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Abstract 

This paper introduces a method to infer gaze direction and the point of focus of participants involved 
in a collaborative activity, such as a meeting. It uses a single depth-based sensor placed overhead to 
capture the meeting, which has the benefit of avoiding occlusion and is unobtrusive, minimising 
possible changes in behaviour that might arise if people are aware of the sensor.  The inferred gaze 
direction of each participant is estimated in the horizontal plane from the orientation of the head 
(yaw), derived from a segmentation of the depth image to generate an outline of the head. A 
common focus of attention is inferred by intersecting the gaze directions of each participant. 
Performance evaluation using a depth camera to record a meeting achieved a head detection 
performance of 99.6% and a valid gaze detection of 96.9%. 
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1. Introduction 

Analysing the interaction between people has gained increasing interest in recent years with the 
desire to understand the dynamics of people in collaborative settings, such as meetings and team 
discussions.  Typical interactions include following a conversation or discussion, watching a 
presentation, or interacting with an object in the scene, focusing on one another or the inevitable 
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distractions from the surrounding environment.  The complexity of this task increases with the 
number of participants. 

A variety of technologies have been used to capture different aspects of this interaction, including 
microphones, cameras and depth sensors. However, if people are aware of the technology that is 
observing them, or are asked to wear the technology, it can change their behaviour, a reaction that 
is referred to as the observer or Hawthorne effect (Roethlisberger et al., 1939). Alternatively, an 
unobtrusive approach restricts many of the current ways in which data is gathered in meeting 
scenarios. Analysis of the interaction of a group of people who are collaborating provides a 
significant challenge, not only to capture all of the people together but also to detect the interaction 
that takes place between them and with other elements in the scene.  

Previous work on this challenge (e.g. Kaminski et al., 2006) tries to capture the interaction by 
detecting each person’s visual focus of attention (VFOA) using a variety of alternative sensors (e.g. 
cameras, eye trackers, orientation sensors, sound source location). A widely used approach 
(Kaminski et al., 2006) is to capture the head pose and facial features of individuals to determine the 
orientation of the head and infer the direction of gaze. Gaze direction is composed of two elements 
– the orientation of the head and eye orientation. In searching for a new fixation point, it is normal 
for the eyes to move first, followed by a head rotation (and a compensatory eye rotation in the 
opposite direction). The eyes have a horizontal ocular range of approximately +/- 25° (Stahl, 1999), 
and outside of this range a change of head orientation is needed for fixation. Cameras may be used 
to detect the eyes and directly extract the direction of gaze; in addition, if both eyes can be observed 
it may also be possible to estimate the depth of fixation.   

However, except in constrained circumstances, a single camera is insufficient for a group of people 
and multiple cameras need to be employed. Other approaches (Masse, Horaud, 2017) have used 
elaborate head-mounted equipment with a sensor to measure both head orientation and also eye 
direction.  Depth cameras have also been used to determine the direction of gaze by establishing the 
shape or pattern of the head from the depth information to determine the orientation of the head 
(Bhattacharya et al., 2018). 

Many of these technologies are intrusive and may influence a person’s natural behaviour, adversely 
impacting the measurement.  Increasing the number of capture devices complicates the installation 
and usage of the system and increases the complexity of the image analysis, with potential problems 
of occlusion and the integration of measurements from each camera. Also, it is necessary to globally 
calibrate such person-centred measurement systems so that the interaction between individuals can 
be determined. 

As well as estimating the gaze direction of each individual, additional information can be gained by 
identifying the periods when the attention of several (or all) of the group is focussed on a specific 
target, such as the person who is speaking, or an object of interest that is the subject of the 
discussion. In this case the collective attention of the group may be inferred by computing the 
intersection of the individual gaze directions. Whilst such collective gaze behaviour is common it is 
by no means consistent, and the gaze of individuals can be subject to distraction or observing non-
speakers to observe reactions. 

This research aims to provide a methodology to support the analysis of interaction within a 
collaborative setting, using an unobtrusive approach with minimal impact on the natural behaviour 
of the participants, thus enabling an effective interpretation of the actions and interaction of the 
participants. Our approach is to infer the gaze direction of each participant by estimating the 



orientation of the head in the horizontal plane (yaw), derived from a segmentation of the depth 
image to generate an outline of the head using a single overhead sensor. A particular challenge for 
this approach is that, since the eyes are not visible, the true gaze cannot be directly measured. A 
specific aim of the research is to investigate the capabilities and limitations of the method under this 
(and other) constraints. 

The novelty of the research lies in the following: the use of a single depth sensor, placed overhead; 
detection of participants from maximally-stable extremal regions; modelling the gaze with a 
Gaussian distribution; and computing a common fixation point that accommodates inaccuracy in the 
gaze direction estimates. Throughout the text the term “gaze direction” is used to refer to this 
inferred gaze direction; where the true gaze (i.e. where the eyes are pointing) is referenced the term 
”true gaze” will be used. 

Our unobtrusive approach is applied to recordings of a group of people sitting around a meeting 
table. In calibrating the scenario, the participants are asked to carry out a controlled activity by 
fixating on a specific object viewed at different locations; a second interactive activity used an object 
passed around the group as the subject of a discussion.  Our approach will leverage the technique of 
overhead data capture, maximising the benefits of an unobstructive view of the participants and 
their interactions.  The inferred gaze directions of the participants are used to Identify the subject of 
groups focus of attention, whether that is an object, an activity, or the speaker. 

This paper focuses on extracting measurements of people in a meeting, in order to support 
behavioural studies on group focus and attention, such as the gaze change in the activity of turn-
taking in discussion (Ho et al., 2015).  Other applications may be in teaching, where children’s FOA is 
measured for levels of engagement or focused on one-on-one teaching in cases of special needs; or 
a person performing a specific activity, such as playing an instrument. 

2. Related work 

In humans, the direction of someone’s gaze provides insight into their focus of interest (Mareschal et 
al., 2013).  Gaze also plays a part as a cue within collaborative settings, confirming focus or attention 
to the speaker (Stahl, 1999, Kluttz et al., 2009, Wilson et al., 2000, Daar et al., 2012). The review of 
the different gaze direction capture methodologies uncovered a need to understand the relationship 
between the eye and the head, how they work together and the natural process of gaze and fixation 
within the activities measured.  

(Stahl, 1999) considered the interaction between head and eye motion in the horizontal plane, 
associating large changes in gaze direction with head motion, while saccades support smaller 
changes. He noted that the head catches up with the eyes, and the final configuration is with the 
eyes looking straight to the front. 

Research to capture gaze direction and VFOA fall mainly into two approaches.  Firstly, a combination 
of head pose and eye movement with the technology attached too or directly in front of the person 
(Kaminski et al., 2006, Ba et al., 2006, Ghiass et al., 2016, Fischer et al., 2018).  Secondly, capturing 
head orientation and inferred gaze estimation from multiple cameras overhead or a central 
omnidirectional camera on a table, providing an opportunity to observe more than one person 
simultaneously (Tian et al., 2003, Cohen, et al., 2000, Wu et al., 2017). 

Research conducted by (Chong et al., 2018) presented a method of identifying gaze and attention of 
subjects looking at objects, at the camera or out-of-frame gaze targets from images. Chong et al. 
developed a generalised visual attention estimation method which learns a subject’s saliency map 
and a three-dimensional vector from the yaw and pitch of the heads in the images.  Similar 



techniques of facial models (Kaminski et al., 2006), used anthropometric features, in this case, live 
tracking of the four corners of the eyes and the point of the nose. 
 
An alternative approach (Voit, Stiefelhagen, 2008, Voit, Stiefelhagen, 2010) used four cameras to 
track in 3D the head orientation of participants in a dynamic meeting scenario.  This approach coped 
with occlusions and removes the need for capturing facial features to estimate gaze direction.  By 
predetermining possible points of interest within the space, the system was able to predict the 
individual participant's focus of attention in up to 72.2% of all frames. 
 
In a variation to this approach to capture more than one person at a time, (Stiefelhagen, 2002) used 
an omnidirectional camera and microphones, the later to support direction analysis, positioned in 
the centre of the meeting table, capturing the head orientation of all participants. Microphones to 
support location measurements of gaze fixation points were also used in (Reddy, 2016) as part of an 
overhead RGB camera configuration to capture head orientation. The approach of (Stiefelhagen, 
2002, Reddy, 2016) combined visual and sound analysis and managed to achieve 75.6% and 70% 
accuracy respectively for identifying the focus of attention, i.e., the person talking in both 
experiments. 

There is the assumption that when people interact, they tend to look in the direction of the relevant 
object or person.  (Masse, Horaud, 2017) used the head orientation and the eye gaze direction to 
identify the intended focus of attention on people and objects, recognising that people look at a 
person who is talking or at an object of interest under discussion.  In tracking gaze direction in three 
or more participants, the capture of eye gaze is difficult, as eyes become barely detectable as 
participants turn to face each other, and requires multiple cameras. In the method deployed by 
(Masse, Horaud, 2017) a Bayesian switching dynamic model used the orientation or head pose to 
track the gaze direction. When both eyes were in view, a trackable learning algorithm further 
increased the accuracy of determining the focus of attention. 

(Hu, G. et al., 2014) focused on tracking human activity using a top-down three-dimensional camera 
approach.  Their hierarchical tracking models scene constraints and motion patterns to find and 
track people in a space used for action recognition, applying the method to tabletop activity 
research and vertical screen interaction measurement.  This approach removes occlusion despite 
losing facial information, but with many human movements and actions still distinguishable. 

(Reddy, 2016) adopted a similar top-down approach to (Cohen et al., 2000), using RGB images from 
an overhead camera to capture the vocal interaction of a group of people. By intersecting the gaze 
direction of each participant, the speaker could be identified 70% of the time. (Bhattacharya et al., 
2018) described a multimodal conference room that uses two types of depth sensors positioned 
overhead and microphones attached to each participant in their study of human dynamics.  The 
main focus of this research is centred on non-verbal speech patterns and discussion content to 
identify group rankings of possible leaders and major contributors.  The use of overhead sensors to 
estimate participant's head pose and VFOA as with (Reddy, 2016, Wu et al., 2017, Bhattacharya et 
al., 2018, Tian et al., 2003, Cohen et al., 2000), demonstrates a growing trend for overhead 
measurement.  

Each of the approaches described above present challenges: for example, it is difficult to use a single 
sensor to capture facial features (and to infer the direction of gaze) of more than one person. Also, 
with only a single sensor, problems occur due to occlusion unless the participants are arranged in a 
very constrained configuration. The use of an overhead sensor (Reddy, 2016, Wu et al., 2017, Cohen 
et al., 2000, Bhattacharya et al., 2018) provides a clear sight of the participants and minimises the 



possibility of occlusion.  The experiment set out by (Hadjakos, 2012) to track head and hands suggest 
the possibilities for other applications of capturing human activities for study.  Although not directly 
focused on gaze direction, it does provide insight into the methodology taken by this research.   

Placing the capture device directly overhead addresses several issues associated with viewing faces 
from a frontal position.  Firstly, by minimising the problem of occlusion, providing a clear view of the 
entire scene of interaction; secondly, it avoids the problem of the capture device located in the line 
of sight of the participants, reducing the possibility of affecting the natural behaviour of the 
participants. Thirdly, using a single capture device avoids the complication of needing to combine 
the measurements from multiple sensors, which would require geometric calibration to determine 
their spatial arrangement.  The single sensor approach is simpler to set up and more easily 
repeatable.   

The choice of a depth sensor over the more conventional RGB camera has clear benefits: the heads 
of the individuals are distinctly and unambiguously visible in the depth map and are easily separated 
from other parts of the body and other elements in the scene, simplifying the segmentation task, 
whereas the segmentation of an RGB image must cope with the variability of varying quantities of 
hair, as well as hair colour; lastly, using depth data supports the removal of personally identifiable 
information from data sets, making it viable for use in office spaces. 

The novelty of this paper is the use of a single depth-based sensor to capture the inferred gaze 
direction (in the horizontal plane), of multiple interacting participants. It differs from previous work 
by providing a clear field of view of the participants and their interaction with objects.  It significantly 
simplifies head detection by making novel use of the MSER (Maximally Stable Extremal Regions) 
algorithm to slice the depth data through each head, which yields an elliptical shape whose 
orientation is used to estimate the gaze direction. Intersecting individual gazes modelled by 
Gaussian distributions enables detection of the collective attention focus, whereas many of the 
works described above simply treat the gaze vector as a line and ignore the uncertainty of the 
measurement. 

3. Methodology 

The scenario where we undertake the analysis for this research is for a group of participants 
engaged in a conventional meeting, spaced around a table (see figure 1). The principal assumption is 
that the people being observed are in an upright posture so that the head is clearly visible. As shown 
in the diagrammatic representation in Fig. 1b, the gaze directions of participants can be used to infer 
their VFOA, and particular events (e.g. someone speaking, an object of interest) can be detected by 
determining their collective VFOA’s.  

The approach uses a single unobtrusive sensor mounted overhead, simplifying the measurement 
process by limiting the gaze to the horizontal plane (yaw) as it would be more difficult to extract 
reliable estimates of head pitch with this imaging geometry. However, the measurement of yaw is 
the most useful axis for the subsequent analysis in detecting the common fixation point for the 
scenario we are using. The overhead sensor provides compact and self-contained imaging of the 
scene, which simplifies the computation of gaze detection and common focus point, but imposes a 
constraint because the eyes are not visible and determining the pitch of the head from this 
viewpoint would be unreliable and subject to inaccuracy.  

There are three key steps in this methodology: firstly, detecting the heads of the N participants; 
secondly, determining the gaze direction of each participant; and thirdly, identifying potential 
fixation points for each individual.  A transverse section through the human head can be 



approximated by an ellipse. Depth data captured from an overhead sensor are pre-processed to 
minimise noise. Next, heads are detected as maximally stable extremal regions and represented by 
the best-fitting ellipse. The N regions closest to the sensor are considered valid heads of the N 
participants, and are associated on a frame-by-frame basis using proximity. The gaze direction of 
each head is derived from the orientation of the major axis. The gaze direction is intersected with 
each of the other participant’s head locations (centroids) and any common fixation point is found 
from the accumulation of intersections.  

 

     
(a)  

 
(b) 

Figure 1. a) Overhead depth image, b) head detection, inferred gaze direction and common focus point where multiple 
gaze lines intersect. 

3.1 Head Detection and Representation 

Depth images are noisy and require pre-processing before detection.  Fig. 1a shows a frame from an 
overhead depth image of six people sitting around a meeting table.  The black pixel areas around the 
edges of the heads and bodies correspond to locations where the sensor has failed to measure the 
depth for the pixel and returned a zero value.  Such zero-depth measurements happen because 
some surfaces and materials (such as hair) are not strong reflectors of the infrared illumination used 
to acquire the depth image. This can be seen in Fig. 1a around the boundaries of each head, 
resulting in a distortion of the size and shape after segmentation. 

Pre-processing is carried out on each image, based on clipping the depth values into an 8-bit range 
to eliminate any readings that are greater than the actual depth between the sensor and the floor; 
additionally, the depth information is inverted to provide depth values that range from a low value 
at the ground to a high value at the top of the heads (and hence the heads appear brighter when 
displayed).  Finally, a 5x5 non-linear Minimum filter is used to suppress the black pixels around the 
heads. The filter is modified so that it is only applied at locations where the centre pixel value is zero; 
in addition, only the non-zero values in the 5x5 window are evaluated to determine the minimum 
value which is used to replace the zero centre value. The result of applying this filter to the image 
shown in Fig. 1a can be seen in Fig. 2a, where the black pixels around the heads have been clearly 
suppressed. 

The head of each participant is detected by thresholding the pre-processed depth image using the 
MSER (Maximally Stable Extremal Regions) algorithm (Matas et al., 2004), which segments the depth 
image into non-overlapping regions. The MSER algorithm identifies connected regions (R) of pixels 
with an adjacency (connectivity) relationship, using an independent threshold for each region that is 



computed as the algorithm descends through the depth values in each region. The algorithm uses 
two parameters to segment the image into regions: the incremental step size, which determines by 
how much the threshold changes at each iteration; and the maximum change in area between one 
binary slice and the next, which determines the stability of the segmentation.  

A problem may arise if the participants exhibit a very wide range of heights, where the shoulder 
height of one individual exceeds the head height of the shortest person, such as a child and a 
basketball player. In this situation the N MSER regions closest to the camera will miss the head of the 
smaller person. Such a situation is addressed by considering the centroids of each of the selected 
regions as the centroids of the head and shoulders are largely coincident, and a simple test on the 
distance between the selected region centroids allows the shoulder region to be rejected. 

Fig. 2a shows the result of the depth image after pre-processing is applied. Fig. 2b shows the 
multiple binary regions that are returned by the MSER algorithm and constructions of the best-
fitting ellipses.  

  
(a) (b) 

Figure 2. (a) Depth image after pre-processing, (b) segmented regions, resulting from applying the MSER algorithm; 
including best-fitting ellipses and centroids. 

Each region is then represented by its zero, first and second order moments (corresponding to the 
area (in pixels), centroid location and the major and minor axis and orientation of the best fitting 
ellipse) and its mean depth. The mean depth computed for each region is used to rank the regions in 
the order of their distance from the camera. The first N regions of this sorted list are taken to 
represent the detection of N participant heads. 

The constrained and largely static setup of the meeting table means that the task of tracking each 
individual is a trivial step of data association from one frame to the next by computing the Euclidean 
distance between the centroids of every pair of heads, and uniquely associating those with the 
minimum distance. 

The output of the detection stage is N regions. Each region (𝑅𝑅𝑛𝑛 ,𝑛𝑛 = 1. .𝑁𝑁) is described by an 
elliptical model represented by a centroid (𝑥𝑥,𝑦𝑦), major and minor axis 𝑎𝑎, 𝑏𝑏 and the angle 𝜃𝜃, the 
major axis of the fitted ellipse 

𝑅𝑅𝑛𝑛 = {𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛,𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛,𝜃𝜃𝑛𝑛}     (1) 

 

3.2 Gaze Direction 



The gaze direction of each person is inferred from the head orientation as the eyes are not visible, 
based on the orientation θ. To address the 180o ambiguity in the orientation in determining the gaze 
direction, a constraint is imposed that the participants are looking in the direction towards the 
centre of the table (rather the away from the table centre).  The uncertainty of the gaze direction 
(GD) for each participant is modelled by a Gaussian distribution, GD(µ,σ), constructed using 
estimates of the mean gaze direction and its standard deviation (σd) based on ground truth 
measurements: 

𝐺𝐺𝐺𝐺(𝜇𝜇,𝜎𝜎) = 1
√2𝜋𝜋𝜎𝜎2 

𝑒𝑒
    2𝜎𝜎2
(𝑥𝑥−𝜇𝜇)2       (2) 

 

This 1D distribution is projected along the direction of gaze from the head centroid c(x, y) using the 
standard deviation of the gaze direction to create a 2D ‘fan’ distribution. The value of σ varies 
linearly along the gaze projection ray and is computed from 𝜎𝜎 = 𝑠𝑠 tan𝜎𝜎𝑑𝑑, where s is the distance 
along the ray from the head centroid. Each 1D distribution is normalised so that the peak has a value 
of 1, to ensure that the weight along the most likely direction of gaze is independent of the distance 
from the viewer. Fig. 3a shows a set of the Gaussian profiles forming the 2D fan distribution; Fig. 3b 
shows the 2D distribution of the gaze projection model in image space, originating at a head 
centroid. 

 

   

Figure 3. a) Projection of Gaussian functions along gaze direction (red line) and the standard deviation (green lines); b) 
normalised 2D Gaussian fan distribution projected into image space. The image has been logarithmically enhanced. 

The gaze direction of each person is analysed to determine what they are observing (or looking 
towards) in the scene. Likely “targets” of their observation are the other participants in the meeting 
(e.g. the person speaking), or objects of interest that are the subject of discussion.  By detecting the 
coincidence or intersection of the participant’s gaze directions, we can infer the detection of a 
discrete object or a particular speaker. 

To detect the most likely target an individual may be observing, the minimum distance between the 
observers projected gaze and the centroid of the other five heads is computed. The observed target 
is assumed to be the one with the smallest distance.  If the object is being observed, its location can 
only be estimated by triangulation of two or more gazes that is described as a common fixation 
point. 

3.3 Common Fixation Point (CFP) Detection 



The CFP is computed using a maximum likelihood-type approach and implemented by a Hough-like 
spatial accumulator of the Gaussian gaze direction models. The fan distribution of the gaze direction 
of each participant projects into the accumulator space forming intersections, with detection 
identified as peaks in this space. By normalising each model so that the peak value is one along the 
gaze direction, the weight of votes in accumulator space corresponds to the number of participants 
looking towards the same location in space and are determined from the location of the maximum 
value, and hence the most likely location of the CFP.  

For a group of N people, the peak magnitude for all participants observing the same location would 
be a value of N, though this would require all their gazes to be directed exactly at the target (note: 
this would actually be N-1 if the FOA was a speaker). The location of the largest cluster is used to 
infer a CFP shared by the participants. Fig. 4b shows the accumulator space of the image shown in 
Fig. 4a. The green star marks the location of the largest peak detected in the accumulator space; the 
blue star corresponds to the known location of the object that is being discussed (and held by 
participant H4, as labelled in Fig. 1b). 

 

  

  (a)       (b) 

Figure 4. a) Detection of heads with their elliptical approximation (red ellipses) and estimated gaze direction (white lines). 
The known location of the object of interest, marked by a blue star and the CFP by a green star. b) The plot of the 
accumulator space of gaze directions; the magnitude of the largest peak is 4.13. 

4. Data Collection 

4.1 Experiment Setup 

A Kinect V2 sensor was used to capture depth data from the scene. The sensor was placed 2.8m 
above the floor which is consistent to the recommendation given by (Wu et al., 2017), avoids any 
potential data degration expected beyond 4.5m distance and allows sufficiently large FOV and 
accuracy of measurement between the ground and the head locations of the participants.   

 Each frame of depth data provides an output of 512 x 424 pixels.  Fig. 5a shows the output from the 
Kinect RGB camera; Fig. 5b shows the associated depth image (approximately aligned). The capture 
rate was an average of approximately 2fps for the two experiments described below. The Matlab 
implementation of the MSER algorithm was applied using a step size of 1.75 and a maximum area 
variation between extremal regions of 0.4 to produce the most reliable results (see Section 5.1).  



  
  (a)       (b) 

Figure 5. a) RGB image of scene, b) depth image showing labelled locations of the red ball used in Experiment 1. 

Data were captured to enable completion of two activities, a “controlled object focus activity” where 
participants were asked to fixate on a fixed point at different locations around the table. The second 
activity recorded “a discussion that involved interacting with an object” to evaluate the 
methodology applied to a real task. 

4.2 Experiment 1 – Comparison with Ground Truth 

The first experiment assesses the accuracy of the algorithm to estimate the gaze direction using 
manually acquired ground truth, based on the depth image (see figure 2).  Manual measurement 
involved determining the coordinates of the centre (centroid) of the head and estimating a point in 
front of the head in the estimated direction of gaze. The orientation of the line joining these two 
points is taken as ground truth. The repeatability of the manual measurement was evaluated by 
making multiple measurements on a set of heads. The head orientation obtained from the ground 
truth measurements is compared with the gaze direction computed from the ellipse orientation. 

4.3 Experiment 2 - Controlled object focus activity 

The purpose of this experiment was to assess the reliability of estimating a person’s gaze direction 
from a measurement of the orientation of the head, knowing that the true gaze is determined by a 
combination of head and eye orientation. The aim to ask the participants to look at a distinctive 
target placed at locations in the scene, and then compare the computed gaze with the known 
location of the target.  In face to face interaction this may not be a natural use of gaze as people 
tend to look away and back when the person you are conversing with is speaking (Ho et al., 2015).  
For this exercise we relied on the participants following the instructions for this experiment and to 
maintain their gaze on the object. 

This activity used a red ball as a point of focus for the participants. Fig. 5b shows the red ball in nine 
separate locations, five locations on the surface of the table and four locations off the table surface 
where the ball was held in position by a seventh person.  The participants were asked to focus on 
the red ball for 5 seconds at each location, although in some cases the number of recorded frames is 
less.  The results of the computed gaze direction were compared with the angle from the head 
centroid to the known location of the red ball.  

4.4 Experiment 3- Interacting with an object activity 

The purpose of this experiment is to quantify the level of attention of each of the participants to a 
specific activity. For this task, the participants were asked to interact and discuss an object; the 



object was unusual and was detailed in its manufacture to encourage people to focus closely on it.  
Participants were not asked to hold the object in any specific way, but instead, they were left to view 
the object naturally and only told to pass it between each other so all could take part in the activity.  
Figure 6 shows 9 locations where the object was approximately stationary (as each participant 
manipulated the object) are represented by the circular regions depicted in Fig. 6, which were 
manually measured. 

 

Figure 6. Red circles identify the nine approximate locations (A1-A9) of the object location throughout the session 

 

5. Results and Discussion 

5.1 Head Detection 

The implementation of the MSER algorithm uses two parameters to segment the image into regions: 
the step size and the maximum area variation. We evaluated the performance of our head detection 
method on 3000 depth frames sampled from six data sets (fig. 7 below) for a range of the parameter 
values.  For the step size, a range of 1.50 to 2.50 (around the default value of 2.0 used in the Matlab 
implementation) at intervals of 0.1 was tested, with the maximum area variation fixed at 0.4.  The 
best performance for detection was found to be between 1.60 and 1.90, with a drop off in detection 
performance beyond 2.3.  The maximum area variation parameter was evaluated, using a step size 
set to 1.75, over a range of 0.2 to 0.8 at intervals of 0.05 (fig. 8b below).  The best performance was 
found over the range 0.30-0.70 with a drop off in detection before 0.30. The detection rate is 
consistently above 98% for a wide range of values in both experiments for all datasets (Fig. 8), 
indicating that our head detection algorithm is not sensitive to the selection of parameters. Also, it is 
superior to (Hu, G. et al., 2014) that reported 95.5% detection rate. For the rest of the experiments, 
the step size between successive threshold levels and the maximum area variation are set to 1.75 
and 0.4 respectively, based on the above results. 



 
(a) (b) (c) 

 
(d) (e) (f) 

 

Figure 7. Example images from the six data sets of raw Kinect V2 depth images where depth values are measured as from 
the camera: a) 6 person object discussion (Dataset 1), b) 6 person general discussion (Dataset 2), c) 5 person discussion 
(Dataset 3), d) 4 person control session (Dataset 4), e) 5 person object session (Dataset 5) and f) 4 person standing group 
(Dataset 6). 

  
(a) (b) 

 

Figure 8. Head detection performance results for the MSER algorithm for varying parameter settings:  a) step size and b) 
maximum area variation between steps. 

The MSER implementation also filters out regions outside of an acceptable size by specifying an area 
range. This was used primarily to reject small noisy regions and was set to [200-10000] pixels for the 
experiments reported here. Given that the typical size of detected head regions is in the range of 
1000-2000 pixels, it can be seen this is not a critical setting for the detection. 

Table 1 shows the results of head detection for each participant over the 1447 frames acquired for 
Experiment 3; detection is confirmed when the threshold parameters of the head ellipse have been 
met. The overall detection accuracy is 99.94%, with only 5 instances where a head was not detected.  



 H1 H2 H3 H4 H5 H6 Head 
count 

Rate 

Total frames 1,447 1,447 1,447 1,447 1,447 1,447 8,682  
Head Detected 1,444 1,447 1,447 1,447 1,447 1,445 8,677 99.94% 

Head Detection Error 3 0 0 0 0 2 5 0.06% 
Error Rate 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%   

         
Valid Gaze  1,447 1,447 1,183 1,447 1,445 1,445 8,414 96.9% 

Invalid Gaze  0 0 264 0 2 2 268 3.1% 
Error Rate 0.0% 0.0% 18.2% 0.0% 0.14% 0.14%   

 

Table 1. Head and gaze detection results for each participant over 1,447 frames. 

The bottom half of Table 1 shows the results of finding a valid gaze direction for each head, based on 
the orientation of the best-fitting ellipse. Errors in this measure arise as a consequence of head 3 
(H3) intersecting the edge of the image FOV, which resulted in incomplete detection of the head and 
a poorly fitting ellipse. Gazes for heads 5 and 6 (H5 and H6) were also invalid for two frames. These 
results indicate that the head detection algorithm is robust and provides a valid gaze, as long as the 
heads are within the image field-of-view. Our valid gaze detection (96.9%) is clearly superior to 
(Reddy, 2016) that reported 70% correct detection field 

5.2 Gaze Direction  

The data collected from experiment 1 are used in this section to evaluate the gaze estimation, firstly 
against manually estimated ground truth, and then against the known locations of the red ball. 

5.2.1 Evaluation of gaze estimation against ground truth. 

Accuracy and repeatability of the manual ground truth method were assessed by making 10 
repeated measurements (M1 to M10) on a single depth frame.  Measurements of the six heads were 
taken from the centre (centroid) of the head to the estimated direction of gaze with the angle 
generated from the two points.  Table 2 shows the angles recorded from this validation exercise 
over the ten sets of measurements.  The average standard deviation for all measurements is 1.3 
degrees. 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Mean StdDev Min Max 
Head 1 265° 264° 264° 265° 262° 263° 264° 265° 264° 264° 263.9° 0.8° 262° 265° 
Head 2 231° 234° 234° 232° 234° 231° 232° 234° 230° 236° 232.6° 1.8° 230° 236° 
Head 3 178° 178° 178° 179° 178° 178° 177° 178° 179° 179° 178.2° 0.7° 177° 179° 
Head 4 138° 138° 136° 136° 137° 137° 137° 137° 139° 133° 136.9° 1.7° 133° 139° 
Head 5 79° 78° 75° 80° 78° 79° 76° 78° 78° 76° 77.7° 1.5° 75° 80° 
Head 6 347° 347° 348° 346° 347° 347° 346° 346° 344° 345° 346.3° 1.0° 344° 348° 

 

Table 2. Results of the ground truth measurement of head orientation (in degrees) for the six heads repeated ten times on 
the same frame to validate the measurement method. 

 

Table 3 shows an evaluation of the automatic gaze estimation against the ground truth, provided by 
manual measurement of the head orientation.  Manual ground truth measurements were made for 
140 image frames for each of the six heads in each image, giving 840 ground truth measurements in 
total. 

The range of error for Heads 1, 2, 4 and 6 (H1, H2, H4, H6) show a similar low mean difference and 
standard deviation.  Both Head 3 (H3) and Head 5 (H5) have higher mean differences: for Head 3 the 



head intersects the edge of the FOV; for Head 5 the difference can be attributed to the participant’s 
hairstyle, which it is observed can distort the measurement if it is asymmetric.  Hence, we can 
conclude that the automatic measurement can be reliably measured from the image data with an 
average error of 7.7° and standard deviation of 4.9°. 

 

 H1 H2 H3 H4 H5 H6 Average Frames 
Mean 6.8° 5.9° 12.8° 4.0° 12.9° 3.8° 7.7° 140 

StdDev 4.7° 3.7° 5.0° 3.1° 7.6° 4.1° 4.9° 140 
 

Table 3. Mean angle (in degrees) difference and standard deviation between the algorithmically estimated angle and the 
ground truth angle generated from the manual measurement of head orientation for 140 frames from the start of the 
Experiment 1 data sequence. 

Fig. 9 shows a graphical comparison of the manually measured head orientation with the computer-
estimated gaze direction angle for one of the participants, head 1 (H1) for 140 frames of Experiment 
1 data. The average standard deviation over all the measurements is 4.9 degrees and this value is 
used for σd in computing the spread of the fan distribution.  These results indicate that the head 
detection algorithm is fairly accurate, aligning with a manually measured ground truth results. 

 

 

Figure 9. Plot showing the difference between manually measured head orientation (taken as ground truth) and the 
algorithmically estimated gaze direction angle (Experiment 1 data). 

 

5.2.2 Evaluation of gaze estimation using the locations of the red ball 

Fig. 10 shows a single frame comparing manual head orientation and computed gaze directions 
using the known location of the red ball.  Head 2 (H2) highlights the impact on gaze direction when 
the participant is made to rotate their head beyond the comfortable limit of the range of movement 
to view an object out of their natural field of view (Stahl, 1999), and is likely they move their eyeballs 
to make up the remaining rotation.  
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Figure 10. a) RGB image of scene, red ball position (OTL) and top left of the image is the person holding the ball and is not 
part of the experiment.  b) Comparison of manual measurement of head orientation estimated from each head centre to 
the known location of the red ball (blue dashed lines) labelled OTL in Fig. 5b and the gaze direction estimated by the 
algorithm (red dashed lines). 

Table 4 compares the computed gaze direction for each head with the orientation of the line joining 
the head centroid to the known locations of the red ball (as shown in Fig. 5b) over 140 frames, as the 
ball is moved to different locations around the table. The difference in orientation angle (degrees) 
between the two measurement methods is calculated for each frame and each head.  The average 
across all pairs of angles was used to determine the accuracy of the gaze direction to the gaze 
fixation point.  The results with the lowest angle difference, therefore the closest to the actual gaze 
direction, is for ball location ICN (inside centre -highlighted in green in Table.4), where the point of 
fixation, positioned in the centre of the table in front of all participants.  In comparison, when the 
point of fixation, placed at position ITL (inside top left, highlighted in red in Table.4,) the results show 
high degrees of difference for some of the participants. 

Ball Position ID H1 H2 H3 H4 H5 H6 Frames Sec 
Inside Top Left ITL 11.5°(2.3) 27.5°(2.5) 2.7°(1.6) 3.3°(1.5) 1.2°(0.8) 20.1°(18.8) 28 6.0 

Outside Top Left OTL 14.9°(4.3) 35.1°(1.6) 7.3°(4.1) 4.2°(0.3) 1.8°(1.4) 22.1°(1.9) 16 4.0 
Inside Top Right ITR 12.7°(1.5) 4.7°(1.8) 7.1°(2.0) 9.2°(1.3) 13.0°(1.0) 9.8°(5.4) 18 4.0 

Outside Top Right OTR 10.9°(5.2) 6.9°(3.9) 4.0°(1.8) 11.0°(1.1) 20.0°(0.8) 9.1°(0.5) 23 5.5 
Inside Bottom Right IBR 3.3°(3.4) 4.8°(1.7) 14.1°(2.2) 8.6°(1.4) 35.7°(0.9) 10.3°(4.3) 6 2.0 

Outside Bottom Right OBR 3.6°(2.0) 11.7°(1.1) 3.6°(2.6) 19.1°(3.6) 46.9°(1.5) 5.3°(1.6) 8 2.0 
Inside Bottom Left IBL 23.4°(3.5) 16.6°(0.1) 11.0°(0.7) 16.8°(0.2) 3.3°(0.9) 16.7°(0.3) 2 0.5 

Outside Bottom Left OBL 23.4°(6.1) 9.0°(0.9) 14.8°(8.2) 22.0°(0.5) 21.9°(2.4) 34.9°(11.8) 7 2.0 
Inside Centre ICN 4.7°(2.0) 9.9°(6.5) 14.2°(7.3) 1.8°(1.3) 9.2°(0.7) 1.9°(1.1) 32 8.0 

Mean  10.4°(6.2) 15.1°(11.4) 7.9°(6.5) 7.4°(6.0) 12.9°(12.2) 12.5°(12.7)   

Table 4. The mean angle in degrees, the difference calculated from the gaze direction algorithm and calculated angle from 
the centroid of the head to the known location of the object (ball) for each head and the standard deviation for each ball 
position and head (Experiment 1 data). 

 
It is evident from these results that extending natural head movement without additional movement 
of the body impacts some participants, e.g. heads 1, 2 and 6 (H1, H2, H6) are very close to the point 
of fixation, or they are leaning and twisting their body to see.  Head orientation for these 
participants ranges from a mean of 11.5° (H1) to 27.5° (H2) in comparison to the participants with 
natural head movement having an angle range of 1.2° (H5) to 3.3° (H4). 

5.3 Focus of Attention (FOA) on people 



The activity was captured over a period of 12mins 48 seconds (1447 frames) as the object was 
passed between the participants, starting with H3 then passing in an anti-clockwise order (H2, H1, 
H6, H5, H4) after which it rested on the table in front of H3. A total of 8,682 measurements resulted 
from the 1447 image frames. 

Table 5 shows the focus of attention activity during experiment 3 when each participant either 
looked towards another person or the object.  The results suggest that participant (H2) was 
observed for 21% of the period by other participants while participants (H5 & H6) attracted 2% and 
3% respectively, of the observations from others.  The object was observed 36% of the period.  The 
results show that the proposed approach can be used to infer and support analysis of an individual’s 
focus of attention. 

 H1 H2 H3 H4 H5 H6 Object Object % Total Frames 
H1 0 0 202 217 87 0 941 31% 1,447 
H2 0 0 295 841 94 26 191 6% 1,447 
H3 410 243 0 29 13 163 325 11% 1,183 
H4 163 792 45 0 0 38 409 14% 1,447 
H5 158 650 37 0 0 4 596 20% 1,445 
H6 1 52 746 94 8 0 544 18% 1,445 

Total 732 1,737 1,325 1,181 202 231 3,006  8,414 
Observations % 9% 21% 16% 14% 2% 3% 36%   
 

Table 5. The number of times each head observed another head or the object a valid gaze was detected (a shown in Table 
1). The head observations % is the proportion of times the participant (head) was looked at by the other participants 
(heads). The object % is the proportion of times the object was looked at by the specific participant (head).   

Because an individual’s gaze provides insight into their focus of interest, it can be inferred from the 
Observations row in Table 5 that participant (H2) was contributing (talking and in discussion) the 
most.  Conversely, participants (H5 and H6) were less active contributors, drawing less attention 
from the other participants.  The results indicate that the proposed approach can be used to infer 
and support analysis of an individual’s focus of attention on people. 

5.4 Common Fixation Point (CFP) on the object 

Fig. 11 shows the first 500 frames for the gaze direction of head 1 (blue line) as the object passed 
between the participants.  The red line plots the relative orientation of the object location (A1-A8) 
from H1’s centroid. The plot indicates head 1’s focus of attention closely followed the object in these 
early stages of the experiment (A1-A4) but is less attentive to the object as it moved around the 
table (A5-A8).  Table 5 shows H1 is the most attentive observer of the object, representing 31% of 
the total 3,006 observations of the object. 



 
Figure 11. Plot combining head 1 gaze direction angles (blue line) with the angle from the centroid of H1 to the known 
location of the object (orange line). “A” section 1 to 8 indicate the change of location of the object and C (red arrows) 
indicate changes in head 1 movement away from the known object location.  The slight changes seen in the known 
location line is the changes in the location of the head (taken from the algorithm output) to the known location of the 
object. 
 

When the object moved to location A5 and A6, head 1 begins to move their gaze away from the 
object indicated by the red arrows C.  This movement is completely away from the object and 
suggests the inferred focus of head 1 is on one of the other participants in the collaboration.  In 
section A8 head 1 shows a different activity of inferred focus with head 1 movement away from and 
back to the object three times before settling back on the object, potentially suggesting a discussion 
on a particular element of the object with one of the participants. 

Fig. 12 below shows a sequence for frames 265 to 500 of the data capture with the angle difference 
from the known object location and the inferred FOA for all six heads.  The sequence of frames 
corresponds to sections A7 and A8 in Fig. 11 for all six heads.  The plot illustrates the changes in the 
participant's focus, with the natural discussion taking place as the object was passed around the 
group.  Head 2 and 3 show the most changes of the inferred focus of attention with a 40°- 60° 
change in angles from the object in frames 358 to 394 of the sequence. 

 



Figure 12. Plot combining the FOA angles for all six heads with the known object location set at zero.  The difference in 
angle for each head from the known object location is plotted for frames 265 to 500 (corresponding to sections 7 and 8 
in Fig. 11) to illustrate the changes in the inferred focus of attention for the six participants. 
 

Fig. 13 plots the Euclidean distance between the inferred CFP computed from the intersection of 
gaze directions (i.e. the green star in Fig. 4b) and the known (approximate) location of the object 
(the blue star in Fig. 4a) in pixels over the first 500 frames of the sequence. Each pixel at the surface 
of the tabletop is 5.6mm in real world distance.  The colours denote the change of location as the 
object passed around the participants (as labelled in Fig.6). Location A1-A2 covers the period when 
the object is initially introduced to the meeting (by H3) and placed on the table, and the attention of 
the participants is drawn to the object.  During this change in group focus the distance drops from 
approximately 100 pixels (560mm) to 30 pixels (168mm). The groups attention continues as H2 
examines the object (location A3). At locations A4-A6 the plot indicates no focus of attention on the 
object as H2, H1 and H6 hold it (a range of approximately 100 pixels (560mm) to 210 pixels 
(1,176mm). As the object moves to the final participant and is placed back onto the table (A7, A8) 
attention moves back to the object. 

 

Figure 13.  The plot shows the distance (in pixels) between the known location of the object (blue star Fig. 4a) and the CFP 
(green star Fig. 4b) of the six participants for the first 500 frames.  One pixel is equivalent to 5.6mm in real world distance 
at the surface of the tabletop. 

  
 

6. Conclusions 

The results demonstrate the capability of a single depth sensor mounted overhead to monitor the 
participants in a constrained scenario (i.e. around a meeting table). This approach is unobtrusive, 
minimising the Hawthorne effect, simplifies data collection and avoids the need for multiple sensors.  
This makes it a viable solution to be used in general office meeting environments. As a consequence 
of the lack of comparative data from the literature (for which results are largely presented in a 
qualitative way) a detailed reporting of quantitative results of the effectiveness of our methods has 
been presented.  

The novel combination of an overhead depth sensor and the MSER algorithm is shown to be very 
effective at detecting heads, with a detection performance of 99.94%, with only 5 segmentation 
failures. The ellipse fit to the detected head region resulted in a valid gaze estimation performance 



of 96.9% of the head detections. The errors in estimating the head orientation from the best-fitting 
ellipse are associated with segmentation failures described in the previous paragraph, where the 
fitted ellipse can be distorted enough to rotate the estimated gaze through 90 degrees. 

Evaluation of the head orientation measurements against manual estimates demonstrates errors 
ranging from 3.8° to 12.8°. It was found to be beneficial to incorporate this uncertainty into 
determining the Common Fixation Point (CFP) of the group of participants, allowing a Gaussian-
weighted computation of the most likely location. 

It is evident in the results that there are limiting factors to using horizontal head orientation (yaw) to 
estimate gaze direction. The limitations of using head orientation to estimate the gaze in situations 
where it exceeds the natural (or comfortable) extent of head rotation is observable in the results. In 
this case, the additional rotation would be made by the eye, or a person might otherwise rotate 
their body (or their chair), e.g. twisting to see.  In addition, gaze direction does not explicitly identify 
the subject of the gaze, merely that the person is looking towards a particular subject. Hence, during 
the object discussion, when the object was in front of a person there would be no way to determine 
if an individual’s FOA was on the object or the person if the viewer were directly opposite.   

The proposed methodology of data capture and measurement has been shown to support the 
analysis of collaborative activities by estimating the Focus of Attention (FOA) of participants on other 
people and objects in an unobtrusive way. The experimental results presented a preliminary analysis 
of the behaviour of the participants and in particular the extent of their participation with each 
other and the point of discussion person/object within the collaboration environment.  This 
technique is more suited to the detection of group attention, to identify group focus on a speaker or 
an object of discussion. 

Further research will be undertaken to support the measurement of specific behaviours, such as loss 
of focus or inattention and distraction, and to understand the behaviour of people as they interact 
with each other.  A goal will be to establish “attention profiles” of participants; identify the dominant 
and more passive participants in the interaction. 
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