
The phenotype and function of monocyte 
microparticles, and their characterisation in paediatric 

HIV infection 

 
 

 

 

 

Natasha LUCKHURST 

 

First Supervisor: Dr Francesca Arrigoni 

Supervisory Team: Dr Nicholas Freestone and Professor Nigel Klein 

A thesis submitted to partial fulfilment of the requirements of Kingston 

University for the award of Doctor of Philosophy 

School of Life Science, Pharmacy and Chemistry 

Kingston University London 

October 2019



i | P a g e

Declaration 
I hereby declare that this thesis has been submitted exclusively for the degree of Doctor 

of Philosophy at Kingston University London and has not formed the foundation for any 

other award at any university or tertiary structure. 

This thesis contains my original research and any contribution to this work by other 

individuals has been fully acknowledged. Where previously published work of others has 

been consulted or quoted, the authors of the work have been given full 

acknowledgement via referencing. 

Natasha Luckhurst 



ii | P a g e  
 

Acknowledgements 
First and foremost, a special thank you to my primary supervisor Dr Francesca Arrigoni, I 

am grateful for your continuous support and guidance throughout this journey. You 

have been an amazing mentor, pushing me out of my comfort zone and always 

challenging me to become a better scientist! To Dr Nick Freestone, you’ve had to put up 

with me many years now, from undergrad and now to PhD (sorry!), thank you for your 

support throughout, and always believing in me! No request has ever been too much, 

and he truly goes above and beyond the role of a supervisor and an educator. Lastly, 

Professor Nigel Klein, who has not only given me his support and guidance throughout 

this project but also welcomed me into his research group at the Institute of Child 

Health. He also provided me with access to patient samples, specialist equipment and a 

huge amount of resources without which would not have made this PhD possible. 

A special mention to Dr Patricia Hunter, I cannot thank you enough! You have been a 

mentor and a true friend who continues to inspire me with your knowledge and 

enthusiasm! You have offered continued support, advice and guidance throughout this 

journey both in and outside the lab, which I am extremely grateful for. Without your 

generosity and knowledge, many of these experiments could not have been possible! 

Thank you to Dr Dagmar Amber, who sat with me for many hours in the containment 

level 3 facility and Dr Mona Eliot who gave me emotional support when times were 

tough! I would also like to thank all my colleagues at ICH, with a special mention to 

James Bonner and Rijan Gurung who taught me the ropes of microparticle analysis! 

To my colleagues in the IRTL both past and present, Sinead Holland, Lauren Mulcahy, 

The Great Dr Cowan, Sharan Asher, Katrina Viloria, Nico Lambri and Ronni Anderson. 

Thank you for the laughs, friendship and most importantly the alcohol - I love you all so 

dearly!  

I am forever grateful for my partner in crime, Loryn Halliday, I really would not be at this 

stage right now if it wasn’t for you. You have picked me up and kept me going so many 

times, you’ve always believed in me and been ready with tea, and a shoulder to cry on! 

Your strength and determination has inspired me, and I can’t wait to see you crush your 

PhD – I’m so proud of you and what you have overcome! 

Finally, I wouldn’t be here without my friends, family and better half. To my girl gang, 

thank you for believing me in and being my personal cheerleaders - I’m in awe of you all 

and inspired daily by your strength and determination.  A special mention to Nicholas 

Bennett who has been my rock throughout, always supporting me and pushing me, 

despite me neglecting him when I’ve been subsumed in work and in bed by 9 pm! 

Finally, thank you to my parents for their emotional support, and their attempted 

scientific advice! You have always been there to pick up the phone 24/7, and jumped in 

the car to see me when I’ve really needed you. You have been there to listen to me 

waffle on, complain and cry, but you’ve also been there every step to celebrate my 

achievements throughout! I hope I’ve made you proud! 

Natasha Luckhurst, October 2019 



iii | P a g e  
 

Abstract 
37 million people are currently living with HIV worldwide. With the development of 
Antiretroviral Therapy (ART) AIDS mortality has reduced, with cardiovascular disease 
(CVD) now the leading cause of HIV deaths. HIV associated CVD has been linked to 
chronic immune activation through the association of inflammatory biomarkers, clinical 
events and asymptomatic atherosclerosis; even from a young age. Microparticles (MPs), 
markers of cellular activation and injury, are also elevated in adults with HIV, and 
demonstrate the capacity to contribute to inflammation, endothelial dysfunction and 
coagulation.  Monocytes play a key role in atherosclerosis initiation and display an 
activated, pro-inflammatory phenotype in paediatric HIV. Monocytic MPs (MMPS) are 
elevated in adults with HIV, thus the aim of this thesis was to quantify MMPS in HIV 
infected children and investigate their effects on monocytic function.  

A novel negative isolation method was first optimised to enable the study of human 
monocyte function ex vivo. This isolation procedure allowed the negative enrichment of 
all three circulating monocyte subsets (Classical, Non-classical and Intermediate), with 
high purity and minimal activation. Extracted monocytes displayed minimal alterations 
in marker expression while retaining their phagocytic, migratory and cytokine secretion 
function ex vivo.  

Using a monocytic cell line (THP-1), MP release under different stimulatory and 
apoptotic conditions was investigated. Under stimulatory conditions with cytokines and 
a calcium ionophore (A23187), MPs were released in a concentration-dependent 
manner, with endotoxin stimulation resulting in the highest quantity. Furthermore, MPs 
displayed a similar trend in surface marker expression in comparison to their parent cell. 
Next, we investigated the effects of THP-1 derived MMPS on human monocyte function 
employing the isolation method established. MMPS evoked the release of pro-
inflammatory cytokines in addition to enhancing CD11b expression, adherence and 
transendothelial migration. This work demonstrates that MMPS activates monocytes 
and enhances endothelial migration, presenting a mechanism that contributes to 
atherosclerosis pathogenesis.  

Finally, MMPS and MPs from an endothelial, platelet and T cell origin were enumerated 
in children with HIV infection pre/post ART initiation and healthy sex-age-matched 
controls. Plasma samples were collected during the CHAPAS-3 CV sub-study, from which 
we analysed 16 children receiving ART (≥2 years), 11 treatment-naïve children and 15 
controls. Circulating MPs from an endothelial, platelet and T cell origin found in children 
with HIV infection normalised to levels found in healthy controls, following ART initiation 
and experience. MMPS were elevated within the treatment-naïve cohort and remained 
elevated despite treatment intervention; this elevation was also observed in the 
treatment-experienced cohort. The persistence of elevated MMPS indicates consistent 
monocyte activation despite successful viral suppression, supporting the activated 
phenotype reported in literature.  

This data combined with the functional implications of MMPS on monocytic function 
described in this thesis elucidates a mechanism that contributes to elevated vascular 
inflammation reported within this population. 

Keywords: Monocytes, MPs, HIV, CVD, Atherosclerosis    



iv | P a g e  
 

Presentations and abstracts 
Oral Presentations 

European Society for Pediatric Infectious Diseases, Malmo, Sweden, 2018. ‘Alterations 

in cellular microparticle levels as a marker of cellular activation and injury in children 

with HIV infection’ N. Luckhurst, J. Kenny, P. Hunter, N. Freestone, N. Klein, F. Arrigoni 

Science, Engineering and Computing conference, Kingston University, 2018. 

‘Identification of microparticle subsets in children with HIV infection, and their relation to 

increased cardiovascular disease risk within this population’ N. Luckhurst, J. Kenny, P. 

Hunter, N. Freestone, N. Klein, F. Arrigoni 

Poster Presentations  

British Society for Immunology Congress, Liverpool, December 2019. ‘Circulating 

microparticle levels in children following the initiation of antiretroviral therapy’  

N. Luckhurst, J. Kenny, P. Hunter, N. Freestone, N. Klein, F. Arrigoni 

British Society for Immunology Congress, Liverpool, December 2019. ‘Monocyte-

derived microparticles activate human monocytes and promote their transendothelial 

migration’ N. Luckhurst, P. Hunter, N. Freestone, N. Klein, F. Arrigoni 

 

    



v | P a g e  
 

Table of contents 
 

Declaration ............................................................................................................................. i 

Acknowledgements................................................................................................................ ii 

Abstract ................................................................................................................................ iii 

Presentations and abstracts .................................................................................................. iv 

Table of contents ................................................................................................................... v 

List of figures ......................................................................................................................... x 

List of tables ....................................................................................................................... xiii 

List of abbreviations ............................................................................................................ xiv 

Chapter 1 - Introduction ......................................................................................................... 1 

1.1 HIV epidemic .......................................................................................................................... 1 

1.2 Pathogenesis of HIV-1 ............................................................................................................ 1 

1.3 The course of HIV infection .................................................................................................... 2 

1.4 Management of HIV ............................................................................................................... 6 

1.5 CVD morbidity in HIV infected individuals ............................................................................. 7 

1.6 Atherosclerosis pathogenesis ............................................................................................... 10 

1.6.2 Endothelial homeostasis and dysfunction ..................................................................... 11 

1.6.3 Endothelial dysfunction leads to atherosclerosis from an early age ............................ 12 

1.6.4 Atherosclerosis disease progression ............................................................................. 13 

1.7 Immune activation and CV risk associated with HIV ............................................................ 16 

1.8 Sources of immune activation .............................................................................................. 17 

1.8.1 Immune activation as a consequence of the HIV virus and its treatment .................... 17 

1.8.2 Monocyte activation as a consequence of increased microbial translocation ............. 19 

1.8.3 Monocytes in HIV .......................................................................................................... 21 

1.8.3.1 Monocyte heterogeneity and function ...................................................................... 21 

1.8.3.2 Classical ...................................................................................................................... 23 

1.8.3.3 Intermediate ............................................................................................................... 24 

1.8.3.4 Non-classical ............................................................................................................... 26 

1.8.4 Altered monocyte activation and phenotype in HIV infection ...................................... 27 

1.8.5 Biomarkers associated with monocyte activation ........................................................ 29 

1.9 Microparticles as markers of cellular activation and injury ................................................. 31 

1.9.1 MP formation ................................................................................................................ 33 

1.9.2 MP uptake and communication with target cells ......................................................... 35 

1.9.10 MPs as biomarkers of CVD .............................................................................................. 36 



vi | P a g e  
 

1.9.11 MPs and their role in CVD disease progression .............................................................. 37 

1.9.11.1 Endothelial-derived MPs .......................................................................................... 38 

1.9.11.2 Monocyte-derived MPs ............................................................................................ 39 

1.9.11.3 Platelet-derived MPs ................................................................................................ 40 

1.9.11.4 T lymphocyte-derived MPs ....................................................................................... 41 

1.9.12 MPs in inflammatory diseases ......................................................................................... 41 

1.10 Research focus .................................................................................................................... 43 

1.11 Hypothesis and aims ..................................................................................................... 45 

Chapter 2 – General methods ............................................................................................... 47 

2.1 Cell lines and cell culture ................................................................................................ 47 

2.1.1 THP-1 cells ..................................................................................................................... 47 

2.1.2 Human Umbilical Vein Endothelial Cells ....................................................................... 47 

2.1.3 Cell freezing ................................................................................................................... 48 

2.1.4 Flow cytometry of THP-1 cells ....................................................................................... 48 

2.2 Patient samples .................................................................................................................... 49 

2.2.1 Ethical approval ............................................................................................................. 49 

2.2.2 Immunophenotyping of monocytes in whole blood ..................................................... 50 

2.2.3 Isolation of monocytes from whole blood .................................................................... 51 

2.2.3.1 StemCell monocyte Isolation ...................................................................................... 51 

2.3 MP analysis by flow cytometry ............................................................................................. 52 

2.3.1 Isolation of MPs following cell culture .......................................................................... 52 

2.3.2 Isolation of MPs from whole blood ............................................................................... 53 

2.3.3 Detection of cellular MPs .............................................................................................. 53 

2.3.4 Preparation of latex beads for analysis ......................................................................... 54 

2.3.5 Flow cytometry instrument settings for MP detection ................................................. 54 

2.3.6 Gating strategy for MP detection .................................................................................. 55 

2.3.7 MP quantification .......................................................................................................... 58 

2.4 Functional assays .................................................................................................................. 58 

2.4.1 Monocyte MP release ................................................................................................... 58 

2.4.2 Live/dead staining of THP-1 cells ................................................................................... 59 

2.4.3 Phagocytosis assay ........................................................................................................ 59 

2.4.4 Chemotaxis .................................................................................................................... 60 

2.4.5 Transendothelial migration ........................................................................................... 60 

2.4.6 Adherence to an endothelial monolayer ...................................................................... 61 

2.4.7 Cytokine secretion analysis ........................................................................................... 61 



vii | P a g e  
 

2.4.8 Influence of monocyte-derived MPs on human monocyte phenotype ........................ 63 

2.5 Statistics ................................................................................................................................ 63 

Chapter 3 - Monocyte isolation from whole blood: Method validation and optimisation ....... 64 

3.1 Introduction .......................................................................................................................... 64 

3.1.1 Isolation by adherence ...................................................................................................... 64 

3.1.2 Isolation by density centrifugation .................................................................................... 65 

3.1.3 Isolation by antibody binding ............................................................................................ 66 

3.1.3.1 Fluorescence-activated cell sorting ............................................................................ 66 

3.1.3.2 Immunomagnetic separation ..................................................................................... 67 

3.1.3.3 Positive isolation......................................................................................................... 67 

3.1.3.4 Negative isolation ....................................................................................................... 68 

3.1.3.5 Influence of immunomagnetic separation on monocyte function in vitro ................ 69 

3.2 Aims and objectives .............................................................................................................. 73 

3.3 Methodology ........................................................................................................................ 74 

3.3.1 Patient recruitment ........................................................................................................... 74 

3.3.1.1 Ethical approval .......................................................................................................... 74 

3.3.2 Whole blood Flow cytometry analysis .............................................................................. 74 

3.3.3 Isolation of monocytes from whole blood using StemCell™ Custom Kit .......................... 75 

3.3.4 Antibody staining of isolated monocytes ...................................................................... 76 

3.3.5 Sample acquisition ......................................................................................................... 77 

3.3.6 Flow cytometry gating strategy ..................................................................................... 77 

3.3.7 Assessment of monocyte function .................................................................................... 79 

3.3.8 Statistics ............................................................................................................................. 80 

3.4 Results .................................................................................................................................. 81 

3.4.1 Human monocytes can be negatively isolated from whole blood with minimal 
contamination ............................................................................................................................ 81 

3.4.2 Negative isolation from whole blood allows the recovery of all three monocyte subsets
 .................................................................................................................................................... 84 

3.4.3 Isolated monocytes display a low change in CD11b expression ....................................... 86 

3.4.4 Big Easy isolation at each temperature displayed similar yields ....................................... 88 

3.4.5 Monocyte isolation does induce changes in surface marker expression .......................... 88 

3.4.6 Functionality of isolated monocytes compared to a monocytic cell line .......................... 91 

3.4.6.1 Isolated monocytes produce cytokines in response to increasing concentrations of 

Lipopolysaccharide ................................................................................................................. 91 

3.4.6.2 Human monocyte phagocytic ability is not impaired after isolation ......................... 92 

3.4.6.3 Isolated human monocytes migrate towards MCP-1 ................................................. 94 

3.5 Discussion ............................................................................................................................. 96 



viii | P a g e  
 

Chapter 4 - Monocytic MP generation, characterisation and influence on monocyte function

.......................................................................................................................................... 104 

4.1 Introduction ........................................................................................................................ 104 

4.1.1 Phenotype and composition of Monocyte MPs .............................................................. 104 

4.1.2 The influence of monocyte-derived MPs on cellular function ........................................ 105 

4.2 Aims and Objectives ........................................................................................................... 108 

4.3 Methods ............................................................................................................................. 109 

4.3.1 Cell culture ....................................................................................................................... 109 

4.3.2 Phenotyping of cells by flow cytometry .......................................................................... 109 

4.3.3 MP generation ................................................................................................................. 111 

4.3.3.1 Stimulating MPs ........................................................................................................ 111 

4.3.3.2 Generating apoptotic MPs ....................................................................................... 112 

4.3.4 Annexin V/PI staining of cells by flow cytometry ............................................................ 113 

4.3.4.1 Gating stratergy ........................................................................................................ 113 

4.3.5 MP quantification and phenotyping by flow cytometry ................................................. 115 

4.3.6 Influence of Monocyte MPs on human monocyte function ........................................... 116 

4.3.6.1 Stimulation of human monocytes by monocyte-derived MPs ..................................... 116 

4.3.6.2 Influence of Monocyte MPs on human monocyte phenotype .................................... 116 

4.3.6.3 Cytokine release ........................................................................................................... 117 

4.3.6.3.1 IL-6 ELISA ............................................................................................................... 117 

4.3.6.3.2 MSD (Mesoscale discovery) ................................................................................... 117 

4.3.6.4 Chemotaxis ................................................................................................................... 117 

4.3.6.5 Monocyte adhesion to endothelial cells under static conditions ................................ 118 

4.3.6.6 Transendothelial migration .......................................................................................... 119 

4.4 Results ................................................................................................................................ 121 

4.4.1 Apoptotic MPs are released from monocytic cells in serum starvation conditions........ 121 

4.4.2 THP-1 cells release different quantities of MPs following activation with different stimuli
 .................................................................................................................................................. 123 

4.4.3 THP-1 cells release phenotypically different MPs depending on treatment conditions 126 

4.4.4 Monocytic MPs induce the release of pro-inflammatory cytokines from isolated human 
monocytes ................................................................................................................................ 130 

4.4.5 Monocytic MPs influence the expression of surface molecules on human monocytes . 134 

4.4.6 Monocytic MPs do not affect human monocyte chemotaxis towards MCP-1 ............... 137 

4.4.7 Monocytic MPs enhance human monocyte adhesion to endothelial cells .................... 139 

4.4.8 Monocytic MPs enhance monocytic transendothelial migration ................................... 141 

4.5 Discussion ........................................................................................................................... 143 

Chapter 5 - MP subsets in paediatric HIV infection .............................................................. 149 

5.1 Introduction ........................................................................................................................ 149 



ix | P a g e  
 

5.1.1 MPs in HIV infection ........................................................................................................ 149 

5.1.2 CHAPAS-3 clinical trial and cardiovascular sub-study ..................................................... 151 

5.2 Aims and Objectives ........................................................................................................... 154 

5.3 Methodology ...................................................................................................................... 155 

5.3.1 Longitudinal study population ......................................................................................... 155 

5.3.2 MP quantification ............................................................................................................ 155 

5.3.3 Gating strategy for MP enumeration .............................................................................. 157 

5.3.4 Statistical analysis ............................................................................................................ 159 

5.4 Results ................................................................................................................................ 160 

5.4.1 MP fixation ...................................................................................................................... 160 

5.4.2 MPs in HIV: Demographic description of patients at baseline ........................................ 167 

5.4.3 Longitudinal effects of antiretroviral therapy on MP number ........................................ 169 

5.4.3.1 Total MP number ...................................................................................................... 172 

5.4.3.2 Platelet MPs .............................................................................................................. 173 

5.4.3.3 T lymphocyte MPs .................................................................................................... 177 

5.4.3.4 Monocytic MPs ......................................................................................................... 180 

5.4.3.5 Endothelial MPs ........................................................................................................ 182 

5.5 Discussion ........................................................................................................................... 188 

5.5.1 MPs in children with HIV infection .............................................................................. 188 

5.5.1.1 T cell MPs .................................................................................................................. 189 

5.5.1.2 Platelet MPs .............................................................................................................. 191 

5.5.1.3 Monocyte MPs.......................................................................................................... 192 

5.5.1.4 Endothelial MPs ........................................................................................................ 193 

5.5.2 Summary.......................................................................................................................... 197 

5.5.3 Study limitations .......................................................................................................... 199 

Chapter 6 – Conclusions ..................................................................................................... 200 

References ......................................................................................................................... 211 

Appendix 1 ........................................................................................................................ 248 

Appendix 2 ........................................................................................................................ 251 

Appendix 3 ........................................................................................................................ 252 

Appendix 4 ........................................................................................................................ 254 

Appendix 5 ........................................................................................................................ 255 

Appendix 6 ........................................................................................................................ 256 

Appendix 7 ........................................................................................................................ 257 

 



x | P a g e  
 

List of figures 
Figure 1.1: A schematic diagram demonstrating the HIV life cycle……………………………………… 3 

Figure 1.2: A schematic diagram displaying the relationship of CD4+ T cell numbers and 
HIV RNA copies per/ml of plasma over the time course of uncontrolled HIV-1 infection…… 

 

5 

Figure 1.3: A schematic diagram demonstrating how combined antiretroviral therapies 
target different stages of the HIV life cycle………………………………………………………………………. 

 

7 

Figure 1.4: A diagram demonstrating the role of endothelial dysfunction in the 
progression of atherosclerosis over time……………………………………………………………….….………. 

 

12 

Figure 1.5: Schematic diagram of atherosclerosis pathogenesis…………………………………………. 15 

Figure 1.6: Flow cytometry dot plot demonstrating the gating strategy of the three 
monocyte populations based upon their expression of CD14 and CD16………………………….… 

 

22 

Figure 1.7: A schematic diagram summarising the complex mechanisms underlying chronic 
inflammation observed in patients with HIV infection………………………………...………… 

 

43 

Figure 2.1: Flow cytometry histogram demonstrating how the MP size gate was defined….. 55 

Figure 2.2: Flow cytometry dot plot demonstrating how the Annexin V positive gate was 
defined…………………………………………………………….……………………………………………….…………....... 

 

56 

Figure 2.3: MP gates set for 6-marker panel staining…………………………………………………....…. 57 

Figure 3.1: FSC Vs SSC dot plot of lysed whole blood, highlighting the granulocyte, 
monocyte and lymphocyte populations…………………….……………………………………………………….. 

 

78 

Figure 3.2: Flow cytometry dot plots demonstrating how the monocytic population was 
gated on in whole blood, and the identification of the corresponding monocyte subsets… 

 

79 

Figure 3.3: Purity of enriched monocyte fractions following negative isolation using four 
different conditions………………………………………………………………………………………………….….……..  

 

82 

Figure 3.4: Percentage recovery of each monocyte sub-population following isolation 
using the Big Easy magnet at 25˚C and 8˚C………………………………………………………………………… 

 

85 

Figure 3.5: Change in CD11b expression on the total monocyte, and sub-populations 
following isolation using the Big Easy magnet at 25˚C and 8˚C…………………………………………… 

 

87 

Figure 3.6: Change in monocyte population percentage and CD14, CD16 and HLA-DR 
surface marker expression on each of the monocyte subsets following red blood cell lysis 
and isolation………………………………………………………………………………………………………..……...…….  

 

90 

Figure 3.7: Isolated monocytes secrete pro-inflammatory and anti-inflammatory cytokines 
in response to increasing concentrations of Lipopolysaccharide…………..……….…………………… 

 

92 

Figure 3.8: The effect of monocyte isolation on phagocytosis ability……………………..……..…… 94 

Figure 3.9: The effect of increasing concentrations of MCP-1 on monocyte migration after 
4 hours………………………………………….………………………………………………………..………………………….  

 

96 

Figure 4.1: Flow cytometry plots demonstrating the gating strategy used to identify 
 



xi | P a g e  
 

apoptotic THP-1 cells following serum starvation………………………………………………………………. 114 

Figure 4.2: Diff-Quick staining of control and LPS pre-treated monocytes to endothelial 
cells after 1 hour………………………………………………….…………………………………………………............. 

 

119 

Figure 4.3: Crystal violet staining of an endothelial monolayer, cultured on the upper side 
of 0.2% gelatine coated Transwell inserts after 24 and 72 hours…………………..………….….……. 

 

120 

Figure 4.4: THP-1 cells release MPs in serum-starvation conditions……..………………….………… 122 

Figure 4.5: THP-1 cells release quantitatively different MPs following stimulation…..……...... 125 

Figure 4.6: Apoptotic and activated THP-1 cells release MPs with different CD marker 
profiles (percentage positive) depending upon the type of stimulus………………………..………… 

 

127 

Figure 4.7: Apoptotic and activated THP-1 cells release phenotypically different MPs 
depending upon type of stimulus………………………………………………………………………………………. 

 

128 

Figure 4.8: Monocytic MPs induce the secretion of IL-6 from isolated human monocytes... 131 

Figure 4.9: Monocytic MPs induce the secretion of TNF-α from isolated human monocytes 132 

Figure 4.10: A23187 derived monocytic MPs alter monocyte phenotype………….……………... 135 

Figure 4.11: The effect of MMPS pre-treatment on the migration of human monocytes to 
MCP-1………………………………………………………………………………………………………………………………… 

 

137 

Figure 4.12: The effect of MMPS pre-treatment on the adhesion of human monocytes to 
HUEVCs………………………………………………………………………………………………………………………………. 

 

140 

Figure 4.13: The effect of MMPS pre-treatment on the transendothelial migration of 
monocytes………………………………………………………………………………………………………………….…...... 

 

141 

Figure 5.1: MP characterisation flow diagram……………………………………………………………..……… 158 

Figure 5.2: Representative flow cytometry dot plots of MPs isolated from the plasma of 
healthy adults, where samples were left unfixed (B) or fixed 1% (C), 2% (D) and 4% (E) 
paraformaldehyde (PFA) prior to acquisition……………………………………….……………….………...... 

 

 

160 

Figure 5.3: The impact of 0.5x BD Cell fixation on total MP number…………………………………... 161 

Figure 5.4: The impact of 0.5x BD Cell fixation on platelet and monocytic MP number………. 163 

Figure 5.5: The impact of 0.5x BD Cell fixation on T cell MP Number………………………………….. 164 

Figure 5.6: The impact of 0.5x BD Cell fixation on endothelial MP number……………….………. 166 

Figure 5.7: Number of circulating MPs in Paediatric HIV patients with controlled and 
uncontrolled viremia compared to healthy paediatric controls…………………………………………. 

 

173 

Figure 5.8: Number of circulating platelet MPs in Paediatric HIV patients with controlled 
and uncontrolled viremia compared to healthy paediatric controls….……………………………... 

 

176 

Figure 5.9: Number of circulating T lymphocyte MPs in Paediatric HIV patients with 
controlled and uncontrolled viremia compared to healthy paediatric controls……….……….... 

 

179 

Figure 5.10: Number of circulating monocytic MPs in Paediatric HIV patients with 
 



xii | P a g e  
 

controlled and uncontrolled viremia compared to healthy paediatric controls…………..……… 181 

Figure 5.11: Number of circulating endothelial MPs in Paediatric HIV patients with 
controlled and uncontrolled viremia compared to healthy paediatric controls…….…….……… 

 

183 

Figure 5.12: Number of circulating endothelial MPs phenotypes in Paediatric HIV patients 
with controlled and uncontrolled viremia compared to healthy paediatric controls…………… 

 

187 

Figure 7.1: The effect of increasing concentrations of MCP-1 on human monocyte 
migration after 1, 2, 4 and 6 hours…………………………………………………………………………………….. 

 

252 

Figure 7.2: A timecourse of monocyte migration towards increasing concentrations of 
MCP-1 over 6 hours……………………………………………………………………………………………………………. 

 

253 

Figure 7.3: THP-1 cells release quantitatively different MPs following stimulation…………….. 254 

Figure 7.4: Determining the EC70-EC80 MP release for A23187 and LPS……………………………….. 255 

Figure 7.5: HUVECs release MPs in serum starvation conditions………………………………………… 256 

Figure 7.6: HUVECs release MPs following stimulation with TNF-α…………………………………….. 257 

 

  



xiii | P a g e  
 

List of tables 
Table 3.1: Advantages and disadvantages of current monocyte isolation methods…………... 71 

Table 3.2: Monocyte phenotyping antibody panel………………………………………………………….…. 75 

Table 3.3: Monocyte purity antibody panel……………………………………………………………………….. 77 

Table 3.4: Cell populations found in isolated fractions under different conditions…………..… 84 

Table 4.1: THP-1 phenotyping panels…………………………………………………………………………….…… 109 

Table 4.2: Isolated monocytes phenotyping panels………………………………………………………….… 110 

Table 4.3: Monocytic MPs phenotyping panels………………………………………………………….………. 115 

Table 4.4: Change in the percentage expression of CD142 and CD11b on THP-1 cells and 
their corresponding MPs following stimulation with; LPS and A23187 or by starvation...….. 

 

127 

Table 4.5: Change in the MFI of CD142, CD14 and CD11b on THP-1 cells and their 
corresponding MPs following stimulation with; LPS and A23187 or by starvation……………… 

 

128 

Table 5.1: List of phenotypic markers used for MP detection in patient samples……………….. 156 

Table 5.2: Demographic and laboratory data from HIV infected children and healthy 
controls at week 0……………………………………………………………………………………………………………... 

 

168 

Table 5.3: MP counts in paediatric HIV infected patients treatment-naïve and treatment-
experienced (on ART for >2 years), and age-matched healthy controls…………………………….  

 

170 

Table 5.4: P values comparing differences in MP counts between treatment groups and 
time points………………………………………………………………………………………………………….…………….. 

 

171 

Table 7.1: Details of isotype controls used in flow cytometry experiments………………………… 251 

  



xiv | P a g e  
 

List of abbreviations 
ACS 

AIDS 

ART 

BBB 

CAC 

CAD 

CCR 

CRP 

CVD 

CV 

DAMPS 

DMSO 

EDTA 

ELISA 

EMP 

FACS 

FBS 

GIT 

HIV 

HDL 

HUVEC 

ICAM-1 

IFN-Ƴ 

IL 

IMT 

LDL 

Acute Coronary Syndrome 

Acquired Immunodeficiency syndrome 

Combined highly active Antiretroviral Therapy 

Blood Brain Barrier 

Coronary Artery Calcium 

Coronary Artery Disease 

C-C chemokine receptor  

C Reactive Protein 

CVD 

CV 

Damage Associated Molecular Patterns 

Dimethyl sulfoxide 

Ethylenediaminetetraacetic acid 

Enzyme-linked immunosorbent assay 

Endothelial MP 

Fluorescence-activated cell sorting 

Foetal Bovine Serum 

Gastrointestinal Tract 

Human Immunodeficiency Virus 

High Density Lipoprotein 

Human Umbilical Vein Endothelial cells 

Intercellular Adhesion Molecule 1 

Interferon Gamma 

Interleukin 

Intima-Media Thickness 

Low-density lipoprotein 



xv | P a g e  
 

LMP 

LPS 

MCP-1 

MFI 

MI 

MMPs 

MP 

MSD 

NFKβ 

NRTIs 

NNRTIs 

NO 

NOS 

OxLDL 

PAMPS 

PBS 

PBMC 

PI 

PMA 

PMP 

PPP 

PS 

PWV 

RANTES 

ROS 

RPMI  

SAA 

Leukocyte MP 

Lipopolysaccharide 

Monocyte chemotactic protein-1 

Mean Fluorescent intensity  

Myocardial infarction 

Monocyte microparticles 

Microparticles 

Mesoscale Discovery 

Nucleoside reverse transcriptase inhibitor 

Nuclear factor kappa-light-chain-enhancer of activated B cells 

Non-nucleoside reverse transcriptase inhibitor 

Nitric Oxide 

Nitric Oxide Synthase 

Oxidized low-density lipoprotein 

Pathogen Associated Molecular Patterns 

Phosphate-buffered saline 

Peripheral blood mononuclear cell 

Protease inhibitor 

Phorbol 12-myristate-13-acetate 

Platelet MPs 

Platelet poor plasma 

Phosphatidylserine 

Pulse Wave Velocity 

Chemokine Ligand 5 

Reactive Oxygen Species 

Roswell Park Memorial Institute medium 

Serum amyloid A 



xvi | P a g e  
 

SMC 

TF 

TLR 

TMP 

TNF-α 

VCAM-1 

Smooth Muscle cell 

Tissue Factor 

Toll-Like Receptor 

T lymphocyte MP 

Tumour necrosis factor-alpha 

Vascular cell adhesion protein 1 

 

 

 



  Chapter 1 – Introduction 

1 | P a g e  
 

Chapter 1 - Introduction 
1.1 HIV epidemic   

Since its discovery in 1981, more than 75 million people have been infected with HIV 

(Human Immunodeficiency Virus); with approximately half of those dying as a result of 

the infection developing into Acquired immunodeficiency syndrome (AIDS) (del Rio, 

2017). In 2018, World Health Organisation (WHO) estimates showed that 37.9 million 

people were living with HIV globally, with only 62% of those infected receiving combined 

highly active antiretroviral therapy (ART) (WHO, 2019).  

In 2018, approximately 1.7 million people were newly infected with HIV, with 9.4% of 

these being in children below the age of 15 (WHO, 2019). HIV is most concentrated in 

Sub-Saharan Africa, accounting for 67% of the global HIV infection rate (WHO, 2019) 

however 101,600 people are also currently living with HIV in the United Kingdom (UK) 

(Nash S, Desai S, Croxford S, Guerra L, Lowndes C, Connor N, 2018) . There are multiple 

routes of transmission including injecting drug use, needle stick injuries and mother to 

child transmission (MTCT) however; sexual transmission among homosexual men 

remains the most common mode of transmission in the UK (Nash S, Desai S, Croxford S, 

Guerra L, Lowndes C, Connor N, 2018; WHO, 2019). 

1.2 Pathogenesis of HIV-1 

Following the identification of the epidemic, two forms of the virus have been 

discovered, HIV-1 and HIV-2. Despite similarities between the genetic structures of the 

two viruses, key differences lend HIV-2 to have a hindered ability to infect the immune 

system through its lower levels of viral replication, thus the progression to AIDS is much 

slower in comparison to HIV-1 (Nyamweya et al., 2013). As HIV-1 is most prevalent 
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globally and is the most predominant strain worldwide; this thesis will focus on this form 

of HIV infection (Campbell-Yesufu and Gandhi, 2011). The infection itself is characterised 

by the progressive depletion of CD4+ T helper cells eventually leading to 

immunosuppression and the progression to AIDS  (McCune, 2001). 

1.3 The course of HIV infection  

Primary HIV infection usually occurs through the entry of the virus into the body across a 

mucosal surface (Royce et al., 1997). CD4+ T cells are the first immune cells to become 

infected due to their expression of CD4 (which is the primary receptor of HIV-1) and co-

receptors CCR5, CXCR4 facilitating viral entry, and their large reservoirs in gut-associated 

lymphoid tissue (Alkhatib et al., 1996; Deng et al., 1996; Dragic et al., 1996; Feng et al., 

1996). Once infected, viral replication takes place within these cells through the initial 

transcription of the single-stranded RNA, followed by the integration of viral DNA into 

the host genome. Once integrated, the transcription of mRNA encoding viral proteins 

takes place, along with the assembly of immature (non-infectious) HIV, eventually 

leading to shedding and virus maturation, allowing the infection surrounding cells 

(Freed, 2015) (Figure 1.1).  
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Figure 1.1: A schematic diagram demonstrating the HIV life cycle 

The HIV virus can induce cell death in both HIV infected cells and uninfected ‘bystander’ 

cells through a number of mechanisms. With respect to the death of infected CD4+ cells, 

3 pathways have been described: 1) Cell death following the viral activation of DNA 

dependent protein Kinase and sequential phosphorylation and activation of P53 

dependent pathways (Cooper et al., 2013); 2) Caspase-1 mediated cell death following 

the accumulation of unintegrated reverse transcripts (Doitsh et al., 2010, 2014; Monroe 

et al., 2014); 3) The induction of pro-inflammatory cytokine release (IL-2, TNF-α and IL-

1α) via NFKβ activation through the expression of Casp8p41 protein (Badley et al., 2008; 

Nie et al., 2002, 2007), following the transcription and translation of HIV protease 

(Taylor et al., 2010; Ventoso et al., 2005). The expression of this protein also leads to 

increased cell death by Caspase-9 mediated pathways (Badley et al., 2008; Sainski et al., 

2011). The apoptosis of ‘bystander’ T cells is elevated through the direct interaction with 

soluble cytotoxic HIV proteins (Gp120, Tat, Nef and Vpr), the upregulation of death 
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ligands on the surface of immune cells, and through the overall heightened immune 

activation leading to activated cell death (Cummins and Badley, 2014).  

Within 2 weeks of the primary infection, virus dissemination takes place by infected T 

cells migrating to lymph nodes and spreading the virus to neighbouring T cells by cell-cell 

contact; this provides a viral reservoir in the lymphoid tissues (Murooka et al., 2012). 

From here, the virus is able to further disseminate throughout the body through the 

release of viremia into the blood from replicating cells, leading to infection of T cells, 

monocytes, macrophages and dendritic cells (Février et al., 2011). In response to the 

virus, the host produces HIV specific CD8+ cells which cause the initial sharp decrease in 

viremia; this indicative of the individual's initial ability to control the virus (Borrow et al., 

1994). This is described as the ‘clinical latency’ phase within which naïve CD4+ and HIV-1 

specific CD8+ T cells recruited to lymph nodes and activated T cells become a target for 

viral replication, further enhancing the number of infected cells and increasing cell death 

(Grossman et al., 1998). The schematic diagram shown in figure 1.2 demonstrates the 

relationship between CD4+ T cell counts and HIV RNA viral copies over the time course 

of untreated HIV infection (Coffin and Swanstrom, 2013).  
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Figure 1.2: A schematic diagram displaying the relationship of CD4+ T cell numbers and HIV RNA 

copies/ml of plasma over the time course of uncontrolled HIV-1 infection (Coffin & Swanstrom, 2013). 

 

 

 

 

 

 

 

 

The high viral replication rates and sequential CD4+ cell death that takes place in gut-

associated, lymphoid tissue results in the increased translocation of bacterial production 

as the lining becomes more permeable. This elevated microbial translocation is one 

mechanism through which immune activation is increased in these patients (Brenchley 

et al., 2006), along with the induction of CD4+ and CD8+ T cell proliferation and 

activation (Deeks et al., 2004; Giorgi et al., 2002). These mechanisms ultimately result in 

the additional loss of these cells.  

As the numbers of T cells gradually decline the infected individual loses the ability to 

control the virus and fight opportunistic infections. This leads to the development of 
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AIDS (defined as CD4+ T cell counts <200 cells/ml), as a result of innate and adaptive 

immune response impairment.  

1.4 Management of HIV 

Although there is currently no cure or vaccination for the treatment of HIV infection, 

Combined Highly active antiretroviral therapy (ART) has recently been developed to 

suppress viral replication, leading to an increased quality of life and lifespan of 

individuals living with HIV (Nakagawa et al., 2013; Samji et al., 2013). Since its discovery, 

AIDS mortality rates have dramatically reduced in people living with HIV, with patients 

expected to have a near-normal life expectancy (Nakagawa et al., 2013; Rodger et al., 

2013). Additionally, more recent clinical studies have provided support for the 

Undetectable=Untransmittable (U=U) theory, whereby virally suppressed HIV infected 

individuals were unable to sexually transmit the virus (Cohen et al., 2016; Rodger et al., 

2019).  

Current antiretroviral drugs that have been approved for the use in adults and children 

are grouped into 5 different classes according to the stage of the viral life cycle it targets 

(Figure 1.3):  

1) Nucleoside reverse transcriptase inhibitors (NRTIs) (for example Abacavir, Zidovudine) 

and 2) Non-Nucleoside reverse transcriptase inhibitors (NNRTIs) (for example Efavirenz, 

Nevirapine) both interfere with the initial transcription of the single-stranded viral RNA, 

leading to the termination of DNA synthesis.  

3) Integrase inhibitors (for example Raltegravir) prevent the viral DNA from being 

integrated into the host genome, thus preventing the transcription of new viral RNA, 

and essential viral proteins that are needed for further replication. 4) Protease inhibitors 
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(for example Darunavir) inhibit the HIV enzyme protease which is required in the later 

stages of the HIV life cycle. This enzyme cleaves long peptide chains that are packaged 

into immature virions into functional proteins, maturing the virion. 5) Fusion and entry 

inhibitors (for example Maraviroc) prevent the entry of the virus into the cell.  

Antiretroviral drugs are often given in combination, with two or more drugs from one or 

more classes to allow more effective maintenance of viral suppression. 

 

Figure 1.3: A schematic diagram demonstrating how combined antiretroviral therapies target different 
stages of the HIV life cycle 

1.5 CVD morbidity in HIV infected individuals  

Despite the increased quality and life expectancy of ART-treated HIV positive individuals 

(Palella et al., 1998), the number of non-AIDS co-morbidities has risen, with CVD 

accounting for approximately 11% of non-AIDS related deaths (Data Collection on 

Adverse Events of Anti-HIV drugs (D:A:D) Study Group et al., 2010; Feinstein et al., 2016; 

Palella et al., 2006).  CVD risk is 1.5 to 2-fold greater in virally suppressed HIV infected 
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patients compared to uninfected individuals (Hsue and Waters, 2018; Shah et al., 2018). 

Furthermore, people living with controlled HIV have an increased risk of myocardial 

infarction (Drozd et al., 2017; Freiberg et al., 2013), ischemic stroke (Chow et al., 2012; 

Sico et al., 2015), heart failure (Butt et al., 2011; Freiberg et al., 2017), pulmonary 

hypertension (Barnett et al., 2008; Brittain et al., 2018) and coronary heart disease 

(Currier et al., 2003; Islam et al., 2012; Triant et al., 2007) compared to healthy adult 

populations.  

To further support this relationship, people living with HIV also display higher rates of 

sub-clinical atherosclerosis as measured through physiological markers. Carotid Intima-

Media Thickness (IMT) is currently the most reliable marker of sub-clinical 

atherosclerosis, and highly predictive of future cardiovascular (CV) events in the general 

population (Lorenz et al., 2012; O’Leary et al., 1999; Den Ruijter et al., 2012). IMT is 

measured by calculating the thickness between the intima and media of the coronary 

artery wall (Nezu et al., 2016). 

Several longitudinal studies (Hanna et al., 2015; Hsue et al., 2012) and a large meta-

analysis of over 5,000 HIV infected adults (Hulten et al., 2009) found increased IMT in 

HIV infected cohorts compared to negative control populations. Furthermore, the 

progression of intima-media thickening has been observed to increase faster in HIV 

positive patients over 1 year in comparison to non-infected adults (Hsue et al., 2004). 

This increase in IMT has also been shown to positively correlate with an increased risk of 

myocardial infarction and stroke, and coronary atherosclerosis (Ho and Hsue, 2009).  

Through imaging of coronary artery calcium (CAC) by non-contrast computed 

tomography, HIV infected individuals showed higher risk and incidence of CAC (Kingsley 
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et al., 2015). In addition, the increased prevalence of non-calcified plaque (Fitch et al., 

2013; Post et al., 2014; Zanni et al., 2014) and evidence of positive coronary arterial 

remodelling (Miller et al., 2015) have been observed within this population, making 

atherosclerotic plaque susceptible to rupture. 

Despite the majority of evidence for CVD outcomes and risk associated with HIV being 

generated from adult studies, paediatric data has also shown supporting evidence, 

demonstrating a predisposition to CVD even from a young age (Idris et al., 2015; Miller 

et al., 2008; Werner et al., 2010). Significant increases in IMT compared to healthy age-

matched controls have been observed in children and young adults (Bonnet et al., 2004; 

Charakida et al., 2005; Sainz et al., 2014), along with increases in arterial stiffness 

(assessed by Pulse wave velocity) (Charakida et al., 2009) and decreased flow-mediated 

dilation (a marker of endothelial function) (Bonnet et al., 2004). Using cardiac MRI and 

MR angiography, coronary artery abnormalities were observed in 14 of 27 CV 

asymptomatic HIV children and young adults (Mikhail et al., 2011).  

In addition, coronary artery plaque prevalence in young HIV infected adults was 

positively associated with cytotoxic T cell activation and E-Selectin (a marker of 

endothelial activation), demonstrating the link between immune and endothelial 

activation in the early stages of atherosclerosis within this population (Mattingly et al., 

2017). This is further supported by a small study performed by Ross et al., 2010, in which 

heightened hsCRP (high sensitivity C Reactive Protein, a plasma biomarker of 

inflammation) levels in HIV infected children was associated with IMT (Ross et al., 2010).  

Other studies failed to show differences in IMT between HIV infected and uninfected 

children (Eckard et al., 2017; Hanna et al., 2016), or an initial increased IMT which 
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normalises after longitudinal follow up after ART initiation (Ross et al., 2010). The 

conflicting data reported in these studies are likely to attributable to small sample sizes, 

differences in patient demographics, study duration and study design.  

With CVD now the leading cause of non-AIDS related death, and a HIV associated 

increased CV risk from a younger age, new challenges have emerged for the aging HIV 

population. With serious implications on morbidity, morality and quality of life within 

this patient group, there is a requirement to discover biomarkers to accurately predict 

CVD progression and events, in addition to developing successful intervention strategies 

specific to HIV positive individuals (Mcgettrick et al., 2018). With respect to 

interventions that reduce CV disease progression, careful consideration needs to be 

made for any potential interactions that these co-medications may have with current 

ART regimes, thus often requiring specialist care (Smit et al., 2015).  The cause of this 

accelerated CVD progression is later discussed in more detail, however it involves the 

complex interplay between HIV associated factors including viremia, inflammation, 

immune dysfunction and ART use, along with general traditional risk factors (Ekong et 

al., 2020).  By further understanding these mechanisms in relation to HIV specific 

factors, and how CVD progresses within this population, an effective prevention strategy 

can be developed in order to reduce the CVD related morbidity and mortality burden in 

people living with HIV and prolong lifespan equivalent to that of the general population. 

1.6 Atherosclerosis pathogenesis 

First described in the 19th century, atherosclerosis is characterised by an accumulation of 

lipids and fibrous elements in the lumen of the arteries, causing stiffening, swelling and 

damage to blood vessel walls. The disease is initiated by CV risk factors that cause the 
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endothelium to become activated, leading to leukocyte migration to sites of injury and 

endothelial dysfunction (Hansson, 2005).  

1.6.2 Endothelial homeostasis and dysfunction 

The normal homeostasis of the vascular endothelial lining demonstrates a balance 

between mechanisms of growth and repair to maintain a healthy functioning endothelial 

layer. Under these conditions, the endothelium regulates leukocyte adhesion, smooth 

muscle cell proliferation and vessel wall adhesion in response to surrounding physical 

and chemical signals (Kinlay et al., 2001; Maruyama, 1998). Cells respond to vasoactive 

molecules including nitric oxide (NO) in order to control the vasodilatation and 

vasoconstriction of the vessel wall (Deanfield et al., 2007). The ability for endothelial 

growth and repair relies on multiple angiogenic mechanisms, involving cell proliferation, 

migration and tube formation as well as factors from the surrounding 

microenvironment. 

Repeated exposure to CV risk factors and chronic inflammatory conditions cause injury 

to the endothelium, switching cells from a quiescent state to one that is activated. This 

change in phenotype upregulates adhesion molecules (ICAM1, VCAM1, E-Selectin, P-

Selectin), inflammatory cytokines (IL-8) and chemokines (MCP-1)  to enhance leukocyte 

recruitment, promote pathological angiogenesis and cell senescence (Deanfield et al., 

2007; Hansson, 2005; Woywodt, 2002). The imbalance of these mechanisms leads to an 

upregulation of pro-atherogenic events, giving rise to atherosclerosis. As endothelial 

dysfunction is one of the initiating factors of CVD, it is generally considered an early 

predictor of atherosclerosis (Maruyama, 1998). 
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Figure 1.4: A diagram demonstrating the role of endothelial dysfunction in the progression of 

atherosclerosis over time, from the formation of foam cells in childhood to lesion formation and CV 

events in adulthood. (Adapted from the original print by Pepine 1998 and reprinted by Della Rocca & 

Pepine, 2010). 

1.6.3 Endothelial dysfunction leads to atherosclerosis from an early age 

From childhood, exposure to CV risk factors causes this endothelial dysfunction, leading 

to the asymptomatic development of atherosclerosis. Symptoms primarily appear within 

the fourth decade when clinical events begin to occur, as depicted in figure 1.4 (Bentzon 

et al., 2014; Della Rocca and Pepine, 2010). 

 

 

Although few children present with symptoms of atherosclerosis, alterations in the 

artery wall have been observed as early as the fetal development stage in utero, 

whereby the presence of fatty streak formation and intimal thickening has been 

reported (Milei et al., 2008; Napoli et al., 1997). Furthermore, previous studies have 

confirmed that endothelial dysfunction is present in children and progresses into 



  Chapter 1 – Introduction 

13 | P a g e  
 

adulthood upon exposure to certain risk factors such as systemic inflammation (Fabbri-

Arrigoni et al., 2012; Hingorani et al., 2000). Hypertension, diabetes, smoking and 

obesity have also been shown to induce endothelial dysfunction in children and young 

adults (Charakida et al., 2007). Moreover, evidence of structural changes to the arterial 

vascular bed and sub-clinical atherosclerosis (assessed by the measurement of IMT, 

Pulse Wave Velocity and Flow Mediated Dilation) has also been reported in children and 

adolescents living with HIV, as described previously (Bonnet et al., 2004; Chanthong et 

al., 2014; Charakida et al., 2005, 2009; Giuliano et al., 2008; McComsey et al., 2007; Ross 

et al., 2010).  

1.6.4 Atherosclerosis disease progression  

Atherosclerosis is initiated by the activation of the endothelium through inflammation, 

and LDL accumulation. LDLs within the intima (the artery wall) are oxidised by either 

NOS (Nitric Oxide Synthase), 15-LO (Lipoxygenase) or ROS (Reactive Oxygen species). 

The oxidized form of these lipids (oxidised LDL (OxLDL)) accumulates in the vascular wall, 

activating endothelial cells. As a result, the expression of ICAM-1, VCAM-1, P-selectin, E-

selectin and integrins upregulated on the endothelial cell surface, in addition to the 

secretion of pro-inflammatory cytokines and chemokines (such as MCP-1) to attract 

circulating leukocytes (Collins et al., 2000; Dong et al., 1998; Shih et al., 1999; Skålén et 

al., 2002; Williams and Tabas, 1995). 

Circulating monocytes respond to these signals and bind to the endothelium mediated 

through the interaction of adhesion molecules with β integrin receptors (CD11/CD18) on 

the monocyte surface (Meerschaert and Furie, 1995). Upon binding, these cells ‘roll’ 

along the endothelium, and infiltrate into the sub-endothelial intima space, where they 
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differentiate into macrophages (Cybulsky and Gimbrone, 1991; Nakashima et al., 1998). 

Macrophages engulf lipid molecules (such as OxLDL) via scavenger class A receptors and 

CD36 (Kunjathoor et al., 2002). This uptake leads to the development of foam cells that 

accumulate within the vessel wall, leading to the formation of a fatty streak. 

 The expression of adhesion molecules and the release of chemoattractants from the 

inflamed endothelium facilitate T cell recruitment to the site further enhancing the 

inflammatory response. Through T cell and macrophage signalling, the extracellular 

matrix is broken down, resulting in the migration and proliferation of smooth muscle 

cells from the media into the intima. These smooth muscle cells also restructure the 

vascular wall through the secretion of fibrin, collagen, and proteoglycans forming an 

extracellular matrix (Patel, 2014). 

Following the continuous accumulation of lipids, apoptotic cells, foam cells and smooth 

muscle cells, the plaque increases in size and consequently causes the narrowing of the 

lumen. This process is called Intima-Media Thickening, which can be measured by 

imaging techniques to determine the severity of asymptomatic atherosclerosis including 

IMT, and non-contrast computed tomography. Clinical events such as myocardial 

infarction or stroke take place as the plaque enlarges and becomes unstable (Bentzon et 

al., 2014) (Figure 1.5). 
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Figure 1.5: Schematic diagram of atherosclerosis pathogenesis 

1) Endothelial dysfunction results in the increase of adhesion molecule expression on the endothelial cell surface. 

Monocytes bind to these receptors and transmigrate into the tunica intima. 2) Once in the intima they differentiate 

into macrophages and engulf OxLDL via scavenger receptors on their surface, this results in foam cell formation. Foam 

cells enhance monocyte and inflammatory cell recruitment by the release of chemokines and pro-inflammatory 

cytokines. 3) Foam cells also secrete growth factors that promote the proliferation of smooth muscle cells in the tunica 

media and their migration into the intima space. 4) The accumulation of foam cells and smooth muscle cells in the 

intima contributes to plaque progression. 5) These foam cells undergo apoptosis, forming a necrotic lipid core. In 

response, smooth muscle cells form a fibrous cap over this lipid core, resulting in the plaque size increasing further and 

narrowing the lumen. 6) As this grows, the plaque is venerable to rupture, leading to thrombosis formation. LDL: Low-

Density Lipoprotein, OxLDL: Oxidised Low-Density Lipoprotein, Mφ: Macrophage, SMC: Smooth muscle cell. 
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1.7 Immune activation and CV risk associated with HIV  

The link between abnormal chronic immune activation (Grund et al., 2016; Hunt et al., 

2003, 2011; Kuller et al., 2008; Neuhaus et al., 2010) and CVD risk and mortality in HIV 

has been well established in a number of different HIV infected populations (Hsu et al., 

2016; Hsue et al., 2012; Nordell et al., 2014; Smit et al., 2015). In the general population, 

biomarkers indicative of immune activation including CRP and IL-6 have been linked with 

increased risk of atherosclerosis and mortality (Danesh et al., 2004; Ridker, 2003; Sarwar 

et al., 2012; Swerdlow et al., 2012). 

A similar association with these markers and CVD outcomes have also been reported in 

HIV positive populations. Both IL-6 and D-dimer have been associated with increased 

CVD risk, independent of CV risk factors (Duprez et al., 2012; Nordell et al., 2014) with a 

strong relation to all-cause mortality (Kuller et al., 2008). CRP, a soluble biomarker 

indicative of inflammation, has also been associated with CVD risk (Duprez et al., 2012; 

Triant et al., 2009). 

Furthermore, markers of monocyte activation (sCD14 and sCD163) are elevated in HIV 

infected adults and correlate with plaque progression and carotid atherosclerosis (Burdo 

et al., 2011a; Fitch et al., 2013; Hanna et al., 2017; McKibben et al., 2015).  

Most biomarker studies have focused on HIV infected adults, however paediatric 

biomarker data in children receiving ART has provided varying results (De Lima et al., 

2018; Miller et al., 2010, 2012; Ross et al., 2010). Soluble markers of immune activation 

(MCP-1 and IL-6) and vascular dysfunction (sVCAM and sICAM) were both found to be 

elevated in 106 HIV infected youths compared to 55 healthy controls (Miller et al., 

2010). These children also display an elevated inflammatory profile, with a higher CRP, 
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TNF-α levels, in addition to increased IMT (De Lima et al., 2018).  In addition, levels of 

plasma CRP were associated with increased IMT, with a positive correlation between 

levels of sVCAM and ART duration (Ross et al., 2010). Since the relationship between 

immune activation and CVD rates has been well established within this population, the 

source of this immune activation is explored below. 

1.8 Sources of immune activation 

Currently, the mechanism for persistent inflammation in HIV infected individuals 

remains unclear, however a number of complex mechanisms are likely to contribute 

including; the HIV virus, ART side effects and immune activation (Christensen-Quick et 

al., 2017; d’Ettorre et al., 2016; Deeks, 2011; Gianella et al., 2014, 2016; Henrich et al., 

2017; Maidji et al., 2017; Márquez et al., 2015). In addition, the increased prevalence of 

traditional CV risk factors within HIV populations, including; behavioural factors 

(Freiberg et al., 2010, 2013; Rasmussen et al., 2015), hypertension (Antonello et al., 

2015), dyslipidaemia (Waters and Hsue, 2019), diabetes (Nix and Tien, 2014) and 

metabolic disturbances (Behrens et al., 2005; Nix and Tien, 2014) also contributes to the 

low-level inflammation immune activation observed in these patients.   

1.8.1 Immune activation as a consequence of the HIV virus and its treatment 

Perhaps the most obvious source of immune activation is the direct effect of the virus 

and the antigens it produces, on the innate and the adaptive immune system. Not only 

does it have the ability to activate T cells during virus fusion by co-receptor signalling 

(e.g. CCR5), but its viral RNA can also interact with pattern recognition receptors TLR-7 

and TLR-9 cells directly in order to activate uninfected cells (Beignon et al., 2005). HIV 

also enhances pro-inflammatory cytokine release from monocytes and T cells (Birx DL, 
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Redfield RR, Tencer K, Fowler A, Burke DS & Tosato, 1990; Buonaguro et al., 1992; 

Cheung, Ravyn, Wang, Ptasznik, & Collman, 2008; Ji, Sahu, Braciale, & Cloyd, 2005; 

Molina, Scadden, Byrn, Dinarello, & Groopman, 1989), with these being upregulated 

directly from Tat and/or GP120 HIV protein interaction (Buonaguro et al., 1992; Cheung 

et al., 2008; Gibellini et al., 1994; Scala et al., 1994).  

The treatment of the virus with ART has also been considered as a contributor to 

immune activation and CV risk, with a 26% increased risk of MI for every year of ART 

treatment (Friis-Møller et al., 2003).  

In the SMART (Strategies for management of Anti-retroviral Therapy) trial, 5000 HIV 

positive patients were randomly assigned to two groups, either continuous ART or 

intermittent ART therapy (when CD4+ count rose above 350/µl ART was stopped and 

resumed when T cell numbers decreased to 250/µl or below). Results from this study 

demonstrated that within the drug intermittent group, risk of CV complications 

increased by 70% when compared to those on the continuous treatment arm, with CV 

events 5 times more prevalent in this treatment group (El-Sadr et al., 2006).  

Furthermore, patients in the treatment interruption cohort showed a greater risk of 

opportunistic infections and CV events, with biomarkers of inflammation (IL-6) and 

coagulation (D-dimer) displaying a strong relationship with all-cause mortality (Kuller et 

al., 2008). In 2006, 4 years after the study was initiated enrolment was terminated due 

to safety risks in patients recruited in the drug conservation group (episodic use of ART) 

(El-Sadr et al., 2006).  

Protease inhibitors (PI) have been associated with an increased risk of MI as reported in 

the recent D:A:D study (data collection on adverse events of anti-HIV drugs), within 
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which each year of continuous PI use increased MI risk by 10% (Friis-Moller et al., 2007). 

Within the same study, the recent or current exposure rather the cumulative use to 

NRTIs, specifically abacavir also increased risk of MI (Sabin et al., 2008), with similar 

finding reported in other observational studies (Elion et al., 2018; Marcus et al., 2016).  

It has been suggested that the treatment of HIV with these protease inhibitors induces 

endothelial dysfunction through: the impairment of vasorelaxation and increase of 

superoxide production, a reduction in NO production and its bioavailability and 

induction of endothelial cell senescence (Conklin et al., 2004; Lefèvre et al., 2010; 

Shankar et al., 2005). Furthermore, abacavir has been shown to increase platelet 

reactivity, promoting platelet aggregation thrombus formation. These therefore propose 

possible mechanisms through which these therapies contribute to CV risk (Satchell et al., 

2011).  

1.8.2 Monocyte activation as a consequence of increased microbial translocation  

Gut microbial translocation is one of the major contributors to persistent immune 

activation (Brenchley et al., 2006; Monaco et al., 2017). During acute HIV infection, the 

gastrointestinal tract (GIT) becomes a prime target organ for HIV replication due to the 

large pool of T cells with a higher expression of co-receptors for viral entry (CD4+ 

CCR5+).  During the initial acute infection, a rapid depletion in Th17 T cells (El Hed et al., 

2011) from the GIT can be observed prior to peripheral T cell count becoming affected 

(Brenchley et al., 2004, 2006; Schuetz et al., 2014; Yukl et al., 2015). These cells play a 

key role in host defence against extracellular pathogens in the gut mucosa allowing 

alterations in the GIT immunity and structural damage to the intestinal mucosal barrier, 

increasing gut permeability, allowing microbial translocation further increasing immune 
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activation (Brenchley et al., 2004; Dillon et al., 2014; Dinh et al., 2015; Schuetz et al., 

2014; Yukl et al., 2015).  

The increase in gut permeability allows the entry of pro-inflammatory products from 

bacteria and fungi including which cause stimulation of both local and systemic innate 

immune cells (Dillon et al., 2014; Kawai and Akira, 2010; Monaco et al., 2017). 

Monocytes as part of the innate immune system recognise structural components 

named Pathogen Associated Molecular Patterns (PAMPS) and Damage Associated 

Molecular Patterns (DAMPS) through the interaction with Toll-Like Receptors (TLR) on 

their surface (Janeway Jr. and Medzhitov, 2002; Zhang et al., 2010). These bacterial 

components also include circulating Lipopolysaccharide (LPS) and bacterial associated 

extracellular vesicles, which are elevated in people living with HIV (Ramendra et al., 

2019; Tulkens et al., 2018). Upon TLR mediated recognition by monocytes, a signalling 

cascade is initiated leading to the production of pro-inflammatory cytokines (IL-6, TNF-

α), chemokines and cell surface molecules commonly via the NF-ĸβ pathway  

(Mussbacher et al., 2019; Zhang and Ghosh, 2001), in addition to increased monocyte 

trafficking to the gut (Sankaran et al., 2008).  As a consequence of this increased 

translocation of LPS, circulating monocytes become chronically activated (Brenchley et 

al., 2006).  

CD14 is a co-receptor of LPS along with TLR4, which upon binding LPS causes the 

cleavage of CD14 from the cell surface allowing its release into the circulation in its 

soluble form (sCD14). Elevated plasma levels of sCD14 positively correlate with plasma 

levels of LPS (Brenchley et al., 2006), suggesting the use of sCD14 as an indirect measure 

of microbial translocation.  
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Even after ART initiation the numbers of gut mucosa T cells fail recover (Guadalupe et 

al., 2003, 2006; Jiang et al., 2009; Mavigner et al., 2012; Mehandru et al., 2006), in part 

attributing to the elevated levels of LPS and sCD14 in both HIV-infected adults and 

children. Indeed, it has been shown that these indirect markers of GIT barrier 

dysfunction predict mortality in ART-treated HIV positive patients (Hunt et al., 2014; 

Sandler et al., 2011). 

1.8.3 Monocytes in HIV 

Following the development of ART and the successful viral suppression of HIV, levels of 

monocyte activation and functional impairments are significantly reduced in comparison 

to treatment-naïve individuals however, these fail to normalise with healthy controls 

(Espíndola et al., 2018; Fischer-Smith et al., 2008). The constant low-level activation and 

dysfunction of these innate immune cells have been shown to contribute to CVD co-

morbidity (Burdo et al., 2011a; Westhorpe et al., 2014) and all-cause mortality (Sandler 

et al., 2011) within this patient population.  

1.8.3.1 Monocyte heterogeneity and function 

Monocytes are phagocytic white blood cells of myeloid origin, (Serbina and Pamer, 

2006; Tsou et al., 2007) accounting for approximately 6% of the leukocyte total 

population. These cells differentiate from pluripotent hematopoietic stem cells in the 

bone marrow (Saha and Geissmann, 2011) and enter into circulation via MCP-1 

(Monocyte chemotactic protein-1 also known as CCL2) signalling (Tsou et al., 2007). 

Following this, these cells home into sites of injury and infection, infiltrate into tissues 

and differentiate into macrophages or dendritic cells (Auffray et al., 2009). Monocytes 

also have the ability to scavenge and eliminate viruses, bacteria, toxic substances and 
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Figure 1.6: Flow cytometry dot plot demonstrating the gating strategy of the three monocyte 

populations based upon their expression of CD14 and CD16 (Wong et al., 2012). 

apoptotic cells (Ziegler-Heitbrock et al., 2010), in addition to playing a crucial role in 

angiogenesis and tissue repair after injury (Nahrendorf et al., 2007; Ziegler-Heitbrock et 

al., 2010).   

Until the 1980s monocytes were regarded as a single population, however in 1989 

Passlick., et al, (Passlick et al., 1989) demonstrated that monocytes could be sub-divided 

into two phenotypically distinct populations based on their CD14 (is a lipopolysaccharide 

(LPS) co-receptor along with TLR4)) and CD16 (an FCγIII receptor) receptor expression 

(Clarkson and Ory, 1988; Wright et al., 1990).  CD14++ CD16- monocytes were defined as 

classical whereas CD14+ CD16++ were labelled Non-classical and observed to be smaller 

in size in comparison to the classical subset (Passlick et al., 1989). More recently, a 

further CD16++ subset was discovered allowing this population to be sub-divided into 

the intermediate CD14+ CD16+ and non-classical CD14+ CD16++ (Ziegler-Heitbrock et al., 

2010). Figure 1.6 shows the three distinct subsets visualised by flow cytometry after 

CD14 and CD16 staining (Wong et al., 2012).  
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Each subset is present in different abundances in the blood, and play specific roles in the 

immune response. In healthy adults, the total monocytic population is comprised of 90% 

with a classical phenotype, 5% with an intermediate phenotype and 5% with a non-

classical phenotype (Ziegler-Heitbrock et al., 2010). They express multiple surface 

markers, with their phenotypic differences predicting their function as confirmed by a 

number of functional studies and genome analyses (Cros et al., 2010; Wong et al., 2011; 

Zawada et al., 2011).  

1.8.3.2 Classical 

Classical monocytes (CD14++ CD16-) are the most abundant subset in blood making up 

approximately 90% of total circulating monocyte population (Ziegler-Heitbrock et al., 

2010). This population of monocytes has the ability to recognise PAMPs, micro-

organisms, lipids and apoptotic cells through their expression of TLRs and scavenger 

receptors. They express a number of CD markers and genes that are linked with 

phagocytosis confirming their high phagocytic activity (Cros et al., 2010), as well high 

levels of CCR2 (MCP-1 receptor) on their surface allowing their emigration from the 

bone marrow and homing to site of infection and inflammation (Ancuta et al., 2003; Cros 

et al., 2010; Tacke et al., 2007; Weber et al., 2000; Wong et al., 2011). Stimulation of 

classical monocytes with LPS induces the release of a number of pro-inflammatory 

cytokines and chemokines including TNF-α, MCP-1, IL-6, IL-8 and IL-1β; as well as the 

anti-inflammatory cytokine IL-10 (Cros et al., 2010; Smedman et al., 2012; Wong et al., 

2011). The importance of this subset in tissue repair has recently been demonstrated by 

gene profiling, showing their preferential expression of genes associated with 

angiogenesis, wound healing and coagulation (Cros et al., 2010; Wong et al., 2011; 

Zawada et al., 2011). In comparison to CD16+ monocytes, classical monocytes are 
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considered less mature (Xu et al., 2008; Zawada et al., 2011; Ziegler-Heitbrock et al., 

2010). 

1.8.3.3 Intermediate 

The intermediate population is often regarded as the transition population from classical 

to non-classical, sharing both phenotypic and functional similarities for each of these 

subsets. Similar to classical monocytes, intermediate monocytes selectively migrate 

towards sites of inflammation. However, they produce higher levels of inflammatory 

cytokines and express pro-antigenic markers on their surface in comparison to the other 

monocyte populations. In response to LPS, intermediate monocytes produce more IL-1β, 

TNF-α compared to other subsets, with IL-6, IL-8 and IL-10 production equivalent to the 

classical population (Cros et al., 2010; Wong et al., 2011).  

With respect to surface marker expression, intermediate monocytes display the highest 

expression of HLA-DR (Major histocompatibility complex) class II (Quinn et al., 1987; 

Wong et al., 2011; Zawada et al., 2011) compared to classical and non-classical subtypes 

for antigen presentation, promoting T cell proliferation. They express a number of 

chemokine receptors including CCR2 and CCR5, which allows tissue invasion, leukocyte 

attachment and trans-endothelial migration via the interaction with CCL2 and CCL5 

(Tacke et al., 2007; Tsou et al., 2007). CCR2 expression is most abundant on this 

monocytic population (Hijdra et al., 2013), to aid their recruitment to the lymph nodes in 

response to inflammation and infection (Lund et al., 2016). It has been suggested that 

this population utilises these chemokine receptors to home into atherosclerotic plaques 

and accelerate plaque formation, as both MCP-1 and CCL5 have previously been 



  Chapter 1 – Introduction 

25 | P a g e  
 

associated with atherosclerosis disease progression (González et al., 2001; Muntinghe et 

al., 2009). 

Intermediate monocytes and a small proportion of non-classical monocytes express Tie-

2 (Tyrosine Kinase 2) on their surface (Murdoch et al., 2007; Venneri et al., 2007), 

allowing them to exhibit pro-angiogenic behaviour (Zawanda 2011, Coffelt 2010). Tie-2 is 

an angiopoietin receptor predominantly expressed on endothelial cells and a small 

proportion of monocytes (Murdoch et al., 2007). Tie-2 has two extracellular ligands. 

Angiopoietin 1 (ANG-1) autophosphorylates Tie-2 upon binding, leading to the activation 

of intracellular pathways promoting cell survival and stabilisation, and angiopoietin 2 

(ANG-2) that acts as an antagonist of ANG-1, inhibiting Tie-2 mediated cell activation, 

inducing their sensitivity to inflammatory mediators (Teichert-Kuliszewska et al., 2001). 

Endothelial cell survival and migration has been shown to be regulated via this pathway 

and plays an essential role in vessel formation in angiogenesis (Sato et al., 1995). 

Circulating Tie-2 expressing monocytes migrate towards ANG-2, and display and altered 

cytokine release in response, suggesting an important role their recruitment to sites of 

inflammation, and their involvement in cytokine mediated inflammatory processes 

(Murdoch et al., 2007).   

In addition, Tie-2 expressing monocytes (TEMs) demonstrate pro-angiogenic properties 

in vitro and in vivo, using a mouse tumour model within which ANG-2 was 

overexpressed in endothelial cells. This study demonstrated that TEM activated 

endothelial cells and promoted their angiogenesis evaluated using sprouting and tube 

formation assays. Using the in vivo mouse model, the authors also reported greater 

infiltration of Tie-2+ monocytes into tumours supporting the chemotactic effect of ANG-
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2 (Coffelt et al., 2010). These studies support the role these TEMs may play in 

accelerating angiogenesis in vivo in patient populations where this subset of monocytes 

is expanded. 

1.8.3.4 Non-classical 

The third subset, non-classical monocytes (CD14+ CD16++), displays a crawling 

behaviour along the endothelium, allowing their detection and elimination of infected or 

damaged cells and debris along the endothelial-blood interface (Auffray et al., 2007; 

Carlin et al., 2013). CD14+ CD16++ monocytes express low levels of CCR2 and no CD62L 

(Ancuta et al., 2003; Tallone et al., 2011) reflecting their maturity in comparison to 

classical and intermediate monocytes (Merino et al., 2011; Sunderkötter et al., 2004; 

Ziegler‐Heitbrock et al., 1993). This population express the highest levels of CX3CR1 (a 

chemokine receptor involved in leukocyte adhesion and migration), and upregulation of 

genes linked with cytoskeleton mobility (Auffray et al., 2007; Randolph et al., 2002; 

Wong et al., 2011; Zawada et al., 2011); facilitating their patrolling function along the 

blood vessel wall in vivo. Stimulation of non-classical monocytes with LPS causes a 

limited secretion of pro-inflammatory cytokines, with IL-1β and TNF-α being 

predominantly secreted upon interaction with viruses and nucleic acids (Cros et al., 

2010).  

In humans, it is generally accepted that classical monocytes (CD14++ CD16-) migrate 

from the bone marrow into the circulation, where they mature into intermediate 

monocytes (CD14+ CD16+), and sequentially into non-classical monocytes (CD14+ 

CD16++) (Zawada et al., 2011). This hypothesis supports the functional and phenotypic 

overlap observed within the subsets (Ziegler-Heitbrock et al., 2010), and is supported by 
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genetic profiling which has shown an increase in genes associated with maturation from 

classical to non-classical via the intermediate subset (Wong et al., 2011; Zawada et al., 

2011), and through mathematical modelling (Tak et al., 2017). This has been further 

supported in a number of in vitro and in vivo studies. Cultures of CD34+ hematopoietic 

stem cells initially differentiate into classical monocytes, with an increased expression of 

CD16 over time with subsequent culture (Stec et al., 2007). In vivo studies have 

demonstrated that after hematopoietic stem cell transplantation (HSCT), patients 

initially increased their classical population cell number, followed by the appearance of 

the intermediate and non-classical population expansion (Rogacev et al., 2015).  

1.8.4 Altered monocyte activation and phenotype in HIV infection 

During uncontrolled HIV infection, monocytes become chronically activated though the 

direct infection with the virus itself and by increased microbial translocation. This leads 

to the secretion of pro-inflammatory cytokines and their aberrant movement 

contributing to immune activation (Amirayan-Chevillard et al., 2000; Ancuta et al., 2008).  

As a result of the CD4 T cell depletion from the gut and increased microbial 

translocation, an expansion of the CD14+ CD16+ intermediate subset with a decrease in 

the classical CD14++ population is observed within the first 2 weeks of HIV infection (Kim 

et al., 2010).  

The expansion of this CD16+ monocytic population (Amirayan-Chevillard et al., 2000; 

Ellery et al., 2007; Pulliam et al., 1997; Thieblemont et al., 1995) also provides an 

additional mechanism for viral dissemination as this subset permissive to HIV infection. 

The expansion of CD16+ monocytes correlates with high viral loads, despite low CD4+ T 

cell counts in treatment-naïve individuals (Han et al., 2009). Moreover, this subset ‘shift’ 
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to a more pro-inflammatory phenotype and through the direct interaction with the virus 

results in impaired phagocytosis, intracellular killing, chemotaxis, antigen presentation 

and cytokine production (Sassé et al., 2012).  

Following the initial initiation of ART, this activated phenotype is reduced, evidenced 

through a decrease in CD163 expression, and absolute numbers of inflammatory 

monocytes (Burdo et al., 2011a). A reduction in cytokine production by inflammatory 

monocytes is also observed (Amirayan-Chevillard et al., 2000) however, not all of these 

phenotypic and functional changes are reversed following treatment intervention. 

The presence of viral DNA has also been found within the circulating monocytic 

population following successful viral suppression, therefore providing a source of viral 

persistence in patients on ART (Calcaterra et al., 2001; Lambotte et al., 2000; Sonza et 

al., 2001; Zhu et al., 2002). The intermediate population is most permissive to HIV 

infection in vivo and harbours the virus despite treatment intervention providing further 

implications for this subset expansion in vivo (Ellery et al., 2007).  

Furthermore, these impairments in monocyte function remain, through an inflammatory 

shift in the monocytic populations, resulting in a decrease in the classical subset and 

expansion of intermediates and non-classical cells (Chen et al., 2017; Han et al., 2009; 

Jaworowski et al., 2007).  

This ‘shift’ in monocytic populations results in the reduction of the highly phagocytic 

population and hinders the ability of T cell antigen presentation, further contributing to 

immune dysfunction. This impairment in phagocytic ability has also been observed in 

both viraemic and virally suppressed patients (Hearps et al., 2012; Michailidis et al., 

2012).  
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The alteration of monocyte phenotypic markers also continues in virally suppressed 

individuals, with a decrease in CD62L and CD115 expression, and an increase in CD11b, 

along with innate immune activation markers sCD163, neopterin and CXCL10. These 

functional and phenotypic changes mimic those observed in elderly patients suggestive 

of HIV induced immune ageing in monocytes (Hearps et al., 2012). Moreover, increased 

expression of CD11a and CD11b facilitates their recruitment to inflammatory sites and 

promotes their involvement in inflammation (Leite Pereira et al., 2019). 

Ex vivo experiments using monocytes isolated from HIV infected patients receiving ART 

have also provided insight into functional impairments that may also contribute to 

accelerated atherosclerosis disease progression. 

Circulating monocytes isolated from HIV infected individuals, displayed a higher 

tendency to form foam cells following transendothelial migration in comparison to 

uninfected controls, with their serum also increasing foam cell formation. These 

monocytes also display an impaired cholesterol efflux from the cells in vitro, and limited 

movement following transendothelial migration, potentiating foam cell formation 

(Maisa et al., 2015). 

1.8.5 Biomarkers associated with monocyte activation 

Biomarkers of monocyte activation support their relationship with CVD progression in 

HIV infected individuals. The expansion of the intermediate monocyte subset as 

previously described positively correlates with serum biomarkers of monocyte activation 

and inflammation, IL-6, sCD14 and hsCRP (Wilson et al., 2014). In a longitudinal 2 year 

study following HIV positive individuals on first-line ART, biomarkers of monocyte 

activation (IL-6, IP-10, MIG (Monokine induced gamma interferon) and sCD14) were all 
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elevated prior to treatment intervention, with sCD14 remaining higher compared to 

healthy controls following therapy initiation (Hattab et al., 2015).  

IL-6 is a primary inflammatory cytokine secreted by monocytes following their 

activation. Therefore, in the instance of HIV infection monocytic derived IL-6 is likely to 

contribute to the increased plasma levels of IL-6 observed in both untreated and ART-

treated HIV positive patients. These elevations in plasma IL-6 have been strongly 

associated with CVD mortality and death within this population (Kuller et al., 2008).  

sCD14 plasma levels are also elevated in HIV infected individuals independent of ART 

treatment compared to healthy age-matched controls (Lien et al., 1998; Méndez-Lagares 

et al., 2013; Merlini et al., 2012), and correlate with sub-clinical atherosclerosis 

prevalence (Kelesidis et al., 2012; Longenecker et al., 2014). Furthermore, sCD14 is 

positively associated with plasma levels of pro-inflammatory molecules including IL-6, 

CRP, SAA and D-dimer, and has been shown to independently predict mortality in HIV 

infected persons (Sandler et al., 2011). 

sCD163 has also been proposed as a more specific marker for monocyte/macrophage 

activation. CD163 is a haemoglobin scavenger receptor expressed exclusively on the 

surface of mononuclear phagocytes and shed along with other inflammatory signals 

upon LPS binding to TRL4 (Møller, 2012).  sCD163 has been shown to increase in 

untreated HIV patients before ART therapy, which declines after the initiation of therapy 

however, these still remain higher than uninfected controls (O’Halloran et al., 2015; 

Satchell et al., 2011; Ticona et al., 2015).  Furthermore, increases in sCD14 and sCD163 in 

HIV infected males receiving ART is associated with coronary artery calcium levels, 

indicative of sub-clinical atherosclerosis, and arterial inflammation (McKibben et al., 
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2015). Indeed,  sCD163 has been independently associated with non-calcified coronary 

plaque percentage in 102 asymptomatic young infected males (Burdo et al., 2011b). 

Moreover, higher levels of plasma sCD163 in HIV positive females with non-calcified 

coronary plaques highlight the predictive potential of these markers of subclinical 

atherosclerosis within these patients (Fitch et al., 2013). 

The elevation of both monocyte activation markers and inflammation in HIV has shown 

a strong association with coronary artery calcium (Baker et al., 2014; Longenecker et al., 

2014), IMT (Dirajlal-Fargo et al., 2017) and predictive of CV morbidity and mortality 

(Duprez et al., 2012; Grund et al., 2016; De Luca et al., 2013; Nordell et al., 2014). The 

association of these biomarkers indicative of monocyte activation with clinical and sub-

clinical CVD rates provides evidence to support the mechanistic role of these cells in 

atherosclerosis disease progression. This additionally demonstrates the importance of 

understanding the drivers of monocyte activation in long term ART, to further elucidate 

their role in HIV associated CVD. 

1.9 Microparticles as markers of cellular activation and injury 

Microparticles (MPs) (also referred to as microvesicles) are increasingly being considered 

as clinical biomarkers of vascular injury, inflammation and thrombosis. These particles 

are small membrane small lipid-rich particles released from the plasma membrane of 

cells upon cellular activation, stress, injury and senescence (Gasser and Schifferli, 2004; 

Koifman et al., 2017).  

MPs can be distinguished from other cell-derived vesicles including exosomes by their 

size (ranging from 100nm to 1µm) and their expression of Phosphatidylserine (PS). This 

allows their discrimination and detection in plasma by flow cytometry. 
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MPs are a distinct population of extracellular vesicles in comparison to apoptotic bodies, 

despite their similarity in PS expression. Apoptotic bodies are formed during the late 

stages of apoptosis following cell collapse, leading to the formation of larger membrane 

covered fragments (1-5µm).  In contrast to this, MPs are released in the early stages of 

programmed cell death, leading to the generation of much smaller membrane bound 

vesicles (0.1-1µm) (Distler et al., 2005a). This size differences allows their isolation by 

different centrifugation-based protocols (Crescitelli et al., 2013), and discrimination by 

flow cytometry using the combination of PS expression and a size gate of <1µm. 

Furthermore, apoptotic body content includes cell organelles, DNA fragments and 

histones that are indicative of cell death, whereas MPs are composed of membrane, 

cytoplasmic and nuclear contents of the parent cells, including mRNA, RNA, proteins and 

lipids (Povero and Feldstein, 2016) (currently, no interactions between apoptotic bodies 

and MPs have been reported in the literature at the time of writing this thesis). In 

addition, MPs also express cell specific markers on their surface, thus indicating the 

characteristics of the plasma membrane during MP production (Del Conde et al., 2005). 

This marker expression further allows the characterisation of MPs according to parent 

cell origin by flow cytometry. 

These circulating particles also contain chemokines, cytokines, proteins, and nucleic 

acids (miRNA, mRNA and DNA) from their secreting cells. Their composition allows them 

to influence their surrounding environment and makes them integral in modulating 

intercellular communications. Through cell signalling induction, MPs influence a number 

of cellular processes including invasion, migration, proliferation and apoptosis, allowing 

their functional role in inflammation, (Batool et al., 2013), thrombosis (Iii and Mackman, 

2012) and angiogenesis (Martinez and Andriantsitohaina, 2011). 
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Through a highly regulated process, MPs are released from a number of cell types and 

have been measured in; peripheral blood, saliva, urine and cerebrospinal fluid  

(Berckmans et al., 2011; Jayachandran et al., 2012; Patz et al., 2013; Rood et al., 2010).   

MPs are released constitutively into the circulation in low numbers under normal 

conditions, where they play a key role in several biological functions through their ability 

to communicate with other cells types, transfer cell surface receptors and initiate cell 

signalling. These physiological processes include hemostasis, thrombosis, inflammation, 

and angiogenesis. However, in disease where their release is aggravated, circulating MP 

numbers become elevated causing them to contribute to pathophysiological processes 

through the upregulation of their activity, and consequently accelerating disease 

progression (Simak and Gelderman, 2006). Elevated MP phenotypes have been reported 

in a number of inflammatory disease states including diabetes (Sabatier et al., 2002a; 

Salem et al., 2015; Zahran et al., 2019), pulmonary hypertension (Amabile et al., 2008; 

Narin et al., 2014; Preston et al., 2003), heart failure (Berezin et al., 2016; Montoro-

García et al., 2015) and atherosclerotic disease (Koga et al., 2005; Leroyer et al., 2007; 

Philippova et al., 2011). 

1.9.1 MP formation 

MP release occurs as a consequence of the rearrangement of the cells cytoskeletal 

structure, and the alterations in the plasma membrane phospholipid order resulting in 

PS being externalised.  The translocation of PS from the inner membrane to the outer 

membrane is the initial event that leads to MP shedding from the cell, thus MPs act as 

reliable markers of cell injury and activation. In resting cells, phospholipids adopt an 

asymmetric distribution in the cell membrane whereby the outer membrane is enriched 
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with neutral phospholipids (phosphatidylcholine, phosphatidylethanolamine), and the 

inner face of the membrane contains aminophospholipids (PS, phosphatidylinositol) 

(Zachowski et al., 1984).  

Within the cell membrane, there are 3 main proteins that modulate the asymmetric 

distribution of these phospholipids; these are floppase, flippase and scramblase. 

Flippase is an ATP-dependent protein that modulates the transportation of 

aminophospholipids from the outer surface of the membrane to the inner surface of the 

membrane (Seigneuret and Devauxt, 1984). This protein is responsible for maintaining 

the distribution of membrane phospholipids under resting conditions, however with 

high concentrations of intracellular Ca2+, this protein is inhibited allowing alterations in 

the phospholipid distribution (Bitbol et al., 1987).  Floppase is also an ATP-dependent 

protein; it facilitates the transportation of PS from the inner face to the outer face of the 

membrane (Daleke, 2003). Lastly, scramblase is a protein that becomes activated by a 

high intracellular concentration of Ca2+, it functions as a non-specific lipid transporter 

allowing the randomisation of phospholipids inside the cell (Zhao et al., 1998). 

Under normal resting conditions, the intracellular concentrations of Ca2+ remain low 

leading to the activation of flippase alone; allowing normal phospholipid membrane 

distribution. When cells become activated by an external stimulus or calcium ionophore, 

there is a sustained release of cytosolic Ca2+ into the cytoplasm which inhibits this 

protein, in turn activating scramblase (Bitbol et al., 1987; Suzuki et al., 2013). The 

consequence of this activation causes a disruption in the phospholipid membrane 

distribution and its asymmetry, allowing the movement of PS from the inner to the outer 

face of the cell membrane. Additionally, the high intracellular Ca2+ also activates kinases 
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and calpain responsible for the breakdown of actin-binding proteins, leading to 

cytoskeleton disruption (Fox et al., 1991). The changes to the plasma membrane 

initiated by Ca2+ influx induce cell membrane blebbing and the release of MPs from the 

parent cell into the extracellular space surrounding it. 

During apoptosis, MP formation is attributed to the activation of caspase-3 and ROCK-1 

kinase, which leads to phosphorylation of myosin light chain kinase. The activation of 

this kinase allows the movement of actin and myosin, resulting in the formation of MPs 

through cytoskeleton detachment from the plasma membrane (Coleman et al., 2001).  

1.9.2 MP uptake and communication with target cells 

One way in which MPs are thought to mediate communication, influencing phenotype 

and function of surrounding cells is through the interaction and transfer of biological 

information (receptors, enzymes, proteins, transcription factors, mRNA, nucleic acids) 

(Théry et al., 2009). It is suggested that the interaction of MPs with recipient cells is 

though a number of different mechanisms, although these processes are not fully 

understood. Numerous putative mechanisms have been suggested that include: 

1) The direct activation of receptors on the target cell surface by MPs 

2) The transfer of bioactive components including proteins, genetic material and 

lipids from the MP 

3) Membrane fusion between the MPs and recipient cell allowing the expression of 

surface markers on target cells, and finally  

4) Phagocytosis or endocytosis mechanisms leading to the internalisation of the 

MPs (Benameur et al., 2019). Through the interaction with MPs, target cell 

function can be influenced by the activation of specific pathways or by the 
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induction of phenotypic changes (Del Conde et al., 2005; Obregon et al., 2006; 

Whale, 2006).  

1.9.10 MPs as biomarkers of CVD 

The initial damage to the endothelium and its consequential dysfunction leads to the 

release of endothelial MPs into the circulation (Dignat-George and Boulanger, 2011), 

which are elevated in the plasma of patients with high CV risk (Amabile et al., 2014; Lee 

et al., 2012) and sub-clinical atherosclerosis (Chironi et al., 2006).  

Circulating levels of endothelial (EMP), leukocyte (LMP) and platelet-derived MPs (PMP) 

increase in patients with an elevated risk of developing CVD, including diabetes mellitus 

(Diamant et al., 2002; Koga et al., 2005; Sabatier et al., 2002b) hypertension (Preston et 

al., 2003), and hypercholesterolemia (Pirro et al., 2006). Individuals with high CV risk 

display higher numbers of PMP and Tissue Factor (TF) MP that demonstrate pro-

coagulant activity, associated with subclinical atherosclerotic plaque burden (Suades et 

al., 2015).   

Furthermore, MPs from a leukocyte, platelet and endothelial origin display a biomarker 

potential, as these phenotypes are elevated in asymptomatic individuals with sub-

clinical atherosclerosis (Amabile et al., 2005; Chironi et al., 2006). This suggests a 

possible use of these MP sub-types as predictors of atherosclerotic alterations, thus 

allowing earlier clinical diagnosis and treatment initiation.  

These elevated sub-types are also altered with advanced stage CVD, with PMP and EMPs 

elevated in the plasma of patients with coronary calcification and stable CAD 

(Christersson et al., 2016; Jayachandran et al., 2008). Furthermore, PMP and EMPs are 
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also higher in patients diagnosed with acute coronary syndrome (ACS) when compared 

to the general public (Bernal-Mizrachi et al., 2004; Mallat et al., 2000; Morel et al., 

2009).  

Moreover, treatments used to improve CV outcomes have also been shown to decrease 

levels of MPs for example, patients receiving stains show a reduced number of 

circulating, platelet, leukocyte and endothelial MPs (Suades et al., 2013). However in this 

instance, it is unclear if this is a consequence of the drug itself, or from its role in 

decreasing cholesterol levels, inflammation and a reduction in CV risk.     

1.9.11 MPs and their role in CVD disease progression 

In addition to their potential value as predictive biomarkers of vascular dysfunction, 

their role as intracellular communicators has gained interest as a possible contributing 

mechanism to CVD progression (Dignat-George and Boulanger, 2011). Atherosclerosis is 

an inflammatory disease characterised by the attachment, rolling and migration of 

leukocytes to the endothelium, in response to the release of inflammatory mediators 

following endothelial dysfunction and lipid peroxidation. This inflammatory response 

leads to the accumulation of lipids, platelets, vascular smooth muscle cells, and further 

inflammatory cell infiltration into the intimal layer; narrowing the blood vessel lumen. 

Several studies have demonstrated the various roles MP subtypes play in plaque 

initiation, formation and instability both in vitro and in vivo however their exact 

mechanism in disease pathogenesis remains unknown.  
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1.9.11.1 Endothelial-derived MPs 

In vitro, endothelial cells produce MPs in response to: TNF-α (Brown et al., 2011), LPS in 

the presence of fatty acids (Del Turco et al., 2007), IL-1α (Abid Hussein et al., 2007) and 

CRP (Devaraj et al., 2011; Wang et al., 2007). The expression of surface markers on EMP 

is determined by their stimulus during activation or apoptosis. MPs formed as a result of 

endothelial cell activation have a high expression of E-Selectin, I-CAM and V-CAM, 

whereas increased VE-Cadherin, P-CAM and endoglin are expressed on apoptotic 

derived EMPs (Jimenez et al., 2003).  

These phenotypes demonstrate the ability to disturb vascular endothelial homeostasis in 

vitro in both rat and bovine endothelial cells by stimulating the formation of free 

radicals, thus reducing the bioavailability of eNOS (Brodsky et al., 2004; Densmore et al., 

2006). An autocrine effect has also been reported from EMPs derived from stimulated 

endothelial cells, whereby the interaction of these MPs with quiescent endothelial cells 

results in an upregulation of ICAM-1 mRNA expression, and sICAM shedding; an effect 

not observed with quiescent MPs (Curtis et al., 2009). 

Elevated EMP levels in hypercholesteraemic mice induced eNOS dysfunction and 

inhibited angiogenesis (assessed by endothelial cell tube formation), in isolated heart 

endothelial cells (Ou et al., 2011). This was similarly observed in vitro whereby 

pathological concentrations of EMPs observed in CVD (1x105 EMPs/ml) induced oxidative 

stress in HUVECs assed by superoxide production (Brodsky et al., 2004) and impaired 

angiogenesis measured by tube formation on matrigel substrate. These effects again 

were not observed at physiological concentrations (1x103-1x104 EMPs/ml) (Mezentsev 

et al., 2005).   
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In addition to their role in inflammation and angiogenesis, they also display protective 

properties. Upon exposure of endothelial cells to activated protein C (coagulation factor 

XIV), EMPs are released that retain the Endothelial Protein Receptor C (EPCR-APC) 

complex as shown through RNA sequencing. This complex has an anti-coagulant and 

anti-inflammatory effect by reducing the production of both IL-1 and TNFα, thrombin 

production and TF thus displaying a potential protective mechanism in vivo (Kreutter et 

al., 2017; Pérez-Casal et al., 2009). This protective role is further supported by the 

blockage of EMP release in HUVECs with Y-27632 and calpeptin increasing endothelial 

cell detachment and apoptosis in vitro (Abid Hussein et al., 2007).  

1.9.11.2 Monocyte-derived MPs  

Monocytic MPs are generated in vitro in response to a number of stimuli including TNFα 

(Eyre et al., 2011), LPS (Ben-Hadj-Khalifa-Kechiche et al., 2010), Fas ligand (Terrisse et al., 

2010), etoposide (Mastronardi et al., 2011) and calcium ionophore A23187 (Bardelli et 

al., 2012; Cerri et al., 2006). 

Monocyte-derived MPs influence apoptosis and cell proliferation, stimulate coagulation 

pathways, and have a pro-inflammatory effect on a variety of cell types (Aharon et al., 

2008; Cerri et al., 2006; Eyre et al., 2011; Mastronardi et al., 2011; Neri et al., 2011; 

Wang et al., 2011). Furthermore, MPs from a monocyte origin also display an autocrine 

effect, as previously demonstrated by an increase in IL-6 and TNF-α cytokine release, 

oxygen radical production and NF-ĸβ activation in human monocytes (Bardelli et al., 

2012).  
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1.9.11.3 Platelet-derived MPs  

PMPs that form the largest proportion of circulating MPs are elevated in a number of 

CVD disease conditions (Arraud et al., 2014). Their release is triggered by endotoxin 

(Ståhl et al., 2011), thrombin (Terrisse et al., 2010), sheer stress (Holme et al., 1998; 

Miyazaki et al., 1996), hypoxia (Gemmell et al., 1993), and low temperatures (Bode and 

Knupp, 1994).  

PMP have high pro-coagulant properties by interacting with activated coagulation 

factors IXa, Va, Xa and VIII through a high-affinity binding site on their surface (Chou et 

al., 2004; Gilbert et al., 1991; Hoffman et al., 1992).  

Experiments have also demonstrated their potential role in inflammatory processes 

associated with atherosclerosis. Stimulation of endothelial cells by platelet-derived MPs 

results in the increase of I-CAM, V-CAM and E-selectin expression and pro-inflammatory 

mediators (IL-6 and IL-8) (Nomura et al., 2001). This is supported by further in vitro 

studies whereby ICAM expression was increased on HUVECS, and subsequent adhesion 

of U937 cells (a monocytic cell line) was enhanced (Barry et al., 1998). 

Furthermore, platelet-derived MPs have demonstrated the ability to deliver chemokine 

CCL5 to the endothelium, promoting leukocyte recruitment to atherosclerotic plaques 

observed in mice (Mause et al., 2005). Their exposure of GP1β (platelet ligand for 

leukocyte integrin Mac1 (CD11b/CD18, αMβ2)) on their surface, provides the ability to 

facilitate the binding of monocytes to the activated endothelium (Barry et al., 1997, 

1998; Mause et al., 2005). MPs from a platelet origin positive for P-selectin can also 

interact directly with monocytic cells, via P-selectin glycoprotein-1, a mechanism by 

which leukocytes may also tether to activated endothelial cells (Forlow et al., 2000).  
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1.9.11.4 T lymphocyte-derived MPs 

Fewer studies have investigated the involvement of T cell-derived MPs (TMPs) in the 

context of atherosclerosis pathogenesis, and inflammation in comparison to EMPs, 

MMPS and PMP. TMPs are derived from activated and apoptotic T cells in vitro through 

their treatment with TNF-α (Distler et al., 2005b), etoposide (Distler et al., 2005b), 

actinomycin D (Distler et al., 2005b; Martin et al., 2004), staurosporine (Distler et al., 

2005b; Ullal and Pisetsky, 2010), phytohemagglutinin and PMA (Martin et al., 2004; 

Scanu et al., 2008; Shefler et al., 2010).  

MPs from apoptotic T cells reduce eNOS activity, leading to a decrease in NO production, 

and increasing oxidative stress in endothelial cells in vitro (Mostefai et al., 2008). This 

decrease in eNOS activity was associated with the impairment of PI3k, ERK1/2 and NF-kβ 

pathways, and also increased ROS production leading to lower NO bioavailability 

(Mostefai et al., 2008). Similarly, TMPs derived from T lymphocyte cell lines induced 

vascular dysfunction by causing alteration in the NO pathway (Tesse et al., 2005); where 

similar effects were also observed in TMPs derived from diabetic patients T cells, and in 

vivo circulating MPs from diabetic and HIV positive patients (Martin et al., 2004).  

1.9.12 MPs in inflammatory diseases 

It is evident that both the origin and the environment under which MPs are generated 

influence their function and potential role in immune activation and atherosclerosis 

pathogenesis. MP levels are elevated in patients with chronic inflammatory diseases, 

with an associated increased CVD risk. These include type-2 diabetes (Li et al., 2016), 

multiple sclerosis (Marcos-Ramiro et al., 2014; Sáenz-Cuesta et al., 2014), vasculitis 

(Clarke et al., 2010; Nakaoka et al., 2018) pre-eclampsia (Zhang et al., 2018), 



  Chapter 1 – Introduction 

42 | P a g e  
 

inflammatory bowel disease (Leonetti et al., 2013; Voudoukis et al., 2016), rheumatoid 

arthritis (Viñuela-Berni et al., 2015) and systemic lupus erythematosus (Nielsen et al., 

2011); in addition to HIV.  

In adults living with HIV infection, elevations in MPs from an endothelial, platelet and 

monocytic origin have been reported compared to uninfected healthy controls 

(Corrales-Medina et al., 2010; Hijmans et al., 2019; Kelly, 2016; Mayne et al., 2012; Da 

Silva et al., 2011). Furthermore, total circulating MPs isolated from controlled HIV 

individuals induced greater endothelial dysfunction of endothelial cells in vitro in 

comparison to MPs isolated from healthy controls (Hijmans et al., 2019); thus providing 

an additional mechanistic role of MPs in CVD pathogenesis.  
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Figure 1.7: A schematic diagram summarising the complex mechanisms underlying chronic 

inflammation observed in patients with HIV infection, and their contribution to endothelial dysfunction 

and atherosclerotic disease progression (Image adapted from Vachiat., et al 2017). The blue line represents the 

reduction of immune activation following ART initiation, whereas the dotted red line represents the pro-inflammatory 

effects observed with ART. IL: Interleukin, TNF: Tumour Necrosis Factor, CRP: C - reactive protein, EMP: Endothelial 

MPs, PMP: Platelet MPs, LMP: Leukocyte MPs 

1.10 Research focus 

To summarise, several complex mechanisms underlie the accelerated atherosclerotic 

disease progression observed in HIV infected populations (as depicted in figure 1.7, 

(Vachiat et al., 2017)), with many of these contributing factors present from childhood.  

 

 

 

 

It is suggested that activated monocytes play a key mechanistic role in atherosclerosis 

disease progression in these patients. One mechanism by which monocytes may 

contribute to the atherogenic process is via the release of MPs and their autocrine 

function, influencing monocytic interaction with the endothelium however, this has 

been largely unexplored.  
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With respect to number of MPs in HIV infection, at present there in no information 

quantifying the levels and phenotypes of MPs in plasma from a HIV-infected paediatric 

cohort, nor what the effect of ART treatment initiation on these circulating MPs may be. 

It is important to study these factors in paediatric HIV infection because atherosclerosis 

begins to develop in early childhood, with evidence that this may accelerated within the 

context of HIV infection. Therefore, by investigating MPs in HIV-infected children, we 

can examine the possible mechanisms that may contribute CVD pathogenesis from an 

early age, in addition to highlighting the importance to develop preventative measures. 

This setting also provides an additional advantage of studying HIV associated 

mechanisms with limited influence from traditional risk factors that may present in 

adulthood.   
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1.11 Hypothesis and aims 
To help to expand our current understanding of MPs, this thesis focused on the 

following hypotheses: 

Hypothesis 1: Stimulated and apoptotic monocytes release quantitatively different MPs, 

which mimic the phenotype of the parent cell. 

To address this hypothesis, the following aims were investigated: 

• To assess the suitability of a novel negative isolation method, allowing the 

isolation of un-activated monocytes directly from whole blood without; altering 

subset distribution. 

• Using a monocytic cell line to investigate the conditions under which MPs are 

released. 

Hypothesis 2: MPs derived from monocytes have the ability to activate quiescent 

monocytes, switching them to a pro-inflammatory phenotype and function. 

To address this hypothesis, the following aims were investigated: 

• Using the novel separation method to isolate monocytes from whole blood and 

investigate the functional effects of their MMPS by assessing;  

• Influence on cytokine secretion, migratory and chemotaxis functionality.  

Hypothesis 3: MPs from a monocytic origin are elevated in children with HIV infection, 

compared to healthy controls, and remain altered following ART initiation. Moreover, 

endothelial MPs, indicative of endothelial activation and dysfunction, are likely to be 

altered in children with HIV infection and following treatment intervention. 

To address these hypotheses, the following aims were investigated: 
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• To Identify and quantify circulating MP populations (EMP, MMPS, TMP and PMP) 

isolated from the plasma of 2 pediatric HIV infected cohorts: treatment-naïve, 

treatment-experienced (ART duration ≥2 years) in comparison to healthy control 

children. 

• To measure changes in these MP populations following ART initiation for 48 

weeks. 
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Chapter 2 – General methods 
This chapter outlines the general methods used in more than one results chapter. 

Details of methodologies that have been adapted or specific to a single results chapter 

are discussed in detail in the relevant chapter. 

2.1 Cell lines and cell culture  

2.1.1 THP-1 cells 

The human monocytic leukaemia cell line, THP-1 were a kind gift from Dr Mona Bajaj-

Elliott at the Institute of Child Health, characterised by their round, single cell 

morphology. These suspension cells were cultured in Roswell Park Memorial Institute 

medium-1640 (RPMI 1640) (Sigma Aldrich, UK), supplemented with 100U/ml penicillin 

(Sigma Aldrich, UK), 2mM L-Glutamine (Sigma Aldrich, UK) and 100µg/ml streptomycin 

(Sigma Aldrich, UK), and supplemented with 10% Foetal Bovine Serum (FBS) (Sigma 

Aldrich, UK). Cells were cultured at a seeding density of 2 x 105 viable cells/ml (cell 

viability was determined using trypan blue (Sigma Aldrich, UK)), at 5% CO2, at 37oC. For 

experiments, only cell cultures with cell viability greater than 95% were used as defined 

by trypan blue staining, and cells below passage 11. 

2.1.2 Human Umbilical Vein Endothelial Cells 

Human umbilical vein endothelial cells (HUVECS), (neonatal, pooled) were purchased 

from Sigma-Aldrich, UK. HUVECs were cultured in endothelial cell growth medium (EGM) 

(Sigma Aldrich, UK) supplemented with 10% FCS (Sigma Aldrich, UK). To passage 

HUVECs, 80% confluent flasks were washed 3 times with pre-warmed PBS to remove any 

non-adherent cells and remaining FCS. A 1x trypsin solution (Sigma Aldrich, UK) was then 

added to the flask and incubated at 37oC for 1 minute, after this period cells were 
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viewed under the microscope to ensure the detachment of adherent cells; in some 

cases, detachment was aided by gently tapping the flask against the benchtop. 1ml of 

pre-warmed FBS was then added to the flask to deactivate the trypsin and transferred 

into a 50ml sterile flacon tube and centrifuged, to determine cell viability and cell 

number. For all experiments, HUVECs were only used between passages 2-6. 

2.1.3 Cell freezing  

HUVECs and THP-1 cells were frozen at a seeding density of 0.5x106/ml in a freezing 

medium composed of 90% FBS, 10% Dimethyl sulfoxide (DMSO) (Sigma Aldrich, UK).  

Cells were frozen using a freezing container at -80oC for 24 hours, then transferred to 

liquid nitrogen for long term storage.  

2.1.4 Flow cytometry of THP-1 cells 

Flow cytometry was used to determine the effect of various treatments on THP-1 cell 

phenotype. After treatment, cells were washed once in PBS and re-suspended in FACS 

buffer at a volume of 200µl per number of antibody panels (Details of antibody panels 

and corresponding isotype controls can be found in the relevant results section). 

Samples were transferred into a 96 well U-bottom plate for staining and spun at 500g 

for 4 minutes. Primary conjugated fluorescent antibodies were diluted in 50µl FACS 

buffer at an optimised concentration, added to the cell pellet and incubated in the dark 

for 30 minutes at 2-8°C. After this period, 150µl of FACS buffer was added and 

centrifuged at 500g for 4 minutes. The supernatants were discarded, and the remaining 

cell pellets were washed a further 3 times following the same protocol to remove any 

unbound antibody. The cell pellets were re-suspended in 200µl 1x BD Cell Fix (BD 

Biosciences) and left at 2-8°C in the dark until flow cytometry analysis.  
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Samples were acquired on a BD-LSRII (BD Biosciences, UK) at the Flow Cytometry Core 

Facility within the Camelia Botnar Laboratories at the Institute of Child Health, Great 

Ormond Street Hospital, University College London. Analyses were performed using the 

Flow-Jo Software (Flow Jo, USA).  

2.2 Patient samples 

 2.2.1 Ethical approval  

Ethical approval to take blood from healthy volunteers was granted by Kingston 

University (SEC REC 1516/005). All participants were given the necessary information 

about the study and were required to provide written informed consent. Participants 

had the right to withdraw from the study at any time, including the withdrawal of data 

already obtained. 

All HIV plasma samples previously collected as part of the CHAPAS-3 clinical trial and the 

subsequent CV sub-study set up by Dr Julia Kenny (full ethical approval was given from 

University College London (1665/002), Baylor College of Medicine, Uganda (H-27028), 

Joint Clinical Research Centre, Uganda, National Drug Authority, Uganda 

(293/ESR/NDA/DID-12/2010), Uganda National Council for Science and Technology (HS 

774), University of Cape Town (143/2010), Pharmaceutical Regulatory Authority, Zambia 

(DMS/105/1/112) and The University of Zambia (012-01-09)). Samples were processed 

and analysed in the containment level three laboratories in the Infection, Inflammation 

and Rheumatology (IIR) department, 6th floor, UCL Great Ormond Street Institute of 

Child Health, 30 Guilford Street, London WC1N 1EH.  
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2.2.2 Immunophenotyping of monocytes in whole blood 

Surface marker expression and phenotypic analysis of monocytes from whole blood 

were determined by flow cytometry. Blood was collected in EDTA tubes (BD Biosciences, 

UK) and stored at room temperature prior to analysis; all samples were analysed within 

4 hours of collection.  

5µl of the directly labelled flow cytometry antibody corresponding to the marker of 

interest was added to 100µl of whole blood and incubated at room temperature for 30 

minutes in the dark. 2ml of 1x BD FACS lysing solution (Catalogue No. 349202, BD 

Biosciences, UK) was added, vortexed, and further incubated at room temperature in 

the dark for 20 minutes. Following this, 2ml of cold FACS buffer (PBS containing 1% FBS) 

was added, and lysed samples were centrifuged at 400g for 5 minutes. Samples were 

then further washed with 4ml cold FACS buffer and re-centrifuged at the same speed 

and duration. The lysed blood samples were re-suspended in 200µl FACS buffer and left 

at 2-8°C in the dark until flow cytometry analysis. All samples were acquired within 24 

hours of preparation. 

Samples were acquired on a BD-LSRII (BD Biosciences, UK) at the Flow Cytometry Core 

Facility within the Camelia Botnar Laboratories at the Institute of Child Health, Great 

Ormond Street Hospital, University College London. Analyses were performed using the 

Flow-Jo Software (Flow Jo, USA).  

Details of specific antibody panels for each experiment are outlined in the Methods 

section in individual results chapters. 
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2.2.3 Isolation of monocytes from whole blood 

As monocytes were required to be isolated from whole blood to carry out functional 

assays, a custom monocyte negative selection isolation kit (EasySep Direct Monocyte 

without CD16 Depletion) was created by StemCell Technologies (StemCell Technologies, 

CA). An MTA Agreement was arranged with StemCell Technologies in order to explore 

and define optimal isolation conditions using this new product (The unsigned MTA 

agreement can be found in Appendix 1, as the signed copy is held by the company 

themselves). Findings from these experiments were presented to the company’s R&D 

specialists for product development and reported in Chapter 3 of this thesis. 

The negative selection technique removes unwanted cells from whole blood leaving a 

final suspension of untouched inactivated target cells. 

2.2.3.1 StemCell monocyte Isolation  

Monocytes were isolated directly from whole blood using the StemCell™ custom 

monocyte isolation kit following the manufacturer’s protocol. Briefly, 3ml of whole 

blood was transferred into 14ml FACS polystyrene tubes, to which 50µl/ml (150µl) of the 

isolation cocktail and 50µl/ml (150µl) of the RapidSpheres™ were added. These were 

incubated at room temperature for 5 minutes. 

After this time, 4ml of medium (Ca2+ and Mg2+ free phosphate-buffered saline (PBS) + 

1mM EDTA), was added to the sample and placed in the EasySep BigEasy™ magnet for 5 

minutes. The enriched cell fraction was poured off into a new FACS tube (without 

removing from the magnet), to which 50µl/ml (150µl) of the RapidSpheres™ was further 

added and incubated for an additional 5 minutes. The cell suspension was again poured 

off into a new FACS tube before the final addition and incubation with the 
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RapidSpheres™ (50µl/ml (150µl)), then placed back into the BigEasy™ magnet for 5 

minutes. The enriched monocyte suspension was placed back into the BigEasy™ magnet 

for 5 minutes to remove any remaining spheres and contaminating cells, then poured off 

ready for use in future experiments and for purity and activation analysis by flow 

cytometry as previously described.  

For in vitro experiments, the monocyte fraction was centrifuged at 500g for 5 minutes, 

with cell number and viability being determined by trypan blue exclusion dye. Purity was 

determined by flow cytometry, with only preparations above 85% used for experiments. 

These cells were cultured in RPMI-1640 cell culture media supplemented with 10% FBS, 

L-glutamine, penicillin and streptomycin (Sigma Aldrich, UK). All monocytes were used in 

experiments immediately after isolation. 

In some experiments an alternative magnet and temperature was used, in these cases, 

any deviations from the standard protocol have been highlighted in the methods section 

of the results chapter.  

2.3 MP analysis by flow cytometry 

2.3.1 Isolation of MPs following cell culture 

MPs were isolated from cell culture by centrifuging cell supernatants at 5000g for 5 

minutes, after which the supernatant was removed and centrifuged again. The resulting 

sample was then stored in 200µl aliquots and either used immediately for analysis or 

stored at -80oC. 
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2.3.2 Isolation of MPs from whole blood 

In addition to analysing MP release from monocytes, MP phenotypes were characterised 

in patient samples collected from healthy adults and children, in addition to children 

with HIV infection as part of the CHAPAS-3 clinical trial.  

Whole blood was collected in 3.2% trisodium citrate tubes (BD Biosciences, UK) and left 

at room temperature prior to processing. Samples were processed within 4 hours of 

collection.  

Blood samples were divided into 1.5ml aliquots, and centrifuged at 5000g for 5 minutes, 

after which the supernatant was decanted and centrifuged again. The platelet-poor 

plasma (PPP) was then stored in 200µl aliquots and either used immediately for analysis 

or stored at -80oC for later analysis.  

2.3.3 Detection of cellular MPs 

If previously frozen, 200µl PPP samples/cell supernatants were quickly thawed in a 

water bath set to 37oC and centrifuged at 17000g at 4oC for 60 minutes as previously 

described   (Eleftheriou et al., 2012). The supernatant was carefully decanted leaving 

20µl, to which annexin V buffer (BD Biosciences, UK) was added equal to the volume 

(200µl) of the original sample.  

An antibody mix was made containing the directly labelled antibodies for the 

corresponding markers of interest along with FITC conjugated Annexin V (BD 

Biosciences, UK). Annexin V buffer was added to make a final volume of 10µl. To the 

antibody mix 40µl of the re-suspended MPs were added and incubated at room 

temperature in the dark for 20 minutes with continuous shaking. After the incubation, 
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150µl of annexin V buffer was added to each well and fixed using BD CellFix (BD 

Biosciences, UK). Samples were stored at 4oC in the dark until analysis. All samples were 

acquired by flow cytometry within 4 hours of preparation.  

Details of the staining panels and individual antibody and isotype control details will be 

described in the relevant methods sections in each results chapter.  

2.3.4 Preparation of latex beads for analysis 

Latex beads were used in flow cytometry to create an appropriately sized gate and to 

enumerate MP numbers accurately. To do this, two different bead sizes were required 

for each analysis; these were prepared immediately before each experiment.  

1.1μm beads (Sigma Aldrich, UK) were used to set the gate for the MPs for particle sizes 

<1µm. Particles above this size were most likely to be cell debris, apoptotic bodies or 

platelets rather than MPs. Beads were prepared by adding 6µl to 2ml sterile filtered 

H2O, 5µl of this was then further diluted by 200µl of sterile-filtered H2O. 

3.0μm beads (Sigma Aldrich, UK) were used to enable effective enumeration of MPs. 

Beads were prepared by adding 6µl to 2ml of sterile-filtered H2O, 10µl of this was then 

further diluted by 190µl of sterile-filtered H2O. 

2.3.5 Flow cytometry instrument settings for MP detection 

All MP samples were acquired on a BD LSR II Flow Cytometer (BD Biosciences, UK) at the 

Flow Cytometry Core Facility within the Camelia Botnar Laboratories at the Institute of 

Child Health. Using previously validated instrument settings (Bonner, 2017; Clarke et al., 

2010), samples were analysed using a logarithmic scale with the FSC threshold lowered 
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to 500; instrument settings were checked between acquisitions by running 1.1 µM and 

3µM latex beads.  

Samples were acquired for 1 minute on a low flow rate and gated based upon their size 

and presence of Annexin V as previously described (Combes et al., 1997). 

2.3.6 Gating strategy for MP detection 

As previously mentioned MPs are defined as being less than 1µm and Annexin V 

positive, therefore an initial gate was set in order to gate out any contaminating cells or 

particles larger than 1µm. To define these populations, 1.1μm beads were first acquired 

allowing the determination of the <1 µm gate. Figure 2.1 shows a representative 

histogram showing how this gate is set.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Flow cytometry histogram demonstrating how the MP size gate was defined 

 A Forward scatter Vs count histogram of the 1.1 µm beads. The sharp peak observed just after 1x104 are the beads, 

therefore the bisector is lined up with the end of the peak thus setting the <1µm gate.  
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From this, MPs were gated on upon their Annexin V positivity. As Annexin V is a protein 

that relies on the presence of calcium to bind, a negative control containing the Annexin 

V antibody re-suspended in calcium-free PBS was used to define a positivity cut off. By 

comparing the calcium-free sample to a positive stained sample it is evident where the 

Annexin V positive events occur (figure 2.2), thus the Annexin V positive gate can easily 

be defined. This gate was applied to all samples for analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Within the Annexin V positive gate, MPs were phenotyped according to surface marker 

expression and enumerated using Flow-Jo software (Flow Jo, USA). Figure 2.3 

demonstrates the gating strategy used to define microparticle populations.  

  

Figure 2.2: Flow cytometry dot plot of MPs demonstrating how the Annexin V positive gate was 
defined 

A representative dot plot of the calcium free Annexin V sample showing Side scatter Vs FL1-H (Annexin V) (A) 

alongside a representative dot plot of a positive stained sample showing Side scatter Vs FL1-H (Annexin V) (B), 

demonstrating how the Annexin V positive gate was defined within the MP size gate. 

A B 
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Figure 2.3: MP gates set for 6-marker panel staining 
MPs from plasma of healthy adults were analysed by flow cytometry to set MP gates. A) MPs are defined as being <1µM in diameter, thus a size gate was determined using 1.1µM beads. B) 
Within this size gate, MPs were defined by their expression of Annexin V. A MP gate was set using a ‘negative control’ whereby Annexin V was incubated with MPs in Ca2+ free conditions (PBS 
–Mg, CaCl2) preventing its binding to PS. Only events within the <1µM and Annexin V gate were classed as MPs. C) Following this, MP gates for each fluorochrome were set using isotype 
controls.   
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2.3.7 MP quantification 

To calculate the absolute number of MPs in each sample, a known number of 3 µM latex 

beads (200,000) were acquired for the same duration and flow rate (1 minute on a low 

flow rate) as MP samples. With the number of latex beads acquired during this period, 

the number of Annexin V positive events in each sample and the original volume of 

supernatant used; the absolute number of MPs per ml of plasma was calculated using 

the following equation:  

𝑀𝑃 𝑛𝑢𝑚𝑏𝑒𝑟/𝑚𝑙 𝑜𝑓 𝑝𝑙𝑎𝑠𝑚𝑎 =
(200,000 ÷𝑛𝑜.  𝑜𝑓 𝑏𝑒𝑎𝑑𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑)× 𝑛𝑜.𝑜𝑓 𝐴𝑛𝑛𝑒𝑥𝑖𝑛 𝑣 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑣𝑒𝑛𝑡𝑠 ×𝑛𝑜.  𝑜𝑓 𝑡𝑢𝑏𝑒𝑠 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑙𝑎𝑠𝑚𝑎 (𝑚𝑙)
  

2.4 Functional assays 

To assess monocyte functionality following isolation and treatment with monocytic MP, 

the following assays were developed. 

2.4.1 Monocyte MP release  

To induce MP release from monocytes, 1x106 THP-1 cells were either treated with LPS 

(O111:B4, Sigma Aldrich, UK) (10ng/ml, 50ng/ml, 100ng/ml, 1000ng/ml), TNF-α (R&D 

systems, UK) (10ng/ml, 50ng/ml, 100ng/ml, 1000ng/ml), INF-γ (R&D systems, UK) (100 

units/ml, 250 units/ml, 500 units/ml) or A23187 (Sigma Aldrich, UK) (2µM, 6µM, 12µM, 

18µM, 24µM) for 4 hours (or 10 minutes for A23187). In addition, MPs were also 

released via apoptosis, using serum starvation conditions for; 48, 72 and 96 hours.  After 

this time, cell supernatants were centrifuged twice at 5000g for 5 minutes and stored at 

-80oC. The number of MPs released, and phenotype was analysed in these samples by 

flow cytometry.  
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2.4.2 Live/dead staining of THP-1 cells  

1x106 serum starved THP-1 cells were stained with a combination of Annexin V and PI 

(propidium iodide) in order to determine apoptotic cell number. Unfixed THP-1 cells 

were re-suspended in 500µl of 1x Annexin V binding buffer containing 5µl of Annexin V-

FITC (1:100 dilution) and incubated at room temperature for 20 minutes in the dark. 

After this, 50µl of PI (50µg/ml) was added to the sample prior to FACS analysis. All 

samples were acquired immediately after staining on a BD FACSCalibur at a low flow rate 

until 10,000 events had been recorded within the monocyte gate.  

2.4.3 Phagocytosis assay 

To determine the phagocytic ability of isolated monocytes and THP-1s, a phagocytosis 

assay kit (Cambridge Bioscience, UK) was used that utilises latex beads coated in FITC-

labelled rabbit IgG for monocytes to engulf. 1x105 isolated monocytes or THP-1 cells 

were pre-treated with LPS 10ng/ml for 4 hours or culture media, after which cells were 

washed, and the IgG labelled beads were added at a dilution of 1:100 in RPMI. Cells 

were incubated at 37°C for 2 hours to allow phagocytosis and were centrifuged at 400g 

for 5 minutes. To remove any beads bound to the surface of the cells rather than those 

engulfed, monocytes were incubated for 1 minute in a trypan blue solution (1:10) to 

quench surface FITC fluorescence, thus allowing the detection of an internalised FITC 

signal only. Cells were then washed and re-suspended in assay buffer. 

Samples were analysed by flow cytometry using either the BD LSRII or the BD 

FACSCalibur. Phagocytosing cells were defined as the percentage of FITC positive cells 

within the monocytic gate. 
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2.4.4 Chemotaxis 

Monocyte chemotaxis was assessed by measuring the migration of cells towards a 

chemoattractant through a porous 5.0 µM Transwell membrane.  Isolated monocytes 

were pre-treated with a variety of reagents for 2 hours. To the top of a 5.0µM 

polycarbonate transwell (Corning, ThermoFisher, UK) 5x104 pre-treated monocytes were 

added, with MCP-1 (R&D Systems, UK) (See individual chapters for concentrations) 

added to the lower chamber. Transwells were left for 4 hours at 37oC to allow the free 

migration of monocytes to the lower chamber, as this was found to be the optimum 

time for monocyte migration based on preliminary experiments (data presented in 

Appendix 3). After 4 hours the membrane insert was removed, and migrated cells were 

imaged at 100x magnification in 5 random fields using a phase-contrast microscope 

(Leica Microsystems, DE).  

2.4.5 Transendothelial migration 

The transendothelial migration of isolated monocytes was also assessed using this 

transwell method. 1x104 HUVECs were seeded onto the upper chamber of a 5.0µM 

transwell and cultured for 2-3 days to form a monolayer.   To ensure a fully confluent 

monolayer had formed on in the transwell insert, a single membrane was removed and 

stained with crystal violet. After removal, the insert was fixed using 3.7% 

paraformaldehyde for 10 minutes and washed in PBS. A cotton swab was used to gently 

remove cells on the lower side of the transwell, and stained with 0.2% crystal violet 

(Sigma Aldrich, UK) for 15 minutes, this step ensures that only cells on the upper side of 

the membrane are stained with crystal violet. Finally, the insert was washed with 

distilled water 3 times, left to dry and visualised using the phase-contrast microscope. 
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Once a fully confluent layer of HUVECs was established and confirmed using this 

method, 5x104 Monocytes that had been pre-treated for 4 hours with monocyte-derived 

MPs or MP supernatants were added to the top chamber, with the chemoattractant 

added to the lower chamber. Monocytes were left to freely migrate through the 

endothelial monolayer to the lower chamber for 4 hours. Migrated cells were imaged at 

100x magnification at 5 random fields using a phase-contrast microscope (Leica 

Microsystems, DE). 

2.4.6 Adherence to an endothelial monolayer  

The ability of isolated monocytes to adhere to an endothelial monolayer was also 

assessed under static conditions. Isolated human monocytes (5x104) were challenged 

with MMPS, MP supernatant or LPS 10ng/ml for 4 hours and washed with PBS. These 

monocytes were then co-incubated on endothelial monolayers for 1 hour and 

subsequently washed 3 times with warmed PBS to remove any non-adherent cells. 

Adhered monocytes were stained by Diff-Quick staining (Sigma-Aldrich, UK), and images 

were taken at 200x in three random fields using a phase-contrast microscope (Lecia 

Microsystems, DE). Only monocytes that had adhered and were associated with an 

endothelial cells counted. 

2.4.7 Cytokine secretion analysis 

2.4.7.1 IL-6 ELISA 

IL-6 cytokine release was quantified in cell culture supernatants following the 

manufacturer’s instructions (ThermoFisher, UK). Corning™ Costar™ ELISA plates were 

coated overnight at 4°C with 100µl/well coating buffer. Wells were washed 3 times with 

wash buffer and blocked for 1 hour at room temperature with 200µl ELISA/ELISASPOT 
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diluent, followed by a final wash before samples and standards were added. 100µl of 

each sample (1:2 dilution) and standards (200pg/ml, 100pg/ml, 50pg/ml, 25pg/ml, 

12.5pg/ml, 6.25 pg/ml, 3.125 pg/ml and 0 pg/ml) were plated in duplicate and left 

overnight at 4°C for maximum sensitivity. Following this overnight incubation, all wells 

were washed 5 times with wash buffer and 100µl/well of detection antibody for 1 hour 

at room temperature. After this time, wells were washed again with wash buffer and 

each well was incubated with 100µl of Streptavidin-HRP for 30 minutes at room 

temperature. A final wash was performed, followed by the addition of 100µl/ml TMB 

solution for 15 minutes at room temperature, to which 50µl/well of stop solution was 

added after this time. The plate was read immediately on a microplate reader at both 

450nm and 570nm, of which readings at 570nm were subtracted from those recorded at 

450nm to minus any background interference. 

2.4.7.2 MSD 

Cytokines were analysed in cell culture supernatants using the V-PLEX Cytokine Panel 1 

Human Kit purchased from MSD (MesoScale Discovery, USA). This kit quantifies levels of 

IL-1β, IL-6, IL-8, IL10, IFN-γ and TNF-α. Samples were analysed according to the 

manufacturer’s instructions. Briefly, the MSD plate was washed 3 times using the wash 

buffer, after which 50µl of supernatants (diluted 2-fold for using the assay diluent), 

assay calibrators and controls were added and incubated at room temperature for 2 

hours.  

After this, the MSD plate was washed 3 times with wash buffer, and 25µl of the 

detection antibody was added and left at room temperature for 2 hours on a plate 

shaker. The plate was washed a further 3 times using the wash buffer, and 150µl of 2x 
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read buffer was added to each well and analysed on the MSD instrument (MesoScale 

Discovery, USA). 

2.4.8 Influence of monocyte-derived MPs on human monocyte phenotype  

To investigate the influence of monocytic MPs on cell phenotypes, 1x105 isolated human 

monocytes were treated with monocytic MPs or MP supernatants for 2, 4 and 24 hours. 

50µl of an antibody cocktail was added to the cell pellets of these cultures and incubated 

at 4°C for 30 minutes. Details of antibody cocktail panels are outlined in the methods 

sections in subsequent results chapters. After 30 minutes cell pellets were washed twice 

with a FACS buffer, and fixed with BD cell fix for storage at 4°C until flow cytometry 

acquisition. 

2.5 Statistics 

One-Way ANOVA (Analysis of Variance) followed by a Tukey’s post hoc test or Two-Way 

ANOVA followed by a Sidak’s post hoc test were performed determined by the number 

of independent variables in each experiment, and the number of data sets. In addition, 

student’s t-test were also performed to determine the significance between 2 groups, 

these analyses were performed using GraphPad Prism software (USA). SPSS (UK) was 

used to analyse patient demographics and MP counts in the CHAPAS-3 cohort, where 

statistical differences were determined using Wilcoxon matched-pairs signed rank and 

Mann-Whitney-U non-parametric tests. Details of individual statistical analyses are 

described in the subsequent results chapters.  
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Chapter 3 - Monocyte isolation from whole blood: Method validation and 
optimisation  
3.1 Introduction 

As monocytes play a key role in atherosclerotic disease pathogenesis, their isolation 

from whole blood allows the study of inflammation pathogenesis, provides information 

on how these contribute to disease progression, and highlights potential therapeutic 

targets. For isolated monocytes to reflect their in vivo state, a separation technique 

should be used that requires minimal sample handling to preserve target cell phenotype 

and functionality, with minimal activation and few contaminating cell populations. 

Isolation methods that have been established are based on three key principles: 

adhesion, density centrifugation and antibody binding (Tomlinson et al., 2013). This 

introduction highlights limitations for the current isolation methods available, and 

considerations to be made when extracting monocytes to study their functionality in 

active disease states.  

3.1.1 Isolation by adherence  

Monocyte isolation by adhesion relies on cells sticking to plastic or glass via β2 integrin 

interaction. This technique is quick, easy and inexpensive; requiring initial PBMC 

isolation by density centrifugation, followed by subsequent cell culture and multiple 

washes to remove contaminating cells. Surface expression of CD11b, CD18 and CD54 are 

elevated on monocytes isolated via this technique (Stent and Crowe, 1997) indicative of 

monocyte activation. Furthermore, Zhou., et al (2012) reported that despite reasonable 

monocyte yields, similar to immunomagnetic separations (1.9±0.6x105/ml Peripheral 
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Blood), purity was low in isolated monocyte cultures (67.3±3.6%), with most 

contaminants from lymphocytes and platelets (Zhou et al., 2012).  

3.1.2 Isolation by density centrifugation 

An alternative method of isolation is by density centrifugation. Monocytes can be 

isolated directly from whole blood using a combination of density centrifugation and 

negative selection. A cocktail of tetrameric antibody complexes (TAC) targeting 

unwanted cells for removal (CD2, CD3, CD8, CD19, CD56, CD66b, CD123 and glycophorin 

A) is added to whole blood. When this is centrifuged over a density medium such as 

Ficoll, the unwanted cells bind to their corresponding TACs and form a pellet with red 

blood cells. A purified monocytic population can be isolated from the buffy coat layer 

between the medium and plasma. Monocyte yield has been reported to be substantially 

higher using this method (4.2±0.6x105/ml peripheral blood) in comparison to 

immunomagnetic selection and isolation by adherence, however in this case purity was 

compromised. Similar to separation by adherence, this technique shows large 

contaminants of lymphocytes, platelets and non-specific cellular aggregates in the final 

isolated fraction, with low monocyte purity (percentage purity: 64.2±4.3%) (Zhou et al., 

2012). It is important to note that although monocytes isolated using this method were 

observed to actively phagocytose E.coli, contaminating platelets were also phagocytosed 

(Zhou et al., 2012); suggestive of a competing effect. This demonstrates one way in 

which isolation contaminants may interfere with further downstream functional assays.  

Density centrifugation is also employed as an initial step prior to immunomagnetic 

selection. Ficoll-Plaque density gradient media separates PBMCs (Peripheral Blood 

Mononuclear Cells) from contaminating red blood cells and granulocytes. Although this 
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method displays clear advantages in a clinical setting, as samples can be stored and 

processed in the future, this preparation has been shown to alter monocyte subset 

proportions and CD14+, CD16+ surface marker expression. Flow cytometry analysis of 

whole blood compared to PBMCs has shown a significant decrease of 20% in the 

classical monocyte subset, with a corresponding increase of the non-classical population 

and intermediate monocytes (Mukherjee et al., 2015). Furthermore, the same study 

highlights how density gradient separation causes changes to CD14+, CD16+ surface 

marker expression within each of the monocyte populations themselves (Mukherjee et 

al., 2015). 

In addition to this, alterations in CD163 and chemokine surface marker expression on 

each of the monocyte subsets have also been observed after density centrifugation in 

comparison to whole blood (Nieto et al., 2012; Tippett et al., 2011). Furthermore, Ficoll-

isolated monocytes demonstrated a reduced chemotactic response to MCP-1 (CCL2) 

compared whole blood monocytes, which may be attributed to the significant loss of 

CCR2 expression on these cells (Nieto et al., 2012). This data provides evidence that 

subset distribution and phenotypes can be altered after PBMC purification from whole 

blood, which may lead to inconsistent functional observations in isolated monocytes in 

vitro.    

3.1.3 Isolation by antibody binding  

3.1.3.1 Fluorescence-activated cell sorting 

Fluorescence-activated cell sorting (FACS) uses antibody stains against a specific cell 

surface marker, for detection and sorting by flow cytometry. FACS sorting allows the 

isolation of multiple cell types from a single sample, with the isolated fraction having 
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few contaminating populations (Basu et al., 2010). Although isolated fractions have a 

high purity, it has been reported that this method of separation results in particularly 

low yields of monocytes, with concerns that antibody binding to CD14+ may induce 

activation (Beliakova-Bethell et al., 2014).  

3.1.3.2 Immunomagnetic separation  

Immunomagnetic separation relies on the attachment of antibodies conjugated to 

microbeads against a surface antigen specific to the target cell, the cocktail is then 

passed through a strong magnetic field to isolate target cells. This separation method is 

the most common technique used as a cheaper alternative to FACS sorting, and does not 

require specialist equipment. The target cell population is isolated by either positive or 

negative selection as described.   

3.1.3.3 Positive isolation  

This isolation procedure relies on the attachment of the antibody conjugate directly to 

the target cell. Positive monocyte isolation utilizes the binding of antibody conjugates to 

CD14+, highly expressed by monocytes ensuring their high purity. 

Positive isolation gives rise to a highly pure monocyte fraction (Beliakova-Bethell et al., 

2014; Kho et al., 2017; Zhou et al., 2012), with limited contamination from T cells, B cells 

and unidentified cells (1.3%, 0.3% and 15% respectively) (Beliakova-Bethell et al., 2014). 

Furthermore, this method produces the highest yield of isolated monocytes compared 

to alternative isolation techniques (negative and FACS sorting) (Beliakova-Bethell et al., 

2014), however, this method fails to isolate non-classical populations due to their lower 

expression of CD14+ (Kho et al., 2017).  
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Through the binding of microbeads to co-receptors on the cell surface, it has been 

suggested that cellular activation may be triggered (Dixon et al., 1989; Stanciu et al., 

1996), or cause receptor blocking inhibiting LPS stimulation functional effects (Elkord et 

al., 2005). This will be further discussed in section 3.3.2.3.  

3.1.3.4 Negative isolation 

With these issues surrounding other isolation techniques, a negative selection method 

may be employed, minimising interference of the magnetic beads with the target cell 

population.  This technique uses antibody conjugates to bind to CD markers on 

contaminating non-target cells, thus resulting in an enriched, ‘untouched’ target cell 

population.  

Most common negative selection methods require PBMC isolation prior to separation, 

with enriched monocyte fractions displaying similar yields to positive isolation methods 

(Beliakova-Bethell et al., 2014). However, enriched suspensions showed more 

contaminating populations (Beliakova-Bethell et al., 2014; Kho et al., 2017), with higher 

proportions of contaminating platelets and unidentified cells found (Beliakova-Bethell et 

al., 2014; Kho et al., 2017; Zhou et al., 2012). Following negative isolation from PBMCs, 

high yields of all three monocyte sub-populations were present in the negatively isolated 

fraction however, alterations in CD14+ expression were reported (Kho et al., 2017).  

Current isolation kits that utilize negative selection methods to isolate monocytes from 

whole blood causes the loss of CD16+ monocyte populations, due to antibody targets for 

this CD marker used to deplete contaminating granulocytes.  



 Chapter 3 – Monocyte isolation from whole blood 

69 | P a g e  
 

3.1.3.5 Influence of immunomagnetic separation on monocyte function in vitro 

Despite reports that microbeads are biodegradable, do not induce cellular activation or 

trigger any downstream pathways; some studies have demonstrated functional 

impairments following isolation (Bhattacharjee et al., 2017; Kho et al., 2017; Lynn et al., 

1993).  

Alterations in pro-inflammatory and anti-inflammatory cytokine secretion have been 

observed to be dependent on the isolation method used. IL-8 production from 

negatively sorted monocytes stimulated with LPS, was six times higher compared to 

positively isolated monocytes, with RANTES and TGF-β1 secretion also being elevated 

from this population (Bhattacharjee et al., 2017). Furthermore, positively sorted 

monocytes displayed a delayed inflammatory response to LPS (Bhattacharjee et al., 

2017) suggesting that this impairment is due to CD14+ microbeads blocking LPS 

mediated stimulation as previously indicated (Lynn et al., 1993). Lastly, the same study 

showed that antibody microbeads remain bound to positively isolated monocytes for up 

to 6 days in standard culture conditions (Bhattacharjee et al., 2017). 

Functional studies investigating the influence of monocytes on the blood-brain barrier 

(BBB) integrity found that the method of monocyte enrichment influenced functional 

capacity. Positively isolated monocytes had a larger effect on BBB disruption (Measured 

by Electric Cell Substrate Impedance Sensing) compared to negative selection methods 

(Kho et al., 2017). They reported that this observation may have been due to direct 

activation from the conjugation of CD14+ microbeads influencing their behaviour, or due 

to contaminating cell populations in the enriched fractions of isolated monocytes 

influencing the functionality of both monocytes and endothelial cells (Kho et al., 2017). 
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This study demonstrates the importance of purity in the enriched monocyte fraction 

specifically with regards to functional studies.  

In contrast to this, the observation that CD14+ can still be detected by 

immunofluorescence after positive isolation, suggests that this receptor remains 

functional after separation (Zhou et al., 2012). In addition, monocytes had the ability to 

phagocytose E. coli, irrespective of the immunomagnetic separation procedure used 

(Zhou et al., 2012).  

With clear advantages and disadvantages of each isolation technique (as summarised in 

Table 3.1) each should be considered when selecting the appropriate method for further 

downstream experiments. 
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Isolation 

method 

Advantages Disadvantages 

Adherence -Rapid procedure 
-Inexpensive 
-Good monocyte yield 
 

-Requires initial PBMC isolation which 
may cause alterations in surface marker 
expression 
-Low purity (≈67%) 
-Leads to monocyte activation 
-Upregulation of adhesion molecules 

Density 

centrifugation 

-High yield 
- Rapid procedure 
-Inexpensive 

-Low purity (≈64%) 
-Alteration in monocyte subset 
distribution 
-Alteration in surface marker expression 

Fluorescence-

activated cell 

sorting 

-Isolation of multiple cell types 
from a single sample 
-High purity 
-Rapid procedure 

-High throughput 
-Rare populations can be 
isolated, thus individual 
monocyte subsets can be 
isolated 
-All three monocyte subsets 
recovered 

-Expensive 
-Requires antibody binding to CD14, 
potentially leading to monocyte 
activation 

-Requires training, and specialist 
equipment 

Positive 

isolation  

-Rapid procedure 

-Inexpensive 
-High yield 
-High purity (≈83%) 

-Relies on antibody binding directly to 
CD14, potentially leading to monocyte 
activation 
Loss of CD14 low populations 
(Intermediate and non-classical) 
-May require prior PBMC isolation 
-Impairments in cytokine secretion in 
response to LPS have been reported 

Negative 

isolation 

-Rapid procedure 

-Inexpensive 
-High yield 
-High purity (≈86%) 
-Monocytes are ‘untouched’ 
-Monocytes are inactivated 
-All three monocyte subsets can 
be recovered 

-Some negative isolation methods may 
require prior PBMC isolation 
-Direct negative isolation from whole 
blood results in the loss of CD14 low 
populations (Intermediate and non-
classical) 
-Alterations in CD14 surface marker 
expression have been reported 
 

Table 3.1: Advantages and disadvantages of current monocyte isolation methods 
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Negative selection methods display a clear advantage in avoiding interference with the 

target cell; however most commercially available kits require PBMC isolation prior to 

negative selection which could introduce initial phenotypic changes. 

Currently, only one commercial kit is available to negatively select monocytes from 

whole blood which utilises CD16+ antibodies to deplete granulocytes; also eliminating 

the non-classical and intermediate subsets. Despite the low percentage of this 

population, it has been suggested that the inclusion of this subset following isolation 

may give rise to varying functional responses in vivo (Kho et al., 2017). In addition, this 

also leads to isolated monocyte functionally being more reflective of their behaviour in 

vivo; an aspect which is particularly important when studying monocytes in disease.  

Taking these findings into consideration, these studies highlight the importance of 

monocyte yield, purity, activation stasis and individual subset presence when assessing a 

new enrichment method. 
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3.2 Aims and objectives 

In order to carry out experiments on isolated monocytes, assessing monocyte 

functionality ex vivo, a novel negative selection method was developed and optimised as 

part of an MTA agreement with StemCell™ Technologies (Appendix 1). This method is 

unique as isolation can be performed directly from whole blood without the need for 

PBMC purification.  

This chapter assesses the suitability of this novel method of monocyte selection and 

addresses the following aims: 

1) To optimise the isolation conditions of a novel method of negative selection 

directly from whole blood, to determine the ideal conditions for: 

a. Purity 

b. Monocyte activation  

c. Subset recovery 

d. Yield  

2) To assess the impact of this selection method on monocyte phenotype and 

surface marker expression in comparison to whole blood. 

3) To assess the impact of this selection method on monocyte function. 

 

 



 Chapter 3 – Monocyte isolation from whole blood 

74 | P a g e  
 

3.3 Methodology 

3.3.1 Patient recruitment  

3.3.1.1 Ethical approval  

Ethical approval for this study was granted by Kingston University (SEC REC 1516/005). All 

participants were fully informed about the study and were required to provide written 

informed consent prior to blood samples being taken. Prior to the blood draw, 

participants were required to complete a brief medical history questionnaire to ensure 

that volunteers meet the inclusion criteria. Participants were excluded from the study if 

they had a higher CV risk (smoker, hypertension, diabetic or high cholesterol), or a family 

history of CVD. Volunteers had the right to withdraw from the study at any time, 

including the withdrawal of data already obtained.  

3.3.2 Whole blood Flow cytometry analysis 

To phenotype monocytes in whole blood, antibodies corresponding to markers of 

interest were first added directly to whole blood followed by red blood cell lysis. 

Antibody cocktails (See section 3.6.2.1 for details of staining panels, and appendix 2 for 

details of isotype controls) were added to 100µl of whole blood and incubated at room 

temperature for 30 minutes in the dark. After staining, 2ml of 1x BD FACS lysing solution 

(Catalogue No. 349202, BD Biosciences) was added, vortexed, and further incubated at 

room temperature in the dark for 20 minutes. Following this, 2ml of cold FACS buffer 

(PBS containing 1% FBS) was added, and lysed samples were centrifuged at 400g for 5 

minutes. Samples were then further washed with 4ml cold FACS buffer and re-

centrifuged at the same speed and duration. The lysed blood samples were re-
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suspended in 200µl FACS buffer and left at 2-8°C in the dark until flow cytometry 

analysis. All samples were acquired within 24 hours of preparation. 

Tables 3.2 outlines the antibody panel that was designed to phenotype monocytes in 

whole blood. 

Table 3.2: Monocyte phenotyping antibody panel 

3.3.3 Isolation of monocytes from whole blood using StemCell™ Custom Kit 

To isolate monocytes directly from whole blood, a negative selection kit was developed 

by StemCell™ Technologies. To find the optimal enrichment conditions, antibody cocktail 

beads were added to whole blood either on ice (labelled as 8°C) and at room 

temperature (labelled as 25°C) as suggested through correspondence with R&D team 

members at StemCell™ Technologies. 50µl of the antibody cocktail was added to 1ml of 

whole blood, along with 50µl of the RapidSpheres™ and incubated at the required 

temperature (8°C/25°C) for 5 minutes in a 14ml FACS tube. To this, EasySep medium 

Panel 1 

Target Fluorochrome 
conjugate  

Clone Isotype  Source Dilution 
(Volume/100µl Whole 
Blood) 

CD14 AF700 63D3 IgG1, κ Biolegend 5µl 

CD16 PerCp-Cy5.5 3G8 IgG1, κ BD 
Bioscience
s 

5µl 

HLA-DR BV510 L234 IgG2a, κ Biolegend 5µl 

DUMP:  
CD3 
CD20 
CD56 
CD66b 

 
PE-Cy7 

 
UHT1 
2H7 
MEM-
188 
G10F5 

 
IgG1, κ 
IgG2b, κ 
IgG2a, κ 
IgM, κ 

 
Biolegend 

 
2.5µl 

CD11b APC CBRM1/
5 

IgG1, κ Biolegend 5µl 
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(PBS containing 2% FBS and 1 mM EDTA) was added to 4x the volume, and the FACS 

tube was placed in the required magnet (Big Easy™/Easy Eights™) for 5 minutes.  

The purified fraction was then removed from the suspension by leaving the FACS tube 

inside the magnet and either pouring off the supernatant into a new FACS tube for the 

Big Easy™ magnet or using a pipette to transfer the purified fraction to a new FACS tube. 

To this, an additional 50µl of the RapidSpheres™ were added and incubated for a further 

5 minutes (at 8°C/25°C) before placing the tube back into the magnet to allow 

separation for extra 5 minutes. This purification step was repeated for a third time, after 

which the enriched fraction was placed back into the magnet for a final 5-minute 

incubation to remove any remaining RapidSpheres™.   

The remaining enriched monocytes were re-suspended in either FACS buffer for flow 

cytometry analysis or RPMI 1640 10% FBS for downstream functional experiments. Cell 

viability was determined >98% by trypan blue exclusion after each isolation. 

3.3.4 Antibody staining of isolated monocytes 

To phenotype isolated cells, cell pellets were stained with antibodies corresponding to 

markers of interest. Cells were plated in a 96 U-bottom well plate at a seeding density of 

5x105/200µl and washed with cold FACS buffer. Cell pellets were stained with 50µl of 

antibody cocktail and incubated in the dark at 2-8°C for 30 minutes. After this period, 

150µl of FACS buffer was added and centrifuged at 350g for 4 minutes. The supernatants 

were discarded, and the remaining cell pellets were washed a further 3 times following 

the same protocol to remove any unbound antibody. The cell pellets were re-suspended 

in 200µl 1x BD Cell Fix (BD Biosciences) and left at 2-8°C in the dark until flow cytometry 

analysis.  
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The antibody panel detailed in table 3.2 was also used to phenotype isolated monocytes, 

the antibody panel described in table 3.3 was used to assess isolated fraction purity.  

Purity panel 

Target Fluorochrome 
conjugate  

Clone Isotype  Source Dilution  

CD14 AF700 63D3 IgG1, κ Biolegend 1:50 

CD3 PE-Cy7 UHT1 IgG1, κ Biolegend 1:50 

CD235a PE HI264 IgG2a, κ Biolegend  1:50 

CD19 PerCp-Cy5.5 HIB19 IgG1, κ BD Bioscience 1:50 

CD66b FITC G10F5 IgM, κ Biolegend 1:50 
Table 3.3: Monocyte purity antibody panel 

3.3.5 Sample acquisition  

All samples were acquired within 24 hours of sample preparation on a low flow rate for 

120 seconds. Samples were run on a BD LSRII flow cytometer located within the Flow 

Cytometry Core Facility, Camelia Botnar Laboratories, University College London, Great 

Ormond Street Hospital, 85 Lamb's Conduit, London WC1N 3JH. 

3.3.6 Flow cytometry gating strategy  

After flow cytometry acquisition, monocyte phenotype was analysed using Flow-Jo 

Software (Flow Jo, USA). Compensation was applied to samples post-flow cytometry 

acquisition within the FlowJo software, using latex compensation beads (BD Biosciences) 

as a control. A representative gating strategy shown below was used to determine 

phenotype and marker expression, this was applied to all whole blood and isolated 

samples (In isolated samples the monocyte population was gated directly). 

Figure 3.1 shows the forward scatter Vs side scatter graph produced by analysing whole 

blood. 
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From the FACS plot, three cell populations were easily distinguished from each other 

however further gating was used to ensure that the monocyte population was correctly 

identified (Figure 3.2). Initially, a ‘dump’ channel was used to gate out unwanted cells, 

staining CD3+, CD20+, CD56+ and CD66b+ cells on T cells, B cells, natural killer cells and 

granulocytes respectively. These antibodies were all directly conjugated to a PE-Cy7 

fluorochrome, allowing the negative population to be selected (Figure 3.2A). Monocytes 

were then gated based on their positive HLA-DR expression (Figure 3.2B), with individual 

subsets being identified based upon their CD14 and CD16 surface marker expression 

(Figure 3.2C).  

Granulocytes 

Monocytes 

Lymphocytes 

Figure 3.1: FSC Vs SSC dot plot of lysed whole blood, highlighting the granulocyte, monocyte and 
lymphocyte populations 
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Following this, specific surface marker expression was assessed based upon percentage 

expression, and mean fluorescence intensity (MFI).  

3.3.7 Assessment of monocyte function  

Phagocytic ability, migratory function and cytokine secretion of isolated monocytes and 

THP-1 cells were assessed as described in Chapter 2, General methods, Section 2.4.2, 

2.4.3 and 2.4.6 respectively.  

Figure 3.2: Flow cytometry dot plots demonstrating how the monocytic population was gated on in 
whole blood, and the identification of the corresponding monocyte subsets 

Whole blood was stained with primary conjugated antibodies against CD3, CD20, CD56, CD66b- PE-Cy7, CD14-Pacific 

blue and CD16-PerCp-Cy5.5. The antibodies all conjugated to PE-Cy7 were used as a ‘dump’ channel in order to gate 

out unwanted cells, allowing the negative population to be selected (A). Monocytes were then gated based on their 

positive HLA-DR expression (B), with individual subsets being identified based upon their CD14 and CD16 surface 

marker expression (C). 

A B 

C 
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3.3.8 Statistics  

All statistical analysis was performed using GraphPad Prism software, with the statistical 

test used detailed in the relevant results section.  
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3.4 Results 

3.4.1 Human monocytes can be negatively isolated from whole blood with minimal 

contamination 

Monocytes were isolated using immunomagnetic techniques from whole blood using 

two different magnet strengths in parallel (Big Easy™ and Easy Eights™) at two 

temperature conditions (8˚C and 25˚C) as previously described in section 3.3. Isolated 

fractions were stained and analysed by flow cytometry. 

The Big Easy™ magnet proved to be a superior magnet for separation compared to the 

Easy Eights™ magnet, with monocytes consisting of >90% of the isolated populations 

(91.58%±0.77% and 91.10%±0.78%, 25˚C and 8˚C respectively), whereas the Easy 

Eights™ magnet had a purity of <32% (31.16%±4.61% and 22.61%±4.87%, 25˚C and 8˚C 

respectively). The purity of the fractions under each of the four conditions are shown in 

the pie charts in Figure 3.3 and Table 3.4). Red blood cells were the largest 

contaminating cell type in the Easy Eights™ isolated fraction, forming around 50% of the 

cell populations (54.70%±8.08% and 54.73±8.63%, 25˚C and 8˚C respectively) compared 

to just 0.70% using the Big Easy™ magnet (0.63%±0.20% and 0.65%±0.15%, 25˚C and 8˚C 

respectively); likely to be attributed to the supernatant aspiration steps required in the 

Easy Eights™ methodology.  
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Figure 3.3: Purity of enriched monocyte fractions following negative isolation using four different 
conditions  

Monocytes were negatively isolated from whole blood using two different magnets at two temperatures: A) Big Easy™ 
25˚C (n=8 biological replicates), B) Big Easy™ 8˚C (n=9 biological replicates), C) Easy Eights™ 25˚C (n=8 biological 
replicates) D) Easy Eights™ 8˚C (n=8 biological replicates).Purities of the enriched supernatants were determined by 
flow cytometry, by staining isolated fractions with CD14 (monocytes), CD66b (Granulocytes), CD235a (Red Blood cells), 
CD4+ (T cells) and CD19 (B cells). Pie charts represent the mean percentage of each cell type, shown as a percentage of 
a whole. E) Representative FSC vs SSC flow cytometry plots showing the purified monocyte population using the Big 
Easy™ magnet at 8˚C, along with a representative histogram (F) demonstrating the purified CD14+ population. 
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Differences in contaminating granulocytes, T cells, B cells and unidentified cells also 

occurred between isolation conditions, dependent upon the magnet strength, and the 

temperature at which the isolation was performed. As before, the Easy Eights™ magnet 

showed a higher percentage of contaminating cells at both incubation temperatures 

when compared to the Big Easy™ magnet. Within the enriched monocyte fraction, 

granulocytes formed the largest contaminating population (4.69%±1.45% and 

7.65%±2.19%, 25˚C and 8˚C respectively), followed by CD3+ T cells (2.05%±0.73% and 

3.84%±2.22%, 25˚C and 8˚C respectively) and B cells (2.18%±0.86% and 2.81%±1.33%, 

25˚C and 8˚C respectively).      

The Big Easy™ magnet displayed a similar percentage purity of monocytes between the 

two temperatures; where low contaminations of CD3+ T cells (0.64%±0.17% and 

1.08%±0.24%, 25˚C and 8˚C respectively) and CD19+ B cells were observed 

(0.95%±0.25% and 0.91%±0.26%, 25˚C and 8˚C respectively), with largest identified 

contaminants being granulocytes as expected (2.14%±0.84% and 1.91%±0.75%, 25˚C and 

8˚C respectively).  

As the Big Easy™ magnet obtained a higher purity of monocytes in the enriched fraction 

at both temperatures compared to the Easy Eights™, only this magnet was used in 

future experiments. 
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Table 3.4: Cell populations found in isolated fractions under different conditions. Data displayed as 

mean±SEM (Range) 

3.4.2 Negative isolation from whole blood allows the recovery of all three monocyte 

subsets 

The presence of the three monocyte populations was then assessed in the enriched 

monocyte fraction. As before, monocytes were isolated in parallel using the Big Easy™ 

magnet at 8˚C and 25˚C from healthy donors and analysed by flow cytometry.  

From the results, there was no clear advantage to using the Big Easy™ magnet at either 

temperature, no significant difference was observed in either monocyte subsets under 

each condition. Performing the isolation at 8˚C demonstrated an enhanced percentage 

recovery for both the intermediate and non-classical populations (25˚C: 50.14 % ±9.63% 

vs 8˚C: 69.57 % ±7.66%, p=0.1404; 25˚C: 35 .14%±8.02% vs 8˚C 53.71 % ± 9.93, p=0.1714 

intermediate and non-classical groups respectively) in comparison to 25˚C, however 

these were not statistically significant (Figure 3.4).  

 
Big Easy™ 25˚C 
Mean ± SEM 
(Range) 

Big Easy™ 8˚C 
Mean ± SEM 
(Range) 

Easy Eights™ 
25˚C 
Mean ± SEM 
(Range) 

Easy Eights™ 
8˚C 
Mean ± SEM 
(Range) 

Monocytes 
91.58% ± 0.77% 

(88.45%-95.10%) 

91.10% ± 0.78% 

(88.5%-95.55%) 

31.16% ± 4.61% 

(17.90%-50.30%) 

22.61% ± 4.87% 

(5.30%-38.30%) 

Granulocytes 
2.14% ± 0.84% 

(0.10%-7.36%) 

1.91% ± 0.75% 

(0.69%-7.55%) 

4.69% ± 1.45% 

(0.74%-10.30%) 

7.65% ± 2.19% 

(1.34%-15.60%) 

Red Blood 
cells 

0.63% ± 0.20% 

(0.14%-2.00%) 

0.65% ± 0.15% 

(0.20%-1.57%) 

54.70% ± 8.08% 

(18.70%-75.30%) 

54.73% ± 8.63% 

(18.20%-

79.40%) 

T cells 
0.64% ± 0.17% 

(0.11%-1.27%) 

1.08% ± 0.24% 

(0.25%-2.16%) 

2.05% ± 0.73% 

(0.29%-5.55%) 

3.84% ± 2.22% 

(0.60%-16.90%) 

B cells 
0.95% ± 0.25% 

(0.26%-2.45%) 

0.91% ± 0.26% 

(0.12%-2.52%) 

2.18% ± 0.86% 

(0.15%-6.25%) 

2.81% ± 1.33% 

(0.23%-10.40%) 

Unidentified, 
Cell debris 

4.04% ± 1.10% 

(0.34%-9.95%) 

4.32% ± 0.79% 

(0.21%-6.83%) 

5.21% ± 2.00% 

(1.12%-15.49%) 

8.36% ± 2.80% 

(1.57%-17.14%) 
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Figure 3.4: Percentage recovery of each monocyte sub-population following isolation using the Big Easy 

magnet at 25˚C and 8˚C 

Subset recovery was determined by flow cytometry analysis following negative isolation from whole blood, using the 

Big Easy magnet at 25˚C and 8˚C. All three monocyte populations were gated on, following the gating strategy outlined 

in figure 3.2 for the monocytic population in whole blood, and in isolated fractions. Subset recovery is displayed as the 

percentage of each subset found in whole blood. Results are indicative of n=7 donors, circles and squares show each 

individual data point, with bars representing mean ±SEM p=ns, un-paired students t-test. 
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3.4.3 Isolated monocytes display a low change in CD11b expression 

Another important consideration to make when optimising a novel method is to 

determine if the isolation process induces any non-specific activation, if this occurs the 

activation may influence downstream functional assays performed using the isolated 

cells. To investigate this possibility, the expression of CD11b, a marker of leukocyte 

activation (Macey 1994) was examined in the total monocyte population and individual 

subsets. CD11b expression at each temperature was determined by flow cytometry. 

Monocyte isolations and red blood cell lysis were performed in parallel for each sample, 

thus results are displayed as a change in CD11b expression from monocyte expression in 

whole blood (figure 3.5). 

At each temperature, the change in CD11b median fluorescence intensity (MFI) 

expression was not statistically different between conditions for the total population 

and the individual subsets (p=0.4432, p=0.5446, p=0.3318, p=0.2788; Big Easy 8˚C versus 

25˚C, total monocyte population, classical, intermediate and non-classical respectively). 

The non-classical and intermediate subsets demonstrated the largest increase in 

expression (25˚C: 305.4± 116.5 and 243.5± 30.55; 8˚C: 156.7± 60.17 and 216.9± 93.12, 

non-classical and intermediate respectively). 
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Figure 3.5: Change in CD11b expression on the total monocyte, and sub-populations following isolation 

using the Big Easy magnet at 25˚C and 8˚C 

Levels of monocyte activation was calculated for the total monocyte population and subsets by determining the 

change in CD11b MFI after isolation compared to whole blood. All three monocyte populations were gated on, 

following the gating strategy outlined in figure 3.2 for the monocytic population in whole blood, and in isolated 

fractions. Following this, the MFI of CD11b was calculated for each individual monocyte subset and the total monocytic 

population in both whole blood and isolated fractions. Results are indicative of n=6 donors at 25°C, and n=7 at 8°C, 

circles and squares show each individual data point, with bars representing mean ±SEM p=ns un-paired students t-test. 
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3.4.4 Big Easy isolation at each temperature displayed similar yields 

The yield of monocytes in the enriched fraction was calculated following isolation using 

the Big Easy™ at 8˚C and 25˚C. Performing the isolation at 8˚C resulted in a higher yield 

of isolated monocytes in the enriched fraction (2.01x105±1.10x104 /ml of peripheral 

blood, n=33) when compared to isolation conditions at 25˚C (1.84x105±2.22x104 /ml of 

peripheral blood, n=8), however this difference was not statistically significant (p=0.21, 

unpaired t-test assuming unequal variances, the sample size for 8˚C is higher than 25˚C 

due to this being the chosen condition for further experiments beyond these 

optimisation steps).  

With little non-specific activation occurring at each of the temperatures, and little 

difference between purities, future experiments were carried out using the Big Easy™ 

magnet at 8˚C, due to its trend towards higher recovery and yield of all three 

populations.  

3.4.5 Monocyte isolation does induce changes in surface marker expression 

After isolation procedures had been defined, the extent of alteration in subset 

distribution and surface marker expression was investigated. Distribution and 

phenotypic markers in each of the monocyte subsets was examined following monocyte 

isolation using the Big Easy™ magnet at 8˚C by flow cytometry; surface marker 

expression was quantified by MFI. 

Classical and intermediate populations were not altered significantly in comparison to 

whole blood (Classical: WB: 87.73%±0.85% vs Isolated monocytes: 90.20%±1.05%, 

Intermediate: WB: 5.43%±0.69% vs Isolated monocytes: 5.02%±0.09%). However a 
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significant decrease in the non-classical population was observed (WB: 5.7%±0.28% vs 

isolated monocytes: 4.56%±0.17%, p=0.0024).  

In the classical monocyte population, no statistical differences were seen between 

whole blood and isolated monocytes in CD14, CD16 and HLA-DR surface marker 

expression. Intermediate populations showed no significant difference between CD14 

and CD16 expression in each of the conditions however, HLA-DR displayed a significant 

decrease in expression from 25,832±3,729 MFI to 14,049±1,677 MFI in the isolated 

monocytic fraction (p=0.0163). CD16 expression in the non-classical subset significantly 

increased from 2,9491±1,928 MFI to 47906±1763 MFI (p<0.0001) however, changes in 

CD14 and HLA-DR expression remained non-significant (Figure 3.6). 
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Figure 3.6: Change in monocyte population percentage and CD14, CD16 and HLA-DR surface marker 
expression on each of the monocyte subsets following red blood cell lysis and isolation  

Percentage and surface marker expression of CD14, CD16 and HLA-DR in each of the monocyte subsets was 
determined by flow cytometry, of lysed whole blood (n=3 biological replicates) and isolated monocytes using the Big 
Easy magnet at 8˚C (n=3 biological replicates) in parallel. All three monocyte populations were gated on, following the 
gating strategy outlined in figure 3.2 for the monocytic population in whole blood, and in isolated fractions. Following 
this, the MFI of CD14, CD16 and HLA-DR was calculated for each individual monocyte subset and the total monocytic 
population in both whole blood and isolated fractions. Results are displayed as percentage and median fluorescent 
intensity (MFI), with error bars representing SEM. Significance was determined using a paired students t-test, ** 
denotes p<0.05, **** denotes p<0.0001. 
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3.4.6 Functionality of isolated monocytes compared to a monocytic cell line 

For these experiments, the function of isolated monocytes was compared to a THP-1 cell 

line, as these cells are accepted as a monocytic model and widely used in literature (Qin, 

2012). The following key functions were examined: cytokine secretion, phagocytosis and 

migration. 

3.4.6.1 Isolated monocytes produce cytokines in response to increasing concentrations 

of Lipopolysaccharide 

Human monocytes have to ability to release a number of pro-inflammatory and anti-

inflammatory cytokines, which influence disease progression, pathogen engulfment, and 

adaptive immune regulation. Positive isolation methods have previously demonstrated 

impairment in cytokine release following LPS stimulation.  Therefore, cytokine release 

was analysed in the isolated monocyte fraction following stimulation with increasing 

concentrations of LPS.  

For each of the cytokines detected, increasing concentrations of LPS failed to induce 

significant cytokine secretion in THP-1 cells, with IL-1β and IL-6 being below the limit of 

detection (0.05pg/ml and 0.06pg/ml respectively) (Figure 3.7).  

Conversely, in isolated monocytes, secretion was significantly increased following LPS 

stimulation with each of the cytokines analysed (IL-1β, IL-6, IL-8, IL-10 and TNF-α), which 

remained statistically significant when compared to controls and THP-1 cells (figure 3.7).  
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Figure 3.7: Isolated monocytes secrete pro-inflammatory and anti-inflammatory cytokines in response 
to increasing concentrations of Lipopolysaccharide 

To assess cytokine release, 1x105 isolated monocytes (M) using the Big Easy magnet at 8˚C (n=3 biological replicates) 
and THP-1 cells (T) (n=3 biological replicates) were exposed to increasing concentrations of LPS for 6 hours. 
Supernatants were collected, and cytokine secretion was analysed by MSD. Results are displayed as the 
concentration/ml, with error bars representing SEM. Significance was determined by TWO-WAY ANOVA with a Sidak's 
multiple comparison test, * denotes p<0.0001 Isolated monocytes versus THP-1, # p<0.0001 control monocytes versus 
stimulated cells, and + p<0.05 LPS 10ng/ml versus 100ng/ml and 1000ng/ml.  
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3.4.6.2 Human monocyte phagocytic ability is not impaired after isolation 

One of the primary functions of monocytes in vivo is the phagocytosis of foreign 

particles, thus this was investigated in monocytes extracted using this novel method of 

isolation. Although this assay uses latex beads rather than a pathogen, this is a well-

documented model for the study of phagocytosis in- vitro, enabling the analysis on a 

single-cell level and within whole populations (Brabazon et al., 2018; Martinez-Skinner 

et al., 2013). 

The percentage uptake of phagocytosed FITC beads was lower within the primary 

monocyte population isolated directly from whole blood (figure 3.8), in comparison to 

unstimulated THP-1 cells (45.43%±2.63% vs 58.27±2.80%; p=<0.05, isolated monocytes 

and THP-1 cells respectively). With LPS stimulation, phagocytic activity increased in both 

THP-1 and isolated monocytic populations, however these both failed to reach 

significance between in comparison to unstimulated cells (54.80%±2.50% versus 

45.43%±2.63%; p=0.09 and 58.27±2.80% versus 61.20%±2.46%; p=0.4759, isolated 

monocytes and THP-1 cells respectively).  
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Figure 3.8: The effect of monocyte isolation on phagocytic ability 

Isolated monocytes, using the Big Easy magnet at 8˚C (n=3 biological replicates, grey bars) and THP-1 cells (n=3 

biological replicates , white bars) (1x105) were either pre-treated with LPS 10ng/ml 4 hours or with media alone, after 

which FITC IgG latex beads (1:100) were added for 1 hour. After this period monocytes were fixed, and samples were 

acquired by flow cytometry. Results are displayed as a percentage of phagocytosing cells of the gated parent 

population (%), with error bars representing SEM. Significance was determined using a students unpaired t-test for 

comparisons between THP-1 cells and human monocytes, and a paired students t-test to compare unstimulated and 

LPS treatment conditions. * denotes p<0.05. 
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3.4.6.3 Isolated human monocytes migrate towards MCP-1  

Another primary function of monocytes in vivo is to migrate towards sites of tissue injury 

and inflammation in response to MCP-1 secreted by a number of cells including 

endothelial and smooth muscle cells (Cushing et al., 1990).  

After the 4 hour incubation period, MCP-1 (5ng/ml) induced migration of isolated 

monocytes and THP-1 through the micro-porous membrane, in comparison to RPMI-

1640 alone. As the concentration of MCP-1 increased, the number of THP-1 cells 

migrated through the barrier also increased (5ng/ml: 131.92%±55.99%, 15ng/ml: 

202.15%±53.27%, 25ng/ml: 227.27%±39.79%, 50ng/ml: 269.02%±28.88%) (Figure 3.9).  

In contrast, a greater percentage of monocytes isolated from whole blood migrated 

towards 5ng/ml MCP-1 compared THP-1 cells (201.64%±15.12% vs 131.92%±55.99%). 

Following the increase in chemoattractant concentration, the migration percentage 

remained consistent within the isolated human monocyte population (15ng/ml: 

216.42%±30.40%, 25ng/ml: 206.80%±20.06%, 50ng/ml: 222.60%±32.65%) (Figure 3.9). 

As MCP-1 at a concentration of 5ng/ml induced a significant increase in monocyte 

migration from the upper to the lower chamber compared to media alone, this 

concentration of chemoattractant was selected for future migration experiments (See 

Chapter 4).  
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Figure 3.9: The effect of increasing concentrations of MCP-1 on monocyte migration after 4 hours  

Isolated monocytes, using the Big Easy magnet at 8˚C (grey bars, n=3 biological replicates) and THP-1 (white bars, n=1) 

(5x104) were added to the top chamber of the 5.0µm pore inserts, and left to freely migrate to the lower compartment 

of the well containing increasing concentrations of Monocyte chemoattractant protein -1 (MCP-1) (5ng/ml, 15ng/ml, 

25ng/ml and 50ng/ml) for 4 hours. Images were taken at 5 random fields at 100x magnification, and the number of 

cells per field were counted. Results are displayed as a percentage change of migrated cells compared to an RPMI 1640 

10% FBS control; bars represent the mean percentage change in migrated cells ± SEM. p=ns determined by a ONE-WAY 

ANOVA with a Tukey’s post hoc test.  
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3.5 Discussion  

Monocytes play a key role in several pathogenic diseases, including HIV and CVD, with 

their subset distribution often shifted to a more pro-inflammatory phenotype in many 

instances (e.g. an expansion of CD16+ populations). As these cells contribute to the 

acceleration of disease, it is often desirable to study their function ex vivo.  

Commercially available isolation procedures either rely on binding to the CD14 receptor 

(FACS sorting and positive isolation) providing potential impairments in functionality, 

requires prior PBMC purification that demonstrates alterations in surface marker 

expression (Mukherjee et al., 2015; Nieto et al., 2012; Tippett et al., 2011), or depletes 

CD16+ populations (negative selection).  

The novel isolation method described here negatively isolates human monocytes 

directly from whole blood, without the loss of the CD16+ monocytic populations. Initial 

experiments optimised this isolation method, adjusting magnet strength and 

temperature to optimise purity, sub-population isolation and extraction of un-activated 

cells.  

The two magnets used in these experiments were the Big Easy™ magnet and the Easy 

Eights™ magnet manufactured by StemCell™ Technologies; these magnets differ in their 

magnetic field strength due to their design. The Easy Eights™ magnet has a lower 

magnetic strength due to a smaller area of the tube in contact with the magnet itself, in 

comparison to the Big Easy™ in which the tube is inserted directly in the middle of the 

magnet. The differences observed in the purities of the isolated monocyte fraction 

between the two magnets is reflective of these variances of the magnetic field, and the 
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protocol associated with them (e.g. pouring off isolated fractions versus pipetting off the 

isolated fractions).  

The Easy Eights™ isolation resulted in a much lower purity of enriched monocytes, as it 

was more difficult to remove the purified fraction without disturbing the bound 

antibody cocktail beads. Purity may be improved with this magnet by performing an 

additional round of separation, or by isolating monocytes from a smaller volume of 

blood (<4ml as used in these experiments). The Big Easy™ magnet gave a high purity of 

isolated monocytes at both temperatures with the largest contaminating population 

being granulocytes. 

To further optimise isolation conditions, the protocols were performed at room 

temperature (25˚C) and on ice (2-8˚C). These two temperatures were selected, as 

StemCell’s protocols for other isolation kits are optimised to be performed at 25˚C, 

however it was suggested by StemCell’s technical team that carrying out the isolation at 

2-8˚C may yield a higher purity and recovery. This lower temperature causes the cell 

surface to become less fluid, and helps prevents antibody capping; facilitating their 

capture on the magnet by increasing antibody binding. Indeed, performing the isolation 

on ice using the Big Easy™ magnet in comparison to room temperature conditions 

resulted in a higher recovery of all three populations, although these were not found to 

be statistically significant.  

Finally, activation status was determined for each of the cell populations as a way of 

measuring cell activation, as previously described (Macey et al., 1995). CD11b is an 

adhesion molecule found on the surface of monocytes, which is upregulated following 

activation. Previous studies have demonstrated that rapid temperature changes alter 
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adhesion molecule expression (Forsyth and Levinsky, 1990; Macey et al., 1995) in 

addition to density centrifugation, and dextran sedimentation (Macey et al., 1995). 

 These results demonstrated that using colder isolation conditions resulted in lower 

CD11b surface marker expression in comparison to 25˚C for each of the populations 

aside from the classical subset however, these also failed to reach statistical significance.  

Furthermore, with respect to monocyte yields in the enriched fraction, these did not 

significantly alter with isolation conditions however, the yield was higher when the 

isolation was performed on ice. The yields calculated from this enrichment procedure 

remain consistent with those reported in literature following positive and negative 

selection (2.2±0.3×105/ml of peripheral blood; (Zhou et al., 2012)).  

Taking all these results into consideration, the Big Easy™ magnet was used at 2-8˚C, as it 

yielded a higher purity when compared to the Easy Eights™ at both temperatures, and 

displayed a higher subset recovery, and increased yields when compared to the Big 

Easy™ magnet at 25˚C. 

The type of monocyte isolation method has previously been shown to affect phenotype, 

cytokine production and phagocytosis of isolated cells (Elkord et al., 2005; Zhou et al., 

2012) thus, this functionality was assessed using these optimised isolation conditions.  

Monocyte phenotype was analysed by flow cytometry to look for alterations in surface 

marker expression as a consequence of the isolation procedure. Both the percentage 

distribution and surface maker expression of CD14, CD16 and HLA-DR on classical 

monocytes were not significantly altered following extraction compared to whole blood. 

HLA-DR expression was however decreased within the intermediate subset, whereas a 
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decrease in the percentage distribution of the non-classical subset and increase in CD16 

expression was observed compared to whole blood. These alterations in distribution and 

surface marker expression are likely to be a phenomenon associated with isolation 

procedures, previously reported in monocytes (Mukherjee et al., 2015) and other 

immune cells (Zhou et al., 2012). In addition, changes in temperature or cell culture have 

been observed to induce the internalisation of chemokine receptors, with monocytes 

appearing negative (Nieto et al., 2012). 

Although this provides a potential disadvantage to this isolation method, it is unlikely 

that any separation procedure prevents alterations in expression due to the sensitive 

nature of monocytes, therefore an ideal method should induce minimal changes. In each 

population, the CD14 co-receptor for LPS shows no significant alteration compared to 

whole blood, thus suggesting that functional responses to LPS would remain.  

In addition to phenotypic changes, previous studies have demonstrated that some 

isolation procedures impair monocyte function therefore, following isolation using this 

enrichment method, functionality was investigated. For these experiments, isolated 

monocytes were compared to a monocytic cell line, THP-1 cells. Cytokine secretion upon 

activation is a primary function of monocytes in vivo, therefore this was analysed 

following the stimulation of monocytes and THP-1 cells with increasing concentrations of 

LPS. The monocytic cell line showed little cytokine release when challenged with LPS, 

consistent with previous reports (Schildberger et al., 2013), likely to be attributable to 

their low CD14 expression as confirmed by flow cytometry (Aldo et al., 2013; Bosshart 

and Heinzelmann, 2004). On the other hand, enriched monocytes displayed dose-

dependent increases of pro and anti-inflammatory cytokine secretion in response to LPS, 
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thus demonstrating that isolated cells were able to respond to stimulation and thus 

more relevant monocytic functionality in vivo.  

Isolated monocytes displayed the ability to phagocytose IgG covered latex beads, which 

increased following LPS stimulation. In each case however, a lower percentage of uptake 

was observed compared to THP-1 cells. This decrease in phagocytosis observed may be 

attributed to contaminating cells in the enriched population, in addition to the 

heterogeneous monocyte populations, thus is more clinically relevant to functionality in 

vivo. As an alternative to this assay, methods have recently been developed to study 

phagocytic activity directly in whole blood by flow cytometry  (Bicker et al., 2008; Gupta-

Wright et al., 2017; Meaney et al., 2016), which provides the advantage of being able to 

fluorescently detect individual monocyte sub-populations. 

A further key function of monocytes in vivo is to migrate to sites of inflammation and 

injury in response to the secretion of chemokines from various cell types. To mimic this 

in vitro, migration was assessed using the transwell chambers as previously described. 

Both human monocytes and THP-1 cells showed a significant increase in migration 

towards MCP-1 in comparison to control, at a concentration as low as 5ng/ml. Previous 

studies have demonstrated an impairment in migration towards MCP-1 and fMLP after 

Ficoll isolation due to a decrease in the expression of chemokine receptors (Nieto et al., 

2012).  Data presented in this chapter demonstrates no significant differences between 

responses to MCP-1 at all concentrations between isolated monocytes and THP-1 cells. 

In addition, this novel method of isolation does not require PBMC isolation by Ficoll prior 

to negative selection, therefore avoids these issues. This data therefore provides 

evidence to suggest that migratory function remains unaltered after purification.  
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In summary, data presented in this chapter provides optimal isolation conditions to 

separate monocytes directly from whole blood, with minimal contamination or 

activation and high percentage subset recovery. In addition, this isolation method yields 

monocytes competent to perform phagocytosis, migration and to release cytokines 

while displaying functional responses to LPS.  

Our data was compared with the most commonly used monocytic-like cell line to study 

monocyte function and regulation in the CV system (Qin, 2012). THP-1 cells are an 

immortalized cell line established from the peripheral blood taken from a paediatric case 

of acute monocytic leukaemia (Tsuchiya et al., 1980). Although widely used, this 

homogeneous population displays alterations in gene expression, CD marker expression 

and chemotaxis, in comparison to positively isolated CD14+ monocytes (Riddy et al., 

2018). Therefore the use of primary cells, when possible, provides an advantage over 

cell lines as marker expression and functionality is maintained. This is particularly 

relevant when studying monocytes in disease, whereby changes in subset distribution, 

function and phenotype often occur. This leads to their function being more reflective of 

that in the in vivo setting, and more relevant to study the role of monocytes and their 

subsets in disease pathogenesis.  

Despite this, the value of THP-1 cells as a monocytic model in vitro should not be 

ignored, as these cells are easy to obtain, highly proliferative, and highly uniform, 

preventing the influence of donor variation and contamination. Furthermore, these cell 

lines provide an experimental model when primary cells are unobtainable or limited in 

the case of paediatric populations. Other commercially available isolation methods were 
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not compared in this study due to their inability to either; isolate all three monocyte 

populations or the requirement of density separation.  

This isolation technique purifies monocytes directly from whole blood with limited 

interference also avoiding the need for prior PBMC isolation. Although this is preferable 

and suitable in this case, often other clinical samples may be collected with delay or may 

come from multiple locations or have already undergone PBMC isolation. Future 

experiments may be designed to optimise isolation conditions after PBMC purification or 

investigate the effect of long-term culture on functionality and phenotype of isolated 

monocytes.  

This method provides an advantage over current techniques, as monocytes are not 

directly targeted in the isolation process, and all three populations are recovered. This 

optimised isolation procedure can therefore be used to investigate monocytic activity in 

several disease settings, in which subset distribution may influence function thus, 

providing a more accurate picture of functionality in vivo.  

The experimental conditions optimised and validated in this chapter provided the 

experimental design strategies for the following chapters. Through the isolation of 

inactivated monocytes that were functionally viable, we could investigate MP influence 

on monocytic function and phenotype.   
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Chapter 4 - Monocytic MP generation, characterisation and influence on 
monocyte function 
4.1 Introduction 

Monocytes display an activated phenotype in a number of diseases, with the expansion 

of the pro-inflammatory subset reported in CVD and HIV  (Wong et al., 2012). As a 

consequence of this heightened activation status, elevated (monocyte microparticle) 

MMP levels have been reported in several disease states (Berezin et al., 2016; Hijmans 

et al., 2019; Narin et al., 2014; Philippova et al., 2011; Sabatier et al., 2002b). The ability 

for MMPS to influence monocyte behaviour has been largely unexplored, thus this 

chapter investigates the potential for these circulating particles to further enhance 

monocyte activation; and its consequential effects on disease pathogenesis in the 

context of CVD.  

4.1.1 Phenotype and composition of Monocyte MPs 

MMPS are released in vivo upon cellular activation and apoptosis. In vitro, MPs have 

been derived from human monocytes and monocytic cell lines following treatment with 

TNFα (Eyre et al., 2011), LPS (Ben-Hadj-Khalifa-Kechiche et al., 2010), Fas ligand (Terrisse 

et al., 2010), etoposide (Mastronardi et al., 2011) and calcium ionophore (A23187) 

(Bardelli et al., 2012; Cerri et al., 2006).  

Upon formation, the phenotype, protein patterns and composition of MPs are 

influenced by their mechanism of formation via apoptosis or activation and the type of 

stimulus (Jimenez et al., 2003; Miguet et al., 2006). Monocytic MPs released from THP-1 

cells in response to LPS, soluble P-selectin and IgG stimulation displayed an altered 

phenotype when compared to spontaneously produced MPs in control conditions 
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(Bernimoulin et al., 2009; Wen et al., 2014), in addition to an enhanced expression of 

pro-inflammatory mRNA including IL-8, IL-6 and TNF-α which mirrored a similar increase 

in the corresponding parent cells (Wen et al., 2014). Furthermore, monocytic MPs have 

demonstrated the ability to harbour active Tissue Factor (TF) on their surface allowing 

their participation in the coagulation cascade (Khaspekova et al., 2016).  

Moreover, MPs derived from THP-1 cells upon stimulation with soluble P-selectin were 

found to be approximately 40% PS positive, whereas those derived from LPS stimulation 

were higher at approximately 60% (Bernimoulin et al., 2009). In addition, proteomic 

profiling revealed 100 common proteins found in P-Selectin and LPS generate MPs with 

408 unique proteins associated with LPS stimulation predominantly comprised of 

mitochondrial and nuclear proteins, and 52 unique to P-selectin MPs involved in signal 

transduction and cell communication (Bernimoulin et al., 2009).  These differences in 

composition and receptor expression demonstrate how MPs derived from one cell type 

under different conditions may have the ability to induce various effects on target cell 

behaviour.  

4.1.2 The influence of monocyte-derived MPs on cellular function 

Monocytic MPs have been shown to exert both pro-inflammatory and anti-inflammatory 

effects on a number of different cell types including endothelial cells, epithelial cells, 

smooth muscle cells and monocytes (Aharon et al., 2008; Bardelli et al., 2012; Cerri et 

al., 2006; Essayagh et al., 2007; Neri et al., 2011; Sarkar et al., 2009; Wang et al., 2011).  

MMPS induce the expression of the inflammatory cytokines IL-8 and MCP-1 in airway 

epithelial cells through the induction of NF-κB translocation (Cerri et al., 2006; Neri et 

al., 2011). Similar effects have been observed in human podocytes whereby a dose-
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dependent release of IL-6 and MCP-1 was observed in response to increasing 

concentrations of MMPS (Eyre et al., 2011). Moreover, the adhesion molecules ICAM-1, 

VCAM-1 and E-selectin are up-regulated in epithelial and endothelial cells following 

MMPS treatment (Cerri et al., 2006; Wang et al., 2011; Wen et al., 2014), via ERK1/2 and 

NF-κB pathways through IL-1 receptor signalling in the latter case (Wang et al., 2011). A 

mechanism by which these MPs may enhance inflammation is by aiding the recruitment 

of leukocytes to the endothelium.  

Furthermore, MPs have demonstrated the ability to alter target cell phenotype by 

receptor transfer. Surface marker expression of TF is elevated in endothelial cells in 

response to prolonged exposure to both apoptotic and LPS stimulated MPs, through MP 

adherence to the target cell membrane and by directly increasing TF production (Aharon 

et al., 2008). Furthermore, peripheral blood mononuclear cells display the ability to 

transfer CCR5 (a co-receptor for HIV entry) to CCR5- monocytes and CD4+ T cells which 

allowed their infection with M-tropic HIV-1 in vitro. This chemokine receptor was further 

transferred to endothelial cells following the transendothelial migration of PBMCs (Mack 

et al., 2000), thus providing a possible mechanism through which MPs may play a role in 

HIV disease progression. 

With respect to endothelial function, apoptotic MMPS enhances NO production from 

endothelial cells (Mastronardi et al., 2011), and induce apoptosis (Aharon et al., 2008). 

Similar observations were made in co-cultures of vascular smooth muscle cells and 

supernatants from LPS stimulated monocytes, within which significant cell death was 

reported (Sarkar et al., 2009).  
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Finally, the potential autocrine effect of monocytic MPs has also been documented. 

A23187 derived MPs from THP-1 cells induced pro-inflammatory (IL-6 and TNF-α) 

cytokine secretion, oxygen radical production, and NF-κB activation in both human 

monocytes and macrophages, in addition to anti-inflammatory effects through the 

upregulation of PPARγ protein expression (Bardelli et al., 2012). PPARγ is a protein that 

can interact with the p65 subunit of NF-κB; preventing its nuclear translocation (Chen et 

al., 2003).  

Anti-inflammatory properties of MMPS have also been reported in a brain endothelial 

cell line (hCMEC/D3), whereby MMPS treatment reduced endothelial permeability and 

increased impedance resulting in monolayer tightness and hindrance of leukocyte 

extravasation (Wen et al., 2014). However, the authors report that the uptake of MMPS 

by endothelial cells promoted endothelial vascularisation, thus this effect may be 

attributed to a negative feedback effect of endothelial MPs as a consequence of MMPS 

treatment rather than the monocytic particles themselves (Wen et al., 2014).    
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4.2 Aims and Objectives  

The aim of this chapter is to investigate the conditions under which MMPS are released, 

and the functional influence of MMPS on monocytic behaviour ex vivo further.  

To do this, the following primary objectives were: 

1) To assess the impact of different apoptotic and stimulatory treatment conditions 

on THP-1 cell MP release 

2) To determine how the method of MP release influences both parent cell and MP 

phenotype  

Following this, human monocytes were isolated from whole blood using the optimised 

method, as described in chapter 3, to address the following: 

3) To investigate the potential role that these MMPS isolated from THP-1 cells may 

play in altering monocytic function, using the isolation method previously 

optimised, by looking at: 

a. Pro-inflammatory cytokine release 

b. Influence on monocyte phenotype 

c. Chemotaxis  

d. Adhesion  

e. Transendothelial migration 
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4.3 Methods 

4.3.1 Cell culture  

THP-1 cells, HUVECs, and primary monocytes were isolated and cultured as described in 

Chapter 2, General methods, Section 2.1.1, 2.1.2 and 2.2.3 respectively.  

4.3.2 Phenotyping of cells by flow cytometry 

Flow cytometry was used to determine the effect of various treatments on cell 

phenotype. The staining of both THP-1 cells and isolated monocytes was carried out 

using the following method. After treatment, cells were washed once in PBS and re-

suspended in FACS buffer at a volume of 200µl per antibody panel. Samples were 

transferred into a 96 well U-bottom plate for staining and spun at 500g for 4 minutes. 

Fluorescent antibodies were diluted in 50µl FACS buffer at an optimised concentration, 

added to the cell pellet and incubated in the dark for 30 minutes at 2-8°C. Table 4.1 and 

4.2 detail the antibody panels used within this chapter. Details of isotype controls are 

listed in appendix 2.   

THP-1 phenotyping panel 

Target Fluorochrome 
conjugate  

Clone Isotype  Source Dilution  

Panel 1 

CD14 AF700 63D3 IgG1, κ Biolegend 1:50 

CD11b APC CBRM1/5 IgG1, κ Biolegend 1:50 

CD142 PE HTF-1 IgG1, κ eBioscience 1:25 

CD54 FITC HA58 IgG1, κ Biolegend 1:50 
Table 4.1: THP-1 phenotyping panels  
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Table 4.2: Isolated monocytes phenotyping panels 

After staining, cells were washed twice in 200µl FACS buffer, and re-suspended in 200µl 

1x cell fix (BD Biosciences), covered and left at 2-8°C until flow cytometry acquisition. All 

samples were acquired on the BD LSRII, with all events recorded for 60 seconds at a 

medium flow rate. Compensation was applied to samples post-flow cytometry 

acquisition within the FlowJo software, using latex compensation beads (BD Biosciences) 

as a control.  

  

Isolated monocytes phenotyping panel 

Target Fluorochrome 
conjugate  

Clone Isotype  Source Dilution  

Panel 1 

CD14 PE M5E2 IgG2a, κ Biolegend 1:50 

CD11c PE-Cy7 3.9 IgG1, κ Biolegend 1:50 

CD11b APC CBRM1/5 IgG1, κ Biolegend 1:50 

Panel 2 

CD14 PE M5E2 IgG2a, κ Biolegend 1:50 

CCR2 
(CD192) 

PerCp Cy5.5 K036C2 IgG2a, κ Biolegend 1:50 

CD204 APC 7C9C20 IgG2a, κ Biolegend 1:50 

CD36  FITC CB38 IgM, κ BD Biosciences 1:50 
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4.3.3 MP generation 

To investigate the conditions under which MPs are released from monocytes and their 

influence on monocyte function, THP-1 cells were used to generate MPs using the 

following conditions. THP-1 cells were used as an alternative to human monocytes in 

initial experiments, due to their ease of access and highly proliferative nature. This 

allowed high cell numbers to be subjected to activation or apoptosis conditions to 

produce large quantities of uniform MMPS populations for phenotyping and functional 

assessment.  

4.3.3.1 Stimulating MPs 

To isolate and quantify MPs released under inflammatory conditions, 1x106 THP-1 

cells/ml were stimulated with increasing concentrations of LPS (10ng/ml, 50ng/ml, 

100ng/ml, 1000ng/ml), TNF-α (10ng/ml, 50ng/ml, 100ng/ml), and IFN-Ƴ (100U/ml, 

250U/ml, 500U/ml) for 4 hours in RPMI-1640 cell culture media supplemented with 10% 

FBS, 2mM L-glutamine, 100U/ml penicillin and 100µg/ml streptomycin. The calcium 

ionophore A23187, was also used to stimulate MP release from THP-1 cells at various 

concentrations (2µM, 6µM, 12µM, 18µM, 24µM) as previously described (Bardelli et al., 

2012; Cerri et al., 2006; Neri et al., 2011), for 10 minutes in RPMI-1640 cell culture media 

supplemented with 2mM L-glutamine, 100U/ml penicillin and 100µg/ml streptomycin, 

without FBS. For all treatments, concentrations above the highest reported induced >5% 

cell death thus MP release was not evaluated. 

Cell cultures were centrifuged at 500g for 5 minutes to remove all cells, with resulting 

supernatants centrifuged at 1500g for 15 minutes to remove cell debris. Supernatants 

were stored at -80°C for quantification and phenotyping at a later date.  
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Although calcium ionophores such as A23187 do not physiologically activate cells and 

are not found in vivo, unlike compounds such as LPS, there is rapid MP release and no 

potential for endotoxin carryover.  

For functional experiments, MPs were generated from THP-1 cells by calcium ionophore 

stimulation. 2x106 cells/ml were incubated with 12µM for 10 minutes in serum-free 

RPMI-1640 cell culture media. Cell cultures were centrifuged at 500g for 5 minutes to 

pellet all cells, and supernatants were centrifuged for a further 15 minutes at 1500g to 

remove any cell debris. The resulting supernatant was diluted 1:2 in PBS and centrifuged 

at 20,000g for 45 minutes at 4°C to pellet MPs. The resulting MP pellets were then 

washed by re-suspending in 1000µl PBS, and centrifuged again at 20,000g for 45 minutes 

at 4°C. The final MP pellet was stored at -80°C, and quantified by flow cytometry prior to 

functional experiments.  

4.3.3.2 Generating apoptotic MPs 

Apoptotic conditions were generated by starvation of THP-1 cells as previously described 

in the literature (Aharon et al., 2008; Koifman et al., 2017).  Briefly, 1x106 THP-1 cells/ml 

were cultured in RPMI-1640 culture media in serum-free conditions for; 48, 72 and 96 

hours, after this time cell cultures were centrifuged at 500g for 5 minutes and cell-free 

supernatants were collected. These resulting supernatants were centrifuged at 1500g 

for 15 minutes to remove further cell debris and then stored at -80°C for quantification 

and phenotyping. 

For MP analysis, the collected supernatants were centrifuged at 20,000g for 45 minutes 

at 4°C to pellet MPs. The final MP pellet was stored at -80°C, Prior to functional 
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experiments MPs were quantified by flow cytometry along with the cells with the MPs 

had originated from.  

Cells were immediately stained with Annexin V and PI for flow cytometry analysis to 

determine the percentage of cell death.  

4.3.4 Annexin V/PI staining of cells by flow cytometry  

In order for cells to be associated with their MP number, apoptotic cells were detected 

by flow cytometry using a combination of Annexin V and PI staining.  As outlined in 

section 2.4.2, unfixed 1x106 THP-1 cells that had been serum-starved for different time 

periods (as described previously), were re-suspended in 500µl of 1x Annexin V binding 

buffer containing 5µl of Annexin V-FITC (1:100 dilution) and incubated at room 

temperature for 20 minutes in the dark. After this, 50µl of PI (50µg/ml) was added to the 

sample prior to FACS analysis. All samples were acquired immediately after staining on a 

BD FACSCalibur at a low flow rate until 10,000 events had been recorded within the 

monocyte gate.  

4.3.4.1 Gating stratergy  

Following acquisition, compensation and analysis was performed using FlowJo software. 

Annexin V was used in conjunction with PI staining in these experiments in order to 

identify both early and late apoptotic/dead cells from viable cells or those undergoing 

necrosis. Figure 4.1 demonstrates the gating strategy used, highlighting how these cell 

types were distinguished.  
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Figure 4.1: Flow cytometry plots demonstrating the gating strategy used to identify apoptotic THP-1 

cells following serum starvation 

Serum starved THP-1 cells were stained with Annexin v and PI, and analysed by flow cytometry. Following acquisition, 
the population of THP-1 cells were identified and gated on based on their FSC and SSC. Within this population, a 
quadrant was used to identify viable cells (Annexin V-/PI-), early apoptotic cells (Annexin V+/PI-), late apoptotic/dead 
cells (Annexin V+/PI+) and necrotic cells (Annexin V-/PI+) as shown. In order to determine the number of apoptotic cells 
over the duration of the experiment, the percentage of early apoptotic and late apoptotic/dead cells were combined 
using the gate highlighted in red.  
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The aim of this experiment was to determine the number of apoptotic cells, and their 

relation to apoptotic MP release, thus to determine the number of early apoptotic and 

late apoptotic cells, the percentage of Annexin V+/PI- and Annexin V+/PI+ were 

combined as shown in the red box highlighted in figure 4.1. Furthermore, PI was used to 

ensure that cells were undergoing apoptosis rather than necrosis throughout this 

experiment, and thus generated MPs were derived from an apoptotic origin.  

4.3.5 MP quantification and phenotyping by flow cytometry 

MPs were analysed by flow cytometry to determine both their phenotype and number 

when subjected to certain laboratory conditions. Briefly, as described above, collected 

supernatants were centrifuged at 17,000g for 60 minutes at 4⁰C, and MP pellets re-

suspended into a volume of 1x Annexin V buffer equivalent to the original starting 

supernatant volume. 40µl of this suspension was then added to 10µl of each antibody 

panel (appropriately titrated) for phenotyping or to Annexin V (1:50 dilution) for 

quantification.   Table 4.3 details the specific antibodies used for these experiments.  

MP phenotyping panel 

Target Fluorochrome 
conjugate  

Clone Isotype  Source Dilution  

Panel 1 

Annexin 
V 

FITC - - BD Bioscience 1:50 

CD14 PE M5E2 IgG2a, κ Biolegend 1:50 

CD11b APC CBRM1/5 IgG1, κ Biolegend 1:50 

Panel 2 

Annexin 
V 

PE - - BD Bioscience 1:50 

CD142 APC HTF-1 IgG1, κ eBioscience 1:25 

CD54  FITC HA58 IgG1, κ Biolegend 1:50 

Table 4.3: Monocytic MPs phenotyping panels 

MPs were incubated in the dark, on a shaker at room temperature for 20 minutes. 150µl 

of 1x Annexin V binding buffer was added and the sample then stored at 4⁰C until flow 
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cytometry acquisition. All samples were acquired on a BD LSRII for 60 seconds on a low 

flow rate and quantified as previously described in Chapter 2 – General Methods. 

MPs released from apoptotic and activated endothelial cells was also investigated, with 

data presented in Appendix 6 and 7. 

4.3.6 Influence of Monocyte MPs on human monocyte function 

Following the generation and isolation of MMPS, their influence on cell behaviour was 

analysed. 

4.3.6.1 Stimulation of human monocytes by monocyte-derived MPs 

To assess the influence of MMPS on human monocyte functionality and phenotype, MPs 

derived from A23187 stimulated THP-1 cells were incubated with isolated monocytes at 

a 1:1, 1:5 and 1:10 ratio (Cells: MPs) for various time periods depending on the assay 

performed. For each concentration of MPs added to monocytes, a supernatant control 

was run in parallel to ensure the effects observed were due to the MPs, rather than any 

residual A2187 in the MP supernatant.  

In these functionality experiments to assess the supernatant independently of MPs, the 

RPMI-1640 cell culture media (10% FBS) was sterile filtered through a 0.22µM filter. The 

same batch of sterile-filtered media and FBS was used for all experiments and replicates.  

4.3.6.2 Influence of Monocyte MPs on human monocyte phenotype 

To investigate the influence of MMPS on monocytic surface marker expression, isolated 

human monocytes were treated with A23187 derived MMPS from THP-1 cells (1:10) for 

2, 4 and 24 hours along with the corresponding supernatant control and culture media 
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alone. After this time, monocytes were centrifuged and stained for phenotyping by flow 

cytometry as outlined in 4.3.2, using the antibodies listed in Table 4.2.  

4.3.6.3 Cytokine release  

4.3.6.3.1 IL-6 ELISA 

IL-6 cytokine release was quantified in cell culture supernatants by ELISA following 6, 18 

and 24-hour incubations with apoptotic and stimulated monocyte-derived MPs. 

Quantification was performed following the manufacturer’s instructions, which are 

detailed in General methods Chapter 2  

4.3.6.3.2 MSD (Mesoscale discovery)  

Cytokines were analysed in cell culture supernatants from MP treated monocytes using 

the V-PLEX Cytokine Panel 1 Human Kit purchased from MSD (mesoscale discovery). This 

kit quantifies levels of IL-1β, IL-8, IL10, IFN-γ and TNF-α in cell culture supernatants. 

Samples were analysed according to the manufacturer’s instructions, detailed in general 

methods chapter 2.  

4.3.6.4 Chemotaxis 

Monocyte chemotaxis was assessed by measuring the migration of cells towards a 

chemoattractant through a porous transwell membrane.  Isolated monocytes were pre-

treated with MMPS, MP supernatants or RPMI-1640 for 2 hours. To the top of a 5.0µM 

polycarbonate transwell (Corning, Fisher, UK) 5x104 monocytes pre-treated with either 

1:10 MPs, MP pellet supernatant or media alone were added, with 5ng/ml MCP-1 added 

to the lower chamber. Transwells were left for 4 hours at 37oC to allow the free 

migration of monocytes to the lower chamber. After 4 hours the membrane insert was 
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removed, and migrated cells were imaged at 100x magnification at 5 random fields using 

a phase-contrast microscope.  

4.3.6.5 Monocyte adhesion to endothelial cells under static conditions 

In order to assess the influence of MMPS on the ability of monocytes to adhere to an 

endothelial monolayer (HUVEC), a static adhesion assay was performed. For this, 5x104 

isolated human monocytes were pre-treated with MMPS at a 1:10 ratio (Monocytes: 

MPs), MP supernatant or LPS 10ng/ml for 4 hours. After this time monocytes were 

washed in PBS and incubated at 37⁰C with HUVECs that had been cultured to 

confluence; an additional positive control was used whereby endothelial cells were pre-

treated with TNF-α 10ng/ml for 24 hours. After 1 hour, non-adherent monocytes were 

removed by washing three times with warm PBS, and adhered monocytes were stained 

by Diff-Quick stains (Sigma Aldrich, UK) Images were taken at 200x in three random 

fields, with only monocytes that had adhered and were associated with an endothelial 

cells counted. Monocytes were easily distinguished from endothelial cells based on their 

small darker size and lack of observable cytoplasm as depicted in figure 4.2.  



 Chapter 4 – Functional effects of monocyte microparticles 

119 | P a g e  
 

Figure 4.2: Diff-Quick staining of control and LPS pre-treated monocytes to endothelial cells after 1 hour 

Adhered monocytes were distinguished from endothelial cells based on their size and morphology as indicated by the 

red arrows. Images taken at 100x magnification. 

 

 

 

4.3.6.6 Transendothelial migration 

Migration of monocytes across an endothelial layer was also assessed using transwell 

membranes coated in a confluent endothelial monolayer. 1x104 HUVECs were seeded 

onto the upper chamber of a gelatine coated 5.0µM transwell and cultured for 2-3 days 

to confluence.   To ensure a fully confluent monolayer had formed, one insert from the 

plate was removed and stained with crystal violet. The insert was fixed using 3.7% 

paraformaldehyde for 10 minutes and washed in PBS. A cotton swab was used to gently 

remove cells on the lower side of the transwell, and stained with 0.2% crystal violet for 

15 minutes, this step ensured that only cells on the upper side of the membrane were 

stained with crystal violet. Finally, the insert was washed with distilled water 3 times, 

left to dry and visualised using the phase-contrast microscope. Figure 4.3 shows crystal 
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Figure 4.3: Crystal violet staining of an endothelial monolayer, cultured on the upper side of 0.2% 
gelatine coated Transwell inserts after 24 and 72 hours.  

 

violet staining of the endothelial monolayer on the upper side of the transwell after 24 

and 72 hours after which a confluent monolayer had formed. 

 

 

Following the confirmation of a fully confluent monolayer using this method, 5x 104 

Monocytes pre-treated for 4 hours with either MMPS or MP supernatants were added 

to the top chamber (200µl), with the 5ng/ml MCP-1 chemoattractant added to the lower 

chamber (700µl). Monocytes were left to migrate through the endothelial monolayer to 

the lower chamber for 4 hours, and migrated cells were imaged at 100x magnification at 

5 random fields using an inverted phase-contrast light microscope (Lecia, UK).  
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4.4 Results 

4.4.1 Apoptotic MPs are released from monocytic cells in serum starvation conditions 

MPs are released from both activated cells and apoptotic cells. Experiments were 

initially performed to discover the optimal time for apoptotic MP generation from 

serum-starved   THP-1 monocytes for 48-96 hours, as previously described (Aharon et 

al., 2008; Koifman et al., 2017). 

THP-1 cells undergoing apoptosis generated a significantly increased number of 

monocytic MPs at 72 (p=0.012) and 96 hours (p=0.0001) than when compared to 

quiescent cells under control conditions (0% FBS 1,031,157±128,117; 10% FBS 

508,784±129,017; 0% FBS 1,442,677±41,564 vs 10% FBS 535,276±99,862, mean MP 

number ± SEM at 72 and 96 hours respectively) (Figure 4.4A). 

 At each time point, the numbers of apoptotic derived MPs correlated with the number 

of apoptotic THP-1 cells as determined by Annexin V and PI staining (p=0.0134, R2= 

0.3254, Pearson R value = 0.574) (Figure 4.4B).  

From these experiments the 72 hour time point was selected as the optimum for 

apoptotic MP generation as this provided the earliest significant increase in MPs 

released compared to control, thus was used for further experiments.    
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Figure 4.4: THP-1 cells release MPs in serum-starvation conditions 

1x106 THP-1 cells/ml were cultured in RPMI-1640 in either 10% FBS (n=3 biological replicates, black bars) or serum free 

conditions (n=3 biological replicates, grey bars) for 48, 72 and 96 hours. Annexin V+ MPs (<1µm) were enumerated by 

flow cytometry (A). A positive association was found between the number of MPs/ml and the combined percentage of 

early apoptotic and late apoptotic/dead cells (Annexin V+/PI- and Annexin V+/PI+) (B), Pearson’s correlation 

coefficient R=0.57, p=0.0134.  Data is displayed as mean ±SEM, with differences assessed by TWO-WAY ANOVA, with a 

Sidak’s post hoc test * p<0.05, *** p<0.001.  
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4.4.2 THP-1 cells release different quantities of MPs following activation with different 

stimuli 

In addition to apoptosis, THP-1 cells were also challenged with 4 different types of 

inflammatory stimuli at incremental concentrations to measure the responses of 

monocytes to produce MPs and to see if they varied from apoptotic stimuli. These 

experiments would also allow validation of the concentration of calcium ionophore 

A23187 and LPS to use in phenotyping and functional experiments.  

MPs were derived from THP-1 cells challenged with increasing concentrations of 

A23187, LPS, TNF-α and IFN-γ. THP-1 cells stimulated with the calcium ionophore 

A23187 released MPs in a dose-dependent manner, however quantitatively these were 

only statistically significant with concentrations above 12μM (12μM 760,641±101,244 vs 

control 373,569±78,342 p= 0.039; 18μM 859,231±121,630 vs control 373,569±78,342 

p=0.028; 24μM 975,905±121,391 vs control 373,569±78,342 p=0.0062) (Figure 4.5).  

A similar trend was observed with LPS stimulation, whereby all concentrations of LPS 

were able to induce an increase in MP number compared to control conditions, however 

only concentrations above 50ng/ml generated a statistical increase in MPs compared to 

control (50ng 3,125,579±225,704 vs control 1,239,750±174,928 p=0.0027; 100ng/ml 

4,050,800±471,309 vs control 1,239,750±174,928 p=0.005; 1000ng/ml 

5,962,358±1,194,487 vs control 1,239,750±174,928 p=0.0051) (Figure 4.5).  

Stimulation with TNF-α also induced MP release however, a higher concentration was 

required to significantly increase MP number to control in comparison to LPS (100ng/ml 

3,734,767±874,736 vs control 1,239,750±174,928 p=0.049). 
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 The number of MPs released from THP-1 cells challenged with IFN-γ also increased with 

stimulus concentration, reaching a plateau at 250 units/ml, whereby MP release became 

significant compared with control (250 units/ml 3,330,463±344,217 vs control 

1,239,750±174,928 p=0.0056; 500 units/ml 3,691,858±213,277 vs control 

1,239,750±174,928 p=0.0009) (figure 4.5).  

From these dose-response experiments, A23187 at 12µM and LPS at 100ng/ml were 

used in further experiments, as these concentrations both elicited an MP release within 

the EC70-EC80 (Effective concentration) range, and also as previously described (Bardelli 

et al., 2012; Cerri et al., 2006; Wen et al., 2014) (See Appendix 4 and 5).  

Neither TNF-α or IFN- γ were chosen as an activating stimulus in any experiments 

beyond this point as these were both analysed in cytokine secretion experiments 

described in section 4.4.4.   
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Figure 4.5: THP-1 cells release quantitatively different MPs following stimulation 

1x106 THP-1 cells/ml challenged with increasing concentrations of LPS (n=3 biological replicates), TNF-α (n=3 

biological replicates) and IFN-γ (n=3 biological replicates) for 4 hours or 10 minutes for A23187 stimulation (n=3 

biological replicates) in accordance with literature (Cerri., et al 2006, Neri., et al 2011, Bardelli., et al 2011). Annexin 

V+ MPs (<1µm) were enumerated by flow cytometry, with data displayed as mean ±SEM. Differences for each 

treatment determined by ONE-WAY ANOVA, with a Tukey’s post hoc test * p<0.05, ** p<0.01, *** p<0.001, **** 

p<0.0001.  
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4.4.3 THP-1 cells release phenotypically different MPs depending on treatment 

conditions  

To determine if MMPS from apoptotic cells displayed distinct phenotypes from activated 

cells, MMPS were derived from THP-1 cells following treatment with either; LPS, A23187 

or serum starvation. The phenotypes of these MPs (defined by their size <1µm and 

expression of Annexin V) and their relation to parent cell marker expression were 

characterised by surface antigen presentation measured by flow cytometry (data 

presented in table 4.4 and figure 4.6).   

Stimulation by; LPS, calcium ionophore, and starvation conditions did not influence the 

expression of CD142 and CD11b in both THP-1 cells and their derived MPs (Table 4.4).  

A significant increase in CD14 expression was only observed after treatment with LPS 

when compared with A23187 (33.76%±2.26% vs 17.87%±0.44% p=0.0063) however, LPS 

CD14 expression was not significantly altered with any other treatment. In contrast, 

CD14 expression on MMPS was not significantly upregulated in any experimental 

condition (Figure 4.6). 

LPS stimulation and starvation conditions were also able to significantly upregulate 

percentage CD54 antigen expression on monocytes when compared to control and 

A23187 stimulation (for LPS stimulation 67%±1.76% vs control 9.7%±0.36% p<0.0001, 

67%±1.76% vs A23187 14.28%±0.68% p<0.0001 and 67%±1.76% vs starvation 

28.27%±7.93% p<0.0001. For Starvation 28.27%±7.93% vs control 9.7%±0.36% 

p=0.0013, 28.27%±7.93% vs A23187 14.28%±0.68% p=0.019). This upregulation was also 

observed in the resulting MMPS population from apoptotic and LPS derived MMPS (for 

LPS stimulation 28.7%±0.90% vs control 12.98%±2.37% p<0.0001, for A23187 
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Figure 4.6: Serum starved and activated THP-1 cells release MPs with different CD marker profiles 

(percentage positive) depending upon the type of stimulus 

1x106 THP-1 cells/ml were challenged with either: 12µM A23187 (n=3 biological replicates, pink bars), 100ng/ml LPS 

(n=3 biological replicates, blue bars), starved of serum for 72 hours (n=3 biological replicates, orange bars) or serum 

(control) conditions 10% FBS (n=3 biological replicates, purple bars). Percentage expression of the surface markers 

FITC-CD54 and PE-CD14 was measured on parent cells and Annexin V+ MPs (<1µm) by flow cytometry. Data is 

displayed as mean percentage expression within the monocytic or Annexin V+ MP gate ±SEM. Differences for each 

treatment determined by a ONE-WAY ANOVA, with a Tukey’s post hoc test. * p<0.05, ** p<0.01, *** p<0.001, **** 

p<0.0001.  

 

21.83%±1.22% vs control 12.98%±2.37% p=0.007. For starvation 29.03%±1.91% vs 

control 12.98%±2.37% p<0.0001, 29.03%±1.91% vs A23187 21.83%±1.22% p=0.03).  

Percentage expression THP-1 cells 

CD 
Marker  

Control 
(RPMI 
1640)  

Serum 
starved 

LPS 
100ng/ml 

A23187 
12µM 

Sig. 
between 
groups 

CD142 2.05%±1.23% 3.42%±0.97% 3.9%±0.35% 0.57%±0.12% ns 

CD11b 1.52%±0.06% 2.81%±1.18% 4.81%±0.36% 2.18%±0.12% ns 

Percentage expression MPs 

CD142 8.50%±0.35% 9.23%±0.20% 12.05%±0.57% 8.29%±0.50% ns 

CD11b 13.9%±0.21% 14.20%±0.17% 15.47%±1.40% 13.9%±0.91% ns 

Table 4.4: Percentage expression of CD142 and CD11b on THP-1 cells and their corresponding MPs 
following stimulation with; LPS and A23187 or by starvation. ns= non-significant between groups.  
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Figure 4.7: Serum starved and activated THP-1 cells release phenotypically different MPs depending 
upon type of stimulus 

1x106 THP-1 cells/ml were challenged with 12µM A23187 (n=3 biological replicates, pink bars), 100ng/ml LPS (n=3 
biological replicates, blue bars), serum starved for 72 hours (n=3 biological replicates, orange bars) or control 
conditions 10% FBS (n=3 biological replicates, purple bars). Surface marker expression was characterised on both 
parent cells and Annexin V+ MPs (<1µm) by flow cytometry by staining with FITC-CD54. Data is displayed as mean MFI 
within the monocytic or Annexin V+ MP gate ±SEM. Differences for each treatment determined by a ONE WAY-ANOVA 
with a Tukey’s post hoc test. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.  

 

A similar trend was observed when comparing the mean fluorescence intensity of 

surface antigens on THP-1 cells and the MPs they released (defined by their size <1µm 

and expression of Annexin V). Stimulation by; LPS, calcium ionophore, and starvation 

conditions did not influence the expression of CD142, CD14 and CD11b in both THP-1  

cells and their derived MPs (data presented in table 4.5 and figure 4.7).   

Table 4.5: MFI of CD142, CD14 and CD11b on THP-1 cells and their corresponding MPs following 
stimulation with; LPS and A23187 or by starvation. ns= non-significant between groups.  

 

 

 

 

 

 

 

 

 

 

 

 

MFI THP-1 cells 

CD 
Marker 

Control 
(RPMI 
1640) 

Serum 
starved 

LPS 
100ng/ml 

A23187 
12µM 

Sig. 
between 
groups 

CD142 901±61 973±39 1,057±155 941±55 ns 

CD11b 842±10 786±33 864±31 746±93 ns 

CD14 429±29 594±68 500±36 651±16 ns 

MFI expression MPs 

CD142 365±7 365±9.64 355±1.33 353±2.8 ns 

CD11b 789±4 802±7 804±16 789±9 ns 

CD14 813±17 908±37 837±43 830±7 ns 
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With respect to CD54 MFI, only 100ng/ml LPS stimulation for 4 hours was able to 

significantly upregulate surface antigen expression (3,330±441 vs control 1,920±271 

p<0.0001, 3,330±441 vs A23187 1,131±76 p<0.0001 and 3,330±441 vs starvation 

2,034±126 p<0.0001) (Figure 4.7), which was also mirrored in the MPs derived from 

these cells (LPS 1,779±288 vs control 759±7 p<0.0001, LPS 1,779±288 vs A23187 

1,290±198 p=0.0041 and LPS 1,779±288 vs starvation 1,078±44 p<0.0001). CD54 

expression on cells was downregulated with calcium ionophore treatment when 

compared to control, starvation and LPS (1,131±76 vs control 1,920±271 p=0.003, 

1,131±76 vs starvation 2,034±126 p=0.0007 and 1,131±76 vs LPS 3,330±441 p<0.0001) 

however, an upregulation of this CD54 antigen on the MP surface was observed 

following A23187 when compared to control (1,290±198 vs control 759±7 p=0.0097).  

The expression of PS was also quantified by MFI on the surface of MPs generated under 

each of the treatment conditions. Apoptotic MPs expressed the highest amount of PS on 

their surface which was significantly increased when compared with control, LPS and 

A23187 derived MPs (2,932±129 vs control 1,524±88 p<0.0001, 2932±129 vs LPS 

2,096±153 p<0.0001 and 2,932±129 vs A23187 1,971±55 p<0.0001). Furthermore, LPS 

and A23187 treatment also increased MP PS surface expression when compared to 

control (LPS 2,096±153 vs control 1,524±88 p=0.0007 and A23187 1,971±55 vs control 

1,524±88 p=0.009).  
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4.4.4 Monocytic MPs induce the release of pro-inflammatory cytokines from isolated 

human monocytes 

Following the validation of MP release from THP-1 cells, MMPS were cultured with 

human monocytes isolated using the methodology outlined in the previous chapter. For 

these experiments, MMPS were derived from THP-1 cells due to their highly proliferative 

nature allowing the generation of large quantities of MPs to be used in multiple 

functional assays.  IL-6 was chosen as a marker for monocyte activation as previously 

described (Schildberger et al., 2013), thus its secretion following MMPS treatment from 

human monocytes was first analysed. Monocytes were challenged with increasing 

concentrations of MMPS, derived from A32187 stimulated THP-1 cells, or from the 

corresponding MP supernatant concentration with cytokine secretion measured at 6, 18 

and 24 hours (figure 4.8). 

Although LPS generated MPs provide the most biologically relevant model of MP 

release, A23187 stimulation was chosen as the preferred method, as endotoxin was 

detectable in the MP pellet despite thorough washing cycles; determined by a positive 

pierce LAL assay result.   

Increases in IL-6 secretion with the highest MP concentration when compared to the 

corresponding supernatant controls were statistically significant (18 hours: 1:10 MP 

67pg/ml±28 vs supernatant 1:10 1.98pg/ml±0.82 p<0.0001; 24 hours: 1:10 MP 

98.48pg/ml±19.99 vs supernatant 1:10 9.46pg/ml±1.40 p<0.0001), demonstrating that 

these effects were attributable to the MPs themselves rather than small molecules or 

contaminating A23187 carried over in the MP supernatant.  
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Figure 4.8: Monocytic MPs induce the secretion of IL-6 from isolated human monocytes 

IL-6 secretion from 2x104 Human monocytes (n=3 biological replicates) was analysed by ELISA following the treatment 

with increasing concentrations of MMPS (1:1, 1:5, 1:10) and the corresponding supernatant controls  (1:1, 1:5, 1:10) 

for 6,18 and 24 hours. Data is displayed as mean cytokine secretion ±SEM. Differences for each treatment determined 

by a ONE-WAY ANOVA, with a Tukey’s post hoc test. *** p<0.001, **** p<0.0001.  

 

IL-6 release from isolated monocytes was only significantly increased after 18 and 24 

hours of treatment with the highest concentration of MMPS at a ratio of 1:10 (Cell: 

MPs). (Figure 4.8). This increase in IL-6 secretion was significant when compared to 

control, and increasing concentrations of MPs at 1:1 and 1:5 at both 18 and 24 hours.  
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Figure 4.9: Monocytic MPs induce the secretion of TNF-α from isolated human monocytes 

IL-1β, IL-8, IL-10 and TNF-α secretion from 2x104 Human monocytes (n=3 biological replicates) was analysed by MSD 

following the treatment with increasing concentrations of MMPS (1:1, 1:5, 1:10) and the corresponding supernatant 

controls  (1:1, 1:5, 1:10) for 24 hours. Data is displayed as mean cytokine secretion ±SEM. Differences for each 

treatment determined by a ONE WAY-ANOVA, with a Tukey’s post hoc test. * denotes significance at p<0.05 

 

In order to investigate the influence of MMPS on the release of other monocytic 

cytokines (IL-1β, IL-8, IL-10, IFN-γ and TNF-α), 24 hours was selected as the optimum 

time point (Figure 4.9).  

 

 

 

 

 

 

 

 

 

Monocyte derived MPs significantly increased IL-1β cytokine secretion from human 

monocytes at the highest concentration (1:10) when compared with control conditions 

(MMPS 20.13pg/ml±9.74pg/ml; control 1.12pg/ml±0.41pg/ml, p=0.0447) and MMPS at 
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the lowest concentration (1:1) (MMPS 1:10 20.13pg/ml±9.74pg/ml; MMPS 1:1 

1.06pg/ml±0.41pg/ml, p=0.0435). Despite the increase in IL-1β from 2.96pg/ml±0.84 to 

20.13pg/ml±9.75pg/ml in the 1:10 MP supernatant condition compared to the 

equivalent MMPS treatment, this difference failed to reach statistical significance 

p=0.087.  

This was similarly observed with IL-10 anti-inflammatory secretion whereby the 

maximum MMP concentration increased cytokine release however, this was only 

statistically significant when compared to the lowest MMP condition (MP 1:10 

7.81pg/ml±3.94pg/ml; versus MP 1:1 0.23pg/ml±0.059pg/ml, p=0.048). Furthermore, 

despite the increase in IL-8 secretion with MMP treatment at 1:5 and 1:10 ratios in each 

case, these failed to reach significance when compared to control and corresponding MP 

pellet supernatant.  

Finally, human monocytes challenged with the highest concentration of MMPS (1:10) 

released an elevated amount of TNF-α in comparison to all other treatment conditions 

(MMPS 1:10 293pg/ml±144pg/ml versus control 6.31pg/ml±1.36pg/ml, p=0.014; versus 

MMPS 1:1 5.39pg/ml±1.40pg/ml p=0.0135; versus MMPS 1:5 38.37pg/ml±24.19pg/ml 

p=0.0354). In addition, this remained statistically significant when compared to the 

corresponding supernatant control (MMPS 1:10 293pg/ml±144pg/ml versus sup 1:10 

8.59pg/ml±2.20 p=0.0149). For all treatment conditions IFN-γ was below the limit of 

detection (7.47pg/ml).  

MMPS at the highest ratio/concentration 1:10 elicited the largest pro-inflammatory 

cytokine release and was therefore used in future experiments.   
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4.4.5 Monocytic MPs influence the expression of surface molecules on human 

monocytes 

Once concentrations of monocyte MPs had been validated and appropriate time points 

optimised, the influence of monocyte-derived MPs on extracted human monocyte 

functionality and surface marker expression was investigated.  

Initial experiments that analysed the changes in adhesion molecules (CD11b, CD11c), 

chemokine receptors (CCR2) and surface markers associated with lipid uptake (CD36, 

CD204) were analysed on the surface of isolated monocytes at 2, 4 and 24 hours 

following treatment with MMPS or corresponding MP pellet supernatants (figure 4.10).  

For all treatment conditions, CD11c was expressed on >95% of cells within the 

monocytic gate and was not significantly altered over the 24-hour time course due to its 

high expression on the monocytic gate; thus MFI was quantified for this marker. With 

respect to CD11c MFI, surface marker expression was not significantly increased with 

MMPS treatment at any time point when compared to control conditions and MP 

supernatant. CD11c expression did however peak at 4 hours when compared to control 

(MMPS 1:10; 8,236±454 vs control; 5,489±181 p=0.06) and MP supernatant (MMPS 

1:10; 8,236±454 vs supernatant 1:10; 5,543±179 p=0.066) however, these were not 

significant. The percentage of monocytes that were CD11b positive increased following 

MMP treatment at each time point however, this increase was only statistically 

significant when compared to control (70.9%±6% vs 34%±7.8% p=0.017) and MP 

supernatant (70.9%±6% vs 36.9%±9.61% p=0.0257) after a 4 hour incubation period.   
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Figure 4.10: A23187 derived monocytic MPs alter monocyte phenotype 

1x105 Human monocytes were challenged with MMPS 1:10, supernatant 1:10 or control conditions 10% FBS (n=3 

biological replicates) for 2, 4 and 24 hours. Surface marker expression was characterised using flow cytometry by 

staining with FITC-CD36, APC-CD11b, PECy7-CD11c, PerCp-Cy5.5 CCR2 and APC CD204. Data is displayed as mean 

percentage positive within the monocytic gate ±SEM, in the case of CD11c, surface expression is also displayed as 

MFI±SEM. Differences for each treatment determined by a TWO-WAY ANOVA, with a Tukey’s post hoc test. * denotes 

significance at p<0.05.  
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With respect to CCR2, the percentage of monocytes positive for this surface antigen was 

highest across all treatments after 2 hours, with MMP reducing receptor expression 

however this failed to reach significance when compared to control and the 

corresponding MP supernatant (28.30%±3.53% vs 35.10%±6.75% p=0.72 and 

28.30%±3.53% vs 34.03%±5.46% respectively). Furthermore, CCR2 surface expression 

continued to decrease with all treatment conditions over the 24-hour time course, 

however in each case percentage expression remained lower in the MMP treatment 

condition compared to control and supernatant.   

Finally, the percentage expression of lipid uptake receptors CD36 and CD204 were 

quantified in the monocytic gate. No significant differences were observed between 

treatments at all three time points for CD36, with little change in receptor expression 

throughout the time course. A similar trend was observed with CD204 however, this 

surface antigen was upregulated in all treatment conditions over the total 24 hour time 

period. 

As the 4 hour time point was optimum to increase CD11b adhesion molecule expression, 

this was selected as the incubation period for adhesion and transmigration functionality 

assays. CCR2 percentage expression was highest at the 2 hour time point across all 

conditions, thus this was selected for the treatment period for chemotaxis and migration 

experiments to MCP-1 (CCL2). Due to limited changes in lipid uptake receptor expression 

with no visible increasing trends after any incubation period, the decision was taken not 

to investigate the influence of MMP on lipid uptake in this thesis.  
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Figure 4.11: The effect of MMPS pre-treatment on the migration of human monocytes to MCP-1 

5x104 isolated monocytes were pre-treated with MMPS (1:10), supernatant (1:10) or control conditions for 2 hours 

(n=3 biological replicates). After this time cells were added to the top of a 5.0µM pore transwell insert and left to 

freely migrate towards 5ng/ml MCP-1 for 4 hours. Images were taken at 5 random fields, at 100x magnification. 

Results are displayed as number of cells migrated/field±SEM. Differences for each treatment determined by a ONE-

WAY ANOVA, with a Tukey’s post hoc test. 

4.4.6 Monocytic MPs do not affect human monocyte chemotaxis towards MCP-1 

Having demonstrated no change in surface expression of CCR2 following treatment with 

MMPS, the chemotactic response of monocytes following MMPS treatment was 

therefore investigated (figure 4.11).  
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Following the pre-treatment of isolated monocytes with MMPS and the MP pellet 

supernatant, fewer cells migrated through the Transwell towards MCP-1 (73.25±15.670 

monocytes migrated/field and 70.64±6.20 monocytes migrated/field respectively) 

compared to control conditions (78.4±8.20 monocytes migrated/field), however the 

difference in cell migration in each condition did not reach significance (Control Versus 

MMPS p=0.85; control versus MP pellet supernatant p=0.70; MMPS versus MP pellet 

supernatant p=0.96).  
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4.4.7 Monocytic MPs enhance human monocyte adhesion to endothelial cells 

The influence of MPs on monocyte adhesion to endothelial cells was investigated, 

comparing the influence of LPS and the inflammatory cytokine TNF-α on adhesion 

(figure 4.12). 

The highest increase in the number of monocytes bound to endothelial cells was 

observed following the pre-treatment of endothelial cells with 10ng/ml TNF-α for 24 

hours (89%±14%).  

MMPS significantly enhanced the adhesion of monocytes to the endothelial monolayer 

when compared to control (27%±3% percentage of endothelial cells with monocytes 

bound and 14%±2% percentage of endothelial cells with monocytes bound respectively 

p=0.0307), which was also significant when compared to the corresponding supernatant 

control (27%±3% percentage of endothelial cells with monocytes bound and 12%±3% 

percentage of endothelial cells with monocytes bound respectively p=0.0240). Adhesion 

of monocytes to the endothelial monolayer was further increased following 10ng/ml LPS 

treatment (in this case used as a positive control), which was significant when compared 

to control (34.7%±5% percentage of endothelial cells with monocytes bound and 

14%±2% percentage of endothelial cells with monocytes bound respectively p=0.0193) 

and supernatant treatment (34.7%±5% percentage of endothelial cells with monocytes 

bound and 12%±3% percentage of endothelial cells with monocytes bound respectively 

p=0.0208).  
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Figure 4.12: The effect of MMPS pre-treatment on the adhesion of human monocytes to HUEVCs 

(A) 5x104 isolated monocytes were pre-treated with MMPS (1:10), supernatant (1:10), 10ng/ml LPS or control 
conditions (RPMI 1640, 10% FBS) for 4 hours (n=3 biological replicates for each treatment). After this time, human 
monocytes were added to a fully confluent monolayer of HUVECs (One well was pre-treated for 24 hours with TNF-α to 
act as an additional positive control), and left to adhere for 1 hour. Adhered monocytes were washed with PBS, and 
stained with Diff-Quick staining. Results are displayed as the percentage of endothelial cells with monocytes 
bound±SEM. Differences for each treatment determined by a ONE-WAY ANOVA, with a Tukey’s post hoc test. * 
p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. (B) Representative images of adhered human monocytes to 
endothelial cells following the pre-treatment of monocytes with MMPS 1:10, supernatant 1:10, LPS 10ng/ml or HUVEC 
pre-treatment with 10ng/ml TNF-α. Images taken at 200x magnification, Scale bar = 50µM. 
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Figure 4.13: The effect of MMPS pre-treatment on the transendothelial migration of monocytes 

5x104 isolated monocytes were pre-treated with MMPS (1:10), supernatant (1:10) or control conditions for 4 hours 

(n=3 biological replicates). After this time cells were added a confluent HUVEC monolayer grown on the top of a 

5.0µM pore transwell insert (as confirmed by crystal violet staining), and left to freely migrate towards 5ng/ml MCP-1 

for 4 hours. Images were taken at 5 random fields, at 100x magnification. Results are displayed as number of cells 

migrated/field±SEM. Differences for each treatment determined by a ONE-WAY ANOVA with a Tukey’s post hoc test. * 

p<0.05, ** p<0.01.  

. * p<0.05, ** p<0.01.  

 

4.4.8 Monocytic MPs enhance monocytic transendothelial migration 

Having demonstrated an enhanced monocyte adhesion to endothelial cells, but not 

migration to MCP-1 alone following incubation with MMPS, it was investigated whether 

MMPS could influence transendothelial migration using a transwell coated with 

endothelial cells (Figure 4.13). To ensure that a fully confluent monolayer had formed, 

crystal violet staining of one transwell insert was performed prior to the addition of 

monocytes to confirm this as shown in figure 4.3.   
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MMPS (1:10) significantly increased the number of monocytes migrated through the 

endothelial monolayer compared to control (145±16 monocytes migrated/field and 

78±8 monocytes migrated/field respectively p=0.013). Similarly, this increase was also 

significant when compared to the corresponding supernatant control (145±16 

monocytes migrated/field and 76±10 monocytes migrated/field respectively p=0.008). 

This suggests that this effect is attributed to MMPS rather than any small molecules 

remaining in the supernatant. No differences were observed between control treatment 

and pre-treatment with the MP pellet supernatant.  
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4.5 Discussion 

To investigate the conditions under which monocytic MPs are released and their 

phenotypic characterisation. THP-1 cells were used initially as they provided an 

advantage of high cell numbers and a pure cell population, leading to large MP numbers 

and homogenous MP populations generated. Cryo SEM imaging of MMPS from 

apoptotic THP-1 cells (serum-starved) showed that MP protrusions from the cell 

membrane occurs after a minimum of 48 hours, with little MP formation within the first 

24 hours (Koifman et al., 2017). Therefore, in these experiments, a time course of 48-96 

hours was performed to induce cell death. Our data showed that after 72 hours MP 

number was increased when compared to control conditions, correlating positively with 

the percentage of apoptotic cells, supporting the link between apoptosis and MP 

generation.  This link between cell death and MP release was also found in endothelial 

cells (HUVEC) (data presented in Appendix 6), in addition to endothelial MP release 

following TNF-α stimulation (data presented in Appendix 7). 

A larger quantity of MPs from THP-1 cells were generated following stimulation with LPS 

compared to apoptosis in agreement with the observations made by Koifman., et al 

(2017), with the addition of pro-inflammatory cytokines TNF-α and IFN-γ (Koifman et al., 

2017). THP-1 cells were also activated with a calcium ionophore, A23187. A23187 is a 

carrier ionophore that stimulates MP release in a similar fashion activating stimuli by 

increasing cytosolic calcium levels, however this bypasses receptor binding. This increase 

in intracellular calcium therefore disrupts the cell membrane asymmetry and leads to 

MP budding (Koshiar et al., 2014). All treatment conditions evoked a concentration-
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dependent MP release compared to controls, with LPS the most potent stimulator 

evident from the largest increase in MP production.  

As MPs are derived by plasma membrane budding they carry proteins and lipids found 

within the parent cell therefore different MP phenotypes reflect their parent cell origin 

depending on the type of stimulus. MP analysis has demonstrated that different stimuli 

produce unique proteomic and phenotypic profiles from THP-1 and MM6 (Mac-Mono 6, 

a monocytic cell line) cell lines (Bernimoulin et al., 2009; Wen et al., 2014).  

Data in this chapter has supported this, demonstrating that MP surface antigen 

expression varies depending on whether the stimulus is an activating or apoptotic one 

compared to quiescent MPs. ICAM-1 (CD54+) is a pro-inflammatory surface marker that 

was most influenced by LPS stimulation, upregulating both numbers of CD54+ MPs and 

the MFI. This is in accordance with previous observations whereby LPS stimulated MM6 

cells increased cellular and MP expression of this surface antigen, along with a pro-

inflammatory RNA profile that mirrored parent cells (Wen et al., 2014).  

Unexpectedly, we did not observe an elevated expression, or proportion, of tissue factor 

(TF, CD142) on the surface of either MPs or parent cells under stimulatory conditions. In 

vitro and in vivo LPS stimulation has been reported to upregulate TF on the surface of 

human monocytes (Brand et al., 1991; Brekke et al., 2013; Egorina et al., 2005), with LPS 

monocytic derived MPs in vitro similarly expressing CD142 and exhibiting thrombotic 

activity (Khaspekova et al., 2016). However, our experiments using 100ng/ml LPS failed 

to induce an increase in TF antigen expression on THP-1 cells or their corresponding MP 

populations. An increased surface expression of CD142 has previously been described in 

THP-1 cells following the incubation with higher LPS concentrations (10µg/ml-
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100µg/ml), thus the inability of LPS to induce TF expression in this case may be 

attributable to the lower concentration of LPS used (100ng/ml) (Sabbione et al., 2018).   

Apoptotic MMPS expressed more PS on their surface compared to all other conditions, 

with both stimulated conditions also displaying an increased MFI of PS when compared 

to quiescent MPs. This is likely to be representative of surface expression on the outer 

membrane of the parent cell, as PS exposure occurs due to activation, apoptosis and 

necrosis (Bevers et al., 1982, 1983; Fadok et al., 1992). This phenotyping data 

demonstrates similar trends in cell surface marker expression on parent cells and MP 

populations supporting the concept that MMPS mirror their parent cells, in addition to 

demonstrating one of the ways in which they may exert varying biological functions in 

vivo (Wen et al., 2014).  

MPs from different cellular origins also have the ability to induce monocyte/macrophage 

activation (Baj-Krzyworzeka et al., 2007; Barry et al., 1998; Carpintero et al., 2010; 

Distler et al., 2005b; Jy et al., 2004; Scanu et al., 2008), in addition to an autocrine effect 

observed from MMPS themselves (Bardelli et al., 2012).  

One primary action of monocytes in vivo is to release various cytokines upon activation. 

In accordance with the literature, we found that IL-6 pro-inflammatory cytokine 

secretion was only significantly elevated after 18 and 24-hour stimulation following 

treatment with the highest MMPS concentration (monocyte: MMPS ratio (1:10)) 

(Amoruso et al., 2010; Bardelli et al., 2005, 2012).  Since the largest increase was 

observed after 24 hours, this was selected as the optimum time point, whereby IL-1β, IL-

8, TNF-α, IFN-γ and IL-10 cytokine secretion were also quantified. 
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The pro-inflammatory cytokines TNF-α and IL-6 displayed a similar trend, whereby 

secretion was significantly increased upon treatment with the highest concentration of 

MMPS. This data supports observations made by Bardelli., et al (2012), whereby MMPS 

derived from A23187 stimulated human monocytes increased IL-6 and TNF-α secretion 

with maximal effects observed at 10µg/ml MMPS (Bardelli et al., 2012). This elevation in 

cytokine secretion is likely to be as a result of NF-ĸβ activation, as previously described 

by Bardelli et al., (2012). 

Alongside the increase in inflammatory mediators, MMPS also induced the expression of 

activation markers. In this study, MMPS upregulated the percentage of monocytes 

expressing CD11b, which has also been reported in U937 cells following treatment with 

platelet-derived MPs (Barry et al., 1998), and endothelial-derived MPs (Jy et al., 2004). 

CD11b is an integrin that regulates the adhesion of monocytes to the endothelium 

through the interaction of ICAM-1, facilitating their migration and inflammatory 

response (Muller, 2013). Similar to the effects of platelet MPs, CD11c expression was not 

statistically significantly altered following MMPS treatment, however an increase was 

observed in this study supporting the concept that MPs from different cellular origins 

display varying biological functions (Barry et al., 1998). These differences may also be 

attributable to the use of a monocytic cell line rather than human monocytes in the 

latter study. 

Despite MMPS treatment failing to induce any significant changes in CCR2, CD36 and 

CD204 expression over the 24-hour time course, CCR2 expression was downregulated 

compared to control, and the MP pellet supernatant conditions at all three time points. 

The downregulation of this chemokine receptor on human monocytes has previously 
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been reported following the treatment with LPS and pro-inflammatory cytokines (IFN-γ, 

TNF-α and IL-1β) (Penton-Rol et al., 1998; Sica et al., 1997), as a mechanism for activated 

monocytes to inhibit reverse endothelial transmigration (Randolph and Furie, 1996) and 

further monocyte recruitment. Thus, we speculate this downregulation of CCR2 may be 

a consequence of MMPS enhancing monocyte activation, supported by the increase in 

activation marker expression and inflammatory mediators as described. 

It was then determined if these changes in phenotype would lead to alterations of 

chemotactic, adherence and migratory function. With respect to monocyte chemotaxis, 

MMPS treatment failed to induce any significant changes in migration towards MCP-1 (a 

chemokine that modulates monocyte chemotaxis); an effect potentially observed due to 

non-significant changes in CCR2 (MCP-1 receptor) expression previously shown.  

MMP pre-treatment enhanced monocyte adhesion to an endothelial monolayer; an 

effected potentially mediated by the increased CD11b expression on these cells. The 

ability for monocyte-derived MPs to induce adhesion molecule expression has previously 

been reported in epithelial and endothelial cells, whereby expression of ICAM-1, VCAM-

1 and E-selection is upregulated (Cerri et al., 2006; Wang et al., 2011; Wen et al., 2014).  

This evidence strongly suggests that the increased chemotactic function and adherence 

to endothelial cells induced by MPs would also influence the transmigration through the 

endothelium.  Our work shows that transendothelial migration was upregulated 

following the incubation of monocytes with MMPS for 4 hours compared with MP pellet 

supernatant controls and media alone. This work supports previous observations (by 

Barry., et al (1998) and Jy., et al (2004)) whereby pre-treatment of U937 cells with PMP 



 Chapter 4 – Functional effects of monocyte microparticles 

148 | P a g e  
 

and EMP upregulated adhesion marker expression, which led to enhanced adhesion 

(with respect to PMP) and transmigration (Barry et al., 1998; Jy et al., 2004).  

In summary, data in this chapter has demonstrated that MPs derived from monocytic 

cells under different conditions vary quantitatively and phenotypically, mimicking their 

parent cell phenotype. This work supports previously reported autocrine effects of 

MMPS, whereby pro-inflammatory cytokine secretion is upregulated, in addition to also 

presenting novel findings that MMPS can alter monocyte activation status and 

upregulate adherence and transendothelial migratory functions. At present the 

mechanism through which these MMPS exert their function is not yet fully understood, 

however further evaluating MP effects on target cells and their composition may help to 

elucidate these mechanisms.  

In inflammatory diseases, having increased circulating MMPS may therefore contribute 

to the promotion of monocyte adhesion and transmigration to endothelial cells; 

propagating atherogenesis. Our next aim was to therefore characterise alterations in the 

monocyte MP population found in individuals exposed to chronic inflammatory disease, 

namely HIV.   
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Chapter 5 - MP subsets in paediatric HIV infection 
5.1 Introduction 

The previous chapter describes the pro-inflammatory effects of MMPS on human 

monocyte function, promoting cytokine release, endothelial adherence and 

transendothelial migration. As these are the initiating steps in endothelial inflammation 

and vascular dysfunction, in disease states where MMPS are elevated, this provides a 

possible further mechanism through which atherosclerosis pathogenesis is accelerated 

in these patients.  

In addition to MMPS, MPs from other cellular origins have also been shown to play a 

role in CVD progression including; platelets, T cells and endothelial cells. Thus, this 

chapter aims to characterise levels of these circulating MP phenotypes as well as MMPS 

in the setting of paediatric HIV infection, whereby atherosclerotic disease is accelerated.  

5.1.1 MPs in HIV infection 

In patients with HIV infection treated with ART, HIV associated mortality and morbidity 

is reduced, however the incidence of non-AIDS related co-morbidities has increased. The 

most common comorbidity is CVD, linked to elevated levels of systemic inflammation 

that is observed within these patients (Nou et al., 2016).  As MPs are usually released in 

response to cellular activation, it is likely that MP levels in these patients are reflective of 

this ongoing immune activation. Indeed, increased numbers of endothelial, monocytic 

and platelet MPs have been reported in adults with HIV infection (Corrales-Medina et 

al., 2010; Hijmans et al., 2019; Kelly, 2016; Mayne et al., 2012; Da Silva et al., 2011). 
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HIV virally suppressed adults receiving ART, express higher numbers of platelet MPs 

(CD31+/CD42b+) compared to healthy controls. No differences in PMP numbers were 

found within the HIV infected cohort with respect to ART type, duration of ART or time 

with undetectable viral load (Corrales-Medina et al., 2010).  

Furthermore, the percentage of PMPs positive for P-selectin and TF, indicative of their 

activation,  were elevated in HIV infected adults receiving ART when compared to 

healthy age-matched controls (Mayne et al., 2012). The expression of TF on monocytes 

and platelets correlated with this MP TF expression in both HIV infected individuals and 

healthy controls but failed to show any relationship between viral load or T cell counts 

(Mayne et al., 2012). Within the same cohort, PMP expression of P-selectin and TF 

displayed a positive association with sCD14, suggesting a link between monocyte 

activation and TF expression on platelets (Mayne et al., 2012). In addition, MP TF activity 

was 39% lower in ART-treated patients compared to treatment-naïve  HIV infected 

individuals; a potential mechanism that leads to coagulation pathway activation 

contributing to the risk of non-AIDs complications (Baker et al., 2013).   

Endothelial MPs (EMPs) have also been shown to be elevated in plasma from ART-

treated HIV patients compared to an age-matched healthy control population (Kelly, 

2016; Da Silva et al., 2011). Total MP number from a monocytic, endothelial (PCAM+, E-

selectin+) and platelet (CD42a+) origin correlated with Pulse Wave Velocity  (PWV) in 

HIV infected adults from Malawi, with total MP number and EMPs elevated in 

comparison to healthy controls (Kelly, 2016). 

Likewise, HIV infected men with controlled viremia receiving ART showed markedly 

higher circulating levels of endothelial, platelet, monocytic and leukocyte derived MPs 
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compared to age-matched controls (Hijmans et al., 2019). These isolated MPs induced 

greater inflammation, oxidative stress, senescence and apoptosis of HUVECs in vitro, 

compared to healthy control MPs, demonstrating their ability to contribute to 

endothelial activation and damage (Hijmans et al., 2019).  

The quantity and phenotypes of specific MPs circulating in the plasma of children with 

HIV infection are currently unknown. With an aim to understand this, MPs were 

analysed in plasma samples taken from HIV infected children, and controls recruited into 

the CHAPAS-3 clinical trial and subsequent cardiovascular sub-study.  

5.1.2 CHAPAS-3 clinical trial and cardiovascular sub-study 

The “Children with HIV in Africa Pharmacokinetics and Acceptability/Adherence of 

Simple Antiretroviral Regimens (CHAPAS)  3” trial was an open-label randomised phase 

II/III clinical trial conducted between 2010 and 2013. Throughout this period a total of 

478 children between the age of 1 month and 13 years were recruited across 3 sites in 

Uganda and one in Zambia (Mulenga et al., 2016).  

The aim of the study was to evaluate the toxicity and efficacy of NRTI-containing first-

line ARTs in treatment-naïve children and ART-experienced children that had been 

taking stavudine-containing first-line therapy for more than 2 years. Upon recruitment, 

both treatment-naïve and treatment-experienced children were randomised to a 

treatment arm, within which they were prescribed abacavir, zidovudine or stavudine, 

with either Nevirapine or Efavirenz and Lamivudine. Patients were followed up over 96 

weeks, with CD4+ T cell counts analysed at weeks 6, 12, 24, 48, 72 and 96 weeks, and 

viral load measured at weeks 48 and 96. The study reported no major differences in 

clinical outcomes, viral suppression and CD4 percentage recovery with the different 
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NRTI regimes, with similar low toxicity levels reported in each treatment group (Mulenga 

et al., 2016). 

As part of the CHAPAS-3 clinical trial, 208 ART naïve and 74 treatment-experienced 

children were additionally recruited into a CV sub-study. 284 sex and age-matched 

healthy control children were also recruited into the study from the community, well-

child clinics, surgical outpatient clinics and siblings of CHAPAS-3 patients. 

This study aimed to determine the influence of both controlled and uncontrolled HIV 

infection on measurements of vascular function: IMT, PWV, and biomarkers of 

inflammation, vascular injury and disordered thrombogenesis. In addition, longitudinal 

changes in these measurements were also assessed over 96 weeks within both HIV 

infected cohorts. As with the main CHAPAS-3 trial, at baseline, treatment-naïve and 

treatment-experienced children were randomised to an NRTI-containing ART treatment 

arm.  

The CHAPAS CV sub-study showed that children with untreated HIV infection display 

evidence of asymptomatic atherosclerosis, through an increase in IMT and PWV 

compared to uninfected children. ART-experienced children displayed similar IMT and 

PWV to healthy control children, with IMT continuing to improve over the 96 week 

follow up. These improvements in vascular function were also observed within the 

treatment-naïve cohort, following the initiation of ART strongly suggestive that 

structural changes can be reversed following successful viral suppression.  

Biomarkers indicative of CV injury, inflammation and thrombogenesis were elevated 

within the treatment-naïve population in this trial compared to controls. Following 
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treatment intervention within this group, levels of these biomarkers significantly 

decreased but did not normalise to healthy control levels. Similar observations were 

made within the treatment-experienced cohort, with biomarkers remaining elevated 

despite effective ART for a median of 3.5 years. Although these were reduced, they 

remained outside the healthy control range. These results support literature 

demonstrating that although ART intervention reduces inflammatory biomarkers, these 

levels fail to normalise with healthy controls.  

This work by Dr Kenny demonstrates that despite improvements in vascular function 

following ART initiation, abnormalities in inflammatory biomarkers remain (Kenny, 

2016). 
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5.2 Aims and Objectives 

In children with HIV infection the dynamics of circulating MPs, and how these are altered 

in response to ART initiation are currently unknown. Therefore, MPs were quantified 

and phenotyped in 2 HIV infected paediatric cohorts recruited within the CV sub-study 

of the CHAPAS-3 clinical trial. 

To do this, the following objectives were: 

1) Multi-colour flow cytometry panels were designed in order to phenotype MPs 

from endothelial, monocytic, platelet and T cell origins in plasma from adult 

healthy controls. 

2) The impact of different fixation methods on MP number in the plasma from adult 

healthy controls was assessed, facilitating method optimisation of HIV patient 

samples allowing them to be removed from containment level 3 laboratories.  

3) This method was applied to stored patient samples from HIV infected treatment-

naïve individuals, HIV infected treatment-experienced and healthy controls 

recruited in the CV CHAPAS-3 sub-study; allowing the analysis of circulating MP 

phenotypes and numbers.  
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5.3 Methodology  

5.3.1 Longitudinal study population 

Blood collection for MP assessment was taken upon recruitment into the CV sub-study 

of the CHAPAS-3 trial between 2010 and 2013. Samples were collected at baseline, from 

2 HIV infected cohorts, and age-matched healthy controls, with an additional sample 

collected at the 48-week follow-up assessment for the 2 HIV infected populations.  

Healthy control children were recruited into the study from the community, well-child 

clinics, surgical outpatient clinics and siblings of CHAPAS-3 patients in South Africa. 

Patient medical and family history was obtained during the initial visit, with clinical 

measurements (weight, height, blood pressure, lipids, CD4+ counts) being recorded with 

each routine visit to the clinic. 

 Blood was collected in sodium citrate tubes and depleted of platelets through 

centrifugation at 500g for 5 minutes, with the plasma removed and re-centrifuged at the 

same speed and duration. A minimum of 500µl of platelet-poor plasma from each 

patient was stored at -80°C. For MP analysis, 42 patient samples across all three patient 

cohorts were included in the study.  

5.3.2 MP quantification 

The enumeration of MPs derived from endothelial cells, T lymphocyte, monocytes and 

platelets was performed as previously described in Chapter 2. Briefly, after quickly 

thawing 250µl of plasma, samples were centrifuged for 5 minutes at 5000g twice in 

order to remove any remaining platelet contamination. Following this, supernatants 

were centrifuged for 60 minutes at 17,000g, 4⁰C to pellet MPs.  
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MP pellets were then re-suspended in 250µl of 1x Annexin V binding buffer, and divided 

equally across 6 antibody panels allowing their characterisation; table 5.1 details the 

specific antibodies and dilutions used in these experiments (details of isotype controls 

can be found in appendix 2). 

Table 5.1: List of phenotypic markers used for MP detection in patient samples 

 

 

 

 

 

Surface marker MP origin Isotype Fluorochrome conjugate Dilution 

Annexin V All N/A FITC 1:50 

CD3 T Lymphocyte IgG2a, κ PerCp Cy5.5 1:50 

CD4 T Lymphocyte IgG1, κ APC 1:50 

CD8 T Lymphocyte IgG1, κ PE Cy7 1:50 

CD62p Platelet/ Endothelial IgG1, κ PerCp Cy5.5 1:50 

CD142 Platelet/ Monocytic IgG1, κ APC 1:20 

CD31 Platelet/ Endothelial IgG1, κ PE Cy7 1:50 

CD14 Monocytic IgG2a, κ Pacific Blue 1:50 

CD42a Platelet IgG1, κ PE 1:50 

CD144 Endothelial IgG1, κ APC 1:20 

CD106 Endothelial IgG1, κ PerCp Cy5.5 1:50 

CD54 Endothelial IgG1, κ Pacific Blue 1:50 

CD105 Endothelial IgG1, κ PE 1:50 

CD62e Endothelial IgG1, κ PE 1:50 
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Following a 20-minute incubation with each antibody cocktail at room temperature with 

continuous shaking, samples were further diluted with 150µl Annexin V buffer and 

stored at 4°C until flow cytometry acquisition (acquisition details are defined in Chapter 

2). Prior to flow cytometry analysis, samples were fixed in order to inactivate any 

remaining HIV viral particles using 1x BD cell fix.  

This method of fixation was validated using plasma samples from healthy controls, to 

ensure there was no interference from the fixation method with MP quantification. This 

method optimisation step is described in the results section 5.3.1 within this Chapter.  

Latex beads were run to determine size-exclusion gates and absolute enumeration as 

described in Chapter 2.  

5.3.3 Gating strategy for MP enumeration 

The MP population was initially gated based on their size being less than 1.0µm, and 

Annexin V positivity using FlowJo software (USA). Compensation was applied to samples 

post-flow cytometry acquisition within the FlowJo software, using latex compensation 

beads (BD Biosciences) as a control, and confirmed using single-stained MP populations 

found in plasma from healthy controls. Within the Annexin V positive population of MPs, 

positive gates for each marker were set based upon isotype control staining and applied 

to each panel. 

Following this, MP phenotypes derived from endothelial cells, T lymphocyte, monocytes 

and platelets were characterised according to the gating flow diagram in figure 5.1. 
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Figure 5.1: MP characterisation flow diagram 

A flow diagram detailing the gating strategy used to characterise MP populations within patient samples. All MPs were defined as being <1µM size, and positive for phosphatidylserine 

expression (positive for Annexin V). MPs were subsequently divided based upon antibody binding to surface markers, predicting cellular origin.  
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5.3.4 Statistical analysis 

Statistical analysis was performed using either GraphPad or SPSS software. Differences 

between patient groups for clinical and laboratory measurements were determined using a 

Student's t-test. To highlight any significant differences in MP counts between groups, a 

non-parametric Mann-Whitney U-test was used. To assess the significance of the change in 

MP number between week 0 and week 48 within the treatment-naïve group and the ART-

experienced, a paired Wilcoxon rank test was performed. Differences were considered 

significant when p≤0.05.  
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5.4 Results  

5.4.1 MP fixation 

In order to allow any material that has the potential to contain any HIV viral particles to be 

removed from containment level 3 laboratories, stained MP containing patient samples 

were first fixed to inactivate any viral particles present. This allowed their analysis in 

communal containment level 2 laboratories. As this fixation step provided the potential to 

interfere with MP quantification, a range of paraformaldehyde (PFA) concentrations (1%, 

2%, 4%) and BD Cell fix were tested using MPs isolated from the plasma of healthy adult to 

assess their impact on total MP number and phenotypes (Figure 5.2).  

 

 

Figure 5.2: Representative flow cytometry dot plots of MPs isolated from the plasma of healthy adults, 
where samples were left unfixed (B) or fixed 1% (C), 2% (D) and 4% (E) paraformaldehyde (PFA) prior to 
acquisition. 
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Following PFA fixation (1%, 2% and 4%) MP counts increased with concentration compared 

to unfixed controls (Figure 5.2). BD Cell fix was therefore tested as an alternative fixation 

method (Figure 5.3), again using the plasma of healthy adults to assess their impact on total 

MP number and phenotypes. 

 

 

 

 

 

 

 

 

Figure 5.3: The impact of 0.5x BD Cell fixation on total MP number 

A) Representative flow cytometry dot plots showing the percentage of MPs isolated from the plasma of healthy adults, 

where samples were left unfixed or fixed with 0.5x BD cell fix prior to acquisition. B) Total circulating MP number (<1µm, 

Annexin V+) were characterised in the plasma of healthy control adults by (n=4 biological replicates, 5 technical replicates). 

Results displayed as mean±SEM, with statistical differences determined by a paired students t-test, ns= Non-significant, 

p=>0.05.  
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Analysis of the total circulating MPs in the plasma of healthy adults showed that number of 

Annexin V positive events, within the <1µm size gate, did not significantly alter following 

fixation (553,000±30,434 versus 604,900±32,689, unfixed and BD Cell fix respectively; 

p=0.2525).  

This was also observed within Annexin V+ CD42a+ platelet MP populations (Figure 5.4A) and 

Annexin V+ CD14+ monocytic MP populations (Figure 5.4B). 

Upon fixation, PMP number increased from 108,675±12,775 MPs/ml to 112,875±11,951 

MPs/ml along with TF positive PMPs from 1,397±280 MPs/ml to 1,827±507 MPs/ml 

however, in each case these differences were non-significant (0.5122 and 0.1613 

respectively). Similarly, MMP numbers increased from 25,800±1,849 MPs/ml to 

26,725±1,040 MPs/ml along with TF positive MMPS from 1,520±604 MPs/ml to 2,500±743 

MPs/ml however, these differences were also non-significant (0.7675 and 0.0598 

respectively). 
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Figure 5.4: The impact of 0.5x BD Cell fixation on platelet and monocytic MP number 

Platelet and monocytic MPs were characterised in the plasma of healthy control adults (n=4 biological replicates) by flow 

cytometry, where samples were left unfixed, or fixed with 0.5x BD Cell fix prior to acquisition. Total platelet MP number 

were characterised as <1µm Annexin V+ and CD42a+ (A), in addition to Tissue factor+ PMPs (CD42a+ CD142+). In addition 

to Total monocytic MP number, characterised as <1µm Annexin V+ and CD14+ (B) and Tissue factor+ MMPS (CD14+ 

CD142+). Results displayed as mean±SEM, with statistical differences determined by a paired students t-test, ns= Non-

significant, p=>0.05. 
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The impact of fixation on T cell MPs were also analysed (Figure 5.5). MPs from a T cell origin 

were defined by their expression of Annexin V and CD3. These MPs increased from 

32,433±13,275 MPs/ml to 34,966±14,077 MPs/ml following fixation, however this increase 

failed to reach significance (p=0.1626). Furthermore, CD3+ CD4+ and CD3+ CD8+ MP counts 

remained similar between both conditions (CD3+ CD4+: 3,206±1,040 versus 3,130±830, 

unfixed and fixed respectively; p=0.9103 and CD3+ CD8+: 5,543±1,986 versus 6,123±1,749, 

unfixed and fixed respectively; p=0.0798). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: The impact of 0.5x BD Cell fixation on T cell MP Number 

T Cell MPs were characterised in the plasma of healthy control adults (n=3 biological replicates) by flow cytometry, where 

samples were left unfixed, or fixed with 0.5x BD Cell fix prior to acquisition. Total T Cell MP Number were characterised as 

<1µm Annexin V+ and CD3+, in addition to T cell population phenotypes (CD3+ CD4+, CD3+ CD8+). Results displayed as 

mean±SEM, with statistical differences determined by a paired students t-test, ns= Non-significant, p=>0.05. 
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Finally, CD144+ endothelial MPs were also characterised following fixation (Figure 5.6A), 

along with activated phenotypes (Figure 5.6B).  

Following fixation, MPs from an endothelial origin remained unaltered (20,080±5,736 versus 

20,932±4,907, unfixed and fixed respectively; p=0.5759), along with each sub-population: 

CD62e+ (25,373±3,456 versus 30,750±3,817, unfixed and fixed respectively; p=0.0566), 

CD144+ CD62e+ (3,150±1,039 versus 4,822±1,184, unfixed and fixed respectively; 

p=0.2566), CD144+ CD105+ (3,727±2,324 versus 3,640±1,986, unfixed and fixed 

respectively; p=0.2057), CD144+ CD31+ (525±132 versus 722±218, unfixed and fixed 

respectively; p=0.1821) and CD144+ CD54+ (877±93 versus 1,060±94, unfixed and fixed 

respectively; p=0.2083). 
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BD Cell fix (0.5x) was the selected method for subsequent analyses as all MP markers 

measured were calculated to be within 95% confidence limits, with no significant 

differences between unfixed and fixed samples.  

Figure 5.6: The impact of 0.5x BD Cell fixation on endothelial MP number 

Endothelial MPs were characterised in the plasma of healthy control adults (n=4 biological replicates) by flow cytometry, 

where samples were left unfixed, or fixed with 0.5x BD Cell fix prior to acquisition. Total endothelial MP number were 

characterised as <1µm Annexin V+ and CD144+ (A), in addition to activated phenotypes (CD62e, CD144+ CD62e+, CD144+ 

CD105+, CD144+ CD31+, CD144+ CD54+) (B). Results displayed as mean±SEM, with statistical differences determined by a 

paired students t-test, ns= Non-significant, p=>0.05. 
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5.4.2 MPs in HIV: Demographic description of patients at baseline 

Plasma samples from 11 HIV infected patients who were antiretroviral treatment-naïve  

(mean age (range) 8.06 years (4.38-12.67)) and 16 HIV infected patients that were 

antiretroviral experienced (on treatment for >2 years; mean age (range) 8.66 years (5.24-

12.25)) were included in the sub-study, and matched to plasma from 15 healthy control 

patients (mean age (range) 9.12 years (5.01-12.82); Table 5.2 outlines patient clinical and 

laboratory measurements at the time of recruitment into the CHAPAS-3 study. 

Patients in the treatment-naïve group started on ART at an older age compared to those 

who were treatment-experienced (mean 8.06 years vs 5.02 years p = 0.0041). As expected, 

viral load was significantly higher in treatment-naïve compared to treatment-experienced 

(183636 vs <100 (defined as undetectable) viral load, copies/ml naïve vs treated 

respectively; p = <0.001).  CD4 cell counts were lower in the treatment-naïve patient group 

compared to treatment-experienced (mean 336.4 vs 1205 cell number/ml naïve versus 

treated respectively; p = 0.001) and the healthy control population (mean 336.4 vs 957.4 p = 

<0.001). 

High-density lipoprotein (HDL) levels were lower in the HIV treatment-naïve patient group 

compared to those on ART (0.89 vs 1.448 mmol/L, naïve versus treated respectively p = 

0.003) and healthy controls (0.89 vs 1.447 mmol/L, naïve versus treated respectively p = 

0.02). Total triglyceride levels were also higher in the treatment-naïve group compared to 

the healthy control cohort (1.198 vs 0.796 mmol/L, naïve versus treated respectively p = 

0.04), but within ranges recorded for the ART-experienced children. No differences were 

observed between all patient groups with other clinical and laboratory measurements 

collected.   
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HIV + Treatment-

naïve  at enrolment 
(TN) 

HIV + Treatment-
experienced  

(ART>2years) at 
enrolment (TE) 

HIV - 
Healthy controls 

(HC) 
P-value 

Sample size n=11 n=16 n=15  

Age (years; 
range) 

8.06 (4.380-12.67) 8.66 (5.240-12.25) 9.12 (5.01-12.82) 
TN vs TE: 0.5505 
TN vs HC: 0.3269 
TE vs HC: 0.6092 

Gender; 
Male (%) 

Female (%) 

 
5 (45%) 
6 (54%) 

 
9 (56%) 
7 (43%) 

 
7 (46%) 
8 (53%) 

 
- 

Age ART was 
initiated 

(years; range) 
8.06 (4.38-12.67) 5.02 (2.25-9.85) - 

TN vs TE: 0.0041 
 

Duration on 
ART (Years; 

range) 
- 3.77 (2.26-7.06) - - 

Treatment 
Arm; 
D4T 
ZDV 
ABC 

 
1 (9%) 

3 (27%) 
7 (63%) 

 
3 (18%) 
4 (25%) 
9 (56%) 

- - 

NNRTI; 
EFV 
NVP 

 
9 (81%) 
2 (18%) 

 
3 (18%) 

13 (81%) 
- - 

BMI; (range) 15.35 (13.70-17.22) 15.36 (13.62-18.24) 
15.97 (13.88-

17.78) 

TN vs TE: 0.9784 
TN vs HC: 0.2015 
TE vs HC: 0.1977 

Laboratory measurements 

CD4+ count 
Week 0; 
(range) 

336.4 (105-654) 1205 (365-2600) 957.4 (474-1329) 
TN vs TE: 0.001 

TN vs HC: <0.001 
TE vs HC: 0.155 

Viral Load 
Week 0 

(Copies/ml) 

183636 (9275-
682105) 

<100 - 
TN vs TE: <0.001 

 

Total 
cholesterol 
(mmol/L); 

(range) 

3.57 (2.18-4.62) 4.10 (2.86-5.25) 3.80 (2.26-7.03) 
TN vs TE: 0.0772 
TN vs HC: 0.6212 
TE vs HC: 0.4353 

HDL; 
(mmol/L); 

(range) 
0.89 (0.47-1.31) 1.448 (0.99-1.36) 1.447 (0.26-2.29) 

TN vs TE: 0.003 
TN vs HC: 0.0203 
TE vs HC: 0.8950 

LDL; (mmol/L); 
(range) 

1.967 (0.96-2.72) 1.918 (1.36-2.55) 1.974 (0.59-3.98) 
TN vs TE: 0.8296 
TN vs HC: 0.9817 
TE vs HC: 0.8481 

Triglycerides; 
(mmol/L); 

(range) 
1.198 (0.69-1.91) 0.8367 (0.33-2.08) 0.786 (0.24-1.81) 

TN vs TE: 0.0874 
TN vs HC: 0.0393 
TE vs HC: 0.7861 

Table 5.2: Demographic and laboratory data from HIV infected children and healthy controls at week 0 

Stavudine (D4T), Zidovudine (ZDV), Abacavir (ABC), Non-nucleoside reverse-transcriptase inhibitors (NNRTI), Efavirenz 
(EFV), Nevirapine (NVP), Body Mass Index (BMI), high-density lipoprotein (HDL), low-density lipoprotein (LDL), Treatment-
naïve  (TN), Treatment-experienced  (TE), Healthy controls (HC). Data expressed as mean (range). Differences between 
treatment groups were determined using an unpaired student’s t-test. 
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5.4.3 Longitudinal effects of antiretroviral therapy on MP number 

MP analysis was carried out at the time of recruitment, t=0, and 48 weeks following the 

initiation of the study (t=48). MP numbers of each subset characterised are displayed in 

table 5.3, with corresponding p-values for individual group comparisons described in table 

5.4. MP numbers are reported as median (interquartile range). 

Due to small plasma volumes, the number of TF positive monocytic MPs were too few 

within the gate to be included in these results. 
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 Healthy 
Controls 

HIV + 
Treatment-

naïve  
Week 0 

HIV + 
Treatment-

naïve  
Week 48 

HIV + 
Treatment-
experienced  
(ART>2years) 

Week 0 

HIV + 
Treatment-
experienced  
(ART>2years) 

Week 48 

Total MPs 
Annexin V+ 538,538  

(24,637-
1,082,439) 

1,330,219 
(315,461-

1,225,816) 

483,947  
(36,777-
880,043) 

555,499 
(193,550-
911,608) 

406,384 
(182,999-
816,932) 

T lymphocyte MPS 
CD3+ 8,942  

(1,672-13,272) 
46,279  

(18,741-
58,753) 

34,789  
(22,861-
52,349) 

17,944  
(4,685-27,677) 

13,967  
(4,770-26,490) 

CD3+ CD4+ 310 
(0-1,634) 

3,442 
(764-4,352) 

0 
(0-4,970) 

1,530 
(95-2,602) 

1,631 
(642-3,612) 

CD3+ CD8+ 0 
(0-476) 

4,590 
(764-18,241) 

331 
(0-1,657) 

155 
(0-1,052) 

321 
(0-662) 

Monocyte MPs 
CD14+ 12,927 

(4,321-23,346) 
36,480 

(27,200-
57,711) 

34,291 
(22,309-
69,171) 

26,429 
(17,670-39,815) 

19,146 
(15,083-25,216) 

Platelet MPs 
CD42a+ 13,885 

(2,487-
170,429) 

77,932 
(12,430-
102,960) 

30,316 
(30,486-
133,291) 

85,679 
(30,486-
133,291) 

28,898 
(14,850-
129,203) 

CD42a+ 
CD62p+ 

7,305 
(0-37,294) 

2,450 
(846-6,534) 

927 
(387-3,865) 

12,048 
(4,494-20,271) 

4,175 
(309-9,476) 

CD42a+ 
CD142+ 

13,833 
(77-32,718) 

1,234 
(693-20,611) 

5,798 
(489-16,732) 

15,108 
(5,163-28,590) 

1,554 
(963-7,706) 

Endothelial MPs 
CD144+ 14,702 

(1,642-26,695) 
46,661 

(20,653-
51,216) 

25,512 
(18,223-
59,081) 

19,315 
(5,710-35,422) 

20,871 
(8,991-37,166) 

CD144+ CD54+ 2,507 
(1,108-4,122) 

11,608 
(3,347-16,579) 

13,033 
(5,027-19,879) 

3,954 
(860-6,235) 

9,954 
(4,548-24,818) 

CD144+ 
CD62e+ 

5,990 
(816-10,565) 

7,150 
(1,554-11,857) 

7,952 
(4,705-12,717) 

8,414 
(2,462-10,709) 

5,780 
(2,683-8,348) 

CD144 CD105+ 1,497 
(563-1,906) 

956 
(286-5,741) 

5,964 
(2,408-13,004) 

611 
(95-2,881) 

4,992 
(1,365-11,800) 

CD144+ CD31+ 8,487 
(272-6,534) 

8,906 
(2,863-12,342) 

8,117 
(2,863-17,726) 

2,798 
(1,147-4,590) 

2,569 
(1,865-2,890) 

CD144+ 
CD106+ 

1,302 
(544-2,108) 

3,933 
(1,962-7,237) 

6,672 
(3,360-12,590) 

1,530 
(382-3,371) 

6,261 
(3,496-11,961) 

Table 5.3: MP counts in paediatric HIV infected patients treatment-naïve and treatment-experienced (on 
ART for >2 years), and age-matched healthy controls.  

Isolated MPs from the plasma of treatment-experienced, uncontrolled HIV infected children, and healthy controls were 

analysed by flow cytometry. After ART initiation in the naïve cohort, follow up plasma samples taken at week 48 were also 

analysed, along with those in the ART-experienced treatment group. Counts are displayed as median (IQ range). 
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Table 5.4: P values comparing differences in MP counts between treatment groups and time points 

Differences in MP counts were assessed by Wilcoxon matched-pairs signed rank test for the treatment-naïve and ART-experienced patient cohorts to compare week 0 and week 48, and 

a Mann-Whitney U test compared differences between groups at each time point. Differences that reached significance are highlighted. 

  HIV + 

Treatment-

naïve  

t=0 vs t=48 

HIV + 

Treatment-

experienced  

(ART>2years) 

t=0 vs t=48 

Healthy 

Controls  vs 

HIV + 

Treatment-

naïve  

t=0 

Healthy 

Controls  vs 

HIV + 

Treatment-

naïve  

t=48 

Healthy 

Controls  vs 

HIV + 

Treatment-

experienced  

(ART>2years) 

t=0 

Healthy 

Controls  vs 

HIV + 

Treatment-

experienced  

(ART>2years) 

t=48 

HIV + 

Treatment-

naïve  

t=0 vs  HIV + 

Treatment-

experienced  

t=0   

HIV + 

Treatment-

naïve  

t=48 vs  HIV + 

Treatment-

experienced  

t=0   

HIV + 

Treatment-

naïve  

t=48 vs  HIV + 

Treatment-

experienced  

t=48  

Total MPs 

Annexin V+ 0.1016 0.3755 0.1477 0.9035 0.7804 0.9556 0.1477 0.5437 0.5118 

T lymphocyte MPS 

CD3+ 0.9658 0.6685 0.0018 0.0008 0.1404 0.2502 0.0501 0.0198 0.0082 

CD3+ CD4+ 0.6377 0.413 0.005 0.8090 0.1447 0.0542 0.0762 0.7360 0.2725 

CD3+ CD8+ 0.083 0.7334 0.002 0.2897 0.4415 0.3569 0.0129 0.7670 0.5999 

Monocyte MPs 

CD14+ 0.7002 0.0637 0.0036 0.0008 0.0023 0.0494 0.1446 0.1786 0.0026 

Platelet MPs 

CD42a+ 0.0322 0.5282 0.3769 0.6738 0.2127 0.4880 0.4221 0.0331 0.7319 

CD42a+ CD62p+ 0.3811 0.2958 0.5728 0.4969 0.7974 0.4722 0.0505 0.0094 0.3397 

CD42a+ CD142+ 0.7910 0.0203 0.8541 0.5979 0.7499 0.5127 0.2339 0.1210 0.6054 

Endothelial MPs 

CD144+ 0.6377 0.7910 0.0014 0.0141 0.2361 0.1239 0.0225 0.0999 0.1639 

CD144+ CD54+ 0.4316 0.0052 0.0205 0.0026 0.4732 0.0006 0.0189 0.0048 0.7462 

CD144+ CD62e+ 0.4961 0.5171 0.6057 0.2355 0.7146 0.9925 0.9999 0.5873 0.2571 

CD144+ CD105+ 0.0645 0.0017 0.9276 0.0069 0.3257 0.0052 0.4709 0.0047 0.7462 

CD144+ CD31+ 0.8501 0.6788 0.0481 0.0646 0.8701 0.9429 0.0142 0.0071 0.0070 

CD144+ CD106+ 0.2661 0.0013 0.0017 0.0001 0.8450 0.0001 0.0165 0.0003 0.7928 
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5.4.3.1 Total MP number 

Overall, there was no difference between the total number of annexin V positive MPs in 

both HIV positive patient groups and the healthy control population at week 0 (538,538 

(IQR: 24,637-1,082,439), 1,330,219 (IQR: 315,461-1,225,816), 555,499 (IQR: 193,550-

911,608); healthy control, treatment-naïve and treatment-experienced respectively, 

p>0.05 for comparisons between all groups). Moreover, following 48 weeks of ART in 

the treatment-naïve group, MP number decreased from 1,330,219 (IQR: 315,461-

1,225,816) to 483,947 (IQR: 36,777-880,043) however this failed to reach statistical 

significance (p=0.1016 figure 5.7). In a similar fashion, the total MP number was not 

altered in those individuals who had been on therapy for >2 years (555,499 (IQR: 

193,550-911,608) versus 406,348 (IQR: 182,999-816,932), t=0 and t=48 respectively p= 

0.3755). Following this, MPs were further characterised according to their surface 

marker expression and consequently their parental cell type.  
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Figure 5.7: Number of circulating MPs in Paediatric HIV patients with controlled and uncontrolled 
viremia compared to healthy paediatric controls 

Number of MPs (size <1µm and Annexin V+), were quantified by flow cytometry from plasma of HIV infected patients 

who were treatment-experienced (on ART for more than 2 years n= 16), or treatment-naïve (n=11) and compared to 

healthy age-matched controls (n=15). Samples were taken from each patient group at week 0, after which an 

additional sample was taken at week 48 for the ART-experienced patients, in addition to the treatment-naïve children 

who were initiated onto ART at the beginning of the study. Data is displayed as median with interquartile ranges. 

Statistical differences assessed by Wilcoxon matched-pairs signed rank test for the treatment-naïve and ART-

experienced patient cohorts to compare week 0 and week 48, and a Mann-Whitney U test compared differences 

between groups at each time point.  
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5.4.3.2 Platelet MPs  

Platelet MPs were primarily defined by their expression of glycoprotein IX (CD42a), then 

further characterised for those that were p-selectin (CD62p) positive indicative of 

platelet activation, and TF positive (CD142). Similar to total MP number, few differences 

were observed within the platelet MP subsets between groups or between time points 

(table 5.3 and 5.4, figure 5.8).  

At week 0, the total PMP population was the same between both HIV positive patient 

groups and the healthy control population (13,885 (IQR: 2,487-170,429), 77,932 (IQR: 

12,430-102,960), 85,679 (IQR: 30,486-133,291); healthy control, treatment-naïve and 

treatment-experienced respectively, p>0.05 for comparisons between all groups). 

Following the induction of therapy in the treatment-naïve cohort, total platelet MPs 

decreased from 77,932 (IQR: 12,430-102,960) to 30,316 (IQR: 30,486-133,291) (p=0.032) 

by 48 weeks of therapy (Figure 5.8A), although it did not significantly alter total platelet 

MP number in the treatment-experienced group (85,679 (IQR: 30,486-133,291) versus 

28,898 (IQR: 14,850-129,203), t=0 and t=48 respectively p= 0.528). 

At baseline, P-selectin positive platelet MPs were lower in the treatment-naïve group 

when compared to HIV infected children on ART for more than 2 years at t=0 (2,450 

(IQR: 846-6,534) versus 12,048 (IQR: 4,494-20,271), treatment-naïve and treatment-

experienced respectively, p=0.009), although this did not reach significance when 

compared to healthy controls (2,450 (IQR: 846-6,534) versus 7,305 (IQR: 0-37,294) 

treatment-naïve and healthy controls respectively; p=0.572) (Figure 5.8B).  
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After 48 weeks of treatment, p-selectin positive MPs were reduced in both the 

treatment-naïve cohort (2,450 (IQR: 846-6,534) versus 927 (IQR: 387-3,865), t=0 and 

t=48 respectively p= 0.3811) and the treatment-experienced group compared to week 0 

(12,048 (IQR: 4,494-20,271) versus 4,175 (IQR: 309-94,76), t=0 and t=48 respectively p= 

0.2958), however these reductions failed to reach significance (Figure 5.8B).  

TF positive platelet MP numbers were similar at the time of recruitment (t=0) between 

healthy control and ART-experienced patient groups (13,833 (IQR: 77-32,718) versus 

15,108 (IQR: 5,163-28,590); healthy control and treatment-experienced respectively, 

p>0.05) (Figure 5.8C). Moreover, at baseline, there was no significant difference 

between TF MPs in the untreated cohort compared to the other patient populations.  

TF MPs did not significantly alter after 48 weeks of therapy intervention (p=0.791), 

although CD42a+/CD142+ MPs did significantly decrease within the treatment-

experienced cohort from 15,108 (IQR: 5,163-28,590) to 1,554 (IQR: 963-7,706) (p=0.02). 
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Figure 5.8: Number of circulating platelet MPs in Paediatric HIV patients with controlled and 
uncontrolled viremia compared to healthy paediatric controls 

Platelet MPs (size <1µm, Annexin V+ and CD42a+), were quantified by flow cytometry from plasma of HIV infected 

patients who were treatment-experienced (on ART for more than 2 years n=16), or treatment-naïve (n=11) and 

compared to healthy age-matched controls (n=15). Samples were taken from each patient group at week 0, after 

which an additional sample was taken at week 48 for the ART-experienced patients, in addition to the treatment-naïve 

children who were initiated onto ART at the beginning of the study. A) Total platelet MPs, B) Total P-selectin+ (CD62p) 

platelet MPs, C) Total Tissue Factor+ (CD142) platelet MPs. Data is displayed as median with interquartile ranges. 

Statistical differences assessed by Wilcoxon matched-pairs signed rank test for the treatment-naïve and ART-

experienced patient cohorts to compare week 0 and week 48, and a Mann-Whitney U test compared differences 

between groups at each time point. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 

 

 

  

at enrolment at enrolment 
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5.4.3.3 T lymphocyte MPs 

At week 0, T cell MPs, as defined by their CD3 expression, were greater in the treatment-

naïve cohort compared to healthy controls (8,942 (IQR: 1,672-13,272) versus 46,279 

(IQR: 18,741-58,753), healthy control and treatment-naïve respectively; p=0.0018), and 

the HIV treatment-experienced (46,279 (IQR: 18,741-58,753) versus 17,944 (IQR: 4,685-

27,677), treatment-naïve versus treatment-experienced; p=0.050) (Figure 5.9A).  

After 48 weeks, CD3+ MPs remained elevated in the plasma from patients initiated on 

ART (46,279 (IQR: 18,741-58,753) versus 34,789 (IQR: 22,861-52,349), t=0 and t=48 

respectively; p=0.96) and unaltered in the ART-experienced cohort (17,944 (IQR: 4,685-

27,677) versus 13,967 (IQR: 4,770-26,490) t=0 and t=48 respectively; p=0.66). The 

elevated MP number in the treatment-naïve patient group remained significantly 

elevated when compared to both healthy control patients (p=0.0008), and the 

treatment-experienced cohort at t=0 and t=48 despite treatment intervention (p=0.019 

and p=0.0082 respectively).  

TMPs were further classified according to their expression of both CD3 and CD4 (figure 

5.9B and 5.9C). At baseline CD3+/CD4+ MPs were higher in the treatment-naïve patient 

group when compared to age-matched healthy controls (310 (IQR: 0-1,634) versus 3,442 

(IQR: 746-4,352), healthy controls and treatment-naïve respectively; p=0.005), but failed 

to reach significance when compared to treatment-experienced patients at week 0 

(3,442 (746-4,352) versus 1,530 (IQR: 95-2,602), treatment-naïve and treatment-

experienced respectively; p=0.076). CD3+/CD4+ MPs were also greater in the ART-

experienced cohort compared to healthy controls, although this did not reach 
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significance (310 (IQR: 0-1,634) versus 1,530 (IQR: 95-2,602), healthy controls and 

treatment-experienced respectively; p=0.14).  

At 48 weeks, CD3+/CD4+ MPs decreased following treatment initiation in the naïve 

population from 3,442 (IQR: 746-4,352) to 0 (IQR: 0-4,970) (p=0.64 t=0 versus t=48), to 

within the range observed in healthy controls and children on ART. 

CD3+/CD8+ also displayed a similar trend, where at baseline numbers were elevated in 

treatment-naïve patients compared to healthy control children (0 (IQR: 0-476) versus 

4,590 (IQR: 764-18,241), healthy control children and treatment-naïve respectively; 

p=0.002), and ART-experienced children (4,590 (IQR: 764-18,241) versus 155 (IQR: 0-

1052) treatment-naïve and treatment-experienced respectively; p=0.013) (figure 5.9C). 

CD3+/CD8+ TMPs decreased after therapy initiation within the naïve cohort at week 48, 

although this change was not significant (4,590 (IQR: 764-18,241) versus 331 (IQR: 0-

1,657), t=0 and t=48 respectively; p=0.083), levels did decrease to within the range of 

MPs found in the plasma of healthy controls and treatment-experienced children. 
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Figure 5.9: Number of circulating T lymphocyte MPs in Paediatric HIV patients with controlled and 
uncontrolled viremia compared to healthy paediatric controls 

T cell MPs (size <1µm, Annexin V+ and CD3+), were quantified by flow cytometry from plasma of HIV infected patients 

who were treatment-experienced (on ART for more than 2 years n=16), or treatment-naïve (n=11) and compared to 

healthy age-matched controls (n=15). Samples were taken from each patient group at week 0, after which an 

additional sample was taken at week 48 for the ART-experienced patients, in addition to the treatment-naïve children 

who were initiated onto ART at the beginning of the study. A) Total T cell MPs, B) Total T helper cell (CD4+) MPs, C) 

Total Cytotoxic T cell (CD8+) MPs. Data is displayed as median with interquartile ranges. Statistical differences 

assessed by Wilcoxon matched-pairs signed rank test for the treatment-naïve and ART-experienced patient cohorts to 

compare week 0 and week 48, and a Mann-Whitney U test compared differences between groups at each time point. * 

p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 

  

at enrolment at enrolment 
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5.4.3.4 Monocytic MPs 

MPs derived from monocytes were quantified through their expression of CD14 and 

Annexin V (figure 5.10). At baseline, MMPS were elevated within both the treatment-

naïve group compared to healthy control patients (12,927 (IQR: 4,321-23,346) versus 

36,480 (IQR: 27,200-57,711), healthy control and treatment-naïve respectively; 

p=0.0036) and experienced ART patients when compared to healthy controls at t=0 

(12,927 (IQR: 4,321-23,346) versus 26,429 (IQR: 17,670-39,815), healthy control and 

treatment-experienced respectively; p=0.0023).  

After 48 weeks of treatment, MMPS remained elevated in the treatment-naïve cohort 

(34,291 (IQR: 22,309-69,171), p= 0.7002; t=0 compared to t=48) and within the 

treatment-experienced patient group compared to baseline (19,146 (IQR: 15,803-

25,216), p= 0.064; t=0 compared to t=48). This was reflected in increased monocyte-

derived MPs in comparison to healthy controls (treatment-naïve: 34,291 (IQR: 22,309-

69,171) versus 12,927 (IQR: 4,321-23,346), treatment-naïve t=48 and healthy controls 

respectively; p=0.0008, treatment-experienced: 19,146 (IQR: 15,803-25,216) versus 

12,927 (IQR: 4,321-23,346), treatment-experienced t=48 and healthy controls 

respectively; p=0.049). 
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Figure 5.10: Number of circulating monocytic MPs in Paediatric HIV patients with controlled and 
uncontrolled viremia compared to healthy paediatric controls 

Total monocytic MPs (size <1µm, Annexin V+ and CD14+), were quantified by flow cytometry from plasma of HIV 

infected patients who were treatment-experienced (on ART for more than 2 years n=16), or treatment-naïve (n=11) 

and compared to healthy age-matched controls (n=15). Samples were taken from each patient group at week 0, after 

which an additional sample was taken at week 48 for the ART-experienced patients, in addition to the treatment-naïve 

children who were initiated onto ART at the beginning of the study. Data is displayed as median with interquartile 

ranges. Statistical differences assessed by Wilcoxon matched-pairs signed rank test for the treatment-naïve and ART-

experienced patient cohorts to compare week 0 and week 48, and a Mann-Whitney U test compared differences 

between groups at each time point. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 
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5.4.3.5 Endothelial MPs 

EMPs were characterised according to their CD144 and Annexin V expression, as CD144 

is almost exclusively expressed on endothelial cells (figure 5.11). At baseline, the total 

number of CD144+ EMPs were significantly elevated in children with uncontrolled HIV 

compared to uninfected children (14,702 (IQR: 1,642-26,695) versus 46,661 (IQR: 

20,653-51,216), healthy controls and treatment-naïve respectively; p=0.0014) and the 

HIV controlled cohort (19,315 (IQR: 5,710-35,422) versus 46,661 (IQR: 20,653-51,216), 

treatment-experienced and treatment-naïve respectively; p=0.023). 

Following 48 weeks of ART treatment, EMP numbers reduced from 46,661 (IQR: 20,653-

51,216) MPs per ml to 25,512 (IQR: 18,223-59,081) MPs per ml (p=0.64) in the 

treatment-naïve group, although these numbers remained significantly elevated 

compared to controls (25,512 (IQR: 18,223-59,081) versus 14,702 (IQR: 1,642-26,695), 

treatment-naïve week 48 and healthy controls respectively; p=0.014). No changes were 

observed in EMP numbers over the 48-week duration in the ART-experienced HIV 

infected children (19,315 (IQR: 5,710-35,422) versus 20,871 (IQR: 8,991-37,166), t=0 and 

t=48 respectively; p=0.79), which also fell within the EMP healthy control range.  
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Figure 5.11: Number of circulating endothelial MPs in Paediatric HIV patients with controlled and 
uncontrolled viremia compared to healthy paediatric controls 

Endothelial cell derived MPs (size <1µm, Annexin V+ and CD144+), were quantified by flow cytometry from plasma of 

HIV infected patients who were treatment-experienced (on ART for more than 2 years n=16), or treatment-naïve 

(n=11) and compared to healthy age-matched controls (n=15). Samples were taken from each patient group at week 

0, after which an additional sample was taken at week 48 for the ART-experienced patients, in addition to the 

treatment-naïve children who were initiated onto ART at the beginning of the study. Data is displayed as median with 

interquartile ranges. Statistical differences assessed by Wilcoxon matched-pairs signed rank test for the treatment-

naïve and ART-experienced patient cohorts to compare week 0 and week 48, and a Mann-Whitney U test compared 

differences between groups at each time point. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 
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Further characterisation of EMPs by their expression of common markers found in the 

literature (CD54+ (ICAM-1), CD106+ (VCAM-1), CD105 (Endoglin), CD31 (PECAM-1)) was 

undertaken. At baseline, ICAM-1 positive endothelial MPs were higher in the naïve 

cohort than both healthy controls (2,507 (IQR: 1,108-4,122) versus 11,608 (IQR: 3,347-

16,579), healthy control and treatment-naïve respectively; p=0.021) and treatment-

experienced HIV infected children (11,608 (IQR: 3,347-16,579) versus 3,954 (IQR: 860-

6,235), treatment-naïve and treatment-experienced respectively; p=0.0189) (figure 

5.12A).  Levels of ICAM-1+ EMPs were comparable between treatment-experienced 

children and healthy controls at baseline.  

After 48 weeks of treatment in the naïve population, ICAM-1 positive EMPs remained 

elevated despite ART intervention (11,608 (IQR: 3,347-16,579) versus 13,033 (IQR: 

5,027-19,879), t=0 and t=48 respectively; p=0.4316) and in the treatment-experienced 

population increased (3,954 (IQR: 860-6,235) versus 9,954 (IQR: 4,548-24,818), t=0 and 

t=48 respectively; p=0.0052) (figure 5.12A). These elevations in ICAM-1 EMPs in both HIV 

infected cohorts, were greater than EMP numbers in healthy controls (13,033 (IQR: 

5,027-19,879) versus 2,507 (IQR: 1,108-4,122), treatment-naïve t=48 and healthy control 

respectively; p=0.0026 and 9,954 (IQR: 4,548-24,818) versus 2,507 (IQR: 1,108-4,122), 

treatment-experienced t=48 and healthy control respectively; p=0.0006), such that at 48 

weeks there was no significant difference between both ART-treated cohorts. 

At week 0, EMPs positive for both CD144 and endoglin (CD105) were similar in both HIV 

positive patient groups and the healthy control population (1,497 (IQR: 563-1,906), 956 
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(IQR: 286-5,741), 611 (IQR: 95-2,881); healthy control, treatment-naïve and treatment-

experienced respectively, p>0.05 for comparisons between all groups) (figure 5.12B).   

After 48 weeks of treatment from baseline, CD105 positive EMPs increased in both the 

HIV treatment-naïve patient group from 956 (IQR: 286-5,741) MPs per ml to 5,964 (IQR: 

2,408-13,004) MPs per ml (t=0 and t=48 respectively; p=0.064) and in the treatment-

experienced cohort from 611 (IQR: 95-2,881) MPs per ml to 4,992 (IQR: 1,365-11,800) 

MPs per ml (t=0 and t=48 respectively; p=0.0017). This elevation was significantly more 

than EMP levels found in healthy controls (p=0.0069 healthy control versus treatment-

naïve, and p=0.0052 healthy control versus treatment-experienced).  

This trend was also observed for EMPs co-stained with VCAM-1 (CD106), an adhesion 

molecule upregulated on endothelial cells following activation. At baseline, MP number 

was higher within the treatment-naïve patient group than healthy controls and 

treatment-experienced (1,302 (IQR: 544-2,108) versus 3,933 (IQR: 1,962-7,237), healthy 

control and treatment-naïve respectively; p=0.0017 and 3,933 (IQR: 1,962-7,237) versus 

1,530 (IQR: 382-3,371), treatment-naïve and treatment-experienced respectively; 

p=0.017) (figure 5.12C). 

After 48 weeks, this population of EMPs increased within the treatment-naïve 

population from 3,933 (IQR: 1,962-7,237) MPs per ml to 6,672 (IQR: 3,360-12,590) MPs 

per ml (t=0 and t=48 respectively), although this failed to reach significance (p=0.26), but 

did when compared to healthy control children (p=0.0001). A significant increase was 

however observed in the treatment-experienced cohort (1,530 (IQR: 382-3,371 versus 
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6,261 (IQR: 3,496-11,961), t=0 and t=48; p=0.0013), which remained significant when 

compared to healthy control children at baseline (p=0.0001). 

Similarly, PECAM-1 (CD144+/CD31+) EMPs were higher in children with uncontrolled 

viremia compared to healthy children and treatment-experienced at week 0 (8,487 (IQR: 

272-6,534) versus 8,906 (IQR: 2,863-12,342), healthy control and treatment-naïve 

respectively; p=0.048, and 2,798 (IQR: 1,147-4,590) versus 8,906 (IQR: 2,863-12,342), 

treatment-experienced and treatment-naïve respectively; p=0.014) (figure 5.12D).  

No differences were observed in CD31+ EMP number following 48-weeks of ART 

treatment initiation in naïve patients (8,906 (IQR: 2,863-12,342) versus 8,117 (IQR: 

2,863-17,726), t=0 and t=48 respectively; p=0.85), and treatment-experienced 

populations (2,798 (IQR: 1,147-4,590) versus 2,569 (IQR: 1,865-2,890), t=0 and t=48 

respectively; p=0.68). A marked improvement in CD31+ EMP number was clearly seen in 

the controlled HIV cohort at each time point in the study, comparable to numbers found 

in healthy controls at week 0 (Figure 5.12D).   

Finally, no significant alterations in E-selectin (CD62e+) EMPs were observed between 

patient groups at t=0 or following treatment initiation at week 48 for the treatment-

naïve children and the treatment-experienced group (figure 5.12E).   
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Figure 5.12: Number of circulating endothelial MPs phenotypes in Paediatric HIV patients with 
controlled and uncontrolled viremia compared to healthy paediatric controls 

Endothelial cell derived MPs (size <1µm, Annexin V+ and CD144+), were quantified by flow cytometry from plasma of 

HIV infected patients who were treatment-experienced (on ART for more than 2 years n=16), or treatment-naïve 

(n=11) and compared to healthy age-matched controls (n=15). Samples were taken from each patient group at week 

0, after which an additional sample was taken at week 48 for the ART-experienced patients, in addition to the 

treatment-naïve children who were initiated onto ART at the beginning of the study. A) Total ICAM-1+ (CD54) 

endothelial MPs, B) Total Endoglin+ (CD105) endothelial MPs, C) Total VCAM-1+ (CD106) endothelial MPs, D) Total 

PECAM-1+ (CD31) endothelial MPs, E) Total e-selectin+ (CD62e) endothelial MPs. Data is displayed as median with 

interquartile ranges. Statistical differences assessed by Wilcoxon matched-pairs signed rank test for the treatment-

naïve and ART-experienced patient cohorts to compare week 0 and week 48, and a Mann-Whitney U test compared 

differences between groups at each time point. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 
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5.5 Discussion 

Initial experiments were performed in this chapter to optimise MP fixation, allowing the 

measurement of HIV infected plasma samples in containment level 2 facilities. For this 

aspect of method optimisation, a range of paraformaldehyde concentrations at 1%, 2% 

and 4% and BD Cell fix at 0.5x were tested. These followed institute safety guidelines 

allowing sample analysis in communal containment level 2 laboratories, as they have 

previously demonstrated the ability to effectively inactivate HIV particles (Martin.L, 

1994).  

From preliminary experiments, an obvious increase in annexin V positive staining was 

observed with paraformaldehyde at all concentrations, this resulted in BD cell fix 0.5x 

being tested as an alternative fixation step. No significant differences in annexin V 

staining were observed between unfixed and fixed samples, along with all MP markers 

of interest. Furthermore, the quantity of all fixed MP phenotypes were calculated to be 

within 95% confidence limits of corresponding unfixed samples, thus BD cell fix 0.5x was 

the selected method used the analysis of patient samples. This novel fixation method 

safely allows the characterisation of MPs from HIV infected samples in a containment 

level 2 facility.  

5.5.1 MPs in children with HIV infection 

MPs are found elevated in a number of inflammatory diseases including CVD (Berezin et 

al., 2015; Koga et al., 2005; Leroyer et al., 2007) and HIV (Corrales-Medina et al., 2010; 

Hijmans et al., 2019; Kelly, 2016; Mayne et al., 2012; Da Silva et al., 2011) when 

compared to healthy age-matched controls.  
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Initially, no differences in total MP number between either HIV infected cohorts and 

healthy controls were observed however, within each MP group, phenotypes fluctuated 

following treatment initiation. Therefore, we studied specific cell-derived MPs from T 

cell, platelet, endothelial and monocytic origin within an HIV-positive paediatric 

population receiving treatment, an HIV population following treatment initiation and 

healthy age-matched controls. 

5.5.1.1 T cell MPs 

T cell MPs were defined by their expression of CD3, and the co-expression of CD4 or 

CD8. Compared to healthy controls, overall T cell MPs (CD3+) increased in the 

treatment-naïve cohort and remained elevated at 48 weeks following the initiation of 

ART. 

Within the CD3+ population, the numbers of T helper cell (CD4) and cytotoxic T cell 

(CD8) MPs were quantified. At week 0, CD3+/CD4+ MPs were elevated only in the 

treatment-naïve cohort compared to healthy controls and decreased with treatment 

initiation, falling within normal ranges.  

As cellular MPs are released upon activation and apoptosis, elevations of these 

populations in treatment-naïve children are likely to be reflective of continued CD4+ T 

cell activation and T cell turnover. Following the initiation of ART in both adults and 

children, CD4+ T cell numbers recover, along with a reduction in their activation (Bosch 

et al., 2006; Funderburg et al., 2013).  
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CD3+/CD8+ MPs also displayed a similar trend whereby MPs were elevated within the 

naïve cohort compared to healthy controls and treatment-experienced; these levels also 

decreased at week 48. In treatment-naïve  individuals CD4+ cell counts are decreased as 

a result of the viral infection, compared to healthy controls, followed by a marked 

expansion of CD8+ cells (resulting in a low CD4/CD8 ratio), and their activation (van den 

Dries et al., 2017; Masiá et al., 2016; Sainz et al., 2013). Therefore, this elevated MP 

phenotype within the uncontrolled individuals may be indicative of this activated and 

expanded population. 

Moreover, in uncontrolled HIV infection, children who were treatment-naïve displayed 

higher counts of CD8+ TMPs compared to CD4+ TMPs. This is likely to be reflective of the 

imbalance of T helper cell and cytotoxic T cell cells that is observed in children with 

uncontrolled HIV infection (Sainz et al., 2013). Following therapy intervention and 

treatment experience, both T cell MP phenotypes normalise with healthy controls. This 

may be indicative of improved T cell subset ratio, as a result of increased CD4+ counts 

and the normalisation of CD8+ counts, and a decrease in activated T cell numbers 

following successful viral suppression (van den Dries et al., 2017; Guillé et al., 2019; 

Masiá et al., 2016; Sainz et al., 2013). 

It is important to note however, that overall CD3+ MP counts do decrease following 

treatment initiation, but are still significantly increased when compared to healthy 

controls, unlike the individual CD4+ and CD8+ which normalise to controls. The CD3+ 

MPs do however normalise with controls following long term ART usage as with the 

individual CD4+ and CD8+ MPs. 
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These initial differences may be due to the smaller MP numbers of these individual CD4+ 

and CD8+ populations that are present in much lower numbers compared to total CD3+ 

MPs, along with the limitation of small plasma volumes. This means that MP numbers 

within these subsets, are nearing the limit of detection for this enumeration method 

using flow cytometry, presenting a limitation to this quantification method.  

Furthermore, very little is currently known about individual T cell MP populations and 

their conditions under which they are released in vivo. Knowing that the surface markers 

which are present on the MP surface is not a regulated process it is unlikely that all CD4+ 

T cells would release MPs that displayed both CD3+ and CD4+, likewise with CD8+. Thus, 

in order to further understand the predictive nature of these individual populations, and 

their value as an indicator of T helper and cytotoxic T cell apoptosis, proliferation or 

activation, it would require further research into their mechanism of release, and their 

correlation with T cell clinical measures in these patients. 

5.5.1.2 Platelet MPs  

MPs of a platelet origin make up the largest proportion of total circulating MPs in the 

blood (Arraud et al., 2014). In this study, no significant differences were observed in 

total PMP counts, as defined by their CD42a expression, between any of the patient 

groups. This phenotype did significantly decrease in the naïve cohort following 

treatment intervention, which may reflect the effectiveness of ART to reduce immune 

activation especially within the first year of treatment initiation (van den Dries et al., 

2017). Similarly, no differences were observed across each of the HIV infected groups 
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when compared to healthy controls, although CD62p+ platelet MPs were elevated in the 

treatment-experienced cohort when compared to treatment-naïve children.  

In adults, it has been reported that overall PMP numbers are elevated when compared 

to healthy controls however, P-selectin+ PMP were similar among groups irrespective of 

treatment regime or treatment duration (Corrales-Medina et al., 2010). This finding that 

PMPs are elevated in HIV infected adults was supported by Hijmans., et al (2019) 

however, within this study CD62p was used alone to define MPs from a platelet origin, 

and Annexin V was not used to define the MP gate (Hijmans et al., 2019). CD62p is also 

expressed on the surface of activated endothelial cells thus, differences in these studies 

may be attributed to the non-specificity of this marker or the proportion of Annexin V 

negative MPs. Irrespective of these methodological differences both of these studies 

conclude that PMPs are elevated in adults with HIV infection receiving treatment.  

Although no differences were observed between the treatment-experienced cohort and 

healthy controls for any of the platelet phenotypes in this case, there is a trend that with 

treatment these MPs are elevated.  

5.5.1.3 Monocyte MPs  

The finding that monocytic MPs were significantly elevated across all HIV infected 

patient groups in comparison to healthy control children is comparable to Hijmans., et 

al’s (2019) study, where monocytic MPs were elevated in adults with HIV infection 

(Hijmans et al., 2019). The failure of these levels to normalise following treatment 

supports evidence that monocytes remain activated following ART initiation 
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demonstrated by higher sCD14 in plasma of children and adults following therapy 

intervention (Bi et al., 2016; Dysangco et al., 2017; Hattab et al., 2014; Sereti et al., 

2017).  

Although we were unable to evaluate levels of TF positive monocytic MPs in this study, 

these have been reported to increase in several CVDs (Chiva-Blanch et al., 2017; 

Christersson et al., 2017) with pro-coagulant properties aiding the initiation of the 

coagulation pathway (Del Conde et al., 2005; Falati et al., 2003).  

5.5.1.4 Endothelial MPs 

Elevations in MPs from an endothelial origin have been reported in adults with HIV 

infection (Hijmans et al., 2019; Kelly, 2016; Da Silva et al., 2011). Multiple surface 

markers have been reported in literature to describe endothelial MPs including CD144 

(Leroyer et al., 2007), CD54 (Jimenez et al., 2003; Leroyer et al., 2007), CD62e (Abid 

Hussein et al., 2003; Gelderman and Simak, 2008; Jimenez et al., 2003), CD105 

(Gelderman and Simak, 2008), CD106 (Abid Hussein et al., 2003; Jimenez et al., 2003) 

and CD31 (Jimenez et al., 2003; Leroyer et al., 2007). In vitro studies have suggested that 

endothelial cells release phenotypically different MPs upon activation and apoptosis, 

whereby constitutive markers (CD31, CD51 and CD105) are increased in cells undergoing 

apoptosis induced by serum starvation, and inducible markers (CD54, CD62e and CD106) 

are elevated following TNF-α activation (Jimenez et al., 2003).  

Although a range of surface antigens have been used to describe EMPs, many of these 

markers are not exclusively expressed on endothelial cells, thus in this study, a 
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combination of Annexin V and CD144 were used to identify MPs exclusively from 

endothelial populations.  

Total EMPs (CD144+) were elevated in treatment-naïve children, whereas EMP numbers 

were normalised to levels found in healthy control children following long term ART 

exposure. Within the uncontrolled HIV infected children, inducible markers of 

endothelial activation such as CD54 and CD106 present on MPs display a trend whereby 

numbers were elevated compared to healthy children; or increased in the case of 

CD106. These phenotypes normalised to healthy control values in the treatment-

experienced group, demonstrating the improvement in endothelial function with longer-

term ART use.  

We found no differences in CD62e+/CD144+ MP numbers between HIV infected patient 

groups or healthy controls. Previous reports of CD62e+ EMPs elevated in HIV have only 

been demonstrated in adult patient groups, thus age, ART duration and regime may 

have influenced this phenotype in part explaining these differences (Hijmans et al., 

2019; Kelly, 2016). 

Furthermore, the constitutive marker CD105 was also increased on CD144+ EMPs 

following ART initiation, and significantly elevated compared to healthy controls. CD105 

is expressed on proliferating and angiogenic endothelial cells (Kopczyńska and 

Makarewicz, 2012), thus the elevation of this phenotype following ART initiation may be 

indicative of a reparative phase of the endothelium following therapy intervention. This 

would also support the improvements in IMT and PWV reported within the treatment-
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naïve cohort following therapy intervention in the original CHAPAS-3 CV sub-study 

(Kenny, 2016). 

CD31 is also a constitutive endothelial marker found on apoptotic endothelial cells and 

their corresponding MPs in vitro (Jimenez et al., 2003). These MPs remained elevated in 

treatment-naïve children following treatment initiation, however normalised to healthy 

control levels following long-term ART. In uncontrolled HIV infection, systemic 

inflammation contributes to endothelial activation and damage, along with HIV encoded 

proteins that also directly interact with the endothelium promoting its dysfunction 

through; enhanced proliferation, apoptosis, cytokine secretion and upregulation of 

adhesion molecules (Anand et al., 2018). Thus, the elevation of this phenotype within 

the treatment-naïve cohort along with activated EMP markers may be indicative of 

enhanced endothelial activation and apoptosis following the interaction with viral 

proteins and inflammatory mediators.  

Moreover, it has been suggested that the ratio between CD62e+ (Activated EMPs) and 

CD31+ (CD42a-) (Apoptotic EMPs) MPs may indicate an activated (≥10%) or apoptotic 

(≤1%) endothelial status in vitro (Jimenez et al., 2003). Unfortunately, in this study, the 

limitation in the number of flow cytometry antibody panels which could be designed for 

the small plasma volume failed to allow the quantification of CD42a-/CD31+ MPs.  

Although the Immunophenotyping of EMPs allows us to speculate about the status of 

the endothelial cell from which it's derived, it is unclear if the process of surface antigen 

presentation during MP formation is random, or tightly regulated; thus, irrespective of 



 Chapter 5 – Microparticle subsets in paediatric HIV infection 

196 | P a g e  
 
 

 

its marker expression it is evident that EMPs reflect the presence of endothelial 

dysfunction, proliferation and injury.  

Taken together, this data suggests that MPs from an endothelial origin are increased in 

treatment-naïve HIV infected children, indicative of endothelial inflammation and 

damage. This supports literature whereby biomarkers of endothelial dysfunction are 

elevated compared to age-matched controls in both untreated adults, (Dysangco et al., 

2017; Hileman et al., 2013; Kristoffersen et al., 2009; O’Halloran et al., 2015) and 

children (Kenny, 2016; Sainz et al., 2014) with HIV infection.  

In this study CD54+, CD105+, CD31+ and CD106+ were still increased after 48 weeks of 

treatment however after longer exposure to therapy (median 3.77 years) levels were 

comparable to healthy controls. This is also reflected in literature whereby these 

markers of endothelial activation and clinical markers were also reduced following 

treatment initiation in children (Chanthong et al., 2014; Eckard et al., 2014; Ross et al., 

2010) and adults (Gupta et al., 2012; Hileman et al., 2013; Kristoffersen et al., 2009; 

O’Halloran et al., 2015). In some cases, decreases in these markers were observed as 

early as four weeks (Padilla et al., 2011) following therapy intervention, however in 

other studies reductions were only reported after 24 months (Ticona et al., 2015). EMPs 

found in the treatment-experienced patient group were comparable to age-matched 

healthy controls suggesting that endothelial activation and damage is reduced with 

treatment. 
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This finding supports results from the primary CV sub-study from which this cohort of 

patients was selected. Within the sub-study, elevations in IMT were reduced in children 

receiving ART for a mean of 3.9 years and continued to improve over the 2-year duration 

of the study to return to within healthy ranges (Kenny, 2016).  

5.5.2 Summary 

In children infected with HIV receiving antiretroviral treatment for a median of 3.77 

years, circulating levels of platelet, endothelial and T cell MPs were all found to return to 

ranges found in healthy controls.  

Conversely, this study demonstrates that levels of circulating monocytic MPs (CD14) 

were elevated in children with untreated HIV infection and remained increased despite 

treatment intervention in this group. The increase in this MP phenotype was also 

observed within the treatment-experienced cohort following long term exposure to ART, 

compared to healthy control children.  

In vitro data presented in this thesis, along with published literature has demonstrated 

the release of MMPS following their activation. Thus, elevated MP levels found within 

this patient cohort are likely to be reflective of their persistent activated status in both 

controlled and uncontrolled HIV (Ben-Hadj-Khalifa-Kechiche et al., 2010; Eyre et al., 

2011; Wen et al., 2014).  

Moreover, this MP phenotype (CD14+/Annexin V+) has demonstrated the functional 

ability to induce endothelial dysfunction in vitro, through the upregulation of adhesion 

molecules, cytokine secretion, and leukocyte activation (Cerri et al., 2006; Wang et al., 
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2011; Wen et al., 2014).  Data presented in this thesis also demonstrates that activated 

monocytes release MPs that play a functional role in further monocytic activation, 

though the induction of pro-inflammatory cytokine release, upregulation of adhesion 

molecules, elevating endothelial adhesion and subsequent transendothelial migration. 

Thus, an elevation in circulating MMPS in HIV is strongly suggestive of an environment 

that would promote monocyte activation and further MMP production.  

The interaction between endothelial cells and monocytes with MMPS presents an 

additional mechanism through which endothelial dysfunction, atherogenesis and chronic 

inflammation may be enhanced within this population. The elevation of these MPs in 

children with HIV infection, despite the control of viral suppression, may therefore play a 

contributing role in accelerating atherosclerotic disease progression from a young age.  

The increased numbers of MMPS indicates the persistent activation of circulating 

monocytes in vivo, supporting literature within which the observation of an 

inflammatory monocyte phenotypes (Han et al., 2009; Kim et al., 2010; McCausland et 

al., 2015; Tippett et al., 2011), elevations in biomarkers indicative of monocyte 

activation (Alvarez et al., 2017; Bi et al., 2016; Dysangco et al., 2017; Sereti et al., 2017) 

and circulating monocyte MPs (Hijmans et al., 2019) that have been reported in children 

and adults with HIV infection. 

Therefore, the role that activated monocytes and their corresponding MPs play in 

atherosclerosis initiation, may be key mechanistic factors to accelerated disease 

pathogenesis and the increased risk of asymptomatic atherosclerosis found within the 
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paediatric population ((Idris et al., 2015; Miller et al., 2008; Werner et al., 2010).  

Furthermore, this persistent monocyte activation and functional impairment continues 

into adulthood, contributing to elevated CV risk and the development of clinical CVD. 

5.5.3 Study limitations 

Flow cytometry was the selected technique to analyse MPs in this study, as it provided 

the advantage of measuring multiple markers simultaneously in one sample with high 

throughput. However, using this method does introduce some limitations. MPs range in 

diameter from 0.1-1µm making smaller MPs difficult to distinguish from background 

noise and some of which may be below the limit of detection. To help improve the 

visualisation of MPs from background noise an Annexin V stain was used to bind to the 

exposed PS on their surface. Although this helped to confirm the MP population, in 

recent years it has been reported that a proportion of MPs are PS negative (Connor et 

al., 2010), however as Annexin V was used as the primary MP marker this Annexin V 

negative population was excluded from this analysis.  

Alternative methods of MP identification and quantification have been described 

including fluorescent microscopy, dynamic light scattering, transmission electron 

microscopy, western blotting and ELISA assays (Gradziuk and Radziwon, 2017).  Although 

each of these techniques have individual advantages and disadvantages associated with 

them, flow cytometry is the only method that allows the analysis of multiple markers 

and different MP subtypes at the same time. For this reason, in this clinical setting flow 

cytometry is most appropriate, however efforts should be focused on standardising this 

technique to allow for easier comparisons in future studies.  
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Chapter 6 – Conclusions 
With the successful development of combination ART, HIV is no longer considered a 

fatal disease (Deeks et al., 2013), with patients receiving drug treatments expected to 

live a near-normal life expectancy (Palella et al., 1998). As HIV infected individuals are 

living longer, the rate of non-AIDS co-morbidities emerging, with CVD the leading cause 

of death within this population (Benjamin EJ et al., 2017; Shah et al., 2018; Smith et al., 

2014). Through a number of complex interactions, people living with HIV infection show 

evidence of persistent immune activation leading to accelerated atherosclerosis disease 

progression (De Lima et al., 2018). 

Biomarkers of immune activation and inflammation remain elevated in the plasma of 

both adults (Hsue et al., 2009; Hunt et al., 2008) and children (De Lima et al., 2018; 

Miller et al., 2010; Ross et al., 2010) with HIV infection despite successful viral 

suppression with ART. Furthermore, structural and functional changes of the 

endothelium provides evidence for asymptomatic atherosclerosis (Chanthong et al., 

2014; Charakida et al., 2005, 2009; Hanna et al., 2016; Ross et al., 2010).  

A biomarker is defined as a biological molecule which is indicative of normal or 

pathogenic processes used to identify an underlying condition or disease. One particular 

biomarker of interest explored in this thesis are MPs, as these circulating particles 

demonstrated predictive, functional and therapeutic properties in a number of disease 

states in vitro and in vivo. These extracellular vesicles may serve as novel biomarkers for 

the underlying pathophysiological processes of CVD, including thrombosis, 
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inflammation, endothelial dysfunction and angiogenesis, with the additional ability to 

provide information about the status of various cell types within a particular disorder 

(Dickhout and Koenen, 2018). Thus, MP enumeration may provide a more sensitive 

measure compared to current techniques including blood pressure and cholesterol with 

the growing potential to detect early stage CVD in clinical asymptomatic patients, 

allowing early intervention. Furthermore, the correlation between MP origin and 

numbers, with illness and disease may provide an additional powerful tool in disease 

progression and drug monitoring (Chen et al., 2018). 

With respect to CVD pathogenesis, MPs have also demonstrated the ability to accelerate 

disease progression through disturbing endothelial homeostasis and enhancing 

endothelial dysfunction, as discussed in detail in Chapter 5. Circulating MPs quantified in 

the plasma of HIV infected adults have been shown to increase in MP number from an 

endothelial, platelet and leukocyte origin (Corrales-Medina et al., 2010; Hijmans et al., 

2019; Kelly, 2016; Mayne et al., 2012; Da Silva et al., 2011), in addition to functional 

properties that may accelerate atherosclerosis pathogenesis through endothelial cell 

inflammation, oxidative stress, senescence and apoptosis (Hijmans et al., 2019). 

Data presented in this thesis aimed to improve the understanding of the dynamics of 

circulating MPs in paediatric HIV infection following ART initiation, and in long term ART 

usage. In addition, MPs were isolated from a monocytic origin to allow the investigation 

of their function on monocytes isolated from healthy adults using a novel isolation 

method. By addressing the aims of this thesis, data presented here provides an insight as 
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to how this elevated MP phenotype may contribute to CVD pathogenesis in HIV infected 

individuals from a young age.  

As monocytes play one of the key roles in atherosclerosis and display an activated 

phenotype in a number of inflammatory diseases including HIV, the first aim of this 

thesis was to optimise a novel isolation method of monocytes directly from whole 

blood; addressed in Chapter 3. Current isolation procedures either rely on binding to the 

CD14 receptor (FACS sorting and Positive isolation) providing potential impairments in 

functionality (Bhattacharjee et al., 2017; Kho et al., 2017), requiring prior PBMC 

purification that demonstrates alterations in surface marker expression (Mukherjee et 

al., 2015; Nieto et al., 2012; Tippett et al., 2011), or fully depletes CD16+ populations 

(negative selection). 

A novel form of isolation was developed and optimised as part of an MTA agreement 

with StemCell™ Technologies, which provided an advantage over currently available 

methods through its ability to negatively isolate all three monocyte subsets directly from 

whole blood. The development of this method enabled the investigation of the potential 

influence of MMPS on monocyte behaviour in the following chapter. Optimised isolation 

conditions were established and outlined in Chapter 3 of this thesis. 

Monocytic separation using two magnet strengths at 25°C and 8°C were initially 

assessed for their impact on isolated monocyte purity. At both temperatures, the Easy 

Eights™ magnet resulted in a low purity of the enriched monocyte fraction with 

significant red blood cell contamination meanwhile, isolation using the Big Easy™ 

magnet at both 25°C and 8°C resulted in a monocyte purity >90% proving to be the more 
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suitable magnet for this application. Following this, percentage subset recovery, 

activation and yield were determined within the enriched fraction following isolation at 

25°C and 8°C using the Big Easy magnet. Neither temperature provided a significant 

advantage in any of these analyses, however purification at 8°C displayed a trend in 

increasing subset recovery, yield and a decrease in activation marker expression 

compared to those performed at room temperature.   

Further changes in phenotype and function following this new isolation method were 

also assessed, and compared to a monocytic cell line (THP-1). An alteration in surface 

marker expression was found in both the intermediate and the non-classical populations 

following enrichment, however this is likely to reflect the sensitive nature of monocytic 

cells and the care that must be taken for experimentation ex vivo. Finally, enriched 

monocytes displayed the ability to secrete pro-inflammatory cytokines in response to 

increasing concentrations of LPS had phagocytic functionality, and migratory function to 

MCP-1. 

Work presented in Chapter 3 defined isolation conditions to separate monocytes 

directly from whole blood, allowing their use in the subsequent chapter whereby MP 

influence on monocytic function and phenotype was investigated in a bid to gain further 

understanding of their biological function. 

Chapter 4 explores the release and phenotype of monocytic MPs under different 

conditions and describes their effect on isolated human monocyte functionality ex vivo; 

addressing the second aim of this thesis. Monocytic MPs are elevated in disease states 

(Hijmans et al., 2019; Hoyer et al., 2012; Kanazawa et al., 2003) and have shown to 
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influence functionality of endothelial cells, epithelial cells, smooth muscle cells (Aharon 

et al., 2008; Cerri et al., 2006; Essayagh et al., 2007; Neri et al., 2011; Sarkar et al., 2009; 

Wang et al., 2011) and activate monocytic cells directly (Bardelli et al., 2012). Thus, this 

chapter provided an insight as to how functionality was altered to one that could 

promote atherosclerosis disease progression. 

Initial data presented in this chapter supports the link between MP release and serum 

starvation-induced apoptosis (Koifman et al., 2017), with an increase in MP number 

compared to control conditions significant after 72 hours. Under stimulatory conditions, 

MP release from monocytes was much higher in comparison to serum starvation 

conditions. Furthermore, common monocytic inflammatory stimuli: LPS, TNF-α, IFN- γ 

and the calcium ionophore A23187, evoked a concentration-dependent release.   

In addition, MP phenotype displayed a similar trend to that found on the parent cell on 

quiescent, apoptotic (serum starved) and activated THP-1 cells when generated with LPS 

and A23187. The percentage marker expression and mean fluorescent intensity of CD54 

displayed a similar trend on both the parent cell and derived MPs across all conditions, 

with Annexin V MFI increased on activated MPs compared to quiescent cells and the 

highest being observed on apoptotic derived MPs. This is likely to be representative of 

surface expression on the outer membrane of the parent cell, as PS exposure occurs due 

to activation, apoptosis and necrosis (Bevers et al., 1982, 1983; Fadok et al., 1992). 

The data presented here supports the data of Wen et al., (2014), within which MPs 

derived from quiescent and LPS stimulated monocytic cell lines (MM6 and THP-1) 

displayed a similar trend in surface marker expression, with CD54 displaying the largest 
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increase (Wen et al., 2014). No other markers investigated here were altered on either 

the parent cell or the MPs which may present a limitation to using monocytic cell lines to 

investigate these changes. At present, it is unknown if ex vivo human monocyte-derived 

MPs mimic the phenotype of their parent cell under different conditions, and how these 

may change with disease. This provides a possible avenue for future work.  

The effect of A23187 derived MPs on isolated human monocytes was also assessed to 

elucidate possible mechanisms through which these particles play a role in accelerated 

CVD pathogenesis. For these experiments, A23187 was selected as the stimulant due to 

the detection of LPS in the MP pellet determined by a positive endotoxin test in LPS 

derived MPs. In addition, the use of this compound for MP generation and assessment 

of functional influence has previously been described (Bardelli et al., 2012; Cerri et al., 

2006; Neri et al., 2011; Satta et al., 1994). 

The autocrine effect of A23187 derived monocytic MPs has previously been reported by 

Bardelli., et al (2011), within which MPs at pathophysiological conditions enhanced pro-

inflammatory cytokine production of IL-6 and TNF-α via NFKB signalling (Bardelli et al., 

2012). Data presented here support these findings, demonstrating that physiological 

conditions failed to induce an increase in IL-6 and TNF-α cytokine secretion however a 

significant increase was observed with pathophysiological concentrations. The secretion 

of IL-1β, IL-8 and IL10 was not significantly altered at any of the concentrations tested. 

The increase in IL-6 production was only significant compared to control after 24 hours 

in the initial cytokine secretion time-course demonstrating a potential feedback loop, 
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whereby activated monocytes leads to the production of MMPS, which in turn further 

enhances monocyte activation and MP release.  

Further novel findings presented in this chapter demonstrate that pathophysiological 

concentrations of MMPS altered monocyte phenotype, upregulating CD11b expression, 

consequentially enhancing their adhesion to endothelial cells and transendothelial 

migration across an endothelial barrier. The adhesion of monocytes to the endothelium 

and their transmigration are one of the early initiating events of vascular inflammation, 

thus these findings present a mechanism through which CVD pathogenesis may be 

accelerated in patients with increased monocyte MP numbers.  Further proteomic 

profiling of MPs derived under different conditions may provide insight into MP 

composition (Jin et al., 2005), and thus to the mechanism in which monocyte 

functionality and phenotyping is altered. Uncovering this information may provide a 

mechanism of interaction and possible therapeutic intervention.  

Chapter 5 enumerates circulating MPs and their phenotypes in children with HIV 

infection, and the dynamic alteration of these during the first 48 weeks of treatment 

initiation; addressing the final aim of this thesis. To investigate this, a fixation protocol 

was first developed using plasma isolated from healthy control adults, to allow the 

analysis of circulating MPs derived from a T cell, endothelial, monocytic and platelet 

origin by 6 colour flow cytometry.  

The plasma of 16 treatment-experienced and 11 treatment-naive HIV infected children 

were selected from samples collected as part of the CHAPAS-3 CV sub-study, along with 

15 healthy control children. Circulating MPs were quantified in all three cohorts at 
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baseline (week 0), with additional analysis of MPs in blood samples taken at week 48 for 

both HIV infected groups; following ART initiation in the case of the treatment-naïve 

patients.   

Total circulating MPs and those from a platelet origin were not significantly altered in 

treatment-naïve populations or treatment-experienced cohort compared to healthy 

controls. Following 48-week treatment initiation, these levels were not significantly 

altered and remained within the range of those found in healthy controls. Circulating T 

cell MPs, and those from CD4+ and CD8+ populations were elevated in treatment-naïve 

children at baseline, however these decreased following treatment initiation, likely to be 

reflective of the activated T cell phenotypes in untreated HIV infection (Douek et al., 

2003; van den Dries et al., 2017).  

Endothelial MPs showed a general trend whereby numbers were elevated in treatment-

naïve populations compared to children with controlled HIV infection and healthy 

controls, which remained increased after 48 weeks of treatment initiation. However, 

children on long term ART showed a reduction in all endothelial MP phenotypes 

comparable to those found in healthy control children suggesting that endothelial 

activation and dysfunction is improved in this population long term. This is further 

supported by literature whereby these markers of endothelial activation and clinical 

markers were also reduced following treatment initiation in children (Chanthong et al., 

2014; Eckard et al., 2014; Kenny, 2016; Ross et al., 2010).  

Of particular significance, MPs from a monocytic origin were elevated in both HIV 

infected cohorts when compared to healthy controls and remained increased after 48 
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weeks despite ART initiation in the treatment-naïve cohort. This supports data provided 

by Hijmans et al., (2019), whereby numbers of monocytic MPs were higher in adults with 

HIV infection with controlled viremia compared to healthy controls (Hijmans et al., 

2019). In addition, the failure of these MPs to normalise with treatment provides 

additional evidence that persistent inflammation drives monocyte activation following 

ART initiation, also demonstrated through increased plasma sCD14 (Alvarez et al., 2017; 

Bi et al., 2016; Dysangco et al., 2017; Sereti et al., 2017) and an inflammatory phenotype 

(Han et al., 2009; Kim et al., 2010; McCausland et al., 2015; Tippett et al., 2011).  

This is the first study that has examined longitudinal measures of MPs within a HIV 

positive paediatric cohort, and analysed how these changes compare to healthy age 

matched controls. One of the main limitations to this study is the access to only a small 

number of clinical parameters collected throughout the duration of the trial, meaning 

that we were unable to determine causality of elevated MP numbers. Despite this, from 

these observations and published literature, we can speculate that MPs from a 

monocytic origin are increased in these patients due to elevated monocyte activation as 

a result of enhanced immune activation, and translocation of microbial products from 

the GI tract (Ancuta et al., 2008; Brenchley et al., 2006).  

To investigate this further and confirm this relationship, plasma markers of microbial 

translocation (LPS), immune activation and MMPs could be quantified alongside markers 

of activation on circulating monocytes and clinical measures of atherosclerosis over 

time. Within a larger cohort, this study would also allow the potential to further 

elucidate mechanisms related to activated monocytes as a driver of CVD that may be 
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observed with specific ART drug classes. Should an association be found between 

elevated microbial translocation, monocyte activation and MMPs with increased CVD 

risk within this patient cohort, the use of MMPs as a biomarker to monitor CV risk or to 

measure the response to treatment intervention may be beneficial.  

In addition to this, the evaluation of MPs as novel predictive biomarkers of CVD 

progression is in its early stages within the field, with universal protocols yet to be 

established. Thus, to explore this potential further, future studies within this area should 

be focused on standardising storage, isolation and acquisition procedures of MP 

enumeration prior to evaluating their effectiveness as a biomarker within different 

disease states. 

More recently, extracellular vesicle miRNA has gained considerable interest as a 

potential predictive biomarker of CVD, with alterations in miRNAs present in patients 

with cardiac damage, coronary artery disease and sub-clinical atherosclerosis (Corsten et 

al., 2010; Fichtlscherer et al., 2010; Huang et al., 2018). Circulating miRNAs have also 

been reported to play a role in HIV disease pathogenesis (Fowler and Saksena, 2013; 

Triboulet et al., 2007), with HIV infected patients expressing unique miRNAs compared 

to healthy controls (Narla et al., 2018). Evidence demonstrates the ability for these 

extracellular miRNAs to play a role in atherosclerotic pathogenesis (Koroleva et al., 

2017), thus by analysing these markers in patients with HIV infection new pathways that 

promote the acceleration of HIV associated CVD may be discovered.  

As discussed here, the aims of this thesis have been met. The findings presented 

contribute to the current understanding of monocytic MPs, and their potential alteration 



Chapter 6 - Conclusions 

210 | P a g e  
 
 

 

in monocyte functionality in vivo. This work highlights the significance and importance of 

this subset elevated in paediatric HIV, and the possible mechanisms through which these 

may contribute to CVD pathogenesis. In addition, the development and optimisation of 

the negative isolation method provides an alternative platform to enrich all monocytic 

populations from whole blood, untouched and inactivated, facilitating the continued 

exploration of monocyte functionality in disease. 
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Appendix 1 
MATERIAL TRANSFER AGREEMENT  

STEMCELL TECHNOLOGIES 

 
 

STEMCELL Technologies Canada Inc. a Canadian corporation with an office at 1618 Station 

Street, Vancouver, British Columbia V6A 1B6, Canada (the “Provider”) agrees to provide 

the Kingston University, with an address at Penrhyn Road, Kingston KT1 2EE, United 

Kingdom (the “Recipient”) with certain research material: EasySep Direct Pan Monocyte 

Isolation Kit (the “Material”) which has been requested by Dr. Fran Arrigoni (the 

“Scientist”) for performance testing (the “Evaluation”), subject to the terms and 

conditions set forth in this Material Transfer Agreement (the “Agreement”). 

1. Derivative Materials. “Derivative Materials” means any substance constituting a 

functional or structural subunit, or product expressed by or isolated from the 

Material. The Recipient agrees that no Derivative Materials may be produced without 

the express written permission of the Provider. Examples of Derivative Materials 

include (but are not limited to): cell lines, recombinant constructs, cultures, or 

subcultures. To avoid doubt, the Recipient agrees that any Derivative Materials will 

become the property of the Provider and will be subject to this Agreement. The 

Recipient agrees to supply samples of any Derivative Materials to the Provider upon 

request. 

2. Improvements. The Recipient shall not make any improvement, modification, 

enhancement  or adaptation to or of Material (collectively “Improvements”). If in the 

event that the Recipient creates Improvements, such Improvements and all 

intellectual property rights pertaining to Improvements, whether patentable or not, 

will remain the property of the Provider. The Recipient shall not reverse engineer, 

reverse compile, disassemble or otherwise attempt to derive the composition or 

underlying information, structure or ideas of the Material, including, but not limited 

to, analyzing the Material by physical, chemical or biochemical means. 

3. Legal Title. The transfer of the Material constitutes a non-exclusive license to use the 

Material solely for Evaluation. Legal title to the Material shall be unaffected by this 

Agreement or the transfer made hereunder. The Provider retains the ownership of the 

Material and all intellectual property rights pertaining to the Material, including, but 

not limited to: media formulation, know-how, show how, trade secrets, protocols, and 

data. 

4. Confidentiality. The Recipient and Scientist shall maintain the confidentiality of the 

Provider’s proprietary information respecting the Material (except as otherwise 

provided in paragraph 8 of this Agreement) including but not limited to: experiment 

protocols, know-how, show-how, inventions, creations, designs, methods, software, 

techniques, processes and other intellectual property and technical information. 
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5. Evaluation Conditions. The Material is provided to the Recipient for the purpose of 

Evaluation only. The Material is provided to the Recipient for use in animals or in vitro. 

The Material will not be used in humans, including for purposes of diagnostic 

testing. The Scientist and the Recipient will use the Material in compliance with all 

laws, governmental regulations, and guidelines that may be applicable to the Material. 

6. Control of the Material. Neither the Scientist, nor the Recipient, nor any other person 

authorized to use the Material under this Agreement shall make available any portion 

of the Material to any person or entity other than laboratory personnel under the 

Scientist’s immediate and direct control. No person authorized to use the Material 

shall be allowed to take or send the Material to any location other than the Scientist’s 

laboratory without the Provider’s prior written consent. 

7. Warranty. The Material is experimental in nature and shall be used by the Recipient 

with prudence and appropriate caution. THE MATERIAL IS PROVIDED WITHOUT 

WARRANTY 

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY OTHER 

WARRANTY, EXPRESS OR IMPLIED. 

8. Results and Publications. The Recipient agrees to provide a summary of the results of 

the Evaluation to the Provider within sixty (60) days of completing the Evaluation. In 

addition, the Recipient agrees to send the Provider abstracts or manuscripts 

describing the results of the Evaluation at least thirty (30) days prior to the submission 

of the publication, thereby allowing the Provider the opportunity to protect 

proprietary or intellectual property relating to the Material that might be contained in 

the disclosure. The Recipient and Scientist agree not to publish results without the 

Provider’s prior written consent. The Provider may use results for marketing, or other 

purposes at its sole discretion. 

9. Effective Date and Duration of the Agreement. This Agreement is effective as of the 

latest date of signature and shall remain in effect for one (1) year thereafter. The 

Evaluation shall be conducted and completed during this one (1) year period, unless 

the duration of the agreement is extended by written agreement of both parties. 

Section 1, 2, 3, 4, 8, 9, 10, 11, 12 and 15 shall survive the expiration or termination of 

the Agreement. 

10. Further Agreements and Return of Material. Nothing contained in this Agreement 

shall be construed, by implication or otherwise, as an obligation for any party to enter 

into any further agreement with the other, or as a grant of a license to use the 

Materials other than for the purposes of this Agreement. The Recipient shall, at the 

request of the Provider, return or destroy all unused Material. 

 
11. Liability. In no event shall the Provider, or the Provider’s trustees, officers, agents and 

employees be liable for any use by the Scientist or the Recipient of the Material or for 
any claim, liability, cost, expense, damage, deficiency, loss or obligation, of any kind or 
nature that may arise from or in connection with this Agreement or the use, handling, 
storage, or disposition of the Material by the Scientist, the Recipient or others who 
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possess the Material through a chain of possession leading back, directly or indirectly, 
to the Recipient or Scientist (collectively, “Claims”). The Recipient agrees to indemnify 
and hold harmless the Provider and the Provider’s trustees, officers, agents, and 
employees from any and all Claims. The Recipient shall have no obligation to 
indemnify, defend or hold harmless a person or entity identified in the foregoing 
sentence if it is determined with finality by a court of competent jurisdiction that the 
relevant Claim resulted solely from such person’s or entities’ own gross negligence or 
willful misconduct. This paragraph 11 shall survive termination of the Agreement. 

 
12. Assignments. This Agreement is not assignable. 

 

13. Execution. This Agreement may be executed in counterparts, each of which 
together constitute one and the same instrument, binding on the parties, and 
each of which will together be deemed to be an original. 

 
14. Governance. This Agreement shall be governed by the laws of the party against which 

a legal or administrative proceeding (for example, litigation, arbitration or mediation) 
is brought. For clarity, in a proceeding brought against the Recipient, the governing 
law shall be the laws of England, and in a proceeding brought against the Provider, the 
governing law shall be the laws of the Province of British Columbia, and where 
applicable, the laws of Canada. 

 
15. Entire Agreement. This Agreement contains the entire agreement between the 

parties concerning the subject matter herein. No modification or waiver of any 
provision of this Agreement will be binding unless approved in writing by the 
parties. 

 
 
[SIGNATURES TO FOLLOW] 

 

FOR AND BEHALF OF PROVIDER: 

STEMCELL Technologies Canada Inc. 

FOR AND BEHALF OF RECIPIENT: 

Kingston University 

 

  

  

By: 
 

Name:     

Title:    

Date:    

 

By: 
 

Name:      

Title:    

Date:    
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Appendix 2 
Isotype controls 

Fluorochrome 
conjugate 

Isotype Source 

AF700 IgG1, κ Biolegend 

PE-Cy7 IgG1, κ Biolegend 

PE IgG2a, κ Biolegend  

PE IgG1, κ BD Bioscience 

PerCp-Cy5.5 IgG1, κ BD Bioscience 

PerCp-Cy5.5 IgG2a, κ Biolegend 

FITC IgM, κ BD Bioscience 

FITC IgG1, κ BD Bioscience 

APC IgG1, κ Biolegend 

APC IgG2a, κ Biolegend 

Pacific Blue IgG2a, κ Biolegend 
Table 7.1: Details of isotype controls used in flow cytometry experiments 
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Figure 7.1: The effect of increasing concentrations of MCP-1 on human monocyte migration after 1, 2, 4 
and 6 hours  

To find the optimum time point for monocyte migration towards MCP-1, Isolated monocytes (5x104), using the Big 

Easy magnet at 8˚C (n=3 5ng/ml MCP-1, n=1 for all other concentrations) were added to the top chamber of the 

5.0µM pore inserts, and left to freely migrate to the lower compartment of the well containing increasing 

concentrations of Monocyte chemoattractant protein -1 (MCP-1) for 1, 2, 4 and 6 hours. Images were taken at 5 

random fields, at 200x magnification. Results are displayed as the average number of migrated cells per field. * 

denotes p=<0.05, ** denotes p=<0.01, ns=non-significant determined by a ONE-WAY ANOVA with a Tukey’s post hoc 

test.  
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Appendix 

253 | P a g e  
 
 

 

 

Figure 7.2: A timecourse of monocyte migration towards increasing concentrations of MCP-1 over 6 
hours 

A timecourse displaying the combined data presented in Figure 7.1, demonstrating the influence of increasing 

concentrations of MCP-1 (5ng/ml, 15ng/ml, 25ng/ml and 50ng/ml) on human monocyte migration (5x104 , n=3 5ng/ml 

MCP-1, n=1 for all other concentrations) over the 6 hours timecourse.  

To determine the optimal time to allow human monocytes to freely migrate MCP-1, a 

timecourse was performed over 6 hours. These results identified 4 hours as the optimum, as 

migration at each concentration of MCP-1 was statistically significant when compared to control. 

Furthermore, as 5ng/ml was the selected concentration for MCP-1 in further experiments, the 

largest difference in the number of migrated cells when using this concentration as a 

chemoattractant, in comparison to control conditions was observed after 4 hours.   
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Figure 7.3: THP-1 cells release quantitatively different MPs following stimulation 

1x106 THP-1 cells/ml challenged with increasing concentrations of LPS (n=3), TNF-α (n=3) and IFN-γ (n=3) for 4 hours 

or 10 minutes for A23187 stimulation (n=3) in accordance with literature (Satta 1994, Cerri 2006, Nerri 2011, Baardelli 

2011). Annexin V+ MPs were enumerated by flow cytometry, with data displayed percentage of maximum MP 

release±SEM. Differences for each treatment determined by ONE-WAY ANOVA, with a Tukey’s post hoc test * p<0.05, 

** p<0.01, *** p<0.001, **** p<0.0001.  
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Appendix 5 

 

Figure 7.4: Determining the EC70-EC80 MP release for A23187 and LPS 

Graphs to demonstrate how the effective concentration that achieved 70-80% maximal response of MP release was 

determined for both A23187 and LPS. From these graphs, 12µM A23187 and 10ng/ml LPS were selected for further MP 

generation and analysis.  
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Appendix 6 

 

Figure 7.5: HUVECs release MPs in serum starvation conditions 

1x105 HUVECs/ml were cultured to 80% confluence in Endothelial growth medium-2, and either serum-starved (n=3, 

black bars) to induce apoptosis or in control conditions with 10% FBS (n=3, grey bars) for 48, 72 and 96 hours. Annexin 

V+ MPs were enumerated by flow cytometry (A), along with parent cells stained with DAPI (B). A positive association 

was found between the number of MPs/ml and percentage of DAPI+ cells, Pearson’s correlation coefficient R=0.503, 

p=0.0121.  Data is displayed as mean ±SEM, with differences assessed by TWO-WAY ANOVA, with a Sidak’s post hoc 

test.  
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Figure 7.6: HUVECs release MPs following stimulation with TNF-α 

1x105 HUVECs/ml grown to 80% confluence were challenged with 10ng/ml TNF-α (n=3), or Endothelial growth media-

2 10% FBS (n=3) for 24 hours. Annexin V+ MPs were enumerated by flow cytometry, with data displayed as mean 

±SEM. Differences for each treatment determined by an unpaired t-test* p<0.05. 
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