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Abstract 

Lung cancer is life-threatening and difficult to treat. According to the World 

Health Organization, lung cancer is categorised by uncontrolled cell growth in 

tissues of the lung and is the most common cancer with 1.59 million deaths 

worldwide in 2012. There are estimated to have been 1.8 million new cases 

of lung cancer in 2012. About 20% of lung cancer cases are not thought to be 

related to smoking. Vessel characteristics may change in association with 

tumours for example due to angiogenesis which is a fundamental component 

in the development of tumours. Radiological images including MRI and CT 

can detect lung tumours and surrounding vasculature. Manual detection of 

vessel-like structures is time-consuming. Thus, computer-assisted detection 

of vessel-like structures may help in tumour assessment. 

Cilia are membrane-bounded microtubules-based extensions of the 

centrosome that have different roles in mammalian development and adult 

physiology. Disorders of cilia or ciliopathies are associated with a number of 

genetic disorders such as situs inversus. Cilia-like blood vessels are thin 

structures and assessment of number and length are considered important in 

the detection of disease. Manual detection of cilia is also difficult and time-

consuming. 

This project divided into two applications of thin structures in biomedical 

images. First, the detection of the thin structures of cilia from microscopy 

images was performed used different techniques with aspects of linearity. 

Second, the best segmentation technique was created and developed to 

detect the cilia from microscopy images stablished and applies on the thin 

structure of vessels in CT scan images. The quantifications of both thin 

structures of cilia and vessels such as numbers and lengths were 

investigated.    
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The aim of this thesis is to develop and apply techniques for detection of thin 

structures in medical images with particular reference to microscopy images 

of cilia and CT images of vessel-like structures in the vicinity of a lung 

tumour. 

A semi-automatic method was developed that combines mathematical 

morphological operations to enhance the thin objects combined with global 

thresholding, followed by user interaction methods to detect overlap and 

disconnected objects. 

The system was successfully applied to detect cilia from electron microscope 

images and to detect vessel-like structures in CT images of lung cancers. 

The techniques were applied to assess a number of features such as 

number, length and tortuosity. In a study of unilateral lung tumour image sets, 

a statistically significant difference was detected in the number of vessel-like 

structures in the region of lung tumours compared with the contralateral side 

with no tumour.  

Thus these methods may have application in detecting thin structures in 

microscope images as well as CT or other medical imaging modalities.  
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Glossary of Terms and Abbreviations 

Cilia      Cilia is an organelle found in eukaryotic cells.  

MRI          Magnetic Resonance Imaging 

CT            Computed Tomography 

SEM         Scanning Electron Microscope  

TR           True Positive 

FP            False Positive 

FN            False Negative 

TN            True Negative 

SN           Sensitivity 

SP           Specificity 

AC           Accuracy 

ROC        Receiver Operating Characteristic Curve 

AUC         Area Under the Curve 

TPF          True Positive Fraction 

FPF          False Positive Fraction 

KNN         K Nearest Neighbour 
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Spicule     A small sharp body with a needle-like point. 
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Chapter 1  Introduction  

 Motivation 1.1

 

EDICAL imaging allows visual representation of internal tissues of the 

body. The development of quantitative analysis and visualisation 

methods for extracting clinically useful information in medical images such as 

CT (computed tomography), MRI (magnetic resonance imaging) scan, or 

microscopy may help in detection and clinical monitoring. Computers are 

used for assisting in diagnosis for example to determine the presence of a 

tumour, the size of the tumour and such this information may thus support 

specialists in early diagnosing and treating medical disorders.  

In this thesis, methods are developed and applied for segmentation and 

quantifications of the features in medical image applications Of special the 

thesis interest is the detection of thin structures consider two applications, 

such as vessels from Lung CT images and cilia from microscopy images.    

Lung cancer is life-threatening and difficult to treat. According to the World 

Health Organization, lung cancer is categorised by uncontrolled cell growth in 

tissues of the lung and is the most common cancer with 1.59 million deaths 

worldwide in 2012 (Ferlay et al., 2015a). There are estimated to have been 

1.8 million new cases of lung cancer in 2012 (Davies, 2018). The disease is 

the most common cancer in men worldwide and the second most common in 

women (Ferlay et al., 2015a); it was the third most common cancer in the UK 

in 2014 (Davies, 2018). The incidence rates of lung cancer in the UK are 

estimated to fall by 7% between 2014 and 2035 (Davies, 2018). Lung cancer 

in the UK is common in people living in the most deprived areas (Davies, 
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2018).It is mainly caused by smoking but it is thought that about 20% of lung 

cancer cases are not related to smoking (Davies, 2018). 

The centrosomes in cells help organise microtubules (Goggolidou et al., 

2014) including cilia. Thus cilia are membrane-bounded microtubules based 

extensions of the centrosome that have different roles in mammalian 

development and adult physiology (Goggolidou et al., 2014). Ciliopathies are 

disorders of the cilia anchoring and are associated with a number of genetic 

disorders such as situs inversus (internal organs reversed or mirrored) 

(Baker et al., 2009). Cilia fall into two classes: motile and immotile (primary 

cilia) cilia. Because cilia are a component of almost all vertebrate cells, 

dysfunction of them is likely to be associated with chronic disease (Waters et 

al., 2011).  

Thin structures such as lines are important features in many biomedical 

imaging applications. Medical examples include blood vessels in CT, valves 

in heart magnetic resonance imaging. Visualisation of such structures 

provides crucial information in planning, biopsy and diagnostic purposes.   

This thesis presents an approach in extracting and analysing thin structures, 

such as cilia and blood vessels from 2-dimenssional biomedical images. 

There is a considerable amount of work has been performed on the 

enhancement and segmentation of blood vessels. It should be the 

straightforward task to apply existing segmentation algorithms with the 

aspect of linearity to similar thin structures such as cilia and blood vessels. 

However, biological images in the microscopic scale are much noisier and 

remain a challenge to the use of existing methods.  The focus in this thesis is 

on the detection of thin structures in 2-dimenssional medical images. More 

precise, is detection and quantification of thin structures particular reference 

to cilia and vessels.  
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 Aim and objectives  1.2

The aim of this thesis is to develop and apply techniques for the detection of 

thin structures in biomedical images with particular reference to microscopy 

images of cilia and lung cancer of CT images. 

Objectives: 

A. Visual investigation of cilia features from microscopic SEM images. 

B. Pixel-based labelling of cilia images was performed to evaluate the 

binary segmentation.  

C. Develop an algorithm for cilia segmentation and quantification such as 

cilia numbers and cilia lengths. 

D. Develop a semi-automatic algorithm based on best fit ellipse to 

measure the lenghts of ovelapping cilia.  

E. Visual investigation of vessel-like structures including spicules 

features in the vicinity of the lung tumours. 

F. Segmentation and quantification of vessel-like structures in lung CT 

images. 

 Contribution to Knowledge 1.3

This work claims the following contributions to knowledge:  

A. A novel semi-automatic algorithm for the detection and quantification 

of thin structures in medical images has been developed and applied 

to the new application of microscope images of cilia and CT lung 

images.  



 
 
Chapter 1 Introduction 
 
 
 

 
 
 
 
 

4 

B. The system was successfully applied to detect a new application of 

cilia from electron microscopy images. 

C.      The system was able to count the number of cilia and measuring the 

length of the cilia. 

D. A semi-automatic method applied to detect and measure the 

overlapping cilia lengths 

E. The techniques applied to detect vessel-like structures in CT images 

of lung cancers. 

F. It was also used to assess a number of features such as number, 

length and tortuosity of the blood vessels in CT images. In a study of 

unilateral lung tumour image sets, a statistically significant difference 

was detected in the number of vessel-like structures in the region of 

lung tumours compared with the contralateral side with no tumour. 

 Thesis outline  1.4

Chapter1: Describes aim, objectives and contribution to knowledge of the 

thesis.   

Chapter2: Describes the biology and manual analysis of cilia. 

Chapter3: Literature review of methods applied for segmentation of the 

thin structures and theories of image processing for different 

applications. 

Chapter4: Describes the methodology and results of the detection of linear 

structures (in cilia) by using different techniques. 

Chapter5: Elaborates the lung cancer and the appearance of vessel-like 

structures and manual analysis of lung CT images.  
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Chapter6: Illustrates the blood vessels segmentation in the vicinity of lung 

tumours and show the quantification results.  

Chapter7: Describes the conclusion and future work.   
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Chapter 2  Cilia Biology and Manual 

Measurement of Cilia Properties 

 Introduction 2.1

HE objective of this research is to develop and apply image segmentation 

to thin structures in medical images to allow further quantitative analysis. 

This chapter begins by exploring cilia biology. Firstly, it discusses the biology 

of nodal cilia. Secondly, it describes the material and image capturing 

processes for cilia images. Finally, it introduces manual analysis 

measurements of thin cilia structures. 

 Cilia Biology  2.2

Cilia are slender membranes and hair-like structures (Satir and Christensen, 

2007), organelles that project out from the surface of the cell that 

demonstrates different roles in mammalian. Cilia are multiple or single and 

are composed of nine parallel microtubule doublets (Oh and Katsanis, 2012) 

surrounded by an extension of the plasma membrane. Motile cilia are long 

and thin (Baker and Beales, 2009), constructed of nine outer microtubule 

doublets and two microtubules in the centre, this is termed of “9+2” 

architecture microtubule (Satir and Christensen, 2007). Their length extends 

up to 20 µm from the surface of the cell (Baker and Beales, 2009). These thin 

and lengthy structures tend to appear in large numbers from the surface of 

the cell. They work to clear mucus from the respiratory epithelium and drive 

sperm along the Fallopian tube (Shoemark, 2014). In contrast, primary cilia 

lack a central pair of microtubules, have an arrangement of “9+0” and 

referred to as single non-motile (Baker and Beales, 2009). Primary cilia are 

immotile (Baker and Beales, 2009), with the exception of nodal cilia of the 

vertebrate embryo. They perform on the apical surface of the epithelial cells 

such as kidney tubule (renal cilia) (Kramer-Zucker et al., 2005). The outer 

and inner microtubules are connected (Baker and Beales, 2009) to the basal 

body and their cylindrical structure is perpendicular to the cell membrane that 

T 



Chapter 2 Cilia Biology and Manual Measurement of Cilia Properties 
 
 
 

 
 
 
 
 

7 

attaches cilium in the cytoplasm. The single primary cilium is present (Oh and 

Katsanis, 2012) in most cells however the number of motile cilia can vary 

from 200 to 300 per cell type.  

In recent decades, it has been suggested that cilia are involved in multiple 

complex human diseases which may be classified as ciliopathies (Baker and 

Beales, 2009). Ciliopathies belong to class genetic diseases these diseases 

result in devastating effects affecting millions of people worldwide (Baker and 

Beales, 2009). Ciliopathies can cause wide-ranging phenotypes in mammals 

such as retinal degeneration, renal, pancreatic cyst formation, and situs 

inversus (Baker and Beales, 2009).  

Both motile and non-motile cilia are necessary for left-right patterning and 

asymmetric positioning of all internal organs (Baker and Beales, 2009). 

Vertebrate organs are externally symmetrical between left and right, whereas 

patterning and organisation of their visceral organs and vasculature 

demonstrate asymmetry (Ermakov et al., 2009a). Therefore an error in nodal 

cilia (9+2) of the early embryo causes asymmetry of the heart and visceral 

organs with a 50% risk of situs inversus (Levin, 2005). 

The absence of all cilia (Norris and Grimes, 2012) causes early embryonic 

death. Menzl et al. present a study of primary cilia loss in pre-invasive breast 

cancer (Menzl, Ina, Lebeau, Lauren, 2014). The role of cilia has been 

investigated in some human cancers (Yuan et al., 2010) and it has been 

shown that pancreatic cancer, prostate cancer, renal cell carcinoma all show 

a general loss of cilia (Yuan et al., 2010). The studies suggested that loss of 

cilia may increase cancer development in some tissues. Therefore analysis 

of the role of the cilia became necessary and important to have a 

comprehensive analysis of cilia expression in human cancers. Therefore 

researchers studied the primary cilia frequency and their lengths from breast 

cancer to expand the knowledge of the role of primary cilia features in 

premalignant breast cancer lesions (Yuan et al., 2010). One investigation 

was both on pre-invasive, invasive breast cancers (Yuan et al., 2010). It was 



Chapter 2 Cilia Biology and Manual Measurement of Cilia Properties 
 
 
 

 
 
 
 
 

8 

been demonstrated primary cilia frequency was decreased in all stages. Also, 

primary cilia were lost on pre-invasive breast cancer lesions suggesting that 

this is an early event in cancer development (Yuan et al., 2010). The number 

of cilia and their lengths were defined by counting cilia per cell and 

measuring length. Their study suggested that primary cilia are lost in breast 

cancer development of the cell cancer and the surrounding cells. The lengths 

of nodal normal cilia (wild-type) of embryos on day 8 (embryonic day) were 

measured and the lengths were approximately 4-6μm (Sulik et al., 1994).  

Goggolidou et al. study the lengths of cilia from three mouse mutants. They 

found the average lengths of the normal nodal cilia were 3μm (Goggolidou et 

al., 2014). 

The Ataxia telangiectasia mutated (ATM) gene was identified in DNA 

damage repair. The ATM gene changes the function of the protein in the cell 

and sends signals to the cell. Experiments of ciliogenesis genes in mouse 

embryo (gpg6) confirmed ATMIN and its transcriptional target (DYNLL1) are 

important for normal lung morphogenesis and ciliogenesis. As ATMIN 

regulates expression of ciliogenesis genes, they are required to measure the 

true length of cilia in the embryo. Goggolidou et al. examined the lengths of 

cilia and found the average lengths of Atmin gpg6 average nodes length are 

<1.5μm and the normal nodal cilia were 3μm (Goggolidou et al., 2014). 

Ermakov demonstrated (Ermakov et al., 2009b) gpg6 had short and stumpy 

nodal cilia.  

The literature showed that the thin structures of cilia are having a vital role in 

mammalian physiology therefore analysing of these thin structures features 

are important for further investigation of the disease. Investigation of cilia and 

cell morphology may help in the further investigation of a variety cilia-related 

disease. Diseases generally respond better to treatment if they are being 

diagnosed at an early stage.  
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Figure 2.1: An image from the dataset. Nodal image of cilia with a 10µm 
magnification scale bar. The ellipsoidal area shows the node contains cells and cilia 
hanging from the surface of the cell. Red arrows point at cilia. Image of cilia 
presented in a zoomed orange box. 

Figure 2.1 shows the original nodal cilia image example from the dataset. 

The white oval shape displays the whole node and the green arrow points to 

it. The open red arrows point to the cilia within the node. This illustrates the 

whole node and shows the normal cilia that are projected from the surface of 

the cells. There are nodal cilia lying flat and highly magnified in the orange 

box in the panel. These types of images (nodal images) are used to 

investigate the number of cilia.   
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Figure 2.2: Image from the dataset. High-resolution cilia image with a 2µm 
magnification of scale bar. Cilia hang from the surface of the cell in diverse 
orientations. The cilium in the orange box shows higher magnification of one cilium 
from the main panel.   

Figure 2.2 illustrates the original 2-dimensional high-resolution image of 

normal cilia. This image is of nodal cilia with a 2µm magnification scale bar. 

The orange square shows the zoomed in cilia. The yellow border with green 

arrow demonstrates the border of the cell with cilia hanging from the cell 

surface.  

 Scanning Electron and Confocal Microscopy 2.3

Scanning electron microscopy (SEM) allows visualisation of fine detail and 

offers insight into the structure and functionality of various delicate structures 

(Erdman, 2018). Scanning electron microscopy image methods can be used 

to magnify sub-cellular elements such as cilia and provides details of the 

surface of cells. SEM devices offer the ability to view the very tiny hair-like 

structure of cilia (Goggolidou et al., 2014).  
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SEM is one of the best ways to very closely look at the surface of the cilia.  

SEM uses electrons instead of light to view objects in detail. The electron gun 

(electron source) releases the electron through the condenser lens (used to 

adjust the diameter of the electron beam) and the objective lens (used for 

focusing of the final diameter of the electron beam). The electron beam from 

the electron gun is focused by the magnetic lens and objective lens. These 

lenses are magnetic and help narrow down the electrons to be properly 

focused on the specimen. When primary electrons hit the surface of the 

specimen, electrons emitted from the specimen are detected by a secondary 

electron detector. Then the output from the secondary detector is transferred 

to a computer to construct and form an SEM image. The number of 

secondary electrons forms a SEM image as the brightness variation of an 

image depends on the number of the secondary electrons appearing on the 

display unit. Because the energy of the secondary electrons is very small, 

only those produced at the surface of the specimen are detected by 

secondary detectors. If the incident electron beam (primary electron) enters 

perpendicularly to the surface, the number of secondary electrons emitted 

from the surface of the specimen is less than if the electron beam enters 

indirectly. The difference in brightness of the specimen surface depends on 

the difference of the incidence angle of the electron beam. Therefore the 

secondary electrons are used to observe the topology of the specimen 

surface.  

The electrons absorbed into the specimen lose their energy and they stop 

moving around the specimen. Therefore to make the electrons flow through 

the specimen and prevent the charging the specimen needs to be 

conductive. A non-conductive specimen is coated with a highly conductive 

thin metal film such as noble metal (gold-silver-platinum) (Erdman, 2018). 

Figure 2.1 is a schematic diagram represents the elements of the SEM 

device. The SEM devices have been used to capture the cilia images.  
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Figure 2.1: Schematic diagram of a SEM device (Erdman, 2018). 

 Other Microscopic Technique  2.4

Laser scanning confocal microscopy shortened to just confocal microscopy is 

one of the most advanced devices in optical microscopy developed, primarily 

because the technique enables deep visualisation of living and fixed cells 

and allows the user to do optical sectioning. Confocal microscopy also can 

be used to capture and form cilia images. Laser scanning confocal 

microscopy uses a laser beam to focus onto the specimen. It works by 

passing a laser beam through a light source to pass a pinhole which is then 

focused by an objective lens. The objective lens focused these lights into a 

small area on the surface of the specimen. The pinhole passes only the 

focuses light to the specimen. Then detectors collect the photons emitted 
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from fluorophores in the specimen. These detectors transform the light into 

an electrical signal that is recorded by a computer (Paul, 2017). 

 Methods and Material 2.5

Cilia samples were isolated from the Harwell archive (Goggolidou et al., 

2014). To prevent the deformation and the changing of the structure of the 

tissue after its death the tissue needs to be fixed by chemicals such as 

glutaraldehyde and dehydrated by ethanol or acetone. Cilia fixed, and were 

dehydrated through an ethanol series, and viewed in a scanning electron 

microscope (Goggolidou et al., 2014).  Images were captured under the 

direction of Paraskevi Goggolidou (Ermakov et al., 2009b),(Goggolidou et al., 

2014) at Kingston University. The images were captured from mouse 

embryos day of 8.5 (E8.5) to analyse. The 2-dimensional images were 

obtained from SEM device with different magnification. The images were 

captured in the digital form of size 768 x 1024 pixels and 8-bit grey scale. 

The images are stored in uncompressed, versatile TIFF-format (Tagged 

Image file format). The total dataset is 23 images obtained by three different 

observers included normal (wild-type) and abnormal (mutant type) nodal cilia. 

Only 3 normal and 3 abnormal were analysed. 

In this thesis, two magnifications of cilia images were used with scale bars of 

10µm (85 pixels) and 2µm (45 pixels).   

 

 Visual Analysis of Cilia Images 2.6

This section explains the manual quantification of cilia and the process of 

preparing them. The author used manual investigation of the cilia to obtain 

measurements for comparison with computer analysis. The purpose of this 

manual analysis was to use it to validate our automated system which will be 

proposing in chapter 4.   
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Figure 2.2: 2-dimensional zoomed in the image of figure 2.3, cilia with different 
angle position.  Yellow and blue arrows point at a bent cilium and overlapped cilia 
respectively.  

Figure 2.4 shows a zoomed in image of different positions of cilia on the image. 

A close look at this figure reveals the constraints of this study where due to the 

image being taken in 2-dimensional and because cilia are hanging from cells 

surfaces in different angles and directions, it is likely that the true length of many 

cilia cannot be obtained from such 2-dimensional images. For example, the red 

arrows point to some of the cilia with longer lengths, whereas the orange arrows 

show cilia with shorter lengths. The blue arrow shows the overlapping cilia. 

Having already known that the cilia image is from a normal dataset then they 

might have been from the cell surface in a different angular position than red 

arrows.     

 Manual Methodology of Cilia Detection 2.7

To perform this visual analysis, 2-dimensional high-resolution cilia images (2µm 

magnification scale bar) were used to manually measure the length of the cilia.  

Nodal cilia images with 10µm magnification scale bar were used to count the 

number of cilia from the node. The assessment was performed on sets of normal 

and abnormal cilia images. 

A manual image analysis procedure was performed in MATLAB version 

2015b (The MathWorks Inc., USA). The image processing tool viewer called 

‘imtool’ was used to measure the length of each cilium and the number of 
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cilia per cell from high-resolution images. The distance tool in “Image Viewer 

toolbar” assisted in measuring individual cilium lengths. This tool allows 

measurement of length with a click-and-drag approach. Length 

measurements were pixel based but the results were converted and are 

presented here in µm.  

 

Figure 2.3: A, B, C, D and E each illustrate magnified cilia of diverse directions of 
original normal cilia image. F, G, H, I, J are demonstrate examples of manual 
measurements.     

Figure 2.5, A, B, C, D and E show a zoomed in image of original high-

resolution images of normal cilia in different directions. F, G, H, I and J 

demonstrate examples of how each cilium has been measured. Often cilia 

appear curved or overlap each other. Therefore in order to measure the true 

length of cilia, the observer is required to perform several clicks-and drags. In 

Figure 2.5, D and E with the results of the image I and J demonstrate an 

example of overlapping cilia which were measured separately.  

The objective of length measurements of all data in terms of ground truth was 

to use it to evaluate the performance of algorithms. The results will be 

demonstrated in the next section.  



Chapter 2 Cilia Biology and Manual Measurement of Cilia Properties 
 
 
 

 
 
 
 
 

16 

 Experimental Results of Manual Analysis of 2.8

Cilia 

Visual investigation of normal and abnormal cilia images was performed. The 

number of cilia was counted from the 3 normal and 3 abnormal nodal images 

(magnification of 10µm). The manual length measurements were also 

performed from the same 3 normal and 3 abnormal cilia slides but with higher 

magnification (2µm scale bar). Bar charts and individual value graphs were 

plotted to analyse the cilia images. The 3 normal and 3 abnormal cilia images 

were analysed.  

 

Figure 2.4: Comparative analysis of normal (wild-type) and abnormal (mutant type) 
cilia length. The bars show the mean of the cilia lengths for 3 normal and 3 
abnormal cilia.    

All visible cilia lengths were also measured and documented. Figure 2.6, the 

bar chart represents the mean of the normal and abnormal cilia lengths. The 

blue bar shows the mean of the normal cilia 2.31µm whereas the green bar 

represents the mean of abnormal was 1.6µm. Therefore, the mean lengths of 

the normal cilia were higher than the mean length of mutant type. 
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Goggolidou analysed the cilia length in normal and abnormal cilia.  Their 

results revealed that the length of abnormal nodal cilia is shorter than normal 

as observed also in this study (Goggolidou et al., 2014). Table 2.1 shows a 

summary of their results and the results were obtained by the author. The 

results show the abnormal cilia are short and stumpy compared to the normal 

cilia.    

 

Cilia Length (µm) Normal Abnormal 

Goggolidou 3 1.5 
Sadri 2.31 1.6 

Table 2.1: summery of the cilia length in µm 

 

 

 

Figure 2.5: Individual value plot shows the number of cilia within the whole node of 
normal cilia and abnormal cilia per image. 
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The numbers of clear and visible cilia were counted from images of 10µm 

magnification scale bar. The number of cilia was initially counted from the 

whole node and for further analysis, they also were counted from the small 

crop of the node. The individual value was plotted, in Figure 2.7, it 

demonstrates the number of cilia counted from the whole node of the normal 

and abnormal images. The individual value plot of the cilia data shows that in 

2 of 3 cases, there are more cilia per image in the 3 normal cases. In the 

abnormal cases, the number of cilia seems lower but numbers are low. 

 

Figure 2.6: Individual value plot shows the number of normal cilia from the small 
section and the corresponding section from the abnormal image. 

 

In addition, the number of cilia from small sections of the node was 

investigated. This was performed in a small section of the node of the normal 

cilia and compared to the corresponding area of the abnormal cilia images. 
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From the results shown in figure 2.8, for the number of cilia in the small 

section, the 2 of 3 normal images are higher than the corresponding area of 

the 3 abnormal images.    

 

 

 Conclusion and Discussion  2.9

Cilia are membrane-bounded hair like structures [6], organelles that hang 

from the surface of the cell that demonstrate different roles in mammalian 

and adult physiology. Identifying them at an early stage of the disease is vital 

as they respond better to treatments. Therefore investigation of the cilia 

feature may assist specialist for early disease investigation. Goggolidou 

analysed the cilia length in normal and abnormal cilia.  Their results revealed 

that the length of abnormal nodal cilia is shorter than normal as observed 

also in this study(Goggolidou et al., 2014).  

For morphological analysis of cilia, the number and lengths of cilia were 

analysed. This investigation was performed on 3 normal and 3 abnormal 

images of cilia with 10µm magnification scale bar used to count the number 

of cilia in the node. 3 normal and 3 abnormal cilia images with 2µm 

magnification scale bar used to measure the lengths of the cilia.  

The clear true lengths of cilia were measured manually with MATLAB. The 

length measurements were performed from normal cells and abnormal cells. 

The results suggest that nodal cilia of normal may be longer than abnormal 

cilia lengths, which is similar to previous investigation (Goggolidou et al., 

2014).   
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Chapter 3 Literature Review  

 Introduction 3.1

 

 HUMAN body tissue contains many different types of thin curvilinear 

structures such as blood vessels, bronchial trees, cilia on the cells and so 

on. The visualization of these curvilinear objects is crucial for the planning of 

and navigation during interventional therapy, surgery (Kikinis et al., 

1996),(Sato et al., 1997) and diagnostic purpose. There has been a 

considerable amount of work done on the enhancement and segmentation of 

curvilinear structure via medical images such as cerebral blood vessels from 

magnetic resonance angiography (MRA) images (Vandermeulen et al., 

1992),(Bullitt et al., 2005a) bronchial trees from lung CT images (Mori et al., 

1995),(Helmberger et al., 2014).  

The research field of thin structure image analysis has attracted a lot of 

interest from the history of image analysis in different areas. Automatic and 

semi-automatic detection of thin structures from medical imaging have 

received a considerable share of this interest. Curvilinear structure 

segmentation is boudly used in medical image analysis (Sato et al., 1997). 

Kirbas and Quek created comprehensive reviews and surveys of the 

methods for blood vessel extraction and elongated structures in 2-

dimensionel and 3-dimensional medical images in a variety of domain 

applications (C. Kirbas and F. K. H. Quek, 2003). Fraz et al. reviewed 

methodologies to segment blood vessels in 2-dimensional colour retinal 

images (Fraz et al., 2012).   

This chapter will briefly introduce the most common techniques of 

enhancement and segmentation in a variety of areas regarding thin 

structures in medical images. Hence, this review is not restricted to the thin 

A  
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objects concerned in this project (cilia and lung vessels). These elongated 

thin objects can be considered to be similar to tubes. Importantly they can be 

approximated as piecewise linear objects; therefore, some of the most 

popular techniques take advantage of this property. For instance, the 

methodologies described in section 3.4 apply the filters (with a linear 

structure and at different angles) to the image in order to distinguish the 

objects of interest (e.g. cilia and lung vessels).  

 Pre – Processing 3.2

Most of the methodology present later in this work consists of pre-processing 

techniques. Pre-processing was performed prior to the image segmentation 

and depends on the quality of the image and the general image artefacts 

such as noise. Therefore, pre-processing stages are applied to suppress 

noise and correct the contrast and poor illumination in the background. 

Uneven illumination occurs because of the source itself, due to a nonlinear 

response of the detector, or due to poor sample alignment (Solomon et.al., 

2011).  

Medical images can have the problem of suffering from non-uniform 

illumination (Niemeijer et al., 2005), correcting this problem allows for better 

enhancement and segmentation of objects from an image. Sae-Tang et al. 

suggested the method of using non-uniform illumination background 

subtraction on retinal images (Sae-Tang et al., 2010). The method used the 

average filtering to estimate the background with non-uniform illumination. 

Then, the background was subtracted for further segmentation analysis.  

Contrast Local Adaptive Histogram Equalization (CLAHE) (Pizer et al., 

1987),(Reza et al., 2004) is an enhancement method extensively used. This 

method computes several histograms corresponding to a different section of 

the image and uses them to redistribute the lightness values of the image. 

The main idea of this method is to find the mapping for each pixel based on 
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pixel neighbourhood. Therefore, CLAHE is appropriate for improving the local 

contrast and image enhancement.    

Histogram equalization is a global technique for adjusting intensities to 

enhance the contrast of an image (Gonzalez and Woods, 2008.).  Abdullah-

Al-Wadud et al. proposed smart contrast enhancement technique based on 

histogram equalization (HE). This partition the image histogram based on 

local minima and sets specific grey level ranges for each section prior to 

equalizing them separately (Abdullah-Al-Wadud et al., 2007).   

Images can be affected by mixing with some amount of noise which either 

uninterruptable or without interest. Filtering out these noises provides the 

way to the visual interpretation of images or help for further digital processing 

such as segmentation. Nonlinear median filter often used to reduce the ‘’salt 

and pepper’’ noise and also preserves the edges of the objects. Teoh 

produced a revised survey of median filtering frameworks (Teoh and Ibrahim, 

2012). Deswal et al. review a survey of different bilateral filtering techniques 

(Deswal et al.,2015). 

 Thresholding based on Intensity Value 3.3

Early and simple techniques for segmentation are based on the theory that 

objects of interest in an image can be segmented based on intensity values 

only. This simple common approach identifies objects of interest by using a 

single global threshold value (Gonzalez and Woods, 2008.); pixels with 

intensity values of above and below the threshold are object pixels and 

background pixels. This approach is fine in high contrast objects with a high 

pixel value at the edges, but it fails often if the edges are smooth with varying 

intensity value and influenced by noise. An adaptation of this is a local 

adaptive threshold method in which the threshold varies according to the 

attribute of the local neighbourhood (Luessi et al., 2009).  
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Kiraly et al. used CT images to propose a lung vessel segmentation method 

applying a global threshold operation to the lung region. Their intention was 

to find the location of pulmonary emboli; investigating the characteristics of a 

local arterial tree and analysing of arterial sub-trees which are affected by 

pulmonary emboli. As an initial stage, they segmented the entire lung 

vasculature by using a global threshold, labelling all connected components 

and eliminating small objects (Kiraly et al., 2004). 

 Region-Growing 3.4

Region-growing has been one of the first complex techniques for image 

segmentation (Zucker et al., 1976) and in particular vessel segmentation 

dedicated to seeded region-growing segmentation. Basically, region growing 

is based on two elements: one (or several) seed(s) (Adams and Bischof, 

1994) assumed to belong to the structure of an object of interest to be 

segmented, and a propagation criterion that enables the segmentation of the 

object from the seed by iterative addition of adjacent pixels. 

The approach is to start from a given seed point known as an object pixel. 

The neighbourhood of that pixel is categorised as background. Pixel/Pixels 

connected to the object are segmented by a recursive search and those 

pixels are classified as objects. The quintessential problem with this method 

is leakage because it is difficult to set a threshold value to confine an actual 

object.  

Zhou et al. proposed a fully automatic pulmonary vessel tree segmentation 

by threshold-based region growing. Their proposed method was to design an 

automatic system to recognize lung anatomical structure. They applied the 

method on CT images that have a pulmonary embolism, even without 

applying any contrast enhancement. Because abnormal tissue or pulmonary 

embolism can destruct the vessel the region growing filter based method 

fails, therefore they modified their method by selecting a local threshold for 

small vessel branches (Zhou et al., 2006). 
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 Directional filters 3.5

The methods reviewed in this subsection take advantage of the piecewise 

linear characteristics of the objects of concern. They convolve a filter (with a 

linear structure) with the image that contains structures which are linear in 

some aspects (resembling a line) and apply this filter in multiple directions 

because the object of concern can appear in different orientations.  

The matched filtering approach was proposed by Chaudhuri and became a 

common technique. It was introduced to segment retinal blood vessels. Blood 

vessel cross sections can be approximated by a Gaussian function and 

vessels can be considered as piecewise linear (Chaudhuri et al., 1989). 

Therefore a 2-dimensional filter was designed to match the vessel 

appearance, with the linear aspect of the filter (this also made up the length 

of the filter) was created by stacking together multiple cross-sections of a 

single 1-dimensional Gaussian function. This filter was rotated in different 

directions and convolved with retinal images in order to match the blood 

vessels (which appear in different orientations). The vessel enhanced image 

was produced by taking at each pixel location the maximum response across 

all orientations. The binary vessel map was created by applying a global 

threshold. It was suggested that the matched filter could be extended to the 

detection of geological features from satellite images and enhancement of 

the fingerprint.  

To extract segmented blood vessels, Jihene et al. applied matched filtering to 

segment the blood vessels in retinal images having been inspired by the 

method of (Chaudhuri et al., 1989). The aim of the method was to examine 

the effect of topological changes in the retinal vasculature on the 

hemodynamic distribution in the retinal circulation. The matched filter kernel 

was applied in 12 directions over 180°. The final resulted image was 

computed by taking the maximum response of the 12 filters at each location. 

They used the final threshold image results for producing a binary 
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segmentation of the vasculature. The outcomes of the segmentation assisted 

the partition of the vessels in order to measure the tortuosity (Malek, Azar 

and Tourki, 2015). 

Koller et al. assumed lines in 2-dimensions have a bar profile ( Koller T. M.et 

al., 1995). They presented the novel method to detect the elongated, 

symmetric line-like structure while suppressing the response to edges. The 

method was based on the extension of a Hessian matrix to multiple scales. It 

was a nonlinear combination of linear filters and had a steerable orientation 

and responded to the local contrasts while was independent of the local 

width. The algorithm searches for elongated and symmetric line structure 

was applied to the 2- dimensional image and proposes also an extension to 

3-dimensional images from different applications leading to an efficient and 

parameter-free implementation. The algorithm was used to detect the line-

like structures in an aerial scene, detect the stripes in the zebra images. This 

filtering was also applied to magnetic resonance volume images in order to 

detect the cerebral blood vessels.   

The Gabor filter was originally introduced by Dennis Gabor. A 2-dimensional 

Gabor filter is a Gaussian kernel function modulated by a sinusoidal plane 

wave(D. Gabor et al., 1946). Hong believed the high performance of 

automatic fingerprint identification depended on the quality of an input image. 

Hong et al. used Gabor filters. The developed method adjusted the clarity of 

local ridge and valley pixels structures based on local ridge orientation and 

ridge frequency estimated from the input image (Hong et al.,1998).  

Kharghanian proposed a method for retinal blood vessels segmentation. The 

method applied the Gabor filter and line operator to create a set of features 

for further analysis of vessels segmentations (Kharghanian et al.,2012).   

Soares et al. presented an automatic algorithm segmenting the vasculature 

from retinal blood vessel images (Soares et al., 2006). Classifying each pixel 

as vessel or non-vessel based on pixel’s feature vector. They applied a 2-
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dimensinal Gabor wavelet transform on retinal images to enhance the 

vessels and filtering out the noise. The Gabor filter wavelet was chosen due 

to its orientation selectivity and frequency selective properties, allowing fine-

tuning to maximise the vessel enhancement. The 2-dimensional Gabor 

wavelet was computed for orientation spanning from 0 to 170 degrees in 

steps of 10 degrees. The maximum response over all angles was taken. The 

segmentation was based on supervised classifications using a Bayesian 

classifier with the feature vector consisting of the pixel’s intensity and the 2-

dimensional Gabor wavelet transform response over angles for different 

scales. The wavelets were rotated and selected so that all vessels would be 

detected. 

Kaur used an approach based on a bank of Gabor filters to segment the 

vessels in retinal images. Twelve banks of Gabor filters were oriented in the 

range of 0 to 170 degrees and used to enhance the oriented vessels image. 

The output enhanced image was threshold by using a grey level co-

occurrence matrix (Kaur et al., 2012). 

Cervantes-Sanchez (Cervantes-Sanchez et al., 2016) used Gabor filters and 

Boltzmann Univariate Marginal Distribution Algorithm in X-ray angiograms to 

segment the coronary. The method used the area of ROC curve as the 

fitness function. 

Detecting linear structures is important as Zwiggelaar et al. investigated a 

number of methods to detect and classify linear structures in mammograms. 

The goal was to classify linear structures into an anatomical type such as 

vessels, spicules and ducts in (Zwiggelaar et al., 2004). To evaluate the 

performance of different methods of linear structure detection they used the 

set of synthetic images designed to simulate some of the characteristics of 

digitized mammograms. The methods were the Line Operator (Dixon et al., 

1979),(Zwiggelaar et al., 1996),(Marti et al., 2001), Orientated Bins 

(Zwiggelaar et al., 2004), Gaussian Derivatives (Karssemeijer et al., 1996) 

and Ridge Detector (Lindeberg et al., 1998). According to their results, the 
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line operator provided the best results for further experiments on real 

mammograms. The line operator method evaluated the average grey level 

along lines of fixed length at different orientations and compared this to the 

average grey-level of a similarly oriented square neighbourhood. The 

Oriented Bins method is similar to the line operator but was based on circular 

neighbourhood, and opposing sectors are used instead of the square 

neighbourhood and line.  

Ricci suggested the line detectors method should be applied on retinal blood 

vessels(Ricci et al., 2007). The suggested method was computationally 

simple but a more effective realization of the same concept inspired by the 

method of Zwiggelaar et al (Zwiggelaar et al., 2004). The previous method 

was used in mammography, whereas this method was applied on retinal 

images, specifically on the green channel as this presented better vessel 

contrast. The method evaluated the average grey level along lines of fixed 

length at different orientations, but this time the square neighbourhood was 

not oriented and instead remained fixed. They segmented an image based 

on support vector classifications.    

 Derivative-based methods 3.6

Generally, vessels are brighter against the dark background; in this case, 

vessels appear as maxima of the image. Consequently, it may be possible to 

detect them by analysing the differential properties of the image.  Based on 

the different types of properties, Agam et al. used the filters based on the 

assumption of the tubular model of the blood vessels and a spherical model 

of the nodules in thoracic CT scan images (Agam, Armato and Wu, 2005). 

Hence, initially, images were convolved with first-order partial derivatives and 

were less sensitive to noise. The algorithm was followed by multiple sets of 

eigenvalues due to distinguishing between nodules and vessel junctions. 

Karssemeijer applied algorithm based on the Gaussian derivatives. The 

method convolves the image with Gaussian second derivative kernels, at 
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three different orientations using a Gaussian width of 0.8(Karssemeijer et al., 

1996). 

A simple First-Order Derivative of the Gaussian (FDOG) was introduced by 

Zhang in order to extract blood vessels of retinal images (Zhang et al., 2010). 

This proposes a novel extension of the matched filter which was introduced 

by Chaudhuri and it suggested an extra modification of the first-order 

derivative of Gaussian (FDOG). The vessels are segmented by thresholding 

the image’s response to the matched filter (MF), while the threshold is 

adjusted by the image’s response to the FDOG. The modified method helped 

to reduce frequent false vessel detection. 

In the detection of vessels, a second-order derivative is another method that 

is used. The information from second-order derivative is used to characterise 

the local image geometry. Canny applied filters of second-order derivatives of 

the Gaussian function to detect lines where the convolution of that function 

with lines gives a maximum response(Canny, 1983). 

A Hessian matrix is one of the most prevalent methods developed in the 19th 

century by the German mathematician Ludwig Otto Hesse (Lewis, 1991). The 

method is based on a square matrix of second-order partial derivatives of a 

multi-valued scalar function. The Hessian matrix compared to the image 

gradient can detect the shape characteristic of objects such as noise and 

tubes like structure while the image gradient response is independent of the 

shape. Therefore, different combinations of eigenvalues in the Hessian 

matrix can help to enhance points belonging to vessels in the image. Krissian 

et al. applied a corrected design of the Hessian matrix at multiple scales, that 

he called ‘vesselness’ function which gave a stronger result at one particular 

scale of tubular objects in the image (Krissian et al., 2000).  



Chapter 3 Literature Review 
 
 
 

 
 
 
 
 

30 

 Deformable models 3.7

Deformable models in computer vision have been extensively studied and 

widely used in medical image segmentation with good results. Deformable 

models are curves or surfaces defined inside an image that can move under 

the influence of internal forces, which are defined inside the curve or surface 

themselves and external forces that are calculated from the image data. The 

internal forces help to keep the model smooth during the process of 

deformation while the external forces help to move the model towards the 

boundary object for other desired features within an image. The deformable 

model was first introduced by Terzzopoulos (Terzopoulos, 1987).  

Snake (Kc, Witkin and Terzopoulos, 1988) are one of the first classical 

techniques of Deformable models for segmentation, especially for the 

general multi-dimensional deformable model theory. Hernandez used 3-

dimensional images of brain aneurysms in CTA images to segment the brain 

aneurysms by snakes(Hernandez, Frangi and Sapiro, 2003).  

Holtzman et al. presented a novel segmentation method for thin structure 

segmentations of blood vessels and vascular trees. The method was based 

on geometric active surfaces that evolve according to geometric partial 

differential equations, where the method was stopped at the boundaries of 

the objects. The system employed was the weighted sum of three integral 

measurements. An alignment evolving surface to the border of the desired 

object. The minimal variance was calculated and measures the homogeneity 

inside and outside the object. A geodesic active surface used for 

regularisation (Holtzman-Gazit et al., 2006).  

 Morphology Operations 3.8

Morphology is a toolset used to extract an image component in order to 

represent and describe the region shape; such as boundaries, skeletons and 

convex hulls (Gonzalez and Woods, 2008). Basic operations in mathematical 
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morphology work on images and with the use of a structuring element. 

Dilation, erosion, closing and opening are composite operators of 

Morphology. They operate on binary and grayscale images. The erosion 

operator on a binary image is used to erode away the boundaries of 

foreground pixels while the effect of dilation is to enlarge the areas of 

foreground pixels. The opening achieved by erosion followed by dilation 

where closing is the opposite of this. The morphology operation is an 

operator that processes images based on a predefined structuring element. 

One simple way to detect line or thin structures in an image is to design a 

structuring element, or filter that resembles this structure [Gonzales and 

Woods, 2008, Chap. 10.1].  

Preserving the elongated objects in an image with morphological operations 

is possible by applying appropriate structuring elements in a line segment. 

(e.g. linear structuring element). If the object has varying directions, it would 

be necessary to combine the outcomes of using the structuring element in 

several directions.  

The top-hat transform is an important technique in medical image analysis. It 

is a morphological operator that applies opening (erosion followed by dilation) 

with the structuring element. This top-hat can be used to enhance the thin 

structures of cilia with used of linear structures.   

Spencer used the top-hat operator to detect micro-aneurysms in retinal 

images. The top-hat operator was used with a linear structuring element 

which first took the vasculature structure as the interest and then subtracted 

it from the original image to produce an image containing only circular objects 

of microaneurysm (Spencer et al., 1996). A linear structuring element was 

used whose length was greater than the diameter of the largest red lesion, 

not too long and small enough to fit within all of the vessel structures. 

The morphological top-hat is useful when there is a variation in the image 

background. Where applied it can detect the local variation of the 
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background. Eiho 1997 applied the top-hat algorithm to enhance blood 

vessel images (Eiho and Qian, 1997). Choosing the structuring element size 

is important. In this case, the structuring element size was set slightly larger 

in size than the diameter of the vessel.  

Zana et al. described a different method of morphology for detection of 

vessel-like objects in 2-dimensional images. They defined blood vessels as a 

bright pattern, piecewise connected and locally linear. The method was 

combining a rotating linear morphological operation followed by a cross-

curvature analysis. The aim was to segment the vessels from the background 

(Zana and Klein, 2001).  

Sun applied the combination method of Gabor wavelets filters and the top-hat 

technique on a real-time angiogram. The top-hat transform was proposed to 

enhance the local contrast of a coronary angiogram. The size of the 

structuring element for each pixel in the top-hat was estimated using the 2-

dimensional Gabor wavelet. The Gabor wavelet was applied at multiple 

scales and orientations; the maximum response of different orientations and 

scales was calculated (Sun and Sang, 2008).   

Due to the possible low contrast between the background and small blood 

vessels in the image, Kang and Li proposed an algorithm based on a degree-

based fusion algorithm for coronary angiograms (Kang et al., 2013). The 

proposed method initially used to enhance the original images. They believed 

the cross-section shape of the vessel is approximated as round and the 

vessel greyscale profile approximated a Gaussian curve. Thus, the top-hat 

with a round structuring element used. The coronary arteries were detected 

from two enhanced images through the degree method. Lastly, two extracted 

vessel images were fused. 
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 Classification 3.9

Supervised: The focus of this section 3.9 is to describe the various image 

segmentation techniques that use supervised learning involved in the area of 

thin, elongated structure of medical images. This section will provide a brief 

overview of image classification techniques used in this area of medical 

image analysis. 

Classification methods are pattern recognition methods, their aim being to 

extract features from pixels/objects in the image and output class labels. 

Classifiers produced using supervised methods have been trained on 

manually labelled data. Once the classifier has been trained it can then be 

applied to the task of labelling (e.g. segmenting) new data.  

The K Nearest Neighbour classification (KNN) is the simplest classifier but 

works well in practice. The goal is to find the class labels for the new points. 

When a prediction is required for a new data, the KNN algorithm will search 

through the training dataset for the k-most similar instances. The most similar 

instances (based on the feature vector) is summarized and returned as the 

prediction for the unseen instance. This algorithm actually uses a similarity 

measure or distance function to find the nearest cases to a new case. For 

classification of a new sample, its k closest neighbours must be found. 

Euclidean distance (Duda, Hart and Stork, 2012) is mostly used for defining 

what closest means, but there are other distance measures have been used 

as well. An object is classified by a majority vote of object neighbours (Cover 

and Hart, 1967). The main advantage of KNN is simplicity but the 

disadvantages are computation time (because it uses internal competition 

between data to make a predictive decision), and it requires more memory. 

There are several methods to overcome the memory limitations which are 

structure based. Bhatia presented the survey of a variety of algorithms 

developed on the basis of KNN (Bhatia, 2010). 
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Nancy proposed the k-nearest neighbour algorithm for the segmentation of 

retinal blood vessels, based on a feature vector that consists of the largest 

eigenvalue, gradient magnitude and green channel of the image intensity 

(Salem and Nandi, 2006). The aim of the first two features was piecewise 

linearity and parallel edges. Results show that classification with these three 

features significantly reduces the processing time compared with the original 

method that used 31 features (Niemeijer et al., 2004). The produced result of 

the Gaussian filter and the original grey level of green channel images (31 

features) were inputted into the K nearest neighbour classifications 

(Niemeijer et al., 2004). KNN will be one of the method apply on the thin 

structure of cilia. This can help to separate the thin structures of cilia from 

non-cilia. The KNN algorithm strategy and the affected of the results will be 

shown in chapter4.  

Bayesian decision theory is a fundamental statistical pattern classification 

algorithm, based on Bayes’ theorem (ÇELEBİ, 2016). It simply describes that 

there is no dependency between a particular feature of a particular class.  

Soares used the Bayesian algorithm, in which class likelihoods were 

described as a linear combination of Gaussian functions. Soares et.al 

created a feature vector for individual pixels from image pixel’s intensity and 

from the results of applying a 2-dimensional Gabor filter at multiple scales 

and various orientations (Soares et al., 2006). Ricci applied the line detector 

on the green channel of retinal images which was used in mammography 

images. The method evaluated the average grey level along lines of fixed 

length at different orientations. The average value of short orthogonal line 

was calculated. Results of these two values along with pixel’s intensity value 

were calculated to create a feature vector used by support vector 

classifications (Ricci and Perfetti, 2007).  

Kharghanian applied Gabor filters and line operator as two sets of input 

features for using two classifiers: Bayesian and SVM to classify retinal blood 

vessels. The set of feature vectors consisted of; pixel intensity of an image, 
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four features of Gabor filter in different scales, two features of line operators 

(Kharghanian and Ahmadyfard, 2012).  

Unsupervised, clustering algorithms performed the same function as 

classifier methods without any training data. Thus, they are named 

unsupervised methods. K-means and the fuzzy C-means are commonly used 

clustering algorithms.  

Fuzzy C-means is one of the most prevalent methods involving feature 

analysis. This clustering algorithm (FCM), allows the pixel to belong to more 

than one cluster, it was first presented by Dunn (Dunn, 1973). Because some 

data belonged to multiple clusters, it was impossible to combine them into 

one cluster. Therefore, Bezdek revised the method several times to improve 

it (Bezdek, 2013).  

Ahmadi proposed a fuzzy C-mean (FCM) algorithm in conjunction with 

genetic algorithms (GA) and applied them to CT scan images of the liver to 

detect vessels. The CT images convolved with Gaussian low-pass filters to 

eliminate noise. Then the combination of fuzzy C-mean and GA performed 

the segmentation by feeding a FCM with the random values of the core 

centres (chromosomes), (Ahmadi et al., 2016).  

Yang applied fuzzy C-mean based on the vascular feature. His idea was that 

fuzzy cannot give an accurate vessel segmentation result. Therefore, the 

algorithm was based on the combination of the tubular structure information 

and grey value scale information to segment cerebral vessels from MRA 

images(Yang et al., 2015). 

Kande used matched filter to increase the contrast of the blood vessels 

against the background, then employed spatially weighted fuzzy C-mean 

clustering based thresholding in retinal images to segment the vessels 

(Kande, Subbaiah and Savithri, 2010).   
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 Conclusion and discussion 3.10

In this chapter, several methods for detection of thin structures in different 

types of biomedical images were discussed. No method was found to have 

applied by other researchers on elongated structures of the cilia.  Hence, the 

literature review is more based on general thin structures such as blood 

vessels, fingerprints etc. From all different methods of thin structures 

enhancement, and detection, the interest is in methods that can segment and 

distinguish the thin structures of vessels and other structures for further 

quantitative analysis.  

Blood vessels with a low intensity often are encapsulated by the noise in the 

background. However, this can be a problematic task due to the background 

noise as required more attention from the researchers. There are other 

problems with vessel detection which are false positives of camera artefacts 

and motion artefacts.  

The most popular methods were used around for thin structures detection 

were based on directional filters such as matched filtering and Gabor filters. 

These filters rotated in order to detect vessels in different directions. Also, the 

outcomes of these filters were used as features along with intensity. 

The morphology operation was another method for detection of vessels. The 

results showed that morphological operators were able to segment linear 

structure well in different orientations to detect 2-dimensional structures in a 

highly noisy background. 

The described methods above have shown a wide range of choices for 

particular problem-solving. The selected method depends on the type of 

application and its constraints. Another important feature to decide upon is if 

a method should be automated or semi-automated. 

From all different methods of thin structures enhancement and detection, the 

interest is in methods that can easily segment and distinguish the thin 
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structures of cilia or vessels and other structures for further quantitative 

analysis. Moreover, the interest is in the method that is computationally 

inexpensive, easy to apply and precise.  

The conclusion is, every technique performed well in a particular field under 

the particular circumstance and must be considered with these parameters in 

mind. 
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Chapter 4 Cilia Detection Methodologies 

for Segmentation Process of SEM Cilia 

Images 

Introduction 4.1

 

HIS chapter focuses on applying various methodologies to detect cilia in 

SEM images and determining the most suitable algorithms to detect the 

thin cilia structure. As with any other image processing methodology, 

segmentation is crucial to analyse the results, which may be used in a wide 

range of applications varying from the medical to any industrial cases where 

they are needed. 

This chapter explores the creation of various automatic detection methods of 

cilia. As discussed in chapter 2, cilia are hair-like structures that hang from 

the surface of the cell. Their images were captured by scanning electron 

microscope devices and the images are stored and then segmented. 

Segmenting objects from SEM microscopic images is challenging in many 

bio-imaging applications due to background noise and automated techniques 

are often susceptible to this. In these approaches, cilia segmentation was 

performed using different algorithms to enhance their linear structure. The 

result of segmentation then used to quantify cilia with respect to length and 

cilia number. A semi-automatic algorithm was used on overlapping cilia to 

measure their length. The performance of the algorithm was then evaluated 

by comparing results derived from using various methodologies, which 

discuss in the following sections in the segmentation results with the manual 

ground-truth results. Local morphology features such as length 

measurements using various length measurement methods were 

T 



Chapter 4 Cilia Detection Methodologies for Segmentation Process of SEM Cilia 
Images 
 
 
 

 
 
 
 
 

39 

investigated using high-resolution images of the cilia. The nodal images were 

then used to count and evaluate the number of cilia.  

 Background 4.2

The proposed algorithms were adopted from existing common approaches of 

the thin structure segmentation applied on a variety of the biomedical 

images, followed by analysing the segmented cilia as documented in the 

literature review (chapter 3). 

Spencer used the top-hat operator with a linear operator to detect micro-

aneurysms from fundus images (Spencer et al., 1996). Canny applied filters 

of second-order derivatives of the Gaussian function to detect lines where the 

convolution of that function with lines gives a maximum response (Canny, 

1983). Soares et al. applied a 2-dimensional Gabor wavelet transform on 

retinal images to enhance the vessels and filtering out the noise (Soares et 

al., 2006). Salem proposed the k-nearest neighbour algorithm for the 

segmentation of retinal blood vessels, based on feature vector consists of, 

largest eigenvalue, gradient magnitude and green channel of the image 

intensity (Salem and Nandi, 2006). These algorithms applied to high 

resolution cilia images to segment the cilia. All algorithms were evaluated 

against ground truth (manual labelled images) and the best one was chosen 

according to the ROC curve.  

 Materials  4.3

A dataset of cilia contains high resolution and nodal cilia images of normal 

and abnormal microscopic scans. To evaluate the proposed methods, 

algorithms were applied to both cilia images of normal and abnormal 

datasets. In order to measure the length of the cilia, high resolution images 

were used. Cilia nodal images were used to calculate the number of cilia 
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within a node. These images were captured by 3 different observers with 

experience in cilia biology.   

All images contain a white bar showing the image information. This was 

removed (cropped) by applying the mask without changing the size of the 

image and alter any other information from original images before further 

segmentation analysis.    

High resolution cilia images - These cilia images have a resolution of 2µm 

including normal and abnormal cilia which were then used to segment and 

measure the cilia length.  

Nodal cilia images - These images have a resolution of 10µm contain the 

whole structure of the node with normal and abnormal projected from the cell. 

They were used to segment and to count the number of cilia on the nodes. 

A SEM device was used to capture images with a resolution of 768 x1024. 

Data were collected, prepared and processed at MRC Harwell from mouse 

embryonic nodes which took place at Kingston University London. The 

dataset contains 6 high resolution images (3 normal + 3 abnormal) and 6 

nodal images (3 normal + 3 abnormal). 

The pixels in these images were labelled manually as either cilia pixels or 

background pixels to create the ground-truths. This was performed by author 

knowledge and all cilia pixels were marked. Manually labelling cilia pixels 

were selected to create a ground-truths for segmentation evaluation of 

algorithm by using Paint editor software.    

 Cilia Detection Framework 4.4

All the algorithms discussed in the following sections were developed and 

evaluated using MATLAB software (2015b). The step-by-step process flows 

of all the algorithms are illustrated in Figure 4.1. The initial step is the 

preparation stage, which involves removing the white bar that shows the 
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information of the image without changing image structure in order to ensure 

the system’s robustness, see figure 2.1. This procedure is common for all 

algorithms. Each algorithm starts with a pre-processed initial stage to 

eliminate the noise and to remove the background. Various cilia 

enhancement techniques with linear structures were then used to enhance 

the cilia followed by the cilia segmentation in individual data sets. A post-

processing technique is applied in all algorithms on resultant images to 

remove small and non-cilia objects. 

The post-processed images now contain cilia images without any noise 

paving the way to then measure the length of cilia using length measurement 

algorithm and to count the number of cilia. However, the post-processed 

images result contains the overlap cilia and non-overlap cilia and the 

overlapping cilia are then removed from the dataset. The non-overlap cilia 

and overlap cilia measured in a different way but the results cover both.  

The original images of the overlapping cilia were measured with the semi-

automatic algorithm. The boundary lines of the selected cilia images are then 

marked/selected resulting in a semi-automated process. The semi-automated 

length measurement algorithm was using best fit ellipse on the data set 

which has overlapping cilia images thereby aligning the results with the rest 

derived by using non-overlapping cilia images. 

Figure 4.1- 4.3 show an outline flow chart of the system architecture. Figure 

4.1, illustrates the flow chart of the high-resolution images, the algorithm first 

enhanced and segmented images and eliminated the false objects. Then the 

segmented image was used to measure the lengths of the cilia. Figure 4.2 

shows the step by step of the semi-automatic algorithm applied to measure 

the overlapping cilia length. Figure 4.3, shows the stages involved in nodal 

cilia images. The output of all the segmentation algorithms was evaluated 

against the ground truth and results shown that the mathematical morphology 
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with used of the linear structure was the best method to segment cilia. Then 

the nodal cilia segmented images were used to count the number of cilia.   

All algorithms developed were implemented in MATLAB version 2015b using 

the Image Processing and Statistics Toolboxes.  All the results in this thesis 

have been generated from the MATLAB.  
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Figure 4.1: High Resolution Images Architecture Segmentation 

 



Chapter 4 Cilia Detection Methodologies for Segmentation Process of SEM Cilia 
Images 
 
 
 

 
 
 
 
 

44 

 

 

 

 

 

 

Figure 4.2: Flow Chart for semi-automatic measurements 
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Figure 4.3: System Architecture for Nodal images 
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 Methodologies for Cilia Detection 4.5

4.5.1 Methodologies 

SEM images can reveal the structure of cilia with a high level of resolution. 

Accurately segmenting of the cilia images is an important task in order to 

analyse the quantification of cilia. Fully automated techniques are often 

susceptible to noise and challenging to develop, because of natural and 

artificial noises in the images and the natural movement of objects during the 

capturing process in microscopic images. Overlapping and bending cilia can 

confound the profile model. These properties had to be taken into account 

when defining the algorithms/methodologies. Thus, the semi-automatic 

algorithm used to assist user for precise segmentation. Having discussed the 

properties of the cilia images, the next section discusses the methodologies 

used to detect them. 

In this section, multiple approaches were investigated to detect the thin 

structure of cilia. These methods were performed prior to pre-processing 

technique. The enhancement methods studied in this thesis are as follows: 

Mathematical Morphology operations, Gabor filters and Gaussian filters (all 

with the aspect of linearity). These methods used global thresholding. An 

additional approach used on the information derived from the above three 

approaches, that used along with the use of a KNN classifier. The approach 

proved to be the most suitable was evaluated from ROC curves of the 

segmentation results. 

4.5.2 Pre-Processing Stage 

The image details were visible as text overlaid on the bottom corner of the 

image and thus had to be removed. This was achieved by an interactive 
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polygon tool ‘’roipoly’’ in MATLAB software. This tool returned the mask the 

same size as the original image. The purpose of this was to stop the bar 

details interfering with the decision of segmentation and quantification 

measurement process. Then cilia images were converted to grayscale 

images using the equation 4.1(Slezak et al., 2010) which is based in 

MATLAB:   

 

(0.29 x R) + (0.58x G) + (0.11x B)          

Equation 4.1 

Noise in part can cause pixels with random variation intensity and are visible 

as grains in the images (Kaur et al., 2015). Non-uniform illumination is 

referred to as shade and intensity inhomogeneity and is one of the main 

challenging tasks in the field of medical imaging. Therefore, before applying 

cilia enhancement techniques to cilia images, shade correction technique 

(Niemeijer et al., 2005) to correct/remove the non-uniform illumination from 

images was performed as the highest priority. Then background 

approximation was gained by applying a median filter. The filter mask size 

was set empirically to 9 x 9 and 30 x 30 pixels for nodal cilia images and 

high-resolution images respectively. These filter sizes were chosen according 

to the magnification of the image and width of the cilia, to ensure the cilia 

structure were preserved. The shade correction was then performed by 

subtracting an image background from a grayscale image.  

Figure 4.4 illustrates an example of removing the non-uniform illumination. It 

is clear that the low-frequency components have been removed.   
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Figure 4.4: Image A, Is an originall image. Image B shows the result of shade 
correction. Low-frequency components have been removed.  

  

4.5.3 Cilia Enhancement 

Four different enhancement methods were applied to images of elongated 

cilia. Gaussian, Gabor, mathematical morphological operation with a global 

threshold and a K-nearest neighbour classification approach were applied. 

The mathematical morphology operation was found to be the appropriate 

method based on the results which are discussed and illustrated in a result 

section. Note, all listed methodology parameters in section 4.5.3 are in 

respect to the application to the high-resolution cilia images. 

The segmented results of the algorithms are plotted using receiver operating 

characteristic (ROC) curves. ROC curves are plots of true positive fractions 

versus false positive fractions for varying thresholds were compared 

successfully.   

4.5.3.1 Gaussian Based Segmentation  

Cilia may be considered as piecewise linear segments. Grey-level profile of 

the cross-section of the cilia is approximated by a Gaussian-shaped curve. 
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Therefore Gaussian filtering was applied on cilia images which were inspired 

by Chaudhuri (Chaudhuri et al., 1989) method. Chaudhuri introduced the 

algorithm to detect piecewise linear blood vessels in 2-dimensional retinal 

images. Figure 4.5 shows the zoomed in image of different cilium from the 

panel with different lengths and orientations.   

 

Figure 4.5: It shows a different cilium with different lengths and orientations. 

As shown, in Figure 4.6, the grey level profiles of the cross-section of cilia are 

related to zoomed in image of figure 4.5. It was observed that the intensity 

profile of cilia was varied and it may be approximated by a Gaussian curve.  
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Figure 4.6: The grey -level (brightness) profiles of the cross-section of several cilia 
from the image of figure 4.3.The cilia have different intensities. Each curve 
represents the cross-section of each cilium. 

Gaussian filters were used in order to enhance cilia at different scales. The 

aim of using the Gaussian filter is to reduce the level of noise and enhance 

the cilia from a background in the images, to improve the results of the 

following processes and stages. This Gaussian filter was different from the 

standard isotropic Gaussian filter; in this method, a 1-dimensional Gaussian 

function was repeated a number of times and stacked to make the length of 

the filter which gave the filter an aspect of linearity. The Gaussian filter was 

convolved with cilia images, typically to reduce image noise and enhance the 

elongated structure of cilia. The sigma value of Gaussian filter was chosen 

upon empirically from a range of values. In order to detect the true length of 

each cilium, the value of sigma was chosen based on the widths of the cilia. 

The widths of the cilia are found to lie within a range of 6 - 9 pixels (0.3 – 0.4 

mµ) in high resolution images. Therefore the value of sigma chosen is 1, in 

order to pick up the width of the cilia efficiently.  



Chapter 4 Cilia Detection Methodologies for Segmentation Process of SEM Cilia 
Images 
 
 
 

 
 
 
 
 

51 

The filter length was chosen 19 pixels empirically which gives it an aspect of 

linearity. The Gaussian filter in 1-dimensional is defined below in equation 

4.2, where ð is a standard deviation of the distribution. 

             G(X) =   
1

√2𝜋ð²
𝑒

 − 𝑥2

2ð²       

Equation 4.2 

Cilia are projected in different orientations at an angle θ (0 ≤ θ ≤ π). 

Therefore, 12 different kernels with an angular resolution of 15° were 

spanning in all possible orientations. These 12 sets of kernels are applied to 

the cilia image and the maximum response among them is selected/chosen. 

This is repeated to the whole dataset of the cilia images resulting in 

enhanced cilia images. 

This was followed by applying the global threshold to create a binary cilia 

image. These objects matched the shape of the filter. Post-processing 

required identifying and subsequently eliminating the false detections. Figure 

4.7 and 4.8 illustrates the set of Gaussian filters applied on cilia images.   

 

 

Figure 4.7: 12 sets of the Gaussian filter with an aspect of linearity rotated with an 
angular resolution of 15°. 
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Figure 4.8: The image A is an original image of the cilia. The image B illustrates the 
results of the enhanced image applied by the Gaussian filter.     

 

4.5.3.2 Gabor-Based Segmentation 

The Gabor filter is an important algorithm that plays a role in many 

application areas and it was applied here for the purpose of enhancing the 

thin structure of cilia in noisy images due to directional selectiveness and well 

tuning to specific frequencies. It is an essential algorithm to enhance multi-

oriented thin objects and filtering out the background noise. A 2-dimensional 

Gabor filter is achieved by modulating a sinusoid with Gaussian kernel 

function. The linearity aspect of the filter in the Gabor was provided by the 

sinusoidal.  The Gabor filter used sigma size equal to 3, lambda 15.5 and 

gamma 1 which they were driven empirically. 12 different Gabor filters with 

an angular resolution of 15° orientation applied to high resolution cilia images 

to enhance the cilia. The maximum response of overall angles was taken. 

These resultant enhanced cilia images then went through the global 

thresholding process resulting in binary cilia images. The binary cilia images 

are created based on the best operating point on visual analysis process 

which will be discussed in the result section. Figure 4.9, demonstrates 12 

Gabor filters in 15° angular resolution.  In figure 4.10 image, A is an original 
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image and image B, demonstrates the result of the cilia enhancement by 

Gabor filter.   

 

Figure 4.9: This image demonstrates the Gabor filters rotated in 12 directions of 
15°. 

 

Figure 4.10: The image A is an original image of the cilia. The image B illustrates 
the results of the enhanced image applied Gabor filter.     

4.5.3.3 Mathematical Morphology Operation Based Segmentation   

According to the literature review, one of the approaches to enhance thin 

structures used mathematical morphology operation with linear structuring 

elements (SE) in many applications. The opening of an image ƒ is simply the 
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erosion of an image by structuring element Ş, followed by the dilation of the 

result by structuring element. The opening of an image is defined by an 

equation 4.3 where ƒ is an image and Ş is a structuring element. 

 

             ƒ ο Ş=(ƒ  ϴ  Ş)  ⨁ Ş   

Equation 4.3 

                     

Once the background image is estimated and removed, cilia images are ready for 

further enhancement. Cilia enhancement was performed by employing a basic 

mathematical morphology operation using a linear structure, applied at different 

orientations to the cilia image dataset. This process again involves applying linear 

structure oriented at 12 angles with 15-degree angular resolution. As cilia are 

considered as piecewise linear, a linear structure element of the length of 19 pixels 

was applied to perform the morphological operations. The length of the structure 

element was driven empirically. In each of the 12 images in different orientations, 

only those parts of the cilia in which the linear structuring element can fit, remain. By 

taking the maximum pixel value at each pixel location in all 12 images which 

detected cilia selections of all orientations, with little noise present. Therefore 

objects smaller than the linear structuring elements are diminished in intensity and 

those that can fully contain the structuring element are enhanced in intensity. The 

results have shown an image containing the mainly elongated structure of cilia of all 

orientations. Binary segmentation created by global thresholding the enhancement 

image that will be described in the result section. In figure 4.11 image A is an 

original image with cilia, image B illustrates the results of the enhanced image 

created by the Mathematical Morphology operator method.  
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Figure 4.11: Image A is an original image of the cilia. Image B illustrates the 
enhancement result applied by Mathematical Morphology Operator.     

 

4.5.3.4 KNN Classification Used for Segmentation   

Nancy used scale-space features and k-nearest neighbour classifier for 

segmentation of retinal blood vessels (Salem and Nandi, 2006). K-Nearest 

Neighbour (KNN) Supervised Nearest Neighbour classification is one of the 

simplest classifiers, in fact, it is easy to understand and implement the 

algorithm but it works well in practice. The algorithm used pixels from 2 

training images consisting of one normal and one abnormal image, and 

pixels from 4 testing images of two normal and two abnormal cilia images. 

Predictions for the test data were based on the nearest neighbours from the 

training data using Euclidean distance. For classification of a new sample, its 

k closest neighbours must be found. The algorithm basically relies on the 

distance (e.g. Euclidean distance) between feature vectors. If there are two 

points q (q1,q2,…qn) and a point p(p1,p2,…pn) the Euclidean distance 

between the points q and p is defined as the equation 4.4:   
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        d(p,q) =  √∑ (𝑞𝑖 − 𝑝𝑖)𝑛
𝑖−1

2
            

Equation 4.4 

The K- nearest neighbour classification phase classifies the cilia images into 

cilia pixels or background pixels. This method using a vector of 5 features 

derived from properties of cilia images. The method was aimed to classify 

cilia and non-cilia for cilia segmentation. The details from five features used 

to form training data:  

1) Grayscale pixels intensity of cilia image 

       Convert pixels of cilia image to grayscale image, explained in 4.5.2. 

2) Shade corrected pixels intensity 

 Subtracted median filtered output from the grayscale image, also 

explained in 4.5.2. 

3) Gaussian filter output  

This feature was selected based on the output of the Gaussian filter and is 

elaborated in the section 4.5.3.1. 

4) Gabor filter output  

 This feature was selected based on the output of the Gabor filter as 

explained in the section 4.5.3.2. 

 5) Mathematical Morphology operator output 

  This feature was selected based on the output of the Mathematical 

Morphology operator as explained in the section 4.5.3.3. 

These features were applied to cilia images to prepare training data. The 

classification separates the testing sample into cilia and non-cilia pixels by 
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calculation the closest Nearest Neighbour based on Euclidean distance. The 

method was chosen for classification purpose due to its simplicity. 

The main drawback of KNN is the competition in searching the nearest 

neighbours for each sample. Due to the fact that there are lots of elements 

which are required in finding the distance between each element to the 

element that needs to be classified so for the larger dataset it could result in 

being a problem. As a consequence; to reduce a complexity and running time 

training data was produced by the random selection of feature vectors for 

500 cilia pixels and 500 non-cilia pixels. 

K is the number of instances (nearest training samples) that the classifier 

considers for determining the class label of the test sample. It is very 

important to select the correct K value. A large K value can reduce the overall 

noise whereas a too large K value could result in picking up unwanted 

samples from outside the local region (in respects to feature space). Hence, 

K is required to be small enough to ensure it picks up only nearby samples. 

Therefore, choosing an optimal K is vital. In this research of cilia 

classification, K is represented as the square root of the size of the training 

(Hassanat et al., 2014). Also, it is favourable if K is an odd number. Based on 

this, the value chosen for K was 31. This will define the nearest neighbour 

region.   

Now that we have discussed K values, the predictions can be discussed. The 

KNN predictions are commonly based on a majority vote. Therefore, for a 

test sample (i.e. test pixel) the classifier searches for the 31 nearest 

neighbours in the training data and identifies their class, the class with the 

most votes is awarded as the class of the test sample.  The majority vote will 

create a single operating point; various operating points will be required for 

the creation of the ROC curve (as will be discussed in the results section). 

This can be achieved by varying the number of votes for a particular class 

that is required to achieve that class label for the test sample. This starts at 



Chapter 4 Cilia Detection Methodologies for Segmentation Process of SEM Cilia 
Images 
 
 
 

 
 
 
 
 

58 

zero and then incrementally increases by 1 until k+1 is reached, hence 

producing 32 operating points. 

Figure 4.12, shown, KNN algorithm applied on abnormal cilia image (A) and 

normal cilia image (B). In this figure, image (C) and (D) illustrates the binary 

cilia image resulting from the KNN algorithm.  

 

 

Figure 4.12: Image A and B is original abnormal and normal cilia images 
respectively. Image C and D illustrate the binary cilia images from K-NN, k=31. The 
image C is a result of K-NN corresponds to image A. The image D is a result of K-
NN corresponds to image B. 
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4.5.4 Post Processing Stage 

Before the post-processing stage, the enhanced images go through global 

thresholding or classification resulting in binary cilia images which are then 

used for further quantitative clinical purposes. However, it is important to 

have a true length and a true number of cilia for further quantification analysis 

of cilia images. To stop noise interfering with the results it is essential to 

remove them from the binary image.  Likewise, objects that are connected to 

the borders of the binary images were required to be ignored and removed. 

Therefore post-processing was applied to the cilia binary images. This stage 

was included to remove all connected components that have a smaller area 

of pixels than a specific size from binary segmented cilia images. In post-

processing stage a mask was applied to the images to eliminate the regions 

that were touching the border.  

Once post-processing was performed the cilia images are then labelled. 

Overlapping cilia are removed from the labelled image by visual assessment 

for further quantification assessment. The non-overlapping cilia are 

measured automatically by applying different length measurement methods. 

Length detection of overlapping cilia were refined by the use of the semi-

automatic method as explained in earlier sections of this chapter. 

 Cilia Length Measurements Methodology 4.6

A variety of length measurements were used to measure the real length of 

the cilia. The approaches proposed were, Major Axis, Perimeter, Extrema, 

find the area of skeletonisation and Extrema_centroid. They are the different 

types of measurement techniques of image region properties commonly used 

and available in MATLAB software. Chain code boundary-based method was 

also used to measure the length of the cilia.  Proposed methods return a 

scalar value that specifies the length in pixels. Results were converted to 
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micrometre. Table 4:1 illustrates all the different methods. The results will be 

shown in 4.8.2. 

Extrema Returns an 8-by-2 matrix that specifies the 

extreme points in the region. Find two end 

points and calculate the Euclidian distance 

from two points. 

Major-Axis Returns the major axis of the ellipse that has 

the same normalized second central moments 

as the region. 

Perimeter Specifies the distance from the boundary of the 

region divided by 2. 

Extrema_centroid Uses ‘centroid’ to specify the center of the 

mass. Uses the concept of the ‘Extrema’. 

Identified the Euclidian distance; from top-left 

point to center, centre to bottom-right point and 

add two distance together. Calculates the 

Euclidian distance from centre points to two 

end points. 

Chain code Gives Freeman chain code 8-connected 

representation of a boundary 

Skeletonisation Calculates the number of pixels in 

skeletonisation of the cilia. 

Table 4.1: Cilia length measurement methods 
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 Measurement of Overlap Cilia Images 4.7

Cilia images were captured from microscopic SEM devices. As shown, in, 

figure 4.13, red arrows depict different examples of cilia 

touching/overlapping.  When two single cilia overlap, they appear as one long 

cilium. However, this causes problems when measuring the length of each 

cilium.  

 

Figure 4.13: Cilia overlaps, Images of A and B showed cilia touch each other. C 
shows three cilia are overlapping. D shows two cilia are overlapped. 

Therefore, the author used a semi-automatic algorithm to measure the 

lengths of the cilia to avoid any miss-detection. Then the objective of this 

subsection is to measure the length of the touching/overlapping cilia by 

applying the semi-automatic algorithm.  

The proposed method isolates the touching/overlapping cilia to measure their 

individual length. A fit ellipse function approach is used to estimate the best 

fit to an ellipse from a given set of points. This concept of fit ellipse function is 

used for the refinement stage of length measurements. This was performed 

in high resolution cilia images of normal and abnormal cilia. For the semi-

automatic algorithm follows these stages as listed below:  

1) User intervention is required to performed local cropping around cilium 

by using the ‘’ginput’’ function in MATLAB software. 

2) Next, select/choose boundary points on each side of the cilium. 

4) The algorithm finds the best fit to an ellipse for the given set of points. 
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5) Next, the long axis of the best fit ellipse is used to measure the length 

of the cilium. 

 

Figure 4.14: Results of the proposed method on overlap cilia of Figure 4.13. 

 

In figure 4.14, demonstrates the performance of the semi-automatic system 

of overlap cilia. Results showed lengths measurements of different overlap 

cilia. A, B, C and D illustrate the plotted ellipsoidal with the long axis of 

ellipsoidal in overlap cilia. The length of the long axis of ellipsoidal in 

micrometre calculates the cilia length of the individual cilium.   

 Experimental Evaluation  4.8

4.8.1 Measuring Performance 

The available ground-truths can assist to investigate the performance of the 

segmented results from using the above algorithms. The performance of the 

segmented results may be evaluated using a region-based scheme derived from 

the number of pixels of objects. This type of evaluation is prevalent in the 

medical image segmentation due to its simplicity.  
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Figure 4.15: Demonstration of false positive (FP), true positive (TP), true negative 
(TN) and false negative (FN) regarding ground-truth (G) database and segmentation 
results(S). 

As shown, in figure 4.15, G is a ground truth and S is a segmented area. The 

intersection of these two areas shows with black boundary. The terms (FN), 

(TP), (FP) and (TN) contribute in the performance of algorithms, which was 

evaluated in terms of sensitivity (SN), specificity (SP) and accuracy (ACC). 

These statistical measurements are used to determine the quality of binary 

segmentation and segmentation classification (Altman and Bland, 1994). 

 

True Positive: Cilia in ground truth detected as cilia. 

True Negative: Background in ground truth detected as background. 

False Positive: Background in ground truth detected as cilia. 

False Negative: Cilia in ground truth detected as background.  
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Sensitivity  =   
𝑻𝑷

(𝑻𝑷+𝑭𝑵)
   Sensitivity ∈ [0, 1] 

 

Specificity =  
𝑻𝑵

(𝑻𝑵+𝑭𝑷)
   Specificity ∈ [0, 1] 

 

Accuracy = 
(𝑻𝑷+𝑻𝑵)

(𝑻𝑷+𝑭𝑷+𝑻𝑵+𝑭𝑵)
  Accuracy ∈ [0, 1] 

All these metrics are between zero and one and the higher the value within 

this interval indicates the better segmentation performance (Lalkhen and 

McCluskey, 2008). 

Receiver operating characteristic (ROC) (Linden, 2006) curves are a 

commonly used way of overall visualization of the performance in a binary 

segmentation. The main value of ROC curves is that they provide a variety of 

possible trade-offs between the true positive fraction and false positive 

fraction, enabling the algorithm designer to choose an appropriate operating 

point. ROC curve is a plot with true positive fractions (SN) versus false 

positive fractions (1-SP) at different threshold levels. The closer the ROC 

curve approaches to the top left corner, the better the performance of the 

algorithm. The area under the curve measures how algorithms distinguish 

between cilia and background and give a general idea of SN, SP and 

accuracy. If the area under the ROC curve is 1 then the system has agreed 

totally with the ground truth segmentation. However, note that manual 

segmentations do not create perfect labelling. 

The trapezoidal method is used to approximate an area under the ROC curve 

and offers a method of estimating integrals. This method is adopted by 

breaking the region into a number of trapeziums for easily computable areas.  
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Following cilia segmentation algorithm performance, the next stage was to 

evaluate cilia length measurements against the manual cilia length analysis. 

The box plot (McGill, Tukey and Larsen, 1978) and absolute value are two 

techniques used to verify the performance of the system. The use of box plot 

enables us to study the shape of the statistical distribution of the cilia lengths. 

Box plot visualization allows us to compare a variety of statistical measures 

and demonstrates overall patterns of response for each category methods.     

The algorithms are evaluated to the actual magnitude of the cilia length 

values by calculating the absolute difference values which is a distance from 

zero. Box plots of the absolute difference value of methods are then plotted.   

Cilia number in nodal images was counted and evaluated against the manual 

assessment. 

 Results  4.9

4.9.1 Segmentation Results  

To systematically evaluate the performance of each algorithm, the ROC 

curves created for the visual performance of each proposed methods of 

whole cilia images which are presented in this section. This ROC curve 

created by varying the threshold level. Each point shows an operating point 

(cut off) threshold. The area under the curve (AUC) of ROC was calculated. 

Maximum accuracy and minimum distance to the top left corner of the ROC 

curve are two techniques used to find the best operating point.  

The segmentation evaluation was performed on the high-resolution image 

dataset. The first three methods (Mathematical morphology, Gaussian and 

Gabor) were evaluated against all ground truth (manual pixel labelled) of six 

high resolution images. To evaluate the KNN method two images were used 

for training (one normal and one abnormal) and four images were used for 

evaluation/testing. 
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Figure 4.16: The ROC- curve for the cilia dataset. The performance result of the 
mathematical morphological operator. 

 

As shown in figure 4.16, illustrates the ROC curve on the cilia dataset.  The 

graph represents excellent ROC curve of morphological operator with linear 

structure applied on all cilia dataset. The AUC value for a dataset of normal 

and abnormal cilia was 0.9721. The operation point to the maximum 

accuracy of the performance was 0.9774 with a sensitivity value of 0.7358 

and a specificity of 0.9901. These results showed the good performance 

analysis of the mathematical morphology with a linear structure. The 

operating point of the minimum distance to the top left (0, 1) corner of the 

ROC curve populates a value of 0.0987 with the sensitivity value of 0.9195 

and specificity of 0.9429.  
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Figure 4.17: The ROC -curve for cilia dataset. The performance of the Gaussian 
filters.   

 

The Gaussian-based approach was another method applied to cilia dataset 

for segmentation purpose as discussed earlier on. The result of the ROC 

curve in figure 4.17 presents a good performance of ROC curve with AUC 

value of 0.9520. The algorithm demonstrates with the operating point of 

maximum accuracy value of 0.9656 with the sensitivity 0.4626 and specificity 

0.9923. According to the figure 4.17, the minimum distance curve to the top 

left (0, 1) corner of the graph was 0.1591 with a sensitivity of 0.8957 and 

specificity of 0.8799.  
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Figure 4.18: The ROC curve for the cilia dataset. Performance of Gabor filters. 

 

Next, the Gabor filter was applied to segment the cilia images. The Figure 

4.18 shows the performance of the ROC curve of the Gabor filter. The area 

under the curve had a value of 0.9578.  The operating point with a maximum 

accuracy of Gabor filter was 0.9625 with a sensitivity of 0.4766 and specificity 

of 0.9881.  

The operating point of the minimum distance of the graph in figure 4.18 to the 

top left corner (0, 1) had a value of 0.1449 with a sensitivity of 0.8964 and 

specificity of 0.8987.  
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Figure 4.19: The ROC curve for the performance of the KNN classification of two 
training and four testing images. 

 

K Nearest Neighbour classification was applied to cilia dataset. Figure 4.19 

illustrates the ROC curve of KNN. The AUC value was 0.9625. The operation 

point of the maximum accuracy of this method was 0.9714 with a sensitivity 

of 0.8172 and specificity of 0.9801.  

The minimum distance of the curve to top left corner was calculated. The 

operating point of the minimum distance to (0, 1) was 0.1257 with a 

sensitivity value of 0.9068 and specificity of 0.9157.   

The results of proposed methods of operating point with maximum accuracy 

are also presented in Table 4.2. According to the results, Mathematical 
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morphology operation produces the best results at operating with maximum 

accuracy and higher area under the curve.  

Method Number of 
   Images 

  SN  SP AUC  operating point with 
max ACC 

Morphology 6 Images 0.7358 0.9901 0.9721 0.9774 

Gaussian 6 Images 0.4626 0.9921 0.9520 0.9656 

Gabor 6 Images 0.4766 0.9881 0.9578 0.9625 

KNN 
Classification 

4 Images 0.8172 0.9801 0.9625 0.9714 

Table 4.2: Illustrates the performance analysis of the best operating point base with 
maximum accuracy. SN(sensitivity), SP(specificity), AUC(area under the curve). 

 

Table 4.3 restates the performance of the operating point at a minimum 

distance of the curve to the (0, 1). From the results, we can conclude that the 

performance of the mathematical morphology illustrates the high 

performance of AUC value of 0.9721 with a minimum distance of 0.0987.  

  

Method Number of 
Images 

SN   SP    AUC Distance point              
closest to (0,1) 

Morphology 6 Images 0.9195 0.9429 0.9721 0.0987 

Gaussian 6 Images 0.8957 0.8799 0.9520 0.1591 

Gabor 6 Images 0.8964 0.8987 0.9578 0.1449 

KNN 
Classification 

4 Images 0.9068 0.9157 0.9625 0.1257 

Table 4.3: illustrates the performance analysis of the best operating point with 
minimum distance to (0, 1). SN(sensitivity), SP(specificity), AUC(area under the 
curve). 
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To perceive the performance of the mathematical morphology method, 

examples of images of the best threshold with maximum accuracy and 

minimum distance were considered for further visual analysis.   

As shown in figure 4.20, cilia images were segmented with the operating 

point of maximum accuracy. It illustrates that some cilia have been removed 

by applying this threshold value. Likewise, this value has eliminated some 

pixels of cilia which can be a problem in later stage when estimating the true 

length of the cilia. The orange arrow shows the length of the cilium that has 

been removed by this threshold. Red arrow depicts almost all cilium removed 

and only some small pixels left. Other two green arrow shows cilia were 

fragmented into two. 

 

Figure 4.20: Illustrated the results of Mathematical Morphology operator with 
maximum accuracy. 
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Figure 4.21: Results of Mathematical Morphology operator with the minimum 
distance to (0, 1). 

Figure 4.21 depicts the results of Mathematical Morphology of the operating 

point at a minimum distance to (0, 1). The segmentation result depicts 

threshold values with the operating point at the minimum distance to (0, 1) 

picked up a lot of noise from the background.  

Red arrows in this figure present the noise. The yellow arrow points to the 

cilia segmented with noise around it. Although operating point at the 

minimum distance picked noise from the background but compared to the 

operating point at maximum accuracy it is greatly improved. The threshold of 

the operating point at a minimum distance did not create the fragmented cilia 

but some connected noise to the length of the cilia produces fake results for 

further cilia quantification. Therefore; neither of these two techniques 

presented respectable segmentation results. Thus, the operating point value 
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was defined by visual assessment as it was required.  

Cilia were enhanced with several enhancement methods. To find the best 

operating point two techniques were used; maximum accuracy and minimum 

distance to the top-left corner of the graph for the best threshold. According 

to the results of the ROC curve, Mathematical Morphology was the greatest 

enhancement method.  Figure 4.20 and Figure 4.21 produces inconsistency 

in results with respect to the correct length of the cilia.  Therefore, the 

threshold value was chosen visually. Post-processing applied to the 

threshold image to remove a noise and objects by touching points around the 

borders and setting boundaries. Figure 4.22 shows the visual results of the 

post-processing result. The image depicts the cilia images that were 

segmented by mathematical morphology and image that are exempt from 

any noise.  

 

Figure 4.22: Post processing output. 
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4.9.2 Cilia Length  

Good segmentation is important for good quantitative measurements. Once 

the pixel-based cilia evaluation was performed and established then the best 

method (mathematical morphology) is chosen to segment the cilia prior to 

length measurements. This section covers an evaluation of the different 

lengths measurements applied on to cilia segmentations for the high-

resolution image dataset.  

Box plots were plotted, to display the overall patterns of all methods. The box 

plot visualisation allows us to compare statistical measures for each 

category.  

 

Figure 4.23: Box plot shows an Absolute difference of automated detection to their 
ground truth.   
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From graphs the absolute difference value of each individual method to the 

manual ground truth of all cilia. The median (red line in the box) shows there 

is not a significant difference between the performances of each method.  

Figure 4.23 demonstrates the median of Major Axis scored in the middle of 

the box and the median value is very close to zero. Also, the spread of the 

data in all other boxes are much larger and there is more variables in the 

other methods. The simple Major Axis had shown the best results. To justify 

the conclusion because 80% of cilia are straight, therefore; simple and basic 

method such as major axis gives a good result to measure the lengths of the 

cilia.  

 

 

Figure 4.24: Box plot illustrates the Absolute Difference of Major Axis of Automatic 
detection and Semi-automatic detection of overlap cilia to manual analysis. 

Automated Major Axis length measurements were giving promising results to 

the cilia lengths, thereafter in the semi-automatic method major axis was 
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used as explained in above section. Figure 4.24 illustrates the absolute 

difference of the Major axis in automated detection of all cilia and semi-

automated detection of only overlap cilia. The major axis of the semi-

automatic detection of overlap cilia box plot in figure 4.24 shows the median 

is very close to the zero and close to manual measurements. The outliers in 

the semi-automated method are fewer than automatic method, range and the 

size of the boxes are almost the same. Therefore result shows that the semi-

automatic detection of cilia with the use of the long axis method is a good 

way of measuring the overlap cilia length and it is a trustable method.    

4.9.3 Number of Cilia  

This section demonstrates the calculation of the number of cilia from nodal 

images. Therefore, nodal cilia images were segmented by the Mathematical 

Morphology operation (parameters were adapted for the nodal images) in 

combination with the selective post-processing method. The performance 

evaluation of cilia number was performed against the manual ground truth in 

order to quantitatively analyse the performance of cilia detection and 

efficiency of the algorithm with respect to the background noise. The pixels of 

segmented cilia were compared to the corresponding ground truth pixels. If 

30% of pixels of segmented cilium were matched with corresponding pixels in 

the ground truth, then it was established the algorithm detected that cilium 

correctly. The results of normal cilia images demonstrate the numbers of cilia 

that were detected equates to 72.02% (the average number of cilia in GT 

image is 200). This was at a cost of 54 false positive objects per normal 

image. Abnormal cilia were counted with 68.05% of the cilia objects detected 

with the cost of 107 false positive objects per image. The result is 

summarised in table 4.2.  
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Nodal Cilia Normal 
Cilia 

Abnormal 
cilia 

Ground Truth    200        160 

Proposed Algorithm    72.02%          68.05% 

False Positive   54          107 

Table 4.2: Number of cilia per node. Each pixel of cilium compared to the 

corresponding pixel in ground truth.  

 Summary  4.10

In this chapter, various methods were proposed to detect and segment cilia 

in the field of microscopic image analysis, in particular, the automatic 

segmentation, measurements followed by automatic/semi-automatic length 

measurements and the evaluation of the segmentation results were 

elaborated in detail. 

Accurate segmentation of the cilia from SEM microscopic images is the main 

impediment and a challenge. It is a challenging task due to the noise and 

variation in the background intensity pixels. Accurate segmentation results 

produce the greatest quantitative measurements of cilia. Therefore due to the 

noisy images, the combination of an automated method followed by a semi-

automated method was proposed for microscopic cilia images to increase the 

quality of the quantification measurement accuracy.  

Preparation of cilia image was done prior to further enhance them and 

improve the results.  Coloured cilia images are converted to a grayscale 

image. The median filter is then applied to estimate the background and 

subtracted from the grayscale image to correct the non-uniform illumination.   

A number of image processing methods and how their combination affected 

the results of the segmentation on the cilia microscopy images were 

considered.  The mathematical morphology operation with a standard linear 

structure in various directions proved to be the best method of detection for a 
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new application of cilia. In addition, the emphasis is put on confirming cilia 

are detected with the appropriate selection of parameters for cilia 

segmentation.   

Grey-level profiles of the cross-section of the cilia in Figure 4.6 were 

approximated by a Gaussian-shaped curve. Then Gaussian filters which are 

different from the standard isotropic is applied. This was repeated a number 

of times and stacked to make the length of the filter which gave the filter an 

aspect of linearity. The value of the area under the ROC curve for the 

Gaussian filter was 0.9520.  

Gabor filter was an algorithm used to enhance the multi-oriented thin objects 

such as cilia and filter out the noise background. This method was convolved 

with cilia images and according to the result in result section, the area under 

the ROC curve of the Gabor filter enhancement had a value of 0.9578. 

Machine learning of the KNN classification was used to classify the cilia 

images as cilia and non-cilia with K=31. The KNN was applied to all data with 

the input of five features. The output of the three different proposed 

enhancement methods were used (as described in methodology section) as 

features. The other two features were the results of background subtraction 

and grayscale images. The performance of the KNN classification provided a 

ROC value of 0.9625.  

Due to the lack of cilia data, a further investigation by other machine learning 

methods did not precede as most of those types of methods require a large 

dataset which was not the case in this study.  

Mathematical morphology was applied to cilia images to enhance the cilia. 

From the results produced in result section, it is obvious that the method 

responded well to cilia spread in different directions on the image. The area 

under the ROC curve was 0.9721, with a maximum accuracy of 0.9774.  Also 

supported by evidence, from figure 4.16 - 4.19, the area under the ROC 
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curve proved that the mathematical morphology operation is the best method 

for detection of cilia. It was shown that the algorithm enhances the cilia very 

well and has an ability with linear structure property to separate the thin 

structure of cilia from the noisy background image without manipulating the 

structure of the cilia. The algorithm may help to avoid false detection as well 

as enhancing cilia with promising results. The performance indices of 

sensitivity and specificity at the maximum accuracy are 0.7358 and 0.9901 

respectively.  

Accuracy is the normal approach to finding the best operating point. 

Accuracy and the minimum distance of the curve to top left corner were 

calculated to find the best operating point. Table 4.2 and Table 4.3 

determined the results of the sensitivity and specificity of the methods. 

Mathematical morphology proved to produce the best results, with an 

operating with the highest maximum accuracy, an alternative operating point 

with the lowest minimum distance to (0,1) and also it achieved the highest 

area under the curve.  

According to Table 4.2 – the specificity of the Mathematical morphology 

method indicates that the background pixels were detected correctly as 

background. And sensitivity shows cilia correctly detected as cilia but bear in 

mind the proportion of cilia to the background is very small. There are 95% of 

pixels are background pixel whereas cilia pixels are only 5% of the whole 

image.    

Mathematical Morphology operator with the operating point corresponding to 

maximum accuracy. The results clarify some cilia are not detected and some 

are fragmented. Figure 4.21 illustrates the cilia detection results of 

Mathematical Morphology operator with the operating point corresponding to 

the minimum distance to (0, 1). It is noticeable that the segmentation results 

are very noisy, and noise has been detected as cilia.  



Chapter 4 Cilia Detection Methodologies for Segmentation Process of SEM Cilia 
Images 
 
 
 

 
 
 
 
 

80 

Gabor and Gaussian are both filter based methods that are good at detecting 

the fragmented cilia but does not have a good response to the noise. In 

contrast to mathematical morphology, filters attempt to fit the cilia structure 

therefore in case of fragmented cilia it does not detect the whole structure of 

cilia, but the advantage is it responds well to the noise. 

According to the sensitivity and specificity values and the outputs of the 

described operating points, led us to conclude that these outputs (cilia binary 

images) do not produce the desired outcome. Hence, the best operating 

point for cilia segmentation was chosen visually.   

The best method (Mathematical Morphology operator) with best operating 

point used to segment the cilia, following this length measures were 

examined. Six different lengths measurements were applied on segmented 

cilia to measure their lengths. The evaluation of methods was completed and 

compared to manual length measurements. The absolute difference value of 

the methods to manual measurements were made and box plot were drawn 

to compare the methods visually. As shown in, figure 4.23, demonstrates the 

major axis plot is the smallest box which suggests that the overall automated 

measurements have a high level of agreement with the manual 

measurements. The Chain code approach suggests there are quite different 

measurements of the manual ground truth. Therefore; because 80% of cilia 

are straight then simple major axis had shown the best results to measure 

the lengths of the cilia.  

Further to that justification, the length of major axis of the best-fit ellipse 

function was used to calculate the lengths of overlap cilia in pixels using a 

semi-automatic approach. According to the results, the semi-automatic 

method had the capability of measuring the lengths of overlapping cilia.  

Quantitative evaluations of the results of the semi-automatic length 

measurements algorithm were similar to manual assessment. Therefore the 
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median of the absolute difference between semi-automatic and manual 

measurements showed the only small difference between the semi-automatic 

results and manual assessment. Quantitative results demonstrate the semi-

automatic results were accurate, in cilia microscopy with the noisy 

background, even when acquisition artefacts were presented in such a 

manner with contrast and overlapping.  

The number of cilia were counted in normal and abnormal images. A cilium 

was considered to be detected if 30% of the segmented pixels overlapped 

when compared to the corresponding pixels of cilium from the ground-truth. 

The algorithm detected 72.02% of the cilia objects with. This was at a cost of 

54 false positive objects per normal image. 

Abnormal cilia are very short and scattered in a very noisy background as 

sometimes they are very difficult to distinguish visually from the background 

noise due to their pixel intensity similarity. Therefore the algorithm counted 

68.05% of the cilia objects, with the cost of 107 false positive objects per 

image.   

 Discussion and Conclusions 4.11

Cilia are small thin structures that hang from the surface of the cell. Alteration 

of the cilia morphology can indicate early signs of genetic disorders, and 

hence analysis of cilia population and lengths followed by accurate 

segmentation is important in early diagnosis.  

Different methods have been developed to achieve this goal and in this 

chapter four category of segmentation, methodology have been applied 

based on thin structure detection with an aspect of linearity and classification 

methods. Although the Gaussian and Gabor with an aspect of linearity and K 

NN widely have been widely investigated and developed but in this case of 

cilia segmentation, they didn’t override the problem of the noise. Because 
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SEM cilia images are too noise therefore the Mathematical morphology with 

linear structure enhanced and segment the cilia precisely.  

The length of the normal and abnormal cilia were investigated and normal 

cilia shown had longer lengths. The number of cilia were counted per node 

from normal and abnormal images. The normal images shown that they have 

more cilia per node compare to the abnormal cilia per node. 
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Chapter 5 Manual Analysis of Vessel-like 

structures in the Vicinity of Tumours 

 Introductions 5.1

 

hin structures such as lines are important features in many medical 

imaging applications. Medical examples such as hair-like structures of 

cilia, thin structure of valve in heart and blood vessels in lung computed 

tomography (CT) scan images. Visualisation of these thin structures provides 

information in planning and help in diagnosing. Chapters 2, 3 and 4 have 

covered the segmentation of thin structures of cilia in SEM images. 

Morphology operation with an aspect of linearity proved to be a suitable 

method of thin structures of cilia segmentation. Therefore a tuned 

morphology operation was applied on blood vessel-like structures in the 

vicinity of lung tumours in lung CT images. The objectives of chapters 5 and 

6 are segmenting and analysing vessel-like structures in lung CT images. 

This chapter begins with a discussion of the anatomy of the lung, how lung 

tumours develop and description of tumour characteristics and investigation 

of the relationship of tumours and associated vessel structures in the lung.  

Blood vessel attributes such as vessel number, radius, tortuosity, and 

branching pattern are vulnerable to a variety of diseases from a common cold 

to more serious ones such as cancer. For instance, change to the vessel 

tortuosity could be an early sign of tumour malignancy (Bullitt et al., 2005b). 

CT scan images are very sensitive and have become a key lung disease 

imaging source for lung disease diagnosis over the years. CT images are 

used mainly in the early detection of lung masses. Furthermore, follow-up 

studies of them are often used to observe the growth of a lung tumour and 

helps with treatment planning. 

T 
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The computer-aided detection system increases the speed and accuracy 

diagnosis. CAD systems will assist in helping doctors to analyse the effect of 

the treatment prescribed and assist in therapy planning. CAD has been 

developing rapidly and widely and has extended to various medical imaging 

processes.  

The objective of this chapter is to examine study vessel-like structures in 

areas of unilateral lung tumours compared with the equivalent contralateral 

lung with no tumour; the methodology involves both visual assessment and 

semi-automatic detection of vessel-like structure attributes in the vicinity of a 

tumour from lung CT scan images. 

The number of clearly defined vessel-like structures directly attached to a 

tumour were counted and compared with the corresponding region in the 

contralateral lung with no evidence of a tumour (Neda et al,.2016)Lengths of 

the vessels in the lung CT images were also measured and used in order to 

determine the tortuosity of the vessels; main long vessels and long branches 

were measured but small vessels extended from branches was disregard. 

The area of the tumour of the vessels was manually delineated and 

calculated in terms of pixels.  

 Lung Cancer and Blood Supply  5.2

Abnormalities in vascular patterns, such as morphological changes in vessel 

shape, branching patterns, width, tortuosity, or appearance of the vessels, 

may be associated with the occurrence of abnormalities and disease 

(Lorthois, Lauwers and Cassot, 2014),(Bullitt et al., 2005a). Thus, an 

automated quantitative analysis of changes in vessel morphology may help in 

early detection of such abnormalities. 
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Figure 5.1: Axial lung CT image from the dataset (Lin et al., 2015).  

prepared by the author from image dataset to be described, shows an 

illustration of a lung CT image with standard lung windowing. The left and 

right lungs are separated by the mediastinum. The fat area contains the 

heart, trachea and blood vessels. Each lung consists of lobes the right lung 

has three lobes and the left lung has two lobes because of its smaller size. 

The diaphragm supports the lungs using wide long muscles that are placed 

under the chest cavity and separate the lung from the abdomen (Gillian et.al, 

2004). Lung cancer is life-threatening and difficult to treat. According to the 

World Health Organization (WHO) lung cancer is extremely prevalent in the 

world with 1.59 million deaths annually (Ferlay et al., 2015) Smoking has 

been shown to be a risk factor that damages lung tissue and increases the 

probability of it turning into lung cancer (American cancer society, 2018). 

Lung cancer is prevalent cancer in developing countries (Hirsch et al., 2001). 

Lung cancer causes a wide range of conditions such as weight loss, chest 

and bone pains, fever and weakness (Birring and Peake, 2005)9,(Winston, 
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2018). Most lung diseases are diagnosed after a specialist doctor requests 

tests such as chest radiography or chest CT images. For example, cancer 

tumour nodules can be observed from CT scanning (Hirsch et al., 2001). 

A lung nodule (Patel et.al, 2017) is defined as a spot in the lung about three 

centimetres in diameter or less if it is seen on CT images of the lung, where it 

is larger than three centimetres it is considered a lung mass. If a mass of 

white tissue in the lung is smooth and round and nodules have well-defined 

borders, then this tissue is likely to be non-cancerous and benign.  If 

pulmonary nodule borders are irregular and speculated, therefore, they are 

more likely to be cancerous (malignant) (Ha and Mazzone, 2014).  

Pulmonary nodules are categorised as solid, partially solid (‘sub-solid’ or 

semi-solid), or non-solid (ground-glass opacities) (Bellomi, 2012). Cavity 

nodules contain an air-filled region that is termed ‘’cavitary’’ (Bellomi, 2012). 

A solitary pulmonary nodule is defined as a discrete and well-defined margin 

with a rounded opacity. Their size is less than or equal to 3 cm in diameter 

where most of the solitary pulmonary nodules are benign (Bellomi, 2012), 

(Leung and Smithuis, 2007). However, they can be present in the early stage 

of lung cancer.  

One primary indicator of cancer is spiky tissue extending from the border of 

the nodule (Ha and Mazzone, 2014).  Figure 5.2 shows CT images of lungs 

with different types of the tumour from four different patients. These images 

are from the dataset lung1 (Grove et al., 2015). Pulmonary nodules are 

indicated by red arrows. Image A shows the primary lung cancer nodule with 

a significant speculated margin.  Image B indicates the cavity in the nodule 

with speculation shown around the edges (Primary lung cancer). Image C 

has a significant speculation margin. Image D is a solid benign nodule with a 

regular shape.  
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Figure 5.2: Illustrates various lung nodules on CT images from the dataset(A). The 
arrow indicates a nodule with significant speculation margin (Primary Lung Cancer). 
(B) The arrow indicates a nodule with cavities (Primary lung cancer). (C) The arrow 
shows a nodule with significant speculation margin (Malignance). (D) example with a 
solid nodule in the upper left lobe with regular, well-defined margins (Benign). 

Zwirewich et al. evaluated pulmonary nodules of 85 malignant and 11 benign 

tumours and spicules were present in 90% of primary carcinomas as well as 

5 of the 11 benign (Zwirewich et al., 1991).  

Adenocarcinoma is a subtype of non-small cell lung cancer. Adenocarcinoma 

is a formation of non-small cell lung cancer and is the most common type of 

lung cancer. The border of the adenocarcinoma has spicules or thin 

elongated pieces of tissue sticking out from its margins (Niehaus et al., 

2015).  

Research has shown that a change in vessel attributes is caused by tumours 

(nodule mass) and nodules that erode the blood vessels, where this change 

is shown to be malignant (Bullitt et al., 2005b). Although the majority of 

nodules are benign, early diagnosis of the presence of lung nodules is 

important and increases the chance of cure (Xu et al., 2013).   

Blood vessels play a significant role in cancerous tumours. A cancerous 

nodule requires a blood supply to deliver the nutrients and oxygen it needs to 

grow and survive (Cancer research Uk. 2014). It is thought that tumours on 

the blood supply they need by stimulating the foundation of new blood 

vessels (Cao and Langer, 2008). This process as first recorded in 1787 and 

called angiogenesis (Cao and Langer, 2008)(Cancer research Uk. 2014). 
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The process of angiogenesis is not the only way for a tumour to obtain blood, 

it can also extract blood from existing blood vessels co-opting them in their 

cancerous growth (Willis, 1934). 

In 1971 Folkman (Cao and Langer, 2008) introduced the hypothesis that 

tumour growth is dependent on angiogenesis. The hypothesis was that once 

a tumour is created, every increase in tumour cell population must be 

preceded by an increase in new capillaries converging on the tumour 

(Cancer research Uk. 2014). Thus, angiogenesis was considered one of the 

hallmarks in the understanding of cancer.  The lung is one of the organs in 

the body with the highest incidence of this type of neoplasm (Pezzella and 

Gatter, 2015), but so far, no data has been available on how cancer cells 

interact with normal lung vessels. Due to a tumour and blood vessels 

relationship it is important to provide accurate and comprehensive 

measurements of vessel features and morphology as it is important in the 

analysis of vascular formation and structural adaptations such as; 

physiological development or growth, pathophysiological conditions such as 

inflammation, hypertension, diabetes, obesity and cancer(Jonk et al., 

2007),(Levy et al., 2008),(Murfee et al., 2008),(Wiernsperger et al., 2007). 

According to Lin et al. there are two sources of blood supply to the lung. One 

source is the bronchial arteries, and the other is the pulmonary arteries. A 

bronchial artery usually provides the blood supply to bronchogenic 

carcinoma. The way the bronchial artery is connected to a malignant tumour 

is different from a benign tumour hence by studying these connections and 

changes that occur in these arteries in or near connections, can help defining 

the tumour nature. But this has limitations because chasing the entire path of 

the bronchial artery to the lung carcinoma is still a challenging task. Lin et al. 

studied the relationship between pulmonary arteries and lung tumour by CT 

and used this relationship to distinguish between a malignant and benign 

tumour. The relationship was covered as encasement, displacement, 

penetration, in the margin, and disconnection. The analysis of a tumour and 
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pulmonary arteries between benignancy and malignancy was significantly 

different (p<0.001). Their results established that a malignant tumour has a 

tendency to encase and displace the pulmonary arteries, and a benign 

tumour has a tendency to be penetrated by the pulmonary arteries (Lin et al., 

2015).  

Tuberculosis (TB) is the second most lethal disease worldwide (Datta et al., 

2015). Pulmonary granulomas are a brand of tuberculosis. Study of 

pulmonary tuberculosis (PTB) and lung cancer as comorbidities have shown 

that active PTB is noted in 2-5% of lung cancer cases, whereas lung cancer 

is noted in 1-2% of active PTB cases (Tamura, 2016). Large lesions develop 

their own vessels allowing them to continue to grow. Datta proposed that TB 

granuloma have similar characteristics to a solid tumour that they are 

associated with the abnormal vasculature. Their studies suggested that the 

morphology and structure of the granulomas associated with blood vessels 

are abnormal and showed a higher micro-vessel count around the TB lesion 

(Datta et al., 2015). The physiological abnormalities of the abnormal 

associated vasculature can characterise the tumour vessels, these 

physiological abnormalities have been investigated (Jain, 2013). 

Lung scar cancer was first classified by Friedrich in 1939. It is sometimes 

misdiagnosed as an old lesion, however, early detection and analysis are 

important for better treatment outcomes. They are mainly adenocarcinoma or 

peripheral lung cancer. Gao found lung scar cancers (LSC) and non-lung 

scar cancer showing an irregular or polygonal shape and long speculated 

border. They compared lung scar cancers (LSC) and non-lung scar cancer 

and the pre-surgical LSC images showed significant differences in 

speculation (p<0.05) (Gao et al., 2015). 

The variety of different morphometric parameters of vessels such as 

speculation, diameter, tortuosity, and fractal dimension, border, shape, size 

were analysed (Bullitt et al., 2005). Among vessel parameters, vessel 

tortuosity shows potentials for the diagnosis of many diseases (Jain, 2013). 
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Tortuosity is the property of the vessels being tortuous, twisted having many 

turns. Tortuous or twisted blood vessels (Lorthois, Lauwers and Cassot, 

2014) and veins are seen in humans and animals. Mild tortuosity is a 

common irregularity with no symptoms but high vasculature tortuosity can be 

an early sign of abnormality such as tumour malignancy.  

Blood vessels transport blood to other organs; however, these blood vessels 

may become tortuous due to abnormal development or vascular disease. 

Han studied that pulmonary hypertension (PH) can result in vascular pruning 

and increased tortuosity in the blood vessels (Han, 2012). 

Bullitt et al. investigated regional changes of the vessels shape, as vessels 

become tortuous early during tumour development which affected initially 

healthy vessels and spread beyond the confines of tumour margins. Vessels 

tortuosity were investigated and statistical method of analysing the shapes of 

the vessels was performed on 34 healthy and 30 brain tumours seen on high-

resolution magnetic resonance angiography (MRA) images (Bullitt et al., 

2005). Vessels histological evaluation and analysis were used to identifying a 

tumour as benign or malignant. According to Folkman’s theory, unfortunately, 

even small cancers expressing growth can result in the alteration of the 

surrounding vasculature both physiologically and morphologically. Abnormal 

tortuosity is found in a variety of malignant tumours including those in the 

breast (Bullitt et al., 2005), brain (Huang et al., 2008), colon et al., 1991), lung 

(Siemann et al., 2002), and skin (Helmlinger et al., 2002). These abnormal 

vessel shapes increase the geometric resistance to blood flow which in 

general is significantly higher in tumours than in normal tissue.  

With the help of imaging technology, more tortuous vessels (Astner et al., 

2008) can be segmented and reported with various shapes, commonly 

curving, twisting, looping and kinking. Figure 5.3 demonstrates the different 

morphologies of the vessels that can be become tortuous.  
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Figure 5.3: Schematics of various phenotypes of tortuous vessels.  Left to right: 
curving, angulation/kinking, looping and spiral twisting (Han, 2012). 

 

The ability to segment and quantify tortuosity abnormalities on high-

resolution CT images presents and opens a new door for diagnosing tumour 

malignancies. As a further example of the usefulness of data imaging 

analysis the use of CT scanning images of tortuous vessels and tumours is 

pivotal in giving information to radiologists for further analysis which is 

discussed in the next section. 

 Material 5.3

The main important component of a medical imaging field is the set of 

images (datasets); therefore, the work involved in dataset collection should 

not be underestimated or undervalued. To illustrate the utility of the algorithm 

two sets of data were investigated.  

The first set considered, consists of 61 lung CT-scans obtained from patients 

with primary lung adenocarcinoma who were treated in the Thoracic 

Oncology Program (Krupinski, 2004) at the H. Lee Moffitt Cancer Centre and 

Research Institute and the Maastricht Radiation Oncology Clinic 

(MAASTRO). The scans were intentionally acquired to follow up the sufficient 

patient cases and were acquired at the Moffitt Cancer Centre (Tampa 

Florida) on 16-detector CT scanner (Mx8000IDT, Philips, Best, and the 

Netherlands). The slice thickness is varying between 3 mm and 6 mm. The 
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images were completed at diagnosis and were taken prior to surgery. These 

images were reconstructed to 512 X 512 matrices. They are images from 

diagnostic contrast-enhanced CT scans.  These CT scan images are 3-

dimensional; each set of data contains 2-dimensional slides varying from 60 

to 150 slides. From the first dataset, 10 out of 61 different patients with 

unilateral lung tumours were examined. From this dataset (lung one) 10 

malignant manually were analysed. 

An additional dataset of lung CT images (Grove et al., 2015), (Armato et al., 

2015) called LUNGx Challenge were made available for diagnostic 

classification of malignant and benign lung nodules. The focus of this dataset 

LUNGx Challenge was the computerised classification of lung nodules as 

benign or malignant in diagnostic computed tomography (CT) scans.  The 

dataset contains 10 calibration cases and 60 LUNGx Challenge cases. Most 

of these cases are contrast-enhanced scans. Of 10 calibration cases, five CT 

images were with malignant nodules and five cases with benign nodules 

which have been selected and confirmed by a specialist to contain a single 

nodule per CT scan for analysis purposes. The other 60 CT scans comprise 

the LUNGx Challenge test set. The location and the coordinates of the 

approximate centroid of each nodule (either 1 or 2) have specified with the 

label (malignant or benign). The nodules contained in the test set have been 

determined by a radiologist to be either primary lung cancer or benign based 

on pathologic assessment and/or follow-up imaging examinations. Images 

have 512 X 512 pixels per slice with the number of slices varying up to 413 

slices. Their slice thickness is 1mm. These datasets are publicly available. 

The MATLAB software used to analyse the cases. In each case, the image 

analyses were where the tumour size was greatest. 

 Lung Imaging Modalities  5.4

Most medical imaging techniques such as CT and MRI provide a non-

invasive method for investigating the anatomy of living objects (Han, 
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2012),(Davis, 2017). CT and MRI images allow the study of structural and 

functional information of the lung. The acquisition time for MRI images is 

around 15 to 30 minutes, which is long and considered as a disadvantage but 

patients are not exposed to radiation which is an advantage (Lusic and 

Grinstaff, 2012). 

CT scanner devices use X-rays to produce visual representations of the 

interior of a body for clinical purposes. X-ray based CT device has been used 

since 1970 (Wielputz et al., 2014). The chest radiograph is the oldest 

radiological method and is more frequently used for diagnosing disease in 

the lung. CT is a prevalent and significant tool with high speed and high 

resolution allowing the image dataset to be viewed in any plane desired 

(Röntgen, ).The disadvantages of CT are the radiation and possible allergy to 

contrast agent (CT Scan. 2017). It combines multiple X-ray projections taken 

from different angles to create detailed cross-sectional images of internal 

tissues. These cross sections are used to evaluate the various structures of 

the internal tissue of lung, vessels structures and pulmonary nodules. It is 

also broadly used to investigate the circulatory system of the body such as 

blood vessels (Wielputz et al., 2014).  

CT scanners look like a big doughnut because the x-ray machine needs to 

spin around the body to make slides (Computed Tomography (CT). ). They 

consist of a radiation source and detector. The radiation source rotates 

around the body and the detector detects and measures the attenuation of 

the radiation passed through the body at different angles. Then the computer 

uses these measurements to generate cross-sectional images of the 

subject’s body to provide a 3- dimensional image (3D) ( Computed 

Tomography 2018). The output of such scanning devices used in radiology is 

digital. CT scan and MRI device generate DICOM images (McCollough and 

Morin, 1994) The most common images generated by CT scans have a 

matrix size of 512 x 512 pixels but can be generated in 1024 x 1024 and 256 

x 256 sizes as well (Varma, 2012). Digital Imaging and Communications in 
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Medicine (DICOM) is the standard to transmit, store and display medical 

imaging information. Hence requires a dedicated viewer unlike other common 

image formats such as JPEG, JPEG 2000, TIFF, GIF (Allisy-Roberts and 

Williams, 2007). DICOM files contain a header storing information about the 

patient, acquisition process and image features (Varma, 2012). CT images 

are represented by pixels with CT values of the tissue which are called 

Hounsfield units (HU) (Varma, 2012). A Hounsfield unit is the ability to 

attenuate the X-ray signal by organ’s tissue and is a quantitative scale for 

describing radiodensity in a standardised and convenient form (Allisy-Roberts 

and Williams, 2007),(Lusic and Grinstaff, 2012). Radiodensity of distilled 

water is defined as zero Hounsfield units (HU), while the air is -1000 HU. The 

HU of lung tissue is close to -1000 due to the high density of air in the lung 

and the HU for bone is +1000. The Hounsfield unit for most soft tissues is 

between 30 to 100 (Allisy-Roberts and Williams, 2007). Some CT scan 

imaging involves using a special dye called a contrast material (or contrast 

agent) to identify certain tissue. This contrast material blocks X-rays and 

appears white or black depending on processing. These contrast agents help 

to highlight and enhance the visibility of internal structures of the area of 

interest (part of the body being examined). The contrast agent is used to 

increase the signal attenuation in tissues with low HU to enhance them in the 

output image for better visualisation (Lusic and Grinstaff, 2012).  

A lung scan is one of the specialised radiology methods used to identify lung 

conditions such as small tissue masses. Mostly there are three types of cross 

sections available to observe the subject under investigation for one CT 

scan. These are axial, sagittal and coronal sections depending on the 

condition of the subject and the doctor’s interest (Lusic and Grinstaff, 2012). 

Figure 5.4 shows different cross-section slices of the lung CT scan 

images. In this figure 5.4 also yellow arrows demonstrate the left, right lung 

and other tissue appear in the CT scan images.  
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Axial Cross Section 

 

Sagittal Cross Section                        Coronal Cross Section 

Figure 5.4: Three different views of cross sections of lung CT image. (A) Axial cross 
section of a lung, prepared by the author from image dataset to be described  
(Davis, 2016). (B) Sagittal cross-section (Lin et al., 2015) .(C) coronal cross section ( 
Whiting, 2015). 
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Some nodules appear as a cavity, described as “cavitary”, meaning that the 

interior part of the nodule appears darker on CT images; they are more likely 

to be benign (Olson, 2017).  

 Methodology of Visual Analysis of Lung CT 5.5

Images 

This project takes advantage of human perceptual abilities in visually 

analysing lung CT images. Manual measurements can create highly accurate 

measured values of lung vessels characteristics. Using manual 

measurements between the tumour side and non-tumour side will be 

investigated. A limitation of the above investigation is that due available time. 

Manual measurements are first used to validate the automated method, 

followed by the automated method being applied to a larger dataset with the 

objective of supporting the results from the manual investigation (The 

automated system will describe in next chapter). Figure 5.5 depicts an 

overview of the manual investigation pipeline. 

 

Figure 5.5: Flowchart depicting the pipeline of processing for CT scans images. 
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To perform visual analysis, a frame-to-frame analysis needed to be carried 

out. The study population consisted of 10 patients who had a tumour on 

either side the left or right lung but not bilateral. The objective was to 

investigate if there was a difference in lung vessel-like structures between the 

tumour side and non-tumour side. 

The patients were randomly selected from a large dataset. A manual image 

analysis procedure was performed in MATLAB version 2015b (The 

MathWorks Inc., USA).  Each frame was imported into the MATLAB software; 

the first stage of visual analysis was windowing each 2-dimension CT image 

from each 3-dimension dataset. The aim of windowing was to change the 

contrast of the 2- dimension image in order to enhance the vessels attached 

to a tumour and surrounding vessels on either side of the lung. This was 

achieved by using the image processing tool viewer called ‘imtool’.   

A comparison is then made between identical positions on the lung 

containing a tumour against the other lung without a tumour. The reason for 

the comparison is to examine any difference between the number of vessels 

in the immediate neighbourhood of a tumour on one side with the 

corresponding area on the other side. Subsequently, the total number and 

length of vessels on either side were counted and measured. Figure 5.6 

illustrates the step by step of manual investigation in lung CT images. Image 

A is an original CT scan image of the lung read in MATLAB. Image B defines 

manual measurements of the tumour size with MATLAB functions.  Image C 

is the result of manual windowing of the image A. Image D elaborates the 

measurement of the lengths of vessel-like structures speckles around a 

tumour. 
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Figure 5.6: CT image from the dataset. A tumour is in the lower lobe of the left lung. 
(A) shows 2D contrast CT images of peripheral vessels in lung region. (B) Zoomed 
in image of (A) to specify a manual measurement of a tumour.  (C)  Shows the 
windowing results. (D) Zoomed in image of (C) to specify a tumour with surrounding 
vessels. Illustrates an example of manual vessel length measurement.   
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CT scan images of tumours for individual patients were segmented manually 

to identify the size of a tumour from all slides where a tumour was shown. 

This was calculated by use of a MATLAB function that creates an interactive 

polygonal tool, ‘roipoly’ to specify the area of a tumour. The distance tool 

button in the ‘Image Viewer toolbar’ assists us to manually measure the 

length of the vessels surrounding the tumour. This tool allowed the 

measurement of the length with a click-and-drag approach. Length 

measurements were pixel-based; the results can be converted to cm if 

required. Ten patients with lung tumours were examined, and the 

measurements of the length of the vessels on each a tumour were obtained. 

In order to manually quantify the tortuous nature of vessels, the arc-cord ratio 

was used (Nat et al., 2014). This was performed by use of a MATLAB 

distance tool in measuring the length of objects, i.e. finding the distance 

between two endpoints of the same vessels.  Therefore, the tortuosity of a 

vessel like structure was obtained by the ratio of the length along the curves 

of the vessel (L) to the Euclidean distance between two ends point of the 

vessel (C). It was calculated according to the equation 5.1. 

 

 

                         Ţ = 
𝑳

𝑪
                         

                                                                                            Equation 5.1 
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 Experimental Results of Visual Investigation   5.6

This section investigates the number and length of vessel-like structures to 

calculate the vessel tortuosity in the vicinity of a lung tumour and compare 

with the contralateral lung with no tumour.  This was performed from slide 

had a maximum area plane.  

5.6.1Lung CT-Diagnosis Lung 1 

Vessel characteristics were determined by visual assessment for 10 patients 

from the dataset from lung CT- Diagnosis (Hart et al., 1997).The sets used 

were chosen as having unilateral lung tumours and good visual CT image 

quality. CT scan images of tumours for individual patients were calculated 

manually. The area of a tumour was measured by using ‘roipoly’ to specify 

the area of a tumour in MATLAB. The distance tool button in the ‘Image 

Viewer toolbar’ used to manually measure the length of the vessels 

surrounding the tumour. The area of a tumour was measured, choosing slice 

with the maximum area. The absolute difference value of vessels number of 

tumour side and the non-tumour side was calculated for each patient. 

 

Table 5.1: Vessels number were observed in tumour side and non-tumour side with 
a size of a tumour in pixels. The absolute difference of a number of vessels in 
tumour side and number of vessels in the equivalent area with no tumour. 
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Table 5.1 summarises the results of the manual analysis. It lists the number 

of vessels near a tumour and the number of vessels in the corresponding 

area of the non-tumour side for the 10 patients with lung cancer. The results 

illustrate that the difference between the number of vessels in the vicinity of a 

tumour minus the equivalent area in the contralateral lung with no tumour 

had a median of 5 with a range of between 2 and 7; thus, in all cases there 

were more vessel-like structures in the vicinity of a tumour compared with the 

contralateral lung with no tumour. When checking the incidence of left and 

right sided tumours, 3 out of 10 cases had tumours in the left lung.   

In all ten cases, the number of clear vessel-like structures in the immediate 

vicinity of the tumour was greater than that in the corresponding area in the 

contralateral side and the mean (standard deviation) of the difference was 5 

(1.39). A Student t-test was performed to determine the statistical 

significance of the observed differences between the side of the tumour 

against the other side. There was a significant of the difference p<0.001 (t-

test).  

In addition, vessel-like structures often appeared brighter on the side of a 

tumour. The results of this pilot study suggest that the number of clear bright 

vessel-like structures in the immediate vicinity of a lung tumour may be 

higher than in the corresponding area on the contralateral side. 

In the following section, on bar chart graphs, blue bars show number of 

vessels or vessels tortuosity in the vicinity of a tumour and red bars are 

number of vessels or vessels tortuosity in the contralateral side with no 

tumour. 
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Figure 5.7: This bar chart illustrates the number of vessels in the vicinity of a lung 
tumour compared with the number of vessels in the contralateral lung with no 
tumour. 

 

The bar chart in figure 5.7 illustrates the difference in vessel numbers in the 

lung with a tumour side and compared with the lung with no tumour. The x-

axis represents the patient number with the primary lung cancer and the y-

axis represents the number of vessels.  
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Figure 5.8: This graph shows the mean of vessels tortuosity in the vicinity of tumour 
compared with the mean of vessels tortuosity in contralateral lung with no tumour. 

 

Measurement of vessel length enables calculation of vessel tortuosity in 

lungs; this was applied to unilateral lung tumours enabling comparison with 

the equivalent area in the contralateral lung without tumour. The bar chart in 

figure 5.8 shows the mean of the tortuosity on the tumour side compared with 

lung with no tumour. The x-axis describes the number of cases with primary 

lung cancer whereas the y-axis describes the mean of the vessel tortuosity in 

a range of 1 to 1.26.  
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Figure 5.9: The individual value of tumour size and vessel tortuosity applied on lung 
CT- Diagnoses images. 

 

Figure 5.9 shows the individual value plot, relating the patient tumour size 

with the mean of vessel tortuosity around it. The y-axis presents the mean of 

vessel tortuosity in a range of 1 to 1.25. The x-axis presents the area of a 

tumour in pixels. This plot indicates no clear relation between tumour size 

and the vessels’ tortuosity. 
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5.6.2 SPIE-AAPM-NCILung Nodule Classification Challenge-

LUNGx Lung 2 

In this section, the method of manual investigation is applied to dataset 2 

images LUNGx Challenge images (Grove et al., 2015). The number of 

vessels in the vicinity of a tumour was counted in the unilateral side and 

compared with the corresponding contralateral area with no tumour. Twenty-

three testing cases in the dataset were analysed. From the LUNGx challenge 

images, 12 cases and with malignant primary lung nodule and 11 cases of 

benign lung nodules were evaluated. 
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Figure 5.10: This bar chart demonstrates the number of vessels in the vicinity of 
lung tumour compared with the number of vessels in corresponding area of the lung 
with no tumour. The results are from LUNGx challenge patient with malignant 
tumour. 

The bar chart in figure 5.10 illustrates the number of vessels in the vicinity of 

a lung tumour compared with the number of vessels in corresponding area of 

the lung with no tumour. It can be seen that the number of vessels of all 12 

cases in the vicinity of a tumour is significantly higher than the corresponding 

area of the lung with no tumour.  

There was a significant difference between the number of vessels like 

structure in the vicinity of a tumour compared with the contralateral lung with 

no tumour (p<0.001 t-tests) with a mean (sd) difference of 10(4.5). 
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Figure 5.11: The graph bar chart represents the mean of the tortuosity in the vicinity 
of malignant lung tumours. 

 

The graph in figure 5.11 represents information of the mean of the tortuosity of the 

vessels like-structures in the vicinity of lung tumour of patients with malignant 

tumour. It can be observed that the mean of the vessels tortuosity in the vicinity of 

a lung tumour is almost equivalent to the mean of the tortuosity of the vessel-like 

structures in the contralateral lung with no tumour.  
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Figure 5.12: The bar chart shows the number of vessels in the vicinity of lung 
tumour compared with the number of vessels in contralateral lung with no tumour.  
The results are from LUNGx challenge images with benign tumour.   

 

In figure 5.12 the bar chart describes the number of vessels in the vicinity of lung 

tumours compared with the number of vessels in corresponding area of the lung with no 

tumour. The results of 11 CT scan images of benign tumours indicated; it is slightly 

different between the numbers of vessels in the vicinity of lung tumour in 

comparison with the corresponding area of the contralateral lung with no tumours. 

The t-test confirmed there was no significant difference in the number of vessels in 

the vicinity of benign tumour and corresponding area of the contralateral side with 

no nodule. 
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Figure 5.13: The graph presents the mean of the vessels tortuosity in the vicinity of 
benign lung tumour compared with the mean of vessels tortuosity in contralateral 
lung with no tumour. 

The mean tortuosity of the vessels like structures in the vicinity of the benign 

nodule was calculated and compared with the vessel-like structures of the 

contralateral lung with no nodule. It can be noticed from figure 5.13 that in all 

but one case, the mean of the vessels tortuosity on the side of tumour is very 

close to the mean of the tortuosity of the vessels like structure on the 

opposite side with no tumour. The mean of the vessel tortuosity in nodule 

side of the only different case was 1.029 whereas the non- nodule side was 

1. By observing the graph, it can be concluded that in benign cases, the 

mean of the vessels tortuosity in the vicinity of a tumour was similar to the 

contralateral lung. 

Dataset lung 2 (Armato et al.,2015) contained 10 training cases and 60 

testing cases. The following results show the investigation of 5 malignant 

cases and 5 benign cases from training dataset. 
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Table 5.2: Shows the results of vessels number in five benign and five malignant 
tumours. Tumour size figures are pixels based. 

 

As illustrated in table 5.2, the number of vessels in vicinity of lung tumour 

counted and compared with the number of vessels in corresponding area of 

contralateral lung. Ten tumour cases of five malignant and five benign were 

analysed.  The size of a tumour was measured and depending on the 

purpose of the investigation, the protocols of each case were revealed. The 

number of vessels, however, was higher in the vicinity of lung tumour, as 

cases 1,2,3,4 and 5 were noted for the malignant tumours in the Table. 

However, the opposite trend was seen for benign tumour, with the number of 

vessels in the vicinity of lung tumour were near or similar to the number of 

vessels in contralateral lung with no tumour. 
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Figure 5.14: The mean of vessels tortuosity in the vicinity of benign lung tumour 
compared with mean of vessels tortuosity of contralateral lung with no tumour. 

 

The bar chart in figure 5.14 demonstrates the mean of the tortuosity of the 

vessel-like structures in the vicinity of lung tumour. The mean of the tortuosity 

in the tumour side was similar to the mean of the vessel tortuosity in 

contralateral lung.  
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Figure 5.15: Illustration of the mean of vessels tortuosity in vicinity of malignant lung 
tumour compared with contralateral lung with no tumour. 

 

The bar chart in figure 5.15 shows the mean of the tortuosity of the vessel-

like structures in the vicinity of lung nodule. In cases of four and five, the 

mean of the tortuosity in the nodule side was close to the mean of the vessel 

tortuosity in contralateral lung with no tumour. In the first three cases, the 

tortuosity of vessels in the vicinity of lung tumour was higher compared with 

contralateral lung.  

 Summary  5.7

Lung cancer is the third most common cancer in the UK according to Cancer 

Research UK. This cancer is more common in males than females and is 

considered a major cause of cancer death (Nat, 2014). Tumours continue to 

create more vessels around them. However, in these cases with primary lung 

cancer, the proportion of vessels around the tumour side increased sharply. 

This Chapter focuses on the investigation of vessel attributes using manual 

analysis in Lung CT images. However, the main objective was to investigate 
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the number of vessels in areas of unilateral lung tumours and to compare this 

with the equivalent contralateral lung without tumour. The size of tumour, 

vessels number and vessels length in order to calculate the tortuosity were 

measured using 2-dimensional slides of Lung CT images.  

Two different types of lung CT scan datasets; Lung CT-Diagnosis and 

LUNGx Challenge were used.  MATLAB software (The MathWorks Inc., 

USA) was used in order to display and analyse the DICOM images. 

Windowing was performed manually to clearly highlight and display the 

tumours as well as surrounding vessel-like structures.  

Using the software, images were analysed and the number of clearly defined 

vessel-like structures in the vicinity of the tumour was counted and compared 

with the corresponding region in the contralateral lung with no evidence of a 

tumour; small vessel like structures and branches were not included. The 

area of a tumour was manually delineated and calculated in terms of pixels.  

Ten sets of Lung CT-Diagnosis termed dataset1 with primary lung cancer 

were initially investigated. For each set of these CT images, one image was 

used where the tumour size was greatest.  In all ten cases, the number of 

clear vessel-like structures in the immediate vicinity of a tumour was greater 

than that in the corresponding area on the contralateral side, mean and 

standard deviation of the difference were 5 and 1.39 respectively, and there 

was a significant difference p<0.001. The mean of the vessel tortuosity of 

these ten cases with primary lung cancer on the side of a tumour was slightly 

higher with the value of 1.10 and 1.02 on opposite side.   

For dataset lung 2, the LUNGx Challenge, formally known as the SPIE-

AAPM-NCI Lung Nodule Classification Challenge the set consisted of 12 

malignant and 11 benign cases were used. Investigation of these datasets 

revealed that the number of the vessels in the vicinity of a malignant tumour 

was significantly higher than that in the corresponding area on the 

contralateral side with no tumour with a significant difference p<0.001 (t-test). 
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The mean of the vessels tortuosity of the tumour side and non-tumour side in 

twelve cases with primary lung cancer were 1.39 and 0.99 respectively, 

whereas the mean of vessels tortuosity of the tumour side and non-tumour 

side in eleven benign cases were 1.029 and 1 respectively. 

 Conclusions and Discussion 5.8

The primary concern for this chapter was the investigation of vessel attributes 

using visual analysis. This objective was to investigate the number of vessels 

in areas of unilateral lung tumours and to compare this with the equivalent 

contralateral lung without a tumour. The size of the tumour, vessels number 

and vessels length in order to calculate the tortuosity were measured using 

2-dimensional slides of Lung CT images. Two different type of public dataset 

were used. Measurements from both datasets elaborated the significant 

results; as suggested the number of clear bright vessel-like structures in the 

immediate vicinity of a lung tumour may be higher than in the corresponding 

area on the contralateral side. The mean vessel tortuosity is slightly higher 

near a tumour compared to non-tumour side.  This research merits further 

study to investigate if this approach may help enable early detection of lung 

tumours. 

 

 

  



Chapter 6 Quantifying Vessel-like Structures in Lung CT Images 
 
 
 

 
 
 
 
 

115 

Chapter 6 Quantifying Vessel-like 

Structures in Lung CT Images 

 Introduction  6.1

HE final chapter in this thesis investigates and applies the image 

segmentation methodology to the blood vessels in lung CT images in 

order to facilitate the counting of the blood vessel and measuring their 

lengths and quantifying their tortuosity of the vessels.  

As described in chapter 4 a mathematical morphology operation with linear 

structures was first applied to the thin structures of microscopic cilia images. 

This is now adapted to the similar features of vessel-like structures in the 

vicinity of lung tumours in CT images. The segmentation methodology has 

been applied to 2D slices of lung CT images that contain a tumour. Initially, 

the method enhances and segments the blood vessels then calculates the 

number and measures their lengths in order to find the tortuosity of the 

vessels. 

Using such a computerized system will save time and allow clinicians to 

process a larger number of images. In this chapter, a semi-automatic 

algorithm is applied to illustrate a potential solution for the segmentation and 

quantification of lung vessel attributes.  

The results of the manual analysis were then used to evaluate the semi-

automatic segmentation of the algorithm. The ability to investigate the 

number of vessel and vessel tortuosity on high-resolution CT images may 

offer a new approach for early diagnosis of malignancy.   

 

T 
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 Literature Review  6.2

Different methods and vessel segmentation have been widely developed 

previously. In practice, a fast and accurate algorithm for blood vessel 

segmentation in CT images is still a challenging task in many applications 

(Han, 2012). Interactive segmentation plays a significant role in the analysis 

of medical images where users can import their expert knowledge as an 

additional source of information into the system (Rudyanto et al., 2014).    

Kiraly et al. proposed a lung vessel segmentation method by applying a 

global threshold operation to the lung region. Their intention was to find the 

location of pulmonary emboli and to investigate the characteristics of a local 

arterial tree and analysis of arterial sub-trees which are affected by 

pulmonary emboli. They segmented the entire lung vasculature by using 

global thresholding and labelling all connected component and eliminating 

small object (Kiraly et al., 2004).  

A simple morphological operation was another approach of blood vessel 

segmentation described by Eiho in 1997  (Eiho and Qian, 1997). Their aim 

was to obtain information about the shape and the place of the coronary 

artery tree. A top-hat operator was used to enhance the structure of blood 

vessels. Morphological erosion and half thresholding were used to remove 

the background.  Finally, the vessel tree shape was extracted based on 

interactive user input that provided the specification of the root. 

The common Hessian-based enhancement filter has been examined for the 

purpose of developing a blood vessel enhancement filter. This method 

enhances the vessels which look for local geometrical structures similar to 

tube-like structures by modelling the eigenvalues of the Hessian matrix, 

however, this algorithm was time-consuming in computing the data and the 

performance was poor along bifurcations (vessel branches). Frangi 

introduced a matched filter on thorax chest CT images. They proposed this 

new method because of Hessian-based filters, which are found to be 
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sensitive to noise, fail to detect smaller vessels and sometimes gives 

discontinuous vessels due to junction suppression. They applied matched 

filters in different directions, and local entropy thresholding, to gain more 

accurate analysis in noisy images to correctly extract the entire vessels. They 

extracted the lung region of an image based on grey level thresholding and 

morphological operations (Frangi et al., 1998).       

A parametric deformable (Terzopoulos et al., 1987) model such as snake and 

level set models have been described. Approaches in this category may have 

difficulties in handling of finding the initial points, bifurcation and discontinuity 

of blood vessels. Therefore Yim described the graph searching technique 

based on an ordered region growing algorithm. The blood vessels tree 

structure was traced by specifying the endpoint and the origin of the vessel 

tree or by pruning the graph with a seed point. Ambiguities in vessel 

branching due to vessel overlap are effectively resolved by heuristic methods 

that incorporate a prior knowledge of bifurcation spacing (Yim et al.,2000). 

Valli et al. revealed a set of linear filters, which comprise the combination of 

the Gaussian distribution. They considered the blood vessel as a bar-like 

structure thus the enhancement was based on linear operators in various 

directions and widths. Their aim was to provide an algorithm for real-time 

vessel enhancement and they applied the method to real coronary 

arteriograms and synthetic images. To gain suitable results, the parameter 

space of the filters must be selected carefully. Their experimental results 

were shown following noise rejection and showed good sensitivity for the 

vessel detection (Valli.et al.,1997).  

Zana et al. described a different method of morphology for detection of 

vessel-like objects in 2-D images. They defined blood vessels as a bright 

pattern, piecewise connected and locally linear. The method combined a 

rotating linear morphological operation followed by a cross-curvature 

analysis. Their aim was to segment the vessels from the background pattern 

( Zana et al ., 2001).  
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To extract segmented blood vessels, Chaudhuri et al. applied matched filters 

to segment the blood vessels in retinal images. The aim of the method was to 

examine the effect of the topological changes in the retinal vasculature on the 

hemodynamic distribution in the retinal circulation. The matched filter kernel 

was applied in 12 directions over 180°. The final resulting image was 

computed by taking the maximum response of the 12 filters at each location.  

They used the final threshold image results for producing a binary 

segmentation of the vasculature. The outcomes of the segmentation assist in 

partitioning the vessels to measure the tortuosity. Their results showed that 

tortuosity leads to an increase in the pressure drop and decrease in the blood 

velocity (Chaudhuri et al.1989).  

Ricci and Perfetti proposed the line operator to be applied to the green 

channel of the RGB retinal image. It was based on the evaluation of the 

mean grey level along lines with fixed length passing through the target pixel 

at different orientations. They also calculated the mean value of short 

orthogonal lines in order to reduce false positive. Finally, they used these 

values along the pixel intensity values to create features for a support vector 

machine to perform a supervised classification (Ricci et al., 2007).  

 2-Dimensional Datasets  6.3

The objective is to segment the blood vessels in the vicinity of a lung tumour 

using the following steps. The proposed algorithm for image feature 

extraction and quantification of lung blood vessels were implemented in 

MATLAB (The MathWorks Inc., USA). To demonstrate this approach, a set of 

80 cases of chest CT Images, which were described in chapter 5, containing 

pulmonary nodules were examined. 40 cases from lung1 and total of 40 

cases from lung2 (20 cases with benign and 20 cases with a malignant 

tumour) were observed in summary the process consisted of: 

Pre-processing followed by:  
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 Windowing 

 Extraction of lung region using a mask 

 Vessel enhancement 

 Thresholding  

 Skeletonisation 

 Branch removal 

 Vessel refinement  

 Endpoint identifications  

 Vessel quantification 

 

6.3.1 Windowing (Histogram Adjustment) 

 Manual windowing was performed in order to highlight the blood vessel 

structure in the vicinity of lung tumours. CT images are represented by pixels 

with CT number in the approximate range of -1000 to 3000 for example 4000 

levels of grey (Chaudhuri et al., 1989). Hence a mapping of CT numbers into 

the values that are meaningful to the application is required. This was 

performed by a common technique in digital imaging called windowing. The 

windowing technique was used to highlight the vessels-like structure around 

a tumour, excluding the unwanted objects in the lung CT image. This was 

achieved manually by using the image processing tool viewer ‘imtool’ in 

MATLAB. Figure 6.1 illustrates the original CT image of a patient with a 

tumour in the left lung which was surrounded by many blood vessels. Image 

6.1 (B) shows an example of manual windowing application to the image 

6.1(A). 
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Figure 6.1: (A) Shows 2D contrast-enhanced CT images showing vessel-like 
structures in the lung (the image is from the original dataset). (B) Shows an 
enhanced view of vessel-like structures following specific windowing. 

 

6.3.2 Extraction of Lung Region  

To better detect vessel-like structures, a mask was created to aid the 

segmentation of the lung region. To segment, the lung region, a 2-

dimensional slide of lung CT images was masked by thresholding at a level 

of 400, the pixel value of images had a range of value between 0 and 4094. 

Morphological operations, dilation and erosion are then applied on the 

segmented image in order to fill the holes appearing in the lung region and to 

remove the blood vessels in each image. At this point, the mask for each side 

was created by selecting the biggest object on each side of the image. Figure 

6.2 illustrates mask result step by step procedure of how to achieve the 

mask. 
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Figure 6.2: Extraction of processing of lung mask A) An axial slice of a chest CT 
image. B) Threshold image. C) mask image without any vessels. 

 

6.3.3 Lung Vessel CT Image Enhancement 

Enhancement algorithms are used to minimize image noise and increase the 

contrast of regions of interest. In this case, the enhancement technique 

assists in clarifying the vessel-like structures with higher contrast. Intensity 

variations in the background across the image deteriorate the performance of 
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the segmentation system. To remove this illumination gradient in the 

background, a shade correction technique was applied (Allisy-Roberts and 

Williams, 2007),(Niemeijer et al., 2005). The shade correction technique was 

accomplished by estimating the background image and subtracting that from 

the original image. The background image was produced by filtering the 

windowed image, using a median filter. The value of the median filter was 

empirically chosen after trying a range of values. A kernel size of 10 x 10 was 

applied.   

The opening of an image ƒ is simply the erosion of image by structuring 

element Ş, followed by the dilation of the result by structuring element. The 

opening of an image is defined as in equation 6.1 where ƒ is an image and Ş 

is a structuring element.  

 

ƒ ο Ş=(ƒ  ϴ  Ş)  ⨁ Ş 

Equation     6.1 

Once the background image has been estimated and removed, vessels are 

ready for further enhancement. A linear structuring element was used to 

enhance the vessels, that can be considered piecewise linear. A vessel 

enhancement method was performed by deploying a basic morphological 

operation using a linear structure and applied along vessels at different 

orientations. A basic morphological operation (Zwiggelaar, Parr and Taylor, 

1996) of erosion followed by dilation gives a high degree of discrimination 

between circular and linear features of vessel-like structures (Frame et al., 

1998). This operation was applied to a structuring element oriented at 12 

angles with 15 degrees angular resolution. This linear structuring element 

with the length of 12 pixels was then applied to perform the morphological 

operations. In each of the 12 images in different orientations, only those parts 

of the vasculature in which the linear structuring element can fit remain. The 

final resulting image was computed by taking the maximum response of the 
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12 filters at each location, with no nodular mass features present. Therefore, 

objects smaller than the linear structuring elements are diminished in 

intensity and those that can fully contain the structuring element are 

enhanced in intensity. The results identified an image containing mainly 

elongated structures of vessel-like structures in all orientations (Frame et al., 

1998). 

Figure 6.3 shows the representation of this step by step procedure of the 

algorithm, windowing, basic morphological operation, segmentation,                                                                                                          

skeletonisation and endpoints. Figure 6.3 (C) shows the basic morphological 

operation of peripheral vessels in lung region of CT images. The results show 

vessels in the lung region have been enhanced with reasonable accuracy. 
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Figure 6.3: (A) 2D CT original image of peripheral vessels in the lung region. (B) 
highlights the blood vessels structure results obtained from windowing of (A). (C) 
Mathematical Morphology Enhancement of (B). (D) Zoomed-in image of (C).Tumour 
and enhanced vessels from a tumour. (E) Segmented image of (C). (F) 
Skeletonisation of (E). (G) Illustrates the endpoints of blood vessels with blue points. 

 

Thresholding - An empirically derived threshold was found and applied to 

the enhanced image to produce a segmentation of vessels in lung CT 

images. The threshold was chosen in order to ensure that as many vessels 

as possible would be detected. The intention is to remove objects that are 

spurious and small vessels and branches for later analysis.  The result in 

Figure 6.3 (E), illustrates; the segmentation of an enhanced image of figure 

6.3(C). The vessels have been segmented appropriately, consequently, their 

features, such as a number of vessels in the vicinity of a tumour, length and 

tortuosity could be analysed. The length and the tortuosity can be calculated 

once the endpoints of the vessels are recorded.  

Skeletonisation (Spencer et al., 1996) is the result of the thinning process, 

which peels the contour of the vessel until a medial one-pixel width. 

Skeletonisation of vessels was performed enabling identifying points in the 

image where vessels cross and where vessel branching occurs. Branch 
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points and crossover points are located and removed from the skeleton 

network; this generates a number of blood vessel segments. 

Segments less than 5 pixels are considered as noise and are removed. Thus 

measures of length and tortuosity can be calculated from the vessel 

segment. In order to reduce error from the measurements, small branches 

and spurs projecting from main vessels are removed without breaking up the 

vessel they branch from.  Thus a step for spur removal was added prior to 

the removal of branch and crossover points. The skeletonisation results and 

end points are demonstrated in figure 6.3, (F) and (G) respectively. Results 

from the images of figure 6.3(F) and (G) assist in the further measurement of 

vessel features.  

 Semi-Automatic Quantification of Blood Vessel 6.4

Attributes   

A semi-automatic method was designed to speed up the user interaction 

while still performing most of the other tasks automatically. In the process of 

segmentation and branch removal, occasionally vessels are disconnected 

from their branch points. To produce accurate vessel lengths for tortuosity 

calculation the whole length of the vessel is required. This is based on the 

user's input which can then refine the vessel lengths. In this framework, the 

user only needs to select the endpoints of the vessels, and then the algorithm 

automatically reconstructs the disconnected vessels by using these points. 

The goal is to improve the performance of the segmentation to find the true 

length of the vessels.  The algorithm reconstructs the vessel by using a 

popular cubic spline (Gonzalez and Woods, 2008.) technique.  The spline 

constructed of piecewise third-order polynomials pass numerical data to 

create a smooth and continuous function.   
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A cubic spline was incorporated, uses the user input (points) to smoothly 

repair the disconnected vessels which they were disconnected by branch 

removal technique.  Figure 6.3(G) shows the result of reconstructing the 

vessels by the spline technique. Endpoints of the vessels are shown by blue 

dots for a visual demonstration. 

 

Chain code- The vessel lengths were calculated by applying a chain code 

(Bartels et al.,1987). The chain code is a boundary-based representation 

scheme composed of a connected sequence of straight-line segments of 

specified length and direction. The direction code of the chain code uses an 

eight-connectivity number scheme, as defined in figure 6.4. 

 

Figure 6.4: Chain code representation of 8 connections. 

 

Tortuosity- Furthermore, measuring of the vessel tortuosity in the 

segmented image was calculated by the prevalent method called arc to chord 

ratio, is defined as equation 6.2: 

 

                          𝑻𝒐𝒓𝒕𝒖𝒐𝒔𝒊𝒕𝒚 =
𝑽𝒆𝒔𝒔𝒆𝒍 𝑳𝒆𝒏𝒈𝒕𝒉 

𝑬𝒖𝒄𝒍𝒊𝒅𝒊𝒆𝒂𝒏  𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆
                    

Equation 6.2 
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The distance between two endpoints is calculated by using the Euclidean 

distance.  

 3D Visualisation of Vessels in Lung CT Images 6.5

Development in the medical image processing field has brought in the 

necessity of developing the capability of digital medical imaging modalities to 

3D along with powerful digital imaging reconstruction and visualisation to 

help with better diagnosing and early treatment. 3-D visualisation helps 

specialists to choose their area of interest for scanning and this reduces the 

patient radiation exposure (Gonzalez et al., 2008.).  

The aim is to examine vessel-like structures including spicules in the vicinity 

of lung tumours using 3-dimensional visualisation including investigating the 

vicinity of a tumour in comparison with areas with no tumours. In order to 

examine the vessel-like structures in 3-dimensions, the bright structures 

corresponding to ribs were removed using software developed in MATLAB. 

Thus the technique was applied to 2-dimensional DICOM images of the lung 

in order to create new DICOM images which display the lung region including 

a tumour and vessels inside the region. To optimise the 3-dimensional 

visualisation of a lung tumour and vessels in its vicinity at different angles, 

the method extracted the lung region and removed the tissues outside the 

lung region. Therefore, initially, 2-dimensions lung CT images were imported 

into the MATLAB software and were thresholded to create the mask. The 

Mathematical Morphology operators, dilation follow by erosion were used to 

alter the mask to remove the tissues around the lung region. Finally, the 

manipulated 2-dimensional lung CT images are reassembled to illustrate a 3-

dimensional presentation of a lung anatomical structure without any tissues 

outside of the lung. The 3-dimension visualisation of the lung images was 

performed with Amira version 6.3 (Thermo Fisher Scientific, USA).   

Identification of lung’s areas of interest was achieved by following steps; 
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 Import the series of 2-dimensional Dicom images. 

 

 Thresholding the image based on greyscale intensity to create a lung 

mask and filled the small holes. 

 

 

 Apply mathematical morphology closing (dilation followed by erosion) to 

alter the mask.  

 

 

 Save the modified image into Dicom image with the previous Dicom tags. 

 

The purpose of the preliminary processing is to remove the edge information 

not related to the lung area to reduce the complexity for better and further 

visualisation of 3-dimensional models. This process started with image 

thresholding according to the equation Equation 6.3. 

 

𝐽(𝑥, 𝑦) = {
0        𝑓𝑜𝑟        𝐼(𝑥, 𝑦) < 𝑇  

1       𝑓𝑜𝑟        𝐼(𝑥, 𝑦) ≥ 𝑇 
                    

Equation 6.3 

Where: 
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I(x,y)  –  The original Dicom image 

J(x,y) –  binary image resulted after thresholding to create a mask 

T – Threshold value 

To remove the complexity of lung borders a sequence of the mathematical 

operations (with structuring element) were used as below; 

 

− Imfill to fill the holes 

− Dilation with a structuring element of disk 

− Erosion with a structuring element of disk 

The following images demonstrate an example of the step by step process 

for removing the edge of the lung areas. This was followed by the use of 

Amira software to construct the 3-dimensional model of the series of 2-

dimensional lung images without lung areas border. Figure 6.5B shows a 2-

dimensional image of the lung region following removal of the ribs. 6.5 A is 

an original image from the dataset, B displays the lung region without any 

surrounding tissues, C and D show a 3-dimensional visualisation of the data.  
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Figure 6.5: Illustrates the method applied to the series of 2-dimensional images of the 
lung. Image A shows an example of 2-dimensional original lung image. Image B presents 
the result of the threshold. Image C and D show the mask image and image without 
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tissues around the lung (applied masked on the original image). Image E and F are the 
results of a 3-dimensional model of the lung.     

 

 Experimental Evaluation  6.6

6.6.1 Materials 

In this study, the algorithm was applied to two different sources of Lung CT 

images. These images are identical to those detailed in the previous chapter 

(section 5.4). The first dataset (lung 1) has 61 image sets of patients with 

primary lung adenocarcinoma. From this dataset 40 cases of them were 

analysed. The second dataset (lung 2) contains 70 image sets for the 

diagnostic classification of malignant and benign lung nodules. From the 

second datasets also 40 cases containing 20 benign tumours and 20 

malignant tumours were analysed.  

6.6.2 Performance Measurements  

The performance of the algorithm was assessed on a larger database. 

Dataset one, patients with primary lung adenocarcinoma (Lung CT-

Diagnosis) dataset one, for each set of CT images, one image was used 

where the tumour size was greatest; dataset two, LUNGx Challenge dataset 

two; the slide with a maximum size of a tumour was observed. 

The algorithm was evaluated against the manual measurements. The 

algorithm enhanced and segmented the thin structure of vessels in order to 

count the number of vessels and calculate the vessels tortuosity in areas of 

unilateral lung tumours and to compare the results with the equivalent 

contralateral lung without tumour. The aim was to investigate the vessel-like 

structures in unilateral lung tumours and compare results between the lung 

with a tumour and the contralateral lung with no tumour. For each specific 

feature, the quantitative data of all cases was calculated in areas of unilateral 
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lung tumours and compare with the equivalent contralateral lung with no 

tumour.   

The summary of the results of the algorithm applied on datasets obtained 

and represented by graphs. Bar charts, frequency distribution and scatter plot 

graphs were used. The Ryan-Joiner test was applied in Minitab v17 (Minitab 

Inc., USA) to examine the Normality of data. To prevent a repetition of the 

descriptions, blue bars and red bars on graphs refer to the tumour side and 

non-tumour side respectively. The number of vessels and vessels tortuosity 

were calculated in two separate areas; in the surrounding area of a tumour 

and entire lung region. These were then compared to the results of the 

corresponding side of the lung with no tumour. 

 Results  6.7

The validation about to be presented is investigated the system for detection 

of vessel-like structures of lung CT images. The validation was performed to 

compare the algorithm versus manual study in respect of the number of 

vessels detected in the vicinity of a lung tumour. The total number of vessels 

was counted, and the number of vessels detected by the algorithm in the 

vicinity of a lung tumour was counted corresponding to the visual analysis 

(Sadri et al., 2017) The number of vessel-like structures from manual 

analysis compared with those detected by the algorithm. Therefore scatter 

graphs were plotted to compare the methods on CT images for 40 patients.  
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Figure 6.6: The scatter plot demonstrates the comparison between the difference of 
the number of vessel-like structures detected by the algorithm and visual analysis 
against the total number of vessels.the graph shows that there is a increasing and 
increased the number of vessels not detected with the total number of vessels.  

 

The plot in figure 6.6, shows an apparent relationship between the difference in 

the vessel-like structures detected manually and those detected by the algorithm 

compared with the total number of vessels in the vicinity of a lung tumour. This 

shows the number of vessels not correctly detected increases with the total 

number of vessels (r=0.69) as might be expected. 

6.7.1 Lung CT-Diagnosis in Tumour Area Dataset Lung1 

The following sections demonstrate the results obtained from the algorithm. 
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Figure 6.7: The bar chart displays the number of vessels in the area of the tumour. 
The blue bars are the number of vessels in the vicinity of a malignant tumour. The 
red bars are a number of vessels in the corresponding area of contralateral lung with 
no tumour.    

 

The bar chart in figure 6.7 illustrates the population of vessels in the lung with a 

tumour and the lung with no tumour. The x-axis represents the number of cases of 

primary lung cancer and the y-axis represents the number of vessels detected in the 

vicinity of a tumour. Blue bars are consistently higher than the red bars in all but two 

of the 40 cases.  In majority cases, blue bars are twice the value of the red bars, 

hence suggesting that the tumour area has more vessel-like structures. 
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Figure 6.8: Frequency distribution graph illustrates the number of vessel-like 
structures in the immediate vicinity of a tumour (blue bars) and the corresponding 
area of the other lung with no tumour (Red bars).   

 

The frequency distribution chart visually represents the distribution of a 

number of vessels in the immediate vicinity of a tumour and non-tumour side 

for the patients. In this figure 6.8, the x-axis is the number of vessels and the 

y-axis is the frequency (number of patients). The graph shows there is a 

difference between two distributions. The graph shows the distributions are 

shifted, which indicates the higher number of vessels on the side of a tumour.  
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Figure 6.9: Scatter plot of the difference in a number of vessels in the immediate 
area of a tumour and the number of vessels in the equivalent area in the lung with 
no tumour. Redline is a mean of the differences.   

As is also evident from figures 6.7 and 6.9 in the vast majority of cases there is a 

difference in the number of vessels between the tumour side and non-tumour side, 

with the tumour side having a higher number of vessel-like structures. Blue dots 

represent the difference between vessels in tumour side and non-tumour side for 

each patient. This plot was created to investigate these differences, and it can be 

seen that there is some variation and suggesting high variability. This is 

understandable considering factors such as what side the tumour is (right lung is 

bigger than the left lung) and the size of a tumour.  The study shown from 40 

patients with a malignant tumour, 19 tumours were in the left lung and 21 tumours 

were in the right lung.      
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Figure 6.10: Normality plot of the difference of a number of vessels in the area of 
tumour and the number of vessels on the side of non- tumour. 

 

The Ryan-Joiner test was applied in Minitab v17 (Minitab Inc., USA) to examine 

the normality of data. The difference of the population between the number of 

vessels in the area of a tumour in tumour side and non-tumour side are not 

normally distributed according to the figure 6.10. In this case, the p-value that was 

calculated was less than 0.1, therefore, a non-parametric test that is the Wilcoxon 

signed-rank test was used. The Wilcoxon signed-rank test indicated the number of 

vessel-like structures in the area of tumour was significantly different to the 

corresponding area of the non-tumour side p< 0.001.  
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Figure 6.11: The mean of vessel tortuosity. Blue bars are mean of vessels tortuosity 
in the vicinity of a tumour and red bars are mean of vessels tortuosity in the 
corresponding area of contralateral lung with no tumour.    

    

The bar chart in figure 6.11 demonstrates the tortuosity of vessels between 

the side with tumour and corresponding area of the opposite side with no-

tumour. The x-axis presents the number of patients with the primary lung 

cancer and the y-axis represents the tortuosity of vessels. Blue and red bars 

display vessels tortuosity in the area of tumour and in the corresponding area 

of the opposite side with no tumour, suggesting similar tortuosity in the area 

of tumour and its corresponding area on the other side with no tumour.  

The data were found to be consistent with a normal distribution and hence a 

t-test was applied. Using a t-test, there was no significant difference in vessel 

tortuosity in the area of tumour compared to the side with no tumour p = 0.74. 
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6.7.2 Lung CT-Diagnosis from Complete Lung Area Dataset 

Lung1 

The previous section assessed the tumour area of the unilateral tumour side 

and corresponding area in the contralateral side with no tumour. That 

assessment was done in the small area around a tumour and revealed 

certain patterns. In this section, vessel structures were examined in the 

whole lung region. The system is designed in order to apply analysis to the 

entire lung region and quantify the vessel properties in both lungs.  In this 

section, data are analysed from the region of the lung with a tumour and 

compared with an equivalent area in the contralateral side with no evidence 

of a lung tumour.  

The algorithm was applied to the whole lung region in order to segment and 

quantify the vessel-like structure features of the lung. 
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Figure 6.12: The bar chart displays the number of vessel-like structures. The blue 
bars are the number of vessels in the lung region of a malignant tumour. The red 
bars are a number of vessels in the corresponding area of contralateral lung with no 
tumour.    

 

Figure 6.12 bar chart demonstrates the number of vessels in the entire region 

of tumour side compared to the region of opposite side with no-tumour for 

each case. The blue and red bars display vessels number in the entire region 

of lung with tumour and vessels number in the other region of opposite side 

with no tumour respectively; which shows the number of vessels in the whole 

region of the lung with a tumour is higher than the opposite side of the lung 

without any tumour.  
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Figure 6.13: Scatter plot of the difference of a number of vessels in the region of 
lung tumour and the number of vessels in contralateral lung with no tumour. The red 
bar is a mean of the difference. 

As seen also in the bar chart figures 6.12 and 6.13, demonstrate that for the 

vast majority of cases there are more vessels in the entire lung image and 

compared with the contralateral lung with no tumour. The tumour side has a 

higher number of vessels. This graph was plotted to acknowledge whether 

there was any consistency in these differences, however as it is clearly 

shown on the plot, the scattered data is not in close proximity to the mean 

line, suggesting high variability. There are a few negative values which 

indicate the numbers of vessels in the non-tumour side are greater than the 

tumour side. Ideally, everything should have been positive but considering 

factors such as what side the tumour is (right lung is bigger than the left lung) 

and the size of a tumour.  
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The data were found to be non-consistent with a normal distribution and 

hence a non-parametric Wilcoxon signed-rank test was used. It indicated that 

the number of vessel-like structures in the region of tumour was significantly 

different to the corresponding area of the non-tumour side with p<0.001. 

 

Figure 6.14: Vessels tortuosity in the entire region of lung in the tumour side (blue 
bars), vessels tortuosity in corresponding contralateral lung region with no tumour. 

Figure 6.14, bar chart shows the tortuosity of the vessels in the entire region of 

tumour side and non-tumour side are following almost the same patterns. They all 

have a close range of tortuosity value. That means the vessels in tumour side of 

the lung region and non-tumour side are not tortuous due to the fact that those 

true lengths of the vessels are not visible to measure in 2-D.      

The difference of the population between the mean of the vessels tortuosity in the 

region of lung tumour in tumour side and non-tumour side are not normally 

distributed. In this case, the p-value that was calculated was less than 0.1. 

Therefore, a nonparametric test that is the Wilcoxon signed-rank test was used. 

The test indicated the mean of the tortuosity of vessels in the region of a lung 

tumour was not significantly different to the corresponding region of the non-

tumour side p>0.001.   
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6.7.3 Lungx Challenge of Tumour Area – Dataset Lung 2 

So far, the algorithm applied to the lung CT images of patients who had an 

only cancerous tumour. In order to expand and established the pattern 

achieved from previous results; the algorithm was applied to a set of data 

labelled by a specialist as a malignant or a benign tumour.  

This section describes the results have been obtained in the area of the 

tumour of benign and the malignant tumours. To prevent repetition, the blue 

bars and the red bars are representing the tumour side and non- tumour side 

in all plots respectfully. 

 

Figure 6.15: The bar chart displays the number of vessels. The blue bars display 
the number of vessels in the vicinity of a benign tumour and red bars show number 
of vessels in corresponding area of the lung with no tumour.     

 

The graph in figure 6.15 illustrates a bar chart for the comparison of the number of 

the vessels in the area of tumour and non-tumour of 20 benign tumours. It can be 

seen that there is a little variance between the vessel-like structures in the vicinity 

of lung tumour compared with the contralateral lung with no tumour.    
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Figure 6.16: Scatter plot of the difference of a number of vessels in area of tumour 
(Benign) and the number of vessels in the equivalent area in the lung with no 
tumour. Redline is a mean of the difference.     

 

Each data point in the scatter plot in figure 6.16 shows the difference between the 

number of vessels in affected side and non-affected side. The red line is the mean 

of the difference of vessels on both sides. These data points shown with blue dots 

are distributed close to the red mean line in the benign cases. Therefore, this 

distribution around the red line indicates there is not much difference between 

number of vessels in the vicinity of benign tumour and number of vessels in the 

corresponding area of contralateral lung with no tumour.  

The data were found to be consistent with a normal distribution. Therefore, using a 

t-test, there was no significant difference in vessels number in the area of tumour 

in benign cases compared to the side with no tumour with p=0.002.   
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Figure 6.17: Bar chart displays the mean of vessels tortuosity. Blue bars are the 
mean of vessels tortuosity in the vicinity of benign lung tumour. Red bars are the 
mean of vessels tortuosity in contralateral lung with no tumour.  

 

The mean of the vessels tortuosity in the area of tumour side and non-tumour 

side of benign cases demonstrated in figure 6.17 with no great difference. 

This indicated that there is no difference between the mean of the vessels 

tortuosity in the vicinity of benign tumour and the mean of vessels tortuosity 

in the corresponding area of contralateral lung with no tumour.   

The difference between the mean of the vessels tortuosity in tumour side and 

the non-tumour side was not normally distributed. The p-value that was 

calculated was less than 0.1; therefore a non-parametric Wilcoxon signed-

rank test was used. The Wilcoxon signed-rank test indicated the mean of 

vessels tortuosity in the benign tumour area were not significantly different to 

the mean of the vessels of corresponding area of non-tumour side p>0.001.      
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Figure 6.18: Bar chart displays the number of vessels in the area of malignant 
tumour (blue bars) and the number of vessels in corresponding area of contralateral 
lung with no tumour (red bars).     

 

Figure 6.18 indicates the considerable variation of number of vessels in the 

vast majority of cases; there is a difference between the number of vessels in 

the vicinity of malignant tumour and number of vessels in the corresponding 

area of contralateral lung with no tumour. This was also correspondingly 

evident from figure 6.7 of lung1. Therefore the malignant tumours have a 

higher number of vessels in their affected area than contralateral side.   
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Figure 6.19: Scatter plot displays the difference of number of vessels in the area of 
a tumour (Malignant) and the number of vessels in the equivalent area in the lung 
with no tumour. Redline is a mean of the difference of vessels in tumour side and 
non-tumour side.    

As likewise obvious from figure 6.18, Figure 6.19 demonstrates that for the 

clear majority of cases there is a difference in the number of vessels between 

the sides of tumour compared to the side of non–tumour, with the tumour 

side having a higher number of vessels. However, it can be seen from the 

data the difference of the vessels number in the affected area and the non-

affected area is not in close proximity to the mean line, suggesting high 

variability. 

The number of vessels in tumour side and the non-tumour side was not 

normally distributed. The p-value that was calculated was less than p<0.1. 

Then the Wilcoxon signed-rank test was used. That indicated the number of 

vessel-like structures in the area of tumour in the tumour side was highly 

significantly different to the corresponding area of the non-tumour side with 

the p< 0.001. 
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Figure 6.20: Bar chart displays the mean of vessels tortuosity in tumour side (blue 
bars) and non-tumour side in malignant cases (red bars). 

The mean of tortuosity of vessel-like structures in the area of tumour in malignant 

cases was calculated as shown in figure 6.20, for many patients there was no big 

difference between the mean of tortuosity of tumour side and non-tumour side.  

The difference between the mean of vessels in tumour side and the non-tumour 

side was not distributed normally. In this case, the p-value that was calculated was 

less than 0.1. Therefore non-parametric Wilcoxon test used and indicated no 

significant difference to the mean of the vessels tortuosity in tumour side 

compared with mean of vessels tortuosity in corresponding area of the non-tumour 

side with p>0.001.  

 

 

6.7.4 LUNGx Challenge from Complete Lung Area-Lung 2 

Graphs following from this point on; are concerned with the whole lung region 

of tumour side and non-tumour side. 
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Figure 6.21: Bar chart shows the number of vessel-like structures of benign cases 
of the region of lung tumour (blue bars) and number of vessel-like structures in the 
corresponding region of contralateral lung with no tumour (red bars).   

 

Figure 6.21 bar chart does not show any great difference in vessel-like structures 

in the region of benign lung tumour and number of vessel-like structures in the 

contralateral lung with no tumour.   
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Figure 6.22: Scatter plot of the difference of number of vessel-like structure 
between tumour side and non-tumour side. Redline is a mean of difference. 

 

In figure 6.22, scatter plot, the values obtained is the difference between the 

number of vessels between tumour side and non-tumour side of lung region 

in benign tumour. They presented a relatively even distribution either side of 

the red mean line. Also the difference between the number of vessels 

between tumour side and non-tumour side was presented in figure 6.15 and 

6.16 in the vicinity of benign tumour that suggested the similar results. 

Therefore, to conclude that there is very inconsiderable variation between the 

sides of a tumour compared to the contralateral side with no tumour in benign 

cases.  

The data were not distributed normally. Therefore, a non-parametric test that 

is the Wilcoxon signed-rank test was used. The Wilcoxon test result indicated 

the number of vessel-like structures in the lung region of a benign tumour 

was not significantly different to the corresponding area of the contralateral 

lung with no tumour p>0.001.  
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Figure 6.23: The bar chart describes the mean of the tortuosity of the tumour side of 
entire lung region (blue bars) and contralateral lung region with no tumour (red bars) 
in benign cases. 

Figure 6.23, this graph shows there is no relevant discrepancy of the mean of 

vessel-like structures tortuosity in the entire lung region of the tumour side 

and non-tumour side in 20 benign cases. This is again another evidence to 

previous figure 6.17; that the mean of tortuosity in the area of tumour or lung 

region in tumour side is similar compared to the contralateral side with no 

tumour.  

The difference of the mean of vessel-like structures was not normally 

distributed. Therefore, non-parametric Wilcoxon sign rank used, and the test 

was shown the mean of the vessels tortuosity in the region of entire lung 

tumour was not different to the mean of vessels tortuosity in the contralateral 

lung with no tumour with p > 0.001.  

Now on the following graphs and explanations will be concentrated on the 

malignant tumour of the entire lung region. 
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Figure 6.24: The bar chart illustrates the number of vessel-like structure in the 
entire of lung region of tumour side (blue bars) and corresponding contralateral lung 
with no tumour (red bars) in malignant cases. 

 

According to the bar chart in figure 6.24 and bar chart in figure 6.18 (in the 

vicinity of tumour only) the number of vessel-like structures in the region of a 

lung tumour is higher compared with the corresponding region in 

contralateral lung with no tumour.   
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Figure 6.25: The frequency distribution of the number of vessel-like structures in the 
region of malignant tumour (blue bars) and opposite side with no tumour (red bars). 

 

from the graph in figure 6.25, the frequency distribution number of vessel-like 

structures in the region of the lung with a malignant tumour shows the 

considerable distribution on the side of tumour (blue bars). As has shown the 

blue bars are moved along side of the x-axis. This suggests that the number 

of vessel-like structure in the lung region of malignant tumour was higher 

than the equivalent region in the lung with no tumour.  
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Figure 6.26: The scatter plot of the difference in number of vessels in the entire 
region of a lung tumour and number of vessels in the equivalent area in the lung 
with no tumour. Redline is a mean of differences. 

 

The scatter plot in figure 6.26 illustrates the significant variation above and 

below the red mean line. Blue dots represent the difference between vessels 

in tumour side and non-tumour side for each patient. This indicated there is a 

difference in the number of vessels between the tumour side and non-tumour 

side, with the tumour side having a higher number of vessel-like structures in 

malignant cases.  
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Figure 6.27: The bar chart plot shows the mean of the vessels tortuosity of lung 
region (blue bars) in tumour side and non-tumour side (red bars).   

 

The bar chart in figure 6.27 indicating that mean of tortuosity of vessel-like 

structures in the lung region of a malignant tumour compared with contralateral 

lung with no tumour was not a great variation.  

The non-parametric Wilcoxon sign rank test was used because the difference of 

the mean of tortuosity of vessel-like structures in the lung region of tumour in 

tumour side and non-tumour side are not normally distributed. In this case, the 

p-value that was calculated was less than 0.1. The Wilcoxon signed-rank test 

calculated and indicated the mean of vessel-like structures in the region of lung 

tumour compared to the corresponding area of the non-tumour side was not 

significantly different with the p> 0.001. 
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6.7.5 Experimental Results of 3-Dimensional Visualization 

The proposed mathematical morphology operator was used and applied on 

series of 2- dimensional lung CT images with tumour. This was performed to 

remove the surrounding neighbouring area of the lung region for visual 

investigation. 3-dimensional visualization was performed on a whole series 

image of patient addition to the 2-dimensional analysis. This was performed 

by the algorithm was developed in MATLAB. The aim was to visually 

investigate the vessel-like structures in the lung associated with a tumour. 

Results of 3- dimensional were corroborated similar pattern to the 2-

dimensional dataset.  

The figure 6.28 illustrated the 3-dimensional visualization of the 2-

dimensional series of a particular patient in a different angle. A tumour is in 

the left lung, showing the vessel-like structures in the vicinity of a tumour. It 

can be confirmed that the number of vessel-like structures and spicules in the 

vicinity of a lung tumour are much higher compared with the non-tumour side.   
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Figure 6.28: 3-dimensional visualisation of a patient with a malignant tumour at 
different angles. 
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Figure 6.29: 3-dimensional visualisation of another patient with a malignant tumour 
at different angles. 

The figure 6.29 shows the 3-dimensional model of another patient with 

malignant tumour. A tumour is on left lung and the number of vessels in the 

vicinity of a tumour in left lung compare to the right lung is much greater. 

 

Figure 6.30: A 3-dimensional model of a patient with a tumour presented at the right 
lung. 

Figure 6.30 demonstrated the 3-dimensional image of a patient that the 

tumour is presented in the right lung. This image shows the numbers of 
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vessel-like structures in the vicinity of lung tumour in right lung compares to 

the number of vessels in the equivalent area of left lung are greater.  

 Summary 6.8

Lung cancer is a prevalent disease that has a poor prognosis. Lung cancer 

may be present as a straightforward speculated mass. A nodule size>3 cm is 

associated with malignancy (Landini L., Positano V. and Santarelli M.F, 

2008). If a tumour is speculated as malignant although 11% of malignant 

nodules do have distinct margins (Zerhouni et al., 1986). A tumour plays an 

important role in changing the feature of the blood vessels (Viggiano, 

Swensen and Rosenow, 1992). Therefore, investigation and observation of 

lung blood vessels feature is vital and can help in early diagnosing of lung 

disease. These vessels feature investigation may help to predict the early 

stage of a tumour. Detecting vessels may help specialist to predict of the 

early stage of a tumour before a tumour is off sizeable amount to be detected 

outright.  

Cross-sectional of imaging is the main radiological assessment of lung mass. 

Prior to diagnosing and treatment, specialists must read a large amount of 

lung CT images, and they are likely to overlook some vessels in the vicinity of 

a tumour, because of detection error or interpretation error. In this 

circumstance, computer-based automatic blood vessel segmentation is an 

efficient way to segment the lung blood vessels near a tumour.  

In this chapter, the algorithm proposed was applied to the lung CT images of 

patients with a malignant and benign tumour. The objective of this research 

was to investigate the property of the lung vessels such as a number of 

vessels and the tortuosity of the vessels in the vicinity of a tumour in the 

unilateral side of the tumour and compare it to the corresponding area of the 

contralateral side with no tumour. 
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The semi-automatic algorithm enhanced and segmented the blood vessels 

used for mathematical morphology with linear structures in different 

directions. The algorithm was evaluated against the manual investigation 

respect to the number of vessel-like structure. The results showed there is a 

linear relationship between the vessel-like structures and the total number of 

vessels in the vicinity of a lung tumour. This suggests the fraction of vessels 

correctly detected is a stable amongst the dataset.   

Segmented vessel-like structures images used in order to count and 

calculate the lengths. The results of the vessels length are used to calculate 

the tortuosity of the vessels. The quantification of the vessel-like structure 

was obtained in the area of a tumour and entire lung region. The affected 

side of a tumour was in both cases of tumour area or lung region was 

compared with the corresponding area of the contralateral side with no 

tumour. The algorithm was applied on the lung CT images of 40 patients who 

had only malignant lung tumour (lung1) and as well as patients have a 

benign (20 patients) and malignant (20 patients) tumour (lung2). The results 

from graphs obtained showed the number of vessel-like structures and the 

tortuosity of the vessels like structures in the vicinity of a tumour or the entire 

lung region compared to the corresponding area of the opposite side of lung 

with no tumour was not different in benign cases.  

In contrast, malignant tumours show the number of the vessel-like structures 

in the vicinity of the unilateral side of tumour was significantly higher 

compared to the number of the vessel-like structures on the contralateral side 

with no tumour. The number of the vessel-like structures in the vicinity of the 

unilateral side of entire lung region also was significantly higher compared 

with the corresponding region of contralateral side with no tumour. The 

tortuosity of the vessels was not shown any differences in the tumour area 

compared to the non-tumour area in malignant tumour. Maybe due to the 3-

dimensional CT images as the true length of vessels was not clearly 

presented in per image of the 2-dimensional image was assessed.  



Chapter 6 Quantifying Vessel-like Structures in Lung CT Images 
 
 
 

 
 
 
 
 

162 

Visualisation and analysis of 3-dimensional lung CT images were performed. 

The visual results were clearly demonstrated that the numbers of vessels like 

structures and spicules in the vicinity of a tumour were higher compared with 

the side of no-tumour. 

It is apparent that the developments in these areas are still at an early stage. 

The potential of this research is its use for the early stage of lung tumours 

detection. If a tumour detected and resected at an early stage survival may 

be improved. 

 Conclusion and Discussion 6.9

Segmented vessel-like structures images used in order to count, calculate 

the lengths and tortuosity of the vessels. According to the results, the number 

of vessel-like structures in an area of a lung tumour was higher compared 

with the contralateral side with no tumour in the case of malignant tumours. 

This was seen in 3-dimensional visualisation which was also applied to data 

from the dataset investigated. This involved removing the surrounding 

neighbouring area corresponding to ribs in order to focus on the lung region. 

Software was used to generate a 3-dimensional model of the lung. This 

advanced visual analysis helps to visually investigate the vessels around a 

tumour. This confirmed that the number of vessel-like structures and spicules 

in the vicinity of a lung tumour were higher compared with the contralateral 

side with no tumour. In contrast the results showed the number of vessel-like 

structures and the tortuosity of the vessels like structures in the vicinity of a 

tumour or the entire lung region compared to the corresponding area of the 

opposite side of lung with no tumour was not different in benign cases.  
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Chapter 7 Conclusion and Future Work 

 Introduction  7.1

N this research study the development of methods for detection of thin 

structures in medical images such as cilia in microscope images and 

vessel-like structures from CT images has been presented. This chapter 

includes a summary of the project, results, final conclusions and possible 

future work.  

 Summary 7.2

It is considered useful to investigate disorders of structure or function in 

humans at an early stage. Diseases are more likely to be treated successfully 

and early stage and survival may be improved. Therefore this dissertation 

has investigated and analysed the structures from different biomedical 

images. This investigation was achieved by visual assessment along with 

development of a semi-automatic method for detection and analysis of thin 

structures from biomedical images. The data were analysed and quantified 

by use of graphs and statistical tests.  

This thesis focused on two different medical application that is SEM images 

of cilia and lung CT images.  

A) Microscope images of cilia 

Visual analysis and semi-automatic segmentation of cilia from SEM 

microscope images were performed in order to quantify the thin structures of 

cilia. The 2-dimensional datasets included normal and abnormal cilia with 

different magnifications. The visual and semi-automatic assessment was 

performed on both normal and abnormal cilia.  

 

I 
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Manual Analysis: The results obtained from manual assessment show the 

mean lengths of normal cilia were 2.3µm and mean lengths of abnormal cilia 

were 1.6µm. The number of clear and visible cilia was counted in the node. 

These results suggested that the lengths and number of cilia in the normal 

cilia were higher than the abnormal cilia (Goggolidou et al.,2014)  

Development of a semi-automatic segmentation Algorithm: A median filter 

was applied to estimate the background and subtract it from the grayscale 

image to correct non-uniform illumination. A mathematical morphology 

operation with standard linear structure in various directions proved the best 

method of detection for detection of cilia. In addition, the emphasis was put 

on confirming the detection of cilia with the appropriate selection of 

parameters for cilia segmentation from high resolution images. The best 

parameters for cilia segmentation were found. The major-axis method was 

found to be best to measure the length of segmented cilia. The semi-

automatic method best-fit-ellipse function was used to calculate the lengths 

of overlapping cilia. The median of the absolute difference between semi-

automatic and manual measurements showed only small differences 

between the semi-automatic results and manual assessment.  

The number of cilia was counted in normal and abnormal cilia images. 30% 

of the segmented pixels of each cilium were compared to the corresponding 

pixels in the labelled ground truth images.  

B) Detection of Vessel-like structures in lung CT images 

The main objective was to investigate the number of vessels in the vicinity of 

unilateral lung tumours and to compare this with the equivalent contralateral 

lung without tumour. The size of tumour, vessel number and vessel length in 

order to calculate the tortuosity were measured using 2-D slides of Lung CT 

images. Two different types of lung CT scan datasets were studied.  

MATLAB software (The MathWorks Inc., USA) was developed and applied in 

order to display and analyse the DICOM images. 
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Manual Analysis: In order to analyse the vessel-like structures and 

associated vessels in lung CT images, a process was required to highlight 

the vessel-like structures (Allisy-Roberts et al., 2007). The brightness and 

contrast were adjusted using software in MATLAB. This also helped remove 

the other sections of image that were not required. 

10 cases of unilateral primary lung cancer were investigated. In all ten cases, 

the number of clear vessel-like structures in the immediate vicinity of a lung 

tumour was greater than the corresponding area of the contralateral side with 

no tumour. In this manual analysis, there was more vessel in the vicinity of a 

tumour compared with the contralateral side with no tumour (p<0.001) (Sadri 

et al., 2016). The mean vessel tortuosity of these ten cases with primary lung 

cancer on the side of a tumour was slightly higher compared to the 

contralateral side with no tumour.  

From the second dataset studied,12 malignant and 11 benign cases were 

manually investigated. The number of vessels in the vicinity of the benign 

tumours was slightly higher compared to the contralateral side with no 

tumour but statistical results indicated no significant difference in the number 

of vessels. The mean of the vessel tortuosity in the vicinity of the benign 

tumours was similar to the contralateral side with no tumour.  

In malignant tumours, the results showed the number of the vessels in the 

vicinity of a tumour was significantly higher compared with the corresponding 

area on the contralateral side with no tumour (p<0.001).  

The number of clear bright vessel-like structures in the immediate vicinity of a 

lung tumour may be higher than in the corresponding area on the 

contralateral side. The mean of the vessel tortuosity is slightly higher near a 

tumour compared to non-tumour side. These results were used to evaluate 

the algorithm.  

Developed Algorithm: The semi-automatic algorithm was developed and 

applied to lung CT images to detect vessel-like structures in unilateral lung 
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tumour images.  A Mathematical morphology algorithm with linear structure in 

various directions enhanced and segmented the vessel-like structures in 

order to count the vessels and calculate their lengths. Occasionally vessels 

appear are disconnected from their branch points. Therefore the semi-

automatic algorithm reconstructs the vessel by using a cubic spline. The 

results of the vessels length were used to calculate the tortuosity of the 

vessels.  

The system was validated against manual investigation for detection of 

vessel-like structures. The number of vessel-like structures for 40 cases from 

manual analysis compared with those detected by the algorithm (Sadri et 

al,.2017).  

 

Quantification of the vessel-like structures was obtained in the vicinity of a 

tumour and the entire lung region and was compared to the contralateral lung 

with no tumour. The algorithm was applied on lung CT images of 40 patients 

who had malignant lung tumours and also applied on a second dataset with 

40 patients consisting of 20 cases of benign and 20 cases of malignant lung 

tumours. 

The number of vessel-like structures and the vessel tortuosity in the vicinity 

of the lung tumour and the entire region of the lung compared to the 

contralateral side did not show any significance difference for benign 

tumours. 

There was a clear difference between the malignant tumour results and 

benign tumour results. The number of vessel-like structures in the vicinity of 

the malignant lung tumours compared to the contralateral side with no 

tumour for both datasets was significantly different (p<0.001). The mean of 

the vessel tortuosity in the vicinity of a lung tumour was not significantly 

different compared to the contralateral side with no tumour. Similar results 

were shown in the complete region of the lung. 
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The results from the second dataset either in the vicinity of a lung tumour or 

complete lung region were similar. The number of vessel-like structures in 

the vicinity of a lung tumour was higher compared with the contralateral side 

with no tumour (p<0.001). The mean vessel tortuosity on the tumour side and 

the non-tumour side were similar.   

 Conclusion  7.3

The system was successfully applied to detect cilia from electron microscopy 

images and a novel semi-automatic algorithm for the detection and 

quantification of thin structures in medical images has been developed and 

applied to the new application of microscope images of cilia and lung CT 

images. This semi-automatic algorithm able to count and measure the 

lengths of thin structure of cilia and vessel-like structures. 

In consequence according to the results, the number of vessel-like structures 

in an area of the lung tumour was higher compared with the contralateral side 

with no tumour in the case of malignant tumours. 

 3-dimensional visualisation was also applied to data from the dataset 

investigated. This involved removing the surrounding neighbouring area 

corresponding to ribs in order to focused on the lung region. Software was 

used to generate a 3-dimensional model of the lung. This advanced visual 

analysis helps to visually investigate the vessels around a tumour. This 

confirmed that the number of vessel-like structures and spicules in the vicinity 

of the lung tumour were higher compared with the contralateral side with no 

tumour.   

Early tumour detestation and resection may increase survival rates. Thus this 

research merits further study in order to investigate if this approach may help 

enable early detection of lung tumours.   
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 Achievements  7.4

Key results from the study include:  

a. Visual investigation of cilia in SEM Microscope images.  

b. Development of a method for semi-automatic segmentation and 

quantification of thin structures that was applied to SEM cilia images and lung 

CT images. 

c. Visual investigation of vessel-like structures associated with unilateral 

lung tumours demonstrated increased vessel like-structures in the vicinity of 

tumours. This was not seen in benign lung tumour images. 

d. The semi-automatic method was applied for detection of vessel-like 

structures in the vicinity of lung tumours and compared well with manual 

analysis.  
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