
This is the peer reviewed version of the following article: Duan, Ningmin, Shi, Zhenyu, Wang, 

Jilai, Wang, Guilong and Zhang, Xianzhi (2020) Strong and flexible carbon fiber fabric 

reinforced thermoplastic polyurethane composites for high‐performance EMI shielding 

applications. Macromolecular Materials and Engineering, 305(6), p. 1900829. ISSN (print) 

1438‐7492, which has been published in final form at 

https://doi.org/10.1002/mame.201900829. This article may be used for non‐commercial 

purposes in accordance with Wiley Terms and Conditions for Use of Self‐Archived Versions. 

  

https://doi.org/10.1002/mame.201900829


Strong and Flexible Carbon Fiber Fabric Reinforced Thermoplastic 

Polyurethane Composites for High-Performance EMI Shielding Applications 

 

Ningmin Duana,b, Zhenyu Shi a,b,*, Jilai Wang a,b, Guilong Wang c and Xianzhi Zhangd 

 

N. Duan, Prof. Z. Shi, Prof. J. Wang 

Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of 

Education), Shandong University, Jinan, 250061, China 

School of Mechanical Engineering, Shandong University, Jinan, 250061, China 

E-mail: shizhenyu@sdu.edu.cn 

Prof. G. Wang 

School of Mechanical Engineering, Shandong University, Jinan, 250061,China 

E-mail: guilong@sdu.edu.cn 

Prof. X. Zhang 

School of Engineering and Environment,Kingston University, London, UK 

E-mail: X.Zhang@kingston.ac.uk 

 

Keywords: Carbon fiber fabric; Thermoplastic polyurethane; Sandwich structures; 

lightweight; Electromagnetic interference shielding 

 

 

 

 

mailto:shizhenyu@sdu.edu.cn


Abstract 

Electromagnetic shielding materials play a significant role in solving the 

increasing environmental problem of electromagnetic pollutions. The commonly used 

metal-based electromagnetic materials suffer from high density, poor corrosion 

resistance and high processing cost. Polymer composites exhibit unique combined 

properties of lightweight, good shock absorption and corrosion resistance. In this study, 

a novel high angle sensitive composite is fabricated by combining carbon fiber (CF) 

fabric with thermoplastic polyurethane elastomer (TPU). The effect of stacking angle 

of CF fabric on EMI shielding performance of composite is studied. When the stacking 

angle of CF fabric changed, the EMI shielding effectiveness of CF fabric/TPU 

composite can reach a maximum of 73 dB, and the tensile strength can reach 168 MP. 

In addition, the composite has anisotropic conductivity, which is conductive along the 

plane direction and non-conductive along the thickness direction. Moreover, the CF 

fabric/TPU composite manifests exceptional EMI-SE/Density/Thickness value of 383 

dB·cm2/g, which is higher than most of current EMI shielding composites reported in 

literature. In summary, CF fabric/TPU composite is an excellent EMI shielding material 

that is lightweight, highly flexible, and mechanically robust, which can be applied to 

the field of aerospace and some intelligent electronic devices. 

 

 

 

 



1. Introduction 

With the rapid development of modern science and technology, wireless 

communication devices and equipment have aroused serious electromagnetic pollution 

to environment, and as the electronic equipment develops, in order to meet the 

development trend of lightweight and miniaturization, the influence of electronic and 

electrical equipment on external electromagnetic shielding interference is increasing.[1–

3] Nowadays, metal and metal-based composites are the most common EMI shielding 

materials. Although traditional metal materials have excellent electromagnetic 

shielding performance, they suffer from many disadvantages, such as high density, poor 

corrosion resistance and high processing cost.[4] In this context, it is becoming more 

and more urgent to develop conductive materials that are low-cost, environmentally 

friendly, lightweight and widely used for electromagnetic interference shielding. 

Conductive polymer composites (CPCs) have many attractive properties, such as 

low-cost, lightweight, chemical stability, flexibility, easy processing, which make them 

become promising candidates for EMI shielding applications.[5–9] Particularly, CFs and 

their composites have been widely used owing to their excellent electrical properties, 

high thermal stability, high specific strength and specific modulus.[10–12] A number of 

researches have been carried out to study the EMI shielding of CFs. For example, Cao 

et.al investigated the EMI shielding effectiveness of short carbon fiber/silicon dioxide 

composite material in the frequency range of 8.2 ~ 12.4 GHz at the temperature of 30 

~ 600℃, which exhibited an EMI SE of 12.4 dB at 12.2 GHz.[13] Lee SH et al. reported 

the EMI shielding effectiveness of CF/PP composites, which exhibited an excellent 



EMI SE of 48.4 dB at 10 GHz frequency.[14] Tang et al. studied the influence of carbon 

fiber concentration on EMI shielding properties of CF/PC film, when the content of CF 

is 90%, the EMI shielding properties of CF/PC film can reach 38.6 dB.[15] Im et al. 

fluorinated carbon black and embedded it into the polyacrylonitrile (PAN) based CF, 

which showed a decent SE of 50 dB.[16] Therefore, it is obvious that CFs composites 

reinforced conducting polymer composites have become perfect potential candidates 

for EMI shielding materials. 

Although there are many studies on CFs composites, most of them are focus on 

the composites with conductive fillers. Generally, they often require high contents of 

conductive filler, which will suffer from various drawbacks, such as poor ductility, 

severe agglomeration, poor flexibility, high cost, high density, poor processing, etc.[17–

19] In order to address these shortcomings of composites with conductive fillers, forming 

a segregated structure in a composite material has remained the most promising 

strategy.[20–24] Zhang et al. prepared polylactic acid/multi-walled carbon nanotubes 

nanocomposites with conductive isolation network. The multi-walled nanotubes were 

successfully positioned in continuous L-PLLA phase to form composites with 

segregated structure. Compared with the composites prepared by random distribution 

of MWCNT, their EMI shielding performance was improved by 36%.[25] In Gelves’s 

study, copper nanowire and polystyrene were used to fabricate composites with 

segregated structures, which achieved a higher EMI shielding effectiveness of more 

than 20 dB.[26] Yan et al. fabricated an in situ thermally reduced graphene/polyethylene 

conductive composite with a segregated structure, which achieved a high 



electromagnetic interference shielding effectiveness of up to 28.3–32.4 dB.[27] In 

addition, some researchers have found that forming a segregated structure in a 

composite material can make more conductive fillers contact with the matrix and 

produce multiple interfaces and microwaves scattered or reflected by multiple 

interfaces can be well absorbed by the polymer/conductive filler.[28–30] Therefore, by 

constructing multiple interfaces in the CPC, multiple scattering /reflection of 

electromagnetic waves can be enhanced, thereby improving the electromagnetic 

shielding performance of materials.[31–33] Li et al. used cotton fiber (CTF) as the carrier 

to construct a lot of multiple interfaces in PDMS/MWCNT nanocomposites. It was 

found that in nanocomposites, electromagnetic radiation was effectively attenuated by 

wave reflections at multiple interfaces and then absorbed by the PDMS/CTF and 

CTF/MWCNT interfaces. By adding 15% by volume of CTF, the EMI shielding 

effectiveness (SE) of PDMS/MWCNT nanocomposites with MWMS of 2.0 and 3.0% 

by volume was increased from about 16 dB to 30 dB, and from 20 dB to 41 dB, 

respectively.[34] 

Thermoplastic polyurethane elastomer (TPU) is an important material with soft 

and hard alternating segments and a biocompatible and biodegradable elastomer.[35–37] 

The polarity difference between hard and soft sections produces thermodynamic 

incompatibilities in TPU, which results in excellent mechanical properties and wear 

resistance. As a result, TPU has been widely used in many fields such as automobile, 

footwear, building, wire and cable, hose and pipeline owing to the good wear resistance, 

good processing performance, high chemical stability and mechanical properties.[38] In 



recent years, TPU composite materials have been widely used in electromagnetic 

interference shielding field. As shown in Jiang’s study, the hydrogen bond between TPU 

and RGO enabled the composite to have good interface adhesion and TPU/RGO foam 

composite exhibited a good shielding effectiveness of 21.8 dB.[39] Moreover, Feng et al. 

investigated the EMI SE of TPU/CNTs composites when the content of CNTs was 5.0 

wt%, and it was found that the sample showed an average EMI SE of 35.3 dB.[40] 

Therefore, it is a good choice to select TPU as the polymer matrix. 

In the present work, we report an environmentally friendly, scalable, facile, and 

versatile methodology to fabricate carbon fiber fabric/TPU composites with segregated 

conductive networks for EMI shielding applications. Firstly, CF fabric/TPU composites 

were prepared by the method of hot compressing, and then, the morphology of 

composites was observed using a field emission scanning electron microscope (SEM). 

Afterwards, the functional group changes on the surface of CF fabric were characterized 

by a Fourier Transform Infrared Spectrometer (FT-IR) and X-ray photoelectron 

spectroscopy (XPS). Subsequently, it was found that the composite exhibited 

outstanding flexibility, which can be easily folded into various shapes. Finally, 

composites with different CF fabric stacking angles were discussed, and the EMI 

shielding performance and the mechanical properties were also characterized. The 

results showed that CF fabric/TPU composites possessed an excellent EMI shielding 

performance and mechanical property. This multifunctional ultralight material provides 

a promising solution to satisfy high-performance EMI shielding requirements. 

 



2. Results and Discussion 

2.1. Composite morphology 

The carbon fiber fabrics used in this study are bidirectionally braided, so SEM 

electron microscopy shows that the bunches in carbon fiber fabrics have horizontal and 

vertical directions. In order to compare the effect of silane coupling agent on the 

combination of CF fabric and TPU, Figure 1a-b shows the SEM morphologies of 

untreated-CF fabric/TPU composites. It can be clearly seen that part of the CF bundles 

are not in close contact with TPU. In addition, there are cracks inside the carbon fiber, 

indicating that that the combination effect of untreated-CF fabric and TPU is poor. 

Figure 1c-e shows the SEM morphologies of one-layer composite prepared by the 

combination of the treated CF fabric and TPU. The surface of CF fabric is well 

infiltrated by TPU, which indicates the good combination between CF fabric and TPU. 

Figure 1f-g and Figure 1h-i show the SEM morphologies of two-layer and three-layer 

composites, respectively. It can be observed that a part of the CF fabric is covered by 

TPU. The TPU can across the gap between CF fabric, and the TPU on both sides of the 

CF fabric can be directly connected, which further confirms that CF fabric and TPU 

has a good combination. Besides, the surface morphology of monofilament carbon fiber 

was further studied. As shown in Figure 2a, the surface of untreated carbon fiber is 

smooth, with a few narrow and shallow grooves uniformly distributed along the 

longitudinal direction of the fiber. Figure 2b shows the carbon fiber modified by silane 

coupling agent, it is apparent that some KH-550 molecules are grafted onto the carbon 

fiber, and the fiber surface becomes rougher, which indicates that it is beneficial for the 



combination between CF fabric and TPU. In order to further clarify the modification 

effect of KH-550 on CF fabric, FT-IR and XPS are discussed. 

Figure 3 presents the FT-IR spectra of untreated and treated CF fabric. After 

treated with KH-550, the new stretching vibration peak presented at 1030 cm-1 belongs 

to the band of Si-O-Si, and the stretching vibration peak in Si-CH3 appears at 850 cm-

1, they both indicate that the surface of CF fabric is successfully introduced with the 

element of Si. Besides, the peak at 2930 cm-1 can be assigned to the stretching vibration 

of C-H. The strong absorption peak appears at 1569 cm-1 that should be attributed to 

the stretching vibration of C=O, and the stretching vibration of C-N bonds appears at 

1331 cm-1. Similar results were also observed in other literature.[41–43]  

The mechanism of interactions between functional groups of CF fabric surface can 

be explored on the basis of the XPS spectra, which were collected before and after 

treatment. As shown in Figure 4a-b, the peaks corresponding to O 1s, N 1s, C 1s, Si 2s 

and Si 2p were clearly identified in the survey scan spectrum. The new appearance of 

the Si 2s and Si 2p in the XPS spectrum after treated with KH-550 demonstrates that 

the element of Si is successfully captured, which confirms that the element of Si is 

successfully grafted on the surface of CF fabric. Besides, the peak height of O 1s, C 1s 

and N 1s spectrum peaks have changed, which indicates the content of C, N, O on the 

surface of CF fabric is also changed. The content of O and N are increased, but the 

content of C is decreased. As can be seen in Figure 4c-d, the new functional group C-

Si has been captured, which further confirms the element of Si is successfully 

introduced on the surface of CF fabric. Apparently, according to the analysis of XPS 



and FT-IR, the surface of CF fabric has been modified, which is conducive to the 

combination of CF fabric and TPU. 

2.2. Conductivity analysis 

The conductivity of composites is closely related to the EMI shielding property of 

composites, high conductivity can produce significant dielectric loss in the material, 

which is conducive to the EMI shielding ability of the material.[44–46] Sample 

conductivities are presented in Figure 5. The average conductivity of one-layer, two-

layer and three-layer composite with the stacking layer of 0° was 1.7 S/cm, 4.8 S/cm 

and 13.3 S/cm, respectively. It is obvious that the CF component renders the composites 

the electrical conductivity ability because of the electrically insulating nature of TPU. 

Thanks to the unique structure, the composite is conductive along the plane direction 

and non-conductive along the thickness direction. As the number of stacking layers 

increased, the electrical conductivities of samples have improved. This difference might 

arise from the complexity of conductivity networks. Since TPU is tightly attached on 

the surface of CF fabric, and two adjacent layers of CF fabric are connected by TPU, 

just like a bridge. The conductive networks promoted the movement of charge carriers 

and improved the tunneling effect and field emission mechanism.[47–49] Besides, as we 

can see, with the increase of stacking angle, the conductivity of the composite also 

increases, but the range of this change is very small. Considering that the conductivity 

of the composite itself changes within a certain range, the conductivity of the composite 

shows insignificant angular anisotropy.  

2.3 EMI shielding property 



2.3.1 EMI shielding mechanisms 

The EMI SE (SET) is the logarithm of the ratio of incident power (Pi) to transmitted 

power (Pt) of radiation, which is also the sum of reflection shielding effectiveness (SER), 

absorption shielding effectiveness (SEA), and multiple reflections (SEM). SE is 

calculated according to the following equation (1).[50] 

SE =10 log (Pi/Pt) = SEA + SER + SEM  (1) 

When SET is greater than 15 dB, SEM is usually neglected.[51] Therefore, the EMI 

SE (SET) can be expressed as shown in equation (2). 

SET = SEA + SER   (2) 

2.3.2. EMI SE of the composites 

Figure 6a-b shows the EMI-SE values of different stacking layers measured in the 

frequency range of 8.2~12.4 GHz. The maximum SET for one-layer sample is 20.9 dB, 

and this value is found to be substantially improved with increased stacking layers, 

reaching 35.3 dB for two-layer sample and even higher value of 59 dB for three-layer 

sample. The EMI-SE values of different stacking layers indicate that the CF fabric/TPU 

composites prepared in our study possesses excellent EMI shielding properties, which 

can satisfy the requirements of commercial EMI shielding value of 20 dB.[43] Besides, 

It is obvious that the SET of pure TPU maintains at 0.8~0.9 dB. The low value of SET 

means that TPU can be regarded as an electromagnetic wave transparent material.[52,53] 

The shielding property of CF fabric/TPU is mainly attributed to CF fabric. 

To clarify the underlying mechanism, the SE absorption and SE reflection are also 

investigated, as shown in Figure 6c-d. It is apparent that the value of SEA is higher than 



SER. With the increase of the stacking layers, the increase of SEA is quite apparent, but 

the SER increases slowly. Besides, Figure 7 illustrates the power coefficients A, R 

and T measured in the range of 8.2~12.4 GHz for CF fabric/TPU composite with 

different layers at the same angle. The value of R is remarkably higher than that 

of A, and the value of T can be negligible, which indicates that the actual 

shielding mechanism for CF fabric/TPU composite in the frequency range of 

8.2~12.4 GHz is dominated by reflection.[54] Since reflection occurs before 

absorption, most of the incident waves (as absolute values) are reflected. 

Electromagnetic reflection usually occurs at the corresponding interface, and the 

enhancement effect of electromagnetic reflection becomes obvious with the 

increase of interface area.[55,56] At the beginning, when electromagnetic waves 

striking the surface of the CF fabric/TPU composites, due to impedance 

mismatch between the CF fabric/TPU composites and the surrounding 

environment, some electromagnetic waves were reflected at the interface, 

resulting in reflection energy loss. With the increase of the number of layers of 

CF fabric/TPU, the electromagnetic wave continuously rushes to the CF fabric 

layer and TPU resin layer, which will also cause some reflection. However, 

because the interface conditions are all electromagnetic waves directly from the 

air to TPU resin, which has a certain degree of similarity, so the increase of SER 

value of samples with different stacking layers and angles is not obvious.[57]  

The content of carbon fiber also affects the EMI shielding performance of the CF 

fabric/TPU composite. Table 1 shows the content of CF fabric in composite with 



different stacking layers and angles. For one-layer composite, the thickness of each 

resin layer is about 0.66 mm. For two-layer composite, the thickness of each 

resin layer is about 0.38 mm. For three-layer composite, the thickness of each 

resin layer is about 0.24 mm. When the stacking layers of CF fabric are the same but 

the angles are different, the content of the CF in composite changes in a very small 

range, which can be regarded as the same content of CF in composite. However, when 

the stacking angles are the same and with the increase of the number of CF fabric layers, 

the content of the CF fabric increases obviously. The content of the CF fabric in the 

one-layer, two-layer and three-layer of the composite is about 16.3%, 31.1% and 44.6%, 

respectively. The increase of CFs can form more effectively conductive networks which 

provides sufficient conductive paths, thereby increasing ohmic loss, and the increasing 

CFs amplify the energy dissipated of electric dipoles by polarization.[58,59] Vast mobile 

charge carriers (electrons or holes) had great mobility to interact with external 

electromagnetic fields. The network composed of CF establishes the bridge of mobile 

charge carriers, which can move freely along the bridge. In addition, reciprocating 

reflection of electromagnetic waves in multilayer composites can increase the 

absorption and reflection properties of composites. Moreover, carriers in composites 

can absorb incident electromagnetic waves and give positive feedback. At the same 

time, they can generate magnetic field energy and the movement of energy produces 

heat loss in the form of a weak current, which further strengthens the ability to absorb 

electromagnetic waves. 



Furthermore, to study the effect of CF fabric stacking angles on EMI performance, 

the CF fabric/TPU samples with different stacking layers and stacking angles (0°,15°, 

30° and 45°) were prepared and their corresponding EMI SE was investigated in X-

band for an example. As shown in Figure 8, it is clear that the shielding performance 

of composite increases with increasing the sample stacking angles. Among them, the 

three-layer sample with 45° stacking angle exhibits a maximum EMI performance of 

73 dB. Figure 9a-c shows the EMI SE of composites with different stacking layers and 

angles in detail. It shows that the SEA of composites with different angles is larger than 

SER, and the increase of SET is mainly attributed to the increase of SEA, especially the 

three-layer composites with an angle of 45°, which the SEA accounts for nearly 90% of 

the SET. This phenomenon indicates that CF fabric/TPU composites exhibit high 

angular anisotropy. The reasons are further discussed. When the electromagnetic wave 

passes through the CF fabric, once the stacking angle of the CF fabric changes, the path 

of the electromagnetic wave will also change, which will affect the feedback of the 

moving charge carrier to the electromagnetic wave and increase the absorption of the 

electromagnetic wave. Due to the stacking angle is different, when a large number of 

moving charge carriers (electrons or holes) move along the network composed of CF 

fabric, there will be stronger eddy current, which may enhance the transmission of 

electromagnetic energy dissipated in the form of micro current, leading to the 

enhancement in SEA. In addition, when the carriers move along the conductive network, 

they can generate a magnetic field to resist the external electromagnetic field, and if the 

stacking angle of CF fabric changes, the magnetic field generated by the carriers may 



also change its angle, and the magnetic fields from different angles may also generate 

more absorption losses. Moreover, the change of the stacking angle of the CF fabric 

will lead to the complexity of the internal structure of the composite, which will lead to 

more electromagnetic wave absorption and reflection inside the composite, and the 

complex structure makes it difficult for electromagnetic waves to directly penetrate the 

composite, so the electromagnetic shielding performance of the composite is apparently 

improved. 

The thickness of composite material also affects the electromagnetic shielding 

efficiency of the material. Figure 10a shows the electromagnetic shielding efficiency 

of one-layer CF fabric/TPU composite with different thickness at the same angle. It can 

be observed that the thicker composites exhibit obviously better EMI SE compared with 

thinner ones. The energy absorption of electromagnetic wave in penetrating the 

shielding body is mainly caused by eddy current. The eddy current has two functions, 

one is to generate an anti-magnetic field to counteract the original magnetic field, and 

the other is to generate heat loss. Therefore, the thicker the composite material is, the 

longer time it takes for electromagnetic wave to penetrate the material, resulting in the 

increase of eddy current loss. More interestingly, as shown in Figure 10b, the one-layer 

composite with stacking angle of 0°, suffering 1000 times bending, also has high EMI 

shielding performance. As we can see, the EMI SET has a slight increase, up to 23.2 dB 

at 12.4 GHz. Because after 1000 times bending, the thickness of composite has 

increased by nearly 0.04 mm, so the value of SET has a slight increase. The result 



indicates that the composite shows incredible potential in the application of flexible 

EMI shielding materials. 

Nowadays, electromagnetic shielding materials have been developed towards 

ultra-thin and lightweight due to the urgent demand of aerospace and some intelligent 

electronic devices. In order to compare EMI shielding performance with other typical 

materials in lightweight applications, specific shielding effectiveness (SSE=SE/D/T) is 

derived to compare the effectiveness of shielding materials taking into account of 

composite thickness (T) and density (D).[60,61] Table 2 shows the comparison between 

SE/D/T of materials prepared in this paper and other shielding materials in literature. 

As listed in Table 2, the SE/D/T value of CF fabric/TPU composite is 383 dB·cm2/g, 

which is much higher than that of other shielding materials, indicating that it holds great 

promises in EMI shielding applications. This excellent electromagnetic shielding 

performance is attributed to the multi-layer structure formed by CF fabric, which 

leading to more carriers directly contacting with TPU matrix to induce multiple 

interfaces. The approach is simple, low cost and environment-friendly, which can be 

widely used in other conductive composites. 

2.4. Mechanical properties 

Figure 11a shows the tensile strength of composites with different stacking layers 

and angles. When the stacking angle is the same, the tensile strength of composite with 

different stacking layers increases with the number of stacking layers. Take 0° as an 

example, the tensile strength for one-layer sample is 62.4 MPa, and this value is found 

to be substantially improved with increased stacking layers, reaching 83.2 MPa for two-



layer sample and even higher value of 108.3 MPa for three-layer sample. This is due to 

the high specific strength and modulus of CFs, the added CFs can form interfacial 

interaction with TPU matrix to ensure that the stress can be transferred between CFs 

and TPU matrix. Besides, the surface of the treated CF becomes rough, and the rough 

surface can improve the wettability of the composite which is conducive to the 

combination of carbon fiber and TPU.[68] Moreover, the hydroxyl and carboxyl groups 

on the surface of CF and ester groups in TPU formed strong hydrogen bonds at a high 

temperature, which will improve the bonding properties between CF fabric and TPU.  

Furthermore, we can also see the effect of different stacking angles on the tensile 

properties of CF fabric/TPU composite. The tensile strength of the composite will also 

change obviously when the CF fabric stacking angle increases. Similarly, different 

stacking layer composites show the same phenomenon. On the one hand, this is due to 

the different microstructure of composites with different stacking angles. On the other 

hand, when the CF fabric has a stacked angle, the load applied to the composite is a 

tangential component along the direction of the force applied by the device, and the 

load along the texture direction of the CF fabric also varies with the angle, which also 

causes the difference of tensile strength.  

As shown in Figure 11b, the flat and rectangular CF fabric/TPU composite can 

curl several loops and rotate at large angles, which it is difficult for traditional metallic 

material to achieve this property in the same situation. Figure 11c demonstrates what 

will happen after a CF fabric/TPU sample is folded and released. The sample can be 

folded easily, and when the sample is released after two folds in half, it can be restored 



to its previous shape easily. Moreover, there is almost no crease on the sample surface, 

which indicates that the composite possesses high flexibility and foldability. Figure 11d 

shows the flexibility of a sample at a given weight. First, a sample is placed on two 

support blocks and the distance between the two blocks is 60 mm. Then, five iron blocks 

(each 40g) with a total weight of 200 g are slowly placed on the upper surface of the 

sample. The bending angle of the specimen caused by the weight is measured and 

recorded. The results show that the bending angle of CF fabric/TPU composite is about 

36°. This test reveals that the CF fabric/TPU composite possesses excellent flexibility, 

holding great promise for flexible electronic equipment and mobile phones. 

 

3. Conclusions 

In this study, we have reported a general, facile, eco-friendly, and lightweight CF 

fabric/TPU composites with segregated conductive networks for EMI shielding 

applications. The simple and economical preparation process can be well suited the 

business applications. The EMI shielding effectiveness of high angle sensitive CF 

fabric/TPU composites can reach a maximum of 73 dB. In addition, the composites 

show an excellent tensile strength, which can achieve 168 MPa. In addition, the 

composite exhibits excellent flexibility, and after having been folded many times, the 

composites continue to maintain high flexibility. In addition, the composites have 

anisotropic conductivity, which is conductive along the plane direction and non-

conductive along the thickness direction. Moreover, the CF fabric/TPU composite 

possesses remarkable comprehensive properties, and it can be quantitatively estimated 



by an SE/D/T evaluation index as high as 383 dB·cm2/g, which is much higher than 

that of other shielding materials in literature. The composite prepared in this study not 

only well meets the requirements of high EMI shielding performance and mechanical 

strength for aerospace and other intelligent electronic devices, but also opens up a broad 

road for the lightweight, high flexibility and mechanical strength of high-performance 

EMI materials. 

 

4. Experimental Section 

4.1 Materials 

Polyacrylonitrile (PAN)-based CFs (TR30s 3L) were supplied by Mitsubishi 

Rayon, Japan. The density of CF fabric is 1.79 g/cm3, the thickness is 0.18 mm, and the 

diameter of carbon fiber is 7 microns. Thermoplastic polyurethane elastomer (Texin285) 

was purchased from Bayer, Germany. The density is 1.2 g/cm3. The Shore hardness is 

85A and elongation at break is 500%. The silane coupling agent KH-550 (≥98%) was 

obtained from Changzhou Runxiang Electronic Materials Co., Ltd. Deionized water 

was purchased from Guangzhou Hongwei water treatment Co., Ltd. 

4.2 Fabrication of CF fabric/TPU composite 

The CF fabric reinforced TPU composites (CF fabric/TPU) were fabricated by 

stacking TPU plates and CF fabrics layer-by-layer through hot compression (Figure 

12). Firstly, the granular TPU was dried in an oven, then melted and cooled to form 

TPU plates. Secondly, the surface of CF fabric was treated with the mixture of silane 

coupling agent KH-550 and anhydrous ethanol. After surface treatment, the CF fabric 



was washed by deionized water. Thirdly, one-layer composite was prepared by hot 

pressing after a CF fabric was embedded between two TPU plates, and the structure 

looked like a sandwich. And then, along the texture direction of the CF fabric, we can 

cut and obtain different angles (0°, 15°, 30°, 45°) of one-layer CF fabric/TPU composite. 

Finally, in the preparation of two-layer composite, the structure was also like a 

sandwich, but the texture direction of the CF fabric of the second layer was set at an 

angle with the texture direction of the first CF fabric, meaning that the texture direction 

of the first layer of CF fabric is parallel to the horizontal direction, but the texture 

direction of the second layer of CF fabric has a certain angle (0°, 15°, 30°, 45°) with 

the horizontal direction. By stacking the CF fabric at different angles, two-layer 

composites were prepared. Similar to the preparation of two-layer composites, by 

stacking the CF fabric at different angles (0°, 15°, 30°, 45°), three-layer composites 

were also prepared.  

4.3 Characterization 

The EMI shielding of samples was measured by the waveguide method using a 

vector network analyzer (VNA, N5234A, Agilent, USA), and all samples were cut into 

a rectangle shape with a size of 22.9 mm × 10.2 mm× 1.5mm. The tensile strength test 

was conducted on a microcomputer-controlled electronic universal testing machine 

WDW-50E. The test temperature is at room temperature and the size of the test 

sample is 80mm × 10mm × 1.5mm. The tensile speed is 10mm/min. Morphologies 

of the samples were investigated using a field emission scanning electron microscope 

(JSM-6610LV, JEOL, Japan) at an accelerating voltage of 15 kV. Conductivity was 



measured on a standard four-probe meter (ST2253, Suzhou Jingge Electronics Co., Ltd., 

China). And the average conductivity for each sample was determined by five 

measurements to reduce errors. CF surface elements and functional groups were 

detected by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron 

spectroscopy (XPS). 
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Figure 1. a-b) SEM morphology of untreated-CF fabric/TPU composite; SEM 

morphology of CF fabric/TPU Composites (0°) with different stacking layers: c-e) One-

layer; f-g) Two-layer; h-i) Three-layer. 

 

 

Figure 2. a) Untreated CF Surface; b) Treated CF Surface. 

 



Figure 3. FT-IR of the surface functional groups of carbon fiber fabric. 
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Figure 4. a) Scan spectrum of untreated CF; b) Scan spectrum of treated CF; c) C1s 

spectrum of untreated CF; d) C1s spectrum of treated CF. 



 

 

Figure 5. Conductivity of composites with different stacking layers and angles. 

 



Figure 6. a) The maximum EMI-SE of composites with different stacking layers; b) 

Total shielding effectiveness (SET); c) Absorption shielding effectiveness (SEA); d) 

Reflection shielding effectiveness (SER). 

 

 

Figure 7. The power coefficients A, R and T for different layers of CF fabric/TPU 

composite with the stacking angle of 0°. 



 

 

Figure 8. The total EMI SE of composites with different stacking layers and angles. 

 

 

 



Figure 9. a) SET, SEA and SER of one-layer composites material with different angles; 

b) SET, SEA and SER of two-layer composites material with different angles; c) SET, 

SEA and SER of three-layer composites material with different angles. 

 

 

Figure10. a) The EMI shielding efficiency of one-layer CF/TPU composite with 

different thickness at the same angle (0°); b) EMI shielding performance of one-layer 

composite with stacking angle of 0° after 1000 times bending. 



 

 

Figure 11. a) Tensile strength of CF fabric/TPU composites; b) The flat, curling and 

rotating morphologies of CF fabric/TPU composites; c) Folding and releasing processes 

of CF fabric/TPU composites; d) The flexibility at a given weight. 

 

 



Figure 12. Schematic illustration of the fabrication process for CF fabric/TPU 

composites. 

 

 

 

 

 

 

 

 

 

 

 



Table 1. The content of CF fabric in composite with different stacking layers and angles. 

(%) 

Layer 0° 15° 30° 45° Ratio of CF/TPU 

One-layer 16.3 ± 0.1 16.1 ± 0.2 16.4 ± 0.2 16.3 ± 0.3 19.4 ± 0.2 

Two-layer 31.1 ± 0.2 31.3 ± 0.1 31.2 ± 0.1 31.5 ± 0.2 45.5 ± 0.5 

Three-layer 44.6 ± 0.4 44.5 ± 0.3 44.7 ± 0.2 44.8 ± 0.3 80.5 ± 0.5 

 

Table 2. Comparison of CF fabric/TPU composite and other shielding materials. 

Sample EMI-SE (dB) Density (g/cm3 ) Thickness (mm) SE/D/T (dB·cm2/g) Reference 

CF fabric/TPU 73 1.27 1.5 383 This work 

PMMA-graphene 19 0.79 2.4 100 [62] 

MWCNT/PC 27 1.1 2 123 [63] 

PEI/graphene 9.6 0.32 1.8 167 [64] 

PEI/graphene 

nanocomposite foams 

20 0.29 2.3 300 [64] 

PS/graphene 24 0.63 2.8 136 [65] 

Stainless steel 89 8.1 4 27 [66] 

Copper 90 9 3.1 32 [66] 

MWCNT/TPU 22 1.3 2 85 [67] 
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This study presents a general, facile and eco-friendly approach to prepare carbon 

fiber fabric/TPU composites with different stacking layers and angles. The 

electromagnetic shielding performance of the lightweight CF fabric/TPU composite 

can be improved with the increase of stacking layers and stacking angles. The CF 

fabric/TPU composite also possesses excellent mechanical properties. 
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