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Highlights 

 There is no approved treatment for dry AMD or for the advanced GA of the retina. 

 Tissue engineering is promising to repair damaged human retina, and restore its functions. 

 Polymeric scaffolds allow cells to grow & proliferate to regenerate damaged retinal tissues. 

 Integration of tissue engineering with drug delivery to regenerate retinal cells is yet to be realized. 

 

Degenerative retinal diseases, such as age-related macular degeneration (AMD), can lead to permanent sight loss. 

Although intravitreal anti-vascular endothelial growth factor (VEGF) and steroid injections are effective for the 

management of early stages of wet and/or neovascular AMD (nAMD), no proven treatments currently exist for dry AMD 

or for the advanced geographic atrophy of the retina that follows. Tissue engineering (TE) has recently emerged as a 

promising alternative to repair retinal damaged and restore its functions. Here, we review recent advances in TE, with a 

particular emphasis on retinal regeneration. We provide an overview of retinal diseases, followed by a comprehensive 

review of TE techniques, cells, and polymers used in the fabrication of scaffolds for retinal cell regenerations, in 

particular the retinal pigment epithelium (RPE). 

 

Keywords: RPE regeneration; macular degeneration; biodegradable and biocompatible polymers; scaffolds. 

Teaser: Vision loss because of retinal degeneration affects millions of patients. Current treatment strategies, including 

anti-VEGF and gene therapy, are of limited value. Tissue-engineered polymeric scaffolds provide a promising avenue to 

reverse advanced RPE and photoreceptor loss. 

 

Introduction 

According to the WHO, the total number of people with vision impairment in 2017 was 253 million, of whom 35 

million were completely blind. Indeed, vision loss and blindness are among the most important health matters that 

affect the physical and emotional state of patients, especially within older populations. A remarkable amount of 

cutting-edge research, with an emphasis on new treatment strategies for eye diseases, has emerged, particularly in 

the fields of gene therapy [1] and laser therapy [2]. However, there remains an urgent need to introduce new and 

innovative therapeutic strategies to permanently cure major eye diseases. AMD is a leading cause of blindness. 

Although treatments are available for nAMD, no proven treatments currently exist for dry AMD. In this context, TE 

has recently emerged as a potential and promising alternative to repair damaged tissues of the eye, especially the 

retina, and restore its functions. Here, we review the most recent advances in TE, with a particular emphasis on 

retinal tissue regeneration. 

Retinal function and health 
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The retina is a fragile light-sensing tissue that is prone to degenerative disease [3]. Anatomically, the retina can be 

divided into inner and outer layers. The inner layer comprises neuronal cells, known as photoreceptor cells, whereas 

the outer layer comprises highly specialized pigmented cells, known as RPE [4]. The RPE is composed of a monolayer 

of nonregenerative cells that is essential for maintaining vision [5], and Bruch’s membrane (BrM), which separates 

the RPE from the choriocapillaris. BrM is a 2–4-mm-thick layer comprising primarily fibers of the extracellular 

matrix (ECM) proteins collagen and elastin [6]. The backbone structure of BrM is formed from collagen I–V, laminin, 

and fibronectin. BrM provides the mechanical structure that supports RPE cells and acts as barrier to control the 

transport of nutrients and waste product [7]. The RPE and choroid form the metabolic support systems of the 

photoreceptor cells of the inner layer of the retina. Thus, photoreceptor cells die when they become physically 

detached from the RPE and choroidal vessels [8]. 

Retinal diseases 

Retinal diseases affecting the photoreceptor cells are considered a major cause of blindness [9]. Given that the retina 

is unable to regenerate damaged cells, vision loss is irreversible [10]. AMD is one of the most common 

neurodegenerative diseases of the retina (Figure 1), with more than 8 million people affected globally [11], mainly 

those aged 60 years and above. AMD can be classified as; wet nAMD and atrophic (dry) AMD [12]. Dry AMD is the 

most common form of AMD, accounting for ~50–80% of all patients with AMD. Advanced (late) stages of dry and wet 

AMD, as well as of other forms of retinal degenerative pathologies, are called geographic atrophy (GA) (Figure 1). 

Advanced GA manifests as the loss of choroid and RPE in the macular region of the retina; this causes gradual central 

vision because of dysfunctional macular photoreceptors. Several therapeutic protocols are available for the 

management of nAMD, including intravitreal injection of steroids and anti-VEGF compounds, as well laser-based 

therapy [13]. However, these strategies are applied to delay disease progression rather than cure it. By contrast, 

there are no proven treatments for dry AMD (Figure 1). 

Diabetic retinopathy associated with hyperglycemia, is one of the most common microvascular complications of 

diabetes that can also lead to retinal damage. However, there is no established treatment to regenerate damaged 

retinal vasculature resulting from long-term hyperglycemia, although there have been some breakthroughs [14]. 

Although gene therapy is attractive for earlier stages of the disease, other modalities, such as cell therapy and TE, 

are more applicable to advanced stages of the disease [15]. Early-phase clinical trials are ongoing and cell therapy 

has been shown to be a promising strategy for the treatment of dry AMD. 

Regenerative medicine based on tissue engineering 

Although autograft, xenograft, and tissue transplantation show promise to replace damaged tissues, they have major 

drawbacks including, but not limited to, the need for tissue donors, tissues banks, heavy surgical intervention, and 

immune suppression therapy to prevent any rejection response [16]. To overcome some of the challenges associated 

with tissue transplantation, TE offers an attractive alternative to regenerate defective tissues [17]. TE was officially 

introduced in 1988 by the National Science Foundation and defined as ‘the application of principles and methods of 

engineering and life sciences toward the fundamental understanding of structure-function relationships in normal 

and pathological mammalian tissues and the development of biological substitutes to restore, maintain or improve 

tissue function’. TE is an interdisciplinary field integrating the principals and methods of bioscience, clinical 

medicine, engineering, and material science [18]. It relies largely on the development and the use of bioactive support 

structures, known as scaffolds, which act as a template to which cells are able to adhere and proliferate to regenerate 

a particular tissue [19–21]. Cell-populated scaffolds are transplanted in vivo with the aim of developing biological 

substitutes and reconstructing damaged tissues [22]. A variety of 3D scaffolds, based on synthetic, semisynthetic, 

and natural polymers, have been designed and assessed on, for example, bone, nerves, and muscles [23–25]. Clinical 

success has been reported in cases of TE of the skin [26], cartilage [27], and bladder [28]. 

Cellular sources for TE 

Identifying a group of reliable cells is the first step to consider for any successful TE procedure. The identified cells 

should generate a cell matrix and an ECM, resembling that of the native tissue [29]. Given their unique 

characteristics, stem cells have attracted attention as a potential cell source for TE. Stem cells are undifferentiated 

and capable of renewing themselves through cell division. These cells can settle in a suitable new environment where 

they proliferate and differentiate into various types of mature cell that form tissues [30]. Therefore, stem cells have 

been used in regenerative medicine to repair and restore the functions of various tissues [31]. For example, embryonic 

stem cells (ESCs), harvested from the inner cell mass of the blastocyst, are capable of self-renewal and have the 

ability to give rise to different cell types. By contrast, induced pluripotent stem cells (iPSCs) are generated from adult 

somatic cells by transfecting four transcription factors (Oct4, Sox2, Klf4, and c-Myc) in fibroblasts [32]. Studies have 

reported the use of both ESCs and iPSCs to replace diseased RPE cells [33,34]. One study revealed that both ESCs 

and iPSCs were a good source of cells to generate RPE [35]. Another study revealed that iPSC-derived cells had a 

higher tendency for abnormal gene expression, which resulted in induction of the immune system [36,37]. 

Furthermore, it has been shown that ARPE-19 cells (from human RPE cell line primary cultures) can form a retinal 

like-tissue. These resulting cells had an epithelial morphology and proliferative nature comparable with that of other 

primary RPE cultures [38]. Recently, cell therapy has attracted increasing interest as a strategy to restore visual 

function in degenerative retinal diseases. Stem cell therapy could generate new retinal cells to replace those that are 

damaged or lost in the diseased retina. The advantages of stem cell therapy in the eye are: (i) the number of stem 
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cells required is lower than required for other organs; (ii) surgical intervention is easier than with other organs 

because of the accessibility of the eye; and (iii) long-term immunosuppressants are not required because the eye has 

an active immune privilege mechanism. 

A key step in successful TE is to reconstruct the ECM of the damaged tissues. The characteristics of ECM 

contribute to its ability to regulate cell activities; hence, it is vital to fully understanding the role of ECM and to apply 

such knowledge to develop artificial ECMs [39]. ECM is a dynamic microenvironment comprising extracellular 

macromolecules with specific biophysical and biochemical properties that provide structural and biochemical support 

to the surrounding cells. This microenvironment generates signals that control cell proliferation, growth, survival, 

migration, and differentiation. Additionally, the ECM dictates vital processes, such as homeostasis, morphogenesis, 

and the regeneration of tissues and organs [40,41]. Cells adhere to the ECM through specific cell-surface adhesion 

molecules; such cell–ECM interactions activate the intercellular signaling pathway that enables cells to respond to 

changes in microenvironments [42]. The physical and mechanical properties of ECMs, such as elasticity, tensile 

strength, and compressibility, vary depending on the characteristics of each organ. Furthermore, although ECMs 

essentially comprise water, proteins, and polysaccharides, each ECM has its own composition and topology, which 

are generated during tissue development [43]. For successful retinal TE, the reconstruction of an appropriate ECM 

is essential for the correct and organized development of functional cells both in vitro and in vivo; any changes in the 

ECM are associated with degenerative changes in the retina. Furthermore, clinical studies on animal models have 

shown that mutational changes of retinal ECM components can contribute to mutations that would lead to 

undesirable degenerative changes [44–46]. 

Tissue engineering for retinal degenerative diseases 

TE of the human retina has recently received increasing attention with the aim of restoring retinal function and 

preventing vision loss. Similar to TE of other organs, two main strategies can be used to regenerate the defective 

retina; scaffold-free and scaffold-based approaches (Figure 2). 

Scaffold-free approaches 

Scaffold-free approaches are based on the ability of cells to fuse into larger cohesive constructs and produce a 

functional tissue without the need for an external support system [47]. The simplest way to deliver cells to the retina 

is the direct injection of a cell suspension into the vitreous humor. This approach has resulted in disorganized or 

incorrectly localized grafts along with reflux of cells from the injection site [48]. Additionally, the injected cells might 

not survive or diffuse through the viscous vitreous humor to reach the target site. 

As an alternative, subretinal injection of cells appears more plausible because this route of admiration leads 

directly to the retina. This scaffold-free strategy has been explored to transplant homologous RPE cells. However, no 

visual benefits have been reported [49,50]. By contrast, the transplantation of autologous RPE via the subretinal 

injection route showed a significant improvement in vision. The main drawback of this method is the need to isolate 

healthy cells from the patients [51,52]. Cell sheets are a promising scaffold-free TE approach. This strategy relies on 

the ability of cells to secret their own ECM on reaching confluency. The cultured cells need to be harvested without 

using enzymes. To harvest cells, a thermoresponsive culture dish is utilized that enables reversible cell adhesion to 

and detachment from the dish by switching the hydrophobicity of its surface [53]. Such an approach ensures the non-

invasive harvest of cultured cells such that an intact monolayer cell sheet along with the deposited ECM is generated. 

Compared with free cell suspension techniques, the presence of the ECM is expected to allow easier and faster 

adhesion and attachment to the host tissue without any pretreatment [54]. The susceptibility and vulnerability of 

retinal RPE cells render the harvesting of an intact cell sheet from cell culture medium impossible. Thus, optimizing 

the RPE culture medium by adding different supplements was suggested. It was shown that the addition of TGF-β2 

to the growth medium significantly aided the harvesting an intact sheet of RPE cells [55]. However, construction of 

an artificial BrM was not successful because the amount of ECM secreted by the cells was insufficient [36]. 

Scaffold-based approaches 

Scaffold-based approaches have been commonly adopted for biomedical applications. Scaffolds can be classified as: 

(i) classical 3D structured scaffolds with interconnected pores; (ii) fibrous hydrogel scaffolds; and (iii) a combination 

of both [47]. Scaffold-based strategies rely on the use of a template support system that serves as a skeleton to be 

filled with cells, and subsequently form 3D tissues. The scaffolds should provide a suitable microenvironment for the 

development of living cells, in terms of their growth and functionalization, both in vitro and in vivo [56]. The seeded 

cells are expected to populate themselves within the scaffold pores and create their own ECM. For optimal functional 

tissue development, the scaffold design should mimic the ECM structure of the target tissue. This is essential to 

support the interaction of cells, to provide cellular attachment, and to encourage cell proliferation within the 

structural support [57]. For retinal TE, the development of the scaffold should ideally mimic BrM in terms of its 

permeability and flexibility because this is the natural support provided by BrM to RPE cells. This is also essential 

to avoid damaging surrounding tissues. Additionally, the fabricated scaffold must be mechanically stable to 

withstand surgical manipulations. 

Biomaterials used in scaffold fabrication 

Given that scaffold-based TE approaches rely extensively on the architecture and/or microstructure of a well-designed 

3D scaffold, the physiochemical properties of the materials used for scaffold fabrication significantly influence the 

fate of the cells in terms of their adhesion, migration, proliferation, and differentiation [58]. Likewise, the mechanical, 
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structural, and architectural characteristics of scaffolds are also essential for cell adhesion, migration, proliferation, 

and differentiation [59]. Table 1 summarizes the characteristics of biological membranes, biomaterials, and polymers 

used in the formulation of ocular scaffolds. These features should be selected carefully so that they meet two essential 

requirements: biocompatibility and biodegradability. 

Scaffold biocompatibility 

The characteristics of polymers depend on their chemical composition, arrangement of their constituent monomers, 

and their secondary and tertiary structures. Biocompatibility, an intrinsic property of materials, is mainly related to 

the polymeric chemical structure. Biocompatible materials are expected to provide a favorable environment conducive 

to cellular attachment and viability. Furthermore, they should not trigger any inflammatory, adverse, or 

immunological responses that might result in scaffold rejection by the body [18]. So far, a large variety of biomaterials 

has been used to prepare ophthalmic scaffolds, including: natural proteins, such as collagens [4,60] and gelatin 

[61,62]; natural polysaccharides, such as alginate [63,64] and chitosan [65]; and synthetic polymers, such as poly 

lactic-co-glycolic acid (PLGA) [66,67] and poly(ε-caprolactone) (PCL) [48,68]. Each of these polymers has its own 

advantages and disadvantages [18]. Naturally occurring and semisynthetic polymers are more appealing, mainly 

because of their similarities to ECM as well as their chemical versatility and biocompatibility. Collagens have been 

widely used to fabricate scaffolds for TE. They exist naturally in most soft and hard mammalian tissues, including 

the cornea, sclera, and vitreous humor of the eye. Collagens have the ability to interact with each other and with 

other ECM molecules to create a variety of structures. Lu et al. showed that thin films (2.4 ± 0.2 mm) of collagen type 

(I) were able to support nutrient flow across a membrane to RPE layer for up to 15 h. The authors further 

demonstrated that the characteristics of collagen can be controlled by ultraviolet (UV) irradiation and 

dehydrothermal treatment [4]. However, crosslinking the density of the matrix using UV irradiation and 

dehydrothermal treatment has been associated with difficulties [69]. Warnke et al. reported the fabrication of an 

ultrathin collagen (I) film (14 ± 2 mm) that was able to maintain the normal function of RPE cells, including the 

formation of tight junctions and defined apical microvilli. 

Alginate is a hydrophilic polysaccharide derived primarily from brown seaweed and bacteria. It exhibits excellent 

biocompatibility, biodegradability, and chelating ability because of its unique structure [70,71]. Alginate can be easily 

modified to produce hydrogels, sponges, foams, microspheres, and fibers [72]. Heidari et al. evaluated the behavior of 

human RPE cells on alginate beads as a cell culture substrate and showed that RPE cells could grow and proliferate 

on alginate beads in vitro. However, consecutive passages of cells caused the cells to lose their pigments [73]. Hunt 

et al. further demonstrated the potential of RGD-alginate scaffolds for the derivation, transport, and transplantation 

of neural retina and RPE [44]. Purified alginate films have also been manufactured and used as a scaffold of for RPE 

cells [74]. This study indicated that purified alginate films allowed higher cell proliferative rate and phenotypic 

expression compared with nonpurified alginate films. 

Synthetic materials are often more uniform than their natural counterparts, can be produced in large quantities, 

and have a longer shelf-life [75]. Given that they are fabricated under controlled conditions, synthetic polymers also 

have high purity and tailored physiochemical and biological properties. Scaffolds based on synthetic biomaterials 

have been designed in a reproducible and predictable manner with optimized mechanical strength, degradation rate, 

and microstructure. PLGA copolymers have been widely explored as a biomaterial for the fabrication of scaffolds for 

TE. PLGA copolymers are US Food and Drug Administration (FDA) approved, biodegradable, and biocompatible [76]. 

Lu et al. manufactured thin PLGA films with a controlled thickness of <10 mm. The RPE cells cultured were able to 

develop normal tight junctions in vitro [77]. PCL is another example of a synthetic polymer that has been used to 

fabricate scaffolds for TE, and PCL-based scaffolds have been reported to have the potential to increase the expression 

of mature photoreceptor markers [34]. 

Scaffolds can be prepared using a combination of natural and synthetic polymers. This strategy could improve cell 

viability and growth as well as enhance the mechanical and transport properties of the scaffold. Indeed, hybrid 

scaffolds (synthetic and natural biomaterials) show enhanced properties when the synthetic components of the 

scaffold control the structural properties, whereas the natural components provide natural signals [78]. For example, 

PCL–gelatin scaffolds can act as a substrate for RPE cells in vitro, whereby  the presence of gelatin improves the 

hydrophilicity and biodegradation rate of the scaffold, and PCL enhances the physical properties of the scaffold and 

reduced its cytotoxicity [48]. In another study, cationic chitosan-graft-PCL hybrid scaffolds were fabricated that 

improved the proliferation and differentiation of murine retinal progenitor cells compared with PCL scaffolds [79]. 

Scaffold biodegradability 

Artificial scaffolds must biodegrade and their degradation products must be nontoxic (i.e., they need to be metabolized 

and eliminated from body without any adverse effects). For the cells to produce their own ECM, the biodegradation 

rate of the scaffolds must be tailored in such a way that it matches the rate of tissue regeneration. Nevertheless, the 

ideal degradation rate of retinal scaffolds has yet to be identified [78]. 

Several factors could be modified to tailor the extent and rate of degradation of a given polymeric system. The 

chemical structure and composition, molecular weight and polymerization degree, co-polymerization and functional 

groups of the polymer have key roles in its degradation behavior [80]. For instance, the PCL degradation rate is 

slower than that of PLGA because of its higher molecular weight and hydrophobicity [81]. Additionally, the 

microenvironment conditions to which the scaffolds are subjected, mainly pH, can affect the polymeric degradation 

behavior [82]. Enhancing the hydrophobic properties of the scaffolding system is expected to reduce water uptake 
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and consequently compromise the degradation process. By contrast, designing scaffolds with a higher surface area to 

volume ratio could accelerate polymeric matrix degradation [83]. Polymeric degradation can also be induced using 

external sources, such as UV radiation, ultrasound, and heat. 

Scaffold architecture 

Scaffold architectural characteristics, such as the surface chemistry and morphology, can affect the response of cells 

and subsequently tissue formation [34]. The geometrical design of scaffolds is crucial not only to support cells, but 

also to guide their growth distribution in the right direction. Additionally, scaffolds have to display a porous structure 

to facilitate cell adhesion and migration and stimulate angiogenesis and metabolic activities. For retinal application, 

scaffolds should be mechanically robust enough to cope with in vivo introduction procedures. At the same time, they 

also need to be well tolerated by the highly delicate ocular environment. Also, they should ideally mimic the properties 

of healthy BrM, with an optimal width of 5–90 mm and a thickness of 3–5 mm, and adequate permeability and 

flexibility to support the RPE cell growth [78,84]. Additionally, the fabricated substrates must promote the natural 

characteristics of RPE, including a functional epithelial monolayer with tight junctions and apical microvilli, and 

allowing phagocytosis of photoreceptor outer segments [4]. Finally, the scaffolds must display an open interconnected 

architecture with a high degree of porosity to provide a large surface area to allow cell ingrowth, diffusion of nutrients 

to cells, and a uniform cell distribution. 

It is well established that different types of cell require different pore characteristics (i.e., average pore size, pore 

size distribution, pore volume, pore wall roughness, and pore throat size). Furthermore, the optimization of pore size 

is crucial for the exchange of nutrients, oxygen, and waste; if the pores are too small, they could be blocked by cells, 

which could prevent cellular penetration and ECM secretion [75,85]. The importance of substrate porosity in PCL 

scaffolds has been extensively studied. For example, PLC porous scaffolds promoted improved markers of fetal human 

RPE cell maturity and function compared with nonporous PCL scaffolds, including RPE cell morphology, density, 

barrier formation, gene expression, and protein secretion [86]. 

Scaffold fabrication 

Numerous strategies have been investigated with the aim to fabricate 3D tissue-like scaffolds with specific shapes 

and sizes. Selecting the right fabrication method is essential to generate 3D structures mimicking the architecture 

of native ECM. A straightforward technique to fabricate a scaffold is to decellularize a native membrane, which is 

then utilized as a template for organ construction. For example, anterior lens capsule (ALC) transplantation into the 

subretinal space as a substitution of BrM was shown to support in vitro the growth and differentiation of RPE cells 

[87]. Furthermore, the transplantation of ALC into the subretinal space of pigs was tolerated when BrM was not 

damaged [87]. The amniotic membrane (AM) has also been used as a RPE cell scaffold [88]. In contrast to the ALC, 

AM was easier to handle when it flattened in vitro. However, AM was unable to flatten in the subretinal space in 

vivo [88]. Descemet’s membrane, another basement membrane, has also been explored, and RPE cells were formed 

in vitro as an intact monolayer with defined apical microvilli [89]. 

Given the limited availability and access to these membranes, clinical applications of decellularized native 

membranes are restricted; this has led to the search for alternatives to construct and fabricate scaffolds using natural 

or synthetic biomaterials. 

Here, we provide an overview of the most common methods used to fabricate scaffolds for retinal TE. 

Solvent casting/particle leaching (SC/PL) This method involves dissolving the polymer in an appropriate solvent 

containing leachable particles known as porogen. To create the porous scaffold structure, the polymeric solution 

containing the porogen particles is poured into the desired mold. The solvent is subsequently evaporated, resulting 

in a polymer/particle composite. Thereafter, the composite is immersed in an appropriate nontoxic solvent that 

leaches out the porogen to generate a porous scaffold. The porosity and the pore size can be controlled by the amount, 

size, and shape of the porogen particles [90]. This method can produce scaffolds with porosity values up to 93% and 

an average pore diameter of up to 500 mm. The main drawback of this method is that it can only be applied to 

fabricate relatively thin scaffolds. Furthermore, it might be difficult to control the particle size needed to generate 

scaffolds with specific porosity with controlled pore shapes and interpore openings [91]. Poly-L-lactic-PLGA scaffolds 

with a thickness of 10–30 mm have been fabricated and used as a substrate for pig and human RPE cells as well as 

rabbit corneal endothelial cells. However, this scaffold produced undesirable acidic by-products during its 

degradation [92]. A porous PCL scaffold for RPE cell transplantation [93] and poly-L-lactide/D-lactide acid (PLDLA) 

scaffolds cultured with human ESC-RPE cells were prepared using the same method [94]. 

Electrospinning Electrospinning requires basic components including a high-voltage power supply, a capillary 

tube/syringe with a small-diameter pipette or needle, and a rotating collector. Initially, the polymer solution or melt 

is pumped through the tip of a needle. A high-voltage electric field is set up between the injection needle and the 

collecting surface. Increasing the voltage of the electric field leads to the elongation of the charged polymer droplet 

and the formation of a conical shaped structure (Taylor cone). Once the electric field reaches a critical value, the 

repulsive electric force overcomes the surface tension of polymer solution. Then, a charged jet of the solution is ejected 

from the tip of the Taylor cone to the collector. The solvent evaporates from the polymer solution and dry polymer 

fine fibers are deposited on the collector [95]. This technique is operated at room temperature and atmospheric 

pressure. To control the size of the formed fibers, many parameters are controlled, including viscosity, conductivity, 

and surface tension of the polymer solution, as well as the hydrostatic pressure in the capillary tube, strength of the 

electrical field applied, and distance between the tip and collector [96]. It has been reported that electrospinning 
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could generate nanofibrous networks displaying a topography that promotes cell adhesion, proliferation, and 

differentiation. Indeed, this specific structure is expected to allow more effective exchange of nutrients and 

metabolites across the nanofibers [97]. The fabrication of nanofibrous scaffold comprising silk fibroin and poly(L-

lactic-co-ε-caprolactone) has potential application for retinal progenitor cells [98]. Additionally, the fabrication of 

electrospun porous PCL/gelatin scaffolds for subretinal implantation has also been reported [48], as has the 

fabrication of ultrathin nanofibrous scaffolds based on collagen and PLGA. Interestingly, the fiber diameter and 

packing density were similar to native human BrM, enabling the seeded human RPE cells to grow and form a 

correctly oriented monolayer with a polygonal structure and abundant sheet-like microvilli on apical surfaces of cells 

[70]. 

Thermally induced phase separation (TIPS) This technique relies on destabilizing thermodynamically homogeneous 

polymeric solutions to induce phase separation into a polymer-rich and a polymer-poor phases. Phase separation can 

be achieved via solid–liquid phase separation or liquid–liquid phase separation. Solid–liquid separation is induced 

by lowering the temperature of the system, leading to its crystallization and subsequently the separation of the 

polymer from the solvent. Removing solvent crystals results in formation of a porous polymeric structure [57]. In 

liquid–liquid separation, lowering the system temperature leads to formation of a bicontinuous structure. Removing 

the solvent leads to formation of a scaffold with an open pore structure. Although TIPS allows the formation of a well-

interconnected polymer network, it does not allow for the adjustment of the pore size. It has been demonstrated that 

the ultrathin porous membrane, fabricated by separation phase, could act as a potential prosthetic BrM for RPE 

transplantation [99] . 

3D printing Although conventional fabrication techniques have been widely used for scaffold preparation, they still 

lack fine control of structural aspects, such as the porosity, and scaffold dimensions and size. Known for its high 

precision, throughput, and reproducibility, 3D printing has recently been introduced into the TE area with the aim 

of controlling the structural aspects of a scaffold for fabricating artificial BrM [41]. Two 3D printing approaches have 

been used in the TE field. The first involves fabricating acellular 3D scaffolds that are then seeded with cells. The 

second approach, known as bioprinting, produces scaffolds that are already loaded with cells or cell aggregates. The 

most important aspect of bioprinting is that the bioink needs to be both printable and biocompatible [100]. 

Bioprinting, using an inkjet printer, has been shown to have no significant impact on the survival and the growth of 

retinal ganglion and glial cells compared with tissue culture plates [101]. The creation of a 3D bioprinted retinal 

model that could be used for retinal-related research has been investigated. The obtained 3D construct comprised a 

PCL ultrathin membrane, ARPE-19 cell monolayer, and Y79 cell-laden alginate/pluronic bioink. Such bioprinted 

retinas could be utilized in retina-related research [102]. Methods used to fabricate and construct scaffolds for TE 

applications are summarized in Table 2. 

Concluding remarks 

Researching and optimizing 3D scaffolds (polymeric or membrane-based) carries enormous hope as ways of restoring 

vision of patients with AMD who are unresponsive to intravitreal anti-VEGF or other conventional strategies, such 

implantable devices delivering steroids into the vitreous. TE scaffolds provide a promising avenue to reverse 

advanced RPE and photoreceptor loss. Development of an effective treatment to revive and regenerate diseased and 

irreversibly damaged retinas is likely to be more possible with the closer integration of disciplines including TE, 

material science, and clinical practice. Future research should also investigate the use of scaffolds as dual-purpose 

platforms, to both regenerate cells and deliver drugs and biologics to target ocular tissues. 
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Figure 1. Retinal degenerative diseases: conventional and regenerative treatment strategies. Abbreviations: GA, geographic atrophy; RPE, retinal pigment epithelium; 

VEGF, vascular endothelial growth factor. 
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Figure 2. Regeneration of human retinal tissue (cells and extracellular matrix; ECM) using scaffold-free and 3D-based scaffolds. Inserts include cell administration and 

scaffold fabrication methods. For additional abbreviations, please see the main text. 
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Table 1. Properties of biological membranes and natural and synthetic polymers used for the fabrication of ocular scaffolds 

Material Source Material and scaffold properties: pros and cons  Refs 

ALC Animal or 

human eye 

Biodegradable, high content of collagen IV, laminin, and fibronectin; 20 times thicker than BM; difficult 

to handle, curls, does not fit well 

[103–105] 

AM Pig Biodegradable polarized membrane, flat shape, easy to handle, anti-inflammatory, antiangiogenic, 

can be placed correctly to inhibit formation of choroidal neovascularization 

[104] 

Descemet’s 

membrane 

Animal Biodegradable, easy to manipulate and transplant, 10–12-m thick [105] 

Vitrogen 100 

collagen 

Commercial Biodegradable fibrous structure, desirable mechanical properties, bio-inductive, robust substrate for 

cell proliferation in vitro, sufficient permeation of nutrients to RPE for up to 15 h, 2.4±0.2-m thick 

[4] 

Chitosan Crustacean  Cationic, biocompatible, biodegradable, and mucoadhesive [65] 

Alginate Brown 

seaweed 

Natural anionic polysaccharide, available at low cost; poor mechanical properties, inability to undergo 

enzymatic degradation by mammals, 3D printed scaffold comprising sodium alginate and 

methacrylated collagen I, formed interpenetrating networks; used for corneal keratocyte proliferation 

to form robust corneal structures 

[63,73] 

Gelatin Animal Nanofiber-reinforced hydrogel; nontoxic; biodegradable; hydrophilic; bioprinted collagen, gelatin and 

alginate scaffold loaded with human corneal epithelial cells; scaffold with good mechanical properties 

and high resolution; good proliferation with controllable degradation time and higher cell viability 

[61,62,100] 

Acetylated 

bacterial cellulose 

Bacteria  Biocompatible; biodegradable; decreased hydrophilicity because of acetylation [107] 

Collagen type I Commercial Biodegradable; biocompatible; nontoxic; do not elicit rejection or inflammatory response; ultrathin 

scaffold (7-m thick) 

[108] 

PCL Synthetic Biocompatible; nontoxic; low cost; elastic, easy pore size and shape control; slow degradation rate 

(24 and 48 months); PCL nanofibrous scaffolds prepared by electrospinning; scaffold with high 

surface-to-volume ratio; high porosity (85%); high pore interconnectivity; sufficient tensile strength; 

promoted cell proliferation; scaffolds prepared by electrospinning with smaller pore size; PCL fiber 

orientation similar to native collagen; scaffolds prepared by electrospinning with average pore size 

13.3±5.5 mm and thickness 114±16 mm maintaining high cell viability; similar fiber orientation to 

native collagen in ECM; pore size: 1.2 m; promote cell attachment and proliferation; nanofibrous 

scaffold of PCL and gelatin with lower cytotoxicity 

[48,61,68,109,110] 

PCL-treated 

plasma 

Synthetic Biocompatible; convenient; cost-effective; nanofibrous scaffolds prepared by electrospinning with 

porous structure, good cell adhesion and proliferation 

[110] 

PLGA Synthetic FDA approved;, biodegradable; biocompatible;, tailored degradation time; limited flexibility; degrade 

within weeks; scaffold prepared by electrospinning technique with pore size of 10.4±6.2 mm and 

thickness of 109±17 mm maintained high cell viability and preserved human corneal epithelial cell 

morphology; scaffold of PLLA and PLGA; high degree of porosity; uniform pore structure; controllable 

configurations and thickness; poor flexibility; caused inflammatory, fibrosis and foreign body 

responses; bulk degradation resulted in non-uniform release profile 

[66,93] 

PLDLA Synthetic Hydrophilic; similar mechanical properties to PLC with shorter degradation time; scaffolds with 

relatively high membrane porosity with surface coating to mimic collagen on BrM; enhance interaction 

with cells and tissues 

[111] 

PMMA Synthetic No foreign body response; limitations to supporting cell growth; toxic; nondegradable; scaffolds 

prepared by electrospinning with pore size diameter of 26.8±17.5 mm and thickness of 150±12 mm; 

lowest viscosity resulted in thickest fibers, largest interstitial spaces, thickest scaffolds, and best light 

transmission 

[65,66] 

Parylene-C Synthetic Biocompatible; nontoxic; good mechanical strength and biostability; semipermeable to 

macromolecules when thickness reduced to submicron range; mesh-supported submicron 

membrane; can withstand significant stretching force; epithelial-like morphology; tight intracellular 

junctions; correct polarization; well-developed microvilli; good cell adherence 

[112] 
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Table 2. Scaffold preparation methods for TE applications 

Method Advantages Disadvantages 

SC/PL Simple technique; produces scaffolds of high porosity (up to 93%) 

and controllable range of pore diameters (up to 500 mm) 

Relatively thin scaffolds only; difficult to control pore shape, 

orientation, and interpore openings; limited mechanical properties; 

uses organic solvents 

Electrospinning Simple and scalable technique; conducted at ambient temperature 

and pressure; many controllable parameters; produces nanofibrous 

networks with a topography that promotes cell adhesion, proliferation, 

and differentiation; creates scaffold with large surface area for cell 

attachment 

Poor mechanical properties; limited range of pore sizes; limited 

microarchitecture controllability; difficult to fabricate 3D shapes; 

uses organic solvents 

TIPS Adaptable fabrication techniques; easy to combine with other 

fabrication technologies; produces highly porous interconnected 

structures without need for porogen leaching step 

Difficult control over fiber diameter and orientation and scaffold 

morphology; uses organic solvents  

3D printing High precision, throughput, and reproducibility; complex 3D shapes 

with high resolution, controlled pore size and morphology and 

controlled internal structures; cells can be included in high 

concentration directly in scaffold materials 

Limited by printable materials; expensive machinery set-up costs  
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