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Abstract 
 
Flows in channels with fluid and porous regions important to various engineering 
applications. A better understanding of fundamental mechanisms in the fluid flows in porous 
regions are needed to optimize gas bearings, air filters, thermal insulation in the specific 
applications. Darcy–Brinkman–Forchheimer model is used to describe the flow inside the 
porous domain. The finite volume method is applied to solve these equations in a porous and 
open domains. The capabilities of the mathematical model and computational algorithm are 
demonstrated using test cases from various areas of practical applications. The results of the 
numerical simulation of flows in porous domains are presented.  
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1 Introduction 
 
Flows and heat transfer in channels containing both fluid and porous regions are important in 
many engineering applications (rotor aerodynamics, thrust air bearings, thermal insulation, 
diesel particulate filters, drinking water treatment) and natural phenomena (filtration process). 
A better understanding of fundamental mechanisms in the fluid flow and thermal transport are 
required to optimize the design considerations for various specific applications [1, 2]. 
 
The porous body approximation used instead of repetitive structures is one of the approaches 
to reduce requirements to the computational resources [3, 4]. For a certain type of porous 
domains, dense-packed spheres, there are valid mathematical expressions for the calculation 
of resistance factors [5]. 
 
A way to improve the reliability and life cycle of rotating machines is the usage of various 
designs of contactless supports [6, 7]. The bearings which are characterized by a self-
contained lubricating mechanism have a stationary porous bushing whose inner diameter 
faces the bearing clearance, while the outer one faces a wrap-around reservoir. 
 
Laminar flow in a porous channel with variable wall suction, wall injection and variable radial 
mass flux are investigated in [8, 9] based on coupled solution of Navier–Stokes and Darcy 
law equations. The forced convection in channels partially filled with porous media is 
numerically investigated in [10] using Darcy–Brinkman–Forchheimer model. Fluid flow and 
heat transfer in a channel partially filled with porous medium is analysed in [11]. Analytical 
and numerical studies of the laminar flow in a porous channel with large suction along the 
permeable walls and a weakly oscillatory pressure performed in [12]. Friction and heat 
transfer for fully laminar flow in isothermal parallel plate channel completely filled with 
porous media are studied in [13]. Darcy equation representing the porous wall conditions is 
exploited in [14] to simulate fluid flow through a channel with porous walls based on finite 
element method. The results of finite-difference simulation of a laminar incompressible and 
isothermal flow in a cylindrical channel with permeable walls are presented in [15]. 



 
The interface conditions imposed at the intersection of the fluid and porous sub-domains 
including gradient reconstruction at the interface or the treatment the advecting and advected 
velocities at the interface are important for practical applications. Many previous studies have 
focused on low-Reynolds number flows, where the change in pressure as a result of the 
change in the adverted velocity is negligible. Implementation of the interface conditions into a 
CFD code [16, 17]. 
 
The SIMPLE algorithm of the predictor–corrector type has been adapted to solve Brinkman–
Forchheimer equations [3]. A coupled computational algorithm for modified Navier–Stokes 
equations to simulate flows in anisotropic porous media [18]. The results of numerical 
simulation of a wide number of injection-driven flows in plane and cylindrical channels are 
presented in [19, 20]. 
 
We use the mathematical model based on Darcy–Brinkman–Forchheimer equations to 
describe the flow in coupled open and porous domains. Numerical solution of the governing 
equations is based on the finite volume method and coupled SIMPLE algorithm. The effect of 
various physical quantities on velocity and pressure distributions is investigated, and the 
results of the numerical simulation of flows in porous domains are presented. The results 
obtained are compared with the available data. 
 
2 Methods 
 
2.1 Governing equations 
 
Brinkman–Forchheimer equations of the momentum conservation and continuity describing 
the laminar steady viscous flow of incompressible fluid in a porous medium, which are 
written relative to a real velocity, have the form [2] 
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Here, ε is the porosity, ρ is the density of the material to be simulated, v is the real velocity, p 
is the static pressure, μ is the dynamic viscosity, F is Forchheimer coefficient depending on 
the flow parameters, K is the permeability tensor, C is the inertial resistance tensor, I is the 
unit tensor. The viscous stress tensor for incompressible Newtonian medium is 

( ),*vvτ ∇+∇= Bµ  
where μB is the modified Brinkman molecular viscosity in a porous medium. The modified 
Brinkman molecular viscosity is set in a porous medium. It depends on the medium porosity 
factor and is represented in the following form [21] 

( ) 25.01 −−= εµB . 
Superscript * corresponds to the conjugate tensor. 
 
The density in equations (1) and (2) remains constant. In general, the porosity coefficient is a 
function of Cartesian coordinates and time, and does not depend on velocity and pressure. 
Therefore, the equation of state is not required. The diagonal components of the inertial 
resistance tensor in isotropic porous media are proportional to ρK-1/2, where K is the 
permeability. In anisotropic porous media this dependence is invalid, and calculations of the 
components of the inertial stress tensor are required to take into account sizes of pores and 
inter-pore spaces, flow regime [22]. The effect of non-linear Forchheimer coefficient is 



noticeable at local Darcy numbers above 10-3, so these terms may be neglected only in some 
cases of a laminar flow [23]. 
 
The last two terms in the momentum equation (2) are the Darcy and Forchheimer ones. In real 
calculations with the use of experimental data on pressure losses it is easy to represent these 
terms in the form of the resistance tensor 
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where α is the inertial (non-linear) resistance tensor, β is the viscous (linear) resistance tensor. 
These tensors have a symmetric structure, and in case of the coordinate system coinciding 
with the main axes of porous medium (axes should be orthogonal) these tensors are diagonal. 
 
2.2 Numerical procedure 
 
Continuity equation (1) and momentum conservation equation (2) describe flows of viscous 
compressible and incompressible fluids both in porous and open domains, as well as at an 
interface of different porous media. These equations are also used to solve problems with a 
porosity ratio varying in space and time. 
 
Discretization of the governing equations is carried out for unstructured meshes with arbitrary 
cell topology using a cell-centred finite-volume method [18]. The difference from the classic 
SIMPLE algorithm is in the completely implicit relationship between velocity and pressure 
owing to the implicit terms of the pressure and mass flow gradients in the continuity equation 
and momentum equation. One of the attractive features of this algorithm is the possibility of 
completely implicit discretization of off-diagonal components of the porous medium 
resistance tensor in the right-hand side of the momentum equation. Implicit discretization 
allows reducing the number of linear iterations as compared to the SIMPLE algorithm with 
explicit discretization of off-diagonal components. Linearization is performed with the simple 
iteration method. The multigrid method is used to solve the system of finite difference 
equations [24, 25]. 
 
3 Channel flows 
 
 
3.1 Flow in a channel with porous insert 
 
The plane flow through a parallel plane channel with porous plug inserted at some distance 
from the inlet is considered. The problem is identical to [26] and is shown in the Figure 1, 
where the shaded region indicates the porous sub-domain. A rectangular insert of length L2 
made of a homogeneous isotropic porous material is placed in the channel at a distance of L1 
to the channel inlet. The channel length L3 has been chosen sufficiently large to eliminate the 
impact of steady state flow regions on the final results. The lengths of fluid and porous sub-
domains are L1=5H, L2=5H and L3=50H, where H is the channel height. The large value of L3 
is chosen to ensure fully developed flow at the outlet. 
 

 



Figure 1. Flow in a channel with porous insert 
 
Two-dimensional problem formulation is considered, and the channel length is eliminated 
from the consideration by imposing the periodical boundary conditions. The velocity 
boundary conditions consist of a fully developed plane channel flow specified at the inlet 
boundary (x=0), fully developed conditions at the outlet boundary (x=60H) and no-slip and 
no-penetration conditions at the channel walls (y=0 and y=H). The pressure is specified as 
zero at the outlet boundary to set the pressure level, while pressure is extrapolated to all other 
boundaries. The dimensionless parameters of the problem are Reynolds number, Re=ρUH/μ, 
and Darcy number, Da. These numbers are used to select dimensional quantities such as fluid 
properties and resistance factors for the porous body. The porosity factor ε is set equal to 1. 
 
The flow is simulated for Re=103 and Da=10-2. The tetrahedral mesh containing ~ 105 cells in 
porous region is used. Typical streamwise size of the mesh is 0.005 m. The case is solved 
using a single large time step with a non-linear residual tolerance, normalized by the average 
magnitude of the given field, specified as 10-6. The computational cost of the coupled 
algorithm is ~ 25. The computational cost is measured as a number of steps required to reach 
the specified level of residual. 
 
The examination of results includes the comparison of velocity and pressure profiles along the 
centerline of channel. Streamwise velocity and static pressure distributions along the line 
y/H=0.5 are presented on Figure 2 (solid lines). The results computed are compared with [9] 
(bullets). The results are very similar, although the profiles near the interfaces are slightly 
different due to different treatment of pressure at interface. 
 

 
Figure 2. Streamwise velocity (a) and pressure (b) distributions along the line y/H=0.5 

 
Results for different Darcy numbers and fixed Reynolds number (Re=1000) demonstrate the 
robustness of model over a wide range of input parameters shown on Figure 3. The model is 
capable obtaining physically reasonable results for porous materials with low permeability. 
 



 
Figure 3. Streamwise velocity distributions along line y/H=0.5 at Re=1000 and different 

Darcy numbers 
 
3.3. Flow in a channel with fluid injection through porous walls 
 
Fluid flow in plane and cylindrical channels with fluid injection through porous walls is 
considered. The fluid and porous domains shown on Figure 4. The flow is assumed to be a 
fully developed at the inlet of channel with porous walls. On the inner surface of the porous 
tube, the injection velocity is found from Darcy equation vw=–(k/μ)grad p, where k is the 
porous walls permeability, μ is the dynamic viscosity. If the external pressure pa is uniform 
along the centerline and equal to atmospheric pressure, the injection velocity at the wall is 
found from vw=k(p–pa)/(μh), where h is the channel wall thickness. The effect of the velocity 
slip is practically negligible at the inner surface of porous tube [27]. 
 

 
Figure 4. Flow in a channel with fluid injection through porous walls 

 
The fluid used for simulation is the air ρ=1.21 kg/m3, μ=1.71×10-5 Pa s). The porous wall is 
made of the compacted exfoliated clay, whose its permeability is equal to 1.85×10-17 m2. The 
computational mesh consists of 400 nodes in the axial direction, and 100 nodes in the radial 
direction. The mesh nodes are clustered near the injection surface to resolve the vortical wave 
structure and turbulent boundary layer. The flow structure depend on Reynolds numbers 
based on inlet velocity and injection velocity 
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where H is half width or radius of the channel, U0 is inlet mean velocity. Injection velocity is 
found as Vw0=k(p0–pa)/(μh). 
 



At high Reynolds numbers, the flow region in the channel with wall injection is divided into 
sub-region of influence of viscosity near the walls and sub-region of vortical flow in the core 
(Figure 5). The njection (Rew→∞) means that the injection velocity considerably, by the order 
of magnitude, exceeds the velocity in the boundary layer near the impermeable surface, and 
the injection velocity is considerable lower than the average flow velocity in the channel. In 
such conditions, the flow in the injected fluid layer turns out inviscid, and the boundary layer 
is pushed away from the surface and transformed into the mixing layer between the injected 
layer and the flow in the channel. The thickness of this layer turned out to be small compared 
to the thickness of the layer of the injected fluid. The streamwise velocity profile for weak 
injection (Rew→0) is very similar to the velocity distribution in Hagen–Poiseuille flow [28]. 
Radial velocity profiles are very similar with cases of weak and strong injection (Figure 6). 
 

 
Figure 5. Streamwise velocity profiles in planar (a) and cylindrical (b) channels with weak 

(lines 1) and strong (lines 2) injection 
 

 
Figure 6. Radial velocity profiles in planar (a) and cylindrical (b) channels with weak (lines 1) 

and strong (lines 2) injection 
 
4 Power output of wind turbine 
 
Actuator disc model is used as a simple method for simulating horizontal axis tidal turbines. 
Actuator disc produces a similar far wake to a real turbine, but eliminates some of the scaling 
issues which occur in experiments, and reduces the mesh resolution required in CFD 
simulations. The porous loss model takes into account the pressure gradient, Δp/l, through the 
porous region using a user-defined quadratic loss coefficient, K. The material is defined as 
having a drag coefficient, k, which relates the pressure drop across the disc with the velocity 



at the disc location. The resistance coefficient of the turbine to the flow is introduced as 
follows 
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where p1 and p2 are the static pressures immediately upstream and downstream of the rotor, 
respectively, u is the one-dimensional wind speed immediately upstream of the rotor, and ρ is 
the air density. This equation gives output power as function of resistance coefficient 
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where ηt is the efficiency of the turbine, and A is the flow area. 
 
Disc porosity, which is represented by their quadratic resistance coefficient, K, varies to 
embrace a range of simulated disc resistance which goes from 0 (which is equivalent to a 
solid wall) up to 8 kg/m4. This approach allows finding the point of maximum power output 
from the actuator disc. In fact, power output would increase from K=0 up to a certain value 
and then, it experiences and steady decreases. 
 
Calculation of pressure drop must be done based on a chosen reference velocity. There are 
two options for this. The first one is the superficial velocity, which is the velocity which 
would exist if the porosity K=1, and the second option is the true velocity, which is the actual 
velocity in the porous region flow passages. The superficial velocity is used in this study. 
 
A single porous disc simulating a wind turbine is placed (Figure 7). The chosen diameter of 
the disc is 46 m. A centre point of the disc is located in the vertical of maximum clear height. 
Distance from ground to the centre point is 29 m. The distance of the lowest point of the disc 
to the terrain is fixed at 6 m, while the separation from the highest point of the turbine to the 
upper boundary is 8.62 m. The swept area of the disc comprises 1661.9 m2 and length of the 
porous disc is set to 3 m long, which is enough to simulate the blades influence. 
 

 
Figure 7. A building structure with an integrated duct containing a porous region 

 
The power law is developed empirically to represent wind shear. The wind height variation is 
calculated as follows 



β









=

aa y
y

u
u

, 

where u is the averaged wind speed at height y, ua is the averaged wind speed at height ya. The 
power law exponent is a function of wind speed and surface roughness length (type of 
terrain), and it varies for different types of terrain. The surface roughness length varies 
according to the terrain of the site. The chosen roughness length is fixed at 0.1 m. 
 
Two domains have been included, porous domain and fluid domain. The first domain is 
formed by the porous discs which simulate the wind turbine rotors, while the second domain 
simulates the air flow surrounding the rotors, the viaduct and the ground. The method 
represents the swept volume of the wind turbine blades as a porous medium, and by adjusting 
the resistance of the porous medium the balance between the energy extraction and the bypass 
flow can be optimized. 
 
To simulate the porous plug resistance, the solution set up needs to be changed by editing the 
porous domain settings. To do this, the porous plug domain is given certain porosity. This is a 
value between 0 and 1 which represents the available open flow area. The value of 0.9 means 
that the porous medium creates a 10% reduction in flow area or a 10\% increase in local flow 
velocity. This reduction in flow area can be thought of as representing the flow area which 
would be occupied by the actual blades and hub of a wind turbine rotor. 
 
The quadratic residence coefficient varies from 0 to 8 kg/m4 to simulate different types of 
rotor characteristics regarding to its absorption of wind power by means of a pressure drop. 
The calculations are launched on unstructured meshes containing about 2 millions of cells. 
 
Dependence of the power output on quadratic resistance coefficient is shown in the Figure 9. 
The power output is around 16000 W for K=0.1 kg/m4 and it is increased up to 27269 W, 
which represents 70% more. At this point, the power starts a stable progression with a peak of 
power on K=0.5 kg/m4 with P=29129 W. Then, it slightly decreases with small changes for 
K=0.7 kg/m4 and 0.9 kg/m4, where there is a decrease of 0.4% and 2.6% respectively, 
respecting to the peak point. From this situation, the power extraction from the porous disc 
decreases steadily. However, there is a sudden low for K=1.1 kg/m4, where power decreases 
by 27% and then it is increased by 25%. Despite this simulation is repeatedly carried, the 
result remains in the same figures. This result would likely be due to simulation issues (using 
higher calculation potency this result would not appear). Regarding to the last K value (K=8 
kg/m4), the power production would be 14795 W. 
 

 



Figure 9. Power output of a wind turbine as a function of resistance coefficient 
 
6 Conclusion 
 
A numerical model was developed for analysis of the fluid flows in conjugate fluid and 
porous domains using unstructured meshes. The coupled computational algorithm for 
Brinkman–Forchheimer equations to simulate flows in anisotropic porous media is applied. In 
contrast to the SIMPLE algorithm, the coupled algorithm couples the velocity and pressure in 
the algebraic form in a completely implicit manner. Coupling is performed owing to the 
implicit pressure gradient and mass flux terms in the momentum and continuity equations, 
respectively. The robustness of the developed numerical methods was demonstrated for some 
simple benchmark flow cases through a porous media. Verification and validation of the CFD 
solver has been made for some benchmark cases including fluid flow through a porous 
material insert, a fluid flow in a planar divided channel and a fluid flow through a channel 
with porous walls. 
 
The results obtained are potentially beneficial for design and optimization of the porous 
bearings. They have some advantages against classic solid hydrodynamic bearings including 
the elimination of a circulatory system for lubricant, the reduction in load carrying capability, 
the reduction in stability due to higher attitude angles, the capability to run at higher speeds 
without overheating due to the reduced shear in the clearance region. 
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