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Abstract

Convolutional neural networks (CNNs) have resurged lately due to their state-of-the-art

performance in various disciplines, such as computer vision, audio and text processing.

However, CNNs have not been widely employed for remote sensing applications. In

this paper, we propose a CNN architecture, named Modular-CNN, to improve the per-

formance of building detectors that employ Histogram of Oriented Gradients (HOG)

and Local Binary Patterns (LBP) in a remote sensing dataset. Additionally, we propose

two improvements to increase the classification accuracy of Modular-CNN. The first

improvement combines the power of raw and normalised features, while the second

one concerns the Euler transformation of feature vectors. We demonstrate the effec-

tiveness of our proposed Modular-CNN and the novel improvements in remote sensing

and other datasets in a comparative study with other state-of-the-art methods.

Keywords: Remote Sensing, Modular-CNN, Building detection

1. INTRODUCTION

In the last few decades, the image sensors attached to satellites have evolved in

a way that nowadays allows the capture of high-resolution multi-spectral satellite im-

ages, [1, 2, 3, 4]. As a result, land cover classification became a widely-studied field

providing also solutions on the detection and classification of buildings and other struc-5

tures. A few important application areas, where the development of a system capable
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of monitoring and modelling urban changes can nd usefulness are [5, 6] a) sociology,

for the monitoring the dynamic processes that occur in a complex urban environment,

b) citizen welfare, for city planning, c) city protection, for the analysis and assessment

of the impact of fire, flood and natural disasters in an urban environment, d) illegal con-10

struction for detecting illegal building activity and e) navigation, for the development

and constant update of accurate urban maps that can be employed for navigation pur-

poses. Several remote-sensing applications, such as city planning, urban mapping and

urban change detection can be improved using building detection systems that employ

satellite images and reconstructed 3D representations. Additionally, urban expansion15

or decline can be studied and correlated to climatic changes and social, economic or

natural factors in order to provide solutions and ensure human prosperity. Lately, 2D

and 3D building detection from remote sensing images is tackled by means of ma-

chine learning and, more specifically, convolutional neural networks [7, 8, 9]. Con-

volutional neural networks were heavily employed in the 1990s [10] but were later20

abandoned, when the SVMs were introduced [11]. The interest in CNNs was rekin-

dled when Krizhevsky et.al [12] showed the superior performance of CNNs on the

ImageNet Large Scale Visual Recognition Challenge [13].

In this work, we implement a CNN architecture for building detection able to ac-

commodate models when the amount of training data is low as in the case of remote25

sensing datasets (e.g. WorldView-2, Quickbird and Benedek in [14]). Furthermore,

the proposed CNN architecture tends to perform better due to its modular structure

and the ability to optimise easily. The optimisation simplicity of the suggested CNN

allows us to analyse in depth the effect of this improvements on the accuracy of the

overall detection. Our first contribution is the combined use of both normalised and30

raw features inside the CNN. Although normalisation makes a classifier more robust

to intensity variations, the use of raw features can increase the discrimination ability

of a CNN. Moreover, we propose the Euler transformation of the feature vectors be-

fore their classification based on the use of the cosine-based distance function that was

proposed by Fitch as a metric for the separation between classes [15]. Overall the35

proposed method offers advantages due to its modular structure and the optimisation

simplicity of the CNN architecture. Also supports both raw and processed data and
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it can be extended including deeper modules. Furthermore, the introduced layers pro-

vide improved robustness to noise and low-quality data. The main disadvantages are

related to the complexity of the proposed system that it is higher in terms on computa-40

tional time and required operations. Regarding the training stage it may be more time

consuming, but it doesnt affect further the performance during the deployment. We

demonstrate using different datasets that a cosine-based distance function can make a

classifier more robust to noise and outliers and increase the performance of a CNN.

2. RELATED WORK45

Building detection is a significant, yet challenging task for remote sensing applica-

tions, since buildings present significant size, 3D shape, colour and texture variations.

Several building detection methodologies have been proposed with varying degree of

success. Energy functions based on building properties were constructed and employed

in a level-set segmentation framework to achieve accurate building segmentation re-50

sults [16]. Lines were utilised for building detection, since building shapes favour line

detection [5]. Shadow detection has also been incorporated in several methodologies,

as a way to denote the existence of tall structures, which can be candidate buildings

[17]. Corner and texture features, whose distribution maxima can be considered as ob-

servations of building presence were also considered [18]. On the other hand, Ilsever55

et.al in [19] employed HOG [20] features for the identification of building regions.

Konstantinidis et.al in [21] proposed an accurate building detector based on the fea-

tures suggested in [22], along with a new distance function that can be employed to

improve the robustness of an SVM classifier to noise. Last but not least, Markov Ran-

dom Fields were employed for building segmentation in [23, 24].60

Regarding the work on CNNs, several modifications have been proposed to in-

crease their classification performance. A detailed overview of recent improvements

to CNNs can be found in [25, 26, 27]. Next, we present and focus on the improve-

ments that are relevant to our work. Nair and Hinton introduced the Rectified Linear

Unit (ReLU) as an alternative to the sigmoid and hyperbolic tangent activation func-65

tions [28]. It has been shown that ReLU outperforms other activation functions and

3

                  



allows a CNN to be trained faster and obtain easier sparse representations [29, 12].

Dropout is a regularisation technique proposed by Hinton et.al in order to prevent over-

fitting during the training of deep neural networks [30]. Several modifications to the

dropout method, such as maxout and adaptive dropout were later proposed [31, 32]. To70

enhance model discriminability and avoid overfitting Lin et.al proposed the Network

in Network (NIN), which concerns the use of multi-layer perceptrons inside the deep

neural network [33]. Their work led Szegedy et.al to propose the Inception module

[34], which uses variable filter sizes to capture patterns of different size. Finally, He

et.al proposed residual learning to address the problem of degradation in deep neural75

networks, achieving state-of-the-art performance on several benchmark datasets [35].

Different from the CNN improvements discussed above, we propose the NL and

ETL layers that consist alternative ways of increasing the accuracy and robustness of

CNNs. The novel NL and ETL layers perform simple transformations of CNN feature

representations without adding additional training parameters to the problem, although80

the next layers have their inputs doubled due to the use of the proposed NL and ETL

layers. As a result, the proposed NL and ETL layers can be considered efficient due

to the lack of training weights, especially if combined with an operation that reduces

their output features.

Furthermore, in order to demonstrate the link between the accuracy and the appro-85

priate method selection for satellite building detection the work presented at the survey

papers and frameworks [36, 37] demonstrates the difference performance expectations

in relation to the selected methods and the corresponding datasets and applications.

3. PROPOSED MODULAR-CNN ARCHITECTURE

Our method takes advantage of the accurate feature based building detectors such as90

HOG and LBP. In this work we extend and improve the building detection methodology

by employing our Modular-CNN. A flowchart of the proposed methodology can be

seen in Fig. 1. A tested image is split in overlapping windows and multiple scales and

is fed to proposed building detection methodology. Initially feature based algorithms

are employed as the first processing step in order to acquire an as accurate as possible95
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Figure 1: Flowchart of the proposed building detection methodology.
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Figure 2: Proposed Normalisation (top) and Euler transform (bottom) layers.

initial set of image blocks that represent candidate buildings. The detected buildings at

this stage are provided as input to the proposed Modular-CNN architecture and there

is an option to apply 3D reconstruction methods [38, 39] aiming to obtain an estimate

of the buildings’ height map. Our Modular-CNN is then employed to further improve

and refine the building detection results by discarding false detections. In this way, we100

take advantage of both the power of the discriminative HOG and LBP features and the

ability of a CNN to automatically generate descriptive features. Furthermore, the use

of the Modular-CNN on the positive output of the feature based algorithm allows a

speed up of the detection procedure as the Modular-CNN is not applied to the entire

image and the introduction of new false alarms from the Modular-CNN detector is105

suppressed. The disadvantage of this approach is that buildings lost by the feature

based classifier cannot be recovered at a later stage.

In this work, we implement a CNN that consists of maximum two units or modules

placed in a sequential and/or parallel configuration, as shown in Fig. 1. We call this
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architecture Modular-CNN for sake of the modules that it consists of. A module is a110

basic CNN that has a combination of layers such as convolutional layers, activation

functions and pooling layers (e.g. similar to VGG-S or VGG-16). The top of the Mod-

ular-CNN architecture consists of two fully connected linear layers, the first of which

reduces the number of features and, consequently, parameters that need to be opti-

mised, while the second one performs a linear mapping without modifying the feature115

vector dimensionality. The last layer performs the classification of the feature vectors

to classes. Each module has its own set of hyper-parameters that needs to be optimised.

Our strategy is to optimise the Modular-CNN as follows: modules are added to the

CNN architecture one by one, their hyper-parameters are optimised independently of

the hyper-parameters of other modules and then these hyper-parameters are kept fixed,120

while subsequent modules are introduced. The optimisation procedure lasts as long

as the classification performance of the CNN increases or until the required depth or

width is reached. Next, we present and analyse two novel improvements that come

in the form of additional layers added to the Modular-CNN architecture. These new

layers are the Normalisation and Euler transform layers, and as we demonstrate, they125

improve the performance and robustness of the tested CNNs.

3.1. Normalisation Layer

Normalising the input data is a common data pre-processing method that increases

the performance of a classifier, especially one that relies on stochastic gradient optimi-

sation methods. This is needed due to the equal weighing of scaled features. Otherwise,130

too large input values can saturate some of the hidden neurons of a neural network,

rendering the neurons of the next layers inactive and the neural network to get stuck

in local optima. However, since the output of a CNN is a non-linear mapping of the

normalised input, the effect of normalisation is in most cases lost in the feature space

[40]. As a result, it is useful to normalise the computed feature vectors prior to their135

classification. On the other hand, since the raw features come from already normalised

data, the neural network mapping may have led some important features to become

prominent in the output and this discrimination can be lost after a new normalisation

in the feature space. Based on these ideas and observations, we suggest the use of a
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shortcut connection before the feature vector classification. The proposed Normalisa-140

tion Layer (NL), shown at the top of Fig. 2, takes as input a feature vector x and creates

a new feature vector that has twice the size of the initial vector. The first half of the

new feature vector is a copy of the initial vector (i.e. x), while the second half is a

normalised by l2-norm copy of the initial feature vector (i.e. x
‖x‖2 ).

3.2. Euler Transform Layer145

Fitch et.al was the first to introduce a new distance function as a replacement to the

l2-norm in the computation of displacement between video frames [15]. The l2-norm

is known to be significantly affected by large values that can be attributed to noise.

The new distance function was proposed to counter this sensitivity of the l2-norm, as

it is considered to be robust to noise and outliers. Given two feature vectors xi and xj150

that have values in the range [0,1] and are of length L, an ideal distance function can be

approximated by a limited number P of sinusoidal terms, giving rise to the cosine-based

dissimilarity measure

d(xi,xj)≈
P

∑
p=1

L

∑
l=1

bp(1− cos(apπ(xi(l)−xj(l)))) (1)

In the special case, where only one sinusoidal term is considered (i.e. P = 1), the

cosine-based distance function of Eq. (1) boils down to the measure155

d(xi,xj) =
L

∑
l=1

(1− cos(απ(xi(l)−xj(l)))) (2)

The cosine-based dissimilarity measure of Eq. (2) is controlled by a single vari-

able α that affects the response of the dissimilarity measure to large differences. Small

values of α make the cosine-based function to behave similarly to the l2-norm, mean-

ing that the distance between two feature vectors increases as their difference becomes

larger. On the other hand, large values of α make the cosine-based dissimilarity mea-160

sure to suppress its response to large differences. Since large differences between fea-

ture vectors can be attributed to outliers, the cosine-based distance function attempts

by regularising its control variable α to suppress the effect of noise and outliers. The
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optimal value of the parameter α can be determined by an exhaustive search on a valida-

tion set. The cosine-based distance function has the ability to suppress noise because165

its derivative is equivalent to Andrew’s M-Estimate [15, 41], defined in Eq. (3), for

difference values in the range [−1,1]. The Andrew’s M-Estimate is a redescending

m-estimator, which is considered as an outlier rejection technique. This holds because

the cosine-based distance function is not a monotonically increasing function as the

difference between two vectors increases, like the l2-norm, but it redescends smoothly170

towards zero for large difference values. This allows the cosine-based distance function

to smoothly suppress large differences, which can be attributed to noise or outliers.

ψ(r) =





sin(πr) if −1≤ r ≤ 1

0 otherwise
(3)

The cosine-based distance function can either be directly employed as an alterna-

tive to the l2-norm [15] or the feature vectors can be transformed to their Euler repre-

sentation before they are mapped to classes. Applying the cosine-based dissimilarity175

measure to a pair of vectors xi and xj is equivalent to transforming the feature vectors

to their Euler representation zi and zj, where zi =
1√
2
eiαπxi and subsequently employ

the l2-norm function. With the use of a few trigonometric identities and the substitution

θi = απxi, the proof is presented in Eq. (4). In this work, we choose to employ the Eu-

ler transformation method since it is easily integrated in a neural network framework.180

Therefore, we propose the addition of a new layer, called Euler transform layer (ETL),

in the Modular-CNN architecture. The ETL layer, which is introduced just before the

layer that classifies feature vectors and after the NL layer, transforms features to their

Euler representation, meaning that each feature vector x is now described by a cosine

(i.e. cos(απx)) and a sine (i.e. sin(απx)) part that are concatenated together. The ETL185

layer is depicted at the bottom of Fig. 2.
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‖zi− zj‖2 =

1
2

L

∑
l=1

‖(cos(θi(l))+ isin(θi(l))−

(cos(θ j(l))− isin(θ j(l))‖2

=

1
2

L

∑
l=1

‖2sin(
θi(l)−θ j(l)

2
)(iei

θi(l)+θ j(l)
2 )‖2

=
L

∑
l=1

1− cos(θi(l)−θ j(l))

(4)

4. EXPERIMENTS

In this section, we present the implementation details and optimisation procedure

of our Modular-CNN. Moreover, we analyse and compare the effect of our proposed

layers on the performance of the Modular-CNN and PlainNet, a deep CNN employed190

in [35], on three different datasets. Finally, we evaluate the overall building detec-

tion performance of our proposed method and compare it with other state-of-the-art

methods.

4.1. Implementation Details

The construction of an optimal Modular-CNN follows a module-based optimisa-195

tion scheme. This means that each module is initially introduced to the current CNN

and its hyper-parameters are optimised using stochastic gradient descent. In the case

that the addition of the module is beneficial to the performance of the CNN, the mod-

ule is added permanently in the CNN and its hyper-parameters are kept fixed, while

new modules are introduced. Otherwise, the optimisation procedure terminates and the200

current CNN without the latest module is returned. The optimisation of the Modular-

CNN is performed without the proposed novel NL and ETL layers. These layers are

introduced afterwards and the CNN is re-trained with its hyper-parameters kept fixed

to the optimal values.
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Each module is optimised with respect to the hyper-parameters of the basic layers205

that it consists of. These hyper-parameters are the convolution type, the convolutional

filter size, the number of convolutional filters, the activation function, the pooling type

and the pooling size and stride. Only the activation function is fixed to the ReLU

unit, while the other hyper-parameters are optimised as described below. Two types

of convolution are examined, the local convolution and the full convolution, proposed210

in [42]. The full convolution is employed for dense predictions since it has the ability

to output features of various sizes, not necessarily smaller than the input size. In our

implementation of the full convolution, we choose the output size to be equal to the

input size, by adding appropriate zero padding. The number of convolutional filters

is selected by the value pool {25,50,75,100}. We also experiment with symmetrical215

(m×m) and asymmetrical (1×m,m× 1) convolutional filters, where m = {3,5,7},
in an attempt to extract useful features from the images. Furthermore, we test both

max and average pooling using either a kernel of size 2× 2 with a stride of 2 (i.e.

non-overlapping pooling) or a kernel of size 3× 3 with a stride of 1 (i.e. overlapping

pooling). It has been shown that overlapping pooling can prevent overfitting [12].220

Other hyper-parameters that affect the Modular-CNN architecture and training are

optimised with respect to the remote sensing dataset and kept fixed for the other datasets.

The dimensionality of the feature vectors introduced to the second fully connected layer

of the Modular-CNN is optimised to the value of 2000. Linear and Euclidean layers

for the classification of feature vectors are tested and we conclude that the Euclidean225

layer that performs clustering of the feature vectors by employing the l2-norm distance

function outperforms the linear layer. Dropout is examined but leads to sub-optimal

results. Finally, the size of the mini-batch and the learning rate are optimised to the

value of 32 and 0.05 respectively.

The CNN training with each hyper-parameter configuration is performed for a max-230

imum number of 100 iterations. In each iteration, the training set is introduced to the

CNN in mini-batches and the CNN is then evaluated on a validation set. During the

evaluation, the loss on the validation set, which is equal to the average negative log-

likelihood of each sample to belong to the correct class, is computed. The training

phase is terminated when the loss on the validation set does not decrease for 5 con-235
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secutive iterations. This strategy is employed to prevent overfitting of the CNN to the

training data, since after a few epochs the loss on the training set keeps decreasing,

while the loss on the test set starts increasing. This typical behaviour of a CNN is re-

ported during our experiments with the Modular-CNN. The CNN training is repeated

for 3 rounds, where a new initialisation/reset of the weights is performed in the begin-240

ning of each new round. The average performance of the CNN on the validation set

is computed and used for the selection of the optimal hyper-parameter configuration.

The Modular-CNN and the novel layers were developed using the Torch software and

a NVIDIA Tesla K40 GPU was used for a boost in the computational speed.
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Figure 3: Optimal Modular-CNN architectures for the (a) QuickBird/WorldView-2, (b) CIFAR-10 and (c)

MNIST datasets.

4.2. Evaluation of Proposed NL and ETL Layers245

In order to evaluate the performance of the proposed NL and ETL layers, we con-

sider two different CNN architectures (i.e. the proposed Modular-CNN and PlainNet),

and we perform experiments by deploying the proposed layers in both of them. Plain-

Net is a version of the plain-net for n = 1 defined in [35]. More specifically, PlainNet

consists of stacks of two (3× 3) convolution layers for each feature map size. The250
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feature map size is progressively halved from D to D/4, while the number of filters

is doubled from 16 to 64. For the evaluation we used remote sensing images from

QuickBird/WorldView-2, the CIFAR-10 and MNIST datasets. Experiments are per-

formed to optimise the modules that the CNN consists of. The optimal performance on

the validation set is achieved by the Modular-CNN architecture depicted in Fig. 3(a).255

The average loss on the validation set of our Modular-CNN with and without the addi-

tion of the NL and ETL layers for values of α in the range [0−1.9] is depicted in Fig.

4(a). Table 1 summarises the performance of the Modular-CNN and PlainNet with and

without the addition of the proposed layers on the three tested datasets.
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Figure 4: Performance of Modular-CNN w/o NL and ETL layers with respect to average loss on validation

set for (a) QuickBird/WorldView-2, (b) CIFAR-10 and (c) MNIST datasets.

From Table 1 and Fig. 4(a), one can conclude that the addition of the proposed260

layers to the Modular-CNN and PlainNet leads to a decrease in the error on the remote

sensing validation set. Furthermore, the addition of the ETL layer reduces significantly

the average loss on the validation set, thus increasing the generalisation power of the

Modular-CNN. The optimal value of the parameter α for the ETL layer is included

next to the corresponding error on Table 1. A comparison between PlainNet and Mod-265

ular-CNN reveals that our proposed novel Modular-CNN slightly outperforms Plain-
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Table 1: Classification performance of CNN architectures on the 3 tested datasets.

Error (%) No. of

Method QuickBird/ CIFAR-10 MNIST params

WorldView-2

NIN [33] — 10.41 0.47 0.97M

DSN [43] — 9.69 0.39 0.97M

RCNN-96 [44] — 9.31 0.31 0.67M

PlainNet [35] 3.404 25.94 0.71 2.69M

PlainNet+NL 3.118 25.35 0.69 2.69M

PlainNet+NL+ETL 3.049 (α=1.3) 25.35 (α=1.3) 0.63 (α=1.4) 2.70M

Modular-CNN 3.123 21.75 0.54 22.20-25.43M

Modular-CNN+NL 2.871 21.29 0.53 22.21-25.44M

Modular-CNN+ 2.866 (α=1.2) 21.29 (α=1.1) 0.51 (α=1.4) 22.22-25.45M

NL+ETL

Net with or without the addition of the novel layers, however at the expense of in-

creased CNN parameters. To further validate the advantages of the proposed NL and

ETL layers, experiments are performed on CIFAR-10 [45] and MNIST [46] bench-

mark datasets. The images of CIFAR-10 and MNIST datasets are small in size (i.e.270

32× 32 and 28× 28 pixels respectively) and thus appropriate for the testing of the

performance of the proposed CNN architecture. The CIFAR-10 training set consists

of 50000 labelled images equally distributed between 10 different classes, while the

test set consists of 10000 images. The validation set is formed by randomly selecting

10000 images out of the CIFAR-10 training set. The MNIST training set consists of275

60000 grayscale images depicting digits 0− 9, while the test set consists of 10000.

The validation set is formed by randomly selecting 10000 images out of the MNIST

training set. The optimisation procedure leads to the CNN architectures described in

Fig. 3, where only two sequential modules are employed. From Table 1 and Fig. 4

one can conclude that the addition of the NL layer improves the accuracy of both our280

Modular-CNN and PlainNet with respect to the cases without the NL layer. Moreover,
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Figure 5: Examples of the 3D reconstructed buildings and the corresponding height and normal maps.

the introduction of the ETL layer leads to a smaller loss on the validation set and thus,

better generalisation ability of the Modular-CNN. Finally, our Modular-CNN with the

novel layers outperforms by about 5.4% PlainNet with the novel layers on CIFAR-10.

Although PlainNet demonstrates a larger depth, capable of learning complex features,285

the proposed Modular-CNN with a higher number of parameters can more effectively

describe the dataset. Also for the MNIST dataset, our Modular-CNN outperforms

PlainNet and achieves comparable performance with other state-of-the-art methods.

The proposed NL and ETL layers are not limited to the specific deep learning archi-

tectures or classification problem presented in this paper and as a result, the improved290

performance they achieve can be utilised in deeper deep learning architectures and in

other image or video classification tasks, potentially leading to breakthroughs as far as

accuracy and robust of deep networks is concerned. Finally, the notion of Euler Trans-

form can be employed inside convolutional layers in order to provide more enriched

and robust feature representations that can lead to better classification performance on295

several image and video classification tasks.
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Table 2: Performance (average and standard deviation) of building detectors on QuickBird/WorldView-2 test

set. DAB: Discrete Adaboost.

Method Recall Precision F1-score Av. eval. time

DAB with HAAR 0.767 ± 0.07 0.641 ± 0.105 0.691 ± 0.067 22.4 secs

LogitBoost with LBP 0.901 ± 0.041 0.706 ± 0.105 0.786 ± 0.068 24.1 secs

Fisherfaces 0.998 ± 0.003 0.466 ± 0.136 0.624 ± 0.123 18.5 secs

Sirmacek [18] 0.552 ± 0.046 0.489 ± 0.133 0.509 ± 0.082 39.1 secs

Ilsever [19] 0.962 ± 0.008 0.209 ± 0.098 0.323 ± 0.121 51.2 secs

Konstantinidis [21] 0.953 ± 0.07 0.814 ± 0.106 0.871 ± 0.058 55.9 secs

Modular-CNN 0.968 ± 0.019 0.596 ± 0.1 0.733 ± 0.081 59.7 secs

Proposed method 0.937 ± 0.082 0.859 ± 0.083 0.891 ± 0.055 62.4 secs

4.3. Experimentation on QuickBird/WorldView-2 Dataset

We employ QuickBird and WorldView-2 remote sensing images for the compara-

tive evaluation of the proposed Modular-CNN in the task of building detection from

satellite images. The training set consists of 900 positive and 1400 negative manu-300

ally segmented and annotated images of size 20× 20 pixels, depicting buildings and

other structures (i.e. roads, trees etc) respectively. Since the training set is too small

for accurate training of a CNN, it is augmented by taking horizontal and vertical flips

of the images. The validation set consists of 20000 images randomly cropped from 5

labelled satellite images, while the test set consists of 24 labelled satellite images. The305

images consist of 4 spectral channels, namely red, green, blue, and near-infrared plus

the height maps. Examples of the obtained height maps are shown in Fig 5. In our

experiments, we employ the YUV colour space and the near-infrared channel, since

this spectral configuration leads to the best performance on the validation set. Gener-

ally, we found that the CNN performance is strongly affected by the selected colour310

channels, which makes the selection of an optimal colour representation for the images

critical to the performance of a CNN. The dataset is normalised to have zero mean and

unity variance before it is fed to the CNNs for training and testing.

By employing the Modular-CNN with the proposed layers for the detection of
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Figure 6: Detections shown as green bounding boxes in QuickBird/WorldView-2 from feature based (first

column) and our proposed (second column) building detectors.

buildings in the satellite images of the test set, we notice that our Modular-CNN can315

work complementary with a feature based algorithm as the locations of the false alarms

differ between the two algorithms. Due to the small training set, applying the Modu-

lar-CNN directly to the test images leads to suboptimal results, as it is reported on

Table 2. So, we propose a building detection method that combines the abilities of

both feature based and Modular-CNN classifiers. In the new approach, the feature320

based classifier is initially applied to a test image and positive detections are extracted.

Afterwards, the Modular-CNN is applied only in the positive detections (i.e. image

regions), resulting in a set of final positive detections. This approach speeds up the
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detection procedure as the CNN is not applied to the entire image and avoids the in-

troduction of new false alarms from the Modular-CNN detector. Table 2 compares the325

object-based performance of our proposed building detector with other state-of-the-art

methods. The conclusion that can be drawn is that our proposed building detector dis-

cards several false alarms that the feature based algorithm produces, thus achieving an

increase in the metric of F1-score by 2.3%. We demonstrate the ability of our proposed

building detector to suppress false alarms in the test set in Fig 6.330

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel CNN architecture, called Modular-CNN that can

be combined with a feature based classifier to improve the building detection perfor-

mance on 2D and 3D remote sensing data. Furthermore, we propose two novel layers

that can be added to CNN architectures in order to increase their discrimination ability335

and robustness. We analyse the effect of the novel layers on both our Modular-CNN

and other deep CNN architecture, named PlainNet and demonstrate their beneficial ef-

fect in a comparative study with other state-of-the-art methods for building detection

on remote sensing images.

As a future work, the proposed novel NL and ETL layers can be adopted by other340

deeper deep networks and applied to other image or video classification tasks boosting

accuracy and robustness of deep networks. Additionally, of great research interest is

a study on the use of Euler Transform inside convolutional layers providing more en-

riched feature representations, as well as a study on the performance of deep networks

when multiple ETL layers are employed.345
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