
ARTICLE

Genome-wide Association Analysis in Humans Links
Nucleotide Metabolism to Leukocyte Telomere Length

Chen Li,1,3,85 Svetlana Stoma,2,3,85 Luca A. Lotta,1,85 Sophie Warner,2,85 Eva Albrecht,4

Alessandra Allione,5,6 Pascal P. Arp,7 Linda Broer,7 Jessica L. Buxton,8,9

Alexessander Da Silva Couto Alves,10,11 Joris Deelen,12,13 Iryna O. Fedko,14 Scott D. Gordon,15

Tao Jiang,16 Robert Karlsson,17 Nicola Kerrison,1 Taylor K. Loe,18 Massimo Mangino,19,20

Yuri Milaneschi,21 Benjamin Miraglio,22 Natalia Pervjakova,23 Alessia Russo,5,6 Ida Surakka,22,24

Ashley van der Spek,25 Josine E. Verhoeven,21 Najaf Amin,25 Marian Beekman,13

Alexandra I. Blakemore,26,27 Federico Canzian,28 Stephen E. Hamby,2,3 Jouke-Jan Hottenga,14
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Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of

LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592

individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five high-

lighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7,

MOB1B, CARMIL1, PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci.

Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hy-

pothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previ-

ously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substan-

tially expand current knowledge on genes that regulate LTL and their impact on human health and disease.
Introduction

Telomeres are DNA-protein complexes found at the ends of

eukaryotic chromosomes, and they serve to maintain
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genomic stability anddetermine cellular lifespan.1 Telomere

length (TL) declines with cellular divisions; this is due to the

inability of DNA polymerase to fully replicate the 30 end of

the DNA strand (the ‘‘end replication problem’’), and once
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a critically short TL is reached, the cell enters replicative

senescence.2 Protein complexes, including the SHELTERIN

complexes—which are comprised of TERF1 (MIM:

600951), TERF2 (MIM: 602027), POT1 (MIM: 606478), TER-

F2IP (MIM: 605061), TINF2 (MIM: 604319), ACD (MIM:

609377), and CST (CTC1 [MIM: 613129], STN1 [MIM:

613128], and TEN1 [MIM: 613130])—along with DNA heli-

cases such as RTEL1 (MIM: 608833), bind telomeres and

regulate TL and structure.3 In some cell types, such as stem

and germline progenitor cells, TL is maintained by the

enzyme telomerase, a ribonucleoprotein containing the

RNA template TERC (MIM: 602322), a reverse transcriptase

(TERT [MIM: 187270]), and accessory proteins (DKC1

[MIM: 300126], NOP10 [MIM: 606471], GAR1 [MIM:

606468], and NHP2 [MIM: 606470]).4
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mary Care, University Medical Center Utrecht, Utrecht University, 3584 CG

bridge, CB2 0QQ, United Kingdom; 63Department of Public Health, Aarh

Aalborg University Hospital, DK-9000 Aalborg, Denmark; 65Cancer Risk Facto

50139 Florence, Italy; 66Dipartimento di Medicina Clinica e Chirurgia, Federic

Directorate, 33006 Asturias, Spain; 68School of Epidemiology and Biostatistics,

of Public Health (EASP), 18080 Granada, Spain; 70Instituto de Investigación Bi
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Severe telomere loss, through loss-of-functionmutations

of core telomere and telomerase components, leads to

several diseases which share features such as bone marrow

failure and organ damage. These ‘‘telomere syndromes’’

include dyskeratosis congenita (MIM: 305000), aplastic

anemia (MIM: 609135), and idiopathic pulmonary fibrosis

(MIM:614742) among others.5,6 While the prevalence of

such syndromes varies, they are all relatively rare. One

feature of these syndromes is premature aging.5 Along

with shorter TL observed at older ages in cross sectional

population studies, this has led to TL (most commonly

measured in human leukocytes as leucocyte telomere

length [LTL]) to be proposed as a marker of biological

age. LTL has been shown to be associated with the risk of

common age-related diseases, including coronary artery
katu 8, 00014 University of Helsinki, Helsinki, Finland; 34Obesity Center,

ty of Helsinki, Haartmaninkatu 4, 00029 HUS, Helsinki, Finland; 35Geron-
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disease (CAD) and some cancers.7–12 However, whether

LTL (reflecting TL across tissues) was causally associated

with disease or whether the observed associations may

have been due to reverse causation or confounding was

unclear.

LTL is both variable among individuals, from birth and

throughout the life course, and highly heritable, with

heritability estimates from 44%–86%.13,14 Identification

of genetic determinants of LTL through a genome-wide

association study (GWAS) has allowed further studies to

suggest a causal role for LTL in several diseases, including

CAD, abdominal aortic aneurysm, several cancers, intersti-

tial lung disease, and celiac disease.15–19 However, these

studies are limited due to the small number of genetic

variants that have been identified that replicate between

studies.15,20–25 To further our understanding of LTL

regulation and its relationship with disease, we have con-

ducted a genome-wide association (GWA) meta-analysis

of 78,592 individuals from the European Network for Ge-

netic and Genomic Epidemiology (ENGAGE) study and

from the European Prospective Investigation into Cancer

and Nutrition (EPIC) Cardiovascular Disease (CVD) and

InterAct studies.
Subjects and Methods

Full descriptions of the EPIC-CVD and EPIC-InterAct cohorts,

along with the participating cohorts within the ENGAGE con-

sortium, are given in the Supplemental Information.

LTL Measurements and QC Analysis
Mean LTL measurements were conducted using an established

quantitative PCR technique which expressed TL as a ratio of the

telomere repeat number (T) to a single-copy gene (S).26,27 The

majority of the ENGAGE samples were included within our previ-

ous analysis.15 LTL measurements were standardized either by

using a calibrator sample or by quantifying against a standard

curve, depending on the laboratory (Table S1 and Supplemental

Methods). Full details of the methodology employed by each lab-

oratory, along with quality control (QC) parameters, is given in

the Supplemental Information or is given in detail elsewhere.15

Because the use of different calibrator samples or of standard

curves for quantification can lead to different ranges in the T/S ra-

tios being observed between laboratories, we standardized LTL by

using a z-transformation approach (z ¼ (m - m0)/s, m, T/S ratio, m0,

the mean T/S ratio, s, standard deviation [SD]).

Genotyping, GWAS Analysis, and Study-Level QC
Genotyping platforms and imputationmethods and panels varied

across participating study centers. Detailed information about

these is provided in Figure S1 and Table S2. A GWAS was run

within each study through the use of linear regression under an

additive mode of inheritance with adjustment for age, sex, and

any study-specific covariates, including batch, center, and genetic

principle components. There are 21 studies contributing to

ENGAGE. For the EPIC InterAct and CVD studies, association an-

alyses were stratified based on genotyping platform and disease

status, resulting in nine strata. Within each study or stratum,

related samples (k > 0.088) were removed. Population stratifica-
The Ameri
tion was estimated using the genomic control inflation factor l

and used to adjust the standard errors. Genetic variants were

filtered on the basis of the published standards that included call

rate >95%, Hardy–Weinberg equilibrium p < 1 3 10�6, imputa-

tion quality info-score >0.4 or R2 > 0.3, minor allele count S10,

and standard error of association estimates ranging from 0 to

10.15,28,29 These data were taken forward to the meta-analysis.
Meta-analyses
GWAS summary statistics were combined via two steps of meta-

analyses by using inverse variance weighting in GWAMA.30 We

first combined all 21 ENGAGE studies together and separately

combined the nine EPIC-InterAct and EPIC-CVD strata, where a

genetic variant was retained if it had>40% of the available sample

size within these two cohorts. Fixed effects were used except

for variants with significant heterogeneity (Cochrane’s Q: p <

1 3 10�6), in which case random effects were used. Additional

adjustment was made for genomic inflation (see Figure S2). In

the second step, association estimates derived from the two sepa-

rate meta-analyses estimated in the first step were combined using

fixed effects inverse variance weighted meta-analyses. We esti-

mated the FDR by estimating q-values31 for these data.
Conditional Association Analysis
Conditionally independent signals were identified via an approx-

imate genome-wide stepwise method, using GCTA (Version

1.25.2),32,33 that allows for conditional analyses to be run on sum-

mary statistics without individual-level data. Summary statistics

from the final meta-analysis were used as the input, with p value

cut-offs at 5 3 10�8 (genome-wide significance) or 1.03 3 10�5

(equivalent to an FDR < 0.05). The model starts with the most sig-

nificant SNP, adds in SNPs iteratively in a forward stepwise

manner, and calculates conditional p values for all SNPs within

the model. If the target SNP shows evidence of collinearity (corre-

lation coefficients r2 > 0.9, with linkage disequilibrium (LD) esti-

mated based on a random subcohort of 50,000 UK Biobank sam-

ples) with any of the SNPs selected into the model, the

conditional p value of the target SNP was set to 1. The selection

process was repeated until no more SNPs could be fitted into the

model, i.e., there were no more SNPs that could reach the condi-

tional p value thresholds (53 10�8 or 1.033 10�5, corresponding

to the p value cut-offs in the input). Joint effects of all selected

SNPs that fitted in the model were calculated and reported as inde-

pendent variants’ effects. Regional plots of a 1Mb window flank-

ing the locus sentinel variants (p< 53 10�8) were generated using

LocusZoom34 with LD structure estimated in the UK Biobank sub-

cohort (see Figure S3).
Gene Prioritization
Variant Annotation

Sentinel variants (conditional p < 1.03 3 10�5) and their proxies

(r2 < 0.8) were annotated on the human reference genome

sequence hg19 using Annovar (v2017July16).35 Their functional

consequences on the protein sequences encoded by the nearest

genes were cross-validated using definitions from RefGene,36 En-

sembl gene annotation,37 GENCODE,38 and the University of

California, Santa Cruz (UCSC) human genome database.39 These

variants were also evaluated for features including evolutionary

conservation (whether they reside in or specifically encode

an conserved element based on multiple alignments across 46

vertebrate species), chromatin states predicted using Hidden
can Journal of Human Genetics 106, 389–404, March 5, 2020 391
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Markov Models trained by CHIP-seq data from ENCODE (15 clas-

sified states across nine cell types), histone modification markers

(active promoter: H3K4Me3, H3K9Ac; active enhancer:

H3K4me1, H3K27Ac; active elongation: H3K36me3; and repressed

promoters and broad regions: H3K27me3), and CTCF transcrip-

tion factor binding sites across nine cell lines, conserved putative

TFBS, and DNaseI hypersensitive areas curated from the ENCODE

database.38 Variants within the exonic regions were further anno-

tated with allele frequencies in seven ethnical groups (retrieved

from the Exome Aggregation Consortium database) and func-

tional effects prediction performed using a number of different al-

gorithms. For non-coding variants, we performed integrated anal-

ysis with SNP Nexus IW scoring.40

Transcriptomic Data Integration

(1) With summary statistics, we performed a gene-level analysis,

using S-PrediXcan, that links LTL to predicted gene expressions

across 44 tissues (GTex v6p). It uses multivariate sparse regression

models that integrate cis-SNPs within 2Mb windows around gene

transcript boundaries in order to predict the corresponding gene

expression levels. A detailed description of the method can be

found elsewhere.41,42 In brief, individual SNP-LTL associations

were weighted by SNP-gene (wlg) and SNP-SNP ðsl =sgÞ association
matrix, estimated from the PredictDB training set (zg ¼
P

l˛g
wlg ðsl =sgÞ zl, for a gene (g); the set of SNPs (l) were selected

from an elastic net model with a mixing parameter of 0.5). Pro-

tein-coding genes with qualified prediction model performance

(average Pearson’s correlation coefficients r2 between predicted

and observed gene expressions >0.01, FDR < 0.05) were included

in our analysis. We considered a predicted gene expression to be

significantly associated with LTL at a Bonferroni corrected p value

threshold (p < 2.61 3 10�7), conservatively assuming association

of each gene in each tissue as an independent test.

(2) For a given region significantly associated with LTL (FDR <

0.05), we tested whether the potential causal variants are shared

between LTL and gene expressions by using COLOC Bayesian

approach.43 Regions for testing were determined as 2Mb win-

dows surrounding the sentinel variants. Regional summary sta-

tistics were extracted from this GWA meta-analysis for associa-

tions with LTL and GTex v744 for cis-eGenes (genes with

significant expression quantitative trait loci [eQTLs], FDR <

0.05) located within or on the boundaries of LTL regions

defined. We selected the default priors for this analysis. We set

p1 ¼ p2 ¼ 10�4, meaning that 1 in 10,000 variants is associated

with either trait (LTL or gene expression), as has been suggested

by others.43 We set p12 ¼ 10�5, meaning that 1 in 10 (p12/

(p12 þ p1)) variants that are associated with one trait is also

associated with the other. This was chosen because sensitivity

analyses have shown broadly consistent results between this

setting and more stringent (p12 ¼ 10�5) settings, while allowing

greater power.45 Evidence for colocalization was assessed by

comparing the posterior probability (PP) for two hypotheses:

that the associations for both traits were driven by the same

causal variants (hypothesis 4) and that they were driven by

distinct ones (hypothesis 3). Strong evidence of a co-localized

eQTL was defined as PP3 þ PP4 R 0.99 and PP4/PP3 R 5, and

suggestive evidence was defined as PP3 þ PP4 R 0.90 and

PP4/PP3 R 3, consistent with previous studies.46,47

Epigenomic (DNA Methylation) Data Integration

For genes whose expressions are modulated by epigenetic modifi-

cations, such as the methylation of transcriptional regulators in

cis, linking genetic variants associated with cis-methylation probes
392 The American Journal of Human Genetics 106, 389–404, March
(cis-meQTLs, FDR < 0.05) to LTL can help gene prioritization. For

this: (1) We conducted a systematic search of LTL-associated

sentinel variants and their proxies (r2 > 0.8) in multiple publicly

available meQTL databases.48–50 (2) We also performed an epige-

nome-wide association analysis that integrated multiple variants’

associations in a regularized linear regression model which was

algorithmically similar to the transcriptome-wide association ana-

lyses.51 A reference panel formeQTLs was constructed based on in-

dividuals in the EPIC-Norfolk cohort, with detailed description

published elsewhere.52 Bonferroni correction was applied, ac-

counting for the total number of CpG markers tested (p ¼
1.00 3 10�7).

Pathway Enrichment Analysis
Using two different approaches, we sought to identify pathways

that are responsible for regulating TL.

PANTHER

A list of our prioritized genes at each locus (or the nearest gene

where no prioritization was possible) was submitted for statistical

overrepresentation testing (Fisher’s exact test) in Protein Analysis

through Evolutionary Relationships (PANTHER).53 Pathways

(Gene Ontology [GO] molecular function complete annotation

dataset) were considered over-represented where FDR p < 0.05.

DEPICT

We also used a hypothesis-free, data-driven approach using

Data-driven Expression Prioritized Integration for Complex Traits

(DEPICT)54 to highlight reconstituted gene sets and tissue and/or

cell types where LTL-associated loci were enriched. Summary sta-

tistics of uncorrelated SNPs (LD r2 & 0.5) significantly associated

with LTL at a genome-wide level (p < 5 3 10�8) were used as

the input, and the HLA region (chr6:29691116–33054976) was

excluded. DEPICT first defined each locus around the uncorrelated

variants and selected the genes within the region. It then charac-

terized gene functions based on pairwise co-regulation of gene

expressions, and these gene functions were quantified as member-

ship probabilities across the 14,461 reconstituted gene sets. Then

for each gene set, it assessed the enrichment by testing whether

the sum of membership scores of all genes within each LTL-associ-

ated locus was higher than that for a gene-density-matched

random locus. Detailed description of gene set construction was

published elsewhere.54 In brief, DEPICT leveraged a broad range

of pre-defined pathway-oriented databases to construct gene

sets (14,461), including GO terms,55 KEGG,56 REACTOME path-

ways,57 the experimentally derived protein-protein interaction

(PPI) subnetwork,58 and the gene-phenotype matrix curated by

Mouse Genetics Initiative.59 Correlations (rS 0.3) between signif-

icant gene sets were visualized using CytoScape.60

Clinical Relevance of LTL
Mendelian Randomization

Using two-sample Mendelian randomization (MR)61 we investi-

gated the potential effect of LTL on 122 diseases manually curated

in the UK Biobank (Table S3).62 Diseases were selected where there

were sufficient case numbers to detect an odds ratio >1.1 (Table

S4). LTL was genetically proxied based on 52 independently asso-

ciated variants (FDR < 0.05). Individual SNP effects on disease

were tested using logistic regression in SNPTEST,63 adjusting for

sex, age, the first five genetic principal components, and genotyp-

ing array within the UK Biobank. MR estimates were calculated

using an inverse variance weighted MR approach. Sensitivity

analyses were performed using median-based MR,64 MR-RAPS,65
5, 2020



MR-Eggers,66 and MR-Steigers67 to identify inconsistency in the

MR estimates, account for weak instrument bias, highlight any

evidence of directional pleiotropy, and estimate direction of the

MR relationship, repectively.

LD Score Regression

Cross-trait linkage disequilibrium score regression (LDSC) anal-

ysis was used to measure genetic correlations between LTL and

selected traits through the use of the LD Hub database (version

1.4.1).68 From the 832 available traits in LD Hub, we a priori

selected traits of interest in order to remove redundancy and/or

duplication within the analysis. We removed poorly defined

traits and diseases, those without prior evidence of a genetic ba-

sis, and medications. We also removed lipid sub-fractions

because we thought these unlikely to be relevant. We excluded

studies with a sample size <1,000. Where multiple datasets for

the same trait existed, we first prioritized datasets from large

specialist consortia (where relevant factors would have been

accounted for within the GWAS analysis) over the UK Biobank

analyses conducted by the Neale group (where the GWAS was

acknowledged to be a ‘‘quick and dirty’’ analysis). We then

prioritized larger sample size, more recent studies, and diagnosed

conditions over self-reported ones. We also removed traits with

low heritability estimates within LD Hub, leaving us with 320

traits (information, including PMIDs of the selected studies, is

given in the Results section).

Genome-wide summary statistics were used as the input,

and standardized quality control was implemented within

the software, including minor allele frequency (MAF) (>1%

for HapMap3 and >5% for 1000 Genomes EUR-imputed

SNPs), effective sample size (>0.67 times the 90th percentile of

sample size), removal of insertions or deletions or structural

variants, allelic alignment to 1000 Genomes, and removal of

SNPs within the major histocompatibility complex (MHC)

region.

Variants-based Cross-database Query

Independent variants and their strong proxies (r2 R 0.8) were

queried against publicly available GWAS databases; for this, we

used PhenoScanner69 for computational efficiency. A list of

GWAS results implemented in the software was previously pub-

lished. Results were filtered to include associations with p < 1 3

10�6, in high LD (r2>0.8) with the most significant SNPs within

the region, and manually curated to retain only the most recent

and largest study per trait.
Results

Discovery of Genetic Determinants of LTL

Mean LTL was measured within each cohort by using a

quantitative polymerase chain reaction (qPCR)-based

method, which expresses TL as a ratio of telomere repeat

content (T) to single-copy gene (S) within each sample

(see Subjects and Methods, Supplemental Information,

and Table S1). T/S ratios were z-standardized to harmo-

nize differences in the quantification and calibration pro-

tocols between cohorts. Associations of shorter LTL with

increasing age and male gender were observed as expected

(Table S1).

Variants were assessed for association with mean LTL

within each cohort through the use of additive models

adjusted for age, gender, and cohort-specific covariates
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and then combined using inverse-variance-weighted

meta-analysis (Table S2).

In total, 20 sentinel variants at 17 genomic loci were

independently associated with LTL at a level of genome-

wide statistical significance (p < 5 3 10�8, Table 1,

Figure S1), including six loci that had not previously been

associated with LTL (SENP7 [MIM: 612846], MOB1B

[MIM:609282], CARMIL1 [MIM: 609593], PRRC2A [MIM:

142580], TERF2, and RFWD3 [MIM: 614151]). We also

identified genome-wide significant variants in four recently

reported loci from a Singaporean Chinese population

(POT1, PARP1 [MIM: 173870], ATM [MIM:607585], and

MPHOSPH6 [MIM:605500])70 and confirmed association

at seven previously reported loci in European ancestry

studies (TERC, NAF1 [MIM: 617868], TERT, STN1(OBFC1),

DCAF4 [MIM: 616372], ZNF208 [MIM: 603977], and

RTEL1).15,23 Two and three conditionally independent sig-

nals were detected within the TERT and RTEL1 loci, respec-

tively (Table 1). Within the known loci, three variants

within the DCAF4 (r2 ¼ 0.05) and TERT (r2 < 0.5) loci

were distinct from the previously reported sentinel variants,

while five (TERC, NAF1, STN1, ZNF208, and RTEL1; r2 >

0.8; Table S5) were in high LD with the previously reported

ones from European studies. For the loci identified in a

Chinese ancestry population, we observed the same

sentinel variant for PARP1 and high LD variants for ATM

and MPHOSPH6 (r2 > 0.8) but a distinct sentinel for POT1

(r2 < 0.5, Table S5). While we observed a distinct sentinel

for POT1, we cannot rule out the possibility that the associ-

ation signal observed in this region could be shared. In that

case, the sentinels identified in each population would be

reflective of a third, as yet unidentified, variant that is the

true causal variant in this region. For the RTEL1 locus, there

are significant differences in LD structure between ancestral

populations. All of the RTEL1 variants we report at genome-

wide statistical significance are in low LD with those re-

ported in Singaporean Chinese and in South Asians.25,70

Our novel variants are of lower frequency (MAF < 0.1)

and either are reported as being monoallelic (monomor-

phic) or fall below the MAF threshold for analysis in the

Southern Han Chinese (CHS) population (MAF < 0.01).

This suggests that genetic variation in this region may be,

in part, population specific or that the MAF is so low that

we currently are unable to detect any association.

It has been shown that many loci that fall just below the

conventional threshold of genome-wide significance are

genuinely associated with the trait of interest and do

subsequently reach the conventional threshold when sam-

ple size is increased.71 In an attempt to gain additional

insight into the genetic determination of LTL in humans,

we applied a less stringent FDR threshold to the data. An

additional 32 variants met an FDR threshold of <0.05,

totaling 52 variants that estimate ~2.93% of the variance

in TL (Table S6).71 Within this FDR list, 5% of variants

(2–3) are estimated to be false positives, although we are

not able to determine which they are. While we believe

that this FDR is acceptable, we advise that individual loci
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Table 1. Independent Variants Associated with LTL at Genome-Wide Significance (5x10�8)

SNP Gene Chr Position (hg19) EA EAF Beta SE p Value

Previously Reported Loci

rs3219104 PARP1 1 226562621 C 0.83 0.042 0.006 9.60 3 10�11

rs10936600 TERC 3 169514585 T 0.24 �0.086 0.006 7.18 3 10�51

rs4691895 NAF1 4 164048199 C 0.78 0.058 0.006 1.58 3 10�21

rs7705526 TERT 5 1285974 A 0.33 0.082 0.006 5.34 3 10�45

rs2853677* TERT 5 1287194 A 0.59 �0.064 0.006 3.35 3 10�31

rs59294613 POT1 7 124554267 A 0.29 �0.041 0.006 1.17 3 10�13

rs9419958 STN1 (OBFC1) 10 105675946 C 0.86 �0.064 0.007 5.05 3 10�19

rs228595 ATM 11 108105593 A 0.42 �0.029 0.005 1.43 3 10�8

rs2302588 DCAF4 14 73404752 C 0.10 0.048 0.008 1.68 3 10�8

rs7194734 MPHOSPH6 16 82199980 T 0.78 �0.037 0.006 6.94 3 10�10

rs8105767 ZNF208 19 22215441 G 0.30 0.039 0.005 5.42 3 10�13

rs75691080 RTEL1/STMN3 20 62269750 T 0.09 �0.067 0.009 5.99 3 10�14

rs34978822* RTEL1 20 62291599 G 0.02 �0.140 0.023 7.26 3 10�10

rs73624724* RTEL1/ZBTB46 20 62436398 C 0.13 0.051 0.007 6.33 3 10�12

Additional Loci

rs55749605 SENP7 3 101232093 A 0.58 �0.037 0.007 2.45 3 10�8

rs13137667 MOB1B 4 71774347 C 0.96 0.077 0.014 2.43 3 10�8

rs34991172 CARMIL1 6 25480328 G 0.07 �0.061 0.011 6.19 3 10�9

rs2736176 PRRC2A 6 31587561 C 0.31 0.035 0.006 3.53 3 10�10

rs3785074 TERF2 16 69406986 G 0.26 0.035 0.006 4.64 3 10�10

rs62053580 RFWD3 16 74680074 G 0.17 �0.039 0.007 4.08 3 10�8

Gene—the closest or candidate gene (known telomere-related function) within the region. EA—effect allele. EAF—effect allele frequency within the study. Beta—
the per-allele effect on z-scored LTL. SE—standard error.
*Additional, independent signals detected using conditional analysis are included.
should be interpreted with some caution. These variants

were located within separate loci from those reported

above, with the exception of a fourth, independent signal

in the RTEL1 locus. Although we did not replicate the pre-

viously reported ACYP2 (MIM: 102595) locus, this did

remain within the variants identified at the FDR < 0.05

threshold. TYMS (MIM: 188350), identified as genome-

wide significant in a trans-ethnic meta-analysis of Singa-

porean Chinese67 and in the previously reported ENGAGE

analysis,15 is within our FDR < 0.05 identified loci. This

was to be expected considering the substantial sample

overlap of the ENGAGE data; however, our sentinel variant

is distinct and not reported in the Dorajoo et al. study.

Aligning our data with available summary statistics from

the Dorajoo et al. study (Singaporean Chinese samples

only), we see at least nominal support for the vast majority

of our genome-wide significant loci, with the exception of

STN1(OBFC1) and SENP7 (Table S7). Although SENP7 has

not previously been reported, variants in high LD (r2 >

0.6) with our STN1 sentinel have been reported in other

European populations.21,22 There is also support for
394 The American Journal of Human Genetics 106, 389–404, March
many variants in our extended FDR list. However, it should

be noted that data are not available for around half of our

FDR < 0.05 loci, with most of these being either monoal-

lelic or too low frequency to have been included within

the analysis in the CHS population, again suggesting that

several may be specific to the European population.

Prioritization of Likely Candidate Genes

We applied in silico prediction tools, leveraging large-scale

human genomic data integrated with multi-tissue gene

expression, transcriptional regulation, and DNA methyl-

ation data, coupled with knowledge-driven manual cura-

tion, to prioritisze the genes that are most likely influenced

by the genetic variants within each locus. All 52 sentinel

variants identified at GWS and FDR < 0.05 (listed in Table

S6) plus their high LD proxies (r2 > 0.8) were taken forward

into our in silico analyses. First, we annotated all variants for

genomic location and location with respect to regulatory

chromatin marks (Tables S8 and S9). This also identified

variants that led to non-synonymous changes in nine

loci. Of these, five loci contained variants with predicted
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Figure 1. Loci with Established Roles in Telomere Biology
Candidate genes found in this study are shown in red. These include genes that encode components of the SHELTERIN complex (A),
regulate the formation and activity of telomerase (B), and regulate telomere structure (C).
damaging effects on protein function (Table S10). We also

found evidence that variants were associated with changes

in gene expression in multiple loci (Table S11), with several

showing co-localization and evidence from two ap-

proaches. This data, along with prediction of functional

non-coding variants (Table S12), methylation QTL data

(Table S13), and curation of gene functions within the re-

gion (Supplemental Methods), are summarized in Table

S14. The summary data were utilized to prioritize genes

that are most likely influenced at each locus. Where the

prioritization methods suggested multiple genes for a given

locus, we prioritized based on the amount of evidence

across all considered lines of enquiry stated above. We

were able to prioritize genes at 15 of the 17 genome-wide

significant loci and 16 at of the 32 FDR loci (Table S14).

Four of the prioritized genes for newly identified loci

have known roles in telomere regulation (PARP1, POT1,

ATM, and TERF2; Figure 1). PARP1 (poly(ADP-ribose) poly-

merase 1), a variant in high LD (r2 ¼ 1.0) with our identi-

fied sentinel variant, causes a Val762Ala substitution (Table

S10) which is known to reduce PARP1 activity.72 This

variant was associated with shorter LTL, in agreement

with studies showing that knockdown of PARP1 leads to

telomere shortening.73 PARP1 catalyzes the poly(ADP-ribo-

syl)ation of proteins in several cellular pathways, including

DNA repair.73 It interacts with TERF2 and it regulates the

binding of TERF2 to telomeric DNA through this post-

translational modification.74

Three genes, DCAF4, SENP7, and RFWD3, prioritized

based on deleterious protein coding changes (DCAF4,
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SENP7) or strong evidence linking to gene expression levels

(RFWD3), are all involved in DNA damage repair.75–77

SENP7 has previously been demonstrated to bind damaged

telomeres.78 Components of DNA damage response and

repair pathways (such as ATM) have been shown to also

play roles in telomere regulation.79 Mutations in RFWD3

cause Fanconi anemia (MIM: 617784), a disease linked to

telomere shortening and/or abnormalities.80

The PRRC2A locus contains 11 genetically linked SNPs

located across the MHC class III region, which is a highly

polymorphic and gene-dense region with complex LD

structure. BAG6 (MIM: 142590) and CSNK2B (MIM:

115441) were suggested as gene candidates for this region,

supported by gene expression data (see Supplemental In-

formation and Tables S11 and S14). BAG6 is linked to

DNA damage signaling and apoptosis,81 while CSNK2B, a

subunit of casein kinase 2, interacts with TERF1 and regu-

lates TERF1 binding at telomeres.82

Pathway Enrichment

To investigate context-specific functional connections

between prioritized genes of the identified loci and to

suggest plausible biological roles of these genes in the

TL regulation, we performed enrichment analyses for

pathways and tissues through the use of DEPICT54 and

PANTHER.53 DEPICT is a hypothesis-free, data-driven

approach for which we used summary statistics of all un-

correlated SNPs (LD r2 & 0.5) associated at p < 5 3 10�8

as input. For PANTHER, we assessed overrepresentation

of genes within our loci within known pathways. To
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Figure 2. Pathways Enriched for Telomere-Associated Genes
(A) Gene sets significantly (false discovery rate [FDR] < 0.05) enriched for prioritised LTL-associated genes. Color intensity of the nodes
(gene sets), classified into three levels, reflects enrichment strengths (FDR). Edge width indicates Pearson correlation coefficient (r2) be-
tween each pair of the gene sets. Some of the most significantly associated gene sets include telomere maintenance along with DNA
replication and repair pathways as may be expected. How other enriched pathways may influence LTL is unclear.
(B) Role of LTL-associated genes in nucleotide metabolism. Five enzymatic reactions and genes encoding the corresponding enzymes
prioritized from this GWAS are highlighted in bold.
minimize noise, we used our prioritized genes as input,

along with the closest gene to the sentinel SNP, where no

prioritization was possible. In total, 55 genes were submit-

ted to PANTHER, of which six were not available within

PANTHER, leaving 49 within the analysis.

Over 300 reconstituted gene sets (DEPICT) were signifi-

cantly enriched for the LTL loci (FDR < 0.05); these could
396 The American Journal of Human Genetics 106, 389–404, March
be further clustered into 34 meta-gene sets, highlighting

pathways that are involved in several major cellular activ-

ities, including DNA replication, transcription, and repair;

cell cycle regulation; immune response; and intracellular

trafficking (Figure 2A).

The PANTHER analysis identified a number of telomere-

related pathways, including regulation of telomeric loop
5, 2020



disassembly, t-circle formation, protein binding at telo-

meres, and single-strand break repair, as being the mostly

highly overrepresented (Table S15). Among other expected

pathways, cellular aging and senescence were also

highlighted. Of note, nucleotide metabolism pathways

were overrepresented (20-deoxyribonucleotide metabolic

process, deoxyribose phosphate metabolic process, and

deoxyribonucleotide metabolic process; Figure 2B; Table

S15). The genes matched to these pathways were TYMS,

SAMHD1 (MIM: 606754), and SMUG1 (MIM: 607753).

While TYMS is critical for deoxythymidine monophos-

phate (dTMP) biosynthesis, SAMHD1 controls deoxynu-

cloeside triphosphate (dNTP) catabolism and SMUG1 re-

moves misincorporated uracil from DNA.83–85 Although

not highlighted in the pathway analysis, two further genes

within other identified loci (TK1 [MIM: 188300] and DCK

[MIM:125450]) are key regulators of deoxynucleoside

monophosphate (dNMP) biosynthesis;85 this adds further

support to the possibility that nucleotide metabolism is a

key pathway in regulating LTL. dNTPs constitute the

fundamental building blocks required for DNA replication

and repair.86 Genetic perturbations that disrupt dNTP

homeostasis have been shown to result in increased repli-

cation error, cell cycle arrest, and DNA-damage-induced

apoptosis.85,87

Relationship between Genetically Determined TL and

Disease

To further understand the clinical relevance of TL, we used

the 52 independent variants identified at FDR< 0.05 as ge-

netic instruments for TL, and we applied a two-sample MR

approach using UK Biobank data.62 We manually curated

122 diseases available in the UK Biobank and examined

their relationships with shorter TL (Tables S3 and S16).

We observed nine associations which passed a Bonferroni

corrected threshold (p < 4.1x10�4). These included novel

findings of an increased risk of hypothyroidism, and

decreased risk of thyroid cancer, lymphoma, and diseases

of excessive growth (uterine fibroids, uterine polyps, and

benign prostatic hyperplasia). We also confirmed findings

for decreased risk of lung and skin cancer and leukemia

for subjects with shorter TL (Figure 3, Table S16).16,18,88

We observed a further 30 nominally significant associa-

tions (p < 0.05), confirming previous MR findings of an

increased risk of CAD, within the UK Biobank population

(Figure 3, Table S16). Our results also provide genetic evi-

dence for associations of shorter LTL with increased risk

of rheumatoid arthritis, aortic valve stenosis, chronic

obstructive pulmonary disease, and heart failure, all of

which have previously been observationally associated

with shorter LTL.89–92 We also ran the MR analyses using

only the genome-wide significant variants (Figure S4),

and we did not lose any Bonferroni-significant hits, with

only small differences in those diseases that are nominally

associated. In our sensitivity analyses, effect estimates were

consistent across MR methods. The MR-Steigers analysis

indicated that the direction of the relationship is that TL
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influences disease risk. This analysis also indicated that

this direction was estimated correctly for the majority of

diseases (Table S16).

We next sought to explore human diseases and traits

that share common genetic etiologies with LTL. We did

this by performing LD score regression analyses to test

for genetic correlations between TL and 320 curated traits

and diseases (Table S17) within LD Hub.15,16 In compari-

son to the MR approach, these analyses utilize genome-

wide genetic information rather than selected SNPs

with the most significant associations. In agreement with

our MR analyses, TL was negatively correlated with CAD

(r ¼ �0.17, p ¼ 0.01, Table S17). Dyslipidaemia risk factors

for CAD also showed concordant associations with shorter

TL, including higher LDL and total cholesterol and lower

HDL cholesterol (Table S17). These results are suggestive

of a shared genetic architecture underlying TL, CAD, and

CAD risk factors. However, these results would not survive

correction for multiple testing.

We also examined individual locus-driven genetic

correlations between TL and a variety of human pheno-

types and diseases by using PhenoScanner69 to query

52 FDR sentinel variants and their closely related SNPs

in LD (r2 S 0.8) against publicly available GWAS data-

bases. While some morbidities showed specific correla-

tions to a single locus, others showed correlations to a

broader spectrum of loci. For example, self-reported

hypothyroidism or myxoedema exhibited a strong asso-

ciation particularly at the TERT locus, which was also

exclusively responsible for several subtypes of ovarian

cancers (Table S18). In contrast, blood cell traits and he-

matological diseases were implicated with a wider range

of loci, including TERC, TERT, SENP7, ATM, BBOF1, and

MROH8; this result is similar to those for the respiratory

function and lung cancers that also involved multiple

TL loci (Table S18).
Discussion

We identify 20 lead variants at a level of genome-wide

significance and a further 32 at FDR < 0.05. Within estab-

lished loci, we report a second, independent, association

signal within the TERT locus and redefine the RTEL1 locus

into three independent signals. By applying a range

of in silico tools that integrate multiple lines of evidence,

we were able to pinpoint likely influenced genes for

the majority of independent lead variants (34 of 52),

several of which represent key telomere-regulating path-

ways (including components of the telomerase complex,

the telomere-binding SHELTERIN and CST complexes,

and the DNA damage response [DDR] pathway).

Telomeres function to prevent the 30 single-stranded

overhang at the end of the chromosome from being de-

tected as a double-stranded DNA break. This is achieved

through binding of the SHELTERIN complex (TERF1,

TERF2, TERF2IP, TINF2, ACD, and POT1), which acts to
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Figure 3. Mendelian Randomization Results for the Effect of Shorter LTL on the Risk of 122 Diseases in the UK Biobank
Data shown are odds ratios and 95% confidence intervals for a 1 standard deviation shorter LTL. Diseases are classified into groups, as
indicated by the boxing, and sorted alphabetically within disease group. Nominally significant (p < 0.05) associations estimated via in-
verse-variance-weighted Mendelian randomization are shown in green for a reduction in risk and purple for an increase in risk due to
shorter LTL. O indicates nominal (p < 0.05) evidence of pleiotropy estimated by MR-Eggers intercept. Full results are also shown in Table
S16 along with the full MR sensitivity analysis.
block activation of DDR pathways via severalmechanisms.3

SHELTERIN also binds a number of accessory factors that

facilitate processing and replication of the telomere,

including the DNA helicase RTEL1.3 SHELTERIN also inter-

acts with the CST complex that regulates telomerase access

to the telomeric DNA (Figure 1C).3 The associated loci

contain two of the SHELTERIN components (TERF2 and
398 The American Journal of Human Genetics 106, 389–404, March
POT1), a regulator of TERF1, CSNK2B (PRRC2A locus),82

the helicase RTEL1, and the CST component STN1.

Although telomere-binding proteins and structure aim

to inhibit activation of DDR pathways, there is also evi-

dence of a paradoxical involvement of a number of DDR

factors in TL maintenance; these factors include both of

the prioritized genes, ATM and PARP1.73,93 TERF2 inhibits
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ATM activation and the classical non-homologous end

joining (c-NHEJ) at telomeres, thus preventing synapsis

of chromosome ends (Figure 1A).94 However, ATM activa-

tion is required for telomere elongation, potentially by

regulating access of telomerase to the telomere end

through ATM-mediated phosphorylation of TERF1.93 It is

possible that other DDR regulators can impact TL mainte-

nance by regulating telomeric chromatin states, T-loop

dynamics, and single-stranded telomere overhang process-

ing.79 Other prioritised genes (SENP7 and RFWD3) also

function within DDR pathways; this suggests a plausible

mechanism through which they may influence LTL.

The telomerase enzyme is capable of extending telo-

meres and/or compensating sequence loss due to the end

replication problem in stem and reproductive cells.4 Asso-

ciated loci include genes encoding the core telomerase

components TERT and TERC along with the chaperone

protein NAF1. NAF1 is required for TERC accumulation

and its incorporation into the telomerase complex.95 After

transcription, TERC undergoes complex 30 processing to

produce the mature 451bp template.96 This involves com-

ponents of the RNA exosome complex, PARN (MIM:

604212) and TENT4B (MIM: 605540), among others; this

process is not fully understood.97 In addition to variants

within regions containing TERT, TERC, and NAF1, a prior-

itiszed gene from another locus (MPHOSPH6) is a compo-

nent of the RNA exosome.98

Comparing our findings to those reported in a non-Euro-

pean study,70 we find support for our most significantly

associated loci. For many of our FDR < 0.05 loci, we were

unable to look for support from this study because our

sentinel variants were either monoallelic or rare (MAF <

0.01) in the CHS population. Different LD structures in re-

gions such as RTEL1, coupled with the reported absence of

some of the variants in other ancestral populations, sug-

gest that some of our reported variants may specific to Eu-

ropeans. Adding additional support for the existence of

population-specific rare variants regulating LTL is the dis-

covery of two loci in the Singaporean Chinese study that

are monoallelic in Europeans.70 Because both of these

replicate within CHS subjects and are located within re-

gions containing telomere-related genes, they are unlikely

to be false positive findings. Future large-scale trans-ethnic

meta-analyses will be critical in determining shared causal

variants from population-specific rare variants. This is of

key importance to downstream analyses using genetically

determined LTL to investigate disease risk in different pop-

ulations. However, the current lack of large-scale data on

LTL in non-European cohorts is limiting.

Utilizing the prioritized gene list as well as the closest

genes to the sentinel variants, we showed a number of

pathways to be enriched for telomere-associated loci. Of

note, we observed significant overrepresentation of genes

in several nucleotide metabolism pathways (Table S15,

Figure 2B). Key genes were highlighted by this function

in both the biosynthesis (TYMS, TK1, and DCK) and catab-

olism (SAMHD1) of dNTPs. Biosynthesis of dNTPs occurs
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via two routes: de-novo synthesis and the nucleotide

salvage pathway. Thymidine kinase (TK1) and deoxycyti-

dine kinase (DCK) are the rate-limiting enzymes that cata-

lyze the first step of the salvage pathway of nucleotide

biosynthesis, converting deoxynucleosides to their mono-

phosphate forms (dNMPs) before other enzymes facilitate

further phosphorylation into deoxynucleodie dipho-

phates (dNDPs) and dNTPs (Figure 2B).85 Thymidylate syn-

thetase (TYMS) is considered to be a component of the de

novo pathway, and is the key regulator of dTMP biosyn-

thesis, converting deoxyuridine monophosphate (dUMP)

to dTMP.85 However, because the dUMP substrates can be

derived from either de novo synthesis or deamination of de-

oxycytidine monophosphate (dCMP) produced from the

salvage pathway, it could be considered to function within

both pathways (Figure 2B).85 Besides controlling biosyn-

thetic pathways, the equilibrium of cellular dNTP levels

is also achieved by regulating degradation of dNTPs, a

key regulator of which is SAMHD1. It catalyzes the hydro-

lysis of dNTPs to deoxynucleosides and triphosphates,

thereby preventing the accumulation of excess dNTPs

(Figure 2B).81 Although the finely tuned dNTP supply sys-

tem inhibits incorrect insertions of bases into DNA synthe-

sis, potential errors are monitored by the product of

another prioritized gene, the base excision repair enzyme,

SMUG1, which removes uracil and oxidized derivatives

from DNA molecules.84

A balanced cellular pool of dNTPs is required for DNA

replication and repair and for maintaining proliferative

capacity and genome stability. Low levels of dNTPs can

induce replication stress, subsequently leading to increased

mutation rates.99 A surplus of dNTPs, on the other hand, re-

duces replication fidelity, thus also causing higher levels of

spontaneous mutagenesis.100 A dynamic balance between

biosynthesis and catabolism is required to maintain an

equilibrium. Because maintaining the balance of the intra-

cellular dNTP pool is also fundamental to other pathways

that are implicated in telomere homeostasis, including

cellular proliferation and DNA repair, disruption of dNTP

homeostasis may trigger a sequence of cellular events that

interplay synergistically, leading to abnormalities of TL

and genome instability.

By clustering our prioritized genes via their functional

connections, we highlighted a number of pathways that

were enriched for TL regulation, which included DNA

replication, transcription, and repair; cell cycle regulation;

immune response; and intracellular trafficking. However,

we noted that because the gene prioritization was based

on integration of bioinformatic evidence from a number

of publicly available databases, which also laid the founda-

tion for establishing the pathways used in the enrichment

analyses, this approach may suffer from self-fulfilling cir-

cular arguments.

While supporting previous evidence linking shorter TL

to an increased risk of CAD and lower risk of several can-

cers, we demonstrated additional associations between

TL and thyroid disease, thyroid cancer, lymphoma, and
can Journal of Human Genetics 106, 389–404, March 5, 2020 399



several non-malignant neoplasms. Shorter TL was protec-

tive against all of these proliferative disorders, potentially

through limiting cell proliferative capacity, which in turn

reduces the occurrence of potential oncogenic mutations

that can occur during DNA replication. Furthermore, we

also provide evidence suggesting that shorter TL is poten-

tially causally associated with increased risk of several car-

diovascular, inflammatory, and respiratory disorders that

have previously been linked to TL in observational studies.

Our findings linking nucleotide metabolism to TL regula-

tion could in part explain the link between TL and cancer

and proliferative disorders. This would suggest that cells

with longer TL have higher dNTP levels that lead to higher

proliferation rates and reduced DNA replication fidelity

leading to higher mutation rates.

In summary, our findings substantially expand current

knowledge on the genetic determinants of LTL, and they

elucidate genes and pathways that regulate telomere ho-

meostasis and their potential impact on human diseases

and cancer development.
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Supplemental Data 
 
Supplemental Figure 1. Study design. Schematic graph to illustrate study design of the LTL 
GWAS meta-analysis. GWAS was conducted in each individual study cohort, stratified by 
genotyping platform and disease status. SNP genotyping, GWAS and meta-analyses as well as 
the corresponding QC procedures are described within the methods. 
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Supplemental Figure 2. Manhattan Plot of GWAS results. Manhattan plot with quantile-quantile plot inlay. Known loci were labelled in blue, 
novel loci associated with LTL at genome-wide significance (p-value<5x10-8, red line) in red, and at FDR threshold of 5% (blue line) in orange. 
 
 
 

 
 
  



Supplementary Figure 3. Regional plots of genome-wide significant loci (p<5x10-8). For all loci 400kb windows encompassing conditionally 
independent variants, except the TERT locus which is illustrated as a 200kb window. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



  



  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Figure 4. Mendelian randomisation results for the effect of shorter LTL on the 

risk of 122 diseases in UK Biobank. MR analysis was repeating using only SNPs that reached 
genome-wide significance (P<5x10-8). Data shown are odds ratios and 95% confidence intervals for a 
1 standard deviation shorter LTL. Diseases are classified into groups as indicated by the boxing and 
sorted alphabetically within disease group. Nominally significant (P<0.05) associations estimated via 
inverse-variance weighted Mendelian randomisation are shown in green for a reduction in risk and 
purple for an increase in risk due to shorter LTL. Where O indicates nominal (P<0.05) evidence of 
pleiotropy estimated by MR-Eggers intercept. Full results are also shown in Table S16 along with the 
full MR sensitivity analysis. 
 
 

 
 
 
 
 



Supplemental Methods 
 

Information on study cohorts 

 

The demographic characteristics of all study cohorts, for both discovery and replication 
phases are shown in Table S1. All individuals included in the analysis are of European descent. 

 

ENGAGE 

The majority of the studies included have previously been described1. In addition to these the 
following studies were included in this analysis. 

 

GENMETS 

GENMETS is a subcohort of the Finnish population-based Health 2000 study, comprising of 
metablic syndrome cases and controls. This cohort is described in more detail elsewhere2. 

 

NESDA 

The Netherlands Study of Depression and Anxiety (NESDA) is an ongoing cohort study into the 
long- term course and consequences of depressive and anxiety disorders. A description of the 
study rationale, design, and methods is given elsewhere3. Briefly, in 2004 to 2007, participants 
aged 18 to 65 years were recruited from the community (19%), general practice (54%), and 
secondary mental health care (27%), therefore reflecting various settings and developmental 
stages of psychopathology to obtain a full and generalizable picture of the course of 
psychiatric disorders. A total of 2981 participants were included, consisting of persons with a 
current or past depressive and/or anxiety disorder and healthy control subjects. Exclusion 
criteria were a clinically overt primary diagnosis of psychotic, obsessive compulsive, bipolar, 
or severe addiction disorder and not being fluent in Dutch. The research protocol was 
approved by the ethical committee of participating universities, and all respondents provided 
written informed consent. 

 

ROTTERDAM  

The Rotterdam Study is a population-based cohort study that investigates the occurrence 
and determinants of diseases in the elderly, which has been ongoing since 19904. As of 
2008, detailed phenotypic and genetic data has been collected on ~15,000 subjects aged 45 
years or over. For this study the RS-I and RS-III cohorts were used. The Medical Ethics 
Committee at Erasmus Medical Center approved the study protocol. 

 

EPIC-InterAct case-cohort study 



The EPIC-InterAct study aimed to investigate the independent and interactive effects of 
genetic and behavioural risk factors on type 2 diabetes risk5,6. EPIC-InterAct is a case-cohort 
study nested within 8 of the 10 countries participating in the EPIC-Europe cohort study. EPIC-
InterAct ascertained 12,403 cases of type 2 diabetes from a total cohort of 340,234 
participants who provided blood samples at baseline and were followed-up for an average of 
7 years (~4 million years of follow-up. Cases were ascertained from multiple data sources 
including self-report of a physician diagnosis of diabetes, linkage to primary/secondary care 
records, medication use, hospital admission data and death registration data. We also 
established a random sub-cohort of 16,154 participants who were representative of 
participants within each country. By design there is an overlap with the set of incident 
diabetes cases (n=778). Participant characteristics have been previously reported in detail5,6. 
Observational statistics of LTL, genotyping and imputation are summarised in the Table S1 
and Table S2. 

 

EPIC-CVD case-cohort study 

EPIC-CVD was designed as a case-cohort study that uses the same random sub-cohort as 
InterAct, with a focus on incident coronary heart disease and stroke events7. The participants 
included in this analysis are thus incident cases only (7722 coronary heart disease cases and 
3451 cerebrovascular disease cases). We also included an additional 752 participants as a 
random sub-cohort from the two countries not included in EPIC-InterAct (Greece and 
Norway). Detailed characteristics of the EPIC-CVD participants has been previously reported8. 

 

 

Telomere length measurements 

Telomere length measurements were performed using an established quantitative PCR 
technique9 across 6 laboratories.  Laboratory specific information is given below and in Table 
S1. Details of the techniques used within Helsinki, Leicester and London have been given 
elsewhere1.  

NESDA: Fasting blood was drawn from participants in the morning between 8:30 and 9:30 am 
and blood samples were stored in a -80°C freezer afterwards. Leukocyte TL was determined 
at the laboratory of Telomere Diagnostics, Inc. (Menlo Park, CA, USA), using quantitative 
polymerase chain reaction (qPCR), adapted from the published original method9. Telomere 
sequence copy number in each patient’s sample (T) was compared to a single-copy gene copy 
number (S), relative to a reference sample. The detailed method is described elsewhere10. 

 

Rotterdam: Telomere length was measured using a qPCR assay based on the method 
described elsewhere9 with minor modifications. For each sample the telomere and 36B4 
assay were run in separate wells but in the same 384 wells PCR plate. Each reaction 
contained 5 ng DNA, 1 uM  of each of the telomere primers (tel1b-forward: 
GGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT, tel2b-reverse: 
GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT) or 250 nM of the 34B4 primers (36B4u-
forward: CAGCAAGTGGGAAGGTGTAATCC, 36B4d-reverse: 



CCCATTCTATCATCAACGGGTACAA) and 1x Quantifast SYBR green PCR Mastermix (Qiagen). 
The reactions for both assays were performed in duplicate for each sample in a 7900HT 
machine (Applied Biosystems). Ct values and PCR efficiencies were calculated per plate using 
the MINER algorithm11. Duplicate Ct values that had a Coefficient of Variance (CV) of more 
than 1% were excluded from further analysis. Using the average Ct value per sample and the 
average PCR efficiency per plate the samples were quantified using the formula Q=1/(1+PCR 
eff)^Ct. The relative telomere length was calculated by dividing the Q of the telomere assay 
by the Q of the 34B4 assay. To validate the assay 96 random samples were run twice and the 
CV of that experiment was 4.5%.  

Cambridge: Relative mean LTL was measured using a ViiATM Real-Time quantitative PCR 
system (ThermoFisher Sicentific, Inc), and expressed as a ratio (T/S) of the relative quantities 
of the telomeric TTAGGG repeat (T) and the single copy of a housekeeping gene, Albumin (S). 
The denominator determines total genome copies per sample, controlling the technical errors 
during quantification. The measurement was validated by the Terminal Restriction Fragment 
(TRF) analysis (the “gold standard” measurement of TL) using separate DNA samples 
extracted from peripheral blood mononuclear cells in 30 individuals (Pearson’s r =0.69). Batch 
effect was corrected by normalising all the other batches to the fourth batch. Each sample 
was measured repetitively for three times within one batch, when the same sample was 
measured in more than one batch, measurement from the last batch was kept for the sample. 
Samples with coefficients of variation greater than 10% were excluded. 

 

  



Description of Individual loci associated with LTL 

 

Chr1p13.2. The lead SNP (rs12065882) and three high LD variants are all located within 
introns of MAGI3 (membrane associated guanylate kinase, WW and PDZ domain containing 
3). MAGI3 has been proposed to act as a tumour suppressor; it regulates cell proliferation in 
glioma via wnt/β-catenin signalling and interacts with PTEN12,13. Both S-PrediXcan and COLOC 
analyses give evidence to support expression of AP4B1 (adaptor related protein complex 4 
subunit beta 1) being influenced by the associated variants. This gene encodes a subunit of a 
heterotetrametric adapter-like complex 4 that involves in Golgi-associated and lysosomal 
vesicle biogenesis and membrane trafficking, transporting proteins from the trans-Golgi 
network to the endosomal-lysosomal system14,15. Mutations in this gene are associated with 
an autosomal recessively inherited disease, spastic paraplegia type 4716. There is also 
evidence of a colocalised eQTL signal for PTPN22 (protein tyrosine phosphatase, non-receptor 
type 22) in three tissues. PTPN22 interacts with the proto-oncogene CBL, a member of the E3 
ubiquitin ligase family that has been implicated in several cancers. 
 
Chr1q24.2. rs35675808 is located downstream of the 3’ UTR of CD247 (CD247 molecule), 
which encodes T-cell receptor zeta that constitutes the T-cell receptor-CD3 complex, coupling 
antigen recognition to several signalling transduction pathways, essential in adaptive immune 
response17,18. Pathways that have been shown to be implicated with this gene include HIV life 
cycle and translocation of ZAP-70 to immunological synapse (Reactome). Mutations in this 
gene are associated with autosomal recessive immunodeficiency 25 (IMD25 [MIM: 610163]), 
characterised by T-cells impaired response to alloantigens, tetanus toxoid and mitogens. 
Another gene, the POU2F1 (POU class 2 homeobox 1), located 3kb upstream of this variant, 
might be biologically relevant. This gene, also known as the OCT1, belongs to the first 
identified members of the POU transcription factor family19,20. Members of this family contain 
the POU domain, a 160-amino acid region necessary for DNA binding to the octameric motif 
(5’-ATGCAAAT-3’)19. POU2F1, as a transcriptional factor, is involved in cell cycle regulation 
and transcription of histone H2B and other cellular housekeeping genes20,21. It has also been 
suggested that the expression of histone H2B was downregulated in response to double-
stranded DNA breaks via a mechanism that modulates transcriptional regulatory potential of 
POU2F1 by site-specific phosphorylation22. POU2F1 is implicated with various pathways, 
including the RNA Polymerase III transcription initiation, cytokine signalling in immune 
system, BRCA1 pathway and glucocorticoid receptor signalling (Reactome). This gene also 
facilitates human herpes simplex virus (HSV) infection by forming a multiprotein-DNA 
complex with the virion proteins, activating transcription of the viral immediate early genes23. 
 
Chr1q42.12. Variants at this locus are focused across the PARP1 gene, which encodes the first 
protein member of the poly(ADP-ribosyl)transferases family, also termed as the ADP-
ribosyltransferases with diphtheria toxin homology (ARTDs).  It plays an essential role in 
various pathways of DNA repair and chromatin remodelling, including single- and double-
strand break repair, nucleotide excision repair, stabilization of replication forks, and 
modulation of chromatin structure, thereby maintaining genomic integrity and stability24. 
Because the DNA double-strand breaks structurally resemble telomeres, regulators and 
components of DNA repair machinery have been shown to be implicated in telomere 
homeostasis25. Of note, rs1136410 (r2=1.0 to the lead) causes a known V762A substitution in 



PARP1 (poly(ADP-ribose) polymerase 1), which has been shown to reduce PARP1 activity. The 
allele that reduces activity is associated with shorter LTL, consistent with previous studies 
where knockdown of PARP1 leads to telomere shortening. PARP1 was identified as a 
telomeric double-stranded repeats binding factor in a proteomic study of telomeres using 
DNA in situ hybridization in conjugation with mass spectrometry26. In addition to the coding 
change there is also eQTL evidence for PARP1 (S-PrediXcan and COLOC, online methods, Table 
S7) in pancreas, with the shorter LTL allele associating with reduced PARP1 expression. 
Another SNP, rs907187, is highlighted in the integrated analysis of non-coding variants and is 
located within the 5’ UTR of PARP1, which could mediate the effect on gene expression.  
 
Chr2p16.2.  rs754017156 is located within intron 3 of ACYP2 (acylphosphatase 2) and also 
causes an in-frame insertion of two amino acids into TSPYL6 (TSPY like 6). This gene encodes 
a nuclear protein, the Testis-Specific Y-Encoded-Like Protein 6, that involves in the 
nucleosome assembly. Biological function of this protein is largely unexplored. Studies have 
associated genetic polymorphisms of this gene region with increased risk of ischemic stroke27, 
and breast cancer in the Han Chinese population28. There are no high LD SNPs, but an 
evidence of an eQTL in testis for TSPYL6.  
 
Chr2q34. rs56810761 is located within intron 7 of UNC80 (unc-80 homolog, NALCN channel 
complex subunit, A) gene. There are no high LD SNPs, but an evidence of an eQTL for SNAI1P1 
(snail family zinc finger 1 pseudogene 1) in testis in the co-localisation analysis. SNAIP1 is a 
processed pseudogene of SNAI1, which encodes the human ortholog of a zinc finger protein 
of the snail family, first cloned in Drosophila, which was demonstrated to be essential in the 
formation of mesoderm during gastrulation and embryonic development29.  
 
Chr3q12.3. This locus consists of a 77 SNPs located predominantly across SENP7 
(SUMO1/sentrin specific peptidase 7) gene. The lead SNP is located 53bp upstream of SENP7 
within a proximal promoter. It is associated with a DNaseI sensitivity QTL and with SENP7 
expression in one tissue (co-localisation). Lower expression of SENP7 associates with shorter 
LTL. Although it has no known role in telomere regulation, the small ubiquitin-like modifier 
(SUMO) functions as a post-translational modification, regulating various biological events, 
especially in DNA repair, chromatin organization, transcription, and RNA metabolism30, which 
are essential biological events pertinent to telomere homeostasis. 
 
Chr3q13.2. The variants in this region are all located within intron 2 of a predicted mRNA, 
RP11-572M11.4 and downstream of a non-coding RNA RP11-572M11.3 (also named 
LINC02044). There is no supporting evidence to suggest which gene is potentially influenced 
at this locus. 
 
Chr3q26.2. This locus contains 47 SNPs in high LD (r2 < 0.8) with the lead SNP (rs1093660). 
The telomerase RNA component (TERC) is the functional candidate in this locus. One SNP 
(rs2293607, r2=0.81 to rs1093660) is located 63bp downstream of the TERC sequence, which 
potentially leads to altered TERC expression31. However, the lead variant, rs10936600, 
encodes a L241I substitution within LRRC34 (Leucine rich repeat containing 34), which is 
predicted to be deleterious (Table S6). The CADD score (19.81) places this SNP just outside of 
the 1% most deleterious mutations. LRRC34 is a member of the leucine rich repeat containing 
protein family. Although little is known about its biological function, it has been suggested to 



be implicated in the maintenance and regulation of pluripotency32. Knock down of LRRC34 
results in reduced expression of some, but not all, pluripotency genes32. As genes encoding 
the telomerase enzyme share the same expression patterns as those of the pluripotency 
genes, thereby they are potentially subjected to the LRRC34-mediated transcriptional 
regulation. Another highly linked variant, rs10936599 (r2=1.0) is predicted to have a functional 
effect in the integrated analysis of non-coding variants (Table S7). It is located on the edge of 
the active promoter region of MYNN, just inside the coding sequence. An eQTL is observed 
for MYNN in testis (shorter TL associated with higher expression), suggesting that this SNP 
may alter MYNN expression. MYNN protein is a member of the BTB/POZ and zinc finger 
containing family that is involved in transcriptional regulation. It has also been shown to 
interact with CUL3, a core component of the E3 Ubiquitin ligase complex, which functions in 
many cellular processes including DNA repair. LTL variants at this locus have been associated 
with idiopathic pulmonary fibrosis, of which telomere dysregulation is attributed to the 
disease aetiology33. Despite the obvious involvement of TERC in telomere length regulation, 
little bioinformatic evidence is available to support it to be the only likely-causal gene in this 
region, i.e. other candidate genes might also explain the locus association, such as LRRC34 
and MYNN. However, it is also possible that with TERC being a processed non-coding RNA, 
the relevant information is limited in standard datasets. There are no eQTLs for TERC in the 
GTex dataset, but a study has shown that variants in the regulatory region can affect its 
expression level, possibly by facilitating the maturation of TERC via 3’ processing31. 
 
Chr4q13.3. The lead variant rs13137667 is located within the first intron of MOB1B (MOB 
kinase activator 1B). There are 49 variants in high LD, the majority of which are located 
intronically within MOB1B or DCK (deoxycytidine kinase). No high LD non-synonymous 
variants or co-localised eQTLs were found at this locus. MOB (Mps one binder) was originally 
identified as an Mps1 binding protein in yeast, regulating mitotic checkpoint and cytokinesis, 
and is evolutionarily conserved across all major kingdoms34. Human MOB1B homolog 
activates LATS1/2 (Large tumour suppressor 1/2) through protein-protein interaction in the 
Hippo signalling pathway, resulting in the inhibition of cell proliferation, apoptosis, and thus 
tumour suppression35. DCK is a key component of the deoxyribonucleoside salvage pathway 
and phosphorylates deoxycytidine, deoxyguanosine and deoxyadenosine to dCMP, dGMP 
and dAMP respectively.  
 
Chr4q31.23. There are 65 associated variants clustered towards the 5’ end of DCLK2 
(doublecortin like kinase 2). There is an eQTL co-localised with DCLK2 in one tissue (Table S7). 
DCLK2 encodes a protein that contains four independent functional domains: two 
doublecortin domains at the N-terminus, essential for microtubule binding and regulating 
microtubule polymerisation, a serine/threonine protein kinase domain at the C-terminus, 
sharing substantial homology to Ca2+/calmodulin-dependent protein kinase, and a 
serine/proline-rich domain in between the two termini, which mediates multiple protein-
protein interactions. Mouse models with single or double copies of Dclk2 gene ablated are 
viable and fertile, however, a simultaneous deletion of Dcx gene, encoding another protein 
member of the doublecortin family, results in spontaneous seizures, hippocampal 
disorganisation and poor survival36, phenotypically mimicking human lissencephaly, X-linked, 
1 disease (LISX1 [MIM: 300067]). 
 



Chr4q32.2. This locus contains 70 closely related (r2>0.8) SNPs spanning NAF1 (nuclear 
assembly factor 1 ribonucleoprotein), a gene encoding an RNA-binding protein, required for 
the synthesis of box H/ACA RNAs and sequential assembly with proteins to form 
ribonucleoprotein (RNP) complex. The box H/ACA RNPs regulates three fundamental cellular 
processes: protein synthesis, mRNA splicing via site-specific pseudouridylation of ribosomal 
RNAs and small nuclear RNAs and telomere maintenance by facilitating the maturation of 
TERC in telomerase37. Expression evidence was found for NAF1 (S-PrediXcan and COLOC) and 
an antisense transcript RP11-563E2.2 (COLOC, online methods, Table S7). The lead SNP, 
rs4691895, is a non-synonymous variant in NAF1 (L368V) along with another high LD variant 
(rs4691896, r2=1, I162V). Individually both are predicted to be benign; however, it is unclear 
what effects they may have in combination. 
 
Chr5p15.33. There are two independently associated SNPs at this locus, neither of which have 
any high LD variants. Both SNPs are located within intron 2 of TERT, but little functional 
evidence was found to support their involvements in regulating TERT levels, which might be 
due to the transcriptional repression of TERT in most somatic tissues. 
 
Chr5q14.1. The lead variant, rs62365174, is located in intron 4 of TENT2 (terminal 
nucleotidyltransferase 2, previously named PAPD4 and GLD2). There are 137 SNPs in high LD 
(r2<0.8), which fall across the region of TENT2 and include upstream, intronic and 3’ UTR 
variants. There is strong evidence that these variants can affect the expression of TENT2, with 
eQTLs co-localised in 9 tissues, exhibiting consistent positive correlations, i.e. reduced 
expression associates with decreased LTL. TENT2 functions as the cytoplasmic poly(A) RNA 
polymerase that adds successive AMP monomers to the 3'-end of specific RNAs, forming a 
poly(A) tail, exhibiting strict substrate specificity, that, different from the canonical nuclear 
poly(A) RNA polymerase, only functions on cytoplasmic RNAs38. Previous studies have 
suggested its role in the polyadenylation and stability of p53 mRNA39 and several miRNAs40. 
 
Chr5q31.2. The associated variant, rs112347796, has no further variants in high LD (r2>0.8). It 
is located within intron 1 of UBE2D2 (ubiquitin conjugating enzyme E2 D2), which is involved 
in the DNA damage repair41. There is no evidence to suggest the potential function of this 
variant. 
 
Chr6p22.2. This locus contains 10 SNPs in high LD (r2>0.8) with the lead SNP, all located 
around CARMIL1 (capping protein regulator and myosin 1 linker 1, previously named LRR16A). 
One SNP, rs913455, causes a synonymous change within exon 3 and has scored to have 
possible regulatory function (Table S8), which may be driven in part by its high conservation 
and location within the coding region. There is no supporting literature evidence to identify 
which gene(s) may be influenced at this locus. 
 
Chr6p21.33. There are 11 SNPs in high LD (r2>0.8) with the lead SNP, which are located across 
the major histocompatibility complex (MHC) class III region. MHC is a highly polymorphic and 
gene-dense region with complex linkage disequilibrium structure, and thus characterisation 
of potential causal genes within this region is difficult. A number of genes can potentially serve 
as causal gene candidates, including PRRC2A, CSNK2B and BAG6. There is evidence that the 
expression of both BAG6 and CSNK2B (S-PrediXcan and COLOC, Table S7) is affected. The lead 
variant is located upstream of PRRC2A, which was previously known as the BAT2 (HLA-B 



associated transcript 2) gene, encoding a large protein (2157 amino acids). PRRC2A has been 
shown to be involved in the pre-mRNA editing, as spliceosome and splicing regulators were 
found to be able to bind to the PRRC2A in protein-protein interaction assays, including the 
heterogeneous nuclear RNPs and the cleavage and polyadenylation specific factor 142. As 
maturation of the telomerase RNA subunit involves a spliceosome-mediated single cleavage 
reaction43, PRRC2A may regulate telomere length via involvement in the biogenesis of TERC. 
Of note, another variant, rs805299 (r2=1), located within intron 1 of BAG6 (BCL2 associated 
athanogene 6), shows a high probability for promoter activity and is predicted to have 
regulatory function in the integrated analysis of non-coding variants (Table S8). BAG6 was 
part of a cluster of genes that encode a multifunctional protein, involved in various pathways, 
including intracellular protein quality controls by promoting proteasomal degradation of 
misfolded and mislocalised proteins, and DNA damage-induced apoptosis. Another variant, 
rs5872 (r2=1), is located within the 3’UTR of CSNK2B (casein kinase 2 beta). CSNK2B is a 
subunit of CSNK2 that is involved in multiple pathways but of note has been shown to interact 
with TRF1. CSNK2-mediated phosphorylation of TRF1 is required for the binding of TRF1 to 
telomeres, which has been proposed to be essential for telomere length homeostasis44. 
 
Chr7q31.33. The associated variants cover the POT1 (protection of telomeres 1) gene, which 
encodes the most conserved protein component of the shelterin complex among all 
eukaryotes45. It is tethered to the TERF1 and TERF2 homodimers via a TIN2-mediated linkage, 
and specifically bound to the single-stranded telomeric repeats, protecting it from nucleolytic 
degradation46. Moreover, POT1 controls the sequence precision at the 5’ ends, which are 
identical among nearly all human chromosomes, and regulates telomere length by restricting 
telomerase binding47. Rare nonsense mutations within this gene, which blocked physical 
interactions of POT1 with telomeric single-stranded repeats and other components of the 
shelterin protein complex, were identified by whole-exome sequencing in families with strong 
histories of chronic lymphocytic leukaemia48. The integrated analysis of non-coding variants 
highlights rs2239532 (r2=0.85), located within the 5’UTR of GPR37 (G protein-coupled receptor 
37), as having regulatory function (Table S8). Although no direct eQTL evidence is available to 
support POT1, there is evidence to link the expression of an uncharacterised POT1-AS 
transcript (RP11-3B12.1) to LTL via co-localisation in two tissues (Table S8). 
 
Chr8p23.2. This region contains 52 SNPs in high LD (r2<0.8) and is located within 3 introns 
towards the 3’ end of CSMD1 (CUB and Sushi multiple domains 1) gene. CSMD1 was 
potentially associated with a rare neurological disease, the benign adult familial myoclonic 
epilepsy49. It may also act as a suppressor of squamous cell carcinomas, yet unequivocal 
evidence is lacking50,51. The gene-knockout mouse was used as a schizophrenia human disease 
model, exhibiting increased levels of exploratory activity, behavioural despair anxiety-related 
response, and decreased startle reflex (MGI: 3528558). However, no direct supporting 
evidence is available to suggest CSMD1 or other genes as causal gene candidates in this 
region. 
 
Chr8q22.2. Four SNPs are located upstream of COX6C (cytochrome c oxidase subunit 6C). 
COX6C is a subunit of complex IV that catalyses the final step of the mitochondrial respiratory 
chain52. No functional data is available to pinpoint causal genes for this locus.  
 



Chr10p15.1. The 6 associated variants (in LD, r2>0.8) at this locus are clustered within the first 
intron of ASB13 (ankyrin repeat and SOCS box containing 13), a member of the suppressor of 
cytokine signalling box protein superfamily. Members of this protein family can also be 
components of E3 ubiquitin ligase complexes53. No causal gene candidates can be prioritised 
for this locus. 
 
Chr10q24.33. This region contains STN1 (STN1, CST complex subunit, also termed OBFC1 in 
humans), a component of the telomere binding CST complex. There is strong evidence that 
the variants affect STN1(OBFC1) expressions across multiple tissues (S-PrediXcan and COLOC, 
Table S7). The CST complex regulates telomere maintenance by mediating the access to 
telomeres for telomerase and DNA polymerase α54. 
 
Chr11q21. The lead variant, rs117037102, is located within intron 5 of CEP295 (centrosomal 
protein 295, also termed KIAA1731). There is a potentially damaging protein coding variant 
(rs117405490, r2=1), which results in a P to A substitution at position 783 of CEP295. CEP295 
is a centriole-enriched microtubule-binding protein, highly conserved across species and 
involved in centriole biogenesis, essential for cell cycle regulation and mitotic progression55. 
 
Chr11q22.3. The associated variants fall across a ~321kb region which includes several genes, 
including ATM (ATM serine/threonine kinase), encoding a protein kinase that phosphorylates 
many checkpoint-determining and regulatory proteins, such as p53, Chk2 and BRCA1, and 
thus playing an essential role in cell cycle control and DNA-damage-activated signalling 
pathways56. ATM is responsible for the human genetic disorder ataxia telangiectasia (AT 
[MIM: 208900]), manifested with genome instability, cerebellar and thymic degeneration, 
immunodeficiency, premature ageing, sensitivity to ionizing radiation and predisposition to 
cancer57. There are eQTLs supporting ATM and another gene, ACAT1 (acetyl-CoA 
acetyltransferase 1), within the region. ACAT1 is a mitochondrial protein, expression levels of 
which have been linked to some cancers58. Defects in this gene are associated with 3-
ketothiolase deficiency, an inborn error of isoleucine catabolism59. 
 
Chr12p13.1. The lead variant and 2 in high LD (r2<0.8) are located upstream of ATF7IP 
(activating transcription factor 7 interacting protein), also named MCAF1, actively involved in 
histone modification, chromatin organisation, and Sp1-dependent maintenance of 
telomerase activity in cancer cells60. It was previously shown to regulate expression of both 
TERT and TERC and consequently telomerase activity61.  
 
Chr12q13.13. There are 7 variants in high LD (r2 <0.8), located within a 3kb region upstream 
of SMUG1 (single-strand-selective monofunctional uracil-DNA glycosylase 1), a gene involved 
in base-excision repair. Although there is no bioinformatic evidence to show that these 
variants affect SMUG1 expression levels, previous functional studies have suggested that 
SMUG1 might influence telomere length by interacting with the telomerase component 
Dyskerin (DKC1) with which it controls rRNA processing62. 
 
Chr14q24.2. The lead variant is a non-synonymous (W22C) variant in DCAF4 (DDB1 and CUL4 
associated factor 4). Another variant in high LD (rs3815460, r2=1) also causes a protein coding 
change (S345C). Both variants are predicted to be damaging individually. DCAF4 interacts with 
the Cul4-Ddb1 E3 ubiquitin ligase macromolecular complex, which regulates processes 



including DNA repair and cellular proliferation63. DDB (DNA damage binding protein) is highly 
expressed in multipotent hematopoietic progenitors, conditional ablation of which in 
hematopoietic stem and progenitor cells led to a complete loss of pluripotency and self-
renewal of progenitors and stem cells, suggesting its role in cell differentiation, apoptosis and 
death64. An intronic G-to-A variant (rs2535913) has been associated with shorter LTL65. A 
further SNP, rs2286838 (r2=0.9) causes a coding change in ZFYVE1 (zinc finger FYVE-type 
containing 1, S408R), which also has a predicted damaging effect. This protein, also known as 
the double FYVE-containing protein 1 (DFCP1), contains two zinc-binding FYVE domains in 
tandem, which has been shown to be localised on endoplasmic reticulum and Golgi apparatus 
via binding to phosphatidylinositol 3-phosphate containing membranes, essential for the 
regulation of autophagy66. 
 
Chr14q24.3. The lead variant, rs59192843, is located within intron 6 of BBOF1 (basal body 
orientation factor 1, also termed as CCDC176). There are no coding variants or eQTLs 
associated with the lead variant. Two variants in high LD (r2<0.8), rs73301475 and rs17094157 
scored highly in the integrated analysis of non-coding variants (Table S8). These are located 
within an enhancer of ENTPD5 (ectonucleoside triphosphate diphosphohydrolase 5) and the 
3’ UTR of COQ6 (coenzyme Q6, monooxygenase), respectively. ENTPD5 hydrolyses UDP to 
UMP to promote protein N-glycosylation and folding. It has been shown that ENTPD5 was 
upregulated in cell lines and primary human tumour samples with active AKT, promoting cell 
growth and survival67. AKT activation also contributes to the elevation of aerobic glycolysis 
seen in tumour cells, known as the Warburg effect. Of note, ENTPD5 was also involved in 
stimulating glycolysis by providing substrates for cytidine monophosphate kinase-1 that 
converts UMP to UDP using a phosphate molecule generated during the ATP hydrolysis 
cycle68. COQ6 is an evolutionarily conserved monooxygenase, belonging to the ubiH/COQ6 
family, which is required for the biosynthesis of coenzyme Q10 (or ubiquinone), an essential 
component of the mitochondrial electron transport chain and one of the most potent 
lipophilic antioxidants implicated in the protection of cell damage by reactive oxygen species. 
Gene-ablated mouse model showed abnormal embryo size and growth retardation (MGI: 
5548683). Mutations in this gene are associated with autosomal recessive coenzyme Q10 
deficiency-6, which manifests as nephrotic syndrome with sensorineural deafness69. 
 
Chr14q32.11. In this locus the variants are focused across CALM1 (calmodulin 1). There is an 
eQTL co-localised with CALM1 expression in testis. Two SNPs (rs12885713 and rs2300496) are 
within the CALM1 promoter/enhancer region and predicted to have regulatory function. 
CALM1 encodes a member of the EF-hand calcium-binding protein family, regulating a 
number of protein kinases and phosphatases, among which CP110, by interacting with CALM1 
and centrin, regulates centrosome function and cytokinesis70. 
 
Chr14q32.33. The lead SNP, rs117536281, is located upstream of CDCA4 (cell division cycle 
associated 4). CDCA4 encodes a member of the E2F family of transcription factors, regulating 
spindle organization, cytokinesis and cell proliferation, which may be also involved in 
differentiation of hematopoietic stem cells and progenitor cell lineage71. There are no coding 
variants or eQTL data for this locus.  
 
Chr15q14. This locus consists of two associated SNPs, rs9972513 and rs12324579, which are 
located in an intergenic region upstream of both c15orf53 and RASGRP1 (RAS guanyl releasing 



protein 1). There are no coding variants or eQTL data for this locus. C15orf53 is a protein 
coding gene with uncharacterised functions, with disputable evidence suggesting its 
implication with schizophrenia and bipolar disorder72. RASGRP1 encodes a protein that 
functions as a calcium- and diacylglycerol (DAG)-regulated nucleotide exchange factor 
specifically activating Ras through the exchange of bound GDP for GTP. RASGRP1 contains a 
pair of calcium-binding EF hands and a DAG-binding domain73. The RASGRP1-mediated Ras 
activation regulates T cell proliferation, development and homeostasis74. 
 
Chr15q21.2. There are 17 SNPs clustered around the 5’ end of ATP8B4 (ATPase phospholipid 
transporting 8B4 (putative)). There are no coding variants or eQTL data for this locus. ATP8B4 
encodes a member of the cation transport ATPase (P-type) family and type IV subfamily, 
which consists of a P4-ATPase flippase complex that catalyses the hydrolysis of ATP coupled 
to phospholipid translocation across various membranes, playing a role in vesicle biosynthesis 
and lipid signalling transduction75,76. Deleterious rare variants within this gene have been 
associated with systemic sclerosis, for which the principal cause of death was pulmonary 
diseases, including interstitial lung disease and pulmonary arterial hypertension77. An intronic 
common variant at the distal promoter region of this gene has been reported to be associated 
with Alzheimer’s Disease78. 
 
Chr15q21.3. This single variant, rs117610974 is located in an intergenic region, ~220kb 
downstream of the closest gene, UNC13C (unc-13 homolog C), which might be implicated with 
vesicle formation during exocytosis, with potential capabilities of diacylglycerol and calcium 
binding79. However, there is no evidence to suggest what role this lead variant may have. 
 
Chr15q22.31. The lead variant, rs55710439, is located within intron 6 of ANKDD1A (ankyrin 
repeat and death domain containing 1A). There is an eQTL for this gene co-localised in one 
tissue. Little is known about the ANKDD1A protein, except that it contains an ankyrin repeat 
domain and a death domain, both of which function in the protein-protein interaction. A 
closely-related SNP (in LD, r2<0.8), rs57438358, predicted to have potential functional effects, 
is located within the 3’UTR of SPG21 (SPG21, maspardin), a gene which is mutated in mast 
syndrome.  
 
Chr16p13.3. This is a single variant, rs11640926, located within intron 5 on CACNA1H. There 
is no supporting evidence to suggest the effects of this variant. CACNA1H encodes a protein 
component of the voltage-dependent calcium channel complex, a T-type calcium channel that 
belongs to the "low-voltage activated” group, which plays an essential role in both central 
neurons and cardiac nodal cells and supports calcium signalling in secretory cells and vascular 
smooth muscle80,81. It is associated with a form of familial hyperaldosteronism, clinically 
characterised by hypertension, elevated aldosterone levels and abnormal adrenal steroid 
production82; and another genetic rare disease, the Childhood Absence Epilepsy 683. 
 
Chr16q22.1. The most significantly associated variants in this region are located within and 
around TERF2 (telomeric repeat binding factor 2), a component of the shelterin complex. 
TERF2 protein directly and specifically binds to the telomeric double-stranded repeats, and 
by interacting with other telomeric factors forming a T-loop configuration that protects 
chromosome ends from disruptive end-to-end joining and ligation to exogenous DNA. Mutant 



forms of this gene induced DNA fusion, such as formation of anaphase bridges and lagging or 
ring-like chromosomes84,85. 
There is evidence that the variants affect expression of several genes in this region, with the 
strongest evidence for TERF2 (S-PrediXcan and COLOC, Table S7). Longer LTL is associated 
with reduced expression of TERF2, consistent with TERF2 being a negative regulator of 
telomere length86. One variant predicted to have a functional effect, rs9939705, is located 
within an enhancer region upstream of TERF2. There is also evidence to suggest that 
expression of two other genes (COG8, and PDF) are also affected by the associated variants. 
 
Chr16q23.1. Variants at this locus show co-localisation with eQTLs for RFWD3 (ring finger and 
WD repeat domain 3) in multiple tissues. RFWD3 is a ubiquitin ligase that interacts with and 
ubiquitinates replication protein A (RPA), which has been shown to be essential for DNA 
replication and repair. Upon replication stress, RPA was recruited to stalled replication folks 
and ubiquitinated by the RFWD3, an essential process for recovery and homologous 
recombination-mediated DNA repair87. RFWD3 also ubiquitinates and stabilises p53/TP53 in 
response to DNA damage, thereby regulating the cell cycle checkpoint88. This gene was also 
clinically attributable to the Fanconi anaemia (FA [MIM: 227650]), an autosomal recessive 
inheritance disease manifested with chromosomal instability, bone marrow failure, dermal 
pigmentary changes and predisposition to malignancies. 
 
Chr16q23.3. The association signal at this locus is across MPHOSPH6 (M-phase 
phosphoprotein 6). There is strong eQTL evidence (S-PrediXcan and COLOC) in multiple tissues 
to support the associated variants influencing MPHOSPH6 expression. MPHOSPH6 is a 
component of the RNA exosome, a protein complex required for the degradation of RNA 
molecules and is required for the 3’ processing of the 5.8S rRNA89. There is also evidence that 
MPHOSPH6 interacts with PARN (poly(A)-specific ribonuclease)90, an important regulator of 
mRNA catabolism which is also required for the formation of mature TERC RNA91. 
 
Chr17q25.3. The lead variant (rs144204502) is situated within the 5’ UTR of TK (thymidine 
kinase 1), with evidence of regulatory functions (Table S8). There are co-localised eQTLs for 
TK1 in three tissues. TK1 encodes a cytosolic enzyme that catalyses the conversion of 
thymidine to dTMP, which is the first step of the salvage pathway of dTTP biosynthesis, 
essential for DNA replication. There are two forms of the TK enzyme, besides the TK1, TK2 
catalyses the same reaction but in the mitochondria. The activity of TK1 is delicately regulated 
by a configurational transition, changing from dimer to tetramer upon increases in ATP and 
enzyme concentrations, with a consequently accompanied upregulation of catalytic 
efficiency92. This regulatory fine-tuning of TK1 activity ensured a balanced pool of nucleic acid 
precursors. High TK1 expression was detected in numerous types of cancers, including 
gastrointestinal adenocarcinomas and oesophageal and uterine squamous cell carcinomas93. 
 
Chr18p11.32. All variants within the locus are located within the TYMS (thymidylate 
synthetase) gene, either within the intronic or the 3’UTR regions. There is an eQTL for TYMS 
co-localised in one tissue. TYMS is involved in the de novo biosynthesis of dTMP, catalysing 
the methylation of dUMP to dTMP using a serine-derived one-carbon donor, the 5,10-
methyleneTHF94. TYMS has been targeted for cancer chemotherapeutics, as high expression 
of which has been detected in various types of cancers, including gastrointestinal 
adenocarcinomas and squamous cell uterine carcinomas93. 



 
Chr19p13.3. The lead variant is located within intron 5 of NMRK2 (Nicotinamide Riboside 
kinase 2), with 6 SNPs in high LD (r2<0.8) located around this gene. NMRK2 enzyme catalyses 
the phosphorylation of nicotinamide riboside (NR) and nicotinic acid riboside (NaR) to form 
nicotinamide mononucleotide (NMN) and nicotinic acid mononucleotide (NaMN), the vitamin 
precursors of NAD+, which is required for the function of Sirtuins, a key player in lifespan 
extension and energy metabolism95. It has been demonstrated that increased NAD+ 
biosynthesis elevated the Sirtuin 2 function, which improved the subtelomeric gene silencing 
effects and elongated replicative lifespan in eukaryotic cell models95. One further variant in 
high LD, located upstream of DAPK3 (death associated protein kinase 3), is a regulator of 
apoptosis. There is no functional data supporting any gene candidates at this locus. 
 
Chr19p12. The lead variant is intergenic, located between ZNF257 and ZNF208, with closer 
proximity to the former. There is eQTL evidence for both ZNF257 and ZNF265, yet stronger 
for the ZNF257 (Table S7). ZNF257 encodes a member of a zinc finger protein family, the 
Krüppel-like zinc finger subfamily, signified by a consensus sequence of TGEKPYX (X denotes 
any amino acids) between concatenated zinc finger motifs96. The proteins have the KRAB 
domain at their amino terminus, which determines the specificity of binding to DNA and other 
transcriptional co-regulators. 
 
Chr19q13.2.  The single associated variant, rs11665818, is located within an intergenic region, 
downstream of INFL2 (interferon lambda 2, also termed IL28a) and within a cytokine gene 
cluster that consists of three closely related INFL genes. INFL2 encodes a protein with antiviral 
activities, predominantly in the epithelial tissues97. There is no supporting functional evidence 
at this locus. 
 
Chr20p12.3a. The lead and one variant in high LD (r2<0.8) are located upstream of PROKR2 
(Prokineticin receptor 2), a G protein-coupled receptor for the prokineticin 2, which is a 
secreted protein expressed in gut and brain, and has been shown to oscillate on a circadian 
basis98. Homozygous gene-knockout mice showed impaired circadian behaviour and 
thermoregulation (MGI:2181363). Mutations in this gene led to gonadotropin-releasing 
hormone deficiency and hypogonadism99. There are no coding variants or eQTLs associated 
with this locus. 
 
Chr20p12.3b All variants of this locus are located within an intergenic region, with the closest 
gene being LINC01706 (long intergenic non-coding RNA 1706), an uncharacterised non-coding 
transcript. 
 
Chr20q11.23. The association signal spans two genes MROH8 (maestro heat like repeat family 
member 8) and RBL1 (RB transcriptional corepressor like 1). There is eQTL evidence to support 
changes in both RBL1 and SAMHD1 (SAM and HD domain containing deoxynucleoside 
triphosphate triphosphohydrolase 1) expression. RBL1 functions as a transcriptional repressor 
for E2F binding sites-containing genes100, which shares similarity in amino acid sequence and 
biochemical features to the retinoblastoma 1 (RB1) gene product that functions as a tumour 
suppressor implicated in cell cycle regulation. SAMHD1 encodes a dNTP triphosphohydrolase 
(dNTPase) that converts deoxynucleoside triphosphates (dNTPs) to deoxynucleosides. The 
gene expression was regulated during cell cycle to maintain a homeostatic pool of dNTP, 



required for DNA replication 101. Studies have suggested an antiretroviral role of SAMHD1 in 
dendritic and myeloid cells by depleting the intracellular pool of dNTPs102,103. 
 
Chr20q13.33. There are four independent signals within this locus, which harbours several 
genes, including the DNA helicase RTEL1 (regulator of telomere elongation helicase 1). There 
are non-synonymous coding variants in RTEL1 and ZBTB46 (zinc finger and BTB domain 
containing 46) although neither are predicted to be deleterious. There are eQTLs for RTEL1, 
STMN3(stathmin 3) and TNFRSF6B (TNF receptor superfamily member 6b, also termed decoy 
receptor 3). RTEL1 encodes an ATP-dependent DNA helicase that functions in the regulation 
of telomeres, DNA repair and genomic integrity. RTEL1 facilitates access of telomerase to the 
3’ ends of telomeres by transiently dismantling the T-loop configuration, a lariat-like structure 
that protects telomeres from degradation and deleterious DNA damage response104. 
Mutations of this gene led to Hoyeraal Hreidarsson syndrome, a clinically severe form of 
dyskeratosis congenita, of which half of the inherited families carry germline mutations of 
telomere-related genes105. Loss-of-function missense variants of this gene was found to be 
associated with idiopathic pulmonary fibrosis and shortened telomere lengths106. STMN3 
gene encodes a member of the stathmin protein family, which shows microtubule-
destabilizing activity and is known to be involved in the development of central nervous 
system and glioma pathology107. TNFRSF6B is a regulator of apoptosis and has been linked to 
angiogenesis108–110. ZBTB46 gene encodes a member of a large BTB zinc-finger protein family, 
characterised by a DNA binding motif that consists of a tandem array of C2H2 krüppel-like 
zinc fingers at the carboxyl terminus, with each finger containing a consensus sequence of 
~30 amino acids and an embedded zinc ion111. In contrast, the BTB domains at the amino 
termini are more divergent across the family, mainly contributing to the hetero- or homo-
dimerization. The BTB domain determines DNA binding specificity and recruitment of co-
regulators to form higher chromosomal structures111. ZBTB46 has been shown to function as 
a transcriptional repressor involved in prostate cancer malignancy and cell cycle regulation112. 
Recently, studies have identified another member of the BTB zinc-finger protein family, 
ZBTB48, also termed as the telomeric zinc finger–associated protein, to be specifically 
associated with telomeres via the zinc finger domain. Further investigation demonstrated that 
it was preferentially bound to longer telomeres where protein components of the shelterin 
complex are rather sparse113. Experimental studies suggested that the ZBTB48 might compete 
with the TERF2 for binding to the telomeric DNA repeats, thereby setting an upper limit of the 
telomere length, which can further influence lifespan and cancer susceptibility113,114. Because 
the zinc finger domain is conserved among all members of the family, we speculated that the 
ZBTB46 was also capable of binding to the telomeric DNA, regulating telomere homeostasis 
via similar mechanisms. However, further experiments are required to validate this 
hypothesis. 
 
Chr21q22.3. The lead variant is a loss-of-stop mutation in KRTAP10-4 (keratin associated 
protein 10-4), which was located within a cluster of related genes, encoding proteins that 
form disulfide bonds between cysteine residues in hair keratins. A genome-wide siRNA-based 
screen implicated this gene with the homologous recombination DNA double-strand break 
repair115. Although transcripts lacking stop codons would be targeted for degradation, there 
is no eQTL evidence to suggest loss of expression with this allele, possibly due to poor 
detection of this transcript in GTex (Median transcripts per million=0). There is one variant in 



high LD, located within intron 2 of TSPEAR (thrombospondin type laminin G domain and EAR 
repeats), a regulator of the NOTCH signalling. 
 
Chr22q13.31. This is a single variant located within intron 1 of KIA1644 (Also termed SHISAL1). 
There is no supporting functional data for gene prioritisation at this locus. 
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