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Abstract There has been an increasing interest in re-

searching, developing and deploying multi-robot sys-

tems. This has been driven mainly by: the maturity of

the practical deployment of a single-robot system and

its ability to solve some of the most challenging tasks.

Coverage Path Planning (CPP) is one of the active

research topics that could benefit greatly from multi-

robot systems. In this paper, we surveyed the research

topics related to multi-robot CPP for the purpose of

mapping and model reconstructions. We classified the

topics into: viewpoints generation approaches; coverage

planning strategies; coordination and decision-making

processes; communication mechanism and mapping ap-

proaches. This paper provides a detailed analysis and

comparison of the recent research work in this area, and

concludes with a critical analysis of the field, and future

research perspectives.

Keywords Coverage Path Planning · Viewpoint

Sampling · Multi Robot · Model Reconstruction.

1 Introduction

Coverage path planning (CPP) is the process of com-

puting a feasible path encapsulating a set of viewpoints

through which a robot must pass in order to completely

scan or survey the structure or environment of interest.

Various technological developments and advancements

in sensor technology, navigational, communication and

computational systems have facilitated the increase in

the level of autonomy in multi-robot systems. There-

fore, some autonomous systems shifted over the past
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decade towards cooperative systems in order to achieve

(CPP) objectives more efficiently and robustly [46,3].

Different research approaches have been followed in

the past to perform CPP depending on the environ-

ment, the shape of the structure, and the level of the

required details. The two main challenging components

of CPP are viewpoints generation and coverage path

generation. Viewpoints generation defines the positions

and orientations of the sensor from where the data will

be collected, thus affecting the overall coverage. The

performance of the coverage planning approach is usu-

ally measured by the coverage completeness and its

optimality. The main contributing factors that affect

the overall multi-robot system, and model/map quality

include the information gathering method whether it

is continuous or discrete, the coverage path generation

method whether it is online or offline, and the mapping

or reconstruction methods.

Generally, the development of cooperative multi-

robot systems is concerned with a group of agents that

work collectively to achieve a common objective. Typ-

ical common objectives include surveillance, monitor-

ing, surveying, and modeling. Wide range of applica-

tions utilize cooperative multi-robot systems includ-

ing: search and rescue missions [3], forest fire monitor-

ing [50], industrial inspection [15,2], and natural disas-

ter monitoring and relief [46]. The objectives in these

applications can be achieved far more efficiently and re-

liably using a team of cooperative agents rather than a

single agent. In these kinds of applications, CPP plays

a vital role in coordinating the tasks of each of these

agents in order to achieve the main objective.

Multi-robot CPP is the process of computing a

set of feasible paths encapsulating a set of viewpoints

through which the team of robots must visit, each with

its assigned path, in order to completely scan, explore

or survey the structure or environment of interest. In
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specific applications, CPP is a process used for au-

tonomous mapping and reconstruction where these gen-

erated maps or models can hold different level of in-

formation, such as temperature, occupancy, or signals

strength, and can be used for various applications.

CPP strategies were deployed on various au-

tonomous robotic systems in the literature varying from

Unmanned Aerial Vehicles (UAVs), Unmanned Ground

Vehicles (UGVs) to marine robots. Recently, the inter-

est in UAVs have grown steadily, especially due to de-

creases in their weight, size and cost, and the increase in

their actuators performance. Moreover, the availability

of cheap light-weight processing power and miniatur-

ized accurate sensors increased their level of autonomy.

Furthermore, UAVs covers a broad set of applications

that cannot be fulfilled by other types of robots due to

their agility, and ability to move in unstructured envi-

ronments.

Technically, various robotic capabilities are required

in order to perform CPP including: localization, navi-

gation and path planning, and sensing and perception.

The level of complexity of these requirements varies

based on the number of robots and the environment di-

mensionality. As such, the robots need to be equipped

with various intelligent sensing capabilities that provide

information with enhanced quality in order to recon-

struct the structure of interest or map the environment

accurately.

The main factors that could effect the performance

of a multi-robot CPP approach include: information

sharing (whether it is centralized, decentralized, or dis-

tributed), viewpoints generation, path generation, task

allocation, reacting to dynamic changes (collision avoid-

ance), and model reconstruction or mapping approach.

Majority of existing approaches in literature attempt

to: reduce the computational cost (time need to com-

pute and execute the CPP mission) [62,83], avoid col-

lision internally between team of robots and externally

with the structure or environment [10,41,4], and gather

information with sufficient resolution for mapping and

reconstruction [69,79].

Most of the existing surveys in this topic address is-

sues such as perception, exploration, guidance and con-

trol. A few surveys address the CPP problem focus-

ing on single robot CPP problems and briefly mention-

ing the multi-robot as an extension [78,28], or focusing

on multi-robot area coverage problems [76]. Although

some of the techniques performed in single robot CPP

can be extended and applied to multi-robot systems,

several additional aspects must be considered including

viewpoints generation, communication/task allocation,

robustness (failure handling), and mapping. Also, the

dimensionality of the CPP differs between area cover-

age and large structures coverage problems.

This paper presents a survey on multi-robot cover-

age path planning. Our review focuses on approaches

related to multi-robot systems applied on environ-

ments of different dimensions. The survey provides de-

tails about the main aspects of performing CPP us-

ing multi-agent systems including: viewpoints gener-

ation, path planning, communication/task allocation,

and mapping. A detailed discussion about the main as-

pects is also provided with a flow chart showing the in-

formation flow throughout a multi-robot CPP mission.

A set of research perspectives in this topic are discussed

for further future developments. The main performance

metrics are also explored in the survey and shown in a

table summarizing the most recent work in this topic

using multi-robot systems.

In this survey paper, the main components of the

multi-robot CPP process are detailed in separate sec-

tions. Section 2 focuses on single and multi robot CPP.

Viewpoints generation strategies will be reviewed in

section 3.1, and multi-robot CPP approaches in sec-

tion 3.2. An overview discussion of the main aspects

and future research perspectives of CPP are presented

in section 4. Finally, conclusions are presented in sec-

tion 5.

2 Overview of CPP

Coverage path planning (CPP) is the process of explor-

ing or exhaustively searching a workspace, whether it

is a structure of interest or an environment, and de-

termining in the process the set of locations to visit
while avoiding all possible obstacles [28,77]. Some ap-

plications require achieving complete coverage using

the various CPP techniques such as structure paint-

ing, object reconstruction, lawn mowing, surveillance,

geo-spatial mapping, agricultural surveying, and floor

cleaning. Generally in CPP, either the model is recon-

structed in real time utilizing the robot’s sensing ca-

pabilities, or a reference model is provided in advance

for the structure or the environment of interest [72,73].

Extensive reviews of the various CPP methods in liter-

ature are presented in [18,28] describing their function-

alities and applications.

The main components of CPP include: viewpoints

generation, path planning, and coverage completeness

quantification. These components are directly depen-

dent on the exploration method selected for the struc-

ture or environment of interest coverage whether it is

performed offline or online. Performing offline CPP re-

quires using a reference model of the structure or en-

vironment of interest while performing CPP online re-
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quires utilizing the sensors information to perform cov-

erage.

2.1 Model Based or Non-Model Based CPP

Several approaches exist in the literature for performing

CPP using single robot. These approaches are classified

into model and non-model based approaches. A heuris-

tic based approach is proposed in [61] which takes into

consideration length, timing, coverage, and UAV en-

durance constraints for a distributed structure inspec-

tion application. In this work, an Art Gallery Problem

(AGP) approach is used to generate the set of view-

points based on the selected structures’ mesh models.

A Travelling Salesman Problem (TSP) is used to gener-

ate optimized paths for each structure, which are then

assigned randomly based on time constraints and TSP

path for the UAV. The work presented in [64] proposed

an inspection path planning approach that formulate

the CPP as an extended TSP, where coverage and ob-

stacle avoidance are taken into account. The surface

of the mesh model of the structure of interest is used

to generate viewpoints perpendicular and at a distance

from the structure surface. The TSP is solved using

an enhanced Particle Swarm Optimization (PSO) ap-

proach developed in GPU framework.

Additional research work performing model-based

CPP and considering the UAV energy are presented

in [25] and [81]. The work presented in [25] proposed

multi-objective Evolutionary Algorithm (EA) to gener-

ate coverage path for complex structure inspection tar-

geting coverage and energy objectives. The proposed

work performs uniform sampling based on an existing

model, utilizing a predefined bounding box, and dis-

cretization resolution. The EA plans the path using

the Non determined Sorting Genetic algorithm (NSGA-

II), then it measures energy and coverage scores offline

and penalize paths with collisions. Minghan and Vol-

can in [81] proposed a CPP approach that considers

the energy of the UAV in order to perform area cover-

age. The area is represented as polygonal grid with sin-

gle charging station where the polygonal grid represents

the viewpoints. The coverage planning approach follows

a depth-first approach, where three types of robot mo-

tion are defined including Advance (move to the next

cell providing shortest path), Retreat (return to charge)

and Follow (follow current contour). Most of the pre-

sented single robot model-based CPP approaches tar-

gets area coverage and simple structures. Some of the

approaches focuses on the energy aspect without focus-

ing on the quality of the scans and the computational

cost which are critical in CPP applications [81,16].

The second approach of the single robot CPP ap-

proaches follows a non-model based approach. The work

presented in [75] proposed a CPP approach extended

from [74] by utilizing the surface information to plan

the coverage path online using Truncated Signed Dis-

tance Fields (TSDF). The search space is divided into

cuboid regions that are used to build a volumetric map

of containing surface regions and frontier regions. The

volumetric map is used in computing the Information

Gain (IG) considering the cuboid volume and path

length. Visitation order is computed for each cuboid

applying Hamiltonian path problem while the path is

generated using Generalized TSP. Another non-model

based approach is presented by Emanuele and Cyrill

in [59] where they proposed an exploration algorithm,

which selects the Next Best View (NBV) that maxi-

mizes the predicted information gain, taking into con-

sideration the cost of the distance, and battery life.

The proposed work dynamically builds a hull that sur-

rounds a predefined bounding box which is updated

based on the new information. The viewpoints are uni-

formly sampled into a fixed number where they point

to the vertical axis that passes through the centroid of

the bounding box. The planning approach follows prob-

abilistic approach with a utility function that reduces

the 3D reconstructed model uncertainty, turns in the

flight path, and produce safe path based on time lim-

its. The energy aspect in non-model based single robot

approaches is considered a critical part, especially be-

cause the CPP is performed online. Using this type of

approaches with a single robot makes it hard to achieve

a high coverage percentage and increase the computa-

tional complexity. This difficulty arise from the com-

plexity of the environments which include occluded re-

gions that are hard to be found by single robot and

consumes a lot of time of exploration. A review of other

single robot CPP approaches with critical analysis is

presented in [8]. The advantages and disadvantages of

model/non-model based approaches are highlighted in

the viewpoint generation subsections and the discussion

section.

2.2 Single or Multi-Robot

For large areas and structures, utilizing multi-robot

CPP strategies could have great advantages in achiev-

ing full coverage rapidly. Utilizing a single robot to

cover a large structure or a wide area suffers from var-

ious drawbacks including time, length, robot energy,

and quality and quantity of information [28,18]. Multi-

robot CPP approaches follow the same approaches of

single robot coverage but additional factors and require-

ments have to be considered. These factors are: coop-
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eration type, information sharing, robustness of agent

failure handling, autonomy level, robot endurance, and

task allocation. This paper surveys different approaches

that utilizes multi-robot systems from the perspective

of the CPP components including the viewpoints gen-

eration and path planning approach. Viewpoint genera-

tion will be surveyed in details in section 3.1. Path plan-

ning approaches can be divided into grid based search

approaches, geometric approaches, reward based, NBV

approaches, and random incremental planners. Each of

these approaches will be surveyed in section 3.2.

3 Multi-Robot CPP

Various aspects need to be considered in order to per-

form CPP using multi-robot systems for model recon-

struction and mapping. The two main CPP related as-

pects in order to generate a feasible coverage path in-

clude viewpoints generation and path planning. The

remaining aspects are communication/task allocation

which is critical for multi-robot systems, and mapping

which is important for modeling the area or structure of

interest using the gathered data. This section provides

a detailed description of each of these aspects and the

employed approaches in each one of them.

3.1 Viewpoints Generation

In majority of the work presented in literature, the

coverage exploration methods are classified into model-

based, and non-model based exploration methods. The
model-based exploration methods depend on a refer-

ence model of the environment or the structure is

provided priori, while the non-model based methods

perform planning and exploration without having a

prior knowledge of the structure or environment [72,

73]. Based on this classification, the viewpoints are gen-

erated to form the search space of the planner.

Some of the viewpoints generation methods are uni-

form due to the dependency on the structure or re-

gion model existence, and the predetermined region or

structure model. Other types of viewpoints generators

are randomized due to the lack of knowledge about the

model of the structure or the regions.

Viewpoints generation is considered critical in

multi-robot CPP process, since it aims to output a

set of optimized paths representing a set of admissi-

ble viewpoints that covers the structure or environment

of interest. Various techniques are used in literature to

perform viewpoints generation based on the used ex-

ploration method and the coverage application.

3.1.1 Model-based

Having a CPP algorithm with uniformity characteris-

tics means that the robotic sensors are deployed to a

predefined coverage pattern [45]. Most of the algorithms

in literature are of a uniform nature especially when

the model information is already available. Having the

model simplifies the process of generating viewpoints

especially in critical areas giving higher weights to some

high priority areas of the model. It also facilitates the

process of connectivity network generation which forms

the search space for the path planners. The main limi-

tation of these approaches is the size and quality of the

existing model or region.

A good example of model-based viewpoints gener-

ation method is a grid-based sensors deployment and

the grids can be of different shapes like: triangular

lattice, square, hexagon, diamond, etc. The work pre-

sented in [57] performed grid based decomposition ac-

cording to each UAV footprint considering sensor size,

focal length, and UAV altitude. The squares of the grid

are divided into residential, empty and energy depots in

directed graph. The authors in [62] proposed a hexagon

pattern as shown in Fig. 1 for their cell decomposition.

The generated 2D hexagon cells are used for 2D plan-

ning and the generated paths are transformed into 3D

adding z elevation value based on an elevation map.

The work in [27] performed subsequent Trapezoidal de-

composition (convex polygons) of the 2D environment

until it computed a set of samples (guards) where each

guard can cover one convex polygon. The samples are

used as part of graph computed using a reduced con-

strained delaunay triangulation. A Boustrophedon Cell

Decomposition (BCD) approach is used in [41] to gener-

ate either a weighted graph called Reep graph or divide

regions into passes that are used in unweighted graph.

Furthermore, the work in [56] and [30] performed grid

based decomposition for a 2D area of interest. The de-

composed area is used then in planning the path and

the assignment of the regions to the team of robots.

Similarly in [50], the area is divided into evidence grid

cells based on an elevation map where each cell holds

the value of posterior probability of fire using fire front

contours. The fire front contours are obtained using a

fire segmentation algorithm from several images. The

obtained fire fronts by each vehicle in the team of robots

are used by the central station to update the probabil-

ities of each cell of the grid.

In addition to grid based approaches, the work

in [10] performed 2D decomposition into sweeping rows,

where each row represent an edge in the graph rep-

resentation. A rotated polygon is used to define the

sweeping direction with low turns and rows. The dis-
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Fig. 1: Hexagonal decomposition steps including (a)

Hull of area, (b) generating a set of hexagons that are

inside area in green or intersecting, and (c) calculat-

ing centroid of every hexagon. (d) shows an example of

non flight-able zones inside possible grids. Courtesy of

IEEE [62]

tance between rows is computed based on the sensor

footprint overlap. A Vehicle Routing Problem (VRP)

is then solved to divide sweeping rows among the set of

UAVs. The authors in [49] divided a 3D complex struc-

ture using horizontal planes translated vertically along

z-axiz to check number of loops and intersection points

as shown in Fig. 2. An offset is added to the struc-

ture to generate the viewpoints at a distance from the

structure. A graph theory approach is used to check the

number of loops then a clustering algorithm is used to

categorize the number of points to each loop that are

then used as viewpoints. if the structure had one slice,

then the viewpoints are categorized based on the refer-

ence yaw difference between UAVs. In the case of mul-

tiple slices, each UAV is assigned to a slice where each

one of them will have the same number of viewpoints.

The work in [45] divided the area of interest into big

voronoi cells based on the used number of agents. Fur-

thermore, the work in [47] used different representation

for the region of interest such as a 1.5D terrain where

the altitude value for every x along a single dimension

is returned by a function interpreting the 1.5D terrain.

This process utilizes fixed altitude paths and the chain

visibility property of 1.5D terrains to generate visibility

segments that are then used to extract viewpoints for

each agent.

In [7], a generalized Voronoi diagram approach was

utilized in order to perform safe uniform distribution

of many robots in complex areas for the purpose of

coverage. This work performs initially a grid decompo-

sition of the complex area which converges to the com-

puted Voronoi partitioning. The complex area is parti-

tioned using a modified Dijkstra algorithm and grow-

ing functions to provide safe distances between multi-

ple robots. The work presented in [15] proposed a grid

based decomposition approach to divide the area and

generate the viewpoints for multi climbing robots. A

set of voronoi cells were used in the decomposition to

divide a user selected area in order to be explored by

Fig. 2: Concept of plane slicing and intersection points.

Courtesy of [49]

the team of robots. In this work, either agents spread

locally and then interact for coverage globally to sweep

over the area (method 1), or agents assign areas of op-

eration cooperatively then each agent sweep over their

areas (method 2).

Majority of the mentioned papers are following 2D

grid based approaches consisting of cells. However, grid

based representations with its various shapes have lim-

itations in the coverage of boundaries areas and han-

dling partially occluded cells. On the other hand, sweep

based approaches ensure every point has been seen by

at least one robot performing progressive movements

through the environment. These type of approaches

is considered energy and time consuming approaches.

Furthermore, structures and environments of complex

shapes are hard to be decomposed and will generate

a set of slices of different shapes. Distributing these

slices among different robots is difficult in terms of

effort where some robots might have large areas and

others have small ones. Therefore, efforts distribution

is another issue that need to be maintained in multi-

robot systems considering trajectory distance, area to

be covered, time, and energy.

3.1.2 Non-Model based

The locations of the viewpoints in non-model based

CPP algorithms are not predetermined. Additionally,

it is suitable in the cases when there is no information

about the model of the structure or the region. Non-

model based algorithms are preferred in large scale cov-

erage problems where the positions and number of re-

quired viewpoints cannot be predetermined. The main

challenge in non-model based approaches is maximizing

coverage while minimizing the energy consumed by the

team of robots.
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A set of approaches of randomized characteristics

are presented in literature and classified in various

ways. The work presented in [22] proposed a frontier

based exploration algorithm for a team of robots. Ini-

tially the robots are randomly located in an unknown

environment where an initial map is generated by the

first robot and utilized by the other robots to localize

themselves using particle filter algorithm. The approach

is based on identifying frontiers in the initial created oc-

cupancy grid map and performing threshold rank based

frontier allocation.

Additional work with random characteristics is pre-

sented in [24], where two-step procedure that allows

aligning a team of flying vehicles is proposed for the

purpose of surveillance in GPS denied areas. The al-

gorithm starts by generating an elevation map using

modified visual Simultaneous Localization and Map-

ping (SLAM) and meshing approach. Then, the map

used to generate a set of initial candidate positions

(viewpoints) for the team of robots. This set is ran-

domly generated at the beginning, and then it is opti-

mized using cognitive and adaptive methodology. This

methodology aims at maximizing visibility and cover-

age while minimizing the path distance. Furthermore,

Sai and Srikanth in [79] proposed an uncertainty aware

path planning approach for multiple UAVs that collab-

orate between each other for vision based localization.

This approach Involves solving an NBV by taking the

initial poses of the UAVs, then minimizing a weighted

heuristic function to generate better poses at each itera-

tion. This optimization function is solved using Covari-

ance Matrix Adaptation Evolution Strategy (CMA-ES)

algorithm which contains certain degree of randomness.

The heuristic involves different aspects including visi-

bility, span, overlap, baseline, vergence angle, collisions

and occlusions.

These articles presented non-model based ap-

proaches of randomized behavior which consumes time

and energy. Generating the candidate viewpoints at

each step for each robot consumes time and requires co-

operation to avoid repeated coverage. Non-model based

approaches are considered practical in cluttered envi-

ronments where the environment has unknown dynamic

objects like in search and rescue, or disastrous environ-

ments, but model-based approaches are more practi-

cal in applications like inspection, modeling, and fault

traceability. Non-model based approaches require no

prior knowledge and also allow performing online re-

planning in case of a failure of one of the agents. More-

over, performing decentralized non-model based explo-

ration is costly compared to centralized exploration as

interactions across and within robots increases. How-

ever, using decentralized non-model based approach

provides long term benefits of reaching high perfor-

mance.

3.2 Path Planning Approaches

Various multi-robot CPP approaches are surveyed in

literature illustrating the challenging problems and the

proposed solutions. All these approaches have simi-

lar goal which is to provide a collision-free path that

achieves full coverage of the structure or region. These

approaches are classified based on the path planning

methodology into: grid based search, geometric, reward

based, NBV, random incremental planners approaches.

3.2.1 Grid Based Search Approaches

The most important grid based search methods in coop-

erative CPP consist of Cell Decomposition (CD) meth-

ods, and tree based search methods. The cell decom-

position methods are further classified into exact and

approximate cell decomposition.

The work of Rekleitis et al. [67] extended the BCD

approach from single robots to multi-robot systems

for covering unknown arbitrary environments. Based

on the communication restrictions, two types of algo-

rithms were presented including distributed coverage

and team-based coverage. Both types utilize a sensor

based approach and assume an unknown environment.

This work minimizes repeated coverage employing an

auction mechanism which facilitates cooperative behav-

ior among the team of robots. Another work utilizing

BCD approach is presented in [17] which divides the
cells equally among the robots. Each of these cells is

covered by an atomic cycle algorithm. The main objec-

tive of this work is to minimize the path execution time.

Adiyabaater et. al [35] proposed a method of path plan-

ning for coverage that plans the minimal turning path

based on the shape and size of the grid cell. This ap-

proach provides efficient covering order over the cells

based on distance among centroids of cells. It also pro-

vides more optimal coverage path and reduces the rate

of energy consumption and working time.

Moreover, a recent study in [10] proposed a two

stage multi-robot coverage approach similar to the pre-

sented work in [82]. The first stage constructs a com-

plete graph by decomposing the area of interest into

line sweeping rows as shown in Fig. 3 where the bor-

ders of the coverage rows represent the vertices of the

graph. The second stage utilizes the generated graph to

divide the sweeps among the team of robots by solving

a VRP. This approach ensures performing coverage in

short time for UAVs in contrast to other approaches as
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claimed by the authors. Minimizing the number of re-

quired robots for completing the coverage is one of the

main objectives of this work. However, this work could

only be employed in clear areas with no obstacles. An

exact cellular decomposition method is proposed in [34]

to achieve complete coverage utilizing flow networks us-

ing single and multiple mobile robots. In this work, the

free space of the environment is divided into a number

of cells utilizing sweeping lines. These cells are approx-

imated to be either trapezoidal or rectangular which

form the flow network nodes. Then, the minimum cost

path from the generated flow network is computed us-

ing a search algorithm. Each cell in the flow network

is covered using twelve developed templates of back-

and-forth motion. The total coverage time is calculated

considering the duration of covering the cells and the

durations of the moves between the cells taking into

consideration of the order in the flow network.

Fig. 3: The back-and-forth sweep motion performed

along lines perpendicular to the sweep direction for a

rectangular area coverage. The number of turns outside

the area of interest is influenced by the sweep direction

which affects the coverage duration. Courtesy of [10]

An additional classical approach is developed by Fa-

zli et al. [26] which include several algorithms for the

problem of multi-robot repeated area coverage. The

overall proposed approach is divided into stages. The

first stage include generating a set of points called static

guards such that the entire environment of interest is

observed joining all the points. The number of guards

is assumed to be similar to the number of robots. The

second stage involves creating a graph connecting the

guards and the workspace nodes. The third and forth

stages include reducing the size of the graph and cov-

ering the graph using either cyclic coverage or cluster

based coverage. The aim of the cyclic coverage is to gen-

erate the shortest path by allocating a portion of the

generated path which passes through all the guards to

each robot in the team. However, the cluster based ap-

proach divides the graph into clusters according to the

number of robots. The authors presents several algo-

rithms to tackle the problems of each mentioned stage.

A classical grid based approach is proposed also in [11]

where the area is divided into hexagonal cells which are

then clustered. These clusters are allocated to groups of

aerial vehicles based on the battery level and position in

order to acquire data. The cells can be covered by either

centroid, square or lawnmower patterns with specific

configurations to address the constraints of magneto-

metric (geophysical) surveys. The three patterns are il-

lustrated in Fig. 4. In this work, collisions are avoided

by assigning different altitudes for the UAVs. This ap-

proach aims to minimize the survey time and to be

adaptable for different vehicles and resolutions.

Fig. 4: Different patterns of coverage including Lawn-

mower shown in (a), Square pattern shown in (b),

and Hexagon centroid shown in (c). Courtesy of

Springer [11]

Furthermore, the work in [21] proposed a greedy ap-

proach to calculate the path for exploration. The used

graphs for path search are grid graphs. The main aim

of this work is to minimize the total UAV traveled dis-

tance ensuring that every node in the path is visited

exactly once. The same amount of nodes are assigned

to every UAV to explore assuming there is no jumps.

The work presented in [40] proposed a coverage ap-

proach for multi-robot system to deal with the com-

plete, optimal, and communication-less coverage prob-

lem. The problem is defined as Min Max k-Chinese

postman problem where the main goal is to minimize

the maximum coverage cost over a group of robots. This

paper proposed two approximation heuristics for solv-

ing the multi-robot coverage problem. The first pre-

sented solution is an extension of exact CD approach

which is considered as an efficient single robot area cov-

erage algorithm. In this solution, a Eulerian graph (ev-

ery vertex in the graph has even degree) is generated,

then a Eulerian path is computed (a path where each

graph edge is visited once). The second solution is us-

ing a greedy approach (Breadth First Search) by which

the area of interest is divided into equal parts, then a

single robot coverage approach is applied to each part.

Different classical CPP approaches were used in fire

monitoring applications as described in [51,23,63,12].

In [23], a CPP approach is proposed for forest fire

surveillance. The main parts of the proposed approach

of fire monitoring involves fire detection, confirmation

and precise localization with several cooperating UAVs.



8 Randa Almadhoun1 et al.

The fire detection and confirmation is achieved by ap-

plying fire segmentation to extract fire contours which

are used then to compute the fire front position. The

overall area to be surveyed by the team of UAVs is di-

vided into convex searching regions. The UAVs perform

back and forward rectilinear sweeps in order to cover

their convex regions. The area decomposition is per-

formed taking into consideration minimizing the num-

ber of sweep turns. These sweep turns consume sig-

nificant amount of time for the UAV stop, rotate and

then accelerate for the next sweep. A similar approach

to [23] was followed in [51] and focused on the percep-

tion system and the contour detection. The work in [63]

proposed a distributed coverage control approach in or-

der to monitor a wildfire and track its development in

open spaces using a team of UAVs. The area is divided

into discrete grid that include information about the fire

spread. In this work, the UAVs team follow the border

region of the wildfire as it keeps expanding while simul-

taneously maintaining the coverage of the whole wild-

fire. This work utilizes potential field control for colli-

sion avoidance, and directing the robot towards of fire

fronts. Another fire monitoring algorithm is proposed

in [12] which proposed Variable Neighborhood Search

(VNS) approach that generate the UAVs trajectories in

order to observe the fire front. This approach depends

on modeling the area of interest as grid of cells holding

information about the fire propagation. The fire front

depends on the rate of spread from one cell to another

and the main propagation direction. The fire spread

rate is calculated using Rothermel’s method. The plan-

ning algorithm of this work distribute the task implic-

itly such that the same locations are not observed by

the team of UAVs concurrently.

A typical approach used in cooperative CPP is the

use of Spanning Trees. A spanning tree approach is pre-

sented in [27] where a Multi-Prim’s algorithm is used to

partition a graph into a forest consisting of partial trees

for the purpose of inspection. The graph is generated

by performing subsequent Trapezoidal decomposition

(convex polygons) of the 2D environment until each

single guard (sample) can cover a corresponding sin-

gle convex polygon. The presented approach performs

graph reduction to reduce the time required by the

robot to traverse the graph. Then, a Constrained Span-

ning Tour (CST) method is used to build cycle on each

partial tree and assign each cycle to a robot. The algo-

rithm minimizes the redundant movements and guar-

antees the coverage completeness. Using this approach,

robustness is also guaranteed by handling failures us-

ing supportive trees. Fig. 5 illustrates the described

spanning tree approach.

Fig. 5: (a) A Sample Tree (b) Double-Minimum Span-

ning Tree (DMST) (c) Revised-DMST (d) CST. Cour-

tesy of IEEE [27]

Additional work presented in [84] deals with the

problem of non-uniform traversable terrain coverage

using multi-robot systems. Their algorithm can han-

dle a terrain with locations that does not have a con-

stant traversing time. In order to handle terrains with

non uniform traversability, this algorithm extends the

Multi-robot Forest Coverage (MFC) algorithm. The

work was compared against Multi-robot Spanning Tree

Coverage (MSTC) and it generated paths with shorter

coverage time. The work in [85] proposed a Multi-

objective Genetic Algorithm (GA) with forest individ-

ual containing non-intersecting trees (Mofint) to tackle

the time-limited complete coverage problem. It finds

the least number of robots and allocate tasks to these

robots optimally to finish the mission within a time

limit. The environment is decomposed into regions

(nodes), of specific weights, and edges representing the

borders of two regions, where the weights are used to

indicate the coverage completion time. An arbitrary

spanning tree of the graph is divided by the proposed

work to find the lower and upper bounds of number of

robots. Then a time limited version of the problem is

viewed as a number fixed problem (min-max Balanced

Connected Partition (BCP) problem) which forms with

the estimated bounds a bi-objective optimization prob-

lem (Multi Objective Optimization Problem MOP).

The Mofint algorithm includes two objective functions

where they focus on the number of the spanning trees

(objective 1) and heaviest tree (objective 2). This work

outperformed the MFC in the least number of robots

used and the average completion time.

In a recent work presented in [39], the authors pro-

posed an algorithm that partitions the area of interest

fairly among a team of robots considering their initial

positions. For each robot planning, the algorithm con-

struct a Minimum Spanning Tree (MST) for all the un-

blocked nodes and then Apply the ST to the original

terrain and circumnavigate the robot. Their solution is

considered efficient in terms of computational complex-

ity and it guarantees covering the entire area of interest

without backtracking paths. Although this algorithm

tackles the problem of fair area partitioning and CPP,

the approach accounts only for fixed cell sizes for area

division while not all sub-areas have a uniform geomet-

ric distribution. Another work utilizing spanning tree
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is proposed in [43] which focuses on time synchronized

coverage control of cooperative mobile robots. Given

a set of Locations To Visit (LTV), the proposed work

generates a Euler graph path tree to be used for cov-

erage work. In order to have a synchronized execution

time of cooperative robot coverage, time-synchronizing

velocity profiles are designed for all LTV pair.

3.2.2 Geometric Based Approaches

Geometric based approaches utilizes visibility graphs in

generating the path. The visibility graph includes a set

of points and obstacles where the nodes represent the

locations, and the edges are line segments that do not

pass though obstacles. Geometric approaches are used

in many areas such as finding shortest euclidean path,

and polygonal area coverage. The most used Geomet-

ric based method in multi-robot CPP is the Voronoi

Diagrams.

In [83], a Dynamic Path-Planning approach for het-

erogeneous Multi-Robot Sensor-Based Coverage (DPP-

MRSBC) is proposed considering energy capacities.

The environment is modeled as Generalized Voronoi Di-

agram (GVD) where the edges of the diagram need to

be covered. The proposed algorithm starts with undi-

rected graph then generates subgraphs that are di-

rected. These graphs are used to generate optimal paths

for each robot which are then turned into arcs with costs

referring to its lengths. Then, directed multi graph is

used to find the shortest path. The Ulusoy’s partition-

ing Algorithm (UA) is modified to add energy demands

(energy, coverage) and to re-plan path utilizing the re-

maining energy capacity. The work in [4] proposed a

control algorithm that forms the sensors to a Voronoi

tessellation while score function of the coverage is in-

creasing. The proposed work utilizes the Voronoi tessel-

lation defining a coverage score function as a measure

of the quality of the surveillance attained by the sensor

network.

Moreover, the work presented in [31] uses multi-

objective optimization to allocate the partitioned ar-

eas to the robots whilst optimizing robot team’s objec-

tives. The area surface is partitioned following Voronoi

partitioning approach. The main optimization objec-

tives include minimizing the overall completion time

and achieving complete coverage in addition to opti-

mizing the manipulator joint’s torque. Fotios et. al [13]

proposed a coverage approach based on partitioning a

coastal region for a team of heterogeneous UAVs. The

proposed approach combines the strategies of graph

search and computational geometry algorithms which

partition the area of interest regardless of the number

of UAVs or their relative capabilities and consider the

sensing radius and Field of View (FOV). Initially, the

area is partitioned using a growing regions approach

which perform isotropic portioning based on the UAVs’

initial locations and relative capabilities. Then, the area

and holes are defined by a forced edge constraints per-

forming a Constrained Delaunay Triangulation. The de-

scribed coverage approach is Antagonizing Wavefront

Propagation (AWP) which is a step transition algo-

rithm that involves an isotropic cost attribution. This

algorithm starts from the initial position of each UAV,

propagating towards the other UAVs or the borders of

the area.

In [69], a coverage algorithm is proposed to effi-

ciently generate a flight plan to completely cover a given

area of interest (i.e. area with complex contours or must

not be overflown). The first step of the proposed ap-

proach include the computation of the area of interest

percentage that should be covered by each robot con-

sidering the sensor footprint of each UAV. The number

of cells of the grid required for each sub-area is de-

termined using the computed percentage values. The

sub-areas are further extended using flood-fill like algo-

rithm. The second part involves performing path plan-

ning which prioritizes the selection of long straight seg-

ments (stride) to reduce the number of turns. In order

to select strides, a set of heuristics are proposed in-

cluding the selection of the neighbor cells with a higher

value, the ones located in the contour of the area, and

the ones that lead to a longer stride in the next step.

Another type of geometric approach is the work pre-

sented in [37] which proposed a partitioning scheme

that depends on creating a power diagram to cover non

convex areas. The power diagram takes into account

the different sensing capabilities available in each agent

in addition to the visibility domain of the agents. A

distributed gradient control scheme is also proposed to

lead a set of heterogeneous robots to cover the specified

area.

3.2.3 Reward-based Approaches

The reward based approaches are employed in several

recent work in multi-robot CPP due to their advantages

such as nonlinear mapping, learning ability, and parallel

processing. The most important used methods include

Neural Network (NN), Nature Inspired methods and

hybrid algorithms.

Several bio-inspired multi-robot coverage ap-

proaches have been developed based on the behaviors

that exist in nature. Ranjbar-Sahraei et al. [66] pre-

sented an example where the robots avoid entering the

boundaries of each other utilizing the behavior of the

ants. The robots in this work move in a 2D environment
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in a circular motion where they deposit pheromones on

their areas’ borders mimicking the ants behavior in or-

der to reduce the intersections of borders. That is, if a

pheromone is detected by a robot, it changes its motion

direction and hence avoids another robot’s border. As a

result, this approach facilitates spreading out the robots

in the environments gradually. This approach is further

extended in the paper into two extensions. The first ex-

tension include increasing the radius of the robot’s cir-

cular motion if pheromone detection likelihood is small

and vice versa. The second extension facilitates the be-

havior change when an intruder is detected by decreas-

ing the robots territory areas. The authors in [38] pro-

posed an approach that minimizes the completion time

and number of turns of a team of robots while trying

to achieve complete coverage. The proposed work fol-

lows a grid-like decomposition approach that is based

on disks. The experimental setup consists of areas of

convex rectilinear polygons. A pattern based genetic

algorithm is used to achieve complete coverage by uti-

lizing eight neighbor-disk prioritization patterns used

to represent rectilinear moves. The results of using two

patterns is illustrated in Fig. 6. An optimized genetic

algorithm combined with total coverage method is pro-

posed in [20] for generating 3D map of large areas using

multiple UAVs. The area of interest in this work is di-

vided among the team using flood fill algorithm and

game theory, then the proposed path generation algo-

rithm is applied on each sub area. In [86], a genetic

algorithm is used to plan a path that detect the en-

tire area. Initially, this is done for one drone, then the

search space is divided among the UAVs according to

their position and endurance and multi-objective Inte-

ger programming model.

The work in [58] proposed an optimal coverage path

planning approach and coverage action controller that

performs an active selection of goals. Two cost functions

are proposed in order to allow robots to avoid obstacles,

and to find the optimal paths to the specified goals.

The method used to select the best goal considers the

coverage paths and introduce the notion of safe goal.

3.2.4 NBV Approaches

NBV approaches are usually used when no information

about the model exists priori. NBV approaches scale

better to complex real-world. Some of the NBV ap-

proaches in literature are of probabilistic characteristics

which provide estimation not fixed value.

One of the recent NBV CPP approaches is described

in [48] where an exploration algorithm is proposed to

collect water samples by building spatially varying phe-

nomenon over a specified region without prior knowl-

Fig. 6: The sample chromosome of a solution including

number of robots: 3 and number of allowed patterns: 2

is shown in (a). The chromosome decoding is shown in

(b) where three shapes ( diamond, circle, and square )

are presented and have two representations including (i)

the robot initial location if numbered 1, and (ii) shortest

path’s starting and ending points related to repeated

coverage motion if numbered 2 or more. Courtesy of

Springer [38]

edge about the spatial field. The built spatial varying

fields provide emphasis on locations that are good for
sampling. The candidate locations for the explorer are

generated using two techniques including fixed-window,

and Contour-based location selection methods as illus-

trated in Fig. 7. It includes two related subproblems

including exploration algorithm to generate the phe-

nomenon map, which concurrently facilitates collecting

actual physical samples using the sampling algorithm.

The exploration is performed using Gaussian Process

frontier-based approach by which it measures variables

to suggest sample utility. A look-back selective tech-

nique is used for sampling where the new candidates

are appended to a list which is used later by the robot

to look back for non-eligible candidates within the spec-

ified time period. The main aim of the proposed work

is to generate a good spatial phenomenon model and to

compute a path optimized for distance and time. An-

other approach is presented in [53] which builds prob-

abilistic decision maps to compute exploration paths

using a grid that represents the sum of expected scores

to pick and place static and dynamic objects. The main
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aim of this work is to minimize the combined search and

action time with targets found in an environment us-

ing finite horizon plans. The Probability Density Maps

(PDM) is built using reward prediction function which

corresponds to the probability of finding new objects or

targets. The PDM is updated through a Bayesian fil-

tering procedure applied on the grid of the arena area

where each cell represents a state.

Fig. 7: The colormap shows the variance in the spatial

representation of the field. The potential candidate lo-

cations are represented by red circles. The contours are

shown in black lines.Two location selection approaches

are shown including Contour-based (a) and Fixed-

window locations selection. Courtesy of IEEE [48]

Another work following NBV approach is pre-

sented [54] which aims at increasing information about

uncertain areas while performing coverage. The en-

vironment is modeled using Voronoi partitioning ap-

proach where the Voronoi regions are assigned to vehi-

cles using a locational optimization approach. The pro-
posed distribution density function is formulated based

on some unknown targets’ positions which can be de-

tected using the appropriate sensors. The vehicles are

divided into two teams including service and search ve-

hicles. The search vehicles find the targets in order to

allow the service vehicles perform coverage efficiently.

The search vehicles find their path that maximizes the

gathered information individually using a look-ahead

dynamic programming algorithm. The objective of ser-

vice vehicles is to optimally cover the terrain by spread-

ing out over the environment of interest. Similarly, the

work in [65] proposed a two layered exploration ap-

proach including coarse exploration layer performed by

UGV, and fine mapping layer performed by UAVs in

GPS denied environment. The UGV starts exploring

the area of interest using 3D laser to create a rough 2.5D

volumetric map using SLAM, which is then used by the

UAV to update occupancy data of the gaps using 2D

tilting laser. A frontier coverage planning approach is

followed to generate a set of viewpoints which are then

used to compute the path using a Fixed Start Open

Traveling Salesman Problem (FSOTSP). The cost func-

tion used in FSOTSP is formulated using traveled dis-

tance and information gain. A volumetric motion plan-

ning interface is developed to support the navigation

of both UGV and UAV applying Batch Informed Trees

(BIT).

Vera et. al [52] proposed a variation of VRP with an

insertion heuristic and a negotiation mechanism for en-

ergy resources, and a heuristic for the continuous mon-

itoring problem with inter-depot routes and priorities

(CMPIDP) that uses all available information and is

fast enough to react to dynamic environmental changes.

3.2.5 Incremental Random Planners

The main two important sampling methods include

Rapidly exploring Random Trees (RRT) and Proba-

bilistic Road Map (PRM). The most used sampling

based method is the RRT method with all its varia-

tions. The work presented in [14] proposed a receding

horizon planning approach to compute an optimized ex-

ploration path. The method utilizes an occupancy map

to represent the environment where a finite iteration

random tree (RRT*) is grown in the free space part

of the map. The best branch of the random tree is se-

lected based on the amount of the unmapped space by

which the first edge is executed at every planning step

iteratively to complete the exploration.

The work in [79] described previously in section

3.1.2, utilized random planners as the second stage of

the planning framework which performs belief space

planning. This is performed for the vehicles individu-

ally using the Rapidly Exploring Random Belief Tree
(RRBT) algorithm. This method generates paths that

ensures having high image quality and improved vehi-

cle confidence by optimizing the path cost and reducing

the localization uncertainty.

This type of methods have limitations related to dy-

namic environments especially in multi-robot systems.

If one of the robots’ paths is blocked by an obstacle

or one of the robots failed, then a re-planning process

need to be preformed for the entire team which is of

high computational cost.

3.3 Communication and Task Allocation

Communication is a challenging aspect in multi-robot

systems. The common assumption in literature is that

communication is unlimited in range and bandwidth.

Nearly all centralized systems assume that the individ-

ual robots can communicate directly with the central

controller such as [70,45], and algorithms that create
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maps assume global communication [55,58]. Since com-

munication systems are often down in the aftermath of

a disaster [52,62], achieving coverage with limited com-

munication must be a critical aspect that must to be

considered.

The actions of the robots in a decentralized system

are based on the collected information about the other

visible robots. These collected information include the

actions and locations of other visible robots, with re-

spect to their local coordinate system. Most robots

can provide some local communication means such as

wifi [24,48] or line-of-sight (LOS) [54,24,15] methods,

which can then be used to direct the team of robots and

avoid overlapping actions. Line-Of-Sight (LOS) com-

munication as described in [54] is based on categoriza-

tion scheme by which the team is divided into search

vehicles and service vehicles. The search vehicles maxi-

mize the amount of gathered information while the ser-

vice vehicles spread in the environment within a spec-

ified range to cover the entire area. The work in [15]

defines critical points for allocating cells based on sev-

eral factors, one of them is the LOS. Teams that are

involved in GPS denied or uncertain areas (disasters)

utilize these kind of communication technique.

Decentralized multi-robot systems are considered

fault tolerant, and scalable as the system is of dis-

tributed architecture and modular. Distributed mod-

ular systems allow detecting faults and replacing af-

fected robots without having global control which in-

creases the system robustness such as the work in [36].

Furthermore, using decentralized systems reduce the

network overhead introduced by information exchange

between robots. Several decentralized multi-robot sys-

tems have been proposed which shares information with

the nearest neighbor such as [63,53]. The work pre-

sented in [58] performed distributed Voronoi partition-

ing where each robot uses a relative configuration of

other robots within its sensor range. The distributed

partitioning is performed by incrementing pseudo sen-

sor range in steps while the range constrained Voronoi

cell gets contracted to obtain the desired region. The

work in [70] proposed a hybrid decentralized multi-

agent path finding framework. It combines Reinforce-

ment Learning (RL) for planning single agent paths and

Imitation learning from centralized path planner. In

this work, the agents select movements that will benefit

the whole team using the learned decentralized policy

where the agents perform implicit coordination during

the online path planning without having explicit com-

munication among the team.

Another decentralized approach for information

sharing between a team of UAVs is proposed in [42]

where the UAVs performs two types of map updates at

each time step: uncoordinated map update, and coordi-

nated map merging. The first type generates an uncoor-

dinated occupancy probability using local information

only, while the second update combines the local infor-

mation with the other UAVs robots in order to com-

pute the actual probability for the map. Three types of

coordinated map merging approaches are proposed in-

cluding belief update, average, and modified occupancy

grid map merging. The work in [36] proposed a one-to-

one decentralized coordination where each pair of UAVs

share their own area to survey. Taking into considera-

tion all the one-to-one coordinations between neighbor-

ing UAVs distributes the whole team efficiently. The

work in [65] performed decentralized exploration using

UGV and UAV platforms where each one of them up-

dates their map and navigation on their own then share

it with the other vehicle.

3.4 Mapping

Different kinds of applications require detailed 3D mod-

els and 2D maps such as: terrain surveillance, indoor

mapping, inspection, fire monitoring, and urban plan-

ning. In general, a model reconstruction and an envi-

ronment mapping process involves four steps including:

viewpoint planning, scanning, registering, and integra-

tion [73]. Robot localization is considered an impor-

tant requirement to perform accurate reconstruction

and mapping. It is performed usually as part of the

most used approach in mapping which is the Simulta-

neous Localization and Mapping (SLAM). Some work

in literature represents the workspace reconstruction as

an environment mapping application and others rep-

resents it as a model reconstruction of a structure of

interest.

Most of the reviewed work in literature performed

area type of coverage for various kinds of environments.

This type of environments include terrain, arena, in-

door environment, and forests. For example, The work

presented in [38,82,83,27] utilized topological maps in

the planning process. For providing the covered map,

some presented work performed monocular Structure

from Motion (SfM) and stereo Iterative Closest Point

(ICP) as in [49] generating 2D map. Other work per-

formed 3D reconstruction using Real Time Appear-

ance Based Mapping (RTABMap) [1] generating 3D

textured meshes and octomap [32] generating 3D oc-

cupancy maps as in [74,61]. Moreover, some of the re-

viewed work especially the ones performed in natural

environment overlay the path on the google map as il-

lustrated in [10,41]. Additionally, some work performs

meshing as to reconstruct 3D mesh structures utilizing

techniques like TSDF or triangulations as in [79,75].
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Another aspect important in mapping and informa-

tion gathering is related whether the information is pro-

cessed online while the planning is performed or offline

after completing the coverage mission. Most of the work

presented follows an offline process as described in [11,

40,52]. Based on the type of processed information, per-

forming the mapping online as in [55,35,58] facilitates

monitoring and adapting to new changes but at the

same time is computational expensive and could affect

the planning process.

4 Discussion and Future Research Directions

Modeling and mapping environmental terrains and

complex structures is considered an essential process

for increasing the level of autonomy in wide range of

application domains. Generating an efficient coverage

route is a critical requirement in order to gather accu-

rate information through the viewpoints encapsulated

in the route in order to perform modeling and map-

ping. Utilizing a team of robots minimizes the effort

required by each member to achieve the coverage task.

The team of deployed robots in CPP could include var-

ious homogeneous and heterogeneous robotic platforms

which facilitates the coverage and mapping tasks.

Based on the work surveyed in the literature, vari-

ous research components have to be taken into consid-

eration while developing multi-robot CPP approaches,

such as: type of the environment, the dimensionality of

the CPP problem, the number of sensors and agents

type, and the coordination and communication tech-

nique. The CPP problem is divided into two processes,
viewpoints generation and path planning. The sequence

of using these processes is affected by the existence of

the environment (model-based/non-model based) and

the type of prior available information (2D map, 3D

mesh, 3D point cloud). Based on the dimensionality

of the problem, various types of information could be

used during mapping and reconstruction, and different

mapping techniques are utilized to generate the final

map or model. Various evaluation metrics were consid-

ered in literature but the main common metrics include

coverage completeness, path length, execution time, ro-

bustness, and energy consumption. The different parts

of performing CPP using multi-robot system are sum-

marized in Figure 8.

Most of the presented CPP approaches in litera-

ture implement model-based viewpoints generation al-

gorithms such as [48,60,15,57,27]. The majority of

these papers are generating grids consisting of cells, and

are applied on 2D type of environment. However, grid

based representations have limitations in handling par-

tially occluded cells or cover areas close to the bound-

aries in continuous spaces.

Another commonly used approach for multi-robot

CPP in 2D type of environments is sweep coverage as

described in [23,34,10]. In sweep coverage, the robots

move progressively through the environment and ensure

every point has been seen by at least one robot. While

sweep coverage requires only a single pass, it is also used

for repeated coverage as explained in [26,38,67]. This

type of coverage keeps the team small, hence easier to

deploy, but still provides complete coverage, as required

for search and rescue. Another common assumption is

that robots have a map to direct their movement. Usu-

ally, the overall region is divided to minimize the num-

ber of sweep turns which consumes significant amount

of time for the UAVs to stop, rotate and then accelerate

for the following sweep. Moreover, performing Cyclic

Coverage as described in [26] may not be an appropriate

approach compared with the Cluster-based algorithms

as in [11] especially in situations where the target area

include regions with different coverage priorities or the

robots have different speeds.

Heuristic based algorithms combine randomness

and heuristics to drive the exploration process as in [24,

60,22]. A good ratio between performance and cost

could be provided by these type of methods especially

that they do not consume much computational re-

sources and do not require expensive sensors. However,

parts of the area of interest may remain unexplored.

Most of the methods surveyed in this article either fol-

lows a grid based search approach or reward based ap-

proach, hence both dominates the other described ap-

proaches. Probabilistic and spanning tree (grid based

search) approaches are considered critical in perform-

ing coverage especially that it generates a continuous

path. Different spanning trees implementations in lit-

erature differ regarding aspects such as computational

complexity and quality of the generated model. Some of

the methods in literature performed trajectory planning

to generate a continuous smooth path for the robots as

in [82,24,54]. It is considered a good property for con-

tinuous surveillance and modeling operations.

Achieving coverage completeness is the main aim

of applying CPP. The work discussing multi-robot cov-

erage of 2D regions [13,38,82] dominates the research

on coverage of 3D structure [79,49]. Working with sim-

ple 2D regions allows achieving coverage completeness

faster. Some of the grid based search and reward based

approaches achieves the coverage completeness by par-

titioning the region of interest and allocating the re-

gions among the team members which is hard to be

done in 3D.
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Fig. 8: The main components of the multi-robot CPP

Several assumptions were made in the different sur-

veyed work in literature, especially those targeting

multi-robot systems. Some previous work assumes that

the robots can create maps and merge them when they

regroup, but this is actually difficult to achieve in prac-

tice. Another common assumption is that communi-

cation is unlimited in range and bandwidth. Nearly

all centralized systems assume that the central con-

troller can communicate directly with all the individual

robots, and algorithms that create maps assume global

communication. The focus need to be on achieving com-

plete coverage with limited communication since com-

munication systems are often down in the aftermath of

a disaster [52,69,62].

The surveyed articles evaluated the performance of

their proposed work based on several metrics. The most

important metric which is common between all the pa-

pers is the path execution time, especially that it is

correlated to the path length and the energy level of

the robots [34,83,39]. The different surveyed CPP al-

gorithms showed that NBV and non-model based meth-

ods take much longer time than using other model-
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based or classical approaches. The sensing technique is

considered another important aspect affecting the path

execution duration which is either performed discretely

where the data is gathered at each viewpoint or contin-

uously along the path. Discrete sensing is used in most

of the work presented in literature, since it allows the

robot to perform scanning without missing observations

by allowing it to stabilize at each viewpoint [54,48].

The main components of the CPP process used in

the recent surveyed work in this article are summa-

rized in Table 1. Table 1 summarizes the recent sur-

veyed research on the multi-robot CPP. In this table,

each paper is summarized in a row, where the columns

list the type of environment, the algorithm processing

technique, viewpoints generation method, the coverage

path generation method, and the evaluations metrics of

the coverage method.

Based on the surveyed literature, there are numer-

ous challenging hindering the progress of an efficient

multi-robot cooperative CPP. These challenges could

be classified as follows:

1. Heterogeneity: heterogeneity in a coverage sce-

nario can be defined in different aspects, such as

different movement or sensing capabilities of the

robots or different platforms. Heterogeneity is crit-

ical in multi-robot systems to enhance the visibil-

ity in applications that require complete coverage

and accurate data. Using heterogeneous sensors pro-

vides different types of data that could be utilized

in providing a map of different information. One of

the recent used sensors in wide applications is the

event based camera which provides events instead

of frames where events are generated at local in-

tensity changes as independent asynchronous times-

tamped spikes. These kind of sensors can operate in

different light intensities, and provide the property

of low latency, and power consumption. An exten-

sive review of all the algorithms, applications, and

datasets is provided in [29]. Moreover, using hetero-

geneous platforms facilitates dividing complex tasks

in harsh environments and enhance flexibility and

mobility. For example, inspecting a bridge could be

performed using a collaborative system consisting of

AUV, UGV and UAV platforms providing data from

underwater and on the ground. Most of the work

presented in the literature utilize homogeneous type

of robots and sensors such as the work presented

in [83,30,69,42] which limits the coverage dimen-

sionality. Few papers utilized heterogeneous type of

robots and sensors as in [23,51,47,65].

2. Prioritization: In some applications, parts of the

target area should be visited or covered sooner than

others due to different priorities. Prioritization is of

great significance in large areas and big structures

especially for time critical tasks where it facilitates

the detection of fire, and danger. Some of the work

presented in this review utilized the priority in an

area coverage application as in [38] where the work

provided a priority index to the robots, selected pat-

terns in the grid. In another work presented in [31],

a prioritization is performed to the objectives of the

optimization function based on the allocated parti-

tioned areas. The work in [83] also prioritized the

robots to avoid planning conflicts.

3. Robustness: Robustness is another critical part in

multi-robot systems since it is related to handling

robot failure. There are different robustness criteria

that need to be considered in the real world, such

as message loss, robot action failure, and commu-

nication failure. Different robust techniques exists

in literature to detect robot failures and reallocate

tasks between the remaining robots including the

use of more precise GPS system like DGPS, and the

use of active sensing techniques to update the cover-

age path in real time. Robustness is considered one

of the challenging problems that need to be main-

tained in multi-robot systems to allow the rest of

the team adapt to the new changes that occur to

the system online. A lot of the work in literature

implemented robustness in various ways as in [40],

and [27] where robot failure is handled in different

ways.

4. Communication Modality: Most of the robotic

systems have limited range of communication. For

example, robots transmit messages to other robots

within a specific distance from it. Also, based on

the cooperation method used whether it’s a cen-

tralized, distributed or decentralized, the team of

robots need to maintain communication especially

if the team shares information. Most of the reviewed

work assumes perfect communication and utilizes

centralized type of cooperation as presented in [6,

22,70,45] which is subject to scalability, overhead

and single point of failure problems. Some of the

work presented a decentralized CPP approach for

multi-robot systems as presented in [54,53,11,70].

The type of cooperation and communication need

to be defined for the team of robots based on the

application and type of information that need to be

shared and processed.

5. Adaptability: One of the main properties that a

team of robots need to have is the ability to change

behavior over time and react to changes in the en-

vironment in order to prevent unnecessary degra-

dation in performance or improve the performance.

Dynamic environment characterized by the presence
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Table 1: Review of multi-robot CPP approaches

Paper
Year
Application

Type of Environment Algorithm Processing Viewpoints Generation CPP Approach Evaluation

[38]
2012

area coverage
- 2D area coverage - offline

- centralized

- model-based
- The area of interest is modeled with disks
representing the range of sensing devices
distributed among robots considering their travel times

- reward based
- pattern based genetic algorithm
- Eight premeditated neighbor
disk prioritization patterns

- compared to hierarchical oriented genetic algorithm
- completion time
- probability of the mutation and crossover,
- generation
- layout settings

[34]
2013

cleaning areas
- 2D area coverage - offline

- centralized
- model-based
- BCD

- grid based search
-A robot covers each cell with
one of 12 templates consisting of
several back and forth motions.

- time efficiency
- coverage completeness
- number of turns
- robustness (changing the obstacles locations)
- compared with the single robot

[82]
2014

aerial operations:
search and rescue,

mapping,
and surveillance

- 2D arbitrary environment - online
- centralized

- model-based
- extending BCD allowing certain cells
to be divided into half cells,
ensuring each cell
will not be covered twice

- grid based search
- Chinese postman problem to compute an
Eulerian circuit traversing through the cells
- concatenates per cell seed spreader motion
patterns into a complete coverage path

- analysis of completeness
- analysis of efficiency (coverage pattern,
traversal ordering)
- coverage optimality
- time
- distance
- number of turns vs orientation
of the direction

[39]
2017

terrain coverage
- 2D arbitrary environment - offline

- centralized

- model-based
- divides the terrain into a number of equal areas
each corresponding to a specific robot
- discretize areas into finite set of equal cells

- grid based search
- generate MST for all the
unblocked nodes then Apply the ST
to the original terrain and circumnavigate
the robot around the area

- comparison with MFC
and Optimized MSTC algorithm
- maximum and min coverage time
- path length
- idealized coverage time [Ideal Max],
this value is simply calculated by
dividing the number of unoccupied
cells with the number of robots

[79]
2018

generating improved
maps for localization

- 3D model
- partial known information

- online
- NBV centralized and
Rapidly Random Belief
Tree acts individually
on the vehicles

- non-model based (randomized)

- NBV and
random planner approach
- minimization problem for a set of vehicles over a space
of poses solved by CMA-ES algorithm
- heuristic include: Visibility, Span, Overlap, Basline,
Vergence angle, Collisions and occlusion:

- the map density
- mean squared error (MSE)
of point cloud matching
- localization accuracy
vs the generated maps of NBV
- distance
- Comparison of the paths
with covariance ellipsoids

[63]
2017

monitor wild fire
- 2D area coverage

- online
- decentralized
(distributed manner)

- model-based
- a discrete grid-based
that include fire spread info

- grid based search
- potential field control
- The UAVs follow the border region
of the wildfire as it keeps expanding
, while maintaining coverage
of the entire wildfire area

- spreading of fire

[11]
2018

geophysical surveys
- 2D area coverage -offline

- centralized

- model-based
- segments the environment into hexagonal cells
and allocates groups of robots to different
clusters of non-obstructed cells to acquire data.
- allocate them to robots based on the battery and location

- grid based search
- Cells can be covered by lawnmower,
square or centroid patterns
with specific configurations to address the
constraints of magneto-metric surveys

- Distance between parallel
coverage lines
-Number of robots
- cells quantityt vs length of the path
- Coverage angle optimization
- Hexagon size and battery
- compared to Voronoi cellular
decomposition (time analysis)
- Comparative sensing analysis.
(reconstruction quality)

[49]
2016

cooperative inspection
of complex structures

- 3D structure - offline

- model-based
- horizontal planes translated vertically
along z axiz to check number
of loops and intersection points.
- using graph theory to check number of loops
- clustering to categorize the number
of points to each loop and use them
as waypoints

- geometric based
- branches (loops) are assigned by
dividing the loop according to num
of agents and yaw difference

- execution time
- yaw changes
- 3D meshes and pointcloud

[62]
2016

search and rescue
missions (disaster

scenarios)

- 2D area

- offline(CPP)
- online in the
recovery relocation)
- centralized
(user need to define
region of interest)

- model-based
- cell decomposition based on hexagons

- grid based search
- The lawnmower path angle
is modeled as graph based problem
- Subdivision of cells among agents
using K-means (clustering)
- TSP is used to generate path that connect
each cluster internal cells centroids separately
(minimum Euler path)
- The lawnmower pattern is used as the
basic coverage pattern for each hexagonal cell
- the final 3D route is generated adding z
(sum of minimum specified altitude
and current position in the elevation map)

- Survey time
- Recovery scheme
of fulfilling tasks
of damaged robots

[83]
2014

sensor based coverage
in narrow spaces

- 2D area
(known
and Partially unknown
environment)

- online
- centralized for
prioritizing the robots

- model-based
- modeled the environment as GVD
- edges of voronoi diagram need
to be covered

- reward based
- The problem is capacitated ARP
which is solved by (UA)
- The approach modifies UA :
- to add energy demands (energy, coverage)
- to re-plan path utilizing the
remaining energy capacity

- analysis of tour length
per the number of agents
- tour length vs
energy consumption
- CPU time

[10]
2015

area coverage for
digital terrain map

and vegetation indexes

- 2D area -offline

- model-based
- area is decomposed into sweeping rows
where each row represent an edge
in graph representation
- rotated polygon is used to define
the sweeping direction with low
turns and rows
- distance between rows is
based on the image footprint overlap

- reward based
- formulated as min max optimization problem
to minimize the maximum mission time
(minimize the number of UAVs required for coverage)
- VRP is used to formulate
the routing approach where the UAVs are
vehicles and row extreme points are the customers
- different constraints are added related
to setup time, individual UAV time,
time duration (battery), and visiting nodes once.

- battery duration and the mission time
- constraints effect on the resulting path
- number of rows in case of using
different number of UAVs

[27]
2010

area coverage
or border inspection

- 2D area
(static obstacles)

- offline

- model-based
- subsequent Trapezoidal decomposition (convex polygons)
of the 2D environment until one guard can
cover one convex polygon
- compute graph representation which is a reduced
constrained delaunay triangulation

- grid based search
- partitions the graph using Multi-Prim’s algorithm
into a forest consisting of partial trees .
- performs graph reduction
- Then using CST method, it build cycle on
each partial tree and assign each cycle to a robot.

- analyzed robustness
- overall computation complexity
- completeness
- worst case running time

[12]
2018

fire monitoring
and measurements

- 2D area - online
- centralized

- model-based
- grid of cells holding information
about the fire propagation

- reward based
- VNS approach plans the trajectories
of the UAVs to observe the fire front
- fire front depends on the main propagation
direction and the rate of spread from
one cell to another calculated using
Rothermel’s method

- flight duration,
-number of UAVs to deploy
- take-off time

[47]
2018

surveillance and mapping
( persistent monitoring

of terrains)

- 1.5D area - offline
-centralized

- model-based
- Visibility polygon and visibility region
corresponding to a point x on the terrain
- A terrain can be interpreted as a function
that returns an altitude value for every x.

- reward based
- VRP for planning
- the UAV must repeat a certain tour in
the environment.
- The cost function used for the ground
robot is asymmetric and dependent on
the slope of the terrain on

- computational time

[22]
2015

office like environment
symmetric hall coverage

- 2D area - online
- distributed

- non-model based (randomized)
-

- reward based
- frontier based and performing
rank based allocation

- compared to greedy, nearest
and rank based
- execution time
- explored area percentage

[53]
2018

MBZIRC
search, pick and place

-2D area
- area with moving objects

- online
- decentralized

- randomized
- graph-like grid environment
with edge-connected cells

- NBV
- using PDM to plan exploratory paths
on a grid representing the sum of
expected scores to be found
- minimize the combined search and action time
with targets found in an environment
using finite-horizon plan

- reward prediction
- PDM changes

[48]
2018

sampling of water
for off-site analysis

- 2D area - online

- model-based - consider locations on the outer-most
contour between a region with high
variance and a region with low variance
- or consider all the locations on a
fixed planning window centered on the
current position of the robot

- NBV
- an explorer that measures variables to suggest
sample utility (GP frontier-based exploration)
- a sampler that collects physical samples
(secretary hiring problem is used for the sampler),

- mean error in the interpolated data
as a function of distance traveled
- compare the GP-frontier based explorer
to two other exploration techniques:
global maximum variance search,
and lawnmower coverage
- sampling score
- compare the sampler with
submodular secretary algorithm

[60]
2018

coastal areas
coverage

- 2D area

- online
- centralized (initial
partitioning process is
executed on the
ground station and
the cell decomposition
and coverage planning
are computed
on-board each UAV)

- model-based
- two steps:
1-a growing regions algorithm performs an
isotropic partitioning of the area based
on the initial locations of the UAVs
and their relative capabilities
2-then CDT is computed based on the
largest FoV among the available UAVs

- reward based
-(AWP) isotropic cost attribution function
by a step transition algorithm, starting
from the initial position of each UAV,
propagating towards the other UAVs
or the borders of the area

- FOV projection size
- complexity
- average divergence vs number of robots
- altitude
- UAV capability vs area

[24]
2012

surveillance coverage
missions over a terrain

of arbitrary morphology

- 3D environment - online
- centralized

- non-model based (randomized)

- reward based
- two main steps
that can be expressed as follows:
1- The part of the terrain that is visible
2- The team members are arranged so that
for every point in the terrain the
closest robot is as close as possible to that point.

- convergence,
- scalability
- applicability to non-convex
3D environments
- cost function
- coverage %

of dynamic obstacles as in [83,53,68] or by the pos- sibility of change in shape or size as in [44,48,50,
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19] should be reacted to accordingly in a manner

that still achieves the desired CPP performance.

This aspect is significant in applications that in-

volves changes in the natural environment such as

fire fighting more than a static structure.

6. Open Systems: The ability of the multi-robot sys-

tem to adapt to a new joining robot describes the

openness feature of the system. In most CPP ap-

plications, this aspect was not mentioned although

it is an important property in the multi-robot sys-

tems especially if complex large environments and

structures need coverage. Adding a new robot to the

team will support and enhance the efficiency of the

team.

7. Collective Intelligence: generating collaborative

policy for the team of robots to achieve one goal

could enhance the performance of the CPP. The

policy could be generated by training the agents on

a set of actions or types of data which will accel-

erate the CPP process. Collaborative manipulation

and multi-agent path planning are another two sub-

problems where machine learning could be used. Re-

cent work utilized different types of machine learn-

ing such as Reinforcement learning are presented

in [9,33,44,5,71,80].

5 Conclusion

In this paper, we surveyed the various literature work

related to the Coverage Path Planning (CPP) using

multi-robot systems. The major components of CPP

were identified and discussed. The viewpoints genera-

tion is classified based on the used exploration method

into model-based and non-model based approaches.

The model-based approach have deterministic charac-

teristics, by which it utilizes the reference model of

the structure or region of interest provided priori. This

knowledge is used in the coverage path planning to gen-

erate a path that encapsulates a set of viewpoints that

provide the maximum coverage for reconstruction and

mapping. The non-model based approach is considered

of randomized characteristics since it does not use pri-

ori knowledge about the structure or region and evalu-

ates a set of candidate views based on the coverage and

information gain. The non-model based approach per-

forms a cycle of online iterative steps including: candi-

date viewpoints generation, viewpoints evaluation and

path planning, path execution and scanning, and per-

forming reconstruction. The CPP algorithms are fur-

ther classified based on the path planning approach into

grid based search methods, reward based methods, ge-

ometric methods, NBV methods, and incremental ran-

dom planners. In general, performing CPP using multi-

robot systems requires defining the viewpoints genera-

tion approach, path planning method, communication

and task allocation method, and mapping technique.

The main aim of using multi-robot systems in CPP ap-

plications is to reduce the coverage effort and distribute

it among the team of robots in order to provide full high

quality reconstructions and maps with the minimum

energy and time.

Based on the surveyed papers, the main future ap-

plication domains of multi-robot CPP include search

and rescue, inspection, and agriculture. The main fu-

ture research trends in this topic include heterogeneity,

prioritization and robustness techniques, communica-

tion modality, system openness and adaptability, and

collective intelligence.
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11. Azpúrua, H., Freitas, G.M., Macharet, D.G., Cam-
pos, M.F.: Multi-robot coverage path planning us-
ing hexagonal segmentation for geophysical surveys.
Robotica 36(8), 1144–1166 (2018). DOI 10.1017/
S0263574718000292

12. Bailon-Ruiz, R., Bit-Monnot, A., Lacroix, S.: Planning
to monitor wildfires with a fleet of UAVs. Iros pp. 4729–
4734 (2018)

13. Balampanis, F., Maza, I., Ollero, A.: Area partition for
coastal regions with multiple uas. Journal of Intelligent
& Robotic Systems 88(2), 751–766 (2017). DOI 10.1007/
s10846-017-0559-9

14. Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Sieg-
wart, R.: Receding horizon ”next-best-view” planner for
3d exploration. In: 2016 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1462–1468.
IEEE (2016)
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