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Abstract—Recently, streaming of gameplay scenes has gained
much attention, as evident with the rise of platforms such as
Twitch.tv and Facebook Gaming. These streaming services have
to deal with many challenges due to the low quality of source
materials caused by client devices, network limitations such as
bandwidth and packet loss, as well as low delay requirements.
Spatial video artifact such as blockiness and blurriness as a
result of as video compression or up-scaling algorithms can
significantly impact the Quality of Experience of end-users of
passive gaming video streaming applications. In this paper, we
investigate solutions to enhance the video quality of compressed
gaming content. Recently, several super-resolution enhancement
techniques using Generative Adversarial Network (e.g., SRGAN)
have been proposed, which are shown to work with high accuracy
on non-gaming content. Towards this end, we improved the
SRGAN by adding a modified loss function as well as changing
the generator network such as layer levels and skip connections
to improve the flow of information in the network, which is
shown to improve the perceived quality significantly. In addition,
we present a performance evaluation of improved SRGAN
for the enhancement of frame quality caused by compression
and rescaling artifacts for gaming content encoded in multiple
resolution-bitrate pairs.

I. INTRODUCTION

Video traffic forms a significant part (almost 82% by 2021

as per current Cisco Visual Networking Index forecast [1])

of the net consumer Internet traffic. Along with the rising

popularity of video-on-demand streaming services such as

Netflix and YouTube, live streaming services such as Twitch

and Facebook Live have got increasing acceptance by the

users. Among the live streaming services, gaming video

streaming services which broadcast live gameplay to viewers

as provided by Twitch and Facebook Gaming have become

hugely popular with Twitch alone consisting of almost 15

million daily active users and 2 million streamers resulting

it in being the 4
th highest peak traffic generator in the US.

One of the measures to adapt the video content to the user

bandwidth is by compressing and/or rescaling the video into

multiple resolution-bitrate pairs, as is done by almost all major

Over The Top (OTT) service providers. The selection of the

resolution-bitrate pairs is determined based on a trade-off

between blockiness (due to compression) and blurriness (due

to rescaling), as is explained in detail in [2].

In the past few years, we have seen several works to build

an enhancement technique that can scale up an image to a

higher resolution without significant quality loss, known as

the Super-Resolution task (SR). Recently, there has been a

huge improvement in the performance of the methods for

SR task, primarily due to two big factors: advancement in

deep learning methods (such as deep Convolutional Neural

Networks (CNN)), and improvement in loss function to eval-

uate the quality of the enhanced image. Several new CNN

architectures have been introduced that improve the prediction

of different tasks by either proposing a deeper network (e.g.,

VGG [3]) or enhancing the flow of information (e.g., DenseNet

[4] and ResNet [5]). Besides, new and more versatile machine

learning methods such as Generative Adversarial Networks

(GANs) [6] and Auto-encoders have found their application in

SR tasks [7]. GANs, which have two main blocks, generator

and discriminator has recently gained lots of attention for

quality enhancement, especially for SR tasks. In SR tasks, the

generator is responsible for generating fake images based on

the received distorted input, while discriminator evaluates the

generated image quality compared to the real image. GANs

have been considered as a solution for quality enhancement of

distorted images due to compression, noise, or block loss [8].

Recent studies in [9], [10], and [11] have shown that gaming

content due to its synthetic and artificial nature, is different

from non-gaming content and it is imperative that models

and techniques developed for non-gaming content needs to

be adapted for gaming content for increased performance

efficiency. A game is created by a pool of pre-designed objects

that are repeated several times in different game scenarios.

Such repetition of content structures might help train a deep

neural network which can predict the quality or perform other

similar tasks with very high accuracy due to similarity in

content structure between the training and test dataset. Such

a similarity has been proved to play an important role in the

very good performance of GANs in SR tasks [12]. Given the

fact that almost 50% of streamed gaming videos come from

the top 10 highly popular games there is a vast potential of

applicability of game-specific quality enhancement/assessment

models in real-world applications.

Towards this end, in this paper, we first investigate the per-

formance of GANs for quality enhancement of encoded frames

of video games. Figure 1 illustrates the architecture of SRGAN

for quality enhancement. We first evaluate the enhancement
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Fig. 1: The architecture of SRGAN for quality enhancement.

model SRGAN [13] for gaming image enhancement, followed

by proposal of a new generative network architecture which

improves the flow of information as well as improving the loss

function of SRGAN by allowing the content loss function of

SRGAN to learn quality prediction task.

The rest of the paper is organized as follows. Section II

presents some of the related work in the field of image

quality enhancement. Section III presents the different datasets

used for training and test and Section IV presents the model

development steps for the proposed model. Section V presents

the results of the objective and subjective tests of the proposed

model. Section VI concludes the paper.

II. RELATED WORK

In general, the proposed methods in the field of image

compression artifacts reduction can be divided into two main

categories: deblocking-oriented and deep learning-based ap-

proaches. The first category of approaches aim to eliminate

ringing and blockiness artifacts. However, the weakness of

these methods is that, while they can manage to eliminate

the blocking artifacts, the edges of the original image can not

be as sharp as they originally were. The second category of

approaches have recently caught attention due to the advance-

ment of deep learning methods. Several enhancement models

are proposed and applied on compressed images using deep

learning methods such CNNs. [14] is one of the very first

works that used Convolutional Neural Network (CNN) for

quality enhancement of images with compression artifacts.

In another work, Zhang et al. proposed a feed-forward de-

noising convolutional neural networks (DnCNNs) for image

denoising [15]. In DnCNNs, the residual learning and batch

normalization were used to speed up the training process and

boost the denoising performance. DnCNNs is able to handle

Gaussian denoising with unknown noise level. Authors in

[16] proposed a very deep autoencoder for image restoration

such as denoising and SR task. One of the main advantages

of this work is the usage of skip connection to tackle the

gradient vanishing problem. At video level, Lucas et al. in [17]

presented a new generator network applied to the problem of

video super-resolution.

One of the most recent attempts for quality enhancement

techniques is the grand challenge at Perceptual Image Restora-

tion and Manipulation (PIRM) workshop of ECCV 2018 [7]

which aims to investigate models for SR task using different

type of models and loss functions. An interesting discussion

in this challenge is the difference between perceptual quality

and reconstruction accuracy. As discussed in [7], two trends

are going on in the research linked to quality enhancement

tasks. The first is to improve the reconstruction accuracy of an

image using Full-Reference metrics. Using pixel-based metrics

such as Peak Signal to Noise Ratio (PSNR) and Structural

Similarity (SSIM) as loss function helps to reconstruct the

image accurately, while it may result in low perceptual quality.

Alternatively, the second trend is to improve the perceptual

quality at the possible cost of lower reconstruction accuracy.

During the past years, there has been a noticeable improvement

in the reconstruction accuracy, either in terms of quantified

metrics like Perception based Image Quality Evaluator (PIQE)

[18] or perceptual ones (which are rated by users). With the

increasing amount of advanced proposed SR methods, the

disagreement between the two (reconstruction accuracy and

perceptual quality) becomes more evident.

III. DATASET AND EVALUATION METHOD

To build a dataset of lower quality frames for the training

set, we extracted frames from encoded video(s) compressed

using the H.264/AVC compression standard using the FFmpeg

libx264 encoder wrapper. The videos were encoded in multiple

resolution-bitrate pairs (bitrates ranging from 300 kbps to

2000 kbps and three different resolutions, 480p, 720p, and

1080p). For practical and quality estimation purpose, the

480p and 720p encoded video sequences were up-scaled to

1080p using the bilinear scaling function. In addition, the

corresponding reference-quality frames are also extracted from

uncompressed, high-quality reference videos and included in

the training set. Hence, our training set consists of both high-

quality reference frames as well as lower quality compressed

and/or up-scaled frames. After frame extraction, we cropped

100k patches of size 96 × 96 × 3 in RGB format from

our training set. The initial selection of a smaller patch size

(compared to increased patch sizes used in other similar

works) was due to the hardware limitation, but as will be

shown later in the discussion of the results, this already results

in higher performance compared to other existing methods.

The patches are cropped from 11k random frames extracted

from multiple gaming videos. From each image, nine-patches

are cropped randomly from nine regions of the image; from

each region, one patch is selected. A uniform region pattern

is chosen to cover a proper range of content, as shown in

Figure 2.

For this work, we build three different datasets for three

different research questions(in italics), hereinafter referred to

as part-1, part-2 and part-3, to allow the reader to follow the

paper better.

Part-1: The dataset is created based on 100k image patches

which are extracted from a single game, League of Legends

(LoL), but from multiple recorded video sequences repre-

senting various different levels and stages of the gameplay.

This allows us to investigate whether a game specific qual-

ity enhancement model can be built with high performance

accuracy.



Fig. 2: The selection of patches from one sample frame.

Part-2: The dataset is created based on 100k image patches

which are extracted from 12 different video games, but also

from multiple recorded video sequences of them as is done in

Part-1. This is done to investigate the potential of development

of a generic quality enhancement model, and its possible

performance comparison with game-specific model (as is done

in Part-1).

Part-3: The dataset is created based on 100k image patches

which are extracted from one game, League of Legends, but

consists of two sub-parts - first half consisting of patches

from frames extracted from 480p and 720p videos up-scaled

to 1080p videos; and the second half consisting of patches

extracted from frames from 1080p videos encoded at various

bitrate levels. This results in two sub-datasets with the first one

corresponding to “blur” artefact and the second one consisting

of “blockiness” artefact, which will allow us to compute the

trade-off between both these distortions as is widely used

in almost all adaptive streaming applications. In order to be

fair in comparison, we first measured the quality of frames

with blurriness using VMAF as a ground truth [19]. Next, we

selected the corresponding frame with the closest VMAF value

among those extracted for blockiness. The difference between

the blockiness and bluriness was always ±10 VMAF values.

IV. MODEL DEVELOPMENT

In this section, we introduce the proposed GAN architecture

for the quality enhancement of frames from gaming videos.

Our work uses the state-of-the-art GAN model, SRGAN [13],

as the starting baseline model, which is then further modified

to fit in with our objective with increased efficiency. We

first describe the generative adversarial losses that are used

in SRGAN. Then, the details on the SRGAN generator and

discriminator networks are given, followed by information

about our proposed generator networks.

A. Loss Functions

The performance of the generator network relies strongly

on the loss function. As discussed in [13], “pixel-wise loss

functions such as MSE or PSNR (full-reference metrics)

struggle to handle the uncertainty inherent in recovering lost

high-frequency details such as texture and minimizing MSE

encourages finding pixel-wise averages of plausible solutions

which are typically overly-smooth and thus have poor percep-

tual quality”. Therefore, [13] proposed a new loss function,

which is a weighted sum of the content loss and an adversarial

loss. Content loss was defined to replace the pixel-based

approach with a similar perceptual metric, which allows the

model to recover better texture compared to the pixel-based

models. For content loss, SRGAN uses the euclidean distance

between the feature representations of a generated image and

the reference image. Feature representations are the feature

map of the last convolution before the max-pooling layer. The

adversarial loss is then determined by the probability based on

the discriminator over all training patches which allows us to

differentiate between the generated patch and reference patch.

The main problem with content loss used in SRGAN is that

VGG19 is trained on the ImageNET dataset, which is designed

for a different task than the quality enhancement task. While

usage of VGG19 was one of the significant innovation behind

SRGAN, our preliminary results showed that retraining the

VGG19 for quality enhancement task improves the results.

Hence, we added another loss function to the model, named it

distortion loss, which is based on retrained VGG19 network

for quality prediction task. To retrain the VGG19 network

for image quality prediction task, we use the frame-level

VMAF values as our ground truth. The choice of VMAF

is influenced by the fact that our earlier work has shown it

to have a high correlation with subjective ratings for both

gaming as well as non-gaming content [11]. Since the VGG19

network is initially designed for a classification task, the fully

connected layer with multiple output neurons at the end of

the network was removed in order to allow the model to

get trained for the regression task. In addition, we added one

dense layer consisting of only one output neuron with a linear

activation. The output of the network was directly compared

to the actual VMAF values of the validation set that includes

different gaming videos, including those used in our training

dataset. We cropped random patches of size 96× 96 from the

frames, in line with the patch size we use in the proposed

GAN network. This was done in parallel to the training, such

that in each epoch, a new random patch of each image was

chosen. For training, we used transfer learning and freeze 75%

of the VGG19 parameters, and only 25% were retrained. It

must be noted that we do not use the output of the VGG19

network, which is the prediction of VMAF. Instead, we used

the Euclidean distance between the feature representations of

a generated image and the reference image. Our final loss

function is a weighted average of SRGAN loss functions and

retrained VGG19 loss (distortion loss).

B. Network Architecture

SRGAN is designed for upscaling an image to a higher

resolution without significant loss of quality. To allow SRGAN

to be able to work for the enhancement of compression

artifacts, we removed the pixel shuffler block, which upscales

the image to a higher resolution. For the generator block, we



replaced the residual-based network in SRGAN with U-Net

[20] network that can improve the flow of information as well

as lead us to higher texture reconstruction. U-Net was used

mostly for image segmentation of medical images, where the

texture plays an important role, and there is limited input data

available. We made a few changes for U-Net to improve the

performance. We added the ‘same’ padding (zero paddings)

instead of ‘valid’ padding (no padding). This change allows

us to have the same input and output size, but using the ‘same’

padding introduces a minor ringing artifact near the borders.

A possible solution to this could be mirror padding but is

not explored in this paper and is left for future work. One of

the advantages of using U-Net is having a skip connection,

which allows the signal to be back-propagated to bottom

layers directly and tackles the problem of gradient vanishing.

Therefore, the skip connection allows deep training networks

to achieve higher restoration performance. Another change

compared to U-Net is to use different activation functions,

where we utilize the Parametric Rectified Linear Unit (PReLU)

function [21], instead of the ReLU or LeakyReLU as it has

been shown that this activation function works better for

compression related tasks [22].

V. RESULTS

In the training process in contrast to the original U-Net,

no data augmentation is used as we have enough input

data in our training set. Due to the high number of input

images, we used 100 epochs for training the data for each

dataset. The best model was chosen based on the result of

loss functions are stored. Next, we discuss first our (author)

observations based on visual inspection of the obtained results

of image enhancement, followed by results and observations

based on an objective and subjective quality assessment study,

supporting our initial observations.

A. Observations

1) Perceptual Quality vs. Image reconstruction: As dis-

cussed before, there is a trade-off between the perceptual

quality and image reconstruction accuracy, depending on the

selection of the loss function used in the network. Our primary

focus in this work was to improve the perceptual quality rather

than the reconstruction accuracy. We observed that while,

in general, the quality of the patches improves significantly,

considerable improvement is observed in patches (frames) con-

taining text, which became readable in the enhanced patches

as compared to the non-readable text in the distorted patches.

Using pixel-wise metrics such as PSNR or SSIM in the loss

function allows the model to predict the text in the image

well, while it fails to get high overall perceptual quality.

For gaming content, while text, as well as numbers, form

an important part of the video content, other parts such as

the avatar/characters are equally (if not more) important, and

hence quality enhancement on both aspects is of importance

to our application. Therefore, we conclude that selection of

loss function for video games is very game dependent.

Fig. 3: Image enhancement in case of dealing with medium

to high quality image. Left to right: Distorted patch, enhanced

patch, reference patch.

2) Add-up Distortion: Another interesting observation is

that the model tends to enhance the quality of a frame by

generating fake data regardless of the quality level of a patch,

which results in adding distortion to patches with medium to

high-level quality values. This made us put a cut-off threshold,

not to enhance the quality if the VGG19 loss is lower than a

certain threshold. Figure 3 shows the additional distortion for

a frame with high quality. As it can be seen the quality of

enhanced image, is actually worse off than that of the distorted

image.

B. Objective and Subjective Measurement

In this section, we try to answer our research questions using

objective and subjective quality assessment. To quantify the

quality enhancement, we used NR quality metrics as it was

proven that FR metrics are not a good means for perceptual

quality measurement of enhancement techniques [7]. The main

reason behind it is that a distorted image could be enhanced to

a higher quality level without a high similarity to our reference

image. As a choice of metric, we used PIQE [23] and Natural

Image Quality Evaluator (NIQE) [24] which are frequently

used as a measurement of quality enhancement of SR tasks

[7].

1) Enhancement Power: We enhanced the distorted frames

using our proposed model trained on dataset Part-1 to investi-

gate the enhancement power. We selected 40 frames of dataset

Part-1 in four classes of quality ranges as follows: Class 1 and

2 consisting of frames with Blockiness artifact with VMAF

values range between 20 - 40 and 40-60 respectively, and

Class 3 and 4 consisting of frames with Blurriness artifact with

VMAF values range between 20 - 40 and 40-60 respectively.

Table I reports the quality in terms of NIQE and PIQE

before and after enhancement of the distorted frames with

different levels and types of distortion. It can be observed

that the improvement for very low quality frames are more

significant than the medium quality levels. While we had a

distribution of distortion in the training set, we found that

the enhancement would result in a certain level of quality,

consequently, higher enhancement gained for low quality

frames than medium quality frames. Figure 4 illustrates the

before and after enhancement example frame from a gaming

video using the proposed approach.

2) Content Diversity: Dataset Part-1 and Part-2 was used

to investigate the impact of content diversity in training phase



Fig. 4: Before and after enhancement illustration using a single gaming video frame. The left half frame shows the video

frame before enhancement while the second right half shows the frame quality after enhancement. Zoomed-in before and after

enhancement patches of the image is shown on the right side for better clarity.

TABLE I: Quality comparison between distorted and enhanced

frames of different quality/distortion classes in terms of NIQE

and PIQE using the model developed for dataset part-1

NIQE PIQE
Distorted Enhanced Distorted Enhanced

Class-1 5.5 2.79 70.67 24.1

Class-2 3.69 2.73 56.1 18.06

Class-3 5.8 2.69 74.8 27.21

Class-4 3.94 2.62 61.36 20.1

on the performance of the model. Both datasets consist of

100k patches but one of them extracted from frames of only

one game and the other extracted from 12 different games.

We evaluate whether the model that is trained based on Part-1

(only LoL) performs better for new frames of LoL compared

to the model trained for Part-2 or not. 40 test frames of

LoL that are used the previous section was tested based on

the two models. The result of enhancement using the model

trained on Part-2, in terms of PIQE and NIQE is reported

in Table II. Comparing Table I and II shows how important

training dataset is for quality enhancement. On an average,

approximately 12 PIQE value difference can be seen between

game-specific model and general model (trained on multiple

game). This is inline with findings of [12] that emphasizes on

the importance of training set. However, it has to be noted

that we are limited to the 100k patches used in the training

set. Increasing the number of patches together with a deeper

network might improve the results for the general model.

3) Blurriness vs. Blockiness: Dataset Part-3 was used to

compare the performance of our enhancement model for

blurriness and blockiness artifacts. Two models are built, one

with images with blurriness, and one with the second part

TABLE II: Quality comparison between distorted and en-

hanced frames of different quality/distortion classes in terms

of NIQE and PIQE using the model developed for dataset

part-2.

NIQE PIQE
Distorted Enhanced Distorted Enhanced

Class-1 5.5 3.21 70.67 38.23

Class-2 3.69 3.32 56.1 36.41

Class-3 5.8 3.11 74.8 34.25

Class-4 3.94 3.91 61.36 30.22

TABLE III: Quality improvement between enhanced frames

with regards to bluriness vs. blockiness in terms of NIQE and

PIQE improvement using the model developed for dataset Part-

1.

NIQE Improvement PIQE Improvement
Bluriness Blockiness Bluriness Blockiness

Class-1 2.68 2.21 45.15 37.36

Class-2 1.54 1.14 34.35 28.16

consisting of only blockiness artifacts. In order to test the

models, we selected 40 pairs of LoL frames with the same

quality level in terms of VMAF, one with blockiness and

the other with blurriness artifacts. The frames are classified

into two classes depending on their quality range, class-1 with

ranging quality from 20 to 40 VMAF values, and class-2 with

VMAF value ranges from 40 to 60. The result in terms of

objective quality metric is reported in Table III. As it can be

seen, frames with blurriness artifacts can be improved better

than blockiness which might be due to uniform artifacts.

4) Subjective Quality Assessment: In order to quantify the

perceptual enhancement of our model, we conducted a short
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distorted frames.

subjective test with 15 subjects. We selected 2 random frames

from the game LoL and used the model trained on dataset part-

1 to test our model. Eight distorted frames are selected from

each reference frames which have different types and levels of

distortion. In total, 38 images including 18 distorted images,

18 enhanced images and 2 reference images are used in a

the subjective test adhering to ITU-T Recommendation P.910

[25]. For the subjective test, in addition to the image quality

rating, we asked participants to rate the level of blurriness

and blockiness in the image in 5-point ACR scale. This

gives us better understanding about the distortion after the

enhancement. PIQE and NIQE scores results in -0.77 and -

0.64 Pearson Correlation coefficient (PCC) score respectively

with respect to the mean opinion score (MOS). Figure 5 plots

the difference of MOS between distorted and corresponding

enhanced frames in order to show the perceptual enhancement

power of the proposed method. From Figure 5 we can observe

a maximum 2 MOS difference (in frame 9, affected by blur).

The enhancement in terms of MOS for frames with blockiness

(frame 1, 2, 4, 6, 8, 10, 15, 16, 17) is lower than that observed

for the frames with blurriness artifact (rest of the frames). The

reason behind this can be attributed to the fact that blurriness

is more uniformly distributed and hence easier to learn and

also to the fact that the baseline SRGAN model is designed

to minimise such artifact.

VI. DISCUSSION AND CONCLUSION

In this paper, we investigated the performance of deep

learning methods for enhancement of gaming content. We

proposed a new model based on state-of-the-art models for

super-resolution task and investigated the importance of dis-

tortion and training dataset to build a high performance model.

This is the first work, to the best of authors knowledge, where

the enhancement is applied on gaming frames. The result of

this work can help guide the research community to design

game-specific enhancement models. It has to be noted that the

current work was limited to frame level enhancement and we

leave the application to videos level as a future work.
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