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Abstract Three types of phenomena occurring on both
sides of the event horizon of spherically symmetric black
holes are analyzed and discussed here. These phenomena
are: a light ray orbiting a photon sphere and its analogue,
the motion of a uniformly accelerated massive particle and
a generalized Doppler effect. The results illustrate how the
anisotropic dynamics of the interior of black holes, distinct
in the cases both with and without an additional internal hori-
zon, affect non-quantum behaviour.

1 Introduction

Recent studies of black holes have brought a range of inter-
esting results. The most significant of these are those related
to the information problem [1]. The idea presented recently
[2] that black holes do have hair contradicted a former funda-
mental assumption that black holes don’t have hair. The claim
that the volume of a black hole may be infinite, derived in
different ways in Refs. [3] and [4], contributed to the infor-
mation problem – this actually implies that an arbitrarily
large amount of information may be stored there. The sce-
nario of the evolution of the information contained in the
interior of a black hole (BH) was presented by Braunstein
et al. [5].

The interior of a BH may be described with a so-called
“river model” as shown in [6] (see also [7]). A different per-
spective has appeared from more recent studies [8,9]. Hamil-
ton et al. [10] considered the question of vision inside the
horizon of a Schwarzschild BH. In Ref. [11] the evolution of
a light ray trapped at one of the two BH horizons was inves-
tigated – it led to a redshift on the outer event horizon and a
blueshift on the inner horizon. It is well-known that space-
times that are static outside the horizon of BHs turn out to be
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dynamic inside the (outer) horizon. Such a dynamic interior
of a BH may be viewed as a cosmological model [12].

In this paper, we will analyse selected (non-quantum)
phenomena illustrating the properties of the interior of a
spherically symmetric BH, in Schwarzschild (S), Reissner–
Nordström (RN) and Anti-de Sitter AdS) spacetimes. Our
considerations are illuminated by a comparison of the regions
outside and inside the horizon (S, AdS) or between horizons
(RN). We will discuss the following questions.

Outside the horizon there exists a so-called photon sphere;
we will prove the existence of its analogue inside the horizon.
A light ray may, in principle circulate on a photon sphere so
in a sense the deflection angle in a strong gravitational field
would be arbitrary large. The revolution angle of a light ray
following an orbit belonging to a photon sphere analogue
inside the horizon should be finite. So, not surprisingly it
turns out to be finite. Rather surprising, though, is its value,
π (for S and RN spacetimes) and the possible deeper meaning
and interpretation of this outcome.

The problem of a uniformly accelerated test particle will
be solved outside and inside the horizon, as well as between
horizons in the RN case. In Minkowski spacetime, such
hyperbolic motion results in Unruh radiation. We show here
that outside the BH, uniformly accelerated (radial) motion
is described in terms of equations similar to those repre-
senting motion in Minkowski spacetime. Inside the horizon
of a Schwarzschild spacetime one comes across a counter-
intuitive outcome: the speed of such a test particle initially
grows but then reaches a maximal value and finally decreases
to zero (as clarifed further below the meaning of speed needs
to be specified inside the horizon). In the case of a BH pos-
sessing an internal horizon, (the RN case) the speed of a
uniformly accelerated particle turns out to behave in a more
complex manner but in accordance, as explained later, with
the dynamical properties of its interior.
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The Doppler shift of electromagnetic signals exchanged
between resting/co-moving observers occupying fixed posi-
tions outside and inside (between) the horizon(s) will be
investigated - the outcomes will reflect the dynamic prop-
erties of the interior, distinct for S and AdS spacetimes on
the one hand and RN spacetime on the other.

This paper is organized as follows. In Sect. 2 we formu-
late the framework of our considerations: a general form of
a line element for spherically symmetric spacetimes is given
and two kinds of observers, resting outside and co-moving
inside the horizon, are introduced. In the following sections
we consider the problems of: the value of the angle traversed
by a light ray belonging to the photon sphere and its ana-
logue inside the horizon (Sect. 3), the velocity of a uniformly
acclerated test particle (Sect. 4) and a generalized Doppler
shift (Sect. 5) for the signals exchanged between resting/co-
moving observers. In Sects. 6 and 7 we present a Discussion
and Final remarks, respectively.

2 t-observers and r-observers

The subject of our considerations will be three distinct
spacetimes which confine BHs, Schwarzschild, Reissner–
Nordström, and Anti-de Sitter. Outside the horizon they may
all be described in terms of a metric in a diagonal form (we
will use here the system of units where c = G = 1):

ds2 = f dt2 − f −1dr2 − r2dΩ2 (1)

where, dΩ2 = dθ2 + sin2 θdφ2, θ , φ denote angular coor-
dinates. Hence for:

(a) the Schwarzschild spacetime

fS(r) = 1 − rg
r

(2)

where r > rg = 2M and rg labels an event horizon
(gravitational radius), M denotes the mass of the black
hole.

(b) the Reissner–Nordström spacetime which confines
charged black holes with a charge Q(≤ M)

fRN (r) = 1 − 2M

r
+ Q2

r2 (3)

rg = r+, r± = M ±
√
M2 − Q2 (4)

(c) the Anti-de Sitter spacetime,

f AdS(r) = 1 − 2M

r
+ Λr2 (5)

There are four Killing vectors manifesting symmetry proper-
ties of a spherically symmetric, static spacetime: a time-like

one and three other space-like ones. In case (1) they are rep-
resented by two vectors: a time-like one, ∂t reflecting energy
conservation due to the static character of the spacetime and
a space-like one, ∂φ representing angular momentum conser-
vation.

It was shown explicitly in Ref. [12] but indicated earlier in
other sources [13,14] that despite the singular character of the
Schwarzschild metric at the event horizon it may nonetheless
be applied also to the interior of the event horizon. Indeed, one
can find a solution of Einstein’s equation in the vacuum that
is represented by the metric (1) inside the horizon, r < rg , i.e.
fS(r) < 0. The interior of the Schwarzschild BH (see [12]) is
a dynamic spacetime where the Killing vector ∂t is converted
from a temporal into a spatial one. This is accompanied by
the interchange of the character of the coordinates: t becomes
spatial and the former radial coordinate r becomes temporal
(see also Ref. [13])

ds2 =
(

− 1

f

)
dr2 − (− f ) dt2 − r2dΩ2 (6)

The spacetime itself becomes homogeneous resulting in
a momentum t-component conservation. A similar inter-
change of the role of the coordinates t and r occurs in AdS
spacetime. RN spacetime reveals, apart from the outer event
horizon (+) an inner one also, termed a Cauchy horizon (−)

(see Eq. 4). In this case the event horizon marks the border
between a static (outer) spacetime and a dynamic (inner) one
for r− < r < r+ with the interchange of the role of the t and
r coordinates as described above occuring here only between
the horizons. Therefore, one can introduce a class of resting
observers (or co-moving inside/between the horizon(s) - see
below), i.e. those whose velocity vector has only a temporal
non-vanishing coordinate. It appears natural to label them as:

(a) t-observers

U (i)
t = 1√

( fi )
∂t (7)

outside the horizon and
(b) r -observers,

U (i)
r = −√

(− fi )∂r (8)

inside the horizon for i = S, AdS spacetimes or between
the outer and inner horizons for i = RN spacetime.

3 Deflection (revolution) angle – a photon sphere and its
analogue inside the horizon

Null geodesics are described in terms of a null vector field
k = kμ∂μ, k2 = 0. The components of k are: kμ = dxμ

dσ
,
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where xμ are the coordinates of a given null geodesic and σ

denotes an affine parameter. In spherically symmetric space-
times, geodesics are planar and one can choose an equatorial
plane, θ = π

2 , so kθ = 0. Then two of the three non-vanishing
components of k are given by conservation laws:

kt = ω0

fi
, kφ = L

r2 (9)

where L denotes an angular momentum and outside of the
horizon, ω0 is interpreted as an energy. The third component
is derived from the null condition:

kr = ±L

√
1

b2 − Vi (10)

where an impact parameter, b, is defined as b = L
ω0

. An
effective (“photon”) energy potential

Vi (r) = fi
r2 (11)

displays a maximal value at the photon sphere radius (phs).
In the case of the Schwarzschild and AdS spacetimes, rphs =
3M (see Fig. 1).

The critical value of the impact parameter is determined
by the maximum of the effective potential energy

1

b2
cr

= Vi (rphs) (12)

(a)

(b)

Fig. 1 An effective energy potential Vi (r) (Eq. 11) for S, AdS (a) and
RN (b) spacetimes (M = 1)

The wave vector representing the circular orbit belong-
ing to the photon sphere has two non-vanishing components,
temporal and angular

k = kt∂t + kφ∂φ (13)

such that, b = bcr . Though such a circular orbit is unstable
the revolution angle, in principle, may be infinite.

In general a light ray specified by an impact parameter b
traverses an angle

Δφi = ±
∫ r2

r1

dr

r2
√

1
b2 − Vi

(14)

that grows indefinitely when b tends to its critical value.
Inside (between) the horizon(s), fi < 0 (and coordinates t

and r exchange their roles). In this range a null geodesic, char-
acterized by a wave vector with two non-vanishing, “tempo-
ral” and angular components (c.f. Eq. 13), has the form:

k = kr∂r + kφ∂φ (15)

It may be regarded as analogous to the photon sphere that
occurs outside the horizon. In the case of Schwarzschild
spacetime its equation is derived from the null condition for
the planar θ = π

2 , trajectory,

− fs(r) = 2M

r
− 1 (16)

ω2
0 − (kr )2 +

(
2M

r
− 1

)
r2(kφ)2 = 0 (17)

and a conserved momentum t-component condition

kt = ω0 = 0 (18)

One obtains from Eqs. (17, 18) the expression

ΔφS =
∫ r2

r1

dr
√
r2(− f s)

(19)

for the revolution angle in the case. It is given by the “car-
dioid” equation:

φS =
∫

dr√
r(2M − r)

= arccos
( r

M
− 1

)
+ C. (20)

The total revolution angle along the photon sphere-analogue
inside the Schwarzschild BH

ΔφS =
∫ 2M

0

dr√
r(2M − r)

= π (21)

is equal to π . This result turns out to have a deeper signifi-
cance.

In the case of RN spacetime by using the same arguments
as above, with − fS substituted by

− fRN = 2M

r
− 1 − Q2

r2 (22)
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between the horizons one obtains the following expression
for the revolution angle:

φRN =
∫ r+

r−

dr
√

(r+ − r)(r − r−)
(23)

Making the substitution, x = r−r− one finds that the integral
(23) is given as,

ΔφRN =
∫ r+−r−

0

dr
√

(r+ − r− − x)x
(24)

leading to the total value,

Δφtot
RN = π (25)

the same as in the case of Schwarzschild spacetime.
One can easily confirm that this specific value π , [see Eqs.

(21, 24)], is an upper limit for a revolution angle along an
arbitrary null geodesic. Indeed, the total revolution angle for
the general case of an arbitrary light ray (characterized by
b−1 = ω0/L)

Δφtot
S =

∫ r2

r1

L
r2 dr

√
(− fS)

L2

r2 + ω2
0

≤
∫ r2

r1

dr
√
r2(− fS)

≤ π

(26)

turns out to be smaller than π for both Schwarzschild and
RN spacetimes (see Fig. 2).

In the case of AdS spacetime the situation is the following.
Formula (19) then takes the form:

φtot
AdS =

∫ rg

0

dr
√
r(2M − r) − Λr4 + er4

(27)

Fig. 2 Total revolution angle φtot
S (Eq. 26) (M = 1), for different

values of b−1

and leads to the outcome Δφtot
(AdS) < π . An interesting fea-

ture was reported in Ref. [15] where

Δφtot
AdS =

∫ 2M

0

dr
√
r(2M − r) − Λr4 + er4

(28)

integrated from r = 2M (above the horizon in this case) for
e = Λ, yielded the value π (cf. Fig. 1a).

One can ask for the value of the total revolution angle in
the case of Kerr spacetime. The situation turns out to be more
complex then, but for the case of a light ray in the equato-
rial plane one can prove that the total revolution angle can’t
exceed π . In this sense π is an upper limit for the deflection
angle of a light ray inside the horizon of an arbitrary black
hole.

4 Uniform acceleration

In this section we will consider the problem of a test particle
uniformly accelerated outside a BH along a radial direction
and the analogue of this motion inside the horizon (this Sec-
tion generalizes the discussion presented in Ref. [9]). Such
motion is confined to the t-r hyperplane:

ds2 = f dt2 − f −1dr2. (29)

The components of the velocity vector u,

u = ut∂t + ur∂r (30)

of the test particle ut , ur will depend on r .
An acceleration vector field a for u is:

a = ∇uu (31)

and one obtains the following equations for its components

at = f −1ur
d

dr
( f ur ) (32)

ar = f ut
d

dr
( f ut ) (33)

Uniform acceleration is defined by the condition:

a2 = f (at )2 − f −1(ar )2 ≡ −α2 (34)

where α =const. Formulae (32)–(34) lead to the condition

d

dr
( f ut ) = ±α (35)

One then finds that Eqs. (32), (33) take on a form similar
to the case of uniformly accelerated motion in Minkowski
spacetime:

at = α f −1ur (36)

ar = α f ut (37)

Thus the world line of a uniformly accelerated particle γ =
{t (τ ), r(τ )} is given in this case by the integral curve of the
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vector field u:

ut ≡ ṫ = ±αr + E

f (r)
(38)

ur ≡ ṙ = ±
√

(αr + E)2 − f (r) (39)

where E is an integration constant. The components of the
velocity vector of the test particle given in general form in
Eqs. (38) and (39) are restricted to the following regions:

(a) outside the horizon, ṫ > 0
(b) inside the horizon, ṙ < 0

One easily can find a solution of Eqs. (38) and (39) yielding
a world line in this case but such a quantity is coordinate
dependent. On the other hand using the velocity vector one
can describe this motion in terms of an invariant quantity, the
speed of the test particle as measured by a specific (class of)
observer(s).

In order to define the speed of a test particle one uses a
procedure proposed by Bolos [16]. A velocity four-vector w

of u′ measured by u at the same event p(r, t) is given by:

w = u′

(u, u′)
− u (40)

where (u′, u) is the scalar product of two velocity four-
vectors u and u′: u2 = u′2 = 1. Velocity w is orthogonal
to u, (w, u) = 0 i.e. w is a space-like vector as

w2 = 1

(u, u′)2 − 1 < 0 (41)

Then the squared speed v2 is given by:

v2 = −w2 (42)

4.1 Black hole exterior

Outside the S, RN and AdS black holes the spacetime is static
and a resting (static) observer denoted as t-o is characterized
by a velocity vectorU (i)

t , Eq. (7). Such an observer measures
the speed v of a nearby passing uniformly accelerated (ua)
test particle,

uua = ṫ∂t + ṙ∂r (43)

Hence for u = U (i)
t and u′ = uua , Eq. 43, due to procedure

(40–42) one finds:

w2 = − ṙ2

( f ṫ)2 (44)

Using Eqs. (38), (39) one finds the speed as a function of r

v2 = (αr + E)2 − f (r)

(αr + E)2 (45)

(see Fig. 3).

Fig. 3 (Squared) Speed v2 (Eq. 45) of a uniformly accelerated particle
outside the horizon of the AdS BH for α = 1; 0.2; 0.1 (black/red/green)
(M = 1, Λ = 0.01)

4.2 Black hole interior

Inside the horizon of the S, RN and AdS black holes, f (r) <

0 and dr < 0. The class of resting (co-moving - see below)
r -observers, is determined by their velocity vector (Eq. 8).
The squared speed of a uniformly accelerated test particle
(38–39) measured by resting observers (8), turns out to be
determined as:

v̄2 = (αr + E ′)2

(αr + E ′)2 − f (r)
(46)

where E ′ is an integration constant. Let us emphasize that
the speed outside and inside the horizon are expressed by
inverse formulae, Eqs. (45, 46) (see also [8,9]).

The speed v̄2 as a function of a temporal coordinate r
may be illustrated in AdS and RN spacetimes (the S case
illustrated in Ref. [9], is not much different from the case
of AdS spacetime) using (46) (Figs. 4, 5). Analyzing these
diagrams one has to remember that in the vicinity of the
horizon, either outer or inner, f → 0, and v̄ → 1. Hence in S

Fig. 4 (Squared) Speed v̄2 (Eq. 46) of a uniformly accelerated particle
inside the horizon of the AdS BH for α = 1; 0.2; 0.1 (black/red/green)
(M = 1, Λ = 0.01)
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Fig. 5 (Squared) Speed v̄2 (Eq. 46) of a uniformly accelerated par-
ticle inside the horizon of the RN BH for α = 1; 0.5; 0.2; 0.1
(black/green/red/blue) (M = 5, Q = 3)

and AdS spacetimes, the speed of the initially resting particle
increases, reaches some (non-universal) maximal value and
decreases to zero at the ultimate singularity, r → 0 (Fig. 4).

In the case of RN, initially v̄2 increases then it may behave
in a mixed manner and finally it tends to the value 1 at the
internal horizon.

5 Exchange of electromagnetic signals

In this section we shall consider the case of two resting
observers (static outside and co-moving inside the horizon),
A, and B, exchanging electromagnetic signals. Without loss
of generality one can assume that A and B are restricted to
the equatorial plane, θ = π

2 . Then the generalized Doppler
shift, i.e. the frequency ratio of the receiver (r) and sender (s)
is expressed as:

ω(r)

ω(s)
= u(r) · k(r)

u(s) · k(s)
(47)

where u(r/s) · k(r/s) denotes the scalar product of the
receiver/sender velocity vector and the wave vector at the
receiver/sender position. Applying the fact that outside and
inside the horizon resting observers are t-observers and r -
observers, respectively, and using the following form for the
wave vector

k = ω0

f
∂t ±

√

ω2
0 − f

L2

r2 ∂r − L

r2 ∂φ (48)

one obtains the following results.

5.1 Outside the horizon

If A, B are placed at
(
rA, π

2 , φA
)
,
(
rB, π

2 , φB
)

respectively,
rg < rA < rB then,

Fig. 6 Frequency shift outside the horizon of a Schwarzschild BH:
signals exchanged between A and B, A–B (gravitational redshift) and
B–A (gravitational blueshift), rA = 2.2, rB = 5; (M = 1)

(a) A (r-receiver) records the signal sent by B (s-sender)

ωr
A

ωs
B

=
√

f (rB)√
f (rA)

> 1 (49)

as blue-shifted and
(b) B (r) records the signal sent by A (s)

ωr
B

ωs
A

=
√

f (rA)√
f (rB)

< 1 (50)

as red shifted which is a well-known result (see Fig. 6).

5.2 Inside the horizon

If A, B are placed at
(
tA, π

2 , φA
)
,
(
tB, π

2 , φB
)
, rB < rA,

respectively, then sending and receiving signals they would
find the Doppler shift as follows:

ωr
B

ωs
A

=
√− f (rA)√− f (rB)

√
ω2

0 − f (rB) L
2

r2
B

√
ω2

0 − f (rA) L
2

r2
A

(51)

Transforming expression (51)

ωr
B

ωs
A

=

√
− ω2

0
f (rB )

+ L2

r2
B√

− ω2
0

f (rA)
+ L2

r2
A

(52)

one finds an interesting outcome. The second term inside the
square root increases as r decreases; for decreasing r the
first term decreases for S and AdS spacetimes and it is a non-
monotonic function of r for RN spacetime. One can consider
then two separate cases.
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Fig. 7 Frequency shift inside the horizon of a Schwarzschild BH: sig-
nals propagating along the homogeneity (t) axis, Eq. (54) are redshifted
(red) and signals propagating perpendicularly to the t-axis (57) are
blueshifted (blue); (M = 1), rA = 1.75

5.2.1 L = 0 - signals exchanged along the t-axis

B (receiver) records the signal sent by A (sender), rB < rA
as [see Eq. (52)]

ωr
B

ωs
A

=
√− f (rA)√− f (rB)

(53)

This expression leads to different results in S, AdS and RN
spacetimes.

In the case of S and AdS black holes f (r) is a monotonic
function of r and (53) describes a Doppler redshift (see Fig. 7)

ωr
B

ωs
A

< 1 (54)

In the case of a RN black hole one finds mixed results:
a Doppler redshift,

ωr
B

ωs
A

< 1 (55)

for rm < rB < rA, and a Doppler blueshift

ωr
B

ωs
A

> 1 (56)

(see Fig. 8) for rB < rm = Q2

M where fRN (rm) =
min fRN (r).

5.2.2 ω = 0 - signals exchanged perpendicularly to the
t-axis

If the signal is sent perpendicularly to the t-direction, ω0 =
0, then, it travels between φA and φB . It is emitted at rA,
recorded at rB and by using (52) one finds:

ωr
B

ωs
A

= rA
rB

> 1 (57)

Fig. 8 Frequency shift inside horizon of RN BH (M = 1, Q = 0.6),
for signals propagating along the t-axis r− = 0.2 < rB < rA = 1.6:
initial redshift Eq. (55) is followed by the final blueshift Eq. (56) (due
to expansion followed by contraction)

A Doppler blueshift is found in all three cases, for S, AdS
and RN spacetimes (see Fig. 7). This represents a contraction
of this cosmology perpendiculary to the direction of homo-
geneity.

6 Discussion

The discussion above used a coordinate system that was a nat-
ural choice for the region outside the horizon. It is a rather
widely accepted fact that despite its pathological character at
the BH horizon, r = rg this coordinate system may also be
applied inside the horizon and in the case of Schwarzschild
spacetime this has been proven by Doran at al. [12]. The
description provided by Eqs. (1) and (6) is not unique and
there exist a variety of singularity-free coordinate systems.
It is of interest therefore to identify which results in this
paper are coordinate independent and which parts of the dis-
cussion do depend on the frame of reference used. Hence
we will briefly discuss the treatment of some of the prob-
lems discussed above in terms of selected singularity-free
coordinate systems. We have already shown that Kruskal-
Szekeres coordinates applied to the generalized Doppler fre-
quency shift yield the same results as those obtained in
Schwarzschild coordinates [8]. On the other hand, a very
interesting approach, especially with regard to the main issue
of the current paper, is presented within a so-called “river
model” based on the use of Gullstrand–Painleve (G–P) coor-
dinates within Schwarzschild space-time (2) (see [6,17]). In
the G–P metric, the t-coordinate is substituted with the proper
time t̃ of a v-observer.

uv = 1

1 − v2 ∂t − v∂t (58)
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freely falling from infinity, where the parameter v =
√

2M
r

is regarded as a “velocity of space” (Refs. [6,17]), such that
at the horizon v = 1 and inside the horizon v > 1,

dt̃ = dt + v

1 − v2 dr. (59)

Hence the transformation between Schwarzschild t , r and
G–P, t̃ , R coordinates is given by

∂(t̃, R)

∂(t, r)
=

[
1 v

1−v2

0 1

]
. (60)

By using an appropriate tetrad for a v-observer, one can
describe, from the perspective of such a co-moving observer,
a variety of processes or phenomena (e.g. the Penrose mech-
anism inside a BH – see [17]). A test object is described by
a v-observer in terms of the velocity vector, “peculiar veloc-
ity” vp, expressed using this tetrad basis set. One can then
ask for the velocity of a uniformly accelerated test particle,
as in Sect. 4, as perceived by the v-observer. Before doing
this let us consider the perception by a co-moving observer
of three specific test objects: a resting t-object (t-o) (7), an
r -observer (8), (r-o) “resting” inside the horizon and a freely
falling test object, ε-o

Uε−o = ε

1 − v2 ∂t −
√

ε2 − 1 + v2∂r . (61)

The velocity vectors of these three test objects in the local
frame of a co-moving observer, i.e. projections on the tetrad
vectors, allow the determination of the peculiar velocity. This
may be done according the prescription given by Toporensky
and Zaslavskii [17] (see also [6]). On the other hand, if one
is interested in the value of peculiar velocity then one can
simplify this task to determining only the respective speed,
and this value of vp is determined by the scalar product,

uvUo = 1
√

1 − v2
p

(62)

Accordingly, for these three objects one obtains the following
values for the squared peculiar velocity: for the t-o

v2
p(t − o) = v2, (63)

for the r -o

ṽ2
p(r − o) = 1

v2 , (64)

and for ε-o

v2
p(ε − o) = 1 − (uvUε)

−2 (65)

where,

uvUε = ε2 + v2

ε + v
√

ε2 − 1 + v2
. (66)

Expressions (63) and (64) coincide with the conclusions (and
the results) of paper [8] [cf. also Eqs. (45), (46)]. Expression

(65) has two notable properties: on the horizon, v = 1, it
takes a value smaller than 1

v2
p(ε − o) =

(
ε2 − 1

ε2 + 1

)2

(67)

and at the ultimate singularity, r → 0, it vanishes

v2
p(ε − o) → 0 (68)

For the squared peculiar velocity (65) expressed in terms of

v, and V =
√

ε−1+v2

ε
, the speed of ε-o with respect to a static

observer, t-o (7), one gets,

v2
p(ε − o) =

(
v − V

1 − vV

)2

(69)

i.e. the result given by Toporensky and Zaslavskii [17] as Eq.
(33). Let us present now the case of a uniformly accelerated
(ua-o) test particle (Sect. 4) as perceived by a co-moving
observer (58). The components of the peculiar velocity may
be determined in the tetrad of the v-observer (see [17]), but
as underlined above the squared value of this quantity, v2

p
(ua-o) is simply given as

v2
p(ua − o) = 1 − (uvUua)

−2 = A

A + g2
t t

(70)

where

A = 2(αr + E ′)[(αr + E ′) + v

√
(αr + E ′)2 − gtt ]

−gtt [1 + (αr + E ′)2]. (71)

Two interesting results following from Eq. (70) for the
squared velocity of a uniformly accelerated test particle with
respect to a co-moving observer are the initial and final val-
ues. As the initial speed with respect to a resting, r -observer
observer is zero, (αr+E ′) = 0, the initial speed as perceived
by a v-observer obtained from (70) is:

ṽ2
p(ua − o) = 1

v2 . (72)

At the ultimate singularity r → 0 and g2
t t → ∞, the

(squared) peculiar velocity tends, as is known, to zero,

ṽ2
p(ua − o) = 1

gtt
→ 0. (73)

The latter result, Eq. (73), complies with the outcome about
expansion at the ultimate singularity. The former one (Eq.
(72)), complies with expectations: a test particle is initially
at rest with respect to a resting observer, r -o so its squared
speed with respect to the v-observer, Eq. (72), is the same
as the squared speed of the r -o observer Eq. (64) One may
conclude these considerations as follows. Utilising coordi-
nate frames free of singularities one obtains a coherent tool
for describing processes taking place above and inside the
horizon, and t , r coordinates are pathological on the horizon
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Nevertheless it is more natural to apply t , r coordinates out-
side and inside the horizon bearing in mind the interchange
of their roles, as it is a natural frame of reference and a use-
ful perspective for identifying analogies and illustrations as
was done in Secs. 3-5. It should be underlined that when we
are looking for invariant quantities and expressions that are
represented in terms of invariant objects such as scalar prod-
ucts, then all of the frames of reference mentioned above that
are regular at the horizon, such as the Gullstrand-Painlevee,
Kruskal-Szekeres or other systems, and Schwarzschild coor-
dinates - albeit ill-defined at the horizon - end up leading
to the same outcomes as already discussed. Then the matter
of choice of coordinate system depends on the context of
the issues to be discussed. This may result in different per-
spectives - such as the“river model” approach - along with a
static, istropic system outside the horizon but an anisotropic,
dynamic system inside the horizon of a Schwarzschild black
hole.

7 Final remarks

The aim of this paper was to present the properties of the
interior of BHs for spherically symmetric spacetimes. We
have discussed three specific effects: an angle traversed by
a light ray on a photon sphere, the speed of a uniformly
accelerated test particle and the generalized Doppler effect
i.e. the frequency shift for electromagnetic signals exchanged
between resting (or co-moving) observers. We compared the
results obtained for the exterior and interior of the BHs. In this
way we have illustrated (selected) properties of the interior
(and also the exterior) of an event horizon of these classes of
black holes.

The main outcomes are as follows. Inside the horizon of a
BH one can find an analogue of the photon sphere. In fact this
turns out to be a sphere with an ever decreasing radius, from
rg to 0 for S and AdS black holes or from r+ to r−, for an RN
black hole. The total revolution angle of a light ray belonging
to such a “photon sphere” is π for the Schwarzschild and
Reissner–Nordström spacetimes; it is smaller than π in the
case of Anti-de Sitter spacetime. It should be emphasized that
the angle traversed by a light ray on the photon sphere outside
the horizon is, in principle, infinite. There is a finite lifetime
within the horizon, so it isn’t bizarre that the angle swept out
by a ray belonging to a photon sphere analogue turns out to
be finite. It is interesting that it takes the value π and the
fact that for Kerr black holes this value also appears to be
an upper limit. Although no physical argument for this result
has yet been found, an intriguing correspondence might be
indicated. An important issue from a recent idea, referred to
by its author G. t’Hooft as “new physics” [18], is “antipodal
identification” (see also [19]). Antipodal identification means

in fact that there is a symmetry relation φ → φ + π inside
the horizon.

But this is actually the meaning of our result. Therefore,
so as not to contradict the idea of antipodal identification, the
total traversed angle could not exceed π .

A uniformly radially accelerated test particle outside the
horizon satisfies the generalized equations of those known
from Minkowski spacetime and behaves in a more or less
understandable manner. During its inward motion, the par-
ticle accelerates, i.e. its speed increases as the particle
approaches the event horizon:

v2 = (αr + E)2 − f (r)

(αr + E)2 → 1 (74)

The fact that the value of the speed tends to 1 (v → c) is
a property of the horizon, f (r) = 0. In the case of outward
motion, the particle starting at r0 can move outward only if its
acceleration is larger than some critical value αcr (r0); other-
wise the particle will move inward. The critical acceleration

αcr (r0) = 1

f (r0)

rg
r2

0

(75)

turns out to be equal to the gravitational acceleration of an
object resting at r0. In the case of outward motion from rest,
r = r0 , α > αcr (r0) the particle goes to infinity and the
well-known Rindler frame may be observed asymptotically.
In this sense the test particle behaves in an understandable
manner.

In the case of Schwarzschild spacetime, inside the horizon
the speed is given by an expression inverse to the one above
the horizon. As underlined elsewhere [8] it is a manifestation
of the interchange of the roles of t and r coordinates. This is
the case in AdS and RN spacetimes as well, though in RN
spacetime it takes place between horizons.

The speed of a test particle uniformly accelerated along the
homogeneous t-axis inside the horizon of a Schwarzschild
BH initially increases but after reaching a (non-universal)
maximal value decreases asymptotically to zero at the ulti-
mate singularity (see also [9]). Similar behavior may also
be observed within an AdS black hole. In the case of RN
spacetime, where an inner, Cauchy horizon is developed, the
speed of a uniformly accelerated test particle behaves in a
mixed manner. Initially growing, it may decrease at some
stage, eventually tending to 1 at the inner horizon. However
unexpected this observation may seem, the speed of the test
particle inside the S and AdS horizons on the one hand and
between the RN horizons, on the other, it turns out to be
coherent with a specific feature of these media. It becomes
clearer after analysing the generalized Doppler effect, i.e.
frequency shift.

The exchange of electromagnetic signals, between
observers resting outside an event horizon leads to the well-
known gravitational Doppler red- or blueshift. We have
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shown that inside the horizon signals propagating along the
homogeneous t-axis are redshifted in S and AdS black holes.
But they are initially redshifted and finally blueshifted inside
RN black holes. This means that the interior of S and AdS
black holes expand along the t-direction and the accompa-
nying effect is a “cosmological-like” Doppler redshift (see
also [12]). That expansion affects both “resting”, (in this case
“co-moving”) and travelling (e.g. a uniformly accelerated test
particle) objects in such a manner that their mutual motions
vanish when approaching the ultimate singularity (see also
[20]). A uniformly accelerated particle turns out to finally
slow down (asymptotically) to zero.

The interior of an RN black hole on the other hand may
be viewed as initially, r+ > r > rm expanding until r = rm ,

f ′
RN (rm) = 0 (76)

and finally, rm < r < r− becoming a contracting space-
time. This is accompanied by an appropriate “cosmological”
Doppler frequency shift, redshift first followed by the final
blueshift. In this case a uniformly accelerated test particle
may at some stage “slow down” (this is an acceleration value
dependent result), but then, due to contraction along the t
direction rather than due to acceleration, its speed increases
to 1 when approaching the inner horizon, f (r−) = 0. Such
a conclusion is confirmed by calculating the behaviour of a
freely falling test particle [8], whose varying speed simply
“mimics” the variations in fi (r) in the black hole’s interior.

Let us emphasize an asymmetry of the evolution of
the interior of spherically symmetric (outside the hori-
zon) Schwarzschild, Anti-de Sitter and Reissner–Nordstrom
spacetimes. Signals propagating perpendicularly to the t-axis
are found to be blueshifted confirming the result found for
Schwarzschild spacetime in [9]. One may guess that such a
contraction should affect specific time-like world lines. In
fact, this kind of effect may be observed (details will be pre-
sented elsewhere). For an accelerated particle whose trajec-
tories belong to the photon sphere analogue in the interior
of S and AdS black holes its speed (as measured by resting
observers) grows to 1, independently of the value of accel-
eration, when approaching the ultimate singularity, r → 0;
in the case of an RN black hole interior, the value of the
speed of an accelerated particle tends to a value smaller than
1 however as r → r−.

We have described then how (some) non-quantum pro-
cesses would be dramatically affected by the dynamics of the
black holes interior. Even more interesting is the question of
how the dynamically changing spacetime of the interior of
black holes would affect quantum processes. That will be the
subject of our further studies.
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