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Abstract

In this work, we pose the question whether it
is possible to design and train an autoencoder
model in an end-to-end fashion to learn represen-
tations in the multivariate Bernoulli latent space,
and achieve performance comparable with the
state-of-the-art variational methods. Moreover,
we investigate how to generate novel samples and
perform smooth interpolation and attributes mod-
ification in the binary latent space. To meet our
objective, we propose a simplified, deterministic
model with a straight-through estimator to learn
the binary latents and show its competitiveness
with the latest VAE methods. Furthermore, we
propose a novel method based on a random hyper-
plane rounding for sampling and smooth interpo-
lation in the latent space. Our method performs
on a par or better than the current state-of-the-
art methods on common CelebA, CIFAR-10 and
MNIST datasets.

1. Introduction
Unsupervised representation learning is a very exciting di-
rection in machine learning, particularly given the plethora
of easily available unlabeled data. There are many machine
learning algorithms that would greatly benefit from low di-
mensional, highly expressive features, whether for object
detection, classification, reinforcement learning or as gen-
erative models for compression, super resolution or novel
samples generation. This direction has been successfully
pursued with autoencoder models and particularly the varia-
tional autoencoder (VAE) (Kingma & Welling, 2013) and
its derivatives. Recently, fully deterministic, regularized
(Ghosh et al., 2020) and discrete, vector-quantized (VQ-
VAE) (van den Oord et al., 2017) autoencoders have been
proposed, demonstrating performance comparable to theirs
stochastic counterparts.
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In this work we focus on a deterministic class of autoen-
coders learning a discrete representation, specifically the
multivariate Bernoulli distribution without enforcing any
prior on the latent space and trained with a gradient based
method in an end-to-end fashion.

Binary representations appear to be attractive for a number
of applications, for example the realization of an encoder
for sparse distributed representations for methods such as
the Hierarchical Temporal Memory (HTM) (Hawkins & Ah-
mad, 2016), modelling neurobiological processes (Bethge &
Berens, 2008), data compression, memory addressing (Rae
et al., 2016), for gating (hard attention)(Xu et al., 2015)
or for general representation learning (Bengio et al., 2012;
2013a). The authors believe that good, as defined by (Ben-
gio et al., 2013a), binary features have also great potential
in application to energy based memory models such as Hop-
field networks operating on a single, capsule like (Sabour
et al., 2017) neuron level.

Current neural network learning algorithms are almost ex-
clusively based on very successful gradient based learning
methods. However, the need for differentiability of each
layer represents a challenge if one desires to train stochas-
tic neurons or other non-differentiable functions such as
quantization. Number of techniques have been proposed
allowing gradient propagation through such neurons such
as re-parametrization, (Kingma & Welling, 2013), surro-
gate gradient functions (Bengio et al., 2013b) or continuous
relaxation of non-differentiable nodes (Jang et al., 2017).
In our method we follow the approach behind the straight-
through estimator (Hinton, 2012; Bengio et al., 2013b) due
its conceptually simple setup.

Sampling from and interpolating in the discrete latent
space is equally challenging. Unlike multimodal, Gaussian
and many other real-valued distributions, the multivariate
Bernoulli distribution concentrates most of the information
on the second moments, since the marginals are strictly uni-
modal and entirely described be the mean p = E[bi] and
consequently variance V ar[bi] = p(1 − p) for Bernoulli
variable bi. This also seems to play a key role in biological
neurons, where the binary, pairwise correlations provide
strikingly accurate encoding for neuronal firing patterns in
primate retina (Nirenberg & Victor, 2007), (Schneidman
et al., 2006), (Shlens et al., 2006).
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Given that our model learns a distribution with unknown
prior and based on the aforementioned premise we propose
to parametrize the learned distribution by its first two mo-
ments, also motivated by the cross moment model (Mishra
et al., 2012). These parameters are learned from latents
encoded on the training data. To sample and interpolate in
the multivariate Bernoulli latent space we then propose a
novel method based on a random hyperplane rounding tech-
nique derived from MAX-CUT (Goemans & Williamson,
1995). Within this work we abbreviate the Latent Bernoulli
Autoencoder as LBAE.

We evaluate our method on the datasets CelebA and CIFAR-
10 and, for completeness, MNIST and show that our method
is competitive with the current state-of-the-art variational
and deterministic autoencoders. Our model shows high
performance particularly on the interpolation task which
is remarkable, considering we are operating in the discrete
latent space. To our knowledge none of the existing dis-
crete distribution autoencoders is able to perform sensible
interpolation in the latent space. For example, a state of
the art method VQ-VAE (van den Oord et al., 2017) does
not suggest how to do so and even explicit methods such as
(Berthelot et al., 2019) admit difficulties in accomplishing
this task. Finally, we present a simple method for attributes
modification in the latent space, also with competitive re-
sults. PyTorch code and trained models is publicly available
on github1. Our work brings the following contributions:

• We show that a tanh functions followed by a straight-
through estimator with an unity surrogate function in
the backward pass can be used to efficiently train an
autoencoder with state-of-the-art performance.

• We propose a novel technique to generate correlated
Bernoulli samples and to smoothly interpolate between
them, as well as to modify sample attributes in the
latent space.

• We show that, albeit its simplicity, our method per-
forms equally well or better than the state-of-the-art
using the FID, KID and Precision/Recall metrics.

2. Related Work
Unsupervised representation learning has been successfully
pursued with autoencoder models, particularly the varia-
tional autoencoder (VAE) (Kingma & Welling, 2013) due
to its simplicity and well defined probabilistic framework.
VAE unfortunately suffers from number of issues, most
notably producing blurred images (Dumoulin et al., 2017)
and suffering from posterior collapse (Razavi et al., 2019),
A number of methods have been proposed to improve the
image quality with reconstruction loss based on perceptual

1https://github.com/ok1zjf/lbae

similarity in the feature space of an external CNN (Doso-
vitskiy & Brox, 2016), (Hou et al., 2017) or in its own
latent space (Zhang et al., 2019). Success of the Generative
Adversarial Networks (GAN) to learn image distribution,
motivated application of the adversarial training to the latent
space distribution in the Adversarial Autoencoders (AAE)
(Makhzani et al., 2016) and its generalization in Wasser-
stein Autoencoders (WAE) (Tolstikhin et al., 2018). More
recently (Dai & Wipf, 2019) introduced a 2 stage VAE
where the second stage learns the latent space distribution,
in principle, performs a density estimation. From the work
of (Ghosh et al., 2020) it is apparent that deterministic au-
toencoders are competitive with the VAE and its derivatives,
only for the price of ex-post density estimation.

Most of the methods learn real-valued latent space owning
to the established gradient-based optimizations. VQ-VAE
(van den Oord et al., 2017) is perhaps the first competitive
deterministic, autoencoder that learns discrete representa-
tions. As in (Ghosh et al., 2020), this method does not
impose any prior on the learned latent distribution, thus
it requires some form of external post density estimation.
Authors propose the PixelCNN (Kalchbrenner et al., 2016)
an autoregressive density estimator which learns a categori-
cal prior over the stored latents encoded from the training
dataset.

Learning discrete representations with a gradient-based op-
timization is not straightforward. (Bengio et al., 2013b)
proposed four methods, addressing the learning through
stochastic neurons, most notably the straight-through esti-
mator, originally described by (Hinton, 2012). The straight-
through estimator is also used in the VQ-VAE model to
allow gradient flow over non differentiable, nearest neigh-
bour operation in the forward pass. (Chung et al., 2017)
then introduces a straight-through estimator with the slope
annealing trick. Over the training period, this method grad-
ually reduces the difference between the non-differentiable
function in a forward pass and the surrogate in a backward
pass to converge to the discrete distribution in the limit. This
method is somewhat similar to the ST Gumbel-Softmax
(Jang et al., 2017). The Gumbel-Softmax was also applied
to the autoencoder model in JointVAE (Dupont, 2018).

3. Bernoulli Latent Space
3.1. Learning the Bernoulli Latent Space

The base of our method is a deterministic autoencoder with
encoder z = gφ(X), parametrized by φ, that produces typ-
ically real-valued latent representation z for input X. De-
coder X′ = fθ(z), parametrized by θ, attempts to recon-
structs X from z. Model is trained with objective func-
tion L(θ, φ) = E[L(X,X′)] where L is the reconstruction
loss function. To discretize z ∈ RN into the binary range

https://github.com/ok1zjf/lbae
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Figure 1. The information bottleneck of a typical autoencoder is in LBAE replaced with tanh() followed by binarization fb() ∈ {−1, 1}N
with unit gradient surrogate function fs() for backward pass.

b ∈ {−1, 1}N we threshold z at zero as follows:

bi = fb(zi) =

{
1, if zi ≥ 0

−1, otherwise.
(1)

We chose to represent the binary values by {−1, 1} rather
than {0, 1} due to its computational benefits such as zero
being the threshold level and b2i = 1∀i. The latents can be
easily converted between these two ranges without loss of
information.

Since fb() is not differentiable we define a surrogate differ-
entiable function fs(z) = z with unit gradient ∇zfs = 1
operating in the same domain as fb(). fs() is then used in
the backward pass. During the backpropagation this allows
the gradient to flow through the binarization operation and
lets the encoder to correct its output in the direction of the bi-
narized quantities read by the decoder. The rounding during
the binarization brings an additional error that is not cor-
rected during the backpropagation and manifests as a noise.
This noise can be reduced by lowering the learning rate
but it slows down the training or hinders the convergence
altogether. To alleviate this weakness we add tanh() before
the binarization which limits the gradient flow from the de-
coder and minimizes the optimization overshoot during the
gradient descent.

3.2. Sampling Correlated Multivariate Bernoulli
Latents

Our goal is to realize a generative model of the form
x ∼ p(x | b; θ) for b ∼ p(b),b ∈ {−1, 1}N . Unlike
VAE, we do not enforce any prior on the latent space during
the training, thus the learned distribution p(b) is unknown.
Therefore, to efficiently sample novel latents we first learn
p(b) from the distribution of the training dataset in the latent
space and parametrize it by its first two moments.

The most straightforward way to learn and sample from the
correlated Bernoulli distribution would appear to treat it as a
Gaussian distribution with the binarization step. Let us con-
sider a matrix Y ∈ {−1, 1}(N×K) of K N-dimensional la-
tent vectors encoded on training data. Given expected value

E[Y] ∈ RN and covariance Σ = E[YYT]−E[Y]E[Y]
T

we can sample latent b from the distribution as:

z ∼ NN (0, IN ) (2)

b = fb(Lz+E[Y]), b ∈ {−1, 1}N , (3)

where Σ = LLT is a lower triangular Cholesky decomposi-
tion. This approach, however, does not produce Bernoulli
samples with the correct distribution. To mitigate this issue,
we propose a method inspired by the cross moment model
method (Mishra et al., 2012) and random hyperplane round-
ing technique for MAX-CUT (Goemans & Williamson,
1995). In Figure 2 we can see that a distribution generated
by the direct binarization (Eq. 3) (green) exhibits notice-
able error compared to the ground truth (blue). The red
plot shows distribution generated with the proposed random
hyperplane method.
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Figure 2. Ground truth (200bits latents, MNIST train data) and the
distribution sampled with the random hyperplane method appear
identical while the direct rounding method exhibits a clear error.
Note the ground truth (blue) is mostly hidden behind the red.

Our method can be summarized in the following three steps:
(1) parametrize distribution of the training dataset in latent
space by first two moments, (2) relax each latent dimen-
sion by an unit vector on a hypersphere with a position
corresponding to its correlation with other dimensions, (3)
sample latent b by randomly splitting the sphere through
the centre with a hyperplane normal r and assigning binary
state−1 to dimensions corresponding to vectors on one side
of the plane and 1 to the rest.

The distribution of Y is parametrized by first moments and
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second non-central moments, similar to (Mishra et al., 2012),
in matrix M as:

M =

[
E[YYT] E[Y]

E[Y]
T

1

]
,M ∈ [−1, 1](N+1)×(N+1).

(4)

For N dimensional latent space we generate N + 1 unit
length vectors on sphere S(N+1). These vectors are or-
ganized as rows in matrix V ∈ R(N+1)×(N+1),∀i ∈
[1, .., N + 1], ‖Vi‖ = 1, where Vi is an ith row of V.
Each vector Vi represent one dimension in the latent space.
We express the covariances M as probabilities of vector
pairs (Vi,Vj) pointing in the same or opposite direction.
For positive, high covariance between dimensions i and j
the angle αi,j between corresponding vectors Vi and Vj

will be small and P (Vi,Vj) −→ 1 while for negative covari-
ance αi,j −→ π with P (Vi,Vj) −→ 0. For non correlated
dimensions Vi⊥Vj with P (Vi,Vj) ≈ 1

2 . Bits of posi-
tively correlated dimensions share the same state (-1 or 1)
while negatively correlated take opposite states. We set the
probabilities as

P (Vi,Vj) =
Mi,j + 1

2
,∀(i, j), P (Vi,Vj) ∈ [0, 1] (5)

and express them as a function of the angle αi,j or dot
product 〈Vi,Vj〉.

P (Vi,Vj) = 1− αi,j
π
,∀(i, j), αi,j ∈ [0, π], (6)

= 1− cos−1(〈Vi,Vj〉)
π

(7)

Given matrix Hi,j = 〈Vi,Vj〉, H ∈ R(N+1)×(N+1) we
find Hi,j as a function of M as:

Hi,j = cos

((
1− 1

2
(Mi,j + 1)

)
π

)
(8)

= cos
(π

2
(1−Mi,j)

)
. (9)

To obtain V we perform a square root of H by lower trian-
gular Cholesky decomposition

H = VVT s.t. H < 0 (10)

where V is a row-normal lower triangular matrix with rows
being the desired unit vectors on S(N+1). The V(N+1) rep-
resents the boundary conditions for the first moments E[Y].
Concretely, it defines the positive hemisphere in S where
all vectors receive positive binary state. In other words, this
boundary vector orients the hypersphere space according to
the marginals E[Y]. Finally, to generate a novel latent b we
split the sphere S with a random plane through the center
and then assign positive binary states to latent dimensions
represented by vectors Vi in one hemisphere and negative

r ∼ 𝓝(N+1)(0, I(N+1))

1 -1 1 -1 11

Matrix of 
Moments
H(N+1)x(N+1)

b

Decoder
Xʼ

Figure 3. Distribution of the training dataset in the latent space is
parametrized by matrix H of first two moments. Each dimension in
the latent space is represented by an unit vector in a hypersphere.

for the rest. Vectors sharing hemisphere with V(N+1) (yel-
low in Figure 4) will receive positive values. For a random
hyperplane given by normal r ∼ NN+1(0, IN+1) (green in
Figure 4) we generate the latent b with bits at each dimen-
sion as:

bi =

{
1, if fb(〈Vi, r〉) = fb(〈V(N+1), r〉)
−1, otherwise

,

∀i ∈ [1, .., N ], r ∈ R(N+1)×1.

(11)

In vector form the Eq. 11 is then:

b = fr(r) = fb(Vr)−(N+1)fb(V(N+1) r),

b ∈ {−1, 1}N .
(12)

The expression fb(〈V(N+1), r〉) and its vectorized form
fb(V(N+1) r) returns the boundary decision bit. If positive,
the hyperplane normal r is located in the same hemisphere
as the boundary vector V(N+1). Finally, an image X′ is
decoded from the binary latent b as X′ = fθ(b).

3.3. Interpolation in the Bernoulli Latent Space

For each latent, of the images we are interpolating, we
first lookup up a normal to the hyperplane responsible for
generating this latent vector according to Section 3.2. Then,
intermediate latents are interpolated on the sphere S(N+1)

between the endpoints with spherical linear interpolation
(SLERP) (Shoemake, 1985).

Let us consider s ∈ {−1, 1}N to be our latent vector
for which we desire to find a normal r ∈ R(N+1) to the
hyperplane that would generate back the latent s as per
Eq. 11. Intuitively, one could attempt to find the solu-
tion as r = V−1[s, 1] which, indeed, recovers s back as
s = fr(Lr)−(N+1). [s, 1] denotes s concatenated with 1.
By setting the boundary decision bit to positive state [s, 1]
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Figure 4. Each dimension in the latent space is represented by an
unit vector on a hypersphere. Pairwise correlations are given by
angle between vectors - the smaller angle the higher correlation
between corresponding dimensions. New samples are generated
by splitting the sphere with a random plane (green) and assigning
positive states to dimensions (red) on the side of the plane shared
by the boundary vector (yellow) and negative to the rest (blue).

we will produce a hyperplane normal in the same hemi-
sphere as the boundary vector V(N+1), consequently the
hemisphere representing positive binary states.

The hyperplane found this way is, however, not suitable for
the interpolation. Interpolating between such hyperplanes
produces exact copies of the source latent till the midpoint
where it instantly flips to the target and stays there till the
end of interpolation. The source/target flip happens over
less than 1/106 degrees step. It appears that the hyperplanes
found this way are degenerate in some sense. They produce
latents very far from the main distribution manifold. To find
the nature of this behaviour is a subject of future research.

Instead, we found that the most suitable latent-hyperplane in-
version can be carried out by placing the hyperplane normal
close to the centroids of the positive and negative vectors in
V. First, we get the centroid for all positive vectors in s.

rp =
∑N

i
(u(si)Vi)

T
, rp ∈ R(N+1)×1, (13)

where u(si) = 1
2 (1 + si) changes range of its argument

from {−1, 1} to {0, 1}. rp is a prototype of the hyperplane
normal but it typically does not reproduce s accurately, caus-
ing reconstruction error in the pixel space when decoded.
To mitigate this we propose an iterative process that tilts the
normal rp towards the vectors incorrectly placed behind the
hyperplane. The process stops when the Hamming distance
between s and fr(rp) does not decrease, which typically
takes < 4 steps. Similarly, we create a normal for the nega-
tive vectors rn =

∑N
i (u(−si)Vi)

T . The final normal is
then r =

rp
‖rp‖ −

rn
‖rn‖ . Vector of error bits between s and

its reconstruction is calculated as:

Eb(s, r) = u(fr(r)� s), (14)

where � is Hadamard product. Hamming distance is then∑N
i=0Eb(s, z)i. Algorithm 1 summarizes the process of

looking up a hyperplane normal for a given Bernoulli latent
vector and V.

Algorithm 1 Latent s to hyperplane normal r inversion
Function latent_to_hyperplane(s,V)
r =

∑N
i (u(si)Vi)

T # Mean vector of rows in V at si = 1
(Eq. 13)
dbest = N # Start with the maximum Hamming distance (all
bits are different at all N dimensions)
repeat

e = Eb(s, r) # Error bits vector between s and its reconstruc-
tion with hyperplane normal r (Eq. 14)
d =

∑N
i ei # Hamming distance

if d ≥ dbest then
return r # If the distance does not improve return the hy-
perplane normal r

end if
r = r+

∑N
i (ei Vi)

T # Add vectors at the error bits posi-
tions
r = r / ‖ r ‖
dbest = d

until True

We then interpolate T normals between source rs and target
rt on the hypersphere and for each generate a latent vector
according to Eq. 12 and decode it as an image X′i = fθ(ri)

4. Evaluation
In this section we evaluate how well our method reconstructs
images from latents, generates new images, interpolates be-
tween existing images and modifies image attributes in latent
space. In Appendix B we briefly look at the compression
capabilities. We trained and tested our model on the CelebA
(Liu et al., 2015), CIFAR-10 (Krizhevsky & Hinton, 2009)
and MNIST (LeCun et al., 2010) datasets with the default
train/test splits and image resolutions in Table 1. To evaluate
LBAE against VAE (ours) with identical architecture we
modified the LBAE encoder to output (µ, σ) and trained it
in the VAE setup.

Table 1. Image resolutions, latent sizes and training epochs.

LATENT SIZE
IMAGE

RESOLUTION
LBAE
(bits)

VAE(ours)
(float32) EPOCHS

MNIST 32X32X1, zero
padded from 28x28 200 16 2000

CIFAR-10 32X32X3 600 128 2000

CELEBA 64X64X3, cropped
to 1:1 and scaled 1500 64 500

For all datasets we use almost identical models, vary-
ing in the latent dimensions (Table 1) and trained with
ADAM(Kingma & Ba, 2015) with learning rate 10−3, no
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Table 2. FID scores. Results taken from the coresponding publications for VPGA,LPGA (Zhang et al., 2019), VAE, WAE-MMD, RAE-L2,
RAE-SN (Ghosh et al., 2020) and Best GAN, 2 Stage VAE (Dai & Wipf, 2019). For fair comparison, results for VAE, WAE-MMD,
RAE-L2 and RAE-SN are split intoN (0, 1) andN (µ,Σ) columns. The VAE(ours) is a VAE with the LBAE identical architecture.

MNIST CIFAR10 CELEBA
RECO. N (0, 1) N (µ,Σ) INTERP. RECO. N (0, 1) N (µ,Σ) INTERP. RECO. N (0, 1) N (µ,Σ) INTERP.

BEST GAN 10 70 49
VAE 18.26 19.21 18.21 57.94 106.37 88.62 39.12 48.12 44.49
VAE (OURS) 8.77 18.52 37.94 68.43 34.96 56.08
2 STAGE VAE 12.6 72.9 44.4
WAE-MMD 10.03 20.42 14.34 35.97 117.44 76.89 34.81 53.67 40.93
RAE-L2 10.53 22.22 14.54 32.24 80.8 62.54 43.52 51.13 45.98
RAE-SN 15.65 19.67 15.15 27.61 84.25 63.62 36.01 44.74 39.53
LPGA 12.06 55.87 14.53
VPGA 11.67 51.51 24.73
LBAE (OURS) 8.11 88.13 11.36 9.80 19.37 71.48 53.55 34.41 7.71 64.65 34.95 14.87

Table 3. KID Scores scaled by 103 as in (Dai & Wipf, 2019).

MNIST CIFAR10 CELEBA
RECO. N (0, 1) N (µ,Σ) RECO. N (0, 1) N (µ,Σ) RECO. N (0, 1) N (µ,Σ)

VAE (OURS) 6.43 12.41 30.87 74.1 30.49 58.83
2 STAGE VAE 6.7 59.3 40.9
WAE-MMD 137.8 58.7 59.7
LBAE (OURS) 5.39 84.48 6.34 13.01 74.4 51.9 6.15 75.29 30.33

weight decay and 512 batch size. Mean squared error is
used as the reconstruction loss except for MNIST where we
use the binary cross entropy. More details are in Appendix
A. The training is slower compared to the VAE due to the
gradient propagation through the tanh(), nevertheless com-
parable to other methods such as the 2 stage VAE(Dai &
Wipf, 2019) which requires 420 epochs on CelebA, 3000 on
CIFAR-10 and 1200 on MNIST.

As the evaluation metrics we use the Fréchet Inception Dis-
tance (FID) (Lucic et al., 2018), Kernel Inception Distance
(KID) (Bińkowski et al., 2018) and Precision/Recall (Sajjadi
et al., 2018). For consistency purposes we use reference
implementations for all metrics 2,3,4. To compute FID and
KID we use 10k reference and evaluation images.

4.1. Reconstruction and Random Samples Generation

In the Tables 2 and 3 we show that our model achieves the
lowest reconstruction FID and KID scores. This can be
attributed to the prior-free training, where the model is not
constrained to approximate any prior, which is believed to
produce blurry images in the case of VAE. From Figure 6
it is apparent that LBAE reconstructions are sharper than
typical VAE outputs. We can also see that, on the gener-
ative task, our method LBAE outperforms all except the

2https://github.com/bioinf-jku/TTUR
3https://github.com/mbinkowski/MMD-GAN
4https://github.com/msmsajjadi/

precision-recall-distributions

VPGA method, when sampled with the proposed hyper-
plane rounding method. When sampled from the binarized
normal distribution fb(∼ NN (0, IN )), our scores are worse.

This can be also seen perceptually in Figure 5 where the
generated images are sharp but composed of features with
wrong consistency. This suggest that the correlation be-
tween the dimensions in the latent space is, indeed the major
source of information.

Figure 5. MNIST and CelebA images generated by LBAE from
latents b = fb(∼ NN (0, IN ))

Note that the very high performance of the 2 Stage VAE(Dai
& Wipf, 2019) and the VPGA, LPGA (Zhang et al., 2019)
on the CelebA can be, in large part, attributed to the im-
age preprocessing. For example the (Dai & Wipf, 2019)
authors center-crop 108×108 patch and resize it to 64×64.
This augmentation removes most of the background which
simplifies the generative task. In Table 4 we compare our
model with (Ghosh et al., 2020) results obtained by sam-
pling from a GMM (10 Gaussians) trained on latent space
of the training data. With the exception of MNIST, our
model outperforms the GMM sampling on both FID and
Precision/Recall scales. Note that the RAE-L2 method with

https://github.com/bioinf-jku/TTUR
https://github.com/mbinkowski/MMD-GAN
https://github.com/msmsajjadi/precision-recall-distributions
https://github.com/msmsajjadi/precision-recall-distributions
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Figure 6. Reconstruction on the MNIST, CIFAR-10 and CelebA test datasets with the LBEA method.

Figure 7. Novel samples generated with the LBAE method.

GMM sampling shows lower FID score than on the recon-
struction on the test dataset. It is likely that the RAE-L2
model overfits on the training data while then decoding
latents sampled from GMM fitted also to the training data.

Lastly, in Table 5 we compare our method with (Ghosh
et al., 2020) by means of Precision/Recall. Evaluation is car-
ried out against the test datasets of respective benchmarks.
LBAE achieves relatively high precision and recall which
signifies that the generated images represent the entire dis-
tribution equally as well as the image quality is close to the
reference distribution.

4.2. Interpolation in Latent Space

In the Figure 9 we show interpolation between two images
over T = 10 steps. We can see the interpolation is smooth
between the endpoints; there are no abrupt changes in the
context nor the image intensities. The composition of the
intermediate samples also seems to lie on the path between
the endpoints as we intuitively expect. The FID and KID
scores for interpolation in Tables 2 and 3 support this obser-
vation. SLERP interpolation given by two endpoints follows
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(b) CIFAR10

Figure 8. µ and σ of Hamming distance between interpolated latent
at step k and source and target latents.

the shortest path on the sphere. To understand what path
the latents follow in the binary space we measure Hamming
distance between the interpolated latent bk, k ∈ [1, .., T ]
at step k and the source and target latents. Plot of these
distances over 1k interpolations is shown in Figure 8. The
Hamming distance is normalized between the source and
target latents. We can see that the interpolation in the binary
space is almost linear which indicates that the feature mani-
folds in this space are continuous between the endpoints and
that our interpolation method provides a suitable mapping
between the binary latent space and the continual space on
the sphere.

4.3. Attribute Manipulation in Latent Space

Attributes of the generated samples can be directly modified
in the latent space. We demonstrate this on two examples
where we add eyeglasses or goatee CelebA attributes to
random test samples. This operation does not require the
model to be conditionally trained with the attributes, only to
collect K latents Ya ∈ {−1, 1}(N×K) with the attribute a
and getting expected value p = E[Ya],p ∈ RN . To change
the attribute a in an image represented by latent b we set its
bits bi whose expected value pi exceeds a given threshold
D such as:

bi =


1, if pi > D

−1, if pi < −D
bi, otherwise.

(15)

The threshold D determines how many bits will be modi-
fied, consequently how strongly the source image will be
altered. Experimentally we found thatD = 0.1 provides sat-
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Table 4. Precision/Recall and FID scores for sampling from GMM, except our method LBAE where we sample from the matrix of
moments with the random hyperplane method.

MNIST CIFAR10 CELEBA

FID ↓ PRECISION
/RECALL

↑ FID ↓ PRECISION
/RECALL

↑ FID ↓ PRECISION
/RECALL

↑
VAE 17.66 0.95 / 0.96 103.78 0.37 / 0.56 45.52 0.50 / 0.66
WAE-MMD 9.39 0.98 / 0.95 93.53 0.51 / 0.81 42.73 0.69 / 0.77
RAE-L2 8.69 0.98 / 0.98 74.16 0.57 / 0.81 47.97 0.44 / 0.65
RAE-SN 11.74 0.98 / 0.97 75.3 0.52 / 0.81 40.95 0.55 / 0.74
LBAE (OURS) 11.36 0.92 / 0.97 53.55 0.66 / 0.87 34.95 0.73 / 0.82

Table 5. Precision / Recall evaluation betwen LBAE and methods VAE, WAE-MMD, RAE-L2, RAE-SN from (Ghosh et al., 2020).

MNIST CIFAR10 CELEBA
N (0, 1) N (µ,Σ) N (0, 1) N (µ,Σ) N (0, 1) N (µ,Σ)

VAE 0.96 / 0.92 0.25 / 0.55 0.54 / 0.66
VAE (OURS) 0.88 / 0.93 0.55 / 0.74 0.62 / 0.64
WAE-MMD 0.93 / 0.88 0.38 / 0.68 0.59 / 0.68
RAE-L2 0.92 / 0.87 0.41 / 0.77 0.36 / 0.64
RAE-SN 0.89 / 0.95 0.36 / 0.73 0.54 / 0.68
LBAE (OURS) 0.37 / 0.44 0.92 / 0.97 0.48 / 0.76 0.66 / 0.87 0.50 / 0.57 0.73 / 0.82

Figure 9. Interpolations between test images from MNIST, CIFAR-
10 and CelebA.

isfactory results and used this value for all our experiments.
Interpolation is then performed by the method described in
the Section 3.3. Examples of two attributes alterations are
shown in Figure 10.

5. Conclusion
In this paper, we show that a simple deterministic, discrete
latent autoencoder, trained with the straight-through estima-

(a) Setting eyeglasses attribute.

(b) Setting goatee attribute.

Figure 10. Interpolation between test images (left) and the same
images (right) with modified attribute.

tor performs on a par with the VAE model, its derivatives
and the latest regularized, deterministic autoencoders, on all
common tasks such as reconstruction, novel samples genera-
tion, interpolation and attribute modification on benchmarks
CelebA, CIFAR-10 and MNIST. Our model produces higher
quality reconstruction than VAE and does not suffer from
model collapse.

We propose a simple, closed form method for sampling
from the Bernoulli latent space as well as to perform a
smooth interpolation and attribute modification in this space.
To our knowledge this is the first successful method that
directly learns binary representation of images and allows
for smooth interpolation in the discrete latent space.
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