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Highlight 
 

 9mm smallest cell size ensures grid independence, resolves ~70% of RMS temperature 

 Comparable accuracy and CPU times between nongrey WSGG and box model 

 Newer oxyfuel WSGG models are slower and not more accurate for fire applications 

 TRI modeling required to avoid relative radiant power loss of ~40% at pool surface 

 Pool surface radiation very sensitive to subgrid temperature fluctuation modeling 
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ABSTRACT: Non-grey radiation modelling of gas-phase combustion products is performed 

during runtime of large eddy simulations (LES) of 30cm, 20kW methanol pool fires, based on 

the experiments of Klassen and Gore (1992) and Weckman and Strong (1996). FireFOAM, 

the turbulent flame solver part of open source CFD platform OpenFOAM®, was modified to 

include a new array of gas radiation models. Two grey and three non-grey implementations of 

the weighted-sum-of-grey-gases (WSGG) are compared in terms of both accuracy and CPU 

efficiency, along with a 'box' model based on the exponential wide band model (EWB) but 

specially optimised for fire scenarios. Turbulence-radiation interactions (TRI) are taken into 

account for the self-correlation of temperature in the emission term of the radiative transfer 

equation (RTE). Non-grey WSGG models consistently performed better than their grey 

counterparts, but the two newer WSGG correlations based on up-to-date spectral databases 

did not perform noticeably better or worse than the older WSGG model, which is a departure 

from other studies in oxy-fuel conditions. The work also showed that TRI is very important 

for the accurate prediction of the pool surface radiant feedback and the total radiant output. 

Some recommendations are made for the fire and radiation community. 

KEYWORDS: CFD; radiative heat transfer; turbulent pool fire; FireFOAM; box model; 

weighted-sum-of-gray-gases 

Nomenclature 

a WSGG weighting coefficient 

C Constant for modelling of subgrid temperature fluctuation 

CTRI Turbulence-radiation interaction constant 

G total incident radiation (W/m
2
) 

hs specific enthalpy (J/kg) 

I total radiative intensity (W/m
2
) 

k WSGG pressure-absorption coefficient (m
-1

.atm
-1

) 

P total pressure (Pa or atm) 

Pr Prandtl number 

q''' chemical heat source term (W/m
3
) 

qr'' radiative heat flux (W/m
2
) 

s Direction of solid angle 
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S Mean beam or path length (m) 

Q heat release rate 

T temperature (K) 

U velocity (m/s) 

Greek   

α thermal diffusivity (m
2
/s) 

ε total emissivity 

Δ characteristic cell length 

κ linear absorption coefficient (m
-1

) 

λ wavelength (µm) 

η wavenumber (cm
-1

) 

ν kinematic viscosity (m
2
/s) 

ρ density (kg/m
3
) 

σ Stefan-Boltzmann constant (W/m
2
/K

4
) 

τ total transmissivity 

Φ radiative scattering phase function 

 solid angle (sr) 

Subscript 

λ wavelength dependency 

b Blackbody 

w water vapour 

c carbon dioxide 

i angular direction 

j spectral band or grey gas 

 

 

1. Introduction 

  

Thermal radiation in combustion systems with high temperatures is an important mode of 

energy transport that needs to be considered for both fundamental understanding and 

implementation in practical combustion systems. In the context of fire applications, thermal 

radiation plays a crucial role in the coupling of combustion, heat transfer, and fluid dynamics 

in fires and fire suppression. Radiation can significantly affect the flame temperature, which 

ultimately affects the yield of combustion products, and hence the concentrations of gaseous 

species and particulates that influence emission, absorption and scattering of radiation [1-2]. 

Pool fires, considered in this work, are characterised by buoyant diffusion flames developing 

over a horizontal fuel surface. They are the most basic type of fires and relevant in many 

domestic or industrial scenarios [3-4]. At the pool surface, the fuel receives heat from the 

flame above, influencing the burning rate. A fraction of the feedback heat originates from 

thermal radiation, which generally increases with both fire size and flame luminosity [5]. 

Even in pool fires as small as 30cm in diameter, with non-luminous flames (e.g. methanol), 

radiative feedback represents a large fraction of the energy received by the pool surface [6]. 

Rigorous modelling of radiative heat transfer mechanisms in pool fires is therefore essential 

for realistic fire simulations. 
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For an arbitrary scenario the radiative transfer equation (RTE) must be solved at any 

position along a line of sight for a given wavenumber, making the solution a five-dimensional 

problem unless simplifications are assumed. Advanced RTE solution methods such as the 

Monte-Carlo ray tracing (MCRT) approach are accurate but too computationally demanding 

in particular in the context of Computational Fluid Dynamics (CFD). Far less involved than 

the MCRT, typical RTE solvers used in CFD solvers such as the finite volume method (FVM) 

or the discrete ordinates method (DOM) describe the electromagnetic wave propagation in 

terms of solid angles. Faster still approaches are found in the P1 and optically-thin 

approximations which yield a radiant source term without solving the RTE, but by nature they 

are not suitable for arbitrary and complex scenarios [7]. Generally, the FVM or DOM solver 

coupled with a suitable gas/particles absorption-emission model can be a viable compromise 

for CFD. The challenge, then, is the extreme non-greyness of combustion gases (mainly CO2, 

H2O, CO...) in the thermal radiation range (typically 10
5
-10

6
 absorption lines between 

wavenumbers 100 and 100,000 cm
-1

). For the radiation community, many strategies are 

available, from the most advanced but CPU prohibitive line by line (LBL) approach, to the 

very crude grey approximations (spectrally constant absorption coefficient), with the various 

narrow band, wide band and global models in between. Detailed spectral models such as the 

statistical narrow band (SNB) or the narrow band correlated-k (NBCK) are accurate enough 

often to replace LBL data [8-10]. In recent years, radiation researchers have coupled narrow 

band models with FVM or DOM in CFD codes [11-13] (such couplings are feasible by using 

a non-correlated solution approximation or a correlated-k method). Such setups were used to 

perform decoupled radiation-only calculations in either pre-solved or synthetic fires 

(temperature, gas concentrations, etc. reconstructed from empirical correlations), but such 

models would be too slow to be used during an actual fire simulation and would not capture 

the real dynamics of the fire. Although comparatively coarse, even the wide band models are 

slow in their spectral form and have been scarcely used over the years for fire simulations 

[14-16]. Global models such as the weighted-sum-of-grey-gases (WSGG), Spectral-Line-

Based Weighted-Sum-of-Gray-Gases (SLW) or full spectrum correlated-k (FSCK) remain 

potentially more convenient for CFD engineers, as well as grey approximations. In the 

WSGG, the real gas absorption properties are replaced with those of fictitious grey gases to 

approximate the total emissivity or total absorptivity of the real gas. Since the method was 

pioneered by Hottel and Sarofim [17], many WSGG correlations have been generated for 

specific problems or to keep up with spectral database updates. A WSGG can be implemented 

in either banded (one RTE solved for each grey gas) or grey (use of  a single absorption 

coefficient over a mean beam length) fashions. It is the banded WSGG that has attracted the 

most success from the radiation community, which often dismisses grey approximations as 

inappropriate for inhomogeneous media [8-10]. However, reference [10] and more recent 

CFD works from the fire community [18,19] report satisfactory performance in fires where 

grey emission by soot particles dominates radiation over non-grey combustion gases (a 

common approximation for moderately-sooting fires e.g. heptane). However, in spite of some 

of their advantages, global models such as WSGG or FSCK for the gas phase radiation are 

difficult to couple with another non-grey phase requiring spectral treatment such as liquid 

water droplets from a fire-suppression spray system. Modelling such a mixture of gases and 

non-grey droplets usually requires spectral Mie theory modelling and the knowledge of band 
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limits where both phases absorb/emit, which only a spectrally-based band gas model can 

provide, e.g. the exponential wide band or EWB. CFD modelling of fire suppression systems 

has been a long sought-after goal of the industry and is being featured in some of the latest 

developments of the fire modelling community [20,21], hence a radiation modelling 

capability for both the gas and non-grey particulate phase has to be the next step.  

The main goal of this work is to investigate and make recommendations on the issue of 

non-grey gas radiation from a CFD fire engineering point of view, with solutions that offer 

reasonable computational overheads and accuracy and potentially address both single phases 

(gases only or gases/grey soot mixtures) and  two-phases (gases and non-grey particles) 

problems. 

 

The methodology proposed in this study will be as follows: radiative transfer calculations 

will be performed simultaneously with LES of pool fires, using an FVM solver and 

comparing the accuracy (and computing time) of several grey and non-grey gas radiation 

models against reference experimental works. The software environment is the open source 

LES-CFD code FireFOAM version 2.2.x, a dedicated turbulent diffusion flame solver 

developed by FM Global as part of the OpenFOAM C++ toolbox. The pool of diameter 30 cm 

is fed with methanol (extremely low soot production) in order to enable proper assessment of 

non-grey gas radiation models without the bias of a grey soot phase. The investigated models 

are banded and grey implementations of three different WSGG models, and one "box" model 

(a stepwise-grey version of the EWB), specifically optimised by the authors for fire 

applications and efficient computing times. The proposed contributions of this work are: i) the 

comparative analysis of older/original WSGG correlations against newer ones mainly 

developed for oxy-fuel applications, as to the best knowledge of the authors, these newer 

models were never assessed in fire applications ; ii) the assessment of an original and CPU-

efficient implementation of an EWB-based gas box model that can be eventually coupled with 

non-grey particulates requiring spectral treatment (e.g. water droplets) ; iii) the investigation 

of  the accuracy and computing times of the gas radiation models in fully coupled LES CFD 

fire simulations, thus focusing this work towards industrial and engineering applications; 

rather than using synthetic fires or a decoupled approach as employed in most literature 

studies. 

  

2. Mathematical modelling and numerical approaches 

 

2.1. Governing equations and numerical methods 

FireFOAM-2.2.x solves the sensible enthalpy equation, Eq. (1), in its averaged form suitable 

for the large eddy simulation (LES) approach. The over-bars and tildes stand for spatial 

filtering and Favre averaging respectively. The combustion model based on the eddy 

dissipation concept (EDC) of Magnussen and Hjertager [22] was extended for LES and 

implemented in FireFOAM by Chen et al. [23,24]. The model uses the concept of energy 

cascade, from the integral length scale (largest structures containing most of the kinetic 

energy) down to the Kolmogorov scale of the smallest eddies. Assuming that the LES filter 

width usually falls between these two scales, the total kinetic energy and its dissipation rate 

may be derived from subgrid-scale quantities [24]. For the simulated pool fires, the pressure-
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implicit split operator (PISO) algorithm was used, which is OpenFOAM's iterative procedure 

for solving the equations of velocity and pressure in transient problems [25]. 

  ̅ ̃ 

  
 

  ̅  ̃ ̃ 
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}   ̇       ̇    (1) 

In Eq. (1),  .q''r is the divergence of the radiative flux (radiative source term or radiative 

power dissipated per unit volume), coupling the radiant energy with the conservation of total 

energy. At a spatial location x the radiative source term is expressed as: 

  ( )      ̇     ∫ ∫     (   )  
  

 
  

 

 
 (2) 

The monochromatic radiant intensity is the solution of the radiative transfer equation 

(RTE). In its non-scattering form (applicable to gas phases), the spectral RTE takes the form 

     (   )    (    ( )    (   )) (3) 

The radiative source term defined in Eq. (2) may now be rewritten as: 

   ̇     ∫   (       ∫     
  

 
)  

 

 
 (4) 

The total radiant power dissipated by a source can be obtained by a volume integration of 

the source term, but also by a surface integration of the flux, since the flux must verify the 

divergence theorem. FireFOAM's built-in FVM solves Eq. (2) by integration over the cell 

volume and the solid angle with an upwind scheme. To be able to deal with multi-dimensional 

problems without resorting to a ray tracing type method, the RTE solution method is 

uncorrelated, i.e. along a line of sight, the history of the intensity is retained from the previous 

cell. 

 

2.2. Turbulence-radiation interaction (TRI) 

TRI should be taken into account, as per recommendations from various sources such as 

[11,12,19,40,41]. As detailed by Snegirev in [41], the expansion of the radiant emission term 

yields a temperature self correlation and a correlation between the filtered absorption 

coefficient and temperature. Ignoring the higher orders of the expansion, the TRI correlations 

are summarised as per Eq. (5a) to Eq. (5c).  

   ̃   ̃ ̃ (       )  (5a) 

    (       
    ̃

 ̃ 
) (5b) 

    
    ̃

 ̃ ̃

  

  
|
 ̃

 (5c) 

Where the double prime subscript stands for the modelled, subgrid quantity as in [19]. The 

term    is expected to have a small magnitude [41] and is neglected as in [19] where a 

moderately-sooting heptane fire was simulated with FireFOAM. Due to its extremely low soot 

levels a methanol fire is expected to be optically thinner than a heptane fire of similar size, 

which justifies the sole modelling of RT
4
. The fourth root of the filtered fourth power of the 

temperature    (  ̃)
   

[19] is used in the emission terms of Eq. (3) and Eq. (4). It also 

appears in WSGG calculations (the temperature-dependent weighting coefficients, see section 

2.3) and in box model routines (Eq. 17-19). The subgrid temperature fluctuation is estimated 

similarly to [19] i.e.: 

    ̃     | ⃗  ̃|
 
 (6a) 
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The resolved temperature fluctuation, T’, is calculated by FireFOAM as the difference 

between the filtered and time-averaged filtered temperature. As in [19], the time-mean RMS 

temperature is thus defined as: 

    ̃ = √    ̃ + √   ̃.         (6b) 

 

2.3. Weighted-sum-of-grey-gases 

Mathematically simple, the concept of a WSGG is to approximate the total emissivity of a 

real gas (measured or modelled by any model of sufficient accuracy) with a weighted sum of 

emissivities of a small number of J fictitious grey gases, i.e. 

 (   )         ∑   ( )(         )
 
    (7) 

a is a temperature-dependent parameter used as a weight for the emission term of the RTE 

and is pre-tabulated. k is a wavelength-independent (hence, grey) pressure-absorption 

coefficient and pa is the partial pressure of the participating gas. WSGG correlations sampled 

from the literature yield the kj and aj in more or less direct fashion. For the present study three 

sets of WSGG correlations were considered: the older model of Smith et al. [26], who 

obtained their coefficients from an EWB calculation of total emissivity of CO2 and H2O; and 

the more recent models by Cassol et al. [27] and Johansson et al. [28] which were developed 

for oxy-fuel combustion applications using more recent and up-to-date spectral databases 

(HITEMP10 and HITRAN92 respectively) combined with SNB models. These models will be 

referred to as simply "Smith", "Cassol" or "Johansson" in this work. The Cassol model retains 

the traditional WSGG formulation (one set of kj and aj for one particular mixture of CO2 and 

H2O). By contrast the Johansson model is valid for any partial pressure ratio of water 

vapour/carbon dioxide ratio such as 0.125 < pw/pc < 2 and the grey gas absorption coefficients 

can account for local variations of that ratio. 

 

The WSGG approach can be implemented in two ways; grey or banded. In the grey 

version an effective or grey absorption coefficient κ is derived from Eq. (7) (with input of a 

mean beam length S) and calculated locally to be used in the non-scattering RTE: 

    (   )   ( )[  ( ( ))   (   )] (8) 

Where Ib = σT
4
/π. The finite volume solution of Eq. (8) yields the total directional 

intensity which is integrated over the solid angle to yield the total incident radiation G: 

 ( )  ∫  (   ) 
  

 
 (9) 

From Eq. (9) the total radiative source term is obtained (where the absorption coefficient 

and blackbody intensity may vary locally if the gas is inhomogeneous and/or non-isothermal): 

   ̇  
 
( )   ( )[    ( )   ( )] (10) 

The total radiative flux incident to a boundary with normal unit vector nw is: 

 ̇  
    

( )  ∫  (   )|    |       
 (11) 

Alternatively, it was shown in [29] that the RTE may be solved individually for each grey 

gas, and the total radiant intensity may be reconstructed by simple summation of the grey gas 

intensities (banded formulation), 

 (   )  ∑   (   )
 
    (12) 

In this banded formulation the RTE becomes 
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          [  ( )  ( )    ] (13) 

With the following boundary condition for a diffusive black wall: 

       (  )  (  ) (14) 

Note that the mean beam length approximation is now altogether avoided in the banded 

formulation. To calculate the incident radiation G and incident flux q''in, Eq. (12) is simply 

substituted in Eq. (9) and Eq. (11). However the source term now takes this form: 

   ̇  
 
( )  ∑   ( )  ( )[    ( )  ( )  ∑   ( )    (   ) ]

 
    (15) 

Where    is the i
th

 solid angle. The original FireFOAM code for the finite volume solver 

(fvDOM) was modified accordingly by the present authors to accommodate for banded RTE 

solutions involving the WSGG weighting coefficient. The modification actually holds for any 

other type of banded RTE solution method, e.g. with a box model. It is worth noting that the 

absorption coefficients used in the WSGG model do not physically match the actual gas 

absorption coefficients, and moreover the actual gas spectral information cannot be recovered. 

The approach would be suitable in principle for radiative transfer in gases or gases/soot 

mixtures. For fire suppression by water sprays applications where the attenuation and 

emission by both the gas and liquid droplet phases should be accounted for, the WSGG is 

problematic because the droplets radiative properties are spectrally dependent and should be 

used with the physical gas absorption coefficient in spectral regions where both phases 

interact with the incident radiation. This is the motivation behind the development and 

assessment of a box model that will retain the actual physical value of the gas phase 

absorption coefficient.  

  

2.4. Box model 

In a box model, the absorption coefficient in each band forms a rectangular shape on the 

wavenumber spectrum, where the width Δηe is an equivalent bandwidth and the height κ is the 

constant absorption coefficient. Such a stepwise-grey approximation may be obtained from 

any band model [30]. In the present study the EWB was used to derive the box parameters 

from the band absorptance. For non-homogeneous cases, EWB correlations require an 

integration of transmissivity along an inhomogeneous optical path, hence in this work a 

Curtis-Godson scaling was applied for fire applications, as described in e.g. [31,32]. The main 

interest of using a box model over the spectral EWB is the significant computational gains 

resulting from using one physical absorption coefficient in each band of the 

absorbing/emitting gas. The drawback is the sensitivity of accuracy to equivalent bandwidth 

calculations [30]. In regular box models described in the radiation literature the values of Δηe 

are calculated on the fly during simulations; this could be prohibitive in terms of computing 

time. For the present work, the authors have fixed the band limits after an extensive sensitivity 

study of Δηe to temperature, path length and gas pressure [33]. This study shows that in the 

range of temperature, path length and pressure that is relevant for fire applications, 

bandwidths do not broaden as much as to cause many overlaps between bands from different 

gas species (unlike in oxy-fuel combustion, as seen in e.g. [34]). The bands that did frequently 

overlap were lumped together for maximum computational efficiency. More potential CPU 

gain was allowed by subsequently removing EWB band absorptance calculations from the 

modified box model, since those only serve to calculate the equivalent bandwidths. This 
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modified box model then underwent testing under different radiation-only scenarios 

benchmarked by SNB data and turned out to work better than previous versions using on-the-

fly bandwidth calculations [33]. The working band limits are thus as in Table 1, from which 

the Δηe are easily obtained. The box (mass) absorption coefficient may then be obtained by 

e.g. Modest's correlation [30]: 

 ̅        (16) 

    
 ( )

 (  )
 (17.a) 

               (  √      ) (17.b) 

       ∑   
 
    (17.c) 

 

Where α0 is a tabulated EWB parameter obtained from e.g. [30]. For vibration-rotation 

bands (Eq. (17.a)) the non-dimensional function of temperature Ψ is obtained from the semi-

tabulated correlations of Lallemant and Weber [35] which advantageously replace the 

complex expression of the original EWB formulation of Edwards [36]. For the pure rotational 

band of H2O at 71µm Eq. (17.b) is also taken from [30] and is a slight refinement from 

Modak's original correlation [37]. Eq. (17.c) is the standard correlation for the triple overlap 

at 2.7µm in H2O. In this implementation the 2.7µm band of CO2 is added as well as it was 

found to almost always overlap with the three H2O bands in the sensitivity study [33]. Finally, 

to further speed up calculations, three bands were removed from calculations due to their 

mostly insignificant contributions to radiation in fire conditions (the 960 and 1060cm
-1

 bands 

of CO2 and the 7250cm
-1

 band of H2O). In the end 6 bands are used for fire simulations, plus 

one clear band that accounts for all windows, which is thus only 2 or 3 extra bands from the 

non-grey WSGG. The form of the RTE is analogous to that of the banded WSGG, i.e. 

       ̅   [     ( )    ] (18) 

Where  

    (    )   (    ) (19) 

With F the fractional blackbody emission power. Similarly, for the boundary condition, 

this expression replaces the WSGG's a(T) weight in Eq. (14), with Tw in place of T. 

 

 

 

 

 

Table 1: Fixed band limits for the EWB-based box model 

Band head location Gas species Bandwidth (µm) Bandwidth (cm
-1

) 

5350cm
-1 

or 1.87µm H2O, CO2 1.8481-1.8907 5289-5411 

3760cm
-1 

or 2.7µm H2O, CO2 2.4907-2.8531 3505-4015 

2410cm
-1 

or 4.3µm CO2 4.1494-4.5851 2181-2410 

1600cm
-1 

or 6.3µm H2O 5.4885-7.2569 1378-1822 

667cm
-1

 or 15µm CO2 13.3156-17.1821 582-751 

140cm
-1

 or 71µm H2O 17.1821 - ∞ 0 - 582 

 

3. Results and discussion 
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3.1. Canonical case (two-dimensional enclosure) 

 

This case scenario is from Goutiere et al. [9] and serves the purpose of assessing the 

accuracy of the new FireFOAM gas property models in a non-flowing, non-reactive 

environment. A rectangular, 1m x 0.5m enclosure with a 61 x 31 uniform Cartesian mesh and 

cold black boundaries is filled with an inhomogeneous, non-isothermal CO2 gas phase. The 

temperature and mole fraction distributions are governed by Eq. (20) and Eq. (21).  

 

 (   )    [      (   |     |)(   |      |)   ]                                             (20) 

 (   )    [ (   |     |)(   |      |)   ]                                                       (21) 

 

Where T0 = 1200K and c0 = 0.02. The temperature varies between 1200 and 1600K (peak 

occurs in the central region). The mole fraction follows an analogous distribution and varies 

between 0.02 and 0.10 [9]. The incident radiative heat flux and the radiative source term are 

sampled along four lines, i.e. (x ,y = 0) and (x = 1, y) for the fluxes ; (x, y = 0.5) and (x = 0.5, 

y) for the source terms. The FireFOAM results from the grey, banded WSGG and box models 

are compared against the benchmark solution of [9] which is a ray-tracing method (RTM) 

combined with a SNB gas property model. A preliminary study was carried out with 

FireFOAM in reference [33] to assess the accuracy of the Finite Volume Method (FVM) 

radiation solver against the Ray Tracing Method (RTM) used in [9] independently of any gas 

property model. This scenario used the same rectangular geometry and mesh with a uniform 

grey gas phase with κ = 0.5m
-1

. The relative error between the FVM and the RTM of [9] 

overall turned out to remain under 3%, as long as a minimum of 16 solid angles were used in 

the FVM calculations. 

The Johansson WSGG model was left out as it does not handle single-species gases. The 

comparison is shown on Figure 1. It is immediately visible that the behaviours are better 

along the x axis than along the y axis, likely because the gas field variations are sharper along 

y. For the source term, the mean beam length approximation required by the grey WSGG 

models is likely responsible for the important discrepancies seen at the boundaries in both 

directions. Elsewhere, the grey models can show errors of up to 25-30% relative to the SNB 

solution. The banded WSGG models perform much better and also more consistently, as in 

both directions the source term matches the SNB within 10-15%. For the incident flux, the 

banded models are always under 10% relative error. The grey WSGG does well along x 

(~12% difference) but much less so along y (up to 30% difference). The box model closely 

follows the banded WSGG trends (source term, flux alike) and even occasionally outperforms 

the WSGG in the central region (source term almost exactly matches the SNB), however the 

boundary effect can get slightly too pronounced in the source term. Overall, there is little 

difference between the Cassol and Smith versions of the WSGG. Rather, the differences seem 

induced by the implementation method (grey or banded). 
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Fig. 1: FireFOAM (grey, WSGG, box models) vs SNB of [9] in the 2D canonical case 

of [42]. Top: radiative source term along (x, y = 0.25) and (x = 0.5, y), bottom: incident 

flux along (x, y = 0.5) and (x = 1, y) 

 

3.2. Methanol pool fire 

 

It is widely accepted that canonical decoupled radiation only scenarios (without CFD) 

investigated in section 3.1 are useful to validate a gas radiation model and quantify its 

accuracy in a prescribed setting to minimise uncertainties due to other CFD phenomena. 

Although such an approach is routinely employed in the radiation literature with its own 

merits, radiation heat transfer calculations in a transient dynamic fire simulation represents an 

entirely different challenge that encompasses several areas of physics (radiation, fluid flow, 

turbulence, combustion etc...) which will have to be taken into account simultaneously. One 

of the goals of the current study is to assess the practicality and quantify the global accuracy 

of non-grey gas property radiation models in the context of coupled radiation-CFD-LES 

simulated fires. The authors believe that such quantifications, hardly undertaken in the current 

body of literature, could help researchers in making judgement on the merits of the 

approximate and less computationally involved gas models (WSGG, box models here) before 

running coupled CFD simulations. It is true that a proper quantitative analysis of the gas 

radiation model only in isolation is difficult in such context due uncertainties from other 

phenomena, nevertheless these uncertainties are better controlled in the global accuracy in the 

current study by keeping the same sub-models other than gas model (RTE solver, combustion, 

turbulence, etc…) when investigating the different gas radiation models. The authors believe 

that the implemented models could be acceptable for CFD use if, in addition to the canonical 
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radiation only cases (e.g. section 3.1), the quantified global comparative errors in coupled 

CFD simulations are within acceptable margin to some benchmark data (from experiments for 

instance). Moreover there are many studies already available in the literature that feature 

decoupled radiation/CFD calculations e.g. using reconstructed synthetic fires (e.g. [6] or 

[11]), and performing a similar study here with FireFOAM would add little novelty from a 

typical canonical radiation scenario. Decoupled radiation/CFD scenarios have their own 

merits as they allow the generation of one's own benchmark data from detailed radiation 

modelling strategies, but it can be argued that not only they cannot reproduce the actual 

transient dynamic behaviour of the fires, but also the semi-empirical correlations used to 

reconstruct the fields of temperature, soot, turbulence etc. do not eliminate 100% of the errors 

(centreline flame structure is correct, but elsewhere values can be seen to gradually move 

away from the experimental baseline). One of the issues with coupled radiation/CFD 

simulations is the high computational cost - hence the general idea of this work is based on a 

compromise between accuracy, cost and practicality; another contribution of the work is to 

shed some light on these computational requirements. On another hand, due to the flow field 

being resolved, chances are that these gas property models (grey/banded WSGG and box 

models) may behave differently in a "real" fire simulation, compared with canonical cases or 

synthetic fires. Such a study has not yet been undertaken to the best knowledge of the authors, 

and it is thus believed that the results of this work will provide a valuable step towards more 

practical fire engineering scenarios such as the example above. 

 

The benchmark data for this work are taken from the experiments of Klassen and Gore [4] 

who measured temperature, soot volume fractions and radiative heat transfer in pool fires of 

different fuels and sizes. Their data for the soot-free 30cm methanol fire provides an ideal 

ground for a comparative study of gas phase radiation models such as the WSGG and the 

EWB-box model. The flux was measured both radially at the pool surface (r, z = 0) and 

vertically (r = 82.5cm, z), where the origin (r = 0, z = 0) is the centre of the pool surface. The 

reference temperature and velocity data are taken from Weckman and Strong [38], whose 

30cm methanol fire setup is close to that of [4]. Temperatures for fires of different sizes/heat 

release rate (HRR) may be compared using the scaling technique of McCaffrey [39], although 

the difference is only a few kilowatts between [4] and [38]. The 1cm wider burner in [38] is 

not expected to have any visible influence. The taller burner lip height of [4] was initially 

reproduced in early simulations, but eventually was dropped for its lack of impact on the 

predicted flame structure. Both experiments were conducted in quiescent environments 

ensuring no crosswind may have altered the flame shape. For the transducer measurements of 

the radiant heat flux, Klassen and Gore report an uncertainty inferior to ±15% at flame steady 

state [4].  

 

The working steps for this study were as follows. First, grid tests were run until the time-

mean centreline temperature and velocity profiles converged with one another and agreed 

well enough with the measurements of [38]. After finding an appropriate grid size, the second 

step was to calibrate the TRI parameters with a default gas radiation model (for convenience, 

the Smith WSGG henceforth), with successive simulations until the total radiant fraction (Xr) 

agreed with the experimental data of [4]. That agreement did not have to be perfect, since 
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between the gas radiation models the total radiant output was expected to vary anyway 

(reasonably, i.e. within a few percents). Thus, for the comparisons of radiant heat fluxes, six 

final simulations were run comprising the two grey and three banded WSGG models and the 

EWB-box model. For clarity, the models will be referred to as "WSGG Smith", "WSGG 

Cassol", "WSGG Johansson" for the banded WSGG solutions, and "Grey Smith", "Grey 

Cassol" (grey WSGG solutions) and "Box Fixed-Bands". The grey WSGG calculations were 

based on the total emissivity calculations from a mean beam length (MBL). The integral 

length scale [24] was used for MBL calculations, i.e.   (        √ ⁄ )
   

, instead of 

the more usual correlation S = 3.6V/A, because the volume and area of the flame zone may be 

difficult to estimate from e.g. cylindrical or conical approximations of the actual flame shape. 

 

Each simulation was run for 30 seconds, with time-averaging starting after 8 seconds, long 

after the flame has developed to its full scale. The domain is an O-grid based cylinder of 

radius R = 82.5cm and height H = 1.2m, with grid nodes clustering towards the fuel inlet at 

the bottom (pool centre at r = 0, z = 0). The heat release rate is not a prescribed input 

parameter, but controlled by the user-specified mass flow rate. Hence in this work the correct 

HRR is obtained by feeding the fuel inlet at a constant methanol mass flow rate of 0.1069g/s 

at boiling point temperature, i.e. 338K. One may note that physically speaking those are liquid 

fuels, treated as surface boundaries in the simulation, hence only the gas phase is being 

resolved (no need for pyrolysis modelling unlike with solid fuels). Ignition is immediate, as 

ensured by the infinitely fast chemistry LES-EDC model, and the combustion reaction is 

driven by a single equation. The other boundaries are open, set to 300K and all are black.  

Detailed LES parameters may be found in [23,24] for the same fuel. 

 

3.2.1. Simulation parameters and CPU times 

 

Radiation parameters were set for maximum CPU efficiency as follows: maximum 

number of solver iterations = 1 (that is, the FVM solver; not to be mistaken with the 

Geometric Agglomerated Algebraic Multigrid or GAMG algorithm which solves an RTE per 

solid angle and spectral interval). This means that the radiation solver is called once per 

iteration of the enthalpy equation solver. A preliminary study showed that the non-scattering 

RTE converges easily (3-4 iterations of the GAMG solver, out of a possible 1000), being a 

simple 1
st
 order difference equation, thus much CPU time can be saved by minimising the 

solver iterations. The other parameters are the convergence criterion = 10
-4

, and solver 

frequency = every 30 time steps. Radiation propagates at light speed, and with a constant time 

step of 5.10
-4

 seconds the flame structure does not change significantly enough to justify a 

radiation update at every time step (frequency is set to 30 time steps instead). On another 

hand, every time radiation is updated at a given spatial location, FireFOAM solves a number 

of transfer equations, which is the product of the number of solid angles Nang and the number 

of spectral bands/grey gases Nbands. The latter is fixed by the gas property model, e.g. for a 

grey property model, Nbands = 1, and for a banded WSGG, Nbands = 4 or 5. But Nang has to be 

adjusted depending on the severity of ray effects in a particular case. For this work, from prior 

investigation, Nang had to be set to 600, to correct the ray effects in the radiant flux data. 
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Hence, with a grey model 1 x 600 equations are solved every radiation update, respectively 4 

x 600 with the Smith WSGG model, and so forth. This turned out to have a significant impact 

on the total computing times, summarised in Table 2: a full fire simulation is roughly 3-4 

times slower when using a banded model.  

 

Table 2: CPU time of 30cm methanol fire simulations (0 to 30s) with 600 solid angles 

for the various gas radiation model studied 

Radiation model Number of bands CPU time 

Grey Smith 1 (ref.) 

Grey Cassol 1 x1.1 

WSGG Smith 4 x2.9 

WSGG Cassol or Johansson 5 x3.4 

Box model ''Fixed Bands" 7 x4.3 

 

 

3.2.2. Grid independence and effect on temperature prediction 

Five grids were tested, of respective smallest cell sizes (in millimetres): 11.6, 10.1, 9.3, 

8.5, 8.0mm, labelled "grid #1" (coarsest) to "grid #5" (finest). The default gas radiation model 

for these runs is the WSGG Smith. Apparent grid independence was achieved by grid #3, 

since #4 and #5 yielded very similar mean temperature and velocity profiles (Figure 2), hence 

for the rest of this study grid #3 is used. The scaling techniques of McCaffrey are used (with 

Q the total heat release rate and Uz* = Uz/Q
0.2

) to verify that the overall flame structure does 

exhibit the three zones, i.e. continuous, intermittent and thermal plume. In the continuous 

flame zone (z/Q
0.4

 < 0.08), simulated temperatures are between the McCaffrey model 

correlations and Weckman and Strong's measurements, some 100K from either baseline. This 

result is not surprising as other FireFOAM contributors reported the same trend in [19,24], 

interpreting the underpredictive trend in lower regions as an intrinsic limitation of the 

combustion model due to relatively low Reynolds numbers at the bottom of the flame. The 

upper regions (intermittent flame and thermal plume) agree quite well with the experimental 

data points and should be accurate enough for the subsequent radiative flux comparisons. 

Radial temperature profiles for grid#3 and subsequent also show good overall agreement 

(Figure 3), despite the fact that temperatures drop quicker than they should away from the 

central axis ("necking" phenomenon).  
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Fig. 2: Grid sensitivity of centreline mean temperature and velocity 

 

  

  
Fig. 3: Grid sensitivity of radial temperature at different elevations from pool (z = 0) 

 

 

3.2.3. Influence of TRI parameters 

 

The TRI parameter CTRI appears in Eq. (5b). The C in Eq. (6a) is not a TRI parameter but 

it impacts how the turbulent temperature fluctuation is modelled, which in turn impacts Eq. 

(5b). A trivial combination of these equations shows that radiation calculations are driven by 

the product C x CTRI. After some trial and error, it was found that the right radiation fraction 

was likely to be obtained with C x CTRI ~ 3.5 (Figure 4). Besides, one may note that the 

correlation is almost linear. The calibration was done with the Smith WSGG, which 

somewhat biases the comparative study in favour of that model, hence why the relative 

differences are more interesting here, although the other models turned out to behave very 

closely as a whole. On another hand, only C plays a role in the modelled component of TRMS. 

Fellow FireFOAM workers used C ~ 2 and 1.25 < CTRI < 2.5 for their 30cm heptane case in 

[19], but for the methanol fire this results in too high TRMS, (Weckman and Strong's data [38] 

is in the 400K range, some 200K lower than the heptane fire). But, it was also learned from 

preliminary runs that the pool surface radiant flux (where turbulence is present) is always too 

low without a TRI correction. After some trial and error, it was found that the results were 

best with C = 0.25 and CTRI = 14. Predictably, other sets of constants with the same CxCTRI 

product yielded similar radiation predictions (e.g., C = 0.5 and CTRI = 7, or C = 2 and CTRI = 

1.75). Hence, the logic here is that a smaller C prevents overprediction of TRMS while a larger 
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CTRI acts as a compensator. Still, it may be noted that Trms can be overpredicted locally by 

some 100-150K (Figure 5). This results however compares with other FireFOAM studies, e.g. 

[19] or [23] and the localised discrepancies may be inherent to FireFOAM itself.  

 

 
Fig. 4: Radiant fraction of the 30cm methanol fire as a function of C x CTRI 
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Fig. 5: Temperature fluctuation at steady state, top left to bottom right: resolved 

√   ̃  (a), subgrid √    ̃ (b),     ̃ = √    ̃ + √   ̃ (c), experimental Trms from [38] (d) 

 

 

The methanol flame simulated here yielded an average optical thickness of ~0.1, based on 

calculations of the Planck-mean absorption coefficient at post-processing stage (the mean 

beam length is the integral length scale defined earlier). Furthermore, the contour plots on 

Figure 6 show that while not negligible, the absorption component of the source term is 1-2 

orders of magnitude smaller than the blackbody emission term. The medium thus can be 

considered optically thin which confirms the hypothesis made in section 2.2. Of course the 

optically thin approximation could have replaced the more involved FVM for radiation 

calculations, but the goal is for CFD engineers to be able to use the FVM for any fire scenario 

without prior knowledge of the radiative properties of the fire. As expected, the radiation 

source term is completely dependent on how well Tf is modelled. Immediately above the pool 

edge, the temperature self-correlation RT
4
 is 3 or 4 times more important than in the rest of the 

flame zone (Figure 7). This very much impacts the radiant source term which in the same 

region is increased roughly tenfold from the simulation with neglected TRI (Figure 8). In turn, 

the radiant flux too is affected at the bottom boundary (Figure 9): instead of peaking at the 

pool centre like the experimental points, the predicted flux indeed rises slightly some 8-10cm 

from the centre, before collapsing sharply nearer the pool edge This however remains a 

positive result, because without any TRI correction the flux is much too low at any radial 

position (nearly half the experimental values). The spatial distribution of the radiant flux may 

not be perfect, but the TRI corrections employed here do bring the overall feedback back to 

acceptable levels (including in the pool centre, where the flux is almost doubled from the CTRI 

= 0 case). This qualitative agreement may be improved upon with some fine tuning on the 

modelling of    . 
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Fig. 6: Contours of absorption and emission terms of Eq. (10) at steady state 

 
Fig. 7: Contours of temperature self-correlation RT

4
 at steady state 

 

 

 
Fig. 8: Contours of radiant source term at steady state with and without TRI 
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Fig. 9: Radiant feedback to pool surface (z = 0) with different TRI corrections 

 

3.2.4. Comparison of gas radiation approaches 

Figure 10 presents the centreline mean temperature predictions for the different gas 

modelling approaches. The results show that the effect of the gas radiation models on 

temperature is not significant for this particular flame with a maximum difference of 60K 

between all simulations and along the centreline. This relates to Xr variations of 2-3%. The 

total radiant fractions from the grey or banded WSGG models are very close and about 5% 

below the experimental value (Table 3), whereas the box model overpredicts the total power 

by a few percents. The spatial distribution of radiant energy reflects this result, in that the 

vertical flux is slightly overpredicted by the box model, and underpredicted by the other 

models, i.e. within 100W/m² at the power peak (Figure 10). Consistently with the findings of 

[11] in synthetic fires, the grey models project less radiant energy towards the far field. At a 

radial distance of 82.5cm from the pool centre, the radiant flux echoes the quality of 

temperature prediction inside the flame (axially), i.e. underpredicted inside the continuous 

flame zone and slightly overpredicted higher up. As to which gas radiation model to use, the 

choice may be dictated by practicality. The advantage of using the more CPU expensive 

Johansson WSGG model is not obvious here, since the cheaper Smith WSGG model has a 

ready set of absorption coefficients and emission weights for this particular stoichiometric 

ratio of water vapour and carbon dioxide. The Cassol WSGG is very similar to the other two 

in its performance, and also slower than the Smith model. Grey approximations are far from 

being irrelevant here and may be appreciated for their CPU efficiency. This relatively decent 

accuracy is likely due to the relative lack of severe temperature variations in comparison with  

environments such as oxy-fuel combustors. Also, this was a simple case where the mean 

beam length could be estimated without difficulties (the grey WSGG is MBL-sensitive, but 

strictly speaking Beer's law only holds for a spectral RTE solution, not grey or band-averaged 

methods). Besides, the MBL remains constant over time as soon as the flame has developed to 

its full scale. For transient problems e.g. spreading fires, a banded WSGG model is definitely 

more interesting as it requires no mean beam length specification. Finally, some small, 

residual ray effect is seen in the vertical flux of Figure 11, near the bottom where cells are the 

smallest. The angular space between the XY plane and the domain's axis was discretised with 

as many as 50 angles. Further resolution increase (up to 90 angles) produced negligible 

improvement on ray effects, not worth the much increased computational effort. 
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Fig. 10: Centreline mean temperatures from 6 gas radiation models 

 

 

 

Table 3: Comparison of radiant fractions 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11: Vertical radiant flux along (r = 82.5cm, z) from 6 gas radiation models 

 

 

4. Conclusion 

 

The 30cm methanol pool fire of Klassen and Gore [4] and Weckman and Strong [38] was 

simulated with the open-source LES-CFD code FireFOAM, based on an FVM radiation 

solver. The authors upgraded the radiation capability to non-grey models and added five 

 

Radiant fraction Xr (%) 

Experiment [4] 18 

Grey Smith 17.2 

Grey Cassol 16.7 

Smith WSGG 17.2 

Cassol WSGG 16.8 

Johansson WSGG 17.3 

Box Fixed-Bands 21.6 
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different implementations of the WSGG (two grey, three banded) and an EWB-based box 

model specifically optimised for fire simulations and CPU efficiency. Analysis of the radiant 

fluxes showed that the newer WSGG correlations of Cassol et al. and Johansson et al. were 

found to yield no significant differences with the older model by Smith et al. for the simulated 

pool fire. It could be argued that this statement may not be generalised since it is based on 

limited experimental data, and the influence of the non-radiative modelling assumptions may 

overshadow the differences in the gas property models; but the canonical radiation case 

scenario showed the same trend, as did a number of variants not shown here but studied in 

[33]. Anyhow, for this particular case, the authors recommend using the Smith WSGG as it 

was 15-20% faster than the more recent models. The Johansson model will be interesting for 

fire simulations where the mole fraction ratio of water vapour and carbon dioxide varies from 

1 or 2, or cannot be determined beforehand (e.g. complex fuels). Grey implementations of 

these models are 3 times faster, but this large difference is much due to the higher number of 

solid angles employed here (600) to minimise the ray effects (because grey models then 

involve 600 directional RTE solutions, whereas banded models involve 600 x Nbands 

solutions). Overall, grey models managed to handle the gas medium's non-uniformities quite 

well, but they underpredicted the radiant fluxes and the total radiant output. If a mean beam 

length cannot be calculated trivially, then a banded WSGG model is recommendable for fire 

simulations. The EWB-derived box model, optimised for maximum CPU efficiency, turned 

quite capable of matching a banded WSGG (less than 30% slower), although it did slightly 

overpredict the total radiant output. Overall, all models managed to reproduce the 

experimental radiant fluxes well, except at the fuel inlet centre where radiant power peaks. 

TRI modelling also showed a significant effect on the overall radiant energy yield, which can 

become very strong locally (e.g. just above the burner surface), but that difference is only 

really important between no TRI and any TRI modelling, as the increasing of TRI effects did 

not make a significant difference on the radiant flux. However, the distribution of the pool 

surface flux is very sensitive to how the turbulent temperature fluctuation is estimated, which 

may require improvement. Due to the experimental RMS temperatures being fairly low 

(around 400K), in this work the subgrid component of Trms benefitted from being kept less 

than half the resolved component. In future works the box model will be coupled with a non-

grey Mie theory model for radiation calculations in simulated fires suppressed with water 

sprays (non-grey WSGG models cannot be coupled to a non-grey Mie model). 
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