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Abstract 

Recent research suggests that gene distribution on chromosomes can be informative 

about their nature. Consequently, gene distribution analysis may contribute not only 

to better gene detection, but also to better gene annotation, which is particularly 

important to high-throughput genome projects. This paper investigates possible 

mathematical models, namely Benford‘s and Zipf‘s law, to describe gene‘s position 

distributions on human chromosomes. After a review of phenomena following either 

of these laws, it is shown that observance of Benford‘s law has to be rejected. 

However, most human chromosomes display gene distributions which can be 

accurately modelled by Zipf‘s law. This discovery may impact the analysis of 

genome sequence data since the proposed gene distribution model could be 

integrated in software involved in gene detection. 

 

 
Introduction  

Recent research suggests that not only gene distribution on chromosomes is not 

random (Rafiee et al., 2008), but their location can be informative about their nature. 

A study of lineage-specific genes in Plasmodium revealed that species-specific genes 

are located near chromosome ends (Kuo & Kissinger, 2008). Moreover, experiment 

conducted on C elegans indicates that gene positions on chromosomes impact on 

physical trait variability (Rockman et al., 2010). These findings suggest the analysis 

of gene distribution on chromosomes may contribute not only to better gene 

detection, but also to better gene annotation. This is particularly relevant to high-

throughput genome projects where better automatic annotation methods are required 

(Yang et al., 2010). This paper intends to contribute to this field by providing a 

mathematical model of gene‘s position distributions on human chromosomes.  

 

Independently, Newcomb (1881) and Benford (1938) observed that the usage of 

logarithm books followed a very specific distribution, now called Benford‘s law, 

where numbers starting with a digit d are more frequent than those starting with the 

digit d+1. More specifically, this is expressed by the following equation where P(d) 

is the probability of observing a number starting with the digit d: 
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The distribution of many phenomena has been shown to follow this law. It can be 

found not only in data derived from human activity (baseball statistics, numbers 

found in a newspaper, street addresses (Benford, 1938), computer file sizes (Torres et 

al., 2007)), but also in various academic fields including physics (physical constants 

(Benford, 1938; Burke & Kincanon, 1991), molecular weights (Benford, 1938), 

nuclear physics (Dong-Dong et al., 2009; Shao & Ma, 2009), pulsar quantities (Shao 

& Ma, 2010)), biology (microarray data (Hoyle et al., 2002), biological pathway 

kinetic rates (Grandison & Morris, 2008), number of cells in colonies (Costas et al., 

2008), genome sizes (Friar et al., 2012)), social sciences (hydrology data (Benford, 

1938; Nigrini & Miller, 2007), populations and death rates (Benford, 1938), stock 

market indices (Ley, 1996)), and mathematics (survival distributions (Leemis et al., 

2000), differential equations (Berger et al., 2005; Berger, 2005), prime numbers 

(Caldwell, 2009), Fibonacci sequence (Trono, 2009)). 

 

Initially treated as a mathematical curiosity, Benford‘s law has now been rigorously 

explained and analysed through theoretical studies. It is not only scale-invariant 

(Berger et al., 2008), but base-invariant (Hill, 1995a). Moreover, data distributions 

showing such invariance must follow Benford‘s law (Hill, 1995b). 

 

In addition to this theoretical work, the practical usage of this law has also been 

investigated. Applications can be classified in two categories: data quality control 

and novel data processing techniques. In the financial sector, deviation from 

Benford‘s law is exploited to detect potential cases of either irregularities or fraud 

(Nigrini, 1996; Nigrini & Mittermaier, 1997; Busta & Weinberg, 1998; Rose & 

Rose, 2003; Geyer & Williamson, 2004; Hales et al., 2009; Bhattacharya et al., 

2011). Similarly, Benford‘s law is used in other fields, such as drug discovery (Orita 

et al., 2010), national elections (Taylor, 2005; Mebane, 2008; Roukema, 2009), 

marketing surveys (Judge & Schechter, 2009) and pollution self-reporting (De 

Marchi & Hamilton, 2006; Auffhammer & Carson, 2008), to highlight suspicious 

data in terms of either source or quality. 

 

The development of new data processing approaches has also contributed to very 

different disciplines. In computer science, Benford‘s law allowed the conception of 

novel algorithms to optimise processing time and storage space (Barlow & Bareiss, 

1985; Schatte, 1988; Berger & Hill, 2007; Osmond, 2009). In bioinformatics, 

Benford‘s law led to the design of a new normalisation technique for microarray data 

which is particularly suitable for between-array gene intensity comparisons (Lu et 

al., 2005). Finally, in medicine, Benford‘s law can separate states of consciousness 

and unconsciousness through digit distribution analysis of electroencephalographic 

signals (EEG) (Horn et al., 2006).  

 

As a whole, the discovery of phenomena following Benford‘s law, their potential 

application and theoretical analysis have been growing fields of interest which have 

generated more than 600 entries in the ‗Benford Online Bibliography‘ (Berger & 

Hill, 2011). 

 

Related to Benford‘s law (Pietronero et al., 2004), Zipf‘s law is another statistical 

law (Zipf, 1949) which expresses power law relationships between the frequency of 

an event, P, and its rank, i: 

 , where α is close to 1 
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Zipf‘s law was first observed in linguistics between the number of times an English 

word occurs in a text and its ranking in the list of the most common words (Zipf, 

1949). Due to its origin, Zipf‘s law has been mainly used in bibliometrics showing 

that the law holds even in non-European languages (Rousseau & Zhang, 1992). 

However, Zipf‘s law has also been detected in topics as varied as city populations 

(Zipf, 1949) and protein families, folds and functions (Luscombe et al., 2002). 

Although there is no definite criterion which allows predicting that a dataset observes 

either Benford‘s or Zipf‘s law, some characteristics are shared by those which do: 

data must spread across several orders of magnitude and dataset size above 1000 has 

the best chance to produce good results (Hales et al., 2008). Since positions of 

human genes usually display these features and their distribution is known to be non-

random (Rafiee et al., 2008), this paper investigates the hypotheses that positions of 

human genes may observe Benford‘s and Zipf‘s laws. 

 

 
Methods 

Positions of genes on human chromosomes were studied to evaluate if their 

distribution fits Benford‘s and Zipf‘s laws. The transcription start positions of all 

human protein coding genes measured from the start of their associated chromosome 

were collected from the Homo Sapiens Ensembl database release 60, 8 November 

2010 (Hubbard et al., 2009). Using the Ensembl Perl API, 20, 593 known and novel 

protein-coding genes were retrieved from the twenty two autosomes, the X and Y sex 

chromosomes and the mitochondrial genome (MT).  

 

The chi-square (χ2) test is the most popular goodness of fit test because it is a 

nonparametric asymptotic test. In other words, there are no distributional 

assumptions and the only requirement regards the number of observations. The 

standard rule of thumb for results‘ accuracy is that the expected counts in each cell 

should be at least 5. This is fulfilled with large margin on all those data, except when 

dealing with MT and Y chromosomes. Whereas MT could not be processed (it 

contains only 13 genes), Y required merging the 3 last classes, i.e. distributions of 

digits 7, 8 and 9.  

 

Since the chi-square statistic is suitable for gene data and has already been applied in 

similar studies (Hoyle et al., 2002; Dong-Dong et al., 2009; Hales et al., 2009; Orita 

et al., 2010; Shao & Ma, 2010), it was used to calculate and compare Benford‘s 

distribution against the observed frequencies of the first digit of gene positions for 

each chromosome individually.  

 

Finally, using the collected positions, genes were ranked on each chromosome. The 

relationship between rank, i, and position was studied by least-square fitting a power 

law for each chromosome. In addition to estimating power law exponent terms, α, the 

coefficients of determination (R
2
) were calculated as a measure of fit between data 

and power law (the closer the value is to 1 the better the fit is).  
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Results 

Observance to Benford's law 

Using the χ2 test, p-values were calculated for each human chromosome (except 

MT). They are shown on Table 1. As it is generally accepted, p-values below 0.05 

are used to reject the ―null‖ hypothesis, i.e. to reject Benford‘s law. There is no 

ambiguity in these results: Benford‘s law cannot be accepted for any human 

chromosome. 

 

Chromosome 1 2 3 4 5 6 7 8 

Number of genes 2034 1275 1075 779 897 1050 944 782 

p-value 
4E-
108 

6E-
78 

3E-
116 

6E-
52 

8E-
115 

8E-
37 

6E-
62 

1E-
23 

 
        Chromosome 9 10 11 12 13 14 15 16 

Number of genes 811 786 1355 1056 335 633 685 913 

p-value 
4E-
77 

8E-
61 

2E-
184 

3E-
96 

2E-
11 

1E-
69 

1E-
105 

5E-
63 

 
        Chromosome 17 18 19 20 21 22 X  Y  

Number of genes 1218 292 1462 555 239 464 857 83 

p-value 
4E-
194 

2E-
17 

4E-
219 

4E-
77 

1E-
118 

4E-
82 

4E-
66 

2E-
11 

 

Table 1: P-value for each human chromosome 

 

Observance to Zipf's law 

As measured by R-squared values, Fig. 1 reveals that the distributions of all 

chromosomes are well represented by power laws (0.77<R
2
<0.99) and their power 

law exponents tend to cluster around a value of 1. Consequently, since Zipf‘s law 

requires good fit of a power law with an exponent close to 1, these results advocate 

that the formulated hypothesis regarding human genes‘ positions observing Zipf‘s 

law is likely to be correct.  

 

More specifically, Fig. 1 shows that chromosomes with the largest number of genes, 

here more than 1000, have distributions which fit more closely Zipf‘s law: 

0.92<R
2
<0.99 and 0.87<α<1.36. Conversely, chromosomes with fewer than 700 

genes tend to display the lowest R
2
 values and the power law exponents which are 

the furthest away from a value of 1. Analysis of this set of chromosomes reveals that, 

in addition to include MT and Y, which contain very few genes, it comprises all 

acrocentric chromosomes. Among them, chromosomes 13, 14, 15 and 22 do not have 

a single gene on their ‗p‘ arm. In order to address this specificity, further experiments 

were conducted by only considering the ‗n‘ arm of acrocentric chromosomes, i.e. 

power laws were fitted on gene positions indexed from their centromere. Results, 

also shown in Fig. 1, uncover that gene distributions on the ‗n‘ arm of those 

chromosomes display a close fit to Zipf‘s law: 0.85<R
2
<0.99 and 0.70<α<1.08.   

 

Experiments confirms that the distribution of genes on all human chromosomes, 

possibly with the exceptions of MT and Y, can be satisfactorily, i.e. 0.85<R
2
, 

modelled by Zipf‘s law. Moreover, the need of modelling acrocentric chromosomes 
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according to the position of their centromere could inform current theories regarding 

chromosome evolution (Schubert, 2007).  

 

Figure 1: Fit of Zipf’s law versus power law exponent for all human chromosomes.  

Square, circle and filled-diamond markers represent chromosomes with, 

respectively, fewer than 700, between 700 and 1000, and more than 1000 genes. 

Dashed square markers (with italic and underlined labels) correspond to acrocentric 

chromosomes where only the ‘n’ arm is considered.  
 

  
 
Conclusions 

This paper investigates possible mathematical models, namely Benford‘s and Zipf‘s 

law, to describe the distribution of gene positions on human chromosomes. None of 

them follows the Benford law, as the observed departures from theoretical 

frequencies are highly significant. On the other hand, most human chromosomes 

display gene distributions which can be accurately modelled by Zipf‘s law. 

Preliminary results (not shown) obtained on other genomes, i.e. mouse, chicken and 

yeast, suggest gene distribution properties discovered in the human genome are also 

valid for other eukaryotes. 

 

This discovery may impact the analysis of genome sequence data since the proposed 

gene distribution model could be integrated in software involved in gene detection. 

This work also suggests that, although the production of genome assemblies aligned 

to a genome of reference is essential for inter species comparisons, e.g. human and 

chimpanzee, availability of the actual positions of genes on chromosomes is also 

indispensable to allow complete analysis of a specific genome. 
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