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Abstract

In this paper, a feed-forward deep neural network and automated search method
for optimum network structure are developed to control an active suspension
system. The network was trained through supervised learning using backpropagation
algorithm. The training data was generated from an optimal PID controller tuned
based on a full state feedback optimal controller. The trained network was
implemented in an active suspension system test rig for a quarter car model and
was initially tested in simulation under parameter uncertainties. Experimental results
showed that the developed deep neural network controller outperforms the optimal
controller under uncertainties in terms of reducing the sprung mass acceleration and
actuator energy consumption, with a 4% and 14% reduction respectively.

Keywords
Active Suspension System, Control Systems, Control Design, Deep Learning, Deep
Neural Networks, Machine Learning, Backpropagation, Optimal Control, Optimal PID
Controller

Introduction

The suspension system is a fundamental vehicle component that aims to ensure
passengers comfort by suppressing oscillations caused by road irregularities and to
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improve handling by keeping constant ground contact under any condition to maximise
traction Aly and Salem (2013). The development of suspension technology attempts
to transition traditional passive suspension systems lo active suspension systems in
more efficient and cost effective ways Alexandru and Alexandru (2011). In an Active
Suspension Systems (ASS), an actuator is used in combination with springs and dampers
to exert a force that controls suspensions dynamic behaviour in order to adapt to road
profile and achieve higher level of performance Fischer and Isermann (2004). Because of
non-linearities and time-varying characteristics of suspension systems, they are difficult
to model for ASS control systems. Therefore, major research focused on ASS controller
design is required.

Simple solutions were attempted initially in order for controllers to be able to deal with
uncertainties such as the use a self-tuning pole assignment and fuzzy logic to adjust the
gains of the controller Ramsbottom et al. (1999). Another common example of control
systems based solution was the Sliding Mode, a form of non-linear adaptive control
scheme which allows dealing with suspension non-linearities due to changes in stiffness
and dampening characteristics. It uses a sky-hook damper system model without the
need for real time measurement of the road profile Kim and Ro (1998). With advances in
the technology, more complex controllers were developed. A programmable full state
feedback controller based on linear quadratic control and pole placement techniques
for a linearised model was developed however could not achieve satisfactory sprung
acceleration suppression Watton et al. (2004). There are examples of automation of
controller design that uses a modelling-free approach based on adaptive sliding controller
where a self-tuning fuzzy scheme is used to compensate for modelling uncertainty
and improve vibration suppression Chen and Huang (2005). An interesting control
strategy uses an inertial delay linear quadratic Gaussian observer which estimates states,
uncertainties and disturbances of a system simultaneously by using only the sprung mass
position sensor was developed. Gupta et al. (2016) designed a multi-level controller
formed by two controllers. The upper supervisory controller computes the damping
force with linear quadratic control theory and selects the passive or active mode for the
suspension while the lower level controller feeds the actuator signal compensating for
dynamic friction torque. Two estimators are used for system states while an adaptive
observer is used for damper friction and actuator friction Shin et al. (2016). Along
with control systems based design, solutions were developed through algorithms from
Computer Science such as Genetic algorithms, that were used to find optimum control
parameters for active suspension system in a half car model using minimum suspension
travel as the objective of the algorithm Tsao and Chen (2001).

Neural networks (NNs) were used in combination with more conventional controllers
in order to aid or enhance the controller performance. Huang et al. proposed a
combination of adaptive control based on sliding mode and NN based on radial basis
function to deal with the non-linear and time-varying characteristics of a hydraulic ASS.
The NN tunes its weights online and learns from the sliding mode controller to suppress
oscillations due to road irregularities Huang and Lin (2007). A state-observer-based
feedback control is developed using an adaptive radial basis function neural network
(RBENN) to deal with system non-linearities and avoid actuator saturation while another
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NN estimates the states. The parameters of the controller are optimised through particle
swarm optimisation scheme Zhao et al. (2016). Metered et al. (2010) developed a
recurrent neural network (RNN) controller based on inverse dynamics derived from the
Bouc-Wen model of a semi active suspension system with magnetic damper actuator.
Hardware-in-the-loop (HIL) simulations with different road disturbances showed that the
RNN offered improved actuator voltage signal which ensures extended service life and
lower power requirement. Heidari and Homaei (2013) have designed a PID controller
for active suspension system which its gain parameters are obtained using NN trained
with Levernberg-Marquardt algorithm. An NN is used to switch pre-programmed control
laws, which focus on either ride comfort, ride safety or a trade-off of these criteria, based
on the system states. The NN then optimises the parameters of the control schemes based
on the input it receives Dessort and Chucholowski (2017). An adaptive neuro-fuzzy
controller for an active suspension system was developed using an LQR approach for
training. The authors removed the need for the dependency of a stochastic observer from
the system and used Kalman filter to determine the system states Rashid et al. (2016).
Other approaches developed NNs for ASS to carry out other tasks, for example, in the
work of Qin et al. (2018), a novel road roughness detection and classification method
was proposed where the system response in terms of rattle space (relative unsprung mass
displacement), unsprung mass and sprung mass accelerations are used as inputs and the
road roughness classes as the outputs. On-board camera stabilisation is another important
application for autonomous cars which relies heavily on computer vision, so an ASS
controller was developed using RBFNN in combination with LQR full-state feedback
control Zhao et al. (2015). The road disturbance is sensed in advance by either optical
sensor or measurement of vehicle dynamic response then RBFNN improves the accuracy
of the controller in real-time.

DNN is rarely used on its own in the control of active suspension systems as proposed
here. Previous neural network models were combined with Neuro-fuzzy, Sliding Mode,
LQR, PID or similar to tune their parameters either offline or in real time. The research
on RNN model reported in Metered et al. (2010) is the closest to our case but it was used
for a semi-active suspension system utilising a magnetic damper which is significantly
different than the Active Suspension System. The contribution of this paper consists of
complete substitution of the conventional controller with a Deep Neural Network (DNN)
controller. Also, a script was developed to derive the optimal structure for the DNN
which automatically iterates over potential structures. The optimum DNN controller is
implemented in a Hardware in the Loop (HIL) system and its performance is validated
in real time with real road data. The DNN controller demonstrated a better performance
in terms of energy consumption and riding comfort than an optimal PID controller.

Methodology

Active Suspension System Modelling

The quarter-car ASS model consists of two masses, each supported by a spring and a
damper as shown in Figure 1. The sprung mass, mg, represents the mass of the car body
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while the unsprung mass, m,, represents the wheel. The spring ks and the damper b,
support the body weight over the wheel. The spring ks and the damper b, s model the
stiffness and the damping of the tire in contact with the road. The actuator is positioned
alongside the spring and the damper and it is represented by the force F'4.

Vehicle Body mg

Suspension kS bs
—F

I Xus
Whleel My e
‘ kus bus
Tyre

Road
Profile

Figure 1. Double Mass-Spring-Damper used to model Active Suspension

The state space approach is used to model the quarter-car system which is represented
as a multi-input multi-output linear system by the following state space form:

Xx=Ax + Biu+Bsyf
y=Cx+Du+D’'f (D

where x € RV*1 is the vector of state variables, u € ®M*1 is the vector of control
inputs, and f € RX*1 is the vector of external inputs and disturbances, and y € R”* 1 is
the vector of outputs.
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The states can be defined such that they reflect the system performance parameters,
given in equation (2). The first state represents the suspension deflection/travel. The
second state is the vehicle body (sprung mass) vertical velocity. The third state is the
wheel deflection which is a measure of road handling. The fourth state is the wheel
vertical velocity. The control input is the actuator action and the external input to the
system is the rate of change of road surface, equation (3). The first measured output of
the system is the suspension travel, and the second measured output of the system is the
vehicle body acceleration, as given in equation (4). The parameter values of the active

suspension system are given in Table 1.
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Table 1. Suspension System Parameters

Symbol Name Value

My Sprung Mass 245 kg
Mays Unsprung Mass 1 kg

ks Suspension Stiffness 900 N/m
ks Tire Stiffness 2500 N/m
b Suspension Damping Coefficient 7.5 Ns/m
bus Tire Damping Coefficient 5 Ns/m

Passive Suspension System: Passive suspension system is represented by the open
loop response of the systems which can be obtained by setting u = 0 in equation (1).
This corresponds to no control action from the actuator. The open loop response of the
sprung mass travel is shown in Figure 2. A square signal with amplitude of 0.02 m and
period of 3 s is used to simulate the road profile x, as worst case scenario. The result
illustrates that the maximum overshoot is almost 100% for the given road profile which
causes severe vibrations that negatively affect passenger comfort and driving handling.

Sprung Mass Position
0.04 T T

—--Road Profile
—Passive Response

0.03 -

0.02

\ o
J U

Figure 2. Simulation Open loop response

Active Suspension System: To turn the system from passive to active suspension, a
controller was tuned with the following aims: no overshoot of the car body with reference
to the road profile; reduction in the vertical acceleration of the car body; maintaining
contact between the wheels and the road; ability to function across different road profiles
and low actuator energy consumption. With these aims, an optimal Proportional Integral
Derivative (PID) controller was tuned using LQR method highlighted in Alkhoori et al.
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(2017); Bin Safwan et al. (2018). The input and output for the controller are velocity
and force respectively which were used as the training data for the deep neural network
controller. The optimum PID gain values used are Kp = 89.9882 Ns/mand K; = Kp =
0 (i.e. velocity feedback only).

Training of Deep Neural Networks

Training Data: Training data was generated from simulations of the optimal PID
controller using the closed loop response to square wave with different amplitudes and
sinusoidal road profiles with a sampling time of 1 ms. Vehicle body velocity is used as
input data to the DNN while actuator force signal is used as target data. The velocity and
the corresponding force signal data points for each millisecond are treated as training sets
(batches). This training data aims to train the DNN to model the behaviour of the optimal
PID controller and to be able to predict the correct actuator force signal to minimise
vehicle body oscillations for unknown road profiles. The proposed method is summarised
in Figure (3) :

Active Suspension
System Modelling

Select Best DNNs

MATLAB/Simulink
Implementation

Further Training by

tuning
Hyperparameter

Controller Design
using
PID Tuning with LQR

Performance
measure achieved

Implementation of
DNN Controller in
Simulink

Generation of

Training Data Yes

!

Automated Search
Method for
Optimum DNN
Structure

Implementation
into HIL and
Validation with Real

DNN Complete
Road Profile Data

Figure 3. Training Procedure Workflow
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The training data has to be mapped into an appropriate range. The input and output
data are mapped based on the activation functions (AF), Table (2), at the first hidden
layer and at the output layer, respectively. The output of the network is reverse mapped
to the original range to generate the force control signal. Mapping must also consider the
physical limits of the real system. Therefore it is mandatory to make sure that the training
data is within safe margins of the given system, in this case, force signal is limited to 20N.

Table 2. Activation Functions

Function Equation Derivative
Sigmoid 1+i,z fl(x) =21 —x)
2 f'(z) =
Tanh Tre5; 1 (1-2)(1+2)
> >
ReLU T for:z:_O 1 for:z:_O
0 forx <O 0 forz <O

Each AF presents inherent disadvantages, for example the Sigmoid function becomes
saturated at its range ends, (0 and 1) and so does hyperbolic tangent (1 and -1), which
can lead to vanishing gradient. Practical experience with the data showed poor results or
unsuccessful training when using the same activation function in every layer, even when
using ReLU. However, the combination of all three was more effective for our problem.

The training procedure has three stages: training, testing and validation. In general,
the training and testing data are generated from random portions of the same data set by
assigning percentages, i.e. 70% for training and 30% for testing, while validation requires
a data set that the DNN had never seen before. Data using a real road profile was used
for validation purpose.

Weights Initialisation: Initial weights are generated with random numbers to have a
starting point. For the weight matrix of a layer, the number of columns is equal to the
number of inputs into the layer while the number of rows corresponds to the number of
hidden nodes or outputs from the layer. In a feed-forward DNN, the outputs from one
layer are the inputs to the next layer.

Deep Learning: Backpropagation (Backprop) with Stochastic Gradient Descent (SGD)
is the main Deep Learning (DL) algorithm used for supervised learning of DNNs. In
each training cycle (epoch), the inputs propagate within the network, which is known as
forward-pass, and an output is generated. Then, during Backprop, the error between the
output and target data is calculated using a Mean Squared Error (MSE) or Cross Entropy
(CE) loss functions, and propagated backwards as shown in Figure 4. From output to
input, SGD computes the delta (6) which defined as the derivative of the activation
function multiplied by the error then generating weights updates AW at each layer in
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order to minimise the loss function value. The pseudocode of a DNN with 3 hidden
layers is given in Algorithm (1).

O
-
>

<l = <
Input nodes Hidden Layers Qutput nodes

Figure 4. Back-propagation

Implementation
Automated Search of Optimal Structure

There are a number of parameters that can affect the training performance such as:

Type and order of Activation Functions
Nodes per Layer

Number of Hidden Layers

Epochs

Learning Rate

Momentum

e 6 o o o o

To this end, a program was developed to automate the process of varying each
parameter in order to assess their effect on the performance of the DNN model.
The number of starting layers, starting nodes and starting epochs along with their
respective range and step size are specified in the program. The program then tests these
parameters for all permutation of activation functions. The DNN iteration script was
created in multiple versions where each version cycled through a limited set of structure
combinations. Created scripts were executed in multiple computers with Intel Quad Core
17-6700 CPU with clock frequency of 4Ghz and 32GB of RAM. This allowed to shorten
the total time to complete all the iterations. The output data from all the runs were
collected in MATLAB to identify the best performing structures. Determining optimum
DNN structure normally involves a trial-error method, without knowing whether an
optimum has been achieved. The proposed automated search method ensures that we
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Algorithm 1 Training Algorithm Function

1: function [W1, W2, W3] = TRAINING(W1, W2, W3, inputs, targets, batches,
learning_rate, momentum, AF1, AF2, AF3, epochs)

2:
3: mmtl=zeros(size(W1)); > Momentum Initialisation
4: mmit2=zeros(size(W2));
5: mmt3=zeros(size(W3));
6:
7: for batch = 1 : batches do
8:
9: x = inputs(batch,:)’; > Feed-forward
10:
11: vl =W1xux;
12: yl = AF1(vl);
13: v2 = W2 xyl;
14: y2 = AF2(v2);
15: v3 = W3 xy2;
16: y3 = AF3(v3);
17:
18: d = Target(Batch,:)';
19:
20: error = d — y3; > Backpropagation
21: delta3 = error;
22: e2 = W3’ x delta3;
23: delta2 = y2. % (1 — y2). x €2;
24: el = W2 x delta2;
25: deltal = yl.* (1 —yl). x el;
26: > Weights Update
27: dW 3 = learning_rate x delta3  y2’
28: mmit3 = dW 3 + momentum x mmt3;
29: W3 =W3+ mmt3;
30:
31: dW?2 = learning_rate x delta2 x y1’
32: mmt2 = dW?2 + momentum x mmt2;
33: W2 =W2+ mmt2;
34:
35: dW1 = learning_rate x deltal x ’;
36: mmtl = dW1+ momentum x mmitl;
37: W1 =W1+ mmitl;

have the optimum structure before using the network. It requires computing power, but
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it is done offline and only once to determine the best structure for the application. When
the DNN controller is implemented in real time it is fast and efficient.

It was found that the DNNs performed better as the number of layers was increased
however, increasing the number of layers beyond 6 would drastically increase the
total computational time to beyond two weeks without significant improvement in the
accuracy. For this reason 6 layers were chosen as it provided acceptable solutions with
reasonable computational time within 2-3 days. Eighteen nodes per layer produced the
best results; using a higher or lower value than 18 nodes caused the output to overfit or
underfit. The total number of permutations for a DNN consisting of 6 layers and 3 types
of AF is 729 and this becomes the number of iterations for the DNN.

Optimal Structure

The structure of the feed-forward DNN model in iteration 147 from Table (3) and
illustrated in Figure (5) performed better than any other structure having lower steady
state error and peak error, however the accuracy was not sufficient for training and testing.

Table 3. Best Performing Structures with 6 Layers and 18 Nodes per Layer

Iteration Hidden Layer (HL) Number Output Peak
No. HL1 HL2 HL3 HL4 HL5 Layer MSE
147 Sig ReLU Tanh ReLU Sig ReLU 3.99E-4
150 Sig ReLU Tanh ReLU ReLU ReLU 2.64E-3
201 Sig Tanh ReLU  ReLU Sig ReLU 4.4E-3
347 ReLU ReLU Sig Tanh  ReLU Sig 5.9E-3

419 ReLU Tanh Sig ReLU ReLU Sig 4.8E-3

Variable Learning Rate: In order to tackle the accuracy issue a practical approach was
employed in which the DNN is trained using a learning rate of 0.01 for 100 epochs to
achieve rapid convergence at the beginning and then trained further with a learning rate
of 0.0001 in steps of 5 epochs until the accuracy became satisfactory and independent
of number of epochs. The value used for momentum is 0.9 which is selected after using
variety of values and found to provide good stability and convergence. The final result is
illustrated in Figure (6).

DNN Controller into Simulink

To test the output of the DNN in simulated environment, a Simulink model of the
system is created, of which a diagram is shown in Figure (7).

The DNN is represented by the Deep Learning controller which consists in a code
reproducing the structure of iteration 147, Algorithm (2). The trained weights from
iteration 147 are loaded into the controller and the mapped velocity input propagates
through the controller to generate the actuator force signal, ReLU is used for the optimal
structure output layer which is then mapped to the safe actuator range.
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Input
Layer

Hidden Layers (18 Nodes per Layer)

Figure 5. Optimal DNN Structure

Algorithm 2 DL Controller Function Block

1: function force = DLCONTROLLER(velocity, W1, W2, W3, W4, W5, W6)
2.

3 vl = W1 x velocity;
4 y1l = Sigmoid(v1);

5:

6 v2 = W2 xyl;

7 y2 = ReLU(v2);

8

9: v3 = W3 =xy2;

10: y3 = Tanh(v3);
11:

12: vd = W4 xy3;

13: y4 =ReLU(v4);

14:

15: vh = W5 x yd;

16: y5 = Sigmoid(v5);
17:

18: v6 = W6 * y5;

19: force =ReLU(v6);

Simulation Results

Simulations were performed to establish DL controller performance under (a) ideal
conditions with no noise in the system and (b) parameters uncertainties.
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(a) Under ideal conditions

Figure (8) compares sprung mass (vehicle body) and un-sprung mass (wheel and
suspension assembly) relative positions using the DNN Controller against the optimal
PID controller with respect to the road profile which is set as square waveform in order
to simulate the worst case scenario.

It is found that the performance is practically identical, with an average error of 0.9%
and 0.07% with respect to the sprung and un-sprung mass relative positions respectively.
The DNN controller demonstrates to be able to suppress oscillations as much as the
optimal controller.

Figure (9) shows the actuator force and sprung mass acceleration. The actuator has
to apply the force in the opposite direction of sprung mass motion in order to suppress
oscillations, for example, force undershoots at the start of the road profile irregularity,
since the sprung mass tends to move upwards. The maximum performance difference
found to be around 2.8%. Similarly, the sprung mass vertical acceleration results are
consistent with the trend, where overshoots at the start of the road irregularity, and it
displays a 3.2% difference between the DNN and the optimal PID controller.

(b) Under parameters uncertainties

The system model parameters were arbitrarily modified: the sprung mass was
increased to 3.5kg, suspension stiffness decreased to 890 N/m and damper coefficients
decreased to 6.5 sec. The modified system model was used to perform simulations to
test the flexibility of the DNN, this means to check the fitting of the model” using
different conditions. The results were similar to those presented in Figures (8) and (9)
with negligible differences, which demonstrates successful model fitting.

Experimental Results

Testing Rig Setup

To validate the proposed DNN based controller, a Hardware-In-the-Loop (HIL) active
suspension test rig was used. Diagram of the active suspension test rig is shown in
(Figure 10). The active test rig emulates a quarter car model. In the experiment, position
of the sprung mass, the suspension travel and the wheel travel are measured using three
quadrature optical encoders with resolution 1024, 1000 and 2048 lines per revolution,
respectively. The corresponding velocity signals are estimated using robust second-order
high pass filters. A dual-axis accelerometer is used to measure the acceleration of the
vehicle body (sprung mass) along the vertical direction. The active suspension test rig
parameters are given in Table 1.

Experimental Results with Real Road Data

The DNN controller performance was subjected to real road profile on the
experimental rig. The real road data that was used for validation has been retrieved from
a data log of sensors integrated on a car owned by Kingston University.
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Figure 6. Iteration 147: DNN output & target vs time

Sprung and Un-sprung Mass Position vs Time: The developed DNN demonstrated
good performance in terms of sprung mass displacement as shown in Figure 11, which
means that amplitude of sprung mass oscillation was successfully reduced in comparison
to the passive system resulting in increased comfort. The sprung mass performance of
DNN is similar to the sprung mass performance of the optimal PID controller however the
DNN outperforms the optimal PID controller as the un-sprung mass tracks the reference
road profile better. This can be see in Figure 11 where DNN, PID and passive systems
have a small millisecond delay behind the road profile which is believe to be caused
by the delay in the sensors. However when ignoring this delay it is clear that the DNN
controller is able to track the road profile more closely.

Actuator Force and Sprung Mass Acceleration vs Time: The real road profile has
rapidly changing oscillations which make difficult to determine the performance of
DNN relative to the optimal PID controller Figure 12. The mean absolute values were
calculated for DNN and the PID controllers to assess their overall performance. From
these values, it can be established that the DNN uses 0.6343/N on average compared to
0.7384N for the optimal PID controller. This shows 14.1% lower energy consumption
for the DNN controller. This energy saving is significant and very important to ensuring
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Figure 9. Actuator force comparison

a system such as this is suitable for electric vehicles. A typical vehicle can be operational
for hours at a time and if the total energy consumption from an active suspension system
is too high, it may be deemed useless in fully electric vehicles as it would negatively
impacts its single-charge mileage range.

The sprung mass acceleration is the main parameter which affect passenger’s comfort.
Rapid changes in acceleration are more noticeable than the changes to velocity
or displacement. Therefore, it is fundamental to minimise the overall vehicle body
acceleration. The DNN Controller outperforms optimal PID controller for the peaks and
the troughs as shown in Figure 12, providing a lower overall body acceleration. The
average values obtained are 0.1032m /s for the DNN Controller and 0.1081m /s? for the
optimal PID controller. The DNN Controller shows a reduction of 4.5% in acceleration.
Due to non-linearity of DNN, it deals with non-Gaussian noise better, hence outperforms
the LQR controller when it is implemented in the Hardware in the loop system and tested
with road profile recorded from the real car. This is consistent with Metered et al. (2010)
which came to a similar conclusion although their suspension system was only semi-
active that used a magnetic damper.

Discussion

The application of DL for training of DNNs requires implementation of different
options through trial and error method. The initial choice of options is usually based
on experience on similar structures and type of data.

Often DNN models run into the problem of vanishing gradient, when weights updates
dW through backpropagation becomes ineffective due to gradients ¢ decreasing to very
small values as they propagate or they can saturate due to the restrictive range of Sigmoid
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‘ Active suspension ‘ ‘ Data acquisition board ‘

QUARC real time
control software

Power amplifier

Figure 10. Diagram of the active suspension test rig:(1) Payload simulates passengers, (2)
Blue plate simulates vehicle body mass, (3) Brushless DC motor produces control force, (4)
Adjustable spring simulates vehicle suspension spring, (5) Red plate simulates vehicle wheel
mass, (6) Adjustable spring simulates vehicle wheel stiffness, (7) White plate simulates the
road, (8) Brushed DC motor simulates different road profiles, (9) Accelerometer, (10) High
resolution encoder.

and T'anh activation functions, being unable to reach all the layers. This means that
Neural Network is not able to learn from the training data. The use of Rectified Linear
Unit (ReLU) activation function has decreased the effect of vanishing gradient because
it saturates only negative values and allows higher value of gradient to propagate, in fact
the optimal structure contains several hidden layers with ReLU in between layers with
Sigmoid or Tanh activation functions.

Underfitting is a common issue that affected training where the DNN is unable to
generalise the model and causes poor performance with both training and test data sets.
Overcoming underfitting required tuning of training algorithm hyperparameters, such
as learning rate, until suitable selection was found through a coarse to fine validation
strategy, which starts from a wide range of values to understand their effect, and
progressively reduces the range.

The use of trained DNNs as controller provides high adaptability level, given adequate
data and training, it can easily be re-purposed to scale across different systems without
significant changes in its structure and it allows to offload significant time and efforts
spent in engineering and fine tuning of conventional controllers.

Linear state space model was implemented for PID with LQR although nonlinearity
exists due to friction between components and wear of suspension system parts. DNN
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Rig actuator force and sprung mass acceleration with real road data

network outperforms PID controller with LQR due to inherited non-linearities, which
allowed DNN to capture relevant dynamics trends of the system.

The majority of computational cost is paid during training offline so trained DNNs
require low computational power, their processing time and memory remains the same
regardless of the input. Therefore, they can be deployed in low cost mobile chips and
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process complex data in almost real-time which cuts cost of implementation in real
systems. The ease of implementation on the Quarc Active Suspension System Rig, which
was not designed for DNNG, is a clear example.

Conclusion

In this paper, optimal structure of DNN controller for ASS was determined to have 5
hidden layers with 18 nodes per hidden layer while the activation functions are Sigmoid
for the input layer, ReLU, Tanh, ReLU, Sigmoid and ReLU for the output layers
respectively. The developed DNN model has the ability to be implemented in real time
and to be deployed in the HIL test.

The training of the optimal DNN structure was successful, the DNN Controller
performed well in both simulation and experiments with real road profiles which have
never been seen during the training process. The DNN controller has lower energy
consumption than optimal PID controller while reducing the vehicle body acceleration
which allows the DNN to outperform the optimal VP Controller under real conditions.

The performance improvement in terms of actuator force that was provided by the
DNN controller can be explained by the fact that the it was trained with simulation data
which did not present noise therefore, when deployed, the DNN gained an inherent filter
which dynamically adjusts itself to provide a smoother and accurate control signal to the
actuator. A 4% reduction in vehicle body acceleration might not be considered significant
in comfort for the passengers but an average of 14% reduction in required actuator force,
therefore in energy consumption, is a significant improvement considering the heavy and
long term usage of this component, specially in the context of electric vehicles, in which
energy saving is fundamental to increase autonomy. This results demonstrate a key point
for the development of ASS, which is the fact that better performance can be achieved
with lower energy consumption and force with the use of new techniques provided by
DL.

Further improvement in the future include transition to suspension system from a
quarter to a full car model, which will improve performance and handling, for example,
effects of steering angle should be taken into account to compensate dynamic factors
related to weight redistribution during cornering which will require improvements in the
training methodology. Then, the developed enhanced controller should be implemented
in car prototype. In addition to this, Long-Short-Term-Memory (LSTM) model could be
a good candidate to be implemented in the future research. LSTM technique proved to
be robust in modelling of long sequences data. This further development will lead to an
important leap forward for autonomous cars, allowing Al to directly control and improve
the suspension system performance.
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