Human-animal interactions and bat coronavirus spillover potential among rural residents in Southern China

Li, Hongying, Mendelsohn, Emma, Zong, Chen, Zhang, Wei, Hagan, Emily, Wang, Ning, Li, Shiyue, Yan, Hong, Huang, Huimin, Zhu, Guangjian, Ross, Noam, Chmura, Aleksei, Terry, Philip, Fielder, Mark, Miller, Maureen, Shi, Zhengli and Daszak, Peter (2019) Human-animal interactions and bat coronavirus spillover potential among rural residents in Southern China. Biosafety and Health, 1(2), pp. 84-90. ISSN (print) 2590-0536


Human interaction with animals has been implicated as a primary risk factor for several high impact zoonoses, including many bat-origin viral diseases; however, the animal-to-human spillover events that lead to emerging diseases are rarely observed or clinically examined, and the link between specific interactions and spillover risk is poorly understood. To investigate this phenomenon, we conducted biological-behavioral surveillance among rural residents in the Yunnan, Guangxi, and Guangdong provinces of Southern China, where we have identified a number of SARS-related coronaviruses in bats. Serum samples were tested for four bat-borne coronaviruses using newly developed enzyme-linked immunosorbent assays (ELISA). Survey data were used to characterize associations between human-animal contact and bat coronavirus spillover risk. A total of 1,596 residents were enrolled in the study from 2015 to 2017. Nine participants (0.6%) tested positive for bat coronaviruses. 265 (17%) participants reported severe acute respiratory infection (SARI) and/or influenza-like illness (ILI) symptoms in the past year, which were associated with poultry, carnivore, rodent/shrew, and bat contact, with variability by family income and province of residence. This study provides serological evidence of bat coronavirus spillover in rural communities in Southern China. The low seroprevalence observed in this study suggests that bat coronavirus spillover is a rare event. Nonetheless, this study highlights associations between human-animal interaction and zoonotic spillover risk. These findings can be used to support targeted biological behavioral surveillance in high-risk geographic areas in order to reduce the risk of zoonotic disease emergence.

Actions (Repository Editors)

Item Control Page Item Control Page