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The Inventory-Routing Problem Subject to Vehicle Failure 
 

 

ABSTRACT 

The problem of vehicle failure is introduced to the field of inventory-routing problems and formulated. Since the 

model is NP-hard, we have designed an adapted social-based algorithm with four scenarios to solve it. We have 

embedded the “global war” procedure into the algorithm to reduce the chance of being trapped in local optimum 

and premature convergence. For validation, the following benchmarking methods are enlisted: (i) comparing with 

four other metaheuristic algorithms which are all calibrated and their effectiveness and efficiency evaluated; (ii) 

comparing with a suggested lower-bound. Sensitivity analyses of the algorithm provide insights for academics and 

practitioners. 
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1. INTRODUCTION 

The inventory-routing problem (IRP) makes inventory management and the vehicle routing problem (the VRP) 

decisions concurrently (Bertazzi et al. 2013; Li et al. 2016). The objective of the IRP is to determine when orders 

should be delivered to customers, the delivery volume to each customer, and the sequence of customer visits in 

each time period so that total transport and inventory costs are minimised while the customer demands are met 

(Song and Furman 2013; Yu et al. 2008). 

According to Jetlund and Karimi (2004), in the chemical industry, operational logistic costs including 

inventory and routing decisions contribute 20% to the purchasing costs. Tarantilis and Kiranoudis (2001) state that 

IRP decisions can effectively decrease logistics costs in transporting fresh milk from dairy farms to processing 

plants. The IRP has been widely applied to many other industries, including department stores such as Wal-Mart, 

Kmart and Dillard (Çetinkaya and Lee 2000; Zhao et al. 2007); the beverage industry, for example the Hey Song 

Corporation (Dondo and Cerdá 2009); LCD and LED producers (Zhalechian et al. 2016); healthcare (Niakan and 

Rahimi 2015); dispatching refined oil products to retailers with tankers and barges (Fagerholt 2004); crude oil 

transport planning from a supply centre to customer facilities (Shen et al. 2011); perishable goods (Le et al. 2013); 

and liquefied natural gas (Stålhane et al. 2012). Many other researchers including Moin and Salhi (2007), 

Andersson et al. (2010) and Liu and Lee (2011) have confirmed the wide applications of the IRP to practice. 

This research is motivated by a gap in the IRP literature considering; it is the occurrence of vehicle failure; this 

paper could therefore help organisations to be prepared for unforeseen circumstances in their service delivery 

planning. Vehicle breakdown leads to disruption in a transport system, which causes some operational risks such as 

delay, customer dissatisfaction, and disruption in information and cash flow in the supply chain (Chopra and Sodhi 

2004). Based on some historical data from a highway over an observation period, Harwood et al. (1989) show that 

44.5% of truck accidents are caused by truck failure (e.g. body, tank, valve or fitting). Such inefficiencies can lead 

to a decrease in profitability (Paul et al. 2015) and may damage sales and social perceptions (Zhu and Levinson 

2012), which might have serious effects on the performance of a supply chain network (Klibi and Martel 2012). 

Planners try to avoid delays by making appropriate transport decisions (Zhu and Levinson 2012) and preserving 

inventory in the right size and location (Chopra and Sodhi 2004). Disruption management has been investigated in 

many planning areas like flight scheduling, project scheduling, production planning and supply chain coordination; 
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it has also been studied in the VRP (Mu et al. 2011) but not in the IRP. The most important research questions are 

as follows: (i) How can vehicle failure problems be categorised in the context of the IRP? (ii) How can the IRP 

with vehicle failure be modelled and solved efficiently? (iii) What managerial insights can be extracted based on 

the impact of vehicle failure on the IRP to help practitioners?  

We formulate the IRP with soft time windows, which is computationally a complex problem. Even simple 

versions of the IRP with time windows (IRPTW) belong to the group of nondeterministic polynomial (NP) time 

problems (Aghezzaf et al. 2006). As the problem size increases, heuristic and meta-heuristic algorithms are the 

only viable alternatives to solve the problem (Nguyen et al. 2012). In this paper, we propose a metaheuristic 

approach called adapted social-based algorithm (ASBA) with four scenarios and show that it works more efficient 

than other well-known meta-heuristic techniques. This paper contributes to the literature in the following ways: (1) 

introducing the concept of vehicle failure to the IRP and modelling it; (2) applying ASBA with four scenarios to 

solve the model; and (3) embedding the “global war” procedure into the algorithm to reduce the chance of being 

trapped in local optimum and premature convergence. We have also suggested a lower bound to improve the 

validation process. Finally, we provide some insights for practitioners and academics related to this problem. 

The rest of the paper is organised as follows: Section 2 positions the research in the literature of the IRP and 

highlights its contribution. The details of the problem are described in Section 3 and then mathematically 

formulated. The mathematical formulation of the problem is complicated so that it cannot be solved even for small-

sized problems. Therefore, the model cannot be utilised for validating of our proposed algorithm. However, the 

model is useful because we will use it to introduce a lower bound. This rare situation made us create an unusual 

validation approach. In order to avoid confusion, the structure of the other section of the paper is illustrated in 

Figure 1. Section 4 explains the structure of the proposed algorithms. Data generation for different test problems is 

described in Section 5. Preparation and validation of the proposed solution algorithms are explained in Section 6. In 

section 7, the research insights are presented. Finally, Section 8 concludes the research. 

 
Figure 1. The research design framework. 
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2. LITERATURE REVIEW 

While no standard classifications for the IRP have been agreed by all researchers, Moin and Salhi (2007) and 

Andersson et al. (2010) provide comprehensive reviews for them. Focusing on various aspects of this research, we 

categorise the IRP literature in terms of (i) inventory, (ii) routing and (iii) inventory-routing assumptions and their 

features. These aspects, features and their possible types are depicted and coded in Table 1. Table 1 is partially 

adopted from Andersson et al. (2010). In fact, there are similarities between our categorisations and those of 

Andersson et al. (2010): (i) demand and inventory under “inventory” assumptions; (ii) routing, fleet composition 

and fleet size under “routing” assumptions; and (iii) time horizon under “inventory-routing”. Other features – 

including (1) product type, holding cost and shortage cost under “inventory” assumptions, (2) vehicle speed, travel 

cost and time windows under “routing” assumptions, and (3) planning period under “inventory-routing” 

assumptions – are what we have added to this categorisation to position our research. Additionally, Andersson et al. 

(2010) investigated the related papers up to 2009 and we have updated the search up to 2018.  

Following Table 1, we have identified features of the IRP papers in the literature to form Table 2. Table 2 lists 

the IRP research papers in the literature chronologically. In Table 2, in addition to the features mentioned in Table 

1, we have also illustrated the used solution techniques. The last row of the table compares and contrasts our 

research with other studies in the literature. 

Table 1. Classification of criteria involved in the IRP (partially adapted from Andersson et al. 2010). 

ASSUMPTION FEATURE TYPE CODE 

Inventory related Demand Deterministic De 

Stochastic St 

Forecasted Fo 

Inventory Fixed Fi 

Stock-out So 

Lost sale Ls 

Back-order Bo 

Product type Single-product Sp 

Multi-product Mp 

Holding cost Constant Co 

Period varying Pv 

Shortage cost Constant Co 

Period varying Pv 

Routing related Routing Direct Di 

Multi visit Mv 

Continuous Con 

Fleet size Single-vehicle Si 

Multi-vehicle Mu 

Unconstrained Uc 

Fleet composition Homogenous Ho 

Heterogeneous He 

Vehicle speed Yes Y 

No N 

Vehicle failure Yes Y 

No N 

Travel cost Certain Cer 

Uncertain Ucr 

Time windows Soft Sf 

Hard Ha 

Inventory-routing 

related 

Time horizon Instant In 

Finite Fn 

Infinite If 

Planning period Single-period Spe 

Multi-period Mpe 
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2.1. Basic assumptions 

According to Table 2, we consider an IRP problem with these features: multi-period (with a finite time horizon), 

multi-product, holding and backlogging costs, soft time windows, multiple vehicle, heterogeneous fleet of vehicles, 

deterministic-forecasted demand, variable vehicle speed (before and after failure), capacitated retailers and 

customer inventory policy (here, order-up-to policy).  

Table 2. Review of the IRP studies. 
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Federgruen and Zipkin (1984) St So Sp Co Co Mv Mu He NCer - In Spe Generalised Benders decomposition 

Dror et al. (1985) St Fi Sp-- Mv Mu HoNCer - In Mpe 
i) Customer selection/ routing heuristic; ii) Single 
customer analysis 

Federgruen et al. (1986) St So Sp-CoMv Mu HeNCer - In Spe 
i) Routing/ allocation decomposition; ii) Interchange 
heuristic 

Anily and Federgruen (1990) De Fi SpCo- Mv Uc HoNCer - If Mpe i) Lower bound; ii) Fixed partitions 

Chandra (1993) De FiMpCo- Mv Uc HoNCer - Fn Mpe 
i) Decomposition; ii) Sequential heuristic; iii) Local 
search 

Carter et al. (1995) De BoMpPvPvMv Mu HoNCer - Fn Mpe 
i) Allocation/ routing decomposition; ii) Iterative 
heuristic 

Barnes-Schuster and Bassok (1997) St BoSpCoCoDi Uc HoNCer - If Spe i) Lower bound; ii) Analytical 

Viswanathan and Mathur (1997) De FiMpCo- Mv Mu HoNCer - If Spe Constructive insertion heuristic 

Berman and Larson (2001) St So SpCoMvSi HoNCer - In Spe Stochastic dynamic programming 

Bertazzi et al. (2002) De FiMpCo- MvSiHoNCer - Fn Spe i) Constructive heuristic; ii) Local search 

Gaur and Fisher (2004) De Fi Sp- - MvMuHeNCer - Fn Mpe 
i) Fixed partitioning policy; ii) Randomised sequential 
matching algorithm 

Kleywegt et al. (2004) St Ls SpPvPvMvMuHoNCer - If Mpe i) Markov decision process; ii) Iterative heuristic 

Abdelmaguid and Dessouky (2006) De BoSpCoCoMvMuHeNCer - Fn Mpe Genetic algorithm (GA) 

Aghezzaf et al. (2006) De Fi SpCo- MvMuHoYCer - If Spe Heuristic column generation 

Archetti et al. (2007) De Fi SpPv- MvSiHoNCer - Fn Mpe Branch and cut  

Li et al. (2008b) De Fi SpCo- Di SiHoNCer - If Mpe Construction algorithm 

Raa and Aghezzaf (2008) De Fi Sp - MvMuHoNCer - If Spe Heuristic column generation 

Raa and Aghezzaf (2009) De Fi SpCo- MvMuHeNCer - Fn Spe Heuristic column generation 

Hemmelmayr et al. (2009) De Fi Sp-- MvMuHoNCer - Fn Mpe 
i) Giant tour with skipped customers; ii) Variable 
neighbourhood research (VNS) 

Zhao et al. (2008) De Fi SpCo-Di-MvHoNCer - If Spe i) Fixed partition-Power-of-tow; ii) VNS 

Abdelmaguid et al. (2009) St BoSpCoCoMvMuHeNCer - Fn Mpe Constructive and improvement heuristics 

Huang and Lin (2010) St So- BoMp-CoMvMuHoYUcr - In Spe Modified ant colony 

Liu and Lee (2011) St Ls SpCoCoMvSiHoYCer Sf In Spe Combination of VNS and tabu search (TS) 

Moin et al. (2011) De BoSpCo- MvUcHoNCer - Fn Mpe Hybrid GA 

Shen et al. (2011) De-Fo BoSpCoCoDiMu He NCer - Fn Mpe Lagrangian relaxation approach 

Yu et al. (2012) De Ls SpPv- MvUcHoNCer - Fn Mpe 
i) Hybrid approach; ii) Lagrangian relaxation; iii) 
Partial linearisation approach 

Mjirda et al. (2012) De FiMpCo- MvMuHoNCer - Fn Mpe i) VNS; ii) Variable neighbourhood descent algorithm 

Popović et al. (2012) De FiMpCo-Di-MvUcHoNCer - Fn Mpe i) VNS; ii) MILP; iii) Compartment transfer 

Coelho et al. (2012) De Fi SpCo-Di-MvSiHeNCer - Fn Mpe Adaptive large neighbourhood search heuristic 

Bertazzi et al. (2013) St So SpCoCoMvSiHeNCer - Fn Mpe Hybrid rollout algorithm 
Coelho and Laporte (2014) De Fi SpCo- MvMuHeNCer - Fn Mpe Branch-and-cut algorithm. 

Mirzaei and Seifi (2015) De Ls SpCo- MvUcHeNCer - Fn Mpe Hybrid SA and TS 

Soysal et al. (2015) St BoSpCo- MvUcHeYCer - Fn Mpe Simulation model algorithm 

Singh et al. (2015) De-Fo SoMpCoMvMuHeNCer Ha Fn Mpe Incremental decomposing approach 

Santos et al. (2016) De Fi SpCo- MvMuHoNCer - Fn Mpe Hybrid heuristic-based local search 

Chitsaz et al. (2016) De Fi SpCo- MvMuHoYCer - If Spe Two-phase heuristic approach 

Soysal (2016) St LsMpCoCoMvMuHoYCer - Fn Mpe Simulation approach 

Soysal et al. (2018) St BoMpCoCoMvMuHoYCer - Fn Mpe Chance-constrained programming approach 

Cheng et al. (2017) De So SpCo- MvMuHeYCer - Fn Mpe Branch-and-cut algorithm 

This research De-Fo BoMpPvPvMvMuHeYUcr Sf Fn Mpe i) ASBA; ii) SBA; iii) ICA; iv) HGS; v) HPV 

Note that we do not tend to make the problem unnecessarily complicated but we avoid simplifying 

assumptions. For instance, one may think that since it is assumed that all types of goods of a single retailer will be 

loaded together into the same vehicle, and the demands are predicted separately, this aspect does not really have 

any influence on the routing optimisation compared to the case with only one type of good (which may represent 

the aggregated demand of the retailer). This statement could be true when the variables do not interplay either in 

the objective function or in the constraints. Note that each product is treated individually in a multi-period setting 
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(in which periods are interdependent) based on forecast demand. Then, demands for all products that belong to a 

retailer are aggregated to help plan for inventory-routing decisions in a single period. However, if we could ignore 

the multi-period assumption or exclude inventory holding and shortage costs (which are calculated based on 

forecasted demands for each product and in different periods), the aggregate, single product version of the problem 

does the same work. 

 

2.2. Contribution 

The contributions of the research in terms of problem definition and also methodology are explained below. 

 

2.2.1. Vehicle failure in the IRP 

The main contribution of the research is considering vehicle failure in the IRP. The concept of vehicle failure has 

already been investigated in various contexts such as (i) disruption in distribution networks and (ii) the VRP 

literature. However, to the best of the present researcher’s knowledge (according to Table 2), vehicle failure has not 

yet been studied and applied in the IRP. We have visualised our own perception regarding various strategies of 

handling vehicle failure in Figure 2. 

 
Figure 2. Vehicle failure approaches in distribution networks and the VRP studies. 

 
According to Figure 2, there are ten approaches to choose from in order to handle the issue of vehicle failure. 

Rerouting (1 to 6) and repairing (7 to 10) are two main strategies which are briefly described as follows: 

Rerouting: When a vehicle fails, unserved customers on the failed trip will be served by another vehicle, 

which is referred to as a “backup vehicle” (Li et al. 2007a; Li et al. 2007b; Zhang and Tang 2007; Li et al. 2008a; 

Li et al. 2009a; Li et al. 2009b; Wang et al. 2009; Yang and Wang 2009; Wang et al. 2010; Mu et al. 2011; Hu and 

Sun 2012; Minis et al. 2012; Ngai et al. 2012; Wang et al. 2012; Mamasis et al. 2013; Mu and Eglese 2013; 

Ahmadi and Seddighi 2013). This strategy makes vehicles in the system be rerouted. Rerouting can be either 

Vehicle failure 
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d: Unavailability of extra vehicles at the depot, non-customer-specific products 
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performed through dispatching a backup vehicle from the depot (approach 1) or dispatching one of the vehicles on 

tour (approach 2) to deliver the ordered products to the unserved customers. Moreover, in both approaches, the 

backup vehicle can load undelivered products either from the failed vehicle or the depot. Product types and the 

number of available vehicles play a significant role in selecting one of these approaches and visiting either the 

failed vehicle or depot for loading the undelivered products.  

The types of shipping products in the literature include “customer-specific” and “non-customer-specific”. The 

first one refers to some specific cargoes ordered by some specific customers while the second refers to the common 

cargoes ordered by all customers (Eglese and Zambirinis 2018). In the case of customer-specific products, due to a 

lack of the products in the depot, the backup vehicle must move to the point of the failed vehicle to pick up its load 

before serving other customers (Li et al. 2008a; Minis et al. 2012). But in the case of non-customer-specific 

products, some extra products are available in the depot and it is not necessary for the backup vehicle to visit the 

failed vehicle to receive the undelivered products (Yang and Wang 2009; Mu et al. 2011; Mamasis et al. 2013). 

Additionally, availability of extra vehicles at the depot and time limitations could lead to dispatching the backup 

vehicle from the depot (Li et al. 2007a; Li et al. 2009a; Wang et al. 2010; Hu and Sun 2012) or the customers on 

the disrupted tour being served by one of the vehicles on their own trip (Yang and Wang 2009; Minis et al. 2012). 

In the case of dispatching one of the on-tour vehicles, in some situations, a backup vehicle could be rerouted right 

after finishing its current trip (Li et al. 2008; Mu et al. 2011); in the others, rerouting a vehicle is possible in the 

middle of its current trip (Yang and Wang 2009; Minis et al. 2012).  

Finally, delivering to all of the unserved customers of the failed trip (Li et al. 2007a; Li et al. 2007b; Li et al. 

2008a; Zhang and Tang 2007; Yang and Wang 2009; Mu et al. 2011; Ngai et al. 2012; Wang et al. 2012; Mu and 

Eglese 2013; Ahmadi and Seddighi 2013) or just serving some of them based on their priority (Li et al. 2009a; Li et 

al. 2009b; Wang et al. 2009; Wang et al. 2010; Hu and Sun 2012; Minis et al. 2012; Mamasis et al. 2013) 

determines which approach (1 to 6) should be considered (Eglese and Zambirinis 2018). 

Repairing: In this approach, the failed vehicle is repaired; it then continues its planned trip. This approach is 

utilised for minor failures in which the service time is short. Repairing the failed vehicle could be done in two 

ways: (i) towing the failed vehicle to a fixed service centre (approaches 8 and 10); and (ii) the vehicle receives 

mobile repairing services at the failing point (approaches 7 and 9). Only Jbili et al. (2018) take this approach which 

investigates the failure of heavy vehicles travelling long distances between cities. In their study, the failed vehicle 

receives its repair service at the failing point (approach 7). Finally, approaches 7 and 8 can be developed with 

considering more than one mobile service (approach 9) or fixed service centre (approach 10).  

Our research applies approach 8 to the IRP. We consider “fixed service centre strategy in vehicle failure” for 

vehicle failure. In other words, the failed vehicles are carried to a fixed service centre and repaired so that they can 

visit the remaining customers on their planned route.  

 
2.2.2. Methodological 

Since the research problem is NP-hard (Aghezzaf et al. 2006), developing heuristic and metaheuristic approaches 

to solve the IRP in real-world problems is a common approach. As mentioned in Table 2, a variety of heuristic and 

metaheuristic solutions have been applied to the IRP. In this research, for the first time, we develop a metaheuristic 

approach (i.e. ASBA with four scenarios) and compare it with four other benchmark metaheuristic algorithms (i.e. 

social-based algorithm (SBA), imperialist competitive algorithm (ICA), hybrid GA and SA (HGS) and hybrid PSO 
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with VNS (HPV)) to solve the IRP. These algorithms are calibrated and their effectiveness and efficiency are 

evaluated. Our methodological contribution is not only applying ASBA to the IRP but also modifying the standard 

SBA as follows: We have embedded the “global war” procedure to the standard SBA that occurs after some 

iterations to reduce the chance of getting stuck in local optimum and premature convergence. The global war 

procedure stops the main loop of the algorithm, generates a new random population, and merges it with the old 

population. Then, the main loop starts again with a new population. Note that in order to analyse the effect of 

different initialisation processes in ASBA, four different policies are considered for ASBA as follows: ICA-based 

(IB), Classification-based (CB), Frog-based (FB) and Hybrid-ICA-frog-based (HIF).  

 

3. PROBLEM DEFINITION AND MODELLING 

In this section, we define the problem in detail. Then, the problem is modelled mathematically. The model is not 

solvable in reasonable times even by considering deterministic parameters. However, the model is useful because it 

helps us to: 

(1) formulate details of constraints and show the complexity of the model (in terms of the number and types of 

variables and constraint) to justify why we need to design meta-heuristic techniques; and 

(2) modify the mathematical model and accordingly design a lower bound for the problem to measure the 

quality of our designed meta-heuristic approaches. 

The problem that we consider consists of a supplier as the depot and a set of geographically dispersed retailers 

as the customers of the distribution network. The problem is represented by a graph R(A, M) where A is the set of 

nodes and M is the set of arcs illustrating minimum-cost routes linking nodes in the network. Let 0 and N denote 

the depot and set of retailers, respectively. The retailers forecast the demand for multiple products for the next 

period according to past demands. The depot with a sufficiently large capacity serves the retailers through a 

heterogeneous fleet of vehicles; the capacity of each type of vehicle is given and all product types can be loaded to 

all types of vehicles. Dispatching each vehicle causes a fixed cost associated with the vehicle type; there is also a 

variable cost for distance travelled. Each retailer has a limited capacity to hold inventory and may suffer from 

shortage and holding costs (if the demand is underestimated or overestimated, respectively). The vehicles should 

meet the retailers during the determined soft time windows in the working hours. 

In this problem, decisions regarding demand forecasting, dispatching the shipments and managing the vehicles 

throughout the distribution networks are made concurrently. The first two decisions (forecasting and dispatching) 

are the concomitant trials and tribulations in most distribution networks, but the third one (vehicle management) – 

as far as vehicle failure is concerned – is critical; this is particularly the case for unreliable transport systems 

including fleet and infrastructure. As we mentioned, the failed vehicles can be repaired in two possible ways: (a) a 

mobile servicer providing low-level services meets the down vehicles where they fail; or (b) the failed vehicles are 

carried to a fixed service centre that offers high-level services. In this research, we assume that the failed vehicles 

are repaired in the fixed service centre where high-level services are offered. Therefore, the service centre can 

repair the failed vehicles in less than a period. For example, an electrical problem leading to vehicle break down is 

repaired in 2 or 3 hours within a working day of 8 hours. 

As illustrated in Figure 3, a vehicle failure may occur at point f with probability function Pf (t) in each delivery 

tour; then it should be moved to the service centre. Then, the repaired vehicle continues to service the remaining 

retailers according to the previous sequence. The main goal of this problem is to find the optimal value of decision 
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variables. 

Supplier / Depot

Repair centerFailure points (f)

Retailers Vehicle 1

Vehicle 2

Vehicle 3

 
Figure 3. A graphic example of the IRP problem with vehicle failure in a distribution network during a specific period. 

 

3.1. Assumptions 

Before formulating the problem, the following assumptions are introduced: 

 Since the number and location of retailers are known, the number and position of nodes are known and fixed.  

 Each retailer must be visited at most once in each period by only one vehicle. As the demand of the retailers to 

the supplier is “less than truckload” (LTL) and the split of delivery is not allowed, the nodes should be visited 

no more than once. 

 The retailers receive an independent certain demand in each period and they forecast the demand of multiple 

products for the next period according to past demands. 

 The vehicles should arrive at the retailers’ location in specific time windows. If they arrive early or late, they 

will have to pay the penalty. Therefore, we use the soft time windows (Jia et al. 2014). 

 The products are loaded together into the same vehicle. Although different products have different sizes and 

storage conditions, a standard pallet is considered for all products. 

 Vehicle failure occurs no more than once in each tour and in each period; therefore, we assume that the vehicle 

failure pattern follows an exponential distribution. This distribution network is designed for urban distribution 

networks. Delivery should be done in a short time in networks like distributing dairy products, beverage, and 

refined oil. 

 The vehicles periodically deliver the products to retailers (e.g. daily) and the vehicles can be failed with an 

increasing rate of a cumulative exponential distribution. The probability of failure has memory (i.e. it considers 

the time, which it has worked and by passing of time the failure probability increases). The possibility of failing 

more than once in a short period is approximately zero. Thus, we assume that vehicle failure does not occur 

more than once for each vehicle per period. The vehicles are repaired in the service centre during less than a 

period and the failed vehicles can continue their determined path after repair and meet remaining retailers 

according to previous sequences.  

 Different vehicle capacities are considered and fleet composition is heterogeneous. 

 Each driver receives a fixed schedule at the beginning of the day and has to meet the scheduled retailers. 

Therefore, each route (set of retailers) is served by one vehicle. 

 The number of vehicles, vehicle dispatching cost/time, travelling cost/unit distance, holding cost, service time 

for each retailer, distances between network nodes, distances from network nodes to failure points, distances 
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from failure points to service centre, distances from service centre to network nodes, and vehicle speed are 

known. With respect to the location of the depot/supplier and retailers as well as some historical data, all of 

these parameters could be measured or calculated. 

 Trips must begin and end at the supplier (i.e. depot). The main reason for this assumption is that the vehicles 

should be kept in their parking spaces at the depot and uploaded for the next period. Therefore, they should be 

returned to the supplier after delivering products to the retailers. 

 Vehicles are available from the beginning of the day and we consider a working day as a period in this 

distribution network. Thus, the maximum available time for each vehicle is less than or equal to the working 

time per period (e.g. per day). 

 

3.2. Notation 

In order to formulate the problem, the following notation is used: 

Sets and 
indices 

Description 

0 Index of the depot 
Mk

 

Set of vehicles of type k , mk ∈ Mk, k ∈K 
P

 
Set of periods p ∈P  

T
 

Set of time intervals t ∈T in each period 
G

 
Set of product types g ∈G  

N Set of retailers  1, 2,3, .' . ., , ,N ni j i    

A
 Set of network nodes    0,1,2,3,..., { 0 }A n N    

F Set of failure points where the vehicles are broken down f F  

km kS  Any subset of retailers that vehicle 
km of type k  meets ( )

km kS N  

Parameters  
ck Average travel cost for distance unit by a vehicle of type  k  ∈K 
lij Distance between node i ∈A and node j ∈A  
l'

ij Distance between node i ∈A and the failure point which is located in link (i, j)  
l''ij Distance from the failure point which is located in link (i, j) to service centre 
lsj Distance between the service centre and node j ∈A  
fkp Fixed cost of the vehicle of type k ∈K in period p ∈P 

kq  Capacity of vehicle type k ∈K 

k  Average travel cost/carrying cost from a failure point to the service centre for vehicle o f type k ∈K  

kp  Fixed cost of repairing the vehicle of type k in period p ∈P 

igpd  Demand of retailer i ∈N for product g ∈G in period p ∈P 

ˆ
igpd  

Demand predicted by retailer i ∈N for product g ∈G in period p P , for initial period 0 1
ˆ ˆ
ig igd d  

ig  Target net stock at retailer i ∈N for product g ∈G
 

ig  Target inventory or inventory/work in progress (WIP) at retailer i ∈N for product g ∈G 
 

km ktp  Binary input variables, which presents that the vehicle mk ∈ Mk
 
of type k ∈K may be prone to failure in period p ∈P 

and time t ∈T based on the cumulative distribution function (CDF) 
 

km ktpt  If vehicle mk ∈ Mk
 
of type k ∈K in period p ∈P and time t ∈T may be prone to failure, 

km ktpt is equal to t; otherwise, it 

is equal to zero. based on the CDF 

igpb  Shortage cost per product unit at retailer i ∈N for product g ∈G in period p ∈P 

igph  Holding cost per product unit at retailer i ∈N for product g ∈G in period p ∈P 

ig  Inventory capacity of retailer i ∈N for product g ∈G
 

igp  The maximum capacity order of retailer i ∈N for product g ∈G  

km kp  
Average speed for moving a the failed vehicle mk ∈ Mk of type k ∈K to the service centre in period p ∈P

 

km kpu  
Average speed for a vehicle mk ∈ Mk of type k ∈K to travel in period p ∈P

 

kim kp  
Replenishment time for vehicle mk ∈ Mk of type k ∈K for serving retailer i ∈N in the period p ∈P

 

km kp  
Repair time of vehicle mk ∈ Mk of type k ∈K in the period p ∈P

 

  Working time of a vehicle in a period (total time intervals in a period)
 

ipe  The earliest arrival time of the time window for retailer i ∈N in period p ∈P 

ip  The latest arrival time of the time window for retailer i ∈N in period p ∈P 

ep  Earliness penalty cost/ unit time in period p ∈P 
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lp  Lateness penalty cost/ unit time in period p ∈P 
 

ip
  Time window violation penalty cost for retailer i ∈N in period p ∈P

 
km kp  Parameter of exponential distribution for the failure of vehicle mk ∈ Mk of type k ∈K in period p ∈P 

km ktp  The CDF of the failure of vehicle mk ∈ Mk of type k ∈K at time t ∈T in period p ∈P 

km ktp  A random value that represents the possibility of the failure of vehicle mk ∈ Mk of type k ∈K at time t ∈T in period p 

∈P. In other word, the vehicle mk ∈ Mk of type k ∈K at time t ∈T in period p ∈P malfunctions when ~ [0,1]
km ktp is 

less than 
m ktpk

  (i.e. CDF). In this study, 
km ktp is generated through a continuous uniform distribution [0, 1].  

  A small number which is less than one. 

In the inventory part of the problem, although various replenishment policies are presented (Silver et al. 1998; 

Zipkin 2000), we should choose a policy to reduce disruptions such as demand variation and vehicle failure at a 

lower cost than holding extra inventory (Chen and Disney 2007). In this regard, the tendency of retailers to forecast 

orders based on previous demands leads to using the replenishment strategies known as the OUT policy (Cannella 

and Ciancimino 2010). In such a system, the inventory level equals on-hand inventory + WIP – backlog and is 

reviewed in each period. Consequently, an order quantity is determined to enhance the inventory level to a certain 

or base level. Accordingly, the amount of replenishment based on forecast orders is calculated by the retailers as 

follows: 

1 1 1 2
ˆ ( ) ( )           , ,igp igp igp ig igp igp igp ig igpo d r s r w i N g G p P                                                 (1) 

where ˆ
igpd  is demand of retailer i ∈N for product g ∈G in period p ∈P, which can be achieved in different ways, 

such as by single exponential smoothing method (Chen et al. 2000). r1ijp and r2ijp are constants to consider the effect 

of previous period inventory level and WIP to forecast the demand of product g ∈G in period p ∈P, respectively. In 

other words, r1ijp and r2ijp are the correction factors for any shortfall of inventory and orders and goods in transit 

correction factor, which smooth the order level and reduce holding and shortage costs, respectively (Devika et al. 

2016). The inventory status is equal to the net stock and WIP. Net stock is equal to on-hand inventory plus backlog. 

The WIP for retailer i ∈N for product g ∈G in period p ∈P is equal to 1igpo  . Two sets of variables including 

auxiliary and decision variables are defined as follows: 

Auxiliary 
variables 

Description 

km ktp  Binary variable, which is 1 if vehicle mk ∈ Mk of type k ∈K fails at time t in period p P ; 0 otherwise 

s
igp  Net stock at retailer i N  for product g ∈G in period p ∈P, for initial period 0 0igs   

 
igp

 Shortage at retailer i N for product g ∈G in period p ∈P, for initial period 0 0ig   

igpo  
Amount of product g G ordered by retailer i N  in period p ∈P, for initial period, 0 0 1

ˆ ˆ
ig ig igo d d   

igpw  
The amount of WIP for retailer i N for product g ∈G in period p ∈P, 1igp igpw o    

km ktpv  Binary decision variables, which presents that the vehicle mk ∈ Mk
 
of type k ∈K may be prone to failure in time 

interval t ∈T  of period p ∈P based on routing decisions and 
km kpv  

jp
 

Arrival time to retailer j ∈N in period p ∈P 

km ktpy  
A virtual binary decision variable used to convert conditions (58) to some constraints (if 0m kp m ktp

k k
t t  , then 

1
m ktp

k
y  ) 

km ktpy  
A virtual binary decision variable used to convert conditions (58) to some constraints (if 0m ktp m kp

k k
t t  , then  

1
m ktp

k
y  ) 

kjm kpw  A virtual binary decision variable used to convert conditions (59) to some constraints (if 

t T

m ktp m ktp jm kpk k k
t t



  , then 

1
kjm kpw  ) 

 
Decision 
variables 

Description 
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kijm kpx
 

Binary variable, which is 1 if vehicle mk ∈ Mk
 
of type k ∈K moves from node i ∈A to node j ∈A in period p P ; 0 

otherwise 

kijm kpx  
Binary variable, which is 1 if vehicle mk ∈ Mk

 
of type k ∈K fails in link  ,i j in period p ∈P; 0 otherwise 

kim kpz

 

Binary variable, which is 1 if vehicle mk ∈ Mk
 
of type k ∈K retailer visits i ∈A in period p ∈P; 0 otherwise

 

kigm kpy

 

Amount of product g G delivered to retailer i N by vehicle mk ∈ Mk of type k ∈K in period p ∈P 

kjm kpt  The time interval that vehicle mk ∈ Mk
 
of type k ∈K in period p ∈P departs retailers j ∈N  

kjm kpt  The time interval that vehicle mk ∈ Mk
 
of type k ∈K in period p ∈P arrives to node j ∈A  

r1igp
 

A constant correcting error, which is based in the difference between the actual and desired stock decided by retailer  
i ∈N for product g ∈G in period p ∈P 

r2igp
 

A constant correcting discrepancy between WIP and desired WIP by retailer i ∈A for product g ∈G in time period p 
∈P 

 

3.3. Mathematical formulation 

In this section, the mathematical model of the problem is presented. There will be terms in the objective function 

and two sets of constraints in the model that makes it non-linear. Moreover, the model contains binary variables. 

   

0

*
1

( )

k k
p P k K m M i A j Ak k

p P g G i N p P g G i N

p P k K m M j N p P i Nk k

p k K m M t Tk k

ijm kp ijm kp k ij ij

ip

ijm kp k ij k k jk

igp igp igp igp igp

kp jm kpk

m ktp kpk

z Min x x c l x c ls

h s o b

f x

c l l



 

    

     

     

   

      

  

 

   
 



  

 

   

  
P



                                                 
(2)

 

Subject to 

,

1
k K m M i A i jk k

ijm kpk
x

   

                                      ,j N p P                                                                  (3)
 

, ,

2  
j A i j j A i j

ijm kp jim kp im kpk k k
x x z

   

  
               

,  ,  ,  k ki A m M k K p P                                                  (4) 

,
'-  

i S j S j i i Sm k m k m kk k k

ijm kp im kp i m kpk k k

x z z
   

                     '
,  ,  ,  ,    m k k k m kk k

S N m M k K p P for some i S        (5)
 

  
i N g G

igm kp kk
y q

 

 
                                                       

,  ,  k km M k K p P                                                   (6)
 

  
g G

igm kp k im kpk k
y q z




                                                 

,  ,  ,  k ki N m M k K p P                                           (7)
 

  1 1 1 2 1
ˆ ( ) ( )igp igp igp ig igp igp igp ig igpo d r s r o                  , ,i N g G p P                                 (8)

 

  1 1
ˆ ˆ(1 )igp igp igpd d d    

                                        
, ,i N g G p P                                                          (9)

 

 1
k K m Mk k

igm kp igpk
y o

 
 

                                            
, ,i N g G p P                                                       (10)

 

  igp igpo  
                                                            

, ,i N g G p P                                                       (11)
 

 1 1 1igp igp igp igp igp igps s o d                      , ,i N g G p P                                  (12)
 

 1igp igp igs o  
                                             

, ,i N g G p P                                                       (13)
 

ij

jm kp jm kp jm kp ijm kpk k k k
m kpk

l
t t x

u
   

 
 
 
 

               , , , ,k ki A j N m M k K p P                               (14)
 

ij

jm kp jm kp ijm kpk k k
m kpk

l
t t x

u
  

 
 
 
 

                               
, , , ,k ki A j A m M k K p P                                 (15)

 

0 0( )m ktp m ktp m kpk k k
ty t     

                                     
, , ,k km M k K t T p P                                             (16)
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0 0(1 )( )
km ktp m ktp m kpk k

ty t     
                             

, , ,k km M k K t T p P                                             (17) 

0 ) 0(m ktp m kp m ktpk k k
y t t     

                                 
, , ,k km M k K t T p P        

                                     
(18) 

0 ) 0(1 )(m ktp m kp m ktpk k k
y t t     

                            
, , ,k km M k K t T p P                                             (19) 

m ktp m ktp m ktpk k k
yv y 

                                               
, , ,k km M k K t T p P                                             (20)

 

1
t T

m ktpk




                                                      , ,k km M k K p P                                                     (21)
 

t T t T
m ktp m ktpk k

M v
 


   
 
                                     

, ,k km M k K p P                                                     (22)
 

0
t T

jm kp jm kp m ktp m ktpk k k k
w t t 



  
    
 


                      

, , ,k kj A m M k K p P                        (23)
 

0(1 )
t T

jm kp jm kp m ktp m ktpk k k k
w t t 



  
     
 

              , , ,k kj A m M k K p P                       (24)
 

0
k

t T
ijm kp jm kp m ktp m ktp im kp ijm kpk k k k k

t xx w t 


 
    
 
                 , , , ,k ki j A m M k K p P                        (25)

 

0(1 )
k

t T
ijm kp jm kp m ktp m ktp im kp ijm kpk k k k k

t xx w t 


 
     
 
           , , , ,k ki j A m M k K p P                  (26) 

            00 1
k k

m M k K m M k K i N m M k K i Nk k k k k k

m kp ijm kp

ij

jp ipjm kp ijm kp im kp ijm kpk k k k
m kpk

l
x x x

u
t x  

       

     
 
  
 
 

       

,
k

m M k K i Nk k

ij ij

ijm kp

j

ijm kp m kpk k
m kp m kp m kpk k k

ls
x j N p P

u u

l l
x 

  

     
  
 
 
 

                                                (27) 

 

            0

0 0 01
j N j N

j

jpj m kp j m kp j m kpk k k
m kpk

l
x x x

u


 

  
 
 
 
 

   

0 0 0
0 0

j N

j j

j m kp j m kp m kpk k k
m kp m kp m kpk k k

ls
x x

u u

l l
 



    
  
 
 
 

      , ,k km M k K p P                           (28) 

( 0)ip ip ip                                          ,  i N p P                                                                   (29) 

)( (1 0)ip ip ip    
                            

,  i N p P                                                                   (30)
 

)( 0ip ip ipe                                           ,  i N p P                                                                   (31) 

)( (1 0)ip ip ipe    
                              

,  i N p P                                                                   (32)
 

  ( )( ) ( )( )ip ep ip ip ip ip ip iplpe               ,  i N p P                                                                   (33) 

 0,1ijm kpk
x                                                         ( , ) , , ,k ki j A m M k K p P                                        (34)

 

 0,1im kpk
z 

                                                       
, , ,k ki A m M k K p P                                             (35)

 

 0,1
kijm kpx 

                                                              
( , ) , , ,k ki j A m M k K p P                                       (36)

 

 0,1m ktpk
v                                                                , ,  ,k km M k K t T p P                                            (37) 

 0,1jm kpk
w 

                                                              
, , ,k kj A m M k K p P    

                                       
(38)

 

 0,1m ktpk
y 

                                                        
, , ,k km M k K t T p P    

                                         
(39)
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 0,1m ktpk
y 

                                                          
, , ,k km M k K t T p P    

                                       
(40) 

 0,1m ktpk
 

                                                        
, , ,k km M k K t T p P    

                                      
(41) 

0jm kpk
t 

                                                                    
, , ,k kj A m M k K p P    

                                      
(42)

 

0jm kpk
t 

                                                                    
, , ,k kj A m M k K p P    

                                     
(43)

 

{0,1}ip 
                                                                   

,i N p P  
                                                                     

(44)
 

{0,1}ip 
                                                                   

,i N p P                                                                       (45)
 

0igps 
                                                                   

, ,i N g G p P                                                             (46)
 

0igp 
                                                                      

, ,i N g G p P   
                                                       

(47)
 

ˆ 0igp igpo and d 
                                                         

, ,i N g G p P                                                             (48)
 

0igpw 
                                                                      

, ,i N g G p P                                                          (49)
 

0ip 
                                                                         

, ,i N g G p P                                                          (50)
 

0igm kpk
y                                                                     , , , ,k ki N g G m M k K p P                                (51)

 

10 1igpr 
                                                               

, ,i N g G p P   
                                                      

(52)
 

20 1igpr 
                                                             

, ,i N g G p P   
                                                      

(53)
 

In the objective function (2) the first term is the transport costs, which is comprised of two parts. The first part 

computes total transport costs related to passing no failed links. The second part calculates the moving costs of the 

failed vehicles from the beginning node of the failed link to the failure point and from the service centre to the next 

retailer and carrying costs from the failure point to the service centre. The carrying costs are calculated as ρk 

(average travel cost / carrying cost from a failure point to the service centre for the vehicle type  k  ∈K) multiplied by 

l''ij (the distance between failure point to service centre). The moving costs of the failed vehicle (i) from the 

beginning node of the failure link to the failure point and (ii) from the service centre to the next retailer are 

calculated. The calculation is based on the distance from network nodes to potential vehicle points in network (l'ij) 

and surplus distance, which a vehicle (after being repaired in the service centre) should pass to the next retailer (lsj). 

The next two terms denote inventory and backlogging costs, respectively. The forth summation calculates the fixed 

cost of each tour. The fifth term deals with the time window violation penalty cost. The last summation stands for 

the repair costs in service centres. 

Constraints (3) ensure that each retailer must be visited only one time by all the vehicles and vehicle types in 

each time period. Constraints (4) and (5) are degree constraints and sub-tour elimination constraints, respectively. 

Furthermore, constraints (5) ensure that all routes should be started and ended from/to the depot. Constraints (6) 

force the capacity limit for the vehicles. Constraints (7) represent that if vehicle mk ∈ Mk of type k ∈K never visit 

retailer i ∈N, the vehicle cannot have any delivery to the retailer; otherwise the vehicle’s capacity must be 

observed. Constraints (8) calculate the order value, and constraints (9) forecast the demand of product g G for the 

next period. Constraints (10) impose that the delivered product g ∈G to retailer i ∈N should be equal to the order of 

the customer registered in the previous period. Constraints (11) limit the customers’ order capacity. Constraints 

(12) are about the inventory balance imposed on the net stock and shortage of retailers in each period. Constraints 

(13) ensure that the warehouse capacity of retailers is considered. Constraints (14) find the departure time of 

retailers in each tour. Moreover, constraints (15) calculate the arrival time to network nodes in each tour. Note that 
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we use a discrete time index t in the model. Then, we use continuous functions for vehicle failures. The model 

checks this according to the time set T (t ∈T). In other words, we discretise the continuous time using the set T and 

only check the vehicle failures at these times. Otherwise, on a continuous time, there would be infinitely many 

index t, which could not be solvable. According to the value of cumulative exponential distribution (
km ktp ) and the 

random value (
km ktp ) for each time interval t ∈T, time period p ∈P and vehicle mk ∈ Mk of type k  ∈K, the prone 

situations (
km ktp ) of vehicle failure are calculated. Conditions (54-56) mathematically demonstrate the process of 

finding these situations.  

1
tm kpk

m ktpk
e


  

                                            
, , ,k km M k K t T p P    

                                    (54) 

( ) 0m ktp m ktp m ktpk k k
   

                                    
, , ,k km M k K t T p P    

                                   (55) 

(1 )( ) 0m ktp m ktp m ktpk k k
    

                           
, , ,k km M k K t T p P    

                                   (56) 

m ktp m ktpk k
t t 

                                                          
, , ,k km M k K t T p P    

                                   (57) 

Constraints (55)-(56) impose that a vehicle k km M of type k ∈K can be failed only if the probability of the 

vehicle failure exceeds the failure threshold. An additional binary decision variable
km ktp  is presented so that the 

vehicle mk ∈ Mk 
of type k ∈K may be prone to failure in period p ∈P. Constraints (57) represent the time interval 

that vehicle mk ∈ Mk 
of type k ∈K may be prone to failure in period p ∈P. According to conditions (58), a vehicle is 

prone to fail based on routing decisions and 
km ktp . In this regard, if the computed time interval for vehicle mk ∈ Mk 

of type k ∈K in period p ∈P, which was prone to fail based on cumulative exponential distribution, is between its 

departure and arrival time from/ to depot, then the vehicle is prone to fail based on routing decisions. 

  0 0 1  , , ,
km ktpm kp m ktp m kp k kk k k

if t t t then v m M k K t T p P           
                    

(58) 

Constraints (16)-(20) present the modified equivalent of Conditions (58). Constraints (21) ensure that no more 

than one vehicle failure can occur in a tour. Additionally, constraints (22) indicate that if one or more prone vehicle 

failure points exist in a tour, one of them must be selected as a vehicle failure point. 

Conditions (59) and (60) help to find the location of vehicle failure points in all time periods. It is noted that 

we just know the tours which have a failure points ( )
km ktp  and the time interval that the vehicle failure was occurred 

( m ktpk
t ). Accordingly, Conditions (59) identify the network nodes in the corresponding tour in which arrival time 

to them (which is computed without assuming failure point based on constraints (15)) is after occurring the vehicle 

failure point. Therefore, this node can be the end node of the link having a vehicle failure 1)(
kjm kpw  . Then, 

based on the nodes found through Conditions (59), Conditions (60) identify the link in the corresponding tour, 

which, terminating to one of the found nodes and the departure time from its originating node (which is computed 

without assuming failure point based on constraints (14)), is less than the time interval that the vehicle failure point 

occurs at. In this regard, constraints (23)-(26) present the modified equivalent of conditions (59) and (60). 

1 , , ,
k

t T
jm kpm ktp m ktp jm kp k kk k k

if t then w j A m M k K p Pt  


                          
(59) 

1 , , , ,
k

t T
ijm kpijm kp im kp m ktp m ktp k kk k k k

w
jm kpk

if x then x i j A m M k K p Pt t 


                      
 
(60) 
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Constraints (27) calculate the arrival time to retailers considering vehicle failures. These constraints are 

comprised of four different terms. The first and second terms represent the arrival time to the exact prior node of 

retailer j which was visited.  If this prior node is the depot, then the first term is used. Otherwise, the second term 

must be used. The second term considers the replenishment time because it is a retailer node rather than a depot. 

The third term is used if the link reaching to retailer j is a sound link ( 0ijm kpk
x  ) and calculates the travel time 

on this link. Finally, the forth term is designed to calculate the travel time on the link if it has a failure point. Hence, 

in the fourth term, the travel time from beginning node to failure point, travel time from failure point to service 

centre, repair time in service centre, and travel time from service centre to retailer j must be considered instead of 

travel time on the link.  Constraints (28) illustrate that the working time assigned to vehicle k  should not exceed the 

limit. According to this equation, the vehicles should come back to the depot during working time. In this regard, 

the first term of constraints (28) finds total travel time to the last retailer in each tour, and the second and third 

terms compute travel time between the last retailer and the depot. Constraints (29)-(33), a modified form of 

Condition (61), apply the time window violation penalty cost incurring when the arrival time to a node does not 

meet the considered time window. In other words, constraints (29)-(32) present the position of arrival time to node j 

in its related time windows, and constraints (33) calculate the violation penalty cost. Binary decision variables ip

are added to transform the if-then conditions (61) to constraints (29)-(33). Constraints (34)-(53) impose the type of 

variables. 

( ),   if  

0,                   if  

( )    if  

ip

ep ip ip ip ip

ip ip ip

ip ip ip iplp

e e

e

 

 

   

  

  

  

 
  

  
 
  

             ,i N p P                                                                   (61) 

There are non-linear relations such as objective function, constraints (8), (15)-(20) and (23)-(33); some of them 

cannot be linearised. Of course, the mathematical model can be solved on a commercial optimisation software 

product to find a local optimum solution (not global) but this cannot necessarily provide a reliable upper bound for 

the objective function. 

Another issue is that, we use a random parameter generated from a uniform distribution, and by comparing this 

value with the cumulative probability function of exponential distribution, we decide whether a failure is going to 

happen or not. However, the random parameters again need to be generated before the model is solved and the 

result of the model will depend heavily on the generated random parameter. 

We suggest an approach for finding the best solution according to the amount of expected risk (probability × 

consequence) that a decision maker can tolerate. Our definition of probability is the chance of having some vehicle 

failures equal to or greater than a specific number along the considered time period. The probability can be 

extracted from related historical data or estimated with a distribution probability function. For instance, Figure 4 

shows the corresponding probability in a network. Our definition of consequence is the difference between the 

objective of the worst-case scenario and the objective of the corresponding scenario (in terms of total cost). In order 

to compute the consequence of different scenarios, some steps should be taken. At the first step of calculating the 

consequence, the decision maker generates many random parameters and solves the model many times. Obviously, 

every time the model is solved, it may return a different solution depending on the random parameter used. At the 

second step, in addition to the different solutions, the decision maker needs to determine the most optimistic and 
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pessimistic solutions. The most optimistic solution will occur when no vehicle failures happen in all periods. By 

assuming that all the random parameters are equal to one, the most optimistic solution will appear.  

 
Figure 4. Probabilities of having a number of vehicle failures in network. 

 

On the other hand, the most pessimistic solution is the solution that all used vehicles in all periods experience a 

vehicle failure in a location which has the furthest distance from the service centre. If all the random parameters 

equal zero, all of the used vehicles will have a vehicle failure and the most pessimistic solution will be obtained. At 

the third step, by subtracting the amount of each solution’s objective of the pessimistic solution’s objective, the 

consequence of them will be resulted. Because each solution has a discrete number of vehicle failures, apart from 

having no vehicle failure in the network (optimistic solution), a range of consequences may occur for any number 

of vehicle failures. For instance, Figure 5 shows the consequences of the solutions obtained for different numbers 

of vehicle failures. Finally, the decision maker can calculate their expected risk by multiplying the consequence of 

the solution and the probability of the solution. Figure 6 shows the expected risk of all solutions.  

 
Figure 5. Consequences of having a number of vehicle failures in network. 

  

 
Figure 6. Risks of having a number of vehicle failures in network. 

 

In addition to our proposed approach for finding the best solution in an uncertain model, there are some other 

techniques to tackle such problems. We also suggest robust optimisation introduced by Mulvey et al. (1995) to be 

used in large-scale systems. Interested readers may refer to Mulvery et al. (1995), Leung et al. (2007) and Yu and 
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Li (2000) to see a brief description of this technique. There are several other possible approaches proposed to 

handle the probabilistic parameters. Some of them are as follows: 

1) The scenario-based optimisation method is based on some random instances of the uncertain parameter(s) to find 

the optimal solution where only the constraints are associated with uncertainty (Schildbach and Morari 2016); 

2) Monte Carlo Simulation runs as an estimate of an actual system as one of the most popular tools to analyse 

uncertainty aspects (Fu 2002); 

3) Simulation-based optimisation methods provide the flexibility to accommodate arbitrary stochastic parameters 

(Wan et al. 2005); 

4) Fuzzy mathematical programming approaches are classified into two major groups: (i) possibilistic 

programming used when there is a lack of knowledge about the exact values of the model parameters (Inuiguchi 

and Ramik 2000); and (ii) flexible programming applied to cope with flexible target value of goals and 

constraints (Mula et al. 2006). 

In terms of risk attitude, we assume a risk-neutral decision maker but the model has also the ability to produce 

solutions for risk averse and risk seeking decision makers. Accordingly, we solve the problems only for a known 

set of random parameters to generate an optimal solution for a risk-natural decision maker.   

   

4. PROPOSED SOLUTION ALGORITHMS 

According to Aghezzaf et al. (2006), the IRP belongs to the class of nondeterministic polynomial time (NP) 

problem. Considering the vehicle failure and the time windows issues in the IRP model, the formulated problem is 

computationally complex. Therefore, the heuristic approaches to solve these types of large-scale problems 

inevitably become the only possible alternative (Nguyen et al. 2012). Moreover, the model is nonlinear and 

nonconvex.  

We develop four algorithms based on an adapted social-based metaheuristic approach that combines the 

evolutionary algorithm (EA) and socio-political process-based methods (Ramezani and Lotfi 2013). We have 

adapted a traditional SBA with some considerable changes and introduced it as a metaheuristic named adapted 

SBA (ASBA). To improve the performance of ASBA in the proposed problem, four scenarios are considered 

regarding its construction. 

We show that our developed metaheuristic algorithms obtain near-optimal solutions within reasonable time. 

The algorithms minimise the total cost through: (i) determining the best routes that vehicles should pass through; 

(ii) directing vehicles with high failure potential to the service centre via the near passes; (iii) determining the best 

inventory level in retailers’ stores in order to find the best trade-off between storage and backlogging costs; and (iv) 

identifying the sequence of retailers to be served by vehicles within the given time windows. In the following 

subsections, ASBA as a novel approach is presented comprehensively.  

 
4.1. Encoding scheme and vehicle failure-related calculation  

As this section is the same in all algorithms, we added the vehicle failure-related procedure in this section. In the 

proposed model, there are two types of variables: auxiliary and decision variables. The auxiliary variables are used 

for arrival time, distance between failure point and node, distance between failure point and service centre, net 

stock and shortage at the retailers, distance travelled by a vehicle and distance travelled by the failed vehicle. 

Binary variables are used for presenting the vehicle failures calculated in the solution process. The decision 
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variables should be considered in the structure of the solution. Figure 7 presents a schematic illustration of the 

structure of the encoding process in each period. 

The sequences that the customers are met

1 33254 1232

1 2

3 4

0.53 0.05

1g

2g

1g

2g

0.91

0.750.64

0.860.94
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0.62

0.12 0.06

0.02

0.05

0.07

0.06

0.02

0.05

0.04

0.12

Vehicle allocation to the suppliers

Net stock correction constant decided by customers WIP correction constant decided by customers
 

Figure 7. A graphical representation of the structure of encoding process in a period. 

 

The first part is related to the sequence of the retailers to be met by the vehicles covering the standard decision 

variables in the VRP (Homberger and Gehring 1999) and IRP (Moin et al. 2011). In other words, the related 

decision variables are 
kijm kpx , 

kim kpz  and
kigm kpy , respectively. The second part is used to assign the retailers to the 

vehicles and is related to multiple-vehicle issue (Govindan et al. 2014). Each number in the second section 

represents a vehicle that meets the retailers. For instance, the second vehicle serves the first and third retailers. 

Accordingly, a matrix with |TNV| elements (TNV is the total number of vehicles from different types) is 

constructed. Each number represents a related vehicle. The third and fourth parts indicate the net stock and WIP 

correlation constants (i.e. r1ijp and r2ijp, respectively) determined by each retailer for each product in each time 

period. 

To enable the continuous metaheuristic algorithms such as PSO to solve this discrete problem, the random-key 

(RK) technique is applied. An encoding scheme, RK has been frequently used in solving discrete problems with 

continuous approaches (Chang et al. 2009; Tavakkoli-Moghaddam et al. 2009). RK is applied to parse the primary 

solution. Accordingly, as illustrated in Figure 8, a matrix of |N| elements, each from a uniform distribution U(0,1) is 

generated so that the RK demonstrates the sequence of retailers that should be met. For instance, the encoded 

solution (1) {0.78, 0.85, 0.38, 0.49, 0.23} represents the parsed solution (2) {4, 5, 2, 3, 1} calculated by sorting the 

encoded solution. In the second sub-solution, the vehicles are assigned to retailers. Accordingly, a matrix with |N| 

elements each from a uniform distribution U(1,TNV) is generated where the RK illustrates the desired vehicle for 

each retailer. For example, the encoded solution (3) ({2.32, 2.78, 1.85, 1.07, 2.61}) represents the parsed solution 

(4) ({2, 3, 2, 1, 3}) acquired by rounding the encoded solution. 

0.23 2.610.490.380.850.78 1.071.852.782.32

1 3

Primary sub-solution

Parsed sub-solution

13254

2

31232

4

Primary sub-solution

Parsed sub-solution
 

Figure 8. A schematic illustration of the RK technique in the first and second sub-solutions.  

 

Vehicle failure imposes additional repair and carrying costs on the total cost and also increases the working 

time of the failed vehicles. The developed algorithms calculate the mentioned added costs and times through 
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“vehicles failure-related calculation procedure”. As this procedure is performed in all developed methods, it is 

presented in this section. The pseudo-code of vehicles’ failure-related calculation procedure is presented as Figure 

A1 (Appendix). When the 
km ktp  (as CDF of vehicle failure) exceeds 

km ktp  (which is generated through a 

continuous uniform distribution [0, 1]), the vehicle may fail at time t if it has not failed in previous time intervals. 

km ktp is a strictly increasing function; i.e. the probability of vehicle failure increases over time in each period and 

sets to zero again for the first time interval of the next period. In this regard, the algorithm finds the failure location 

(corresponding link has a failure point) at time t according to the arrival and departure time to/from network nodes 

in the corresponding tour. Then, the distances between the selected failure point and prior node, the failure point 

and service centre as well as the service centre and the next node are calculated. Finally, the total moving and 

carrying costs and also repair costs of the failed vehicle are calculated.  

  

4.2. Initialisation procedure 

The initialisation process is used to generate the nPop sample solutions as the first population. In this paper, the 

initialisation process introduced by Liu and Lee (2011) is used to randomly generate the initial solutions from the 

feasible space. According to our primary experiments, this initialisation process can reduce the computational time 

of different methods. The procedure of determining the initial solution is presented in Figure A2 (Appendix). This 

initialisation process is constructed based on the assimilation concept known as vehicle load assimilation (VLA). In 

this regard, first of all, the required number of vehicles to satisfy the total received orders is calculated and then the 

received orders are assigned to the selected vehicles so that the vehicles carry the load with the same 

capacity utilisation rate. Therefore, the VLA provides an initial solution so that the retailers are assigned to vehicles 

based on the concept of assimilation; the rest of the decision variables used in the model are generated randomly. 

 

4.3. Adapted social-based algorithm (ASBA) 

The social-based algorithm (SBA) was first introduced by Ramezani and Lotfi (2013) as a continuous algorithm. 

This method was constructed based on an evolutionary algorithm (EA) and socio-political process represented in an 

ICA. Although the EAs have been known as popular algorithms for their many interesting properties and have been 

widely applied in a variety of optimisation problems (Back et al. 1997), they might be incapable of obtaining an 

optimal solution in some problems (Grosan and Abraham 2007). Accordingly, the hybridisation of EAs with other 

algorithms as part of a larger system may lead to a very powerful search algorithm, which is able to handle the 

variety of problems in finding more qualified solutions (Grosan and Abraham 2007; Ramezani and Lotfi 2013). 

ICA, which was introduced by Atashpaz-Gargari and Lucas (2007), is considered one of the cutting-edge EAs 

in the field of evolutionary computation. The evolutionary optimisation strategy used in ICA has been revealed as 

high performance in many NP-hard problems because of two aspects: (i) its convergence rate; and (ii) obtaining the 

global optima achievement (Aghezzaf et al. 2006). The algorithm benefits from the relationship between empires 

and colonies and imperialistic competition among these empires to finally converge to a state in which there exists 

only one empire as the best solution (Mozafari et al. 2012).  

Obviously, EA and ICA have different optimisation perspectives. Therefore, the combination of these two 

algorithms can provide us with a more powerful method (i.e. SBA) as a novel hybrid algorithm that benefits from 

the eligibility of both algorithms. The concept of person in SBA is similar to the chromosome concept in GA 

terminology and the particles in the PSO method, which is actually an array of candidate solutions. 
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4.3.1. Social communities in SBA construction 

In a human society, people from different walks of life can evolve a community. They construct different 

communities in their countries. Each person in considered an N-dimensional optimisation problem (i.e., 1×N array) 

as follows: 

1 2[ , ,..., ]i i i i iNPerson p p p p                                                                                  (62) 

where pi is the variable that should be optimised. The cost of a person is calculated using a cost function of the 

variables ip as Cost( ) Cost( )i i ic person p  . In this algorithm, four types of community are used:  

 Republic, where the best person is chosen as the president for a certain period of time;  

 Autocracy, where a person without any credibility is selected as the leader whom people do not try to obey;  

 Monarchy, where the powerful person is considered as the monarch whom the people are obliged to follow; and  

 Multinational where communities are constructed based on a symbiotic relationship of countries that cooperate 

and transact with each other. Interested readers seeking more details of SBA can refer to Ramezani and Lotfi 

(2013). After some iteration, a global war iteratively occurs for the preservation of premature convergence. In 

the end, just one imperialist will survive. The framework of the proposed ASBA is described as follows. 

 

4.3.2. ASBA Initialisation 

The algorithm starts with generating the initial Np as people through the VLA procedure. Then, the most powerful 

people, Nc, (people with minimum cost) are chosen as the leaders and the remaining people shape the people of 

these communities. The people are distributed among countries as their citizens based on the leader’s power. Four 

different types of ASBA initialisation process are used as follows: 

ICA-Based (IB) is developed based on original ICA initialisation. Accordingly, a number of countries that have 

Nimp most powerful countries (countries with minimum cost) are chosen as the imperialists. The leader countries 

proportionally absorb the rest of the people based on their powers. As illustrated in Figure 9, the more powerful 

empires can absorb the greater number of countries. A detailed and completed review of the ICA is presented 

byAtashpaz-Gargari and Lucas (2007). This is referred to as ASBAIB in the results. 

 
Figure 9. Generating the initial empires and countries: imperialists possess the countries  based on their powers. 

 
Classification-based (CB) is constructed based on the geographical determinism concept. In other words, 

people live in geographical positions and have to obey their local governments. In CB, the initialisation of the 

people are classified based on the nearest Euclidean norm of distances with their imperialist (Ramezani and Lotfi 

2013). It is referred to as ASBACB in the results.  

Person Country Leader Imperialist 
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The Frog-based (FB) process uses an initialisation process introduced in the shuffled frog-leaping (SFL) 

algorithm (Eusuff and Lansey 2003). People are considered as an SFL population consisting of a set of frogs 

(solutions) partitioned into subsets referred to as memeplexes (Afzalan et al. 2012). For a meticulous and 

comprehensive review of SFL algorithm, readers are directed to Afzalan et al. (2012). This is referred to as 

ASBAFB in the results. 

Hybrid-ICA-frog-based (HIF) process combines the probabilistic idea used in ICA with the ordering idea used 

in SFL to assign the sorted people to each country based on the described power (Ramezani and Lotfi 2013). It is 

referred to as ASBAHIF in the results.  

The total power of a country is mainly affected by the power of the leader while the power of the people has a 

diluted impact on the total power of that country. Therefore, the total power of a country is defined as follows: 

  Cost( ) {Cost( )}TP Leader mean People of countryi i i                                                       (63) 

where   is a positive number less than 1. The total power of the country is determined by the leader when the 

value of  is small; however, as the value of   increases, the role and power of the people becomes more 

important. 

Once initial empires are formed, the evolutionary algorithm operators (EAO) such as selection, crossover and 

mutation are used in each decade to improve the people of each country. The total number of decades is shown by 

Nd. The mutation procedure is performed on people of all countries, while the crossover procedure is randomly 

done to mate the people, leaders and empires with each other. The percentage of population carried out in the 

crossover is shown by Pc. It is also performed to maintain diversity in the population and preservation is carried out 

to stick to local optimal solutions (Arumugam and Rao 2007). Mutation is carried out on Pm fraction of the 

population. In this paper, the roulette wheel selection (RWS) procedure has been applied to select the population of 

crossover and mutation. Figure 10 illustrates the procedures of mutation (sections 1 to 4) and crossover (sections 5 

to 9) used in this algorithm. Finally, the new solutions are evaluated and placed in the population based on the 

quality of their objective functions. 
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Figure 10. Crossover and Swap, Reversion and Insertion Mutations (“Pop” stands for population). 

 
Since the solution has several parts, some schemes are considered to handle this issue. We considered lots of 

mutations and crossovers on different parts of solutions randomly. This process has two steps: 

 First step: Selecting the current solutions: Either a leader or a random person is selected to use the mutation 

operator. One person or two and the leader are selected randomly to use on the crossover operator.  

 Second step: Selecting a part(s) from the structure of the solution: One part or more of the solution are selected 
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randomly to be changed by an operator. For example, part (1) of a solution is selected and the sequence of 

vehicles is changed to produce a new person(s). Then the new solution(s) is (are) considered for the revolution 

process.  

In monarchy countries, the countries of the empires start to move towards their relevant imperialist. This 

movement is a simple model of an assimilation procedure applied to some imperialists. Revolution brings some 

sudden random changes in the positions of some countries. In each country, the new people with lower cost than 

the leader are swapped with the leader. Similarly, this process is applied to each empire to select a better leader as a 

new empire. All empires try to take possession and control of the colonies of other empires. In this rat race, the 

power of the weaker empires gradually reduces and that of the more powerful one rises. Accordingly, one of the 

weakest countries of the weakest empires is picked and possessed among the empires based on empires’ total 

power. In this regard, the RWS method is used for assigning the people or countries to the country or empire. Two 

types of assimilation are used as follows. 

 
4.3.3. External revolution operations (ERO) 

EROs are applied to the countries with revolution probability (Pe). The assimilation process is accomplished just on 

the monarchy countries of each imperialist. The country’s movement toward an imperialist means that all the 

people in these countries move in the same way towards the empires. As illustrated in Figure 11, the leaders move 

toward the empires by x steps. The new position of a leader is calculated as follows: 

 ~ 0, eax U Cof d                                                                                                   (64) 

where x is a random variable distributed uniformly between 0 and 
eaCof d . Cofea is the external assimilation 

coefficient greater than 1; d is the distance between leader and empire.  

 d
x

Leader of country

Person Country (Leader and people)

New position of 

person

New position of 

country

Imperialist 

 d
x

External assimilation Internal assimilation 

 
Figure 11. The external and internal assimilation procedure. 

 

The countries do not move directly towards their empires. They move with a deviation of ~ ( , )U    from 

the connecting line between the country and its imperialist by x units to increase the search area. Estimating λ as 

π/4 (rad) usually leads to a continuous convergence of the countries to the global optimum (Ramezani and Lotfi 

2013). The revolution occurs in all the countries. As the revolution is against the empire in monarchy countries, the 

people of a country should move the same way.  

  
4.3.4. Internal revolution operations (IRO) 

IROs are performed on the people of each country with revolution probability (Pi). This assimilation is different in 

multinational communities and is implemented in two steps. Firstly, each person in the ith country moves its ith 
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position toward the ith position of its leader as  ~ 0,i ia ix U Cof d . di is the distance of the ith position of a person to 

the ith position of a leader and Cof ia is the internal assimilation coefficient, which it is greater than 1.  

The assimilation procedure occurs in all countries to direct the people toward the leaders, and the revolution 

procedure is applied to all countries to improve the position of the people. The internal and external forms of 

revolution are shown in Figure 12. 

Person

New position 

of Person 

New position of 

Country

Country

Internal revolution External revolution  
Figure 12. Internal and external revolution procedures.  

4.3.5. Global war 

ASBA benefits from the global war procedure as a universal phenomenon that affects the construction of both 

countries and societies simultaneously. After a number of iterations, a global war (IGW ) is introduced to produce a 

new population equal to the initial size of population for the preservation of premature convergence (Rabiee et al. 

2012). Then, the new population is merged with the old population. Then, the unified population is sorted in 

ascending order based on cost functions. Subsequently, a number of populations equal to the old population are 

selected. This process is iteratively repeated a number of times (NGW). In this paper, the stopping criteria or end of 

ASBA is considered when there is only one empire for all of the countries. The pseudo-code of ASBA is illustrated 

in Figure A3 (Appendix). 

 

5. DATA GENERATION 

There are a lot of test instances in the literature of the VRP such as Cordeau et al. (2001), Dondo and Cerdá (2009) 

and Liu and Shen (1999), which consider the usual inputs such as positions of depots, demand of customers, time 

windows, capacity and number of vehicles. In our research, we consider an OUT policy in the replenishment 

process including forecasting and inventory management. Moreover, vehicle failure is the main contribution of this 

paper and its related data are not considered in any of these test instances. Additionally, the following inputs are not 

considered in any of these popular and publicly available test instances: The position of vehicles at failure point 

(x and y coordinates); Position of service centre; Average travel/carrying cost of a failed vehicle; Fixed 

repair cost; Target net stock; Target WIP; Shortage cost of per product; Holding cost of products; 

Inventory capacity of retailer; Average speed of moving to a failed vehicle; Time to repair vehicle; and 

Parameter of exponential distribution for vehicle failure. 

Therefore, the existing databases may help only partially and calculated objective functions cannot benchmark 

our algorithms; we have to generate lots of parameters. Therefore, we decided to generate some new numerical 

examples for this problem. Twenty-four random problems are generated to analyse the proposed methods. These 

problems are classified into three groups to analyse the capability of the algorithms in different sizes: large, 

medium, and small. In each test problem, there is a distribution network consisting of a depot, set different vehicles 
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of various types (MK) and a set of retailers that order G types of products. The depot and retailers are located in a 

geographical area of U(0,100) randomly. The number of time periods is 100. The test data and information 

generated for the problems are presented in Table 3. In addition, ωig is assumed as the average vehicle capacity.

ig is equal to the inventory capacity of the retailers considered for each product. α is assumed to be 0.25. 
km kp

which is uniformly distributed in range (0.02, 0.5) and Pc is uniformly distributed as U [0.95, 0.98]. 

Table 3. Factors and their levels. 
Factors Levels 

( )N MK G 
 

Small size  

Prob. #1: (4 1 2) 
 

Prob. #2: (6 2 2) 
 

Prob. #3: (10 3 3) 
 

Prob. #4: (14 4 3)   

Prob. #5: (22 5 3) 
 

Prob. #6: (30 6 4) 
 

Prob. #7: (38 6 4) 
 

Prob. #8: (48 8 4)   

Medium size  

Prob. #9: (72 10 5) 
 

Prob. #10:
 

(92 10 5) 
 

Prob. #11:
 

(104 10 5) 
 

Prob. #12: (115 12 5)   

Prob. #13: (130 12 6) 
 

Prob. #14: (145 14 6) 
 

Prob. #15: (160 14 6) 
 

Prob. #16: (175 15 6)   

Large size 

Prob. #17: (210 15 8) 
 

Prob. #18: (224 16 8) 
 

Prob. #19: (240 16 8) 
 

Prob. #20: (255 18 8) 
 

Prob. #21: (270 18 8) 
 

Prob. #22: (288 20 10) 
 

Prob. #23: (305 20 10) 
 

Prob. #24: (320 24 10) 
 

Demand ordered by retailers  (digp) 
 

N(100,20): Normal distribution ( , )   

Average cost of travelling (Ck)  U (0.5,1.5) 

Average cost of carrying the failed vehicles ( )k  
U (5,15) 

Waiting penalty cost ( )ep  U (1,5) 

Lateness penalty cost ( )lp  U (5,10) 

Shortage cost of each unit (bigp)  U (4.5,12.5) 

Holding cost of each unit (higp)  U (1.5,3.5) 

The fixed cost of the vehicle (fkp)
  

qk×U(10, 50) 

The fixed repair cost ( )kp
 

qk×U(40, 100) 

The average speed ( )
km kpu   min (8,12) /k kq U q

 

The average speed for the failed vehicles ( )
km kp   min (1, 4) /k kq U q

 

The replenishment time ( )
kim kp  U(0.02, 0.05)×W

 
The vehicle repair time ( )

km kp  U(0.12, 0.25)×W
 

Earliest arrival time (eip)  U(0.1, 0.85)×W 
Latest arrival time (τip)  eip+U(0.05, 0.15)×W 

The inventory capacity of the retailers for each product ( )ig  is estimated as follows: 

                        
(1,4)

, ,ig igp

p P

U
d i N g G

P




                                                                      (86) 

In order to determine qk, the maximum of summation of total demands in all periods is calculated and then 

k  
is generated as a random coefficient of each vehicle type k  based on uniform distribution of U[1, 10].  

Finally, the capacity of vehicles is estimated as follows:  

(1 )

,

igp

p P i N g Gmean k
k

k

k K

d

q k K
P






  



 

   




                                         (87) 

(1- ) and (1+ ) ,min mean Max mean

k d k dq q q q k K                                                     (88) 

( , ),min Max

k k kq U q q k K                                           (89) 

where β and   are coefficients with U[0, 0.1] and U[0, 0.1], respectively. W is considered to be eight hours a day. 



25 

 

 

6. PREPARATION AND VALIDATION OF SOLUTION ALGORITHMS 

In this section, we conduct an experiment to find the initial solution. Then, parameter tuning is performed. After 

that, the validation approaches for proposed solution algorithms are introduced. Finally, the results of the validation 

are presented. Note that we implement the algorithms in MATLAB 2013a software product and run on 3 parallel 

2.6 GHz PCs with 2GB of RAM.  

 
6.1. Evaluation of the proposed initial procedure 

VLA as the developed initial procedure is evaluated. In this regard, the assignment procedure used in the 

initialisation process is performed through GA. As illustrated in Figure 13, VLA can help algorithms to find the 

optimum solution with lower CPU time. Consequently, the VLA can provide the algorithm with more qualified 

initial solutions, which may find better solutions based on their capabilities in a shorter time. This scheme can be 

useful especially in large-scale problems and can help to save a great deal of time. 

C
o
st

 f
u

n
c
ti

o
n

Best cost of iterations initialised with VLA procedure

Mean cost of iterations initialised with VLA procedure

Best cost of iterations initialised randomly

Mean cost of iterations initialised randomly

 
Figure 13. Effect of VLA on the best cost and mean cost of population over the different iterations. 

 

6.2. Parameter tuning 

The efficiency of metaheuristic algorithms depends significantly on choosing values for their parameters. 

Parameter tuning can eradicate premature convergence, deepen searching around interesting regions, and increase 

diversity in the search space (Behnamian and Fatemi Ghomi 2011). Therefore, this process can improve the 

performance of algorithms through determining miscellaneous parameters before the final runs. In this paper, 

response surface methods (RSM), introduced by Box and Wilson in the early 1950s, are used to determine the 

values of the parameters (Myers et al. 2009). We use the polynomial response surface function (y) introduced by 

Neter et al. (1996) to find the optimal values of parameters and save time.  

RSM as one design of experiments (DOE) methods considers a lower bound (Xl) and an upper bound (Xh) for 

each variable. The number of experiments (NE) contains 2J factorial points (nf) or a fraction of it (i.e. 2J-1 or 2J-2 

(Montgomery and Myers 2002)) (2J) axial points ( )axn  coded as 1 , and cpn  central points for each algorithm 

as illustrated in Table 4. As presented in Table 4, when the number of factors like ICA, SBA, HGS, and ASBA is 

too high, a fraction of factorial points are considered (Myers et al. 2009). For instance, there are eight factors in the 

problem for ICA, which lead to 28+16+10=282 experiments in the full scheme. As the number of experiments is 

too high, we can use 1/4 fraction scheme, which results in only 28-2+16+8=88 experiments. 
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Table 4. Level of factors in the algorithms with the number of experiments. 

Note that the impact of different strategies in the parameter tuning process of ASBA (i.e. ASBAIB, ASBACB, 

ASBAFB and ASBAHIF) in our experiments is neutralised by considering them in different blocks. HGS parameters 

include MaxIt, nPop, Pc, Pm, LSiter, Maxipt, T0 and Tf. Furthermore, HPV parameters include MaxIt, nPop and LSi t er .  

Lastly, Maxdc, PAS and PR are the input parameters of ICA.  

Since we intend to simultaneously analyse the effectiveness and efficiency of the algorithms by RSM, a 

multiple objective decision-making (MODM) problem is used to estimate the input variables by producing the 

desired response based on different objectives at the same time. Accordingly, in this paper, a utility function di(Yi) 

provided by Derringer and Suich (1980) is used to optimise the multiple responses. This technique estimates the 

appropriate parameters from the objective function and CPU time concurrently. di(Yi) is calculated as follows: 

 
S

i i
i i i i i

i i

H Y
d Y L Y H

H L

 
   

 

                                                                                       (90) 

where di(Yi) represents the utility function of Y(i), which is the response functions in the form of minimisation. Li 

and Hi are the lower and upper bounds, respectively. S is the severity of di(Yi) by, which the decision maker can 

consider various weights for different goals. The severity value can be selected between 0 to10 (a higher severity 

means more emphasis on the goal). In this paper, the parameters of S for the objective function and CPU time are 3 

and 1, respectively. The desirability of the obtained response can be calculated by the following equation: 

     1 1 2 2
mD d y d y d ym m                                                                     (91) 

where m is the number of objective functions. The tuned values for parameters, R-squared (R2) and desirability (D) 

are estimated and reported in Table 5. 

Table 5. Tuned parameters, R-squared (R2) of objective function and CPU time and desirability (D). 

Algorithm Tuned parameters 
R2

 
Objective function 

R2
 

CPU time 
D  

ICA 192,  7,  198, 0.038, 0.34, 0.32, 84, 2
AS R GW GW

PopSize N Maxdc P P I NImp        
 

76.2% 78.4% 0.938 

SBA 284,  36, 8,  0.046, 192, 0.36, 0.4
Country Imp d i e

PopSize N N N P P        71.8% 74.5% 0.875 

HGS 
0

112, 92, 0.68, 34, 64, 6, 16.6, 0.006
c m iter ipt f

MaxIt nPop P P LS Max T T         82.5% 79.4% 0.982 

HPV 546,  96, 12
iter

MaxIt nPop LS    62.6% 71.3% 0.842 

ASBA 192, =32, =8, 0.042, =184, =0.36, 0.32, =86, =2
Country IMP d i e GW GW

PopSize N N N P P I N    68.2% 68.8% 0.864 

As illustrated in Figure 14, the most important interactions (the highest partial R2-square (Pr-s)) of ASBA are 

4.37% between NCountry and  and 3.2% between Pi and IGW  over the objective function and also 11.21% between 

NGW  and NImp and 1.26% between NCountry and Nd over CPU time. 

Algorithm Factors and their levels (Xl,Xh) ( , , )
E

N n n nax cpf
  

ICA 
nPop NImp Maxdc   PAS PR IGW NGW  

88=(28-2,16,8) 
(100,200) (4,8) (100,200) (0.03,0.05) (0.2,0.4) (0.2,0.4) (40,100) (1,2)  

SBA 
nPop Ncountry NImp   Nd Pi Pe   

88=(27-2,14,10) 
(150,300) (20,40) (4,8) (0.03,0.05) (100,200) (0.2,0.4) (0.2,0.4)   

HGS 
MaxIt  nPop Pc Pm LSiter Maxipt T0 Tf  

88=(28-2,16,8) 
(80,120) (60,100) (0.62,0.72) (0.2,0.34) (50,80) (4,8) (10,20) (0.001,0.01)  

HPV 
MaxIt nPop LSiter    

20=(23,6,6) 
(300,600) (40,100) (8,12)    

ASBA 
nPop Ncountry NImp   Nd Pi Pe IGW NGW 70=(46,18,6) 

Min Run Ress V (100,200) (20,40) (4,8) (0.03,0.05) (100,200) (0.2,0.4) (0.2,0.4) (40,100) (1,2) 
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(c) The interaction between NGW and NImp (d) The interaction between NCountry and Nd 

Figure 14. The most important interactions in parameters of ASBA over objective function (a,b) and CPU time (c,d).  

 
6.3. Validation Approaches 

The proposed mathematical model in Section 4 is complicated so that even solving it exactly for small- and 

medium-sized cases is impossible. Accordingly, we evaluate the efficiency of proposed algorithm by two 

approaches: (1) validation based on a lower bound and (2) validation based on previous solution benchmarks. For 

these aims, a comparative performance measure, namely relative percentage deviation (RPD), is defined and 

calculated as follows: 

100
solAlg LB

RPD
LB


                                                                                      (66) 

Where Algsol is a value obtained by a given algorithm and LB is a lower bound of the given problem. The LB is 

used instead of the best value among the algorithms especially for the second validation.  

6.3.1. Validation Based on Previous Solution Benchmarks 

In the literature of IRP, four well-known solution algorithms are existed which are our benchmark methods. Our 

validation approach is done through a comparison process among the solutions of them and benchmark methods. 

We have considered four benchmark methods as follows. Social-based algorithm (SBA) as an effective population-

based approach (Ramezani et al. 2015) and a basic approach of ASBA. Imperialist competitive algorithm (ICA)  as 

a popular effective population-based approach, which has significant strength in solving many real-world 

permutation problems such as scheduling (Rabiee et al. 2012) and the VRPs (Wang et al. 2011). Hybrid GA and SA 

(HGS) are considered an effective method in routing problems integrated with inventory approaches (Karaoglan 

and Altiparmak 2010). The popular traditional approaches GA and PSO, two original methods of HGS, are 

considered the best evolutionary methods and swarm intelligent algorithms from population-based methods, 

respectively (Beheshti et al. 2014; Cheng et al. 2017).  HPV developed by hybridisation of particle swarm 

optimisation (PSO) and variable neighbourhood search (VNS) is another effective approach in the IRP (Liu et al. 
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2016). SA and VNS, two basic methods of HPV, are considered as the best trajectory methods in permutation 

problems (Liu and Lin 2005; Popović et al. 2012). 

In summary, overall we are dealing with eight algorithms: 1) four ASBA-based algorithms (i.e. ASBA with 

four scenarios); and 2) four benchmark algorithms, namely ICA, SBA, HGS and HPV. Note that the other basic 

and traditional metaheuristics such as GA, SA, PSO and VNS are not included in the comparison process due to the 

lower quality of their results compared to the other mentioned approaches. Since HGA, HPV, ICA and SCA are 

well-known metaheuristic algorithms, we do not explain them in details. However, the construction of the 

benchmark algorithms is described briefly in the following subsections. The Initialisation procedure and Encoding 

scheme in all methods are similar to the proposed solution algorithms. Interested readers may refer to Karaoglan 

and Altiparmak (2010), Liu et al. (2016), Rabiee et al. (2012) and Ramezani et al. (2015) for a more detailed 

review of these algorithms.  

Social-based algorithm (SBA): As the SBA is a basic approach of ASBA, this algorithm is considered a 

benchmark method in this paper. As the construction of this algorithm has a lot of resemblances with ASBA, its 

original construction is not presented in this paper. Interested readers are referred to Ramezani and Lotfi (2013) and 

Ramezani et al. (2015) for more detail about SBA. 

Imperialist competitive algorithm (ICA): ICA was firstly proposed by Atashpaz-Gargari and Lucas (2007) as 

a novel effective EA method based on humans' socio-political evolution. ICA has been widely applied to many 

non-permutation optimisation problems such as scheduling and the VRP (Bagher et al. 2011; Forouharfard and 

Zandieh 2010; Wang et al. 2011). Since this method is well-known, its construction is not presented in this paper. 

Interested readers may refer to Atashpaz-Gargari and Lucas (2007) and Rabiee et al. (2012) for more detail about 

ICA.  

HGS algorithm:  The HGS is developed by hybridising two well-known methods, namely GA and SA. The 

aim of designing this hybrid algorithm is to combine the strengths of GA and SA to improve the effectiveness of a 

single approach (Devika et al. 2014). In HGA, the initial population of individuals with nPop size is generated by 

VLA. Moreover, combining strong facets of various methods as a new integrated approach has been growing in 

this field of research because of their ability to increase computational power (Behnamian et al. 2009).  

We consider GA (proposed by Holland 1992) because it has wide applications in solving permutation 

problems such as the VRP, the IRP, scheduling and other operations research problems (Abdelmaguid and 

Dessouky 2006; Ho et al. 2008; Mansouri 2005). In the GA, the RWS procedure has been applied to select the 

chromosome of crossover and mutation. Chromosomes among individuals are selected to mate and create offspring 

in crossover procedures. Additionally, the mutation procedure is performed to maintain diversity in the population 

and avoid local optimum solutions. The percentages of the population subject to crossover and mutation are shown 

by Pc and Pm, respectively. The crossover and swap, reversion and insertion mutations presented in ASBA are used 

in HGS as crossover and mutation operators. The GA as the main loop of HGS is repeated MaxIt times, and in each 

iteration, the SA algorithm is performed as the local search. We consider SA (introduced by Metropolis et al. 1953 

and popularised by Kirkpatrick et al. 1983) because it has been known and widely applied to many permutation 

optimisation problems such as scheduling and the VRP (Elmi et al. 2011; Gaafar and Masoud 2005; Lin et al. 

2009), because of its theoretical guarantee of convergence, good performance on many practical problems, and ease 

of implementation (Zhou and Chen 2010). SA boosts the search algorithm to escape from trapping in the local 

optimum solutions (Lin et al. 2009) through accepting worse solutions with some probability (Elmi et al. 2011). 
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First of all, the SA receives the best solution obtained by the main loop (i.e. GA as an initial solution, and then 

neighbours will be found around the initial solution). In the SA algorithm, the swap, reversion and insertion 

mutations are used to refine the neighbourhood structures. Each new solution in SA will be considered by the 

acceptance probability function i.e.
 /C T

p e


  where T is the current temperature, ( ) ( ),C C s C s    C  is 

the difference of system energy the current solution (s) and new neighbour solution ( )s  . When C is non-positive, 

the new state is always accepted (Elmi et al. 2011). SA is guided by the initial temperature T0 and cooling rate Tf. 

These values essentially dictate the acceptability of solutions found during the search (McMullen and Frazier 

2000). The temperature reduction form used in SA at each iteration is 1 *t tT T   where  is temperature 

discount rate. SA is repeated as local search LSiter times and considers Maxipt new neighbours at each temperature. 

The construction of HGS in the pseudo-code is presented in Figure A4 (Appendix). 

HPV algorithm: HPV is constructed by hybridising PSO and VNS algorithms. In this algorithm, PSO forms 

the main loop and the VNS algorithm performs the local search. The hybrid approaches are constructed to achieve 

a trade-off between the global and local exploitation during the search process (Behnamian et al. 2009). As 

proposed by Kennedy and Eberhart (1995), PSO, a metaheuristic solution algorithm, has been used extensively in 

different fields including supply chain management, the VRP and scheduling (Panigrahi et al. 2011; Sedighizadeh 

and Masehian 2009).  

The initial population called swarm with nPop size is generated by VLA in the initialisation process. 

Subsequently, this algorithm should iteratively move the population toward a direction, which improves a given 

fitness function. Each individual in the swarm is called a particle and is a candidate solution, which is characterised 

by a position vector,
 ix , and a velocity vector, iv . The velocity of particle i in iteration k  is computed as follows: 

1 1 2 2( 1) ( ) ( ( ) - ( )) ( ( ) - ( ))pb gb

i i i i i iv k w v k c r x k x k c r x k x k                                   (65) 

where 
pb

ix , the particle’s personal best, is the best position of a particle in all the previous iterations; gbx , swarm 

global best, is the best position obtained so far; c1 and c2 are positive constants known as cognitive and social 

components, respectively; r1 and r2 are uniformly distributed samples in the interval [0,1]; and iw is the inertia 

weight to control the impact of previous velocity on the current one. The parameters ω, c1 and c2 are assumed to be 

0.9, 2 and 2, respectively (Moslemi and Zandieh 2011). A particle's new position is obtained by adding the velocity 

to its current position.  

We take advantage of VNS because it is considered a very popular local search method (Sevkli and Aydin 

2006) using a series of systematic changes of the neighbourhood structure (NS) within the search process in order 

to optimise problems. VNS receives the best solution achieved from PSO as the initialisation solution in each 

iteration. Then, a set of NSs symbolised by Nns is used to find the near-optimal solution where maxns represents the 

maximum number of NSs implemented with a random sequence. The swap, reversion and insertion mutations 

presented in ASBA construction are considered as NSs in the HPV algorithm. The VNS is applied NSs repeated 

LSiter times at each iteration of the main loop, which is repeated MaxIt times. Interested readers may refer to 

Kennedy and Eberhart (1995), Hansen and Mladenović (2001) and Mladenovic and Hansen (1997) for more 

detailed literature on PSO and VNS. Figure A5 (Appendix) gives the HPV in pseudo-code. 
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6.3.2. Validation Based on a Suggested Lower Bound 

In this section, we introduce a lower bound for the solutions of the master model. Comparing the growth rates of 

the gaps between the solutions of algorithms (proposed and benchmark algorithms) and the lower bound for 

different size of the problem can evaluate the effectiveness and efficiency of the designed algorithms. Accordingly, 

each test problem in all of the algorithms is run three times. Since each problem is solved three times, the average 

RPD ( RPD or ARPD) is defined as the average of the three runs of each algorithm for a given test problem. To 

calculate the LB, used in RPD measure, some relaxations are applied. The restrictions are on (a) the time windows 

penalty function, (b) limitation of working time and (c) vehicle failure for all vehicles. Relaxing these terms results 

in a linear model in which all the vehicles will deliver products to customers without failing or being penalised due 

to violation of time windows. Therefore, constraints (14)-(33), (36)-(45) and (50) are eliminated and r1igp and r2igp 

are converted to parameters. The model with a revised objective function is solved subject to the other constraints 

to obtain the LB. The LB model is as follows: 
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The LB is an inventory-routing problem (IRP) with proposed replenishment policy. Note that the LB is still NP-



31 

 

hard and solving it exactly for real-size problems is impossible. Accordingly, the LB model for real-sized problems 

is solved by using a general GA as a well-known method to find LB in all developed algorithms. However, the 

accuracy of GA in solving the LB model for small-size problems is investigated by comparing its results with exact 

results in the next subsection. 

Sixteen types of small-size test problems are generated, which are different in terms of the numbers of 

retailers, vehicles and vehicle types. To measure the quality of the objective function as well as the run time of the 

coded GA, the mathematical formulation of the LB model (coded on GAMS solver) is utilised. Each test problem is 

run 10 times in MATLAB to find the solutions of GA and one time in GAMS to find its global solution. Therefore, 

overall 170 runs have been performed in MATLAB and GAMS. Table 6 shows the detailed specifications of the 

test problems (e.g. the numbers of retailers, periods and products), the GAMS run time (seconds), the GA average 

run time (seconds), GAMS objective value, maximum and average errors (%). 

 

Table 6. The input features and output results of solving small test problems with GAMS and the GA. 
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1 7 4 6 1 2 10 43 31.1 4831 0.0% 0.0% 

2 7 4 6 2 2 10 51 31.7 4548 0.0% 0.0% 

3 7 4 6 3 2 10 53 31.8 4351 0.8% 0.2% 

4 7 4 6 4 2 10 105 32.4 4504 1.7% 0.3% 

5 8 4 7 1 2 10 1415 34.3 10990 2.9% 1.6% 

6 8 4 7 2 2 10 1064 34.7 10001 2.2% 1.2% 

7 8 4 7 3 2 10 3260 35.5 9520 2.8% 1.5% 

8 8 4 7 4 2 10 1072 35.6 9522 3.3% 2.4% 

9 9 4 8 1 2 10 1955 37.3 13924 3.3% 1.1% 

10 9 4 8 2 2 10 2104 38.2 11390 2.9% 2.4% 

11 9 4 8 3 2 10 1341 38.1 11853 3.2% 2.1% 

12 9 4 8 4 2 10 1869 38.7 10403 2.3% 1.8% 

13 10 4 9 1 2 10 1860 40.6 13167 2.9% 1.9% 

14 10 4 9 2 2 10 2110 41.2 15761 3.5% 2.9% 

15 10 4 9 3 2 10 1845 41.6 15155 2.0% 1.9% 

16 10 4 9 4 2 10 - 42.5 - - - 

In terms of runtime, it is evident that the GA is much faster than the GAMS solver. The largest test problem 

(#16) was solved by the GA below 43 seconds while GAMS cannot solve it in exactly one hour. When it comes to 

the quality of the objective functions, for all test problems, the average and maximum error were less than 2.9% 

and 3.5%, respectively. Interestingly, for very small test problems, the GA obtains optimal solutions with no error. 

 

6.4. Validation Results 

In this section, we show the validity of proposed solution algorithms based on two presented validation approaches. 

 
6.4.1. Based On Previous Solution Benchmarks  

To evaluate the proposed algorithms, firstly the obtained data (objective function and CPU time) are transformed 

into RPD values. Then, the mean RPD results of the expected objective function and CPU time are calculated in 

Tables 7 and 8, respectively. The results show that from the objective function perspective, ASBAHIF is better than 

other approaches while from the CPU time point of view, ICA yields better solutions. 
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Table 7. Average relative percentage deviation in terms of objective function. 

Size Problem 
 Algorithms 

 SBA ICA HGS HPV ASBAIB ASBACB ASBAFB ASBAHIF 

Small 

P.1  8.27 13.77 3.75 14.11 3.62 6.43 7.21 2.53 
P.2  9.27 14.20 4.07 15.35 3.92 7.33 9.09 2.75 
P.3  9.38 11.56 3.98 12.39 3.40 6.25 9.36 2.32 
P.4  9.95 10.14 4.05 10.12 3.55 5.80 7.21 2.93 
P.5  8.05 8.10 4.49 9.65 3.59 4.87 7.53 2.36 
P.6  6.24 8.00 2.88 10.82 2.86 4.09 5.79 2.52 
P.7  7.09 8.19 3.49 10.42 3.04 4.49 6.63 3.01 
P.8  6.40 8.09 3.74 10.49 2.71 4.36 5.76 2.28 

Medium 

P.9  7.95 8.29 3.63 10.93 3.04 5.29 6.25 2.30 
P.10  7.23 8.23 4.61 8.88 3.39 4.81 7.03 2.45 
P.11  6.67 8.05 3.75 10.27 2.62 4.17 6.02 2.16 
P.12  7.92 8.55 4.58 13.05 3.58 5.38 6.53 2.32 
P.13  8.01 8.70 4.04 11.66 3.22 5.07 7.78 2.30 
P.14  7.14 8.19 4.32 11.33 3.35 4.62 7.01 2.25 
P.15  7.03 8.17 4.66 10.23 2.88 5.61 6.47 2.30 
P.16  6.87 8.10 4.59 9.54 3.37 5.25 6.20 2.26 

Large  

P.17  8.16 9.13 5.60 10.80 4.41 5.60 7.64 2.61 
P.18  6.67 8.01 3.96 9.74 3.10 4.24 6.15 2.22 
P.19  7.96 8.28 3.81 9.08 3.32 4.71 6.29 2.26 
P.20  8.78 9.13 4.00 9.71 3.46 4.89 6.81 2.28 
P.21  8.79 9.06 4.76 10.68 3.80 5.67 6.77 2.46 
P.22  7.16 8.21 3.86 9.66 3.00 4.94 6.75 2.22 
P.23  6.78 8.08 4.13 9.06 2.88 4.71 6.63 1.99 
P.24  7.88 8.12 3.93 8.95 3.15 4.63 7.22 2.01 

Average  7.74 9.01 4.11 10.71 3.30 5.13 6.92 2.38 
standard deviation  0.995 1.734 0.536 1.630 0.412 0.780 0.898 0.248 

 
Table 8. The average relative percentage deviation in terms of CPU time. 

Size Problem 
Algorithms 

SBA ICA HGS HPV ASBAIB ASBACB ASBAFB ASBAHIF 

Small 

P.1 0.06 0.00 4.85 6.56 0.52 0.31 0.89 2.38 

P.2 0.27 0.00 3.82 5.14 0.25 0.44 0.77 2.19 

P.3 0.10 0.00 3.11 3.91 0.10 0.39 0.55 1.86 

P.4 0.11 0.00 3.48 4.70 0.20 0.31 0.71 1.70 

P.5 0.06 0.00 3.17 4.46 0.14 0.29 0.64 1.72 

P.6 0.06 0.00 3.41 4.58 0.17 0.27 0.72 1.68 

P.7 0.04 0.00 3.53 4.42 0.27 0.25 0.68 1.72 

P.8 0.03 0.00 3.90 4.81 0.36 0.34 0.92 1.60 

Medium 

P.9 0.03 0.00 4.20 4.73 0.39 0.35 0.96 1.79 

P.10 0.03 0.00 4.42 4.96 0.46 0.37 0.98 1.83 

P.11 0.03 0.00 4.75 5.51 0.61 0.23 1.15 2.00 

P.12 0.03 0.00 5.45 5.65 0.64 0.25 1.44 2.60 

P.13 0.04 0.00 5.93 6.13 0.88 0.44 1.65 2.80 

P.14 0.05 0.00 6.11 6.68 0.77 0.37 1.78 3.08 

P.15 0.06 0.00 6.68 7.52 1.07 0.60 2.06 3.26 

P.16 0.17 0.00 7.84 9.07 1.34 0.80 2.39 3.87 

Large 

P.17 0.25 0.00 8.65 10.48 1.54 0.92 2.64 4.37 

P.18 0.40 0.00 10.45 12.86 1.90 1.20 3.27 5.42 

P.19 0.39 0.00 10.28 12.76 1.93 1.24 3.30 5.34 

P.20 0.42 0.00 11.60 14.50 2.05 1.34 3.88 6.46 

P.21 0.51 0.00 11.13 14.04 2.29 1.54 3.86 5.82 

P.22 0.71 0.00 13.25 16.82 2.79 1.94 4.57 7.05 

P.23 0.62 0.00 12.59 16.13 2.64 1.83 4.44 6.74 

P.24 0.73 0.00 13.86 17.87 2.97 2.11 4.95 7.65 

Average 0.22 0.00 6.94 8.51 1.10 0.76 2.05 3.54 

standard deviation 0.234 0.000 3.595 4.614 0.935 0.605 1.449 2.022 

To analyse any significant difference between the effectiveness of the algorithms, a single-factor analysis of 

variance (ANOVA) is performed (see Table 9). Three main hypotheses have been checked before using ANOVA: 

normality, homogeneity of variance, and the independency of residuals. We studied these hypotheses before using 

ANOVA and found that there is no bias in the computational experiments. ANOVA results for the objective 

function confirm that there is at least one algorithm that is different in terms of performance measure.  
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Table 9. ANOVA results for the objective function and CPU time of all problems. 

Aspect Source DF SS MS F P 

Objective Function 

Factor  7 4515.49 645.07 563.59 0.000 

Error 568 650.12 1.14 

  Total 575 5165.61 

   

CPU Time 

Factor  7 5239.80 748.54 149.89 0.000 

Error 568 2836.62 4.99   

Total 575 8076.42    

 
For pair-wise comparison of the proposed algorithms, Fisher’s least significant difference method (FLSDM) is 

employed. The results obtained by FLSDM for the objective function are illustrated in Table 10. As shown in 

Figure 15, the means and interval plot of problems in terms of RPD confirm that there is a statistical significance in 

the solution quality from the objective function perspective. It can be clearly seen that ASBAHIF outperformed the 

other algorithms. According to Figure 16, the hybridisation of two policies – ICA and the frog-based method – has 

led to better results than other policies used in the ASCA construction. The priority of algorithms in terms of 

effectiveness is ASBAHIF> ASBAIB> HGS > ASBACB > ASBAFB > SBA > ICA > HPV. 
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Figure 15. Means and interval plot for total problems’ 

objective function. 
Figure 16. Plots of PRD of objective function for the interaction 

between different strategies of ASBA and size of problems. 
 

Subsequently, to assess the efficiency of the proposed algorithms, a single factor ANOVA is performed on the 

CPU time obtained by running different problems three times as reported in Table 9. A pair-wise comparison is 

also conducted to evaluate the efficiency of the algorithms using FLSDM. The results in Table 10 confirm that the 

original ICA delivers a better CPU time than the other approaches. The significance of these results was evaluated 

through a statistical evaluation in terms of RPD with 95% confidence interval for CPU time as illustrated in Figure 

17. As shown in this figure, the upper and lower bounds for most of the algorithms do not have any overlap. 

Therefore, the original ICA and SBA with the minimum lower and upper bounds are the best algorithms in terms of 

RPD for the CPU time metric. Figure 18 analyses the interaction of different strategies of ASBA and the size of 

problems. It indicates that according to the CPU time resulting from various ASBA policies, the ISA-based policy 

is significantly better than the other policies used in construction of ASBA. The priority of algorithms in terms of 

their effectiveness (i.e. objective function value) is therefore ASBAHIF> ASBAIB> HGS > ASBACB > ASBAFB 

> SBA > ICA > HPV. The priority of algorithms in terms of their efficiency (i.e. computational time) is ICA > 

SBA > ASBACB > ASBAIB> ASBAFB > ASBAHIF > HGS > HPV. 
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Table 10. Fisher’s pair-wise comparisons for problems’ objective function and CPU time. 

Algorithms 

RPD of Objective function RPD of CPU time 

Lower Upper 

Significant 

difference at 

95% level 

Lower Upper 

Significant 

difference at 

95% level 

SBA 

ICA 0.775 1.857 Yes -1.329 0.93 No 

HGS -4.246 -3.165 Yes 5.611 7.871 Yes 

HPV 2.567 3.648 Yes 7.193 9.453 Yes 

ASBAIB -5.057 -3.975 Yes -0.262 1.998 No 

ASBACB -3.171 -2.089 Yes -0.582 1.678 No 

ASBAFB -1.356 -0.274 Yes 0.706 2.966 Yes 

ASBAHIF -5.998 -4.916 Yes 2.201 4.461 Yes 

ICA 

HGS -5.563 -4.481 Yes 5.811 8.071 Yes 

HPV 1.25 2.332 Yes 7.393 9.652 Yes 

ASBAIB -6.373 -5.292 Yes -0.062 2.198 No 

ASBACB -4.487 -3.405 Yes -0.382 1.877 No 

ASBAFB -2.672 -1.59 Yes 0.906 3.165 Yes 

ASBAHIF -7.314 -6.232 Yes 2.4 4.66 Yes 

HGS 

HPV 6.272 7.354 Yes 0.452 2.712 Yes 

ASBAIB -1.352 -0.27 Yes -7.003 -4.743 Yes 

ASBACB 0.535 1.617 Yes -7.323 -5.063 Yes 

ASBAFB 2.35 3.431 Yes -6.035 -3.775 Yes 

ASBAHIF -2.293 -1.211 Yes -4.54 -2.281 Yes 

HPV 

ASBAIB -8.165 -7.083 Yes -8.585 -6.325 Yes 

ASBACB -6.278 -5.196 Yes -8.905 -6.645 Yes 

ASBAFB -4.463 -3.382 Yes -7.617 -5.357 Yes 

ASBAHIF -9.106 -8.024 Yes -6.122 -3.862 Yes 

ASBAIB 

ASBACB 1.346 2.428 Yes -1.45 0.809 No 

ASBAFB 3.16 4.242 Yes -0.162 2.098 No 

ASBAHIF -1.482 -0.4 Yes 1.333 3.592 Yes 

ASBACB 
ASBAFB 1.274 2.356 Yes 0.158 2.418 Yes 

ASBAHIF -3.368 -2.287 Yes 1.653 3.913 Yes 

ASBAFB ASBAHIF -5.183 -4.101 Yes 0.365 2.625 Yes 
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Figure 17. Means and interval plot for total problems CPU 

Time. 
Figure 18. Plots of PRD of CPU time for the interaction 

between the different strategies of ASBA and size of problems. 
 

6.4.2. Based on the Suggested Lower Bound 

In this section, a sensitivity analysis is performed to analyse the role of the problem size in the different algorithms. 

First, the ARPD of the objective functions is calculated for each problem separately. As illustrated in Figure 19, the 

ARPD of different algorithms are plotted over different size problems. It can be observed that with the growth of 

the problem size, the efficiency of the proposed algorithm (i.e. ASBA) outperforms other approaches. Moreover, 

the growth rate of the gap between ARPD of the proposed algorithms and LB is smaller than other than previous 

algorithms showing the superiority of our proposed algorithms over the others especially for large-sized problems.  
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Figure 19. The interaction among different problems and performance of the algorithms. 

 

As shown in Figure 20, it can be clearly seen that the algorithms have levelled for small test problems (i.e. 1st 

to 8th problems) in terms of CPU time but the difference takes an exponential trend after the 9th test problem. 

According to this figure, HPV results in a better CPU time than other approaches in all the test problems.  

 
Figure 20. The interaction among different problems and CPU time of algorithms. 

 

7. INSIGHTS 

In this section, through sensitivity analyses on the model’s parameters, some insights for practitioners are 

presented. To this aim, we perform the sensitivity analysis on 100 periods of the15th test problem. Five analyses are 

conducted.  

 
7.1. Proportion of different cost components in total cost 

As illustrated in Figure 21, the components of objective function (i.e. total transport cost) including vehicle 

transport cost and fixed vehicle cost, time window violation penalty cost, backlogging and inventory costs and also 

the cost of the failed vehicles (including the failed vehicle carrying cost and repair cost) are reduced during 

different iterations. This figure presents different terms in the total cost objective function optimised by ASBA. 

Although the proposed method reduces all costs, based on the input parameters, the rate of reducing in backlogging 
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cost is more than the inventory cost. In other words, the cost of backlogging is more important than the inventory 

holding cost. 

  
Figure 21. The trend of objective function components on different iterations resulted by ASBA. 

 
Observation: Our observations show that in terms of the importance of cost components, practitioners should 

pay attention to backlogging cost, inventory holding cost, and the cost of the failed vehicles, respectively. 

Accordingly, managers should chiefly plan to reduce these cost terms rather than the others.  

 
7.2. Impact of order-up-to-policy on total cost 

The replenishment policy used in this paper tries to reduce the effect of disruptions such as vehicle failure by 

adjusting the demand order forecast by a single exponential smoothing method. In this method, the order value is 

adjusted based on previous period inventory level (net stock) and WIP. As illustrated in Figure 22, the effect of 

different values of the net stock and WIP correlation constants for all retailers (i.e. r1igp and r2igp) are analysed on 

the problems’ objective function. In this regard, the sensitivity analysis was performed for the standard scope of 

these correlations (i.e. from 0 to 1). The values of r1igp and r2igp are considered the same for all retails, products and 

periods in this sensitivity analysis. According to the results, by increasing both factors r1igp and r2igp, the total cost is 

increased too.  

 
Figure 22. The effect of net stock and WIP correlation constants (r1igp and r2igp) on objective function. 
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Observation: Figure 22 shows that if r1igp and r2igp are ignored in the forecasting model or selected 

inappropriately, the total cost is increased. The appropriate value for both of these factors is between 0.05 and 0.1. 

Therefore, the inventory managers should consider a low effect of the net stock and WIP in the forecasting process 

of demand. 

 
7.3. Impact of vehicle failure rate on cost components 

The effect of different values of the vehicle failure parameter (based on exponential distribution) on the 

components of the objective function (i.e. total transport cost, time window violation penalty cost, backlogging 

cost, inventory cost, cost of the failed vehicles and total cost) is presented in Figure 23. Figures 23(a) and 23(b) are 

obtained from ASBA in iterations of 36th (as an example for a non-optimal solution) and 184th (as an optimum 

solution) respectively. According to Figure 23(a), by increasing the parameter by 50%, the total transport cost, time 

window violation penalty cost, backlogging cost, inventory cost, cost of the failed vehicles and total cost are 

increased 8%,  26%, 32%, 25%, 42% and 22.1%. The same amount of change in Figure 23(b) results in 4%, 14%, 

19%, 21%, 26% and 13.8% increases in the total transportation cost, time window violation penalty cost, 

backlogging cost, inventory cost, cost of the failed vehicles and total cost. 

  
(a) (b) 

Figure 23. The effect of the parameter of vehicle failure time (exponential distribution) on objective function components.  

 
Finally, it is concluded that  

 by increasing the vehicle failure rate, all objective function components increase; 

 the highest cost increase is related to the cost of the failed vehicles and then backlogging and inventory costs, 

respectively. The difference between backlogging and inventory costs is not significant; 

 the proposed model reduces the shortage, the effect of increasing vehicle failure rate, the total cost and all its 

components because it (i) assigns the old vehicles to the paths located near the service centre and vice versa, (ii) 

forecasts the demand of the next period, and (iii) with appropriate sequences, assigns the retailers to the 

vehicles. 

Observation: An increase in the vehicle failure rate highly affects backlogging cost and inventory cost, 

receptively, among the other cost components. 

 
7.4. Correlation between vehicle failure probability and length of travelled paths 

We solved the test problems and obtained optimal solutions for all 100 time periods. For each solution, we 

extracted the length of paths determined by the selected vehicles as well as 𝜆. A large 𝜆 shows that a vehicle has a 

high chance of failure. Figure 24 shows the relationship between the length of paths and 𝜆 of vehicles assigned to 
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them for period 23.  

 
Figure 24. The relation between length of paths and the λ of vehicles assigned to them for period 23. 

   

The figure has a negative trend direction and shows that the vehicles having a high probability of failure are 

assigned to short paths and, quite the opposite, the vehicles with a low probability of failure are allocated to long 

paths. In order to investigate the validity of this observation for the other 99 remained periods, we assess the slopes 

of all line trends fitted for such figures belonging to all time periods. Accordingly, Figure 25 demonstrates the 

percentage of different slope classes among the 100 observations.   

Observation: It is clearly obvious that just over 80% of slopes were negative, meaning that vehicles with a 

high probability of failure are assigned to short paths and vice versa. Accordingly, it is highly recommended that 

practitioners assign archaic vehicles (i.e. vehicles with a high probability of failure) to short paths and new, sound 

vehicles are used to service remote customers.  

 

 
Figure 25. The relation between length of paths and the λ of vehicles assigned to them for period 23. 

 

7.5. Relationship between vehicle failure probability and proximity to service centre 

For each time period and each vehicle, we compute an average distance between the vehicle and the service centre 

along the vehicle’s path (DS). DS for vehicle k  on path p is calculated by averaging the distances of total failure 

points on path p, travelled by vehicle k , from the service centre. First, we observed that in each period, the average 

of λ for a vehicle having failure is more than the vehicles not having failure. Accordingly, Figure 26 demonstrates 

the average of λ for the vehicles failed in each time period as well as the average λ value for the other vehicles. 

Furthermore, according to Figure 27, we found that in each time period, the failed vehicles have a smaller DS than 

the others. In Figure 27, the vertical axis shows the discrepancy between DS of the failed and not failed vehicles in 
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each time period.  

 
Figure 26. Average of λ for the failed vehicles and the others in each time period. 

 
Figure 27. Discrepancies between DS of failed vehicles and the others in each time period. 

 
Observation: Figures 26 and 27, in combination, indicate that in the optimal solution, the vehicles having a 

high failure probability are assigned to paths close to the service centre. Therefore, we highly recommend that 

decision makers assign newer vehicles in their fleet to the farther destinations. 

 

8. CONCLUSION 

In this paper, the IRP with possibility of vehicle failure is studied. The problem considers multiple periods, multiple 

products, holding cost, backlogging cost, soft time windows, multiple heterogeneous vehicles, deterministic-

forecasted demand, variable vehicle speed (before and after failure), capacitated retailers and customer inventory 

policy (order-up-to policy). The vehicle failure strategy taken in this research is “fixed centre”. The problem is 

mathematically formulated and solved by applying a meta-heuristic algorithms (ASBA) with four scenarios. A 

“global war” procedure is embedded in the algorithm to avoid local optima. The comprehensive calibration 

methodologies RSM and MODM are employed to reach the best combination of the parameter values. In order to 

evaluate the effectiveness and efficiency of the proposed algorithms, some test problems are generated to help us to 

compare the proposed algorithms against benchmark methods. The benchmark methods are some popular 

algorithms, namely SBA, ICA, HGS and HPV, and a suggested lower bound. We successfully implemented the 

algorithm on problems with up to 320 retailers, 24 vehicles of different types and 10 products.  

Computational experiments indicate that ASBA outperforms SBA, ICA, HGS and HPV in total cost 

performance measure and that HPV outperforms the others in terms of computational time. The hybrid-ICA-frog-
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based policy is more effective than other scenarios in ASBA construction. Our ASBA can solve large-sized 

IRPTWs subject to vehicle failure. We observe that the global war procedure can preserve premature convergence 

to improve the performance of this algorithm. Furthermore, ASBA with hybrid-ICA-frog-based initialisation policy 

can lead to better solutions compared to other initialisation scenarios. Figure 28 offers a decision-making support 

tool for planners based on this research. 

Figure 28. The process is taken into our model for predicting order of retailers and delivering them. 

 
When it comes to insights for practitioners, we learned a number of lessons. First, practitioners should adjust 

their plans for reducing their total cost with a special focus on backlogging cost, inventory holding cost, and the 

cost of the failed vehicles, respectively. Second, ignoring or inappropriately applying the amount of inventory level 

(net stock) and WIP in forecasting inventory orders leads to increasing total costs. We observed if the inventory 

mangers consider a low effect of the net stock and WIP on the forecasting process of demand, the minimum value 

of total cost will be resulted. Third, increasing the probability of vehicle failure (through increasing the parameter 

of CDF) leads to increasing the terms of the objective function (total cost) differently. Among the different terms of 

cost, the highest cost increases are related to the cost of the failed vehicles and then backlogging and inventory 

costs, respectively. Fourth, practitioners intending to reduce total cost should assign vehicles with high probability 

of failure to short paths. Furthermore, for serving remote costumers, using vehicles with low failure probability is 

advised. Last but not least, assigning vehicles with high probability of failure to some paths that have less distance 

to a service centre is in line with the optimal solution.  

There are some problems in the area that should be considered in future research. Considering the assumptions 

of this research (such as there only being one depot or supplier) can be a useful starting point. For example, in this 

research the location of the vehicle service centre is given while we may encounter some applications in which we 

need to identify the location of the service centre. Moreover, considering more than one fixed-centre service for 

repairing the failed vehicles, rerouting with repairing approaches (as depicted in Figure 1) or a mixture of them can 

be interesting. While the current solution techniques of this paper can be applied to other variations of the VRP 

(e.g., the initialisation process), other metaheuristic approaches can still be proposed and compared with our 

approaches. Finally, some areas are not well-covered in the literature of the IRP. For example, there is only one 

study in IRPs considering the time windows (Liu and Lee 2011). As it only considers soft time windows, 

considering hard time windows is a gap with many real-life applications. 
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Figure A1. The pseudo-code of vehicles failure-related calculation procedure.  
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VLA procedure () 

Step 1: Calculate the total orders of all products g G dispatched by all retailers in each 

period p P ( )pTO as: 
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1 1
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1 2{ , ..., }, {1 ,2 ,... }k k k k kTVN M M M M m  ; 
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Step 5: Assign the retailers  to vehicles such that the following equation is minimised: 
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Figure A2. The VLA procedure in the pseudo-code.  
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Figure A3. The adapted social-based algorithm (ASBA) in pseudo code. 
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Figure A4. The pseudo-code of HGS.  
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Figure A5. The pseudo-code of HPV.  
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