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Abstract—Within this work a novel semi-supervised learning
technique is introduced based on a simple iterative learning cycle
together with learned thresholding techniques and an ensemble
decision support system. State-of-the-art model performance and
increased training data volume are demonstrated, through the use
of unlabelled data when training deeply learned classification
models. The methods presented work independently from the
model architectures or loss functions, making this approach
applicable to a wide range of machine learning and classifica-
tion tasks. Evaluation of the proposed approach is performed
on commonly used datasets when evaluating semi-supervised
learning techniques as well as a number of more challenging
image classification datasets (CIFAR-100 and a 200 class subset
of ImageNet).

Index Terms—semi-supervised, image classification, deep
learning, machine learning.

I. INTRODUCTION

SEMI-SUPERVISED learning has become one of the most
prevalent topics within image processing and computer

vision research in recent years. With the ever increasing
availability of high powered GPU hardware and the success of
deep learning on applications such as computer vision [1], [2],
speech recognition [3], [4], and natural language processing
[5], [6], the need for large scale datasets to support these
methods becomes a higher priority, as well as a bottleneck to
performance improvement. Issues of cost and time still remain
prohibitive to the creation of these large datasets. ImageNet
[7] was one of the most successful and pioneering large scale
datasets and still stands as a benchmark when it comes to
dataset volume, with no cleanly labelled dataset out-doing the
size of ImageNet by any meaningful amount. This critical
mass of data size is the biggest target of semi-supervised
learning techniques, developing ways in which unlabelled or
noisy data can be utilised without the need for expensive and
time consuming processes which can ‘clean’ the data.

In the standard semi-supervised learning framework, using
a number of training samples with strong annotations, the goal
is to infer the appropriate labels for the rest of the data. Semi-
supervised processes have been applied successfully in many
areas such as image classification and segmentation [8], natural
language processing [9] and artificial intelligence [10].
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Fig. 1. An overview of the Iterative Learning (IL) cycle, in which a model
is trained on labelled data and used to classify new unlabelled samples. The
class decisions for the new samples are then evaluated based on the confidence
and then added to the labelled training dataset and the process repeated.

These processes highlight two distinct areas where semi-
supervised learning could be useful: First, is the obvious
addition of training samples to improve the accuracy of the
trained models; these techniques can be utilised to make use
of noisy data in a more superficial way, Joulin et al. [11]
propose training the networks with very large (100M images),
but weakly labelled data to develop robust and diverse visual
features, and evaluating their generalisation on a number of
transfer learning tasks. Veit et al. [12] extend this concept by
adding a fine tuning stage using clean data to further improve
accuracy. The second of these areas is the development of
strategies to automatically label this data, thus increasing
the size of these datasets. This often draws criticism due to
the introduction of incorrectly labelled samples which might
skew or even hinder learning. However this idea is being
challenged, with the suggestion that many learning frameworks
are resistant to the presence of noise. Natarajan et al. [13], look
at the presence of noisy labels in binary classification data
and how a model and its loss function can be manipulated to
become more robust to these issues. In their experiments even
in data where over 30 percent of binary labels were inverted,
good accuracy was still obtained within their tasks.

In much of the current work in this area the training
methods, architectures and loss functions utilised have been
developed specifically for that semi-supervised application
making them difficult to transfer amongst tasks and almost
impossible to transfer to a new area. The following work looks
to approach semi-supervised learning from a different direc-
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tion; rather than re-imagine the model architectures, which are
being trained, or the loss functions that train them, the goal of
this work is to iteratively reclassify the dataset such that the
model being trained is only ever exposed to what it considers
fully labelled data. The focus is on incremental, unsupervised
improvements to a model and the data, increasing a training
dataset volume for use elsewhere as well as the classification
performance. As such the proposed methodology has a number
of clear benefits over existing techniques:

• A simple and easily implemented semi-supervised learn-
ing framework.

• Independent from model architecture or loss functions.
• Novel learned thresholding techniques and metrics to

supervise the dataset growth
• Applicable to a wide range of classification tasks.

This paper will proceed as follows: a overview of related
work is given in Section II, followed by the Methodology
where an outline is given of how the iterative learning process
is performed. Results follow, demonstrating the performance
of this technique on both a typical semi-supervised benchmark
and some more challenging datasets. Finally conclusions are
drawn and future work discussed.

II. RELATED WORK

Typically, semi-supervised deep learning is tackled through
the use of novel model architectures, regularization methods or
loss functions combining outputs from known labels with un-
known to provide more accurate outputs. For example, Laine
[14] utilises an architecture based on ensemble predictions,
acquired during training of a network at different epochs
or under different regularization and input conditions. These
ensemble predictions often provide a more accurate label,
and therefore can be utilised to increase the accuracy of the
network being trained. As such, two approaches are suggested:
the

∏
-model and temporal ensembling. The

∏
-model works

by evaluating the network input twice, due to the use of
dropout regularization and augmentations, two evaluations of
the same input (under the same network weights) will produce
different results. Using these two evaluations, a loss function
is created that minimizes the error on the labelled data but
also the difference between the two evaluations of the input.
Temporal ensembling simplifies this process by using prior
evaluations of an input to create an ensemble, rather than
evaluating an input twice. This yields faster training times
and through the use of multiple prior evaluations the ensemble
prediction can be considered less noisy.

Miyato et al. [15], [16] consider a novel regularization
method to semi-supervised learning. Through the use of Vir-
tual Adversarial Training (VAT) in which the training goals
are extended from a model’s likelihood to include it’s local
distributional smoothness (LDS) on the posterior distribution
for a given sample. The goal of VAT is to find the maximum
adversarial perturbation of a real data point based on the
model’s output and the original point. However, efficiently
computing the optimal adversarial perturbation is a complex
task requiring multiple forward and backpropagations.

Luo et al. [17] propose an extension to the above
perturbation-based methods, in the form of the Smooth Neigh-
bour on Teacher Graphs (SNTG). By constructing a low-
dimensional graph for ‘similar’ neighbouring points based
on the predictions of a teacher model, predictions of the
student model can be refined for not only the data point under
consideration, but also those neighbouring points as defined
by the graph.

Rasmus et al. [18] develop the Γ-model which evaluates an
input image with an additional generated noisy sample. The
loss function focuses on a consistency cost between the two
resultant outputs, the intuition being that with the generated
targets a manifold representation of a class will be mod-
elled thus improving generalisation. However, the generated
examples will not always represent the original target well
and thus the produced manifolds may have inherent error.
Tarvainen et al. [19] take the concept of temporal ensembling
and extend the concept from averaging label predictions to
averaging model weights. This has a number of advantages;
most notably that the process has the effect of updating and
improving all the layer outputs, as well as creating a faster
feedback loop between the teacher and student models which
allows for better results from few samples.

Sajjadi et al. [20] take a similar approach, but rather than
using a generative approach to create new samples, existing
labelled samples are run through a training model multiple
times with extensive transformations applied and loss min-
imised across all the resultant outputs.

One of the most difficult problems in semi-supervised
learning is the estimation of the posterior probability of
unknown labels. Cicek et al. [21] use learning speed during
the backpropagation to estimate the labelling error. This idea is
based on an observation that the convergence of the Stochastic
Gradient Decent (SGD) optimization is directly related to
the number of correct labels in the training dataset. Training
loss decreases rapidly with correctly labelled training samples
while becoming very slow with corrupted labels. Similarly
to our approach Cicek at al. [21] use an update loop which
updates the distribution of unknown labels, and an inner
loop which simulates the optimization procedure over a small
number of epochs.

Another interesting approach suggested by Haeusser et
al. [22] in which they propose a “learning by association”
technique. This postulates that good embedding of labelled and
unlabelled samples have a high similarity if they belong to the
same class. The association is established by first “walking”
from the labelled samples to the nearest unlabelled ones and
back. If the class of the starting and ending samples is the
same, this class is associated with the unlabelled sample. These
associations are formulated as a fully differentiable function
and included in the training cost.

Szummer and Jaakkola [23] developed a label propagation
method based on a Markov random walk that uses a limited
number of labelled samples to classify a much larger set
of unlabelled data points. This classification model assumes
that each sample has a label or a distribution P (y|i) over
the class label. Any data point, labelled or unlabelled, is
interpreted as a sample at the t step of a Markov random



3

walk. Classes for the unknown labels are chosen such that
they maximize the posterior probability of that label given
the starting and new, already labelled samples. Maximum
likelihood with Expectation Maximization (EM) or maximum
margin techniques are used to estimate the model parameters.
In general this method is based on the assumption that the
nearest neighbours on a low dimensional structure are likely
to have the same label.

The early success of deep learning motivated Weston et al.
[24] to explore it for semi-supervised learning in a concep-
tually simple method. Weston et al. selects an unsupervised
or a semi-supervised learning algorithm, such as the Label
Propagation by Zhu and Ghahramani [25] and LapSVM by
Belkin et al. [26], and add it as a regularizer to an existing deep
model architecture at a single or multiple layers. This model
is then jointly trained with labelled and unlabelled samples.
Authors showed that training a semi-supervised embedding
with a supervised deep multi-layer architecture on any (or all)
layers of the network can bring real benefits in complex tasks.

Very recently French et al. [27] presented a technique
derived from the mean teacher variant [19] which achieves
state of the art results in a variety of benchmarks. The main
contribution is in the area of domain adaptation demonstrating
excellent results in the MNIST to SVHN knowledge transfer.
The improvements mainly revolve around a class balancing
and confidence thresholding, where the Gaussian based scaling
of the unsupervised loss was replaced with an experimentally
derived confidence threshold.

III. METHODOLOGY

The core assumption in this work is that generalization error
always decreases with more training samples as shown by [28]
and recently [29]. This can be formally expressed as:

GE ≤ O
(
Cf
N

)
+O

(
Nd

L
log(L)

)
(1)

Where GE is generalization error, N the number of neu-
rons in the network, Cf is smoothness of the approximated
function, L the number of training samples and d the input
dimension. To address this problem the Iterative Learning (IL)
approach is presented. An overview of IL is given in Figure 1,
where the iterative nature of the method is given by the train,
classify, analyse and finally update cycle. This process looks to
increase the size of a training dataset rather than make use of
unknown labelled samples in the training phase. The algorithm
is designed to be general and as such the complexity of the
various aspects is dictated by application. Figure 2 outlines the
benefits of the methodology in both the increase in the dataset
(top) and the increase in validation accuracy (bottom).

A. Iterative Learning (IL)

The pseudo code for Iterative Learning (IL) is detailed in
Algorithm 1 and outlines the nature of the process and the
two main operations: Firstly, a model (θ) is trained on a
cleanly labelled dataset, Dl, and validated on the Dv dataset.
The training of the model is performed in a relevant way to
the application and task, neither the architecture nor the loss

Input : Dl, Du, θ
Output: Dl updated, Du updated

while num candidates > 0 do
for t in [1, num epochs] do

train model(θ, Dl)
end
validate(Dv)
build average class distributions(Dl)
for xulm in Du do

ym = evaluate(θ, xulm)
if
∑

(cfa, cfc, cfd) > thresh then
num candidates+ +
Dl + = xulm
Du − = xulm

end
end

Algorithm 1: Iterative Learning
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Fig. 2. Example iterative learning experiment run for 20 cycles using the
ResNet-18 Architecture on the SVHN Dataset. (top) Number of samples added
to the dataset and the accuracy of those additions per iteration (percentage
labels added intermittently highlighting accuracy of those added samples).
(bottom) The validation accuracy per iteration.
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Fig. 3. Confidence metrics, illustrated using a synthetic class distribution for sample xum in Du, evaluated using model θ: (left) The highest activation of all
the classes. (middle) The difference between the highest and second highest activations of all the classes. (right) The sum of Euclidean difference between
the activation distribution and the mean distribution for that class from train data.

functions are changed in any way. Secondly, the unlabelled
samples are classified and the process of updating the training
set is run. Unlabelled data is evaluated using the now trained
model θ and classifications features and labels are recorded,
based on this data candidates are selected to be incorporated
into the training set. These candidates are selected according
to a voting system based on a number of confidence metrics
(outlined further below). The training set is then updated to
include these confidently labelled samples and the process
repeats with the model being retrained from scratch on the
newly updated training set.

Let x ∈ Rd represent an input variable in d dimensions
and y ∈ LC represent the label associated with that sample,
where C represents the number of possible class labels. In
this work xi represents a cropped image and yci the label
from C-classes. From the pool of cleanly labelled and un-
labelled data, three datasets are constructed: Labelled (Dl =
xln, y

l
n|n = 1, . . . , N l), derived from a portion of the cleanly

labelled data. Unlabelled (Du = xum, y
u
m|m = 1, . . . ,Mu),

indexed from only unlabelled data and finally validation (Dv =
xvo, y

v
o |o = 1, . . . , Ov), derived from the remaining subset of

the cleanly labelled data.

The primary issue when adding newly labelled samples to
the training dataset is ensuring the model is confident that
the additions are labelled correctly. To aid this process of
labelling unknown samples, a number of metrics have been
devised based solely on the posterior probabilities produced
from model θ. Importantly, there are no additional clustering
or preprocessing steps applied to the unlabelled data of any
kind, the only assumption made within this work is that the
data is of a similar quality, context and application as that
within the cleanly labelled.

These confidence metrics cover three distinct areas com-
puted from the output of the model after evaluation of the
unlabelled data Du: Firstly (Figure 3 left), the common single
highest class activation obtained from the posterior distribution
ca (higher is better). Formally, consider an unlabelled sample
x(j) ∈ Du

y1, y2 = argmax
y

P (y|x(j); θ) (2)

Where y1 and y2 are labels corresponding to the first and
second highest posterior probabilities. The ca is then

ca = P (y1|x(j); θ) (3)

Second (Figure 3 middle), the difference between the high-
est and second highest activation cb (larger difference is better)
is computed according to Eq. 4.

cb = P (y1|x(j); θ)− P (y2|x(j); θ) (4)

Lastly (Figure 3 right), cc is calculated as the Euclidean
distance between the posterior distribution for the unlabelled
sample x(j) and the average distribution pt(y1) for the pre-
dicted class y1 (lower score is better). pt(y1) is computed over
all training samples of class y1. These average distributions per
class are computed at the end of each model training iteration
and are recorded for use in these confidence computations.

pt(c) =
1

N

N∑
i

P (y|x(i)
c ; θ) (5)

Where y are labels of all classes, x(i)
c is a sample from the

current training, labelled dataset Dl belonging to class c and
is N number of training samples. cc is then calculated as:

cc = ‖P (y|x(j); θ)− pt(y1)‖ (6)

For each of these three metrics a value is returned, in the
cases of ca and cb the value returned by the model should
be high and for cc the distance between the two posterior
probability distributions should be low, however the cc scores
are inverted so as to have a uniform, higher is better policy.
The weighted sum of these metrics scores is then used to
provide a final confidence score for a specific unlabelled
sample x(j). As some metrics are more informative that others
their contribution to the final confidence c should reflects this.
The weighting itself is found experimentally by evaluating
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Fig. 4. a) new, unlabelled samples A,B,C and D are classified as belonging to the blue or green class due to their proximity to the respective manifolds.
Samples E and F cannot be identified yet given the current model’s knowledge. b) after retraining the model with new samples A,B,C and D the model can
now recognize samples E and F. These samples are then added to the new training set and the update cycle repeats. Image c) shows manifolds updated with
the samples E and F.

the accuracy of each metric in turn on a set of unlabelled
samples and basing the weight on how accurate that metric is.
Importantly these values may change based on application as
certain metrics may be more informative in different problems.

c = cawa + cbwb +
1

cc
wc (7)

Using a defined threshold Tc, samples can now be approved
for inclusion in the labelled dataset Dl updated for use in the
next training iteration.

Dl ← (x(j), y1) if c > Tc (8)

The model is then re-trained over the updated training
dataset (y,X) ∈ Dl.

θ = argmax
θ

P (y|X; θ) (9)

If the ground truth labels y are known for the evaluated,
unlabelled samples Xu, the unsupervised, labelling accuracy
q given the threshold Tc and model parameters θ can be
calculated.

q = acc(Xu,y, Tc, θ) (10)

Where the function acc() calculates a percentage of cor-
rectly labelled samples given the threshold Tc.

The definition of the threshold Tc could be defined manu-
ally, allowing for policies where only very confidently anal-
ysed samples are added or, through the use of a lower thresh-
old, a more “quantity over quality” policy can be adopted. In
this work the threshold value Tc is learned after the initial
train of the model in which only cleanly labelled data is used.
A process is run to find a threshold whereby if the labelled
training data was considered “unlabelled” and was evaluated
by the model, how higher a threshold Tc would be required
to only let correct classifications with a certain accuracy Ta
to be included in Dl updated. Given a model θ trained on the
clean, labelled dataset Dl, and desired minimal accuracy Ta,
we can calculate Tc as:

Tc = max tc subject to acc(X,y, tc, θ) > Ta (11)

Where (X,y) ∈ Dl and tc is the current threshold being
evaluated. In the case of this work the accuracy Ta was set to
higher that 99%. This process is run on training data as the
model will be most confident on samples it has already seen
and, as a result of this, impose a higher threshold than one
defined using the validation set.

B. Iterative Learning-Ensemble (IL-E)

In addition to the threshold techniques already discussed, an
Iterative Learning - Ensemble (IL-E) method, was also devised
using the well established ensembling technique to improve
the confidence scores of the unlabelled samples [14], [18],
[19]. This process adds an additional step to the evaluation
process whereby before an unlabelled sample is evaluated
using the trained model (θ), a number of augmentations are
applied such that Daug = x

(j)
a , y(j)|a = 1, . . . , Aj represents

a single sample x(j), augmented in A different ways, each
with the same label y(j). The augmented samples, including
the original, are now passed to the model for inference and
the posterior probability vectors, or class distributions, for all
the augmented samples z̃ returned.

z̃ = P (y|Daug; θ) (12)

The goal of the ensembling process is to define a class
distribution for use in the confidence metrics, based on one
of the sample augmentations. The chosen distribution is then
scaled by the similarity of the class distributions returned as
a result of Eq. 12. Scaling is based on the standard deviation
on the posterior probabilities between class labels across the
augmented samples, which is then subtracted from z̃. Finally,
the augmented sample a with the highest posterior probability
for any class label, is selected and its class distribution used
as input x(j) for the confidence metrics highlighted in Eq. 3,
4 and 6.

a = argmax
a

(z̃a − σ) (13)

Augmented ensembles which when evaluated differ in their
class distributions would result in a larger standard deviation,
which in turn would penalise the final confidence score x

(j)
a
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more so than when the model produces more similar dis-
tributions across the ensemble. Use of a single distribution
from the ensemble to the aforementioned confidence metrics,
which the model has selected with the highest confidence in
an individual class, allows for the model to use the best fit
sample to the established manifolds. This process is applied
both when new samples are added but also during the learning
of the confidence threshold Tc

By leveraging these incremental updates the model can
be utilised to identify only those samples that it is most
confident belong to a respective class. As a result the model
develops its knowledge of specific classes and is therefore
better able to identify additional samples in latter iterations.
This process is symbolically shown in Figure 4, whereby a
subset of new, unlabelled, samples get projected closer to
the existing manifolds due to already learned characteristics
of respective classes. These samples are then labelled and
added to the training dataset and the model is re-trained. The
manifolds are now updated, reflecting the information brought
in by the added training samples.

By extension, better knowledge in one class has a knock
on effect to the other classes as the model is better able
to eliminate certain postulations from less well understood
classes. The result is an overall improvement over time to
validation accuracy and more specifically improved definition
of some class identities. Additionally as the model is re-
initialized at the beginning of each iteration, this method
can leverage randomly initialised weights to help with the
classification of unlabelled samples.

The most important aspect of this method is the need to
ensure that the model is suitably confident in the labelling
of a new sample before it is added to the training set. To
achieve this a number of stringent metrics are utilised to
ensure only the most confident of classifications are used. The
iterative process is repeated until the set confidence metric
thresholds return no candidate samples that meet the required
expectations to be included in a new training set or when
validation accuracy no longer deviates. Additionally, during
the process, the confidence metrics for each newly labelled
sample is recorded, as is each iteration of the dataset, providing
the ability to utilise dataset snapshots from each iteration.

IV. RESULTS

A. Experiment Environment

Much of the work within the area of semi-supervised
learning is benchmarked against the SVHN [30] dataset. In
addition to this and to better validate the performance of this
iterative approach on a more challenging task, experiments are
also conducted on the CIFAR-100 dataset [31], and a 200-class
subset of ImageNet known as Tiny ImageNet. CIFAR-100 is a
100-class dataset with a total of 60,000 32-by-32 pixel colour
images, of which there are 600 images per class, 500 training
images and 100 testing images. Tiny ImageNet contains a
total of 100,000 64-by-64 pixel colour images, divided into
a 10,000 image validation set and a 90,000 image training set,
each of the 200-classes has 450 train images and 50 test. The
SVHN dataset contains 630,420 32-by-32 pixel colour images

Fig. 5. Example Images from: (top) SVHN, (middle) CIFAR-100 and
(bottom) TinyImageNet.

of cropped digits, 73,257 digits for training, 26,032 digits for
validation and 531,131 for testing. Some examples from these
three datasets are given in Figure 5.

To evaluate the concept of iterative learning we conduct
evaluations of the method focusing on two areas: Classification
improvement and the increase in the dataset volume to achieve
that improvement. The first, evaluates the algorithm’s ability to
improve the classification results for a given model. As such,
an iterative loop is set up as described in Algorithm 1 and is
run for the three models across the three datasets. This loop
is run for a maximum of 75 iterations or until either accuracy
reaches a plateau or no new samples are added to training set.
As mentioned in the Methodology Section, the architecture of
the model is not under review and in fact the only constraint for
which model is chosen is that it fits the task well. To this end
a number of well known image classification architectures are
evaluated including the ResNet-18 architecture [1], LeNet-5
[32] and JFNet (see Appendix A). These models were chosen
as they represent a range of architecture types, spanning both
many and few layers and likewise relatively low numbers of
parameters as well as high (Appendix B). To evaluate the
proposed methodology in both full training as well as fine
tuning scenarios, untrained versions of LeNet-5 and JFNet
architectures and a pre-trained ResNet-18 model were utilised.
Lastly, this range of model architectures were deliberately
selected for their varied performance across the three datasets
used in these evaluations.

For all experiments the same cross entropy loss function was
used. Stochastic gradient decent is also utilised for all exper-
iments with a starting learning rate of 0.01, with a scheduled
step to 0.001 after 100 epochs. Weights for the metrics ca, cb,
and cc, were set to 1, 0.5 and 0.25 respectively. Additionally
dataset images are normalised for standard deviation and mean
pixel values and a random crop augmentation (± 2 pixels)
was applied during training. The use of ambiguous tuning
parameters here is deliberate; the proposed method is designed
to be general and although very high results are obtained on the
SVHN dataset this work is not designed as a parametric tuning
exercise, rather an indication that this method is beneficial even
in suboptimal conditions.
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TABLE I
ITERATIVE LEARNING RESULTS TABLE ACROSS THE THREE DATASETS (SVHN, CIFAR-100, TINYIMAGENET), INCLUDING RESULTS FROM THE IL AND

IL-E METHODOLOGIES, WITH COMPARATIVE RESULTS WHERE POSSIBLE, AND FULL AND SUBSET BENCHMARK TRAINING RESULTS.

Error Rate% (σ Error Rate % (Improvement) Error Rate% (σ) Added Samples (Accuracy %)
SVHN

Model 1k Benchmark 1k Samples Full Benchmark
GAN [33] N/A 5.88% N/A -

VAT+EntMin [16] N/A 3.86% N/A -∏
+ SNTG [17] 14.46% (±0.71) 3.82% (-10.64) 2.81% (±0.07) -∏

model [14] 19.30% (±3.89) 4.82% (-14.48) 2.54% (±0.04) -
Temporal Ensembling [14] 19.30% (±3.89) 4.42% (-14.88) 2.74% (±0.06) -

ResNet-18 (IL) 19.74% (±0.32) 5.12% (-14.62) 2.98% (±0.04) 72,077 (94.89%)
LeNet-5 (IL) 25.24% (±1.55) 9.74% (-15.5) 7.16% (±0.09) 71,703 (90.82%)
JFNet (IL) 20.18% (±0.55) 5.52% (-14.66) 3.84% (±0.05) 70,893 (94.45%)

ResNet-18 (IL-E) 19.74% (±0.32) 4.29% (-15.45) 2.98% (±0.04) 71,068 (94.89%)
LeNet-5 (IL-E) 25.24% (±1.55) 11.11% (-14.13) 7.16% (±0.09) 42,999 (96.86%)
JFNet (IL-E) 20.18% (±0.50) 5.64% (-14.54) 3.84% (±0.05) 66,421 (96.13%)

CIFAR-100
5k Benchmark 5k Samples Full Benchmark∏

+ SNTG [17] N/A 37.97% (10k Samples) 26.32% (±0.04) -∏
model [14] N/A 39.19% (10k Samples) 26.32% (±0.04) -

Temporal Ensembling [14] N/A 38.65% (10k Samples) 26.30% (±0.15) -
VAT+EntMin (ResNet-18) 32.49% (±0.45) 31.54% (-0.95) 17.53% (±0.09) -

ResNet-18 (IL) 32.49% (±0.45) 29.68% (-2.8) 17.53% (±0.09) 9,592 (96.19%)
LeNet-5 (IL) 89.21% (±0.22) 87.52% (-1.69) 65.55% (±0.38) 411 (74.45%)
JFNet (IL) 67.85% (±0.39) 66.44% (-1.41) 39.66% (±0.22) 3,638 (77.24%)

ResNet-18 (IL-E) 32.49% (±0.45) 28.09% (-4.4) 17.53% (±0.09) 42,526 (75.1%)
LeNet-5 (IL-E) 89.21% (±0.22) 87.47% (-1.74) 65.55% (±0.38) 375 (72.53%)
JFNet (IL-E) 67.85% (±0.22) 66.49% (-1.36) 39.66% (±0.22) 4,786 (73.21%)

Tiny ImageNet
10k Benchmark 10k Samples Full Benchmark∏

model (ResNet-18) 37.47% (±0.46) 36.34% (-1.13) 27.38% (±0.15) -
VAT+EntMin (ResNet-18) 37.47% (±0.46) 42.1%(+4.63) 27.38% (±0.15) -

ResNet-18 (IL) 37.47% (±0.46) 33.35% (-4.12) 27.38% (±0.15) 53,522 (82.85%)
LeNet-5 (IL) 95.48% (±0.43) 94.01% (-1.47) 81.58% (±0.27) 40 (35%)
JFNet (IL) 83.40% (±0.12) 81.61% (-1.79) 60.98% (±0.25) 1,919 (73.89%)

ResNet-18 (IL-E) 37.47% (±0.46) 33.68% (-3.79) 27.38% (±0.15) 56,619 (81.37%)
LeNet-5 (IL-E) 95.48% (±0.43) 94.43% (-1.05) 81.58% (±0.27) 69 (43.49%)
JFNet (IL-E) 83.40% (±0.12) 81.61% (-1.79) 60.98% (±0.25) 684 (83.19%)

B. Model Accuracy

Initially benchmarks are run for each of the three models on
the three datasets. Results Table I (columns 1 & 3) outline the
benchmark error rates for each of these model architectures
on both a subset of the training data and the full. The subset
size is based on 50 samples per class of the training data
for each dataset, CIFAR-100 uses 5,000 samples and Tiny
ImageNet uses 10,000 samples. As the SVHN dataset is one
of the most commonly used datasets when comparing semi-
supervised learning techniques, the standard 1,000 samples is
used (100 samples from each of the 10 classes). Each training
subset is made up of an even distribution of classes with
images from each class chosen at random. Each experiment
was conducted 4 times with the average results presented along
with the standard deviation given in brackets. The inclusion of
these benchmarks is vital, especially for any result that uses
a customised loss function or architecture, as without, it is
difficult to ascertain if improvement gains can be attributed to
the model architecture used or the semi-supervised method.

The Iterative learning (IL) and Iterative Learning-Ensemble
(IL-E) methods were applied to the three datasets, initialised
with the same subsets as seen in the benchmarks, importantly
there are no pre processing or clustering steps taken on any of
the datasets used during experimentation. The SVHN dataset
provides a relatively simple classification task from which to

Fig. 6. Addition of newly labelled samples to the training dataset for each
model architecture during the Iterative Learning (IL) cycles on the SVHN
dataset. The solid coloured line representing the number of samples added
during that iteration and the dashed line the number of those samples that
were correctly labelled (with intermittent numeric labels).

analyse the iterative learning approach. Although this task
could be considered non-representational of the complexity
of modern day image classification tasks and their respective
datasets, it does allow for a comparison with many existing
semi-supervised learning techniques. As such Table I outlines
the error rates for this and the remaining two datasets. Column
2 of the table shows the error rates when using a semi-
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Fig. 7. The classification accuracy on the SVHN dataset during the Iterative
Learning (IL) cycles, for each of the three model architectures, (coloured lines)
per iteration accuracy, (black lines) the moving average (over 8 samples).

supervised learning technique initialised with a subset of train-
ing samples. The value in brackets within this column repre-
sents the improvement over the respective original benchmark.
As can be seen the proposed IL-E method demonstrates the
greatest improvement over the original benchmark (-15.45%).
In the case of the proposed work this result is based on the
lowest error rate from the iterative learning cycles and is based
on validation results, as in a real world application this control
set would need to be utilised to make an assessment of if
the learning process is still informative or not. As can be
seen, the proposed method achieves a close to state of the
art result on the SVHN dataset with no change to the ResNet-
18 architecture or the loss functions used and represents a
considerable improvement on the original benchmark. The
Smooth Neighbour on Teacher Graphs method [17] has a
slightly lower overall error rate for SVHN dataset than the
other methods tested, however they also return the lowest
improvement over their original benchmark, highlighting that
their semi-supervised method was arguably the least effective
and in fact less effective at reducing error that the original
method they extend.

Additionally it is worth noting that in the SVHN examples
the training dataset is grown from the original 1000 samples
to upwards of 70,000 samples (of a total 72,257 unlabelled
possibilities) with an accuracy of over 90%. Figure 6 shows
the number of samples added to the training set after each
cycle of the iterative learning process for the SVHN dataset,
highlighted values are the percentage accuracy of those addi-
tions (nan values represent cycles where no new samples were
above the required threshold). After an initial burst, a gradual
decline in the volume of additions to the dataset is seen.
This follows the intuition that the most confident and easily
classifiable samples would be added first with that increase
in training set size further helping to develop the model to
classify further unlabelled samples. This effect tallies with the
sharp rise in validation accuracy that can be seen in Figure 7,
which depicts the progression of the accuracy over the course
of the iterative learning process.

The tests conducted with the CIFAR-100 and TinyImageNet
datasets are designed to give an overview of the iterative
learning process in less ideal scenarios. In all iterative learn-

ing examples an improvement in model error rates is seen,
however the increased complexity of the CIFAR-100 and
TinyImageNet datasets demonstrates how the process works
when the initial learning iterations do not return as lower error
rates as seen with the SVHN examples. The main contributing
factor to this is the rate with which additional samples are
added to the training set, this is in turn directly effected by
the initial accuracy of the model after the first self training
loop. Figure 8 & 9 shows the same analysis as with SVHN
in terms of the samples added to the training set and the
classification accuracy over the course of the iterative learning
process for the CIFAR-100 and TinyImageNet datasets. The
evaluation on the CIFAR-100 dataset is especially interesting
as the three models used have widely varying performance
on this dataset, ResNet-18 has initially high accuracy with
numerous added samples which, for the most part, are well
above 90% accurate. Comparatively LeNet-5 has very low
performance on this dataset, this is not surprising given the
low number of parameters within this network architecture and
the last fully connected layers which originally contained less
neurons that the number of classes in these datasets, however
even with these issues the Iterative Learning process is still
able to make new additions to the dataset and improve the
error rate throughout the cycles.

Results on the TinyImageNet dataset follow a similar trend.
The ResNet-18 model provides good initial accuracy even
though there are twice as many classes, this is likely due to the
increased image size, as a result of this the familiar downward
slope of the dataset additions and accuracy is seen with the
correlated increase in classification accuracy. In this example
the classification peaks and begins to tail off after iteration
twelve. This is soon after the dataset addition accuracy drops
below 75%, this change in validation accuracy is a good
indication that the iterative learning process has run its course
and the dataset additions past this point are not adding to the
model learning and therefore should be disregarded.

C. Dataset Volume and Accuracy

Evaluation of model improvement is based on error rate,
however as the model develops with additional data being
added to the training set, it is useful to see if the error rate is
being reduced universally across all classes or if improvement
in some classes has an impact on others. In the case of SVHN
dataset and the JFNet model, it is the former. Figure 10 shows
the per class classification difference, on the validation set,
for a model trained on the benchmark samples and the model
after running the Iterative Learning (IL) process. In this case
the effect is only positive, with the iteratively learnt model
classifying more samples for each class correctly than the
original model did.

This improvement is not as universal when it comes to
datasets with more classes, Figure 11 shows the same eval-
uation on the CIFAR-100 dataset using the JFNet model. In
this case it can be seen that the effect on the validation dataset
is not as universal, with some class’s accuracy improving at
the cost of others. The CIFAR-100 dataset has 100 classes
grouped evenly into 20 subclasses, providing an interesting
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Fig. 8. (Top) Addition of newly labelled samples to the training dataset
and (Bottom) classification accuracy over the course of the self learning
process for the CIFAR-100 dataset, for each of the three model architectures,
(coloured lines) per iteration accuracy, (black lines) the moving average (over
8 samples).
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Fig. 9. (Top) Addition of newly labelled samples to the training dataset and
(Bottom) classification accuracy over the course of the self learning process
for the TinyImageNet dataset, for each of the three model architectures,
(coloured lines) per iteration accuracy, (black lines) the moving average (over
8 samples).
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Fig. 10. The effect Iterative Learning (IL) has had on the validation dataset
accuracy on the SVHN dataset, using the JFNet Model. Given as the increase
or decrease to each individual class accuracy between the benchmark model
versus the same model architecture after self learning (results presented from
highest to lowest improvement).

Fig. 11. The effect Iterative Learning (IL) has had on the validation dataset
accuracy on the CIFAR-100 dataset, using the JFNet Model. Given as the
increase or decrease to each individual class accuracy between the benchmark
model versus the same model architecture after self learning (results presented
from highest to lowest improvement).

look at the effect improvement in classification accuracy in
one class has on similar classes. Four of the ten most improved
classes in Figure 11 share a subclass with one or more of the
classes in the ten least improved. Suggesting that classification
accuracy in one class can have an effect on similar objects
within the subclass. In addition, seven of the top ten most
improved classes, share three subclasses, demonstrating that
the method might exhibit cumulative gains across similar
objects, for example the subclass insect has three entries in
the top ten improved classes and one in the least improved.

Outlined in the methodology are two process by which
each unlabelled sample is added to the training dataset, firstly
using the learnt thresholds (the standard Iterative Learning (IL)
method) and secondly with an added ensemble augmentation
stage (IL-E). The Iterative Learning process looks to both
improve model accuracy but also increase the dataset volume
in a meaningful way and as such it is important to review
how accurate the additional newly labelled samples are for
both methods. Results Table I (column 4) outlines the number
of added samples in the training dataset with the accuracy of
those additions in brackets, based on the dataset iteration at
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the time of highest validation accuracy. These results correlate
to error rates that a specific model achieves for a given dataset.

The SVHN results are universally above 90% accuracy and
add a large number of samples to the training set, this is as
a result of error rates being initially low and as a product
of the models improvement on the problem (all reduce their
error rate by more than 14%). The use of the IL-E process
seems to make the adding of new samples to the dataset more
stringent with a higher level of accuracy at the expense of the
number of added samples. This increase in sample accuracy
is likely due to the effect a considerably smaller class pool
has on the confidence metric cc, as the smaller the number of
classes the smaller the cumulative distance is, and in turn the
more this metric contributes to the final confidence threshold
that is defined at the beginning of the process. The opposite
of this is seen in the results for the CIFAR-100 dataset. In
this case the largest improvement in error rate comes from the
ResNet-18 architecture using the IL-E method. This is as a
result of a large increase in training data but with a lower
accuracy (over 40,000 new samples over IL’s 9,592). This
drop in accuracy in the added data is due to a lower learned
confidence threshold at the beginning of the process, impacted
by the larger number of classes and the effect on confidence
metric cc. The closest comparative work using the CIFAR-
100 dataset uses temporal ensembling [14] and achieves an
error rate of 38.65%± 0.51 using 10,000 labelled samples to
initialise their semi-supervised learning technique, over 10%
higher than the IL-E method which uses just 5,000 samples.
Demonstrating that even in more complex tasks the iterative
learning concept performs at a state of the art level.

In general the Iterative Learning-Ensemble technique tends
to improve the classification accuracy of a model, however
the improvement is reliant on the model have a reasonable
level of classification accuracy in the first place. This problem
is exacerbated by problems with a large number of classes
as the ensemble results will tend to be more confused and
thus the standard deviation between the augmented samples
will be higher. The other consideration when using the IL-E
process is the by adding an additional step to the labelling
stage additional computation power is required slowing the
labelling process down.

In order to compare all methods on a fair ground, the
VAT [16] and

∏
-model [14] methods were implemented using

the ResNet-18 architecture and evaluated on the challenging
CIFAR-100 and Tiny ImageNet datasets. The Temporal En-
sembling method was not implemented since its architecture
and performance are very similar to the

∏
-model.

VAT on the CIFAR-100 dataset produces the second best
performance with an error rate of 31.54%, a marginal perfor-
mance gain of 0.95% over the benchmark. This was, however,
possible only when initiating the training with a pre-trained
ResNet on the 5k CIFAR-100 dataset. At the begging of
the training the error rate significantly grew over first few
epochs and then slowly decreased. The VAT method employs a
compositional loss function with cross entropy and adversarial
loss components. When training the VAT method with ResNet-
18 initialised on the ImageNet, as in all other experiments, the
VAT method achieves only very high error rates, significantly

above the benchmark values. The VAT training appears to
disrupt already learned parameters despite starting with a
model trained with cross entropy loss on identical, labelled
samples. This suggests that the adversarial loss component of
the method has a negative effect on the convergence of the
ResNet network.

Tiny ImageNet proves to be an even more challenging
dataset for the VAT method when using the ResNet-18
architecture. In this case the ResNet-18 model was again
bootstrapped using the 10k dataset with cross entropy loss.
The model was trained over 500 epochs and encountered
similar behaviour to when training on CIFAR-100 dataset. In
this case the error rate never decreased below the benchmark
even after extensive hyper-parameters tuning, namely the ep-
silon, SGD and Adam learning rate, weights decay, different
labelled/unlabelled batch size ratios as well as various data
augmentations. The

∏
-model performs better with the ResNet-

18 model, although a slight drop in accuracy was encountered
at the beginning of the training when starting with a model
pre-trained on the 10k labelled dataset.

Results of these experiments suggest that the investigated
semi-supervised methods with regularisation techniques have
difficulties when applied to deep architectures such as ResNet-
18 on complex datasets and require careful parameters tuning.
In contrast, the presented IL and IL-E methods do not enforce
any specific inside-loop training procedure, making it suitable
for applications in a majority of image classification methods.

V. CONCLUSION

As demonstrated in the IL and IL-E methods, the presented
simple iterative approach to semi-supervised learning has a
number of benefits. Most notable being state of the art error
rates on the CIFAR-100 dataset and near state of the art on
SVHN dataset, with no required changes to the train methods
or model architectures used. The presented methods demon-
strate the ability for a model to leverage its own confidence
scores to improve itself in the presence of stringent enough
metrics and thresholds to govern the process. The simplicity
and general nature of the IL methods lend themselves well to
image classification tasks and it is believed the process could
be applicable in other classification tasks. An additional benefit
to the process is the non trivial ability to significantly improve
the volume of datasets with only a marginal effect on accuracy,
allowing for the use of large volumes of unlabelled data to fur-
ther improve deeply learned models. Finally an interesting by
product of this process is the increase in classification accuracy
of a model in specific classes, this property of the algorithm
could be further leveraged and focused to target generalisation
of specific classes, for example in human detection in object
detection tasks.

APPENDIX A
THE JFNET ARCHITECTURE

The JFNet architecture was developed as a simple, generic
CNN for classification of low resolution images. The archi-
tecture was inspired by the work of G. Huang et al. [34]
on densely connected convolutional networks. However, in
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Fig. 12. JFNet architecture.

contrast to Huang’s work, JFNet reduces spatial resolution
and increases depth of feature maps within a single dense
block and is terminated by three fully connected layers for
classification as shown in Figure 12.

APPENDIX B
MODEL OVERVIEW

TABLE II
OVERVIEW OF MODEL ARCHITECTURES

Model Parameters Layers
JFNet (Appendix A) 11,037,386 11

LeNet-5 [32] 61,706 6
ResNet-18 [1] 11,181,642 18

APPENDIX C
USED HARDWARE

All our experiments were conducted on a Dell Precision
Tower 7910 XCTO server with two GPUs TITAN Xp, Intel
Xeon E5-2623 v3, 128GB DDR4 RAM and 512GB SSD.
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