and abdominal adiposity (Bakker et al. 2013; Abate et al. 2004; Chandalia et al. 

2007). In support of this, in Study 1 (Chapter 3) we demonstrated substantial elevated 

fasting concentrations of plasma leptin in South Asian compared with white European 

men, with the between-group difference in leptin level diminishing, but not eliminated 

completely, after controlling for body fat percentage. Additionally, according to previous 

evidence, hyperinsulinemia may induce an increase in leptin levels suggesting that 

insulin resistance and higher concentrations of insulin may have a role in promoting 

hyperleptinemia (Wang et al. 1999). While the mechanisms explaining the link between 

hyperleptinemia and insulin resistance is not completely understood, it is plausible that 

the elevated insulin concentrations observed In Study 1 (Chapter 3) may have contributed 

to the higher leptin concentrations in the South Asian compared with the white European 

group. Consequently, it is possible that irregularities in adipose tissue metabolism 

concomitant with insulin resistance may exacerbate the CVD and T2D risk in South 

Asians. 

6.4  Free fatty acids 

Dysfunctions in adipose tissue metabolism have been also associated with elevated 

concentrations of FFAs in South Asian compared with white European individuals, 
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which has been proposed to be an important link between adipose tissue and skeletal 

muscle/liver insulin resistance in the South Asian population (Abate et al. 2004; 

Chandalia et al. 2007). Particularly, high levels of circulating FFAs may cause a chronic 

supply of lipids to skeletal muscle leading to an accumulation of intramuscular 

triglyceride and fatty acids metabolites, which inhibit insulin action (Hall et al. 2008). 

Nonetheless, not all FFAs contribute equally to the development of insulin resistance 

(Rasic-Milutinovic et al. 2012) and metabolomics analytical methods represent the most 

advanced and frequently used techniques for the identification and quantification of 

individual metabolites such as FFAs in human plasma (Patti et al. 2012). Although the 

initial results based on the GC-MS method were unsatisfactory, probably due to the 

inadequacy of the capillary column used in our experiments, we could separate the 

majority of the South Asian from most of the white European men based on the LC-MS 

method. To the author’s knowledge, only one previous study examined ethnic differences 

in individual FFAs concentrations (Ralston et al. 2013). However, the study from Ralston 

and co-workers focused mainly on ethnic-specific associations between individual 

plasma FFAs and markers of insulin resistance, without explicitly examining ethnic 

differences in the baseline concentrations of FFAs (Ralston et al. 2013). Study 2 (Chapter 

4) investigated ethnic differences in the FFAs metabolic profile with LC-MS and 

revealed higher concentrations of five FFAs (laurate, myristate, palmitate, γ-linolenic and 

linoleate) in the South Asian group. Given that insulin resistant individuals typically 

exhibit higher levels of SFAs and low concentrations of PUFAs such as linoleic acid, γ-

linolenic acid or EPA and DHA (Warensjö et al. 2005), it was surprising that baseline 

concentrations of γ-linolenic and linoleic acid were higher in the South Asian group, who 

exhibited greater levels of fasting insulin and elevated glucose and insulin OGTT than 

white European participants. However, our findings appear to support the data from 
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Ralston and colleagues (2013) where elevated γ-linolenic and linoleic acid were observed 

in the South Asian compared with the Caucasian group. Study 2 (Chapter 4) also 

demonstrated positive associations between AUC glucose and four FFAs such as 

palmitate, oleate, eicosatrienoic and docosahexenoic acid in South Asian participants. 

The association between AUC glucose and oleate, eicosatrienoic and docosahexenoic 

acid appears to be in contrast with previous epidemiological evidence reporting positive 

effects of these unsaturated fatty acids on insulin sensitivity (Warensjö et al. 2005). 

Conversely, the association between palmitate and AUC glucose confirms previous 

studies reporting saturated fatty acids-induced insulin resistance, although this evidence 

is not related directly to South Asian populations (Ebbeson et al. 2010). The present study 

also revealed a strong correlation of FFAs with body fat percentage in the South Asian 

group and between FFAs and physical activity in the white European group. Whereas the 

associations of FFAs with body fat percentage in South Asians may simply reflect their 

greater body fat percentage, ethnic differences in factors involved in myocellular lipid 

mobilisation may underlie these responses. South Asians exhibit higher perilipin 5 

(PLIN-5), a lipid droplet-associated protein in skeletal muscle, in response to a 5-day 

high fat diet compared with Caucasian males (Gemmink et al. 2017). Perilipin 5 plays a 

key role in the activation of the adipose triacylglycerol lipase (ATGL), which is involved 

in the intracellular triglyceride mobilisation (Schreiber et al. 2018). Thus, it may be 

possible that in our study ethnic differences in ATGL/PLIN-5-induced lipolysis may 

have contributed to the higher levels of FFAs linked to body fat in the South Asian group. 

Conversely, the associations between FFAs and total step counts in the white European 

group only seems to suggest that fatty acid metabolism is less responsive to physical 

activity in South Asian than white European men. These data may reflect the fact that the 

FFAs release is also promoted by the hormone sensitive lipase (HSL), which responds to 
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corticosteroids and catecholamine release (Schreiber et al. 2018). Thus, ethnic 

differences in levels of hormones controlling HSL activation may have influenced these 

results.  

Although the current study provided evidence that levels of circulating FFAs are different 

between South Asians and white European men, the potentially confounding effects of 

body fat percentage may have accentuated the differences in FFAs between ethnic 

groups. Thus, it may be beneficial for future research to investigate FFAs metabolic 

profile in South Asian and white European individuals matched by body fat percentage. 

Furthermore, investigating FFAs in response to exercise and/or food intake and explore 

how these responses correlate with cardiometabolic risk markers may elucidate the role 

of exercise and energy intake in modulating individual plasma FFAs concentrations and 

in optimising health outcomes in South Asians. 

6.5 Inflammatory and lipid markers 

The present thesis also measured circulating concentrations of fasting IL-6 and CRP 

which represent key indicators of chronic low-grade inflammation and have been 

implicated in explaining the excess CHD risk in South Asian individuals (Tziomalos et 

al. 2008). Particularly, in Study 1 (Chapter) we demonstrated elevated fasting IL-6 and 

CRP concentration in South Asian compared with white European men which supports 

several previous studies (Anand et al. 2004; Arjunan et al. 2015; Bastard et al. 1999), 

although this finding is not universal (Peters et al. 2013). The divergent inflammatory 

profiles between ethnicities in the present study were diminished after controlling for 

body fat percentage supporting previous findings (Chambers et al. 2001; Arjunan et al. 

2015) although South Asian individuals have shown to exhibit higher CRP 

concentrations than Caucasians despite similar levels of body fat (Chandalia et al. 2003). 
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Thus, future work is required to determine the independent contribution of ethnicity and 

adiposity on inflammatory markers in South Asians. Consistent with previous studies 

(Arjunan et al. 2013; Anand et al. 2004; Anand et al. 2000), in Study 1 (Chapter 3) we 

also demonstrated a more unfavourable fasted lipid profile in South Asians compared 

with the white European men including lower concentrations of HDL-C coupled with an 

elevated TC/HDL-C ratio and higher TAG concentration. These findings highlight that 

South Asian men exhibit an adverse inflammatory and lipid marker profile, which may 

contribute to the their heightened cardiometabolic health risk compared with individuals 

of white European descent.  

6.6  Physical activity and cardiorespiratory fitness 

Several studies conducted in UK South Asians reveal lower levels of physical activity 

than their white European counterparts, which is likely to contribute to the excess T2D 

and CHD risk in this population (Fischbacher et al. 2004; Williams et al. 2011a; Williams 

et al. 2011b). The existing evidence on habitual physical activity levels in South Asians 

has largely been gleaned from self-report questionnaires which carries a limitation due 

to issues of participant recall bias (Yates et al. 2015; Williams et al 2011a), but data using 

accelerometry are emerging (Celis-Morales et al. 2013; Afaq et al. 2019; Ghouri et al. 

2013; Iliodromiti et al. 2016). In Study 1 (Chapter 3), we reported similar physical 

activity levels between South Asian and white European men using an accelerometery 

device, which represents a strength of this study. Although these findings appear to 

contradict the aforementioned studies, the South Asian participants accumulated less 

total activity (CPM) and fewer steps, and stark differences in CVD and T2D risk markers 

were still apparent between the ethnic groups. This is supported by previous studies 

suggesting that South Asian individuals are more insulin resistant than white European 
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individuals even after adjustment for habitual physical activity levels (Ghouri et al. 

2013).  

A contributing factor that may relate to ethnic differences in cardiometabolic risk is the 

association between physical activity and cardiorespiratory fitness. Increasing evidence 

suggests that South Asians have lower cardiovascular fitness levels compared white 

European people, which has been suggested to be a key feature of the insulin resistance 

phenotype in this ethnic group independent of physical activity levels (Hall et al. 2010; 

Ghouri et al. 2010; Arjunan et al. 2013; Arjunan et al. 2015). In support of this, despite 

the similar levels of objectively-measured physical activity between the groups, in Study 

1 (Chapter 3) we demonstrated markedly lower cardiorespiratory fitness in South Asian 

compared with white European participants. Similar data were observed in study 3 

(Chapter 5) with South Asians exhibiting lower cardiorespiratory fitness than white 

European participants despite similar self-reported habitual physical activity levels and 

sitting time between ethnic groups. However, the reasons explaining the lower 

cardiorespiratory fitness in South Asians are not completely understood. In addition, it 

has been demonstrated that low cardiorespiratory fitness was the strongest predictor of 

the excess insulin resistance seen in UK South Asian compared with white European men 

(Ghouri et al. 2013), although the findings reported in Study 1 (Chapter 3) only revealed 

a positive association between V̇O2 max and insulin sensitivity index in the white 

European men. Low skeletal muscle fat oxidation may also exacerbate insulin resistance 

in South Asian individuals. Indeed, there is evidence demonstrating positive associations 

of cardiorespiratory fitness – an index of oxidative capacity at the whole-body level – 

and fat oxidation during submaximal exercise with insulin sensitivity index in South 

Asian men (Hall et al. 2010). In the same study the lower insulin sensitivity index in 

South Asian than white European participants was abolished after adjusting for 
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cardiorespiratory fitness and fat oxidation during exercise. Low lipid oxidation in skeletal 

muscle may lead to an accumulation of intramuscular lipids, which inhibit insulin action 

(Hall et al. 2008). Although the mechanisms explaining the lower capacity for fat 

oxidation in South Asians and how this relates to their insulin resistance remain unclear, 

the reduced cardiorespiratory fitness and fat oxidation during exercise observed in South 

Asians in Study 3 (Chapter 5) supports the findings from Hall et al. (2010). Given the 

importance of physical activity as a method of enhancing cardiovascular fitness levels, 

our findings add further weight to the proposition that there may be a requirement for 

South Asians to engage in greater physical activity levels than white Europeans to 

optimise health outcomes.  

6.7 Exercise and appetite  

Physical activity has been also proposed as an effective strategy in the management of 

obesity and weight control with a growing interest by the research community in 

examining the underlying mechanisms linking physical activity, appetite and weight 

management. A plethora of studies have investigated the appetite and energy intake 

responses during and after acute bouts of continuous aerobic exercise (50-70% V̇O2 max, 

30-90 min). In this regard, the majority of these studies have shown a transient 

suppression of appetite perceptions during exercise, known as ‘exercise-induced 

anorexia’, with appetite feelings typically return to resting control values within 30-60 

min of exercise termination (Deighton and Stensel, 2014). Furthermore, single sessions 

of exercise have consistently shown to reduce orexigenic hormone acylated ghrelin 

concentrations and increase levels of anorexigenic appetite-related hormones such as 

total PYY, without stimulating subsequent changes in absolute energy intakes (Shubert 

et al. 2013). However, it remains unknown to date how differences in individual ethnicity 



 

 184 

background modulate appetite perceptions, energy intake and appetite-related hormones 

in response to exercise, which seems relevant and may extend findings from Study 1, 

since lower levels of fasting acylated ghrelin were found at rest (Chapter 3). In study 3 

(Chapter 5), we demonstrated similar appetite perceptions, energy intake and appetite-

related hormones in response to acute exercise between South Asians and white European 

men, although subtle differences in appetite-measures between the groups were detected. 

Particularly, South Asians exhibited lower appetite ratings than white European men 2 h 

after the ad libitum buffet meal across both trials. Although this represents a subtle 

difference in appetite feelings between groups, this difference may be driven by the 

greater appetite feelings in white European participants due to their greater net energy 

expenditure during exercise. Study 3 (Chapter 5) also identified lower concentrations of 

delta acylated ghrelin in South Asian than white European men before the ad libitum 

buffet meal (4 h), which may be related to the different concentrations in plasma insulin 

observed between groups. However, no significant main effect of group for delta acylated 

ghrelin concentrations was observed. It is possible that these results are influenced by the 

use of delta change to represent the ghrelin concentration as the absolute data revealed a 

significantly lower mean acylated ghrelin concentration across both trials in South Asian 

than white European men. This may provide some support to the data in Study 1 (Chapter 

3) reporting lower fasting acylated ghrelin in South Asian than white European men 

(Study 1, Chapter 3). Furthermore, Study 3 (Chapter 5) revealed subtle changes in 

appetite feelings between trials including a transient suppression in appetite perceptions 

at 4.5 h (1.5 h post-exercise) and stimulation at 6.5 h (3.5 h post-exercise) in the exercise 

than control trial. While the stimulation of appetite 3.5 h post-exercise may relate to the 

extra energy expended during the exercise, the lower appetite perceptions 1.5 h post 

exercise may reflect a prolonged appetite suppression which has been previously reported 
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when exercise is performed after a meal (Deighton et al. 2012; Cheng et al. 2009), instead 

of following an overnight fast of 9 h (Broom et al. 2007; Becker et al. 2012; Martins et 

al. 2007; Douglas et al. 2017). In this regard, Cheng et al. (2009) demonstrated that 

cycling for 50 min at 60% of V̇O2 max 2 h after a standardised meal suppressed appetite 

feelings for a longer period of time than performing the same exercise after an overnight 

fast of 9 h. Likewise, Deighton et al. (2012) demonstrated that running for 60 min at 70% 

of V̇O2 max approximately 2 h after a standardised breakfast also prolonged appetite 

suppression than performing the exercise trial after an overnight fast of 10 h. Thus, these 

data suggest that manipulation of the exercise protocols in appetite studies may represent 

a potential avenue for future investigations. Differences in appetite-related hormones 

between trials were also observed including increased concentrations of delta acylated 

ghrelin and total PYY in the exercise compared with the control trial. Whereas the greater 

total PYY concentrations in the exercise trial is in agreement with the absolute total PYY 

concentrations and with previous investigations (Martins et al. 2007; Kawano et al. 2013; 

Douglas et al. 2017), the elevated delta acylated ghrelin concentrations in the exercise 

trial differed from the absolute acylated ghrelin concentrations and from previous studies 

reporting lower or no change in absolute or delta acylated ghrelin concentrations during 

or shortly after exercise (Broom et al. 2017; Wasse et al. 2013; Deighton et al. 2013a). 

However, as reported in Chapter 5.4, this finding may reflect the differences in fasting 

acylated ghrelin concentrations between trials, but also the method used to express 

acylated ghrelin (delta change instead of absolute concentrations) as the absolute acylated 

ghrelin concentrations were greater in the exercise than in the control trial. However, the 

greater elevation in acylated ghrelin, delta and absolute concentrations, in white 

European than South Asian men before the ad libitum buffet meal, represented an 

important finding of the present study. Despite the mechanisms explaining the lower pre-
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prandial acylated ghrelin concentrations in South Asians than white European men 

observed in this study remains unclear, these data provide additional evidence regarding 

the differential acylated ghrelin concentrations between South Asian and white European 

men. Despite subtle differences in appetite perceptions between trials and an increase in 

appetite-related hormones in the exercise trial, South Asian and white European 

participants did not exhibit exercise-induced changes in absolute energy intake at the ad 

libitum meal, which suggests that exercise induces a short-term energy deficit 

irrespective of ethnicity. The lower absolute energy intake across both trials in South 

Asian than white European men was speculatively linked with the lower fat free mass in 

South Asian than white European men, which is in agreement with previous data. 

Previous studies have shown that fat free mass is lower in South Asian than white 

Europeans (Hall. et al. 2010; Ghouri et al. 2013; Sattar and Gill; 2015) and that it is an 

important determinant of resting metabolic rate, daily energy expenditure and day-to-day 

food intake (Blundell et al. 2011; Weise et al. 2013; Hopkins et al. 2017). Thus, it is 

possible that the lower absolute energy intake in South Asian men in our study may 

reflect their lower fat free mass which induced a lower drive to ingest food at the buffet 

meal than white European counterpart. 

6.8 General conclusions 

Taken together, the findings of the present thesis suggest lower levels of acylated ghrelin 

and an adverse CVD and T2D risk marker profile in South Asian compared with white 

European men including higher concentrations of insulin, TAG, leptin and CRP, and 

lower HDL-C. Although objectively assessed and self-reported physical activity levels 

and sedentary time were similar between the ethnic groups, the lower cardiorespiratory 

fitness and fat oxidation in the South Asian men may contribute to the heightened cardio-
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metabolic heath risk in this population. Levels of acylated ghrelin appear to be lower in 

South Asian men, but further work is required to determine the independent contribution 

of ethnicity and adiposity on this gut hormone. The current thesis also provides evidence 

that levels of circulating FFAs are different between South Asian and white European 

men, which may contribute to the elevated CVD and T2D risk in South Asians. Finally, 

we provided evidence that 60 min moderate-to-vigorous cycling induces a short-term 

energy deficit irrespective of ethnicity and suggests similar exercise-induced responses 

in appetite perceptions and appetite-related hormones between South Asian and white 

European men. These findings may represent a valid strategy of exercise to induce 

weight/fat loss and optimise health outcomes in South Asians. 

In summary, compared with white European, South Asian men revealed: 

• lower circulating acylated ghrelin but higher leptin concentrations; 

• an adverse inflammatory and metabolic risk profile including elevated 

concentrations of fasting insulin, TAG, CRP, and lower HDL-C; 

• a different FFA metabolic profile including greater levels of laurate, myristate, 

palmitate, γ-linolenate and linoleate and positive associations between individual 

FFA concentrations and markers of cardiometabolic risk; 

• lower levels of total physical activity and cardiorespiratory fitness; 

• similar exercise-induced responses in appetite perceptions, energy deficit and 

appetite-related hormones. 

 

6.9 Limitations and future directions 

The studies conducted in this thesis have a few limitations. The number of participants 

in the studies was small, and was mostly limited to South Asian men, but not women, 
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originating from India. Additionally, the potentially confounding effects of body fat 

percentage may have accentuated the differences in FFAs between ethnic groups. Lastly, 

acylated ghrelin and total PYY were the only gut hormones with appetite-regulating 

capabilities examined in response to exercise, and the timing of the exercise 2 h after the 

standardised breakfast may have influenced the changes in acylated ghrelin in response 

to exercise, as the concentrations of this hormones were still lower than the fasting values 

at the start of exercise. Therefore, below are a few suggestions for further research: 

• An examination of chronic effects of exercise on appetite measures and CVD and 

T2D risk markers based on longitudinal studies. 

• An examination of unconventional parameters for CVD and T2D risk with a 

larger sample size and in additional South Asian groups (e.g., Bangladeshis, Sri 

Lankan and Bhutanese) and in South Asian women.  

• An investigation into unconventional parameters for CVD and T2D risk, such as 

FFAs in South Asian and white European individuals matched by body fat 

percentage but also in response to exercise/food intake to clarify the role of 

adiposity, energy intake and exercise in modulating individual plasma FFAs 

concentrations between South Asian and white European individuals. 

• Finally, from a mechanistic point of view, an investigation into additional 

appetite-related gut hormones such as GLP-1 or PP.  
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APPENDIX A 

 

          Informed Consent Form 

 

Title of the study:  

Ethics Code:  

Statement by participant 

 
I ................................................................... give my consent to the research procedures that are outlined 
above, the aim, procedures and possible consequences of which have been outlined to me  
• I confirm that I have read and understood the information sheet/letter of invitation for this study. I 

have been informed of the purpose, risks, and benefits of taking part. 

Study title:  
• I understand what my involvement will entail and any questions have been answered to my 

satisfaction. 
 
• I understand that my participation is entirely voluntary, and that I can withdraw at any time without 

prejudice. 
 
• I understand that all information obtained will be confidential. 
 
• I consent the Cheek Buccal Swab sample collection for genotyping analysis1                                     
 
• I understand that although the genotyping analysis that will be performed will not give me 

significant information about the risk of disease, I would like to be informed about the results 
anyway 

 
• I agree that research data gathered for the study may be published provided that I cannot be 

identified as a participant. 
 
• Contact information has been provided should I (a) wish to seek further information from the 

investigator at any time for purposes of clarification (b) wish to make a complaint. 

1Genotyping is the process of determining differences in a specific sequence of the DNA, known as 
Single Nucleotide Polymorphisms (SNPs) associated with Type 2 diabetes (T2D).  

Participant Signature: ............................................ Date: ..........................................  

Participant Name: …………………………………... 

Participant ID: ………………………………………. 
Statement by investigator 

• I have explained this project and the implications of participation in it to this participant without 
bias and I believe that the consent is informed and that he/she understands the implications of 
participation. 

Researcher Signature: ............................................. Date: ………………………….. 

Researcher Name: …………………………….. 
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           APPENDIX B 

 

 

 

 

 

Health Screening questionnaire 

 
Participants number/code: ………………………………… 

Date of birth: ……………………………………  

Occupation………………………………………………………………………….  

Blood Pressure…………………………………………………………………….. 

Pulse (HR) ………………………………………………………………………….. 

Height……………………………………………………………………………………. 

Weight………………………………………………………………………………… 

Waist circumference ………………………………………………………………. 

1. General health screening questionnaire 
 

Do you consider yourself to be healthy? Yes / No 

Are you vegetarian (no meat or fish) Yes / No 

Do you eat a special diet? Yes / No 
 

If yes, specify 

Do you exercise regularly? Yes / No 
 

If yes, answer questions on next page 

Have you been sick within the past 4 weeks? Yes / No 

If yes, when 

Describe illness 
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Do you have high blood pressure? Yes / No 

Are you exposed to any hazardous chemicals in your job? Yes / No 

If yes, what?  

Do you use tobacco? Yes / No 
 

If yes, answer questions on next page 

Do you drink alcoholic beverages? Yes / No 
 

If yes, answer questions on next page 

Are you currently under a doctor’s care? Yes / No 

If yes, why?  

Have you been hospitalised in the last 6 months? Yes / No 

If yes, why and when?  

Are there any inherited health problems in your family? Yes / No 
 

If yes, describe 

Have you taken aspirin or any pain relievers in the past 4 

weeks? 

Yes / No 
 

If yes, what and when? 

Are you taking any prescribed medication? 
 

Including diet pills, antacids / stomach medicine, cold  or 

allergy medicine 

Yes / No 

If yes, what?  

 

 

 

 

 

 

 

Do you take vitamin supplements or herbal remedies? Yes / No 

If yes, what?  
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2. Lifestyle screening questionnaire 

 

 
Alcohol 

 
1: Have you had a drink in the last 48 hours Y/N 

 
If yes, what ………………………….. 

 
2: How much do you drink in a typical week? 

Nothing ……. 

Beer …….pints  litres 
 

Cider …….pints  litres 
 

Wine …….glasses (assume 6 glasses per standard sized bottle 
 

Spirits ……..bottles 
 

For how many years has this been typical…..... 

 
Smoking 

 
1: How many cigarette pack years have you smoked? ................ 

 
A pack year is 20 cigarettes per day for one year 

 
2: If you roll your cigarettes how many ounces per week do you smoke? ................ 

3: If you smoke cigars and pipes, how many days per week do you smoke ................ 

How many years have you smoked for? ................ 

 
Exercise 

 
1: How many days in the past week have you performed physical activity where your heart beats faster and your breathing 

is harder than normal for 30 minutes or more? (In 3 ten minutes bouts or one 30 minute bout). 

 

2: How many days in a typical week have you performed activity such as this? 
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3. Ethnicity monitoring questionnaire 
 

A : White  

British  

Irish  

Any other White background (please write in) 

B : Mixed  

White and Black Caribbean  

White and Black African  

White and Asian  

Any other mixed background (please write in) 

C : Asian or Asian British  

Indian  

Pakistani  

Bangladeshi  

Any other Asian background (please write in) 

D : Black or Black British  

Caribbean  

African  

Any other Black background (please write in) 

E : Chinese or other ethnic group  

Chinese  

Any other (please write in)  

Not stated  

Not stated  
 
 

Time  of  sample  collection  …………………………………………………………………………… 
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APPENDIX C            

 

Pre Screening for Blood Sampling 

This form must be completed prior to any work involving blood sampling                                                   
Title of the study:  
Ethics Code:  
 

£ Fingertip capillary blood 
£ Earlobe capillary blood 
£ Venous whole blood 

•  Please indicate the trained phlebotomist who will be performing the venepuncture:  
.......................................................................................... 

  
£   Lactate (Biosen/Lactate Pro) 
£ Glucose (Biosen /Accutrend) 
£ HCt measurement (Hawksley capillary tubes and centrifuge) 
£ Hemoglobin (HemoCue) 
£ Cholesterol 
£ Other chemistries  
£ Any other; please specify .......................................................... 

 

Please answer the following questions:    YES NO 

1. Are you suffering from any known active, serious infection? £ £ 
2. Have you had jaundice within the previous year?  £ £ 
3. Have you ever had any form of hepatitis?   £ £ 
4. Have you any reason to think you may be HIV positive?  £ £ 
5. Have you ever been involved in intravenous drug use?  £ £ 
6. Are you a haemophiliac?      £ £ 
7. Is there any other reason you are aware of why taking blood  £ £ 

might be hazardous to your health? 
8. Is there any other reason you are aware of why taking your  £ £ 

blood might be hazardous to the health of the technician?  
I have been fully informed of and understand: 

§ The procedure for the sampling and analysis of blood for the above 

§ The possible risks of contamination to myself and participants 

§ The benefit of being inoculated against Hepatitis B 

 

I agree to undertake all necessary health and safety procedures and precautions during blood sampling 
to avoid contamination and accept that I will be excluded from the laboratory should I neglect to 
demonstrate sufficient care and responsibility. 
 
I have read and understood the University guidelines on the management of needlestick injuries and am 
aware of what to do in the event of such an accident. 
 
Signed:  ...........................................................  Date: ..................................... 
Name: ...................................................................... 
Signed by supervising member of staff: ………………........................................................... 

 

 

 



 

 221 

     APPENDIX D 
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APPENDINX E 

 
 

Meals form 

 
Project title:  

Ethics code:  
Date: 

Participant ID: 

 

Standardised breakfast 
 

You will be provided with a standardised breakfast upon arrival to the laboratory consisting 
of: 

• Sandwich with cheese, mayo, tuna or Ham   
• 1 Chocolate muffin 
• 1 glass orange juice 

 
Ad libitum buffet meal 

You will be given also 30 minutes to access to a buffet meal made of the following items: 
Orange juice, semi skimmed milk, Granola, Oats, Corn Flakes, white bread, brown bread, 
butter, margarine, mayonnaise, cheese, ham, tuna, salted crisps, chocolate bars, cereals bar, 
cookies, muffin, apple, oranges and bananas.  
 
I confirm acceptance of the food listed above and I have informed the investigators about any 
allergy/intolerance. 
 
Name and Surname: 

Participant’s signature: 

 
Name of Researcher: Simone Benedetti 

Email: k1442446@kingston.ac.uk   

Tel: 020 8417 2476 
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      APPENDINX F 

 

     FOOD DIARY 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 DAY 1 
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   DAY 2 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   DAY 3 
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       APPENDINX G 
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APPENDINX H 
 

 

 

Subject Number: ______ Trial__________          Date: _______ 	

Please indicate how hungry you are now by circling a relevant number 	

Not Hungry       Fairly Hungry         Hungry            Very Hungry 	

0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15 	

 Place a mark on the horizontal lines below after considering the following questions: 	

 

Visual Analogue Scale	 	
Time Point: 	 	 	 Time:	 	  	 Temp:	 	  	 Humidty	:	 	
 	  	


