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Abstract: Selectfluor (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate))
substitutes the TEMPO free radical with fluorine on 4,7-dimethoxy-1-methyl-2-{[(2,2,6,6-tetramethylpiperidin-
1-yl)oxy]methyl}-1H-benzimidazole to give the title compound in a 77% yield. A mechanism is
proposed for the formation of this novel methylene fluoride.
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1. Introduction

Traditionally, an alkoxyamine undergoes homolysis thermally to give the reactive carbon-centered
radical and the stable free radical, nitroxide [1]. TEMPO-Vis is one of a new class of alkoxyamines that
releases reactive quinone methide radicals and the nitroxide, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl
(TEMPO) upon exposure to visible-light at room temperature (Figure 1) [2]. Light-insensitive
4,7-dimethoxy-1-methyl-2-{[(2,2,6,6-tetramethylpiperidin-1-yl)oxy]methyl}-1H-benzimidazole 1 is the
synthetic precursor to TEMPO-Vis and photoactive bis-alkoxyamines.
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1. Introduction 

Traditionally, an alkoxyamine undergoes homolysis thermally to give the reactive carbon-
centered radical and the stable free radical, nitroxide [1]. TEMPO-Vis is one of a new class of 
alkoxyamines that releases reactive quinone methide radicals and the nitroxide, (2,2,6,6-
tetramethylpiperidin-1-yl)oxyl (TEMPO) upon exposure to visible-light at room temperature (Figure 
1) [2]. Light-insensitive 4,7-dimethoxy-1-methyl-2-{[(2,2,6,6-tetramethylpiperidin-1-yl)oxy]methyl}-
1H-benzimidazole 1 is the synthetic precursor to TEMPO-Vis and photoactive bis-alkoxyamines. 
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Figure 1. TEMPO-Vis, synthetic precursor 1, and TEMPO free radical. 

Selectfluor (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)) is 
an inexpensive and hazard-free source of electrophilic fluorine [3]. Selectfluor is reported to have 
fluorinated activated aromatic positions on anisoles [4], phenols [4], naphthols [4,5], and benzamides 
[5,6]. More recently, the enamine-activated position of benzotriazinones was fluorinated using 
Selectfluor [7]. As part of our attempts to fluorinate at the activated 4,7-dimethoxybenzene part of 
alkoxyamine 1 to give 2, an alternative to electrophilic aromatic substitution was discovered, and is 
now disclosed (Scheme 1). 

Figure 1. TEMPO-Vis, synthetic precursor 1, and TEMPO free radical.

Selectfluor (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)) is an
inexpensive and hazard-free source of electrophilic fluorine [3]. Selectfluor is reported to have fluorinated
activated aromatic positions on anisoles [4], phenols [4], naphthols [4,5], and benzamides [5,6]. More
recently, the enamine-activated position of benzotriazinones was fluorinated using Selectfluor [7].
As part of our attempts to fluorinate at the activated 4,7-dimethoxybenzene part of alkoxyamine 1
to give 2, an alternative to electrophilic aromatic substitution was discovered, and is now disclosed
(Scheme 1).
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Scheme 1. Unexpected formation of the title compound 3. 

2. Results and Discussion 

Treatment of alkoxyamine 1 with Selectfluor (1.2 equiv) at 0 °C led to the rapid liberation of the 
TEMPO free radical, as indicated by GC-MS (Figure 2), and benzylic fluorination, to give 2-
(fluoromethyl)-4,7-dimethoxy-1-methyl-1H-benzimidazole 3. The novel methylene fluoride 3 was 
isolated in a 77% yield. 2-Fluoromethylbenzimidazole (without the dimethoxy groups) was 
previously prepared by condensation of 1,2-phenylenediamine with fluoroacetic acid [8]. The 
expected electrophilic aromatic fluorination at the electron-rich p-dimethoxybenzene part of 1 to give 
2 was not observed (Scheme 1). 

 
Figure 2. GC-MS analysis of the reaction mixture for the fluorination of alkoxyamine 1. 

The displacement of TEMPO is apparent when comparing the 1H NMR spectra (Figure 3). There 
are no TEMPO-based peaks in the spectrum of isolated 3, and the methylene signal shifted downfield 
to 5.61 ppm with splitting into a doublet (2JH-F = 48.2 Hz) due to 1H-19F coupling. The location and 
multiplicity of the methylene signal is in good agreement with signals reported for 2-(fluoromethyl)-
1H-benzimidazole (5.64 ppm, d, 2JH-F = 47.5 Hz) [8].  

Scheme 1. Unexpected formation of the title compound 3.

2. Results and Discussion

Treatment of alkoxyamine 1 with Selectfluor (1.2 equiv) at 0 ◦C led to the rapid liberation
of the TEMPO free radical, as indicated by GC-MS (Figure 2), and benzylic fluorination, to give
2-(fluoromethyl)-4,7-dimethoxy-1-methyl-1H-benzimidazole 3. The novel methylene fluoride 3 was
isolated in a 77% yield. 2-Fluoromethylbenzimidazole (without the dimethoxy groups) was previously
prepared by condensation of 1,2-phenylenediamine with fluoroacetic acid [8]. The expected electrophilic
aromatic fluorination at the electron-rich p-dimethoxybenzene part of 1 to give 2 was not observed
(Scheme 1).
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Figure 2. GC-MS analysis of the reaction mixture for the fluorination of alkoxyamine 1.

The displacement of TEMPO is apparent when comparing the 1H NMR spectra (Figure 3).
There are no TEMPO-based peaks in the spectrum of isolated 3, and the methylene signal shifted
downfield to 5.61 ppm with splitting into a doublet (2JH-F = 48.2 Hz) due to 1H-19F coupling.
The location and multiplicity of the methylene signal is in good agreement with signals reported for
2-(fluoromethyl)-1H-benzimidazole (5.64 ppm, d, 2JH-F = 47.5 Hz) [8].
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Figure 3. 1H NMR spectra in CDCl3: (A) alkoxyamine 1 and (B) methylene fluoride 3. 

The methylene signal split into a doublet (1JC-F = 165.5 Hz) in the 13C NMR spectrum of 3 at 76.8 
ppm (see Supplementary Materials for NMR spectra). 13C-19F NMR coupling also gave doublets for 
benzimidazole-C-2 at 147.1 ppm (2JC-F = 19.0 Hz), and for the N-CH3 at 32.6 ppm (4JC-F = 2.5 Hz). The 
former is in good agreement with the literature data on 2-(fluoromethyl)-1H-benzimidazole C-2 
(148.6 ppm, d, 2JCF = 19.7 Hz) [8].  

The 19F NMR signal for 3 at −214.93 ppm is similar to the literature value of −213.92 ppm for 2-
(fluoromethyl)-1H-benzimidazole [8]. The signal appeared as a triplet (2JF-H = 48.0 Hz), due to 19F-1H 
coupling with the two 1H atoms of the adjacent methylene group. 

Alkoxyamine 1 is stable to visible-light and the reaction was performed at 0 °C, therefore ruling 
out bond homolysis as a pathway to formation of methylene fluoride 3. Assuming Selectfluor is a 
source of F+ or F• and not fluoride, this rules out SN2 displacement of the TEMPO residue [3,9]. 
Incompatible polarization of the alkoxyamine C–O bond also prevents a simple SH2 mechanism. A 
single electron transfer (SET) pathway is now proposed, and is supported by the electrochemical 
oxidations of TEMPO-based alkoxyamines (TEMPO-R) with mesolytic cleavage of the alkoxyamine 
bond forming TEMPO+ and R• [10]. In this case (Scheme 2), SET is proposed to induce mesolytic 
cleavage of ʹbenzylic alkoxyamineʹ 1 to produce TEMPO+ and a methylene radical 4. Abstraction of 
F• by 4 gives reaction product 3, while reduction of the oxoammonium cation 5 by the Selectfluor-
derived DABCO derivative 6 gives the TEMPO free radical detected by GC-MS (Figure 2). A plausible 
alternative to the mesolytic cleavage is initial SN2 on the fluorine of Selectfluor by the N-3 of 
benzimidazole 1 to give an imidazolium fluoride [9]. The subsequent generation of 3 eliminates a 
TEMPO+ species that would undergo reduction by 6 (as in Scheme 2) to give a TEMPO free radical. 

Figure 3. 1H NMR spectra in CDCl3: (A) alkoxyamine 1 and (B) methylene fluoride 3.

The methylene signal split into a doublet (1JC-F = 165.5 Hz) in the 13C NMR spectrum of 3 at
76.8 ppm (see Supplementary Materials for NMR spectra). 13C-19F NMR coupling also gave doublets
for benzimidazole-C-2 at 147.1 ppm (2JC-F = 19.0 Hz), and for the N-CH3 at 32.6 ppm (4JC-F = 2.5 Hz).
The former is in good agreement with the literature data on 2-(fluoromethyl)-1H-benzimidazole C-2
(148.6 ppm, d, 2JCF = 19.7 Hz) [8].

The 19F NMR signal for 3 at −214.93 ppm is similar to the literature value of −213.92 ppm for
2-(fluoromethyl)-1H-benzimidazole [8]. The signal appeared as a triplet (2JF-H = 48.0 Hz), due to
19F-1H coupling with the two 1H atoms of the adjacent methylene group.

Alkoxyamine 1 is stable to visible-light and the reaction was performed at 0 ◦C, therefore ruling out
bond homolysis as a pathway to formation of methylene fluoride 3. Assuming Selectfluor is a source
of F+ or F• and not fluoride, this rules out SN2 displacement of the TEMPO residue [3,9]. Incompatible
polarization of the alkoxyamine C–O bond also prevents a simple SH2 mechanism. A single electron
transfer (SET) pathway is now proposed, and is supported by the electrochemical oxidations of
TEMPO-based alkoxyamines (TEMPO-R) with mesolytic cleavage of the alkoxyamine bond forming
TEMPO+ and R• [10]. In this case (Scheme 2), SET is proposed to induce mesolytic cleavage of
‘benzylic alkoxyamine’ 1 to produce TEMPO+ and a methylene radical 4. Abstraction of F• by 4 gives
reaction product 3, while reduction of the oxoammonium cation 5 by the Selectfluor-derived DABCO
derivative 6 gives the TEMPO free radical detected by GC-MS (Figure 2). A plausible alternative to the
mesolytic cleavage is initial SN2 on the fluorine of Selectfluor by the N-3 of benzimidazole 1 to give an
imidazolium fluoride [9]. The subsequent generation of 3 eliminates a TEMPO+ species that would
undergo reduction by 6 (as in Scheme 2) to give a TEMPO free radical.
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Scheme 2. Proposed mechanism for the formation of methylene fluoride 3. 

3. Materials and Methods 

3.1. Materials and Measurements 

4,7-Dimethoxy-1-methyl-2-{[(2,2,6,6-tetramethylpiperidin-1-yl)oxy]methyl}-1H-benzimidazole 
(1) was synthesized in an 83% yield by the base-mediated substitution on 2-(chloromethyl)-4,7-
dimethoxy-1-methyl-1H-benzimidazole by TEMPO hydroxylamine (prepared in situ via PtO2 
catalyzed hydrogenation of TEMPO (Sigma-Aldrich, 98%, St. Louis, MO, USA) [11]) [2]. 2-
(Chloromethyl)-4,7-dimethoxy-1-methyl-1H-benzimidazole was prepared in an 85% overall yield by 
N-methylation and chlorination of (4,7-dimethoxy-1H-benzimidazol-2-yl)methanol [2,12]. Selectfluor 
(Sigma-Aldrich, >95% F+ active), MeCN (Sigma-Aldrich, HPLC Plus, ≥ 99.9%), CH2Cl2 (Fischer 
Scientific, ≥99%, Hampton, NH, USA) and MgSO4 (Alfa Aesar, 99.5%, Haverhill, MA, USA) were 
used as received. GC-MS analysis was performed on an Agilent 7890A GC system (Agilent 
Technologies, Santa Clara, CA, USA), equipped with an Agilent 5975C inert XL Mass Selective 
Detector (EI) and an RTX-1, 30 m, ID 0.25 mm, FD 0.25 µm column (Restek Corporation, Bellefonte, 
PA, USA). Helium was used as carrier gas at a flow rate of 0.7 mL/min. The injector was heated to 
250 °C, and the oven temperature was increased from 75 to 250 °C at the rate of 10 °C/min, and was 
then further increased to 350 °C at 50 °C/min. Thin layer chromatography (TLC) was performed on 
Merck TLC silica gel 60 F254 plates using a UV lamp (254 nm) for visualization. Flash chromatography 
was performed using silica gel, pore size 60 Å, 230–400 mesh, and particle size 40–63 µm (Sigma-
Aldrich) using EtOAc (Fischer Scientific, ≥99%) and hexanes (Fischer Scientific, bp 40–60 °C). The 
melting point was measured on a Stuart Scientific melting point apparatus, SMP3. Infrared spectrum 
was recorded using a Perkin-Elmer Spec 1 (Perkin-Elmer, Waltham, MA, USA) with ATR attached. 
CDCl3 (Sigma-Aldrich, 99.8% atom D + 0.03% Si(CH3)4 v/v) was used as received. NMR spectra were 
recorded using a Varian 500 MHz instrument (Varian Medical Systems, Palo Alto, CA, USA). The 
chemical shifts were in ppm relative to Si(CH3)4. NMR assignments were supported by DEPT 
and 1H-13C correlation. 13C NMR with complete proton decoupling and 19F NMR spectra were 
collected at 125 and 470 MHz, respectively. HRMS was carried out using ESI time-of-flight mass 
spectrometer (TOFMS) in positive mode using a Waters LCT Mass Spectrometry instrument (Waters 
Milford, MA, USA).  

3.2. Synthesis of 2-(fluoromethyl)-4,7-dimethoxy-1-methyl-1H-benzimidazole (3) 

Selectfluor (0.118 g, 0.33 mmol) was added to alkoxyamine 1 (0.100 g, 0.28 mmol) in MeCN (5 
mL) at 0 °C and stirred for 20 min. H2O (10 mL) was added and the mixture was extracted with 
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3. Materials and Methods

3.1. Materials and Measurements

4,7-Dimethoxy-1-methyl-2-{[(2,2,6,6-tetramethylpiperidin-1-yl)oxy]methyl}-1H-benzimidazole (1)
was synthesized in an 83% yield by the base-mediated substitution on 2-(chloromethyl)-4,7-dimethoxy-
1-methyl-1H-benzimidazole by TEMPO hydroxylamine (prepared in situ via PtO2 catalyzed
hydrogenation of TEMPO (Sigma-Aldrich, 98%, St. Louis, MO, USA) [11]) [2]. 2-(Chloromethyl)-4,7-
dimethoxy-1-methyl-1H-benzimidazole was prepared in an 85% overall yield by N-methylation and
chlorination of (4,7-dimethoxy-1H-benzimidazol-2-yl)methanol [2,12]. Selectfluor (Sigma-Aldrich,
>95% F+ active), MeCN (Sigma-Aldrich, HPLC Plus, ≥99.9%), CH2Cl2 (Fischer Scientific, ≥99%,
Hampton, NH, USA) and MgSO4 (Alfa Aesar, 99.5%, Haverhill, MA, USA) were used as received.
GC-MS analysis was performed on an Agilent 7890A GC system (Agilent Technologies, Santa Clara,
CA, USA), equipped with an Agilent 5975C inert XL Mass Selective Detector (EI) and an RTX-1, 30 m,
ID 0.25 mm, FD 0.25 µm column (Restek Corporation, Bellefonte, PA, USA). Helium was used as
carrier gas at a flow rate of 0.7 mL/min. The injector was heated to 250 ◦C, and the oven temperature
was increased from 75 to 250 ◦C at the rate of 10 ◦C/min, and was then further increased to 350 ◦C
at 50 ◦C/min. Thin layer chromatography (TLC) was performed on Merck TLC silica gel 60 F254

plates using a UV lamp (254 nm) for visualization. Flash chromatography was performed using silica
gel, pore size 60 Å, 230–400 mesh, and particle size 40–63 µm (Sigma-Aldrich) using EtOAc (Fischer
Scientific, ≥99%) and hexanes (Fischer Scientific, bp 40–60 ◦C). The melting point was measured on a
Stuart Scientific melting point apparatus, SMP3. Infrared spectrum was recorded using a Perkin-Elmer
Spec 1 (Perkin-Elmer, Waltham, MA, USA) with ATR attached. CDCl3 (Sigma-Aldrich, 99.8% atom
D + 0.03% Si(CH3)4 v/v) was used as received. NMR spectra were recorded using a Varian 500 MHz
instrument (Varian Medical Systems, Palo Alto, CA, USA). The chemical shifts were in ppm relative
to Si(CH3)4. NMR assignments were supported by DEPT and 1H-13C correlation. 13C NMR with
complete proton decoupling and 19F NMR spectra were collected at 125 and 470 MHz, respectively.
HRMS was carried out using ESI time-of-flight mass spectrometer (TOFMS) in positive mode using a
Waters LCT Mass Spectrometry instrument (Waters, Milford, MA, USA).

3.2. Synthesis of 2-(Fluoromethyl)-4,7-dimethoxy-1-methyl-1H-benzimidazole (3)

Selectfluor (0.118 g, 0.33 mmol) was added to alkoxyamine 1 (0.100 g, 0.28 mmol) in MeCN (5 mL)
at 0 ◦C and stirred for 20 min. H2O (10 mL) was added and the mixture was extracted with CH2Cl2
(3 × 20 mL). The combined organic layers were dried (MgSO4), evaporated, and the residue purified
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by flash chromatography using EtOAc and hexanes, as eluent to yield 3 (48 mg, 77%) as a colorless
solid; mp 90–92 ◦C; Rf 0.33 (1:1 EtOAc:hexanes); νmax (neat, cm−1) 3001, 2936, 2838, 1525, 1465, 1392,
1263, 1238, 1221, 1174, 1100, 1070; δH (500 MHz, CDCl3) 3.89 (3H, s, OCH3), 3.96 (3H, s, OCH3), 4.10
(3H, s, NCH3), 5.61 (2H, d, 2JH-F = 48.2 Hz), 6.51 (1H, d, 3JH-H = 8.5 Hz), 6.59 (1H, d, 3JH-H = 8.5 Hz); δC

(125 MHz, CDCl3) 32.6 (d, 4JC-F = 2.5 Hz, NCH3), 55.8, 55.9 (both OCH3), 76.8 (d, 1JC-F = 165.5 Hz, CH2),
101.5, 104.0 (both CH), 127.0, 134.2, 141.8, 146.3 (all C), 147.1 (d, 2JC-F = 19.0 Hz, C2); δF (470 MHz, CDCl3)
− 214.93 (t, 2JF-H = 48.0 Hz); HRMS (ESI) m/z [M + H]+, C11H14N2O2F calcd. 225.1039, observed 225.1040.

Supplementary Materials: The following are available online: 1H, 13C, and 19F NMR spectra for compound 3.
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