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The Inventory-Routing Problem Subject to Vehicle Failure

ABSTRACT

The problem of vehicle failure is introduced to the field of inventory-routing problems and formulated. Since the
model is NP-hard, we have designed an adapted social-based algorithm with four scenarios to solve it. We have
embedded the “global war” procedure into the algorithm to reduce the chance of being trapped in local optimum
and premature convergence. For validation, the following benchmarking methods are enlisted: (i) comparing with
four other metaheuristic algorithms which are all calibrated and their effectiveness and efficiency evaluated; (ii)
comparing with a suggested lower-bound. Sensitivity analyses of the algorithm provide insights for academics and
practitioners.
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1. INTRODUCTION

The inventory-routing problem (IRP) makes inventory management and the vehicle routing problem (the VRP)
decisions concurrently (Bertazzi et al. 2013; Li et al. 2016). The objective of the IRP is to determine when orders
should be delivered to customers, the delivery volume to each customer, and the sequence of customer visits in
each time period so that total transport and inventory costs are minimised while the customer demands are met
(Song and Furman 2013; Yu et al. 2008).

According to Jetlund and Karimi (2004), in the chemical industry, operational logistic costs including
inventory and routing decisions contribute 20% to the purchasing costs. Tarantilis and Kiranoudis (2001) state that
IRP decisions can effectively decrease logistics costs in transporting fresh milk from dairy farms to processing
plants. The IRP has been widely applied to many other industries, including department stores such as Wal-Mart,
Kmart and Dillard (Cetinkaya and Lee 2000; Zhao et al. 2007); the beverage industry, for example the Hey Song
Corporation (Dondo and Cerda 2009); LCD and LED producers (Zhalechian et al. 2016); healthcare (Niakan and
Rahimi 2015); dispatching refined oil products to retailers with tankers and barges (Fagerholt 2004); crude oil
transport planning from a supply centre to customer facilities (Shen et al. 2011); perishable goods (Le et al. 2013);
and liquefied natural gas (Stalhane et al. 2012). Many other researchers including Moin and Salhi (2007),
Andersson et al. (2010) and Liu and Lee (2011) have confirmed the wide applications of the IRP to practice.

This research is motivated by a gap in the IRP literature considering; it is the occurrence of vehicle failure; this
paper could therefore help organisations to be prepared for unforeseen circumstances in their service delivery
planning. Vehicle breakdown leads to disruption in a transport system, which causes some operational risks such as
delay, customer dissatisfaction, and disruption in information and cash flow in the supply chain (Chopra and Sodhi
2004). Based on some historical data from a highway over an observation period, Harwood et al. (1989) show that
44.5% of truck accidents are caused by truck failure (e.g. body, tank, valve or fitting). Such inefficiencies can lead
to a decrease in profitability (Paul et al. 2015) and may damage sales and social perceptions (Zhu and Levinson
2012), which might have serious effects on the performance of a supply chain network (Klibi and Martel 2012).
Planners try to avoid delays by making appropriate transport decisions (Zhu and Levinson 2012) and preserving
inventory in the right size and location (Chopra and Sodhi 2004). Disruption management has been investigated in

many planning areas like flight scheduling, project scheduling, production planning and supply chain coordination;
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it has also been studied in the VRP (Mu et al. 2011) but not in the IRP. The most important research questions are
as follows: (i) How can vehicle failure problems be categorised in the context of the IRP? (ii) How can the IRP
with vehicle failure be modelled and solved efficiently? (iii) What managerial insights can be extracted based on
the impact of vehicle failure on the IRP to help practitioners?

We formulate the IRP with soft time windows, which is computationally a complex problem. Even simple
versions of the IRP with time windows (IRPTW) belong to the group of nondeterministic polynomial (NP) time
problems (Aghezzaf et al. 2006). As the problem size increases, heuristic and meta-heuristic algorithms are the
only viable alternatives to solve the problem (Nguyen et al. 2012). In this paper, we propose a metaheuristic
approach called adapted social-based algorithm (ASBA) with four scenarios and show that it works more efficient
than other well-known meta-heuristic techniques. This paper contributes to the literature in the following ways: (1)
introducing the concept of vehicle failure to the IRP and modelling it; (2) applying ASBA with four scenarios to
solve the model; and (3) embedding the “global war” procedure into the algorithm to reduce the chance of being
trapped in local optimum and premature convergence. We have also suggested a lower bound to improve the
validation process. Finally, we provide some insights for practitioners and academics related to this problem.

The rest of the paper is organised as follows: Section 2 positions the research in the literature of the IRP and
highlights its contribution. The details of the problem are described in Section 3 and then mathematically
formulated. The mathematical formulation of the problem is complicated so that it cannot be solved even for small-
sized problems. Therefore, the model cannot be utilised for validating of our proposed algorithm. However, the
model is useful because we will use it to introduce a lower bound. This rare situation made us create an unusual
validation approach. In order to avoid confusion, the structure of the other section of the paper is illustrated in
Figure 1. Section 4 explains the structure of the proposed algorithms. Data generation for different test problems is
described in Section 5. Preparation and validation of the proposed solution algorithms are explained in Section 6. In
section 7, the research insights are presented. Finally, Section 8 concludes the research.

Model formulation (Master model) | Section3

Proposing ASBA with four scenarios to solve themaster model| Section4

Generating test problems |Section5

Validation Calibrating and validating ofthe proposed ASBA |Section6  validation
approach1 approach 2

Designing a lower bound (LB) for the
master model based on relaxation of
vehicle failure constraints

Designing four benchmarkalgorithms '
based on existing well-known meta- :
heuristics that have provedtheir ,
efficiency to solve the IRP !
Proposing asolutionalgorithmfor | !

solving the relaxed modeland ;

validating it i

Comparing the quality of the proposed !
ASBA with the four benchmark !
algorithms by using thegenerated test ;
problems i

Comparing the quality ofthe suggested | !
LB with the fourbenchmarkalgorithms | -
and ASBA based growth ofgaps

Are they valid solution algorithm?
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Insights for practitioners | Section7
Figure 1. The research design framework.
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2. LITERATURE REVIEW

While no standard classifications for the IRP have been agreed by all researchers, Moin and Salhi (2007) and
Andersson et al. (2010) provide comprehensive reviews for them. Focusing on various aspects of this research, we
categorise the IRP literature in terms of (i) inventory, (ii) routing and (iii) inventory-routing assumptions and their
features. These aspects, features and their possible types are depicted and coded in Table 1. Table 1 is partially
adopted from Andersson et al. (2010). In fact, there are similarities between our categorisations and those of
Andersson et al. (2010): (i) demand and inventory under “inventory” assumptions; (i) routing, fleet composition
and fleet size under “routing” assumptions; and (iii) time horizon under “inventory-routing”. Other features —
including (1) product type, holding cost and shortage cost under “inventory” assumptions, (2) vehicle speed, travel
cost and time windows under “routing” assumptions, and (3) planning period under “inventory-routing”
assumptions — are what we have added to this categorisation to position our research. Additionally, Andersson et al.
(2010) investigated the related papers up to 2009 and we have updated the search up to 2018.

Following Table 1, we have identified features of the IRP papers in the literature to form Table 2. Table 2 lists
the IRP research papers in the literature chronologically. In Table 2, in addition to the features mentioned in Table
1, we have also illustrated the used solution techniques. The last row of the table compares and contrasts our
research with other studies in the literature.

Table 1. Classification of criteria involved in the IRP (partially adapted from Andersson etal. 2010).

ASSUMPTION FEATURE TYPE CODE

Inventory related Demand Deterministic De
Stochastic St

Forecasted Fo

Inventory Fixed Fi

Stock-out So

Lost sale Ls

Back-order Bo

Product type Single-product Sp

Multi-product Mp

Holding cost Constant Co

Period varying Pv

Shortage cost Constant Co

Period varying Pv

Routing related Routing Direct Di
Multi visit Mv

Continuous Con

Fleet size Single-vehicle Si

Multi-vehicle Mu

Unconstrained Uc

Fleet composition Homogenous Ho

Heterogeneous He

\Vehicle speed Yes Y

No N

\Vehicle failure Yes Y

No N

Trawvel cost Certain Cer

Uncertain Ucr

Time windows Soft Sf

Hard Ha

Inventory-routing Time horizon Instant In
related Finite Fn
Infinite If

Planning period Single-period Spe
Multi-period Mpe




2.1. Basic assumptions

According to Table 2, we consider an IRP problem with these features: multi-period (with a finite time horizon),

multi-product, holding and backlogging costs, soft time windows, multiple vehicle, heterogeneous fleet of vehicles,

deterministic-forecasted demand, variable vehicle speed (before and after failure), capacitated retailers and

customer inventory policy (here, order-up-to policy).
Table 2. Review of the IRP studies.

Inventory related Routing related Inven.tory
-routing
§ .
REFERENCES g|w|8 s £l s |z Solution method
2 |2(8ls| _ |«|E|8E|E| 5|5
2|2 |812|18 2 |3lslelsls| 2| €
g5 |22l5] S |5|8lB| 5l g | &
s | z 2|28 & |=2|e2|S|S|E| E| S
o = |oa|T|wn| & jufu|>S|= || - o
Federgruen and Zipkin (1984) St S0 |Sp|Co|Co| Mv [MuHe[N [Cer| - | In | Spe [Generalised Bendersdecomposition
Dror et al. (1985) s | Fi [sp|-|-| Mv [MuHo|N|cer| - | In [mpe ngt‘ésﬁr?er?:;:?)'gf;'o”’r°““”9he“”5“°'”)S'”g'e
Federgruen et al. (1986) S So [Sp|- |Co| Mv [MuHe|N |Cer| - [ In | Spe lh)elis?igi:gg/aIIocatlondecomposmon,||)Interchange
IAnily and Federgruen (1990) De Fi |Sp|Co| - | Mv |Uc|Ho|N |Cer| - | If |Mpel|i) Lower bound;ii) Fixed partitions
Chandra (1993) De Fi [Mpco| - | Mv |uclHo|N [cer| - | Fn [Mpe ;in%ompOSItlon,ll) Sequential heuristic; iii) Local
Carter et al. (1995) De | Bo [MpPv[Pv] Mv [MuHo[N [cer| - | Fn [Mmpe 'h)e'ﬁ‘”gtciﬁ“onl routing decomposition; i) Iterative
Barnes-Schuster and Bassok (1997) St Bo [Sp[Co[Co| Di [UcHo[N [Cer| - [ If [ Spe 1) Lower bound; ii) Analytical
Viswanathan and Mathur (1997) De Fi [Mp[Co[ - [ Mv [MUHo[N [Cer| - [ If | Spe [Constructive insertion heuristic
Berman and Larson (2001) St So |Sp Co| Mv [Si[Ho|[N [Cer| - | In [ Spe [Stochastic dynamicprogramming
Bertazzi et al. (2002) De Fi [MpCo| - | Mv |Si|Ho|N |[Cer| - | Fn | Spe [i) Constructive heuristic; ii) Local search
Gaur and Fisher (2004) De | Fi |sp|-|-| Mv [MdHe[N|cer| - | Fn [Mmpe %ggﬁ?ﬂgiﬁgg‘i’{‘mpo“cy'”) Randomised sequential
Kleywegt et al. (2004) St Ls [Sp[Pv[Pv[ Mv [MuHo|[N [Cer| - | 1t [Mpe|i) Markov decision process; i1) Iterative heuristic
IAbdelmaguid and Dessouky (2006) De | Bo [Sp[Co[Col Mv [MuHe[N [Cer| - | Fn [Mpe [Genetic algorithm (GA)
IAghezzaf et al. (2006) De Fi |Sp|Co| - | Mv |MuHo|Y |Cer| - [ If | Spe |Heuristic column generation
Archetti et al. (2007) De Fi |Sp|Pv[-] Mv [Si|Ho|N [Cer| - | Fn |Mpe [Branch and cut
Liet al. (2008b) De Fi |Sp|Co|-| Di |Si|Ho|N|Cer| - [ If |Mpe|Constructionalgorithm
Raa and Aghezzaf (2008) De Fi |Sp - | Mv |[MuHo|N |Cer| - | If | Spe |Heuristic column generation
Raa and Aghezzaf (2009) De Fi |Sp|Cof - | Mv [MuHe|N [Cer| - | Fn | Spe [Heuristic column generation
Hemmelmayr et al. (2009) De Fi |Sp|-|-| Mv |MuHo|N |[Cer| - | Fn |Mpe Re?éﬁrggL?#g\égtrr;ss:;?&e?&&%fmers,||)Var|able
Zhao et al. (2008) De Fi [Sp|Co| - [Di-M Ho[N |Cer| - | If [ Spe |i) Fixed partition-Power-of-tow; ii) VNS
IAbdelmaguid et al. (2009) St Bo |[Sp|Co|Co| Mv |[MuHe|N |Cer| - [ Fn |Mpe |Constructive and improvement heuristics
Huangand Lin (2010) St |So- Bo|Mp| - [Co| Mv [MuHo[Y [Ucr| - | In | Spe [Modifiedant colony
Liuand Lee (2011) St Ls |Sp|Co[Co] Mv [Si|Ho|Y [Cer[Sf| In [ Spe |[Combination of VNSandtabusearch (TS)
Moin et al. (2011) De | Bo |[S$p|Co|-| Mv |UcHo|N |Cer| - [ Fn |Mpe|Hybrid GA
Shen et al. (2011) De-Fo| Bo |Sp|Co|Co| Di [MulHe[N [Cer| - | Fn |Mpe [Lagrangian relaxationapproach
Yuet al. (2012) De | Ls |Sp|Pv|- | Mv |uclHo[N |cer| - | Fn [Mpe 'F?;g’iglr'l?naepafirs‘;‘iccmé‘g;ég;ﬁ”g'a” relaation; iif)
Mjirdaet al. (2012) De Fi [MpCo| - [ Mv [MuHo|N [Cer| - | Fn |Mpe i) VNS, ii) Variable neighbourhood descent algorithm
Popovi¢ etal. (2012) De Fi  [MpCo| - [Di-MVjUc[Ho|N [Cer| - | Fn |Mpe [i) VNS, ii) MILP; iii) Compartment transfer
Coelho et al. (2012) De Fi |Sp|Co| - |Di-MV|Si |[He|N |Cer| - | Fn |Mpe |Adaptive large neighbourhood search heuristic
Bertazzi et al. (2013) St S0 [Sp|Co|Co| Mv |Si[He[N |Cer| - [ Fn |Mpe|[Hybridrollout algorithm
Coelho and Laporte (2014) De Fi [Sp[Co[ - | Mv [MuHe[N [Cer[ - [ Fn [Mpe |Branch-and-cutalgorithm.
Mirzael and Seifi (2015) De Ls [Sp[Co[ - | Mv [Uc|He[N [Cer| - | Fn [Mpe[HybridSAandTS
Soysal et al. (2015) St Bo [Sp[Co| - [ Mv [Uc|He[Y [Cer| - | Fn [Mpe [Simulation modelalgorithm
Singh et al. (2015) De-Fo[ So |[Mpg [Co[ Mv [MulHe[N [Cer[Ha|[ Fn [Mpe [Incremental decomposing approach
Santoset al. (2016) De Fi |[Sp|Co| - | Mv |[MuHo|N [Cer| - [ Fn [Mpe|Hybridheuristic-basedlocal search
Chitsaz et al. (2016) De Fi |Sp|Co| - | Mv |MuHo|Y |Cer| - [ If | Spe |[Two-phaseheuristic approach
Soysal (2016) St Ls [MpCo[Co| Mv [MuHo|Y |Cer| - | Fn [Mpe |Simulation approach
Soysal et al. (2018) St Bo [Mp|Co|Co| Mv |[MuHo|Y |Cer| - | Fn [Mpe |Chance-constrained programmingapproach
Chenget al. (2017) De S0 |Sp|Co| - | Mv |[MuHe|Y [Cer| - | Fn |Mpe [Branch-and-cutalgorithm
This research De-Fo| Bo [MpPv|Pv[ Mv |MuHe[Y |Ucr[Sf [ Fn [Mpe i) ASBA; ii) SBA; iii) ICA; iv) HGS, v) HPV

Note that we do not tend to make

the problem unnecessarily

complicated but we avoid simplifying

assumptions. For instance, one may think that since it is assumed that all types of goods of a single retailer will be

loaded together into the same vehicle, and the demands are predicted separately, this aspect does not really have

any influence on the routing optimisation compared to the case with only one type of good (which may represent

the aggregated demand of the retailer). This statement could be true when the variables do not interplay either in

the objective function or in the constraints. Note that each product is treated individually in a multi-period setting

4



(in which periods are interdependent) based on forecast demand. Then, demands for all products that belong to a
retailer are aggregated to help plan for inventory-routing decisions in a single period. However, if we could ignore
the multi-period assumption or exclude inventory holding and shortage costs (which are calculated based on
forecasted demands for each product and in different periods), the aggregate, single product version of the problem
does the same work.

2.2. Contribution
The contributions of the research in terms of problem definition and also methodology are explained below.

2.2.1. Vehicle failure in the IRP

The main contribution of the research is considering vehicle failure in the IRP. The concept of vehicle failure has
already been investigated in various contexts such as (i) disruption in distribution networks and (ii) the VRP
literature. However, to the best of the present researcher’s knowledge (according to Table 2), vehicle failure has not
yet been studied and applied in the IRP. We have visualised our own perception regarding various strategies of

handling vehicle failure in Figure 2.

Dispatching a back-up
| vehicle from the depot to visit Serving all
the failed vehicle @ customers @
Dispatching a back-up Serving a subset @
> vehicle from depotwithout of customers
visiting the failed vehicle © Serving all
> Rerouting — @
s i customers
Dispatching one of the on- After finishing
> tour vehicles to visit the the current trip Serving a subset @
failed vehicle of customers
Dispatching one of the on- Serving all
> tour vehicles without visitin @
. . the failed vehicle ¢ J In the middle of customers
Vehicle failure € falled venicle the current tri -
approaches € current trio Ser¥|ng a subset @
Single mobile servicer |@ of customers
Single fixed service centre |
> Repairing
Multiple mobile servicers | @
Multiple fixed service centres |
Legend:

a: Availability of extra vehicles at the depot, customer-specific products

b: Availability of extra vehicles at the depot, non-customer-specific products

¢: Unavailability of extra vehicles at the depot, customer-specific products

d: Unavailability of extra vehicles at the depot, non-customer-specific products

Figure 2. Vehicle failure approaches in distribution networks and the VRP studies.

According to Figure 2, there are ten approaches to choose from in order to handle the issue of vehicle failure.
Rerouting (1 to 6) and repairing (7 to 10) are two main strategies which are briefly described as follows:

Rerouting: When a vehicle fails, unserved customers on the failed trip will be served by another vehicle,
which is referred to as a “backup vehicle” (Li et al. 2007a; Li et al. 2007b; Zhang and Tang 2007; Li et al. 2008a;
Li etal. 2009a; Li etal. 2009b; Wang et al. 2009; Yang and Wang 2009; Wang et al. 2010; Mu et al. 2011; Hu and
Sun 2012; Minis et al. 2012; Ngai et al. 2012; Wang et al. 2012; Mamasis et al. 2013; Mu and Eglese 2013;
Ahmadi and Seddighi 2013). This strategy makes vehicles in the system be rerouted. Rerouting can be either



performed through dispatching a backup vehicle from the depot (approach 1) or dispatching one of the vehicles on
tour (approach 2) to deliver the ordered products to the unserved customers. Moreover, in both approaches, the
backup vehicle can load undelivered products either from the failed vehicle or the depot. Product types and the
number of available vehicles play a significant role in selecting one of these approaches and visiting either the
failed vehicle or depot for loading the undelivered products.

The types of shipping products in the literature include “customer-specific” and “non-customer-specific”. The
first one refers to some specific cargoes ordered by some specific customers while the second refers to the common
cargoes ordered by all customers (Eglese and Zambirinis 2018). In the case of customer-specific products, due to a
lack of the products in the depot, the backup vehicle must move to the point of the failed vehicle to pick up its load
before serving other customers (Li et al. 2008a; Minis et al. 2012). But in the case of non-customer-specific
products, some extra products are available in the depot and it is not necessary for the backup vehicle to visit the
failed vehicle to receive the undelivered products (Yang and Wang 2009; Mu et al. 2011; Mamasis et al. 2013).
Additionally, availability of extra vehicles at the depot and time limitations could lead to dispatching the backup
vehicle from the depot (Li et al. 2007a; Li et al. 2009a; Wang et al. 2010; Hu and Sun 2012) or the customers on
the disrupted tour being served by one of the vehicles on their own trip (Yang and Wang 2009; Minis et al. 2012).
In the case of dispatching one of the on-tour vehicles, in some situations, a backup vehicle could be rerouted right
after finishing its current trip (Li et al. 2008; Mu et al. 2011); in the others, rerouting a vehicle is possible in the
middle of its current trip (Yang and Wang 2009; Minis et al. 2012).

Finally, delivering to all of the unserved customers of the failed trip (Li et al. 2007a; Li et al. 2007b; Li et al.
2008a; Zhang and Tang 2007; Yang and Wang 2009; Mu et al. 2011; Ngai et al. 2012; Wang et al. 2012; Mu and
Eglese 2013; Ahmadi and Seddighi 2013) or just serving some of them based on their priority (Li et al. 2009a; L.i et
al. 2009b; Wang et al. 2009; Wang et al. 2010; Hu and Sun 2012; Minis et al. 2012; Mamasis et al. 2013)
determines which approach (1 to 6) should be considered (Eglese and Zambirinis 2018).

Repairing: In this approach, the failed vehicle is repaired; it then continues its planned trip. This approach is
utilised for minor failures in which the service time is short. Repairing the failed vehicle could be done in two
ways: (i) towing the failed vehicle to a fixed service centre (approaches 8 and 10); and (ii) the vehicle receives
mobile repairing services at the failing point (approaches 7 and 9). Only Jbili et al. (2018) take this approach which
investigates the failure of heavy vehicles travelling long distances between cities. In their study, the failed vehicle
receives its repair service at the failing point (approach 7). Finally, approaches 7 and 8 can be developed with
considering more than one mobile service (approach 9) or fixed service centre (approach 10).

Our research applies approach 8 to the IRP. We consider “fixed service centre strategy in vehicle failure” for
vehicle failure. In other words, the failed vehicles are carried to a fixed service centre and repaired so that they can

visit the remaining customers on their planned route.

2.2.2. Methodological

Since the research problem is NP-hard (Aghezzaf et al. 2006), developing heuristic and metaheuristic approaches
to solve the IRP in real-world problems is a common approach. As mentioned in Table 2, a variety of heuristic and
metaheuristic solutions have been applied to the IRP. In this research, for the first time, we develop a metaheuristic
approach (i.e. ASBA with four scenarios) and compare it with four other benchmark metaheuristic algorithms (i.e.
social-based algorithm (SBA), imperialist competitive algorithm (ICA), hybrid GA and SA (HGS) and hybrid PSO
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with VNS (HPV)) to solve the IRP. These algorithms are calibrated and their effectiveness and efficiency are
evaluated. Our methodological contribution is not only applying ASBA to the IRP but also modifying the standard
SBA as follows: We have embedded the “global war” procedure to the standard SBA that occurs after some
iterations to reduce the chance of getting stuck in local optimum and premature convergence. The global war
procedure stops the main loop of the algorithm, generates a new random population, and merges it with the old
population. Then, the main loop starts again with a new population. Note that in order to analyse the effect of
different initialisation processes in ASBA, four different policies are considered for ASBA as follows: ICA-based
(IB), Classification-based (CB), Frog-based (FB) and Hybrid-ICA-frog-based (HIF).

3. PROBLEM DEFINITION AND MODELLING

In this section, we define the problem in detail. Then, the problem is modelled mathematically. The model is not
solvable in reasonable times even by considering deterministic parameters. However, the model is useful because it
helps us to:

(1) formulate details of constraints and show the complexity of the model (in terms of the number and types of
variables and constraint) to justify why we need to design meta-heuristic techniques; and

(2) modify the mathematical model and accordingly design a lower bound for the problem to measure the
quality of our designed meta-heuristic approaches.

The problem that we consider consists of a supplier as the depot and a set of geographically dispersed retailers
as the customers of the distribution network. The problem is represented by a graph R(A, M) where A is the set of
nodes and M is the set of arcs illustrating minimum-cost routes linking nodes in the network. Let 0 and N denote
the depot and set of retailers, respectively. The retailers forecast the demand for multiple products for the next
period according to past demands. The depot with a sufficiently large capacity serves the retailers through a
heterogeneous fleet of vehicles; the capacity of each type of vehicle is given and all product types can be loaded to
all types of vehicles. Dispatching each vehicle causes a fixed cost associated with the vehicle type; there is also a
variable cost for distance travelled. Each retailer has a limited capacity to hold inventory and may suffer from
shortage and holding costs (if the demand is underestimated or overestimated, respectively). The vehicles should
meet the retailers during the determined soft time windows in the working hours.

In this problem, decisions regarding demand forecasting, dispatching the shipments and managing the vehicles
throughout the distribution networks are made concurrently. The first two decisions (forecasting and dispatching)
are the concomitant trials and tribulations in most distribution networks, but the third one (vehicle management) —
as far as vehicle failure is concerned — is critical; this is particularly the case for unreliable transport systems
including fleet and infrastructure. As we mentioned, the failed vehicles can be repaired in two possible ways: (2) a
mobile servicer providing low-level services meets the down vehicles where they fail; or (b) the failed vehicles are
carried to a fixed service centre that offers high-level services. In this research, we assume that the failed vehicles
are repaired in the fixed service centre where high-level services are offered. Therefore, the service centre can
repair the failed vehicles in less than a period. For example, an electrical problem leading to vehicle break down is
repaired in 2 or 3 hours within a working day of 8 hours.

As illustrated in Figure 3, a vehicle failure may occur at point f with probability function Pf (t) in each delivery
tour; then it should be moved to the service centre. Then, the repaired vehicle continues to service the remaining

retailers according to the previous sequence. The main goal of this problem is to find the optimal value of decision
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variables.

—

/ . Retailers . Supp“er/Depot — Vehicle 1 \ |

v Fail . £ XCZ R . i —>  Vehicle 2 I I
ailure points epair center ;

v _flwepons O RE RSN o vendes

Figure 3. A graphic example of the IRP problem with vehicle failure in a distribution network during a specific period.

3.1. Assumptions

Before formulating the problem, the following assumptions are introduced:

Since the number and location of retailers are known, the number and position of nodes are known and fixed.

Each retailer must be visited at most once in each period by only one vehicle. As the demand of the retailers to

the supplier is “less than truckload” (LTL) and the split of delivery is not allowed, the nodes should be visited

no more than once.

The retailers receive an independent certain demand in each period and they forecast the demand of multiple

products for the next period according to past demands.

The vehicles should arrive at the retailers’ location in specific time windows. If they arrive early or late, they

will have to pay the penalty. Therefore, we use the soft time windows (Jia et al. 2014).

The products are loaded together into the same vehicle. Although different products have different sizes and

storage conditions, a standard pallet is considered for all products.

Vehicle failure occurs no more than once in each tour and in each period; therefore, we assume that the vehicle

failure pattern follows an exponential distribution. This distribution network is designed for urban distribution

networks. Delivery should be done in a short time in networks like distributing dairy products, beverage, and

refined oil.

The vehicles periodically deliver the products to retailers (e.g. daily) and the vehicles can be failed with an

increasing rate of a cumulative exponential distribution. The probability of failure has memory (i.e. it considers

the time, which it has worked and by passing of time the failure probability increases). The possibility of failing

more than once in a short period is approximately zero. Thus, we assume that vehicle failure does not occur

more than once for each vehicle per period. The vehicles are repaired in the service centre during less than a

period and the failed vehicles can continue their determined path after repair and meet remaining retailers

according to previous sequences.

Different vehicle capacities are considered and fleet composition is heterogeneous.

Each driver receives a fixed schedule at the beginning of the day and has to meet the scheduled retailers.

Therefore, each route (set of retailers) is served by one vehicle.

The number of vehicles, vehicle dispatching cost/time, travelling cost/unit distance, holding cost, service time

for each retailer, distances between network nodes, distances from network nodes to failure points, distances
8



from failure points to service centre, distances from service centre to network nodes, and vehicle speed are
known. With respect to the location of the depot/supplier and retailers as well as some historical data, all of
these parameters could be measured or calculated.

e Trips must begin and end at the supplier (i.e. depot). The main reason for this assumption is that the vehicles
should be kept in their parking spaces at the depot and uploaded for the next period. Therefore, they should be
returned to the supplier after delivering products to the retailers.

e Vehicles are available from the beginning of the day and we consider a working day as a period in this
distribution network. Thus, the maximum available time for each vehicle is less than or equal to the working
time per period (e.g. per day).

3.2. Notation
In order to formulate the problem, the following notation is used:

Sets and

indices Description
0 Index of the depot
Mk Set of vehicles of type k,mx € My, k €K
P Set of periods p €P
T Set of time intervals t €T in each period
G Set of producttypes g eG
N Set of retailers i, j,i'e N ={1,2,3,...,n}
A
Set of network nodes A = {0,1, 2,31---,n} ={N U{O}}
F Set of failure points where the vehicles are broken down f e F
Smx«  Anysubsetofretailers thatvehicle m, of type k meets (Spi ©N)
Parameters
Ck Average travel cost for distance unit by a vehicle of type k €K
lij Distance between node i €A and node j €A

Iij Distance between node i €A and the failure point which is located in link (i, j)
1"ij Distance from the failure point which is located in link (i, j) to service centre

Isj Distance between the service centreand node j €A

fp Fixed costofthe vehicle of typek €K in period p €P

d. Capacity of vehicle typek eK

e Average travel cost/carrying cost from a failure pointto the service centre for vehicle oftypek eK
¥ Fixed costof repairing the vehicle of type k in period p €P

digp Demand of retailer i €N for product g €G in period p €P

e Demand predicted by retailer i €N for productg €G in period p € P, for initial period digo =dig1
Sig Target net stockat retailer i N for productg €G

o, Target inventory or inventory/work in progress (WIP) at retailer i €N for productg €G

Binary input variables, which presents that the vehicle mq € Mk of type k €K may be prone to failure in period p €P
and time t €T based on the cumulative distribution function (CDF)

thw  Ifvehicle mg € My of type k €K in period p €P and time t €T may be prone to failure, ¢~ o is equal to t; otherwise, it
is equal to zero. based on the CDF

Shortage cost per product unit at retailer i €N for productg €G in period p P

Holding cost per product unit at retailer i €N for productg €G in period p €P

m, ktp

Py Inventory capacity of retailer i €N for productg €G

Oy, The maximum capacity order of retailer i eN for productg €G

Vot Average speed for moving a the failed vehicle mkx € Mk of type k €K to the service centre in period p €P
m kp

umkkp Average speed for a vehicle mk € Mk of type k €K to travel in period p €P

9 Replenishment time for vehicle mk € Mk of type k €K for serving retailer i €N in the period p €P
imy kp

¢ ) Repair time of vehicle mq € Mk of type k €K in the period p €P
mykp

o Working time of a vehicle in a period (total time intervals in a period)

" The earliest arrival time of thetime window for retailer i €N in period p €P
T The latest arrival time of the time window for retailer i €N in period p eP
r Earliness penalty cost/ unittime in period p €P



" Lateness penalty cost/ unittime in period p €P

T Time window violation penalty cost for retailer i €N in period p €P

Ao Parameter of exponential distribution for the failure of vehicle mx € Mg of type k €K in period p €P
A kip The CDF of thefailure of vehicle mkx € Mk of typek €K at time t €T in period p €P
T ko A random value that represents the possibility of the failure of vehicle mk € Mk of type k €K at time t €T in period p

€P. In other word, the vehicle mq € Mk of type k €K at time t €T in period p €P malfunctions when Tmiep ~ [0,1] is
less than A (i.e. CDF). In this study, o is generated through a continuous uniform distribution [0, 1].
¢ A small number which is less than one.
In the inventory part of the problem, although various replenishment policies are presented (Silver et al. 1998;

Zipkin 2000), we should choose a policy to reduce disruptions such as demand variation and vehicle failure at a
lower cost than holding extra inventory (Chen and Disney 2007). In this regard, the tendency of retailers to forecast
orders based on previous demands leads to using the replenishment strategies known as the OUT policy (Cannella
and Ciancimino 2010). In such a system, the inventory level equals on-hand inventory + WIP — backlog and is
reviewed in each period. Consequently, an order quantity is determined to enhance the inventory level to a certain
or base level. Accordingly, the amount of replenishment based on forecast orders is calculated by the retailers as

follows:
0ip =iy + gy (Gig —Sign1 T Figp1) + Taigp (@ —Wig, VieN,geG,peP (1)
where digp is demand of retailer i €N for product g €G in period p €P, which can be achieved in different ways,

such as by single exponential smoothing method (Chen et al. 2000). ry;j, and 1, are constants to consider the effect
of previous period inventory level and WIP to forecast the demand of product g €G in period p €P, respectively. In
other words, ryj, and r;, are the correction factors for any shortfall of inventory and orders and goods in transit
correction factor, which smooth the order level and reduce holding and shortage costs, respectively (Devika et al.

2016). The inventory status is equal to the net stock and WIP. Net stock is equal to on-hand inventory plus backlog.
The WIP for retailer i €N for product g €G in period p €P is equal to Oy, ;. Two sets of variables including

auxiliary and decision variables are defined as follows:

Auxiliary
variables

P  Binary variable, which is 1 if vehicle mq € Mk of type k €K fails at time tin period p € P ; 0 otherwise

Description

igp Net stockat retailer i € N for productg €G in period p €P, for initial period Sigo =0

Wi Shortage at retailer i € N for productg €G in period p €P, for initial period 7Zigo = 0
Oigp Amount of product g €G ordered by retaileri € N in period p €P, for initial period, Ojg Zdigo Zdigl
W

fap The amount of WIP for retailer i € N for productg €G in period p €P, Vvigp = Oigp—]_

V). «p  Binary decisionvariables, which presents thatthe vehicle mq € My of type k eK may be proneto failure in time
interval t €T of period p €P based on routing decisions and mGkp
o’ Aurrival time to retailer j €N in period p €P

"

Yo A virtual binary decision variable used to convertconditions (58) to some constraints (if témkkp < tmkktp , then

y;nkktp =1)

Ymiap A virtual binary decision variable used to convert conditions (58) to some constraints (if tr:;kktp S tgmkkp , then
yr,;1k ktp — 1)

Wi A virtual binary decision variable used to convert conditions (59) to some constraints (if Zt:n'kktpﬂmkktp St;mkkp’ then
W =

Decision Description
variables
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Xijmkkp

’
Xijmk kp

z im, kp

yigmkkp
’
tjmkkp
imckp
I'tigp

Iigp

Binary variable, which is 1 if vehicle mx € Mk of typek €K moves from nodei €A tonode j €Ain period peP ;0
otherwise

Binary variable, which is 1 if vehicle mx € Mk of type k €K fails in link (i ) J ) in period p €P; 0 otherwise
Binary variable, which is 1 if vehicle mq € M of type k €K retailer visits i €A in period p €P; 0 otherwise

Amount of product g eG delivered to retailer i € N by vehicle mx € M of typek €K in period p €P

The time interval that vehicle mq € Mk of type k €K in period p €P departs retailers j EN
The time interval that vehicle mq € Mk of type k €K in period p €P arrives to node j €A

A constant correcting error, which is based in the difference between the actual and desired stock decided by retailer
i €N for product g €G in period p €P

A constant correcting discrepancy between WIP and desired WIP by retailer i €A for productg €G in time period p
€P

3.3. Mathematical formulation

In this section, the mathematical model of the problem is presented. There will be terms in the objective function

and two sets of constraints in the model that makes it non-linear. Moreover, the model contains binary variables.

* H ! ’ ! d
z =Min}. > > > Xijm, ko [(1_ Xijmkkp)cklij * Xiim, ko (Cklij +pk|ij +Cyls; )] +

peP keK m eM) ieA jeA

220 higo (Sigp + Oigp) + X2 Bigp Tigp +

peP geG ieN peP geG ieN

: )
Z Z Z Z fkpXijkkp + erip +
peP keK meMy jeN pePieN
Z Z Z Zﬂmkktpwkp
peP keK m eM) teT
Subject to
2 2 2 Xk =1 VjeN,peP 3
k eK my eM ieAi#]
> Xijm, kp + > inmkkpzzzimkkp VieA,m eM,, keK, peP (4)

A i %

Z Z Xijmkkp S_ Z Zimkkp -z

A i#j

vsmkk eN,m, eM,, kekK, peP,forsomei'eSmkk ®)

i€k Sy ki P<Smk i'mkkp
ZN:Z(;yigmkkquk vm, eM,, keK,peP (6)
ieN ge
%“GyiQmKKqukzimkklo VieN,m eM, keK,peP ©)
g
Oigp = igp + Migp (Sig — Sigp-1 * Zigp-1) + N2igp (@Dig —Oigp-1) VieN,geG,peP (8
Z Z yigmkkp =0Ojgp-1 VieN,geG,peP (10)
k eK mkEMk
Oigp Soigp VieN,geG,peP (11)
Sigp = Sigp-1 ~ Zigp—1  Zigp + Oigp-1 ~igp VieN,geG,peP (12)
Sigp +Oigp—1£¢ig Vi eN,geG,peP (13)
TR PR " VieA,jeN M, keK,peP
imkp = jmkkp+u Fimekp | Xiim kp LeA, JeN,m el KeK,PE (14
mkkp
li
" ' ) H H
tin ko = timkkp+—u Xijm, kp VieA,jeAm eM, keK,peP (15)
mkkp
Yinektp Cnkep € ~om i) = 0 vm, eM, keKteT,peP (16)
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+e-t1,)<0

0m kp
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t; /Bmk ktp
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!
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(1 Ijmkkp)ijkkp (Z mkktpﬁmkktp |mkkp |Jmkkp)

t m
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mktp — ymkktp ymkktp

’
tZT: mG ktp

"

m ktpﬂmkktp) =0

"
jm kp & Ztm ktplekktp

/ !II
Xijmkkajmkkp (Z mkktpﬁmkktp t|mkkpxumkkp

vm, eM, keKteT,peP
vm, eM, keKteT,peP
vm, eM, keKteT,peP
vm, eM, keKteT,peP
vm, eM, k eK,peP

vm, eM, k eK,peP

VieAm eM, keK,peP

jSO VieAm eM, keK,peP

) 0 Vi,jeAm, eM, keK,peP

ajp = Z Z XOJmkkptOmkkp Z Z Xumkkp ( ) Z Z Xum kp (1 Xum kp)
mg eMy keK mg eMy keK ieN m eMy keK ieN
I I Is
N i
Z Xumkkp umkkp + +¢mkkp + VJ €N, pe P
mg eMy keK ieN Umkkp }/mkkp mkkp

|.
' io
ZXJOm kp Jp"'jzll\lXjOmkkp (1_Xj0mkkp){ +
€

’
jZN XjomkpXjo

’ 14
o, 1
m, kp
k
umkkp 7/mkkp

(aip - z_ip)§ip =0
(aip _Tip)(l_é:ip) <0
(eip _aip)gip =0

(eip — &, (a1 —
aip )(é]p) + 1_‘lp (aip -

[y =Tep (& —
Xijm, kp € {0,1}
Zimkp €101
Xingo €101}
mktp {0 1}

Win s {01

ymkktp = {0’1}

gip) <0

7ip)(Sip)

+ ¢mkkp +

umk kp

Isg ng vm, eM, keK,peP

my kp

VieN,peP
VieN,peP
VieN,peP

VieN,peP
VieN,peP

V(i,j)eA,m eM, keK,peP
VieAm eM, keK,peP
V(i,j)eA,m eM, keK,peP
vm, eM, k eK, teT,peP
VieAm eM, keK,peP
vm, eM, keKteT,peP
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=
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}

(17)
(18)
(19)
(20)
(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
(30)
(31)
(32)
(33)

(34)
(35)
(36)
(37)
(38)

(39)



Yo o 10,1} vm, eM, k eK,teT,peP (40)
B, wp €10.1) vm, eM, k eK,teT,peP (41)
t}mkkpzo VieAm eM, keK,peP (42)
t'j’mkkp_o VieAm eM, keK,peP (43)
ip (0.3 VieN,peP (44)
& {03 VieN,peP (45)
SingO VieN,geG,peP (46)
ﬂingO VieN,geG,peP (47)
0;p and djy) 20 VieN,geG,peP (48)
Wiy 20 VieN,geG,peP (49)
aipZO VieN,geG,peP (50)
Yign,kp 20 VieN,geG,m, eM, keK,peP (51)
Osrligpﬁl VieN,geG,peP (52)
0<ryy, <1 VieN,geG,peP (53)

In the objective function (2) the first term is the transport costs, which is comprised of two parts. The first part
computes total transport costs related to passing no failed links. The second part calculates the moving costs of the
failed vehicles from the beginning node of the failed link to the failure point and from the service centre to the next
retailer and carrying costs from the failure point to the service centre. The carrying costs are calculated as p
(average travel cost / carrying cost from a failure point to the service centre for the vehicle type k €K) multiplied by
I";j (the distance between failure point to service centre). The moving costs of the failed vehicle (i) from the
beginning node of the failure link to the failure point and (i) from the service centre to the next retailer are
calculated. The calculation is based on the distance from network nodes to potential vehicle points in network (I';)
and surplus distance, which a vehicle (after being repaired in the service centre) should pass to the next retailer ().
The next two terms denote inventory and backlogging costs, respectively. The forth summation calculates the fixed
cost of each tour. The fifth term deals with the time window violation penalty cost. The last summation stands for
the repair costs in service centres.

Constraints (3) ensure that each retailer must be visited only one time by all the vehicles and vehicle types in
each time period. Constraints (4) and (5) are degree constraints and sub-tour elimination constraints, respectively.
Furthermore, constraints (5) ensure that all routes should be started and ended from/to the depot. Constraints (6)
force the capacity limit for the vehicles. Constraints (7) represent that if vehicle m, € M, of type k €K never visit
retailer i €N, the vehicle cannot have any delivery to the retailer; otherwise the vehicle’s capacity must be

observed. Constraints (8) calculate the order value, and constraints (9) forecast the demand of product g G for the

next period. Constraints (10) impose that the delivered product g €G to retailer i €N should be equal to the order of

the customer registered in the previous period. Constraints (11) limit the customers’ order capacity. Constraints

(12) are about the inventory balance imposed on the net stock and shortage of retailers in each period. Constraints

(13) ensure that the warehouse capacity of retailers is considered. Constraints (14) find the departure time of

retailers in each tour. Moreover, constraints (15) calculate the arrival time to network nodes in each tour. Note that
13



we use a discrete time index t in the model. Then, we use continuous functions for vehicle failures. The model
checks this according to the time set T (t €T). In other words, we discretise the continuous time using the set T and

only check the vehicle failures at these times. Otherwise, on a continuous time, there would be infinitely many

index t, which could not be solvable. According to the value of cumulative exponential distribution (Amkktp) and the

random value (7, ,) for each time interval t €T, time period p €P and vehicle m¢ € My of type k €K, the prone

situations (Vy, ;) of vehicle failure are calculated. Conditions (54-56) mathematically demonstrate the process of

finding these situations.

Amkktp =1—e_/1mkkpt vm, eM, keK,teT ,peP (54)
mGktp(Amkktp_ﬂmkktp)ZO vm, eM, keK,teT ,peP (55)
(l_vmkktp)(Amkktp_nmkktp)go vm, eM, k eK,teT,peP (56)
Win kip = U kip vm, eM, k eK,teT peP 57)

Constraints (55)-(56) impose that a vehicleM, € Mk of type k €K can be failed only if the probability of the

vehicle failure exceeds the failure threshold. An additional binary decision variable Vi, \, is presented so that the

vehicle m, € My of type k €K may be prone to failure in period p €P. Constraints (57) represent the time interval
that vehicle m, € M, of type k €K may be prone to failure in period p €P. According to conditions (58), a vehicle is

prone to fail based on routing decisions and Vy, \, - In this regard, if the computed time interval for vehicle my € M

of type k €K in period p €P, which was prone to fail based on cumulative exponential distribution, is between its
departure and arrival time from/ to depot, then the vehicle is prone to fail based on routing decisions.

H ! " 14
if tOmkkp < tmkktp +e<t

Om, kp then Vv’ 1 vm,eM, keKiteT, peP (58)

myktp =

Constraints (16)-(20) present the modified equivalent of Conditions (58). Constraints (21) ensure that no more
than one vehicle failure can occur in a tour. Additionally, constraints (22) indicate that if one or more prone vehicle
failure points exist in a tour, one of them must be selected as a vehicle failure point.

Conditions (59) and (60) help to find the location of vehicle failure points in all time periods. It is noted that
we just know the tours which have a failure points (ﬂmkktp) and the time interval that the vehicle failure was occurred
(t,’{;kktp). Accordingly, Conditions (59) identify the network nodes in the corresponding tour in which arrival time

to them (which is computed without assuming failure point based on constraints (15)) is after occurring the vehicle
failure point. Therefore, this node can be the end node of the link having a vehicle failure (W}mkkp =1) . Then,

based on the nodes found through Conditions (59), Conditions (60) identify the link in the corresponding tour,
which, terminating to one of the found nodes and the departure time from its originating node (which is computed
without assuming failure point based on constraints (14)), is less than the time interval that the vehicle failure point

occurs at. In this regard, constraints (23)-(26) present the modified equivalent of conditions (59) and (60).

if ;tr’;kktpﬁmkktp St +e  then  wi,, =1 VieAm eM, keK,peP (59)
i Xm0 Wimg kplimkp < ;tr’;;kktp By then X =1 VijeAm eM keK,peP (60)
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Constraints (27) calculate the arrival time to retailers considering vehicle failures. These constraints are
comprised of four different terms. The first and second terms represent the arrival time to the exact prior node of
retailer j which was visited. If this prior node is the depot, then the first term is used. Otherwise, the second term

must be used. The second term considers the replenishment time because it is a retailer node rather than a depot.

The third term is used if the link reaching to retailer j is a sound link (xi’jmkkp =0) and calculates the travel time

on this link. Finally, the forth term is designed to calculate the travel time on the link if it has a failure point. Hence,
in the fourth term, the travel time from beginning node to failure point, travel time from failure point to service
centre, repair time in service centre, and travel time from service centre to retailer j must be considered instead of
travel time on the link. Constraints (28) illustrate that the working time assigned to vehicle k should not exceed the
limit. According to this equation, the vehicles should come back to the depot during working time. In this regard,
the first term of constraints (28) finds total travel time to the last retailer in each tour, and the second and third
terms compute travel time between the last retailer and the depot. Constraints (29)-(33), a modified form of
Condition (61), apply the time window violation penalty cost incurring when the arrival time to a node does not
meet the considered time window. In other words, constraints (29)-(32) present the position of arrival time to node |

in its related time windows, and constraints (33) calculate the violation penalty cost. Binary decision variables §ip

are added to transform the if-then conditions (61) to constraints (29)-(33). Constraints (34)-(53) impose the type of
variables.

Lep (8p —ip), if A <€

’ .
F ip= 0, |f elp < O{Ip < Tlp

p
VieN,peP (61)
L (g —7ip)  1f 735 <y

There are non-linear relations such as objective function, constraints (8), (15)-(20) and (23)-(33); some of them
cannot be linearised. Of course, the mathematical model can be solved on a commercial optimisation software
product to find a local optimum solution (not global) but this cannot necessarily provide a reliable upper bound for
the objective function.

Another issue is that, we use a random parameter generated from a uniform distribution, and by comparing this
value with the cumulative probability function of exponential distribution, we decide whether a failure is going to
happen or not. However, the random parameters again need to be generated before the model is solved and the
result of the model will depend heavily on the generated random parameter.

We suggest an approach for finding the best solution according to the amount of expected risk (probability x
consequence) that a decision maker can tolerate. Our definition of probability is the chance of having some vehicle
failures equal to or greater than a specific number along the considered time period. The probability can be
extracted from related historical data or estimated with a distribution probability function. For instance, Figure 4
shows the corresponding probability in a network. Our definition of consequence is the difference between the
objective of the worst-case scenario and the objective of the corresponding scenario (in terms of total cost). In order
to compute the consequence of different scenarios, some steps should be taken. At the first step of calculating the
consequence, the decision maker generates many random parameters and solves the model many times. Obviously,
every time the model is solved, it may return a different solution depending on the random parameter used. At the

second step, in addition to the different solutions, the decision maker needs to determine the most optimistic and
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pessimistic solutions. The most optimistic solution will occur when no vehicle failures happen in all periods. By

assuming that all the random parameters are equal to one, the most optimistic solution will appear.
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Figure 4. Probabilities of having a number of vehicle failures in network.

On the other hand, the most pessimistic solution is the solution that all used vehicles in all periods experience a
vehicle failure in a location which has the furthest distance from the service centre. If all the random parameters
equal zero, all of the used vehicles will have a vehicle failure and the most pessimistic solution will be obtained. At
the third step, by subtracting the amount of each solution’s objective of the pessimistic solution’s objective, the
consequence of them will be resulted. Because each solution has a discrete number of vehicle failures, apart from
having no vehicle failure in the network (optimistic solution), a range of consequences may occur for any number
of vehicle failures. For instance, Figure 5 shows the consequences of the solutions obtained for different numbers
of vehicle failures. Finally, the decision maker can calculate their expected risk by multiplying the consequence of
the solution and the probability of the solution. Figure 6 shows the expected risk of all solutions.
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Figure 5. Consequences of having a number of vehicle failures in network.
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Figure 6. Risks of having a number of vehicle failures in network.

In addition to our proposed approach for finding the best solution in an uncertain model, there are some other
techniques to tackle such problems. We also suggest robust optimisation introduced by Mulvey et al. (1995) to be

used in large-scale systems. Interested readers may refer to Mulvery et al. (1995), Leung et al. (2007) and Yu and
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Li (2000) to see a brief description of this technique. There are several other possible approaches proposed to

handle the probabilistic parameters. Some of them are as follows:

1) The scenario-based optimisation method is based on some random instances of the uncertain parameter(s) to find
the optimal solution where only the constraints are associated with uncertainty (Schildbach and Morari 2016);

2) Monte Carlo Simulation runs as an estimate of an actual system as one of the most popular tools to analyse
uncertainty aspects (Fu 2002);

3) Simulation-based optimisation methods provide the flexibility to accommodate arbitrary stochastic parameters
(Wan et al. 2005);

4) Fuzzy mathematical programming approaches are classified into two major groups: (i) possibilistic
programming used when there is a lack of knowledge about the exact values of the model parameters (Inuiguchi
and Ramik 2000); and (i) flexible programming applied to cope with flexible target value of goals and
constraints (Mula et al. 2006).

In terms of risk attitude, we assume a risk-neutral decision maker but the model has also the ability to produce
solutions for risk averse and risk seeking decision makers. Accordingly, we solve the problems only for a known

set of random parameters to generate an optimal solution for a risk-natural decision maker.

4. PROPOSED SOLUTION ALGORITHMS

According to Aghezzaf et al. (2006), the IRP belongs to the class of nondeterministic polynomial time (NP)
problem. Considering the vehicle failure and the time windows issues in the IRP model, the formulated problem is
computationally complex. Therefore, the heuristic approaches to solve these types of large-scale problems
inevitably become the only possible alternative (Nguyen et al. 2012). Moreover, the model is nonlinear and
noNconvex.

We develop four algorithms based on an adapted social-based metaheuristic approach that combines the
evolutionary algorithm (EA) and socio-political process-based methods (Ramezani and Lotfi 2013). We have
adapted a traditional SBA with some considerable changes and introduced it as a metaheuristic named adapted
SBA (ASBA). To improve the performance of ASBA in the proposed problem, four scenarios are considered
regarding its construction.

We show that our developed metaheuristic algorithms obtain near-optimal solutions within reasonable time.
The algorithms minimise the total cost through: (i) determining the best routes that vehicles should pass through;
(i) directing vehicles with high failure potential to the service centre via the near passes; (iii) determining the best
inventory level in retailers’ stores in order to find the best trade-off between storage and backlogging costs; and (iv)
identifying the sequence of retailers to be served by vehicles within the given time windows. In the following
subsections, ASBA as a novel approach is presented comprehensively.

4.1. Encoding scheme and vehicle failure-related calculation

As this section is the same in all algorithms, we added the vehicle failure-related procedure in this section. In the
proposed model, there are two types of variables: auxiliary and decision variables. The auxiliary variables are used
for arrival time, distance between failure point and node, distance between failure point and service centre, net
stock and shortage at the retailers, distance travelled by a vehicle and distance travelled by the failed vehicle.

Binary variables are used for presenting the vehicle failures calculated in the solution process. The decision

17



variables should be considered in the structure of the solution. Figure 7 presents a schematic illustration of the
structure of the encoding process in each period.

\_ Net stock correction constant decided by customers WIP correction constant decided by customers )

Figure 7. A graphical representation of the structure of encoding process in a period.

The first part is related to the sequence of the retailers to be met by the vehicles covering the standard decision
variables in the VRP (Homberger and Gehring 1999) and IRP (Moin et al. 2011). In other words, the related

decision variables are Xiju ko, Zim,kp andYignk , respectively. The second part is used to assign the retailers to the

vehicles and is related to multiple-vehicle issue (Govindan et al. 2014). Each number in the second section
represents a vehicle that meets the retailers. For instance, the second vehicle serves the first and third retailers.
Accordingly, a matrix with |[TNV| elements (TNV is the total number of vehicles from different types) is
constructed. Each number represents a related vehicle. The third and fourth parts indicate the net stock and WIP
correlation constants (i.e. ry;, and ry;,, respectively) determined by each retailer for each product in each time
period.

To enable the continuous metaheuristic algorithms such as PSO to solve this discrete problem, the random-key
(RK) technique is applied. An encoding scheme, RK has been frequently used in solving discrete problems with
continuous approaches (Chang et al. 2009; Tavakkoli-Moghaddam et al. 2009). RK is applied to parse the primary
solution. Accordingly, as illustrated in Figure 8, a matrix of |[N| elements, each from a uniform distribution U(0,1) is
generated so that the RK demonstrates the sequence of retailers that should be met. For instance, the encoded
solution (1) {0.78, 0.85, 0.38, 0.49, 0.23} represents the parsed solution (2) {4, 5, 2, 3, 1} calculated by sorting the
encoded solution. In the second sub-solution, the vehicles are assigned to retailers. Accordingly, a matrix with |N|
elements each from a uniform distribution U(1,TNV) is generated where the RK illustrates the desired vehicle for
each retailer. For example, the encoded solution (3) ({2.32, 2.78, 1.85, 1.07, 2.61}) represents the parsed solution
(4) ({2,3, 2, 1, 3}) acquired by rounding the encoded solution.
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Figure 8. A schematic illustration of the RK technique in the first and second sub-solutions.

Vehicle failure imposes additional repair and carrying costs on the total cost and also increases the working

time of the failed vehicles. The developed algorithms calculate the mentioned added costs and times through
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“vehicles failure-related calculation procedure”. As this procedure is performed in all developed methods, it is

presented in this section. The pseudo-code of vehicles’ failure-related calculation procedure is presented as Figure
Al (Appendix). When the Amkktp (as CDF of vehicle failure) exceeds 77, ,, (Which is generated through a

continuous uniform distribution [0, 1]), the vehicle may fail at time t if it has not failed in previous time intervals.

Amkk[p is a strictly increasing function; i.e. the probability of vehicle failure increases over time in each period and

sets to zero again for the first time interval of the next period. In this regard, the algorithm finds the failure location
(corresponding link has a failure point) at time t according to the arrival and departure time to/from network nodes
in the corresponding tour. Then, the distances between the selected failure point and prior node, the failure point
and service centre as well as the service centre and the next node are calculated. Finally, the total moving and

carrying costs and also repair costs of the failed vehicle are calculated.

4.2. Initialisation procedure

The initialisation process is used to generate the nPop sample solutions as the first population. In this paper, the
initialisation process introduced by Liu and Lee (2011) is used to randomly generate the initial solutions from the
feasible space. According to our primary experiments, this initialisation process can reduce the computational time
of different methods. The procedure of determining the initial solution is presented in Figure A2 (Appendix). This
initialisation process is constructed based on the assimilation concept known as vehicle load assimilation (VLA). In
this regard, first of all, the required number of vehicles to satisfy the total received orders is calculated and then the
received orders are assigned to the selected vehicles so that the vehicles carry the load with the same
capacity utilisation rate. Therefore, the VLA provides an initial solution so that the retailers are assigned to vehicles
based on the concept of assimilation; the rest of the decision variables used in the model are generated randomly.

4.3. Adapted social-based algorithm (ASB A)
The social-based algorithm (SBA) was first introduced by Ramezani and Lotfi (2013) as a continuous algorithm.
This method was constructed based on an evolutionary algorithm (EA) and socio-political process represented in an
ICA. Although the EAs have been known as popular algorithms for their many interesting properties and have been
widely applied in a variety of optimisation problems (Back et al. 1997), they might be incapable of obtaining an
optimal solution in some problems (Grosan and Abraham 2007). Accordingly, the hybridisation of EAs with other
algorithms as part of a larger system may lead to a very powerful search algorithm, which is able to handle the
variety of problems in finding more qualified solutions (Grosan and Abraham 2007; Ramezani and Lotfi 2013).

ICA, which was introduced by Atashpaz-Gargari and Lucas (2007), is considered one of the cutting-edge EAS
in the field of evolutionary computation. The evolutionary optimisation strategy used in ICA has been revealed as
high performance in many NP-hard problems because of two aspects: (i) its convergence rate; and (ii) obtaining the
global optima achievement (Aghezzaf et al. 2006). The algorithm benefits from the relationship between empires
and colonies and imperialistic competition among these empires to finally converge to a state in which there exists
only one empire as the best solution (Mozafari et al. 2012).

Obviously, EA and ICA have different optimisation perspectives. Therefore, the combination of these two
algorithms can provide us with a more powerful method (i.e. SBA) as a novel hybrid algorithm that benefits from
the eligibility of both algorithms. The concept of person in SBA is similar to the chromosome concept in GA

terminology and the particles in the PSO method, which is actually an array of candidate solutions.
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4.3.1. Social communities in SBA construction

In a human society, people from different walks of life can evolve a community. They construct different
communities in their countries. Each person in considered an N-dimensional optimisation problem (i.e., 1xN array)
as follows:

Person; = P; =[Pi1: Piz:---» Pin] (62)
where p; is the variable that should be optimised. The cost of a person is calculated using a cost function of the

variables [ as c; = Cost(person; ) = Cost(p, ) - In this algorithm, four types of community are used:

¢ Republic, where the best personis chosen as the president for a certain period of time;

e Autocracy, where a person without any credibility is selected as the leader whom people do not try to obey;

¢ Monarchy, where the powerful person is considered as the monarch whom the people are obliged to follow; and

e Multinational where communities are constructed based on a symbiotic relationship of countries that cooperate
and transact with each other. Interested readers seeking more details of SBA can refer to Ramezani and Lotfi
(2013). After some iteration, a global war iteratively occurs for the preservation of premature convergence. In
the end, just one imperialist will survive. The framework of the proposed ASBA is described as follows.

4.3.2. ASBA Initialisation
The algorithm starts with generating the initial N, as people through the VLA procedure. Then, the most powerful
people, N, (people with minimum cost) are chosen as the leaders and the remaining people shape the people of
these communities. The people are distributed among countries as their citizens based on the leader’s power. Four
different types of ASBA initialisation process are used as follows:

ICA-Based (IB) is developed based on original ICA initialisation. Accordingly, a number of countries that have
Nimp most powerful countries (countries with minimum cost) are chosen as the imperialists. The leader countries
proportionally absorb the rest of the people based on their powers. As illustrated in Figure 9, the more powerful
empires can absorb the greater number of countries. A detailed and completed review of the ICA is presented
byAtashpaz-Gargari and Lucas (2007). This is referred to as ASBAg in the results.
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Figure 9. Generating the initial empires and countries: imperialists possessthe countries based on their powers.

Classification-based (CB) is constructed based on the geographical determinism concept. In other words,
people live in geographical positions and have to obey their local governments. In CB, the initialisation of the
people are classified based on the nearest Euclidean norm of distances with their imperialist (Ramezani and Lotfi
2013). Itis referredto as ASBAcg in the results.
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The Frog-based (FB) process uses an initialisation process introduced in the shuffled frog-leaping (SFL)
algorithm (Eusuff and Lansey 2003). People are considered as an SFL population consisting of a set of frogs
(solutions) partitioned into subsets referred to as memeplexes (Afzalan et al. 2012). For a meticulous and
comprehensive review of SFL algorithm, readers are directed to Afzalan et al. (2012). This is referred to as
ASBAgs in the results.

Hybrid-1CA-frog-based (HIF) process combines the probabilistic idea used in ICA with the ordering idea used
in SFL to assign the sorted people to each country based on the described power (Ramezani and Lotfi 2013). It is
referred to as ASBAy e in the results.

The total power of a country is mainly affected by the power of the leader while the power of the people has a

diluted impact on the total power of that country. Therefore, the total power of a country is defined as follows:

TR = Cost(Leader; ) + Smean{Cost(People of country; )} (63)
where & is a positive number less than 1. The total power of the country is determined by the leader when the

value of &£ is small; however, as the value of & increases, the role and power of the people becomes more
important.

Once initial empires are formed, the evolutionary algorithm operators (EAQ) such as selection, crossover and
mutation are used in each decade to improve the people of each country. The total number of decades is shown by
Ng. The mutation procedure is performed on people of all countries, while the crossover procedure is randomly
done to mate the people, leaders and empires with each other. The percentage of population carried out in the
crossover is shown by P.. It is also performed to maintain diversity in the population and preservation is carried out
to stick to local optimal solutions (Arumugam and Rao 2007). Mutation is carried out on P, fraction of the
population. In this paper, the roulette wheel selection (RWS) procedure has been applied to select the population of
crossover and mutation. Figure 10 illustrates the procedures of mutation (sections 1 to 4) and crossover (sections 5
to 9) used in this algorithm. Finally, the new solutions are evaluated and placed in the population based on the
quality of their objective functions.
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Figure 10. Crossover and Swap, Reversion and Insertion Mutations (“Pop” stands for population).

Since the solution has several parts, some schemes are considered to handle this issue. We considered lots of
mutations and crossovers on different parts of solutions randomly. This process has two steps:
e First step: Selecting the current solutions: Either a leader or a random person is selected to use the mutation
operator. One person or two and the leader are selected randomly to use on the crossover operator.

e Second step: Selecting a part(s) from the structure of the solution: One part or more of the solution are selected
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randomly to be changed by an operator. For example, part (1) of a solution is selected and the sequence of

vehicles is changed to produce a new person(s). Then the new solution(s) is (are) considered for the revolution

process.

In monarchy countries, the countries of the empires start to move towards their relevant imperialist. This
movement is a simple model of an assimilation procedure applied to some imperialists. Revolution brings some
sudden random changes in the positions of some countries. In each country, the new people with lower cost than
the leader are swapped with the leader. Similarly, this process is applied to each empire to select a better leader as a
new empire. All empires try to take possession and control of the colonies of other empires. In this rat race, the
power of the weaker empires gradually reduces and that of the more powerful one rises. Accordingly, one of the
weakest countries of the weakest empires is picked and possessed among the empires based on empires’ total
power. In this regard, the RWS method is used for assigning the people or countries to the country or empire. Two
types of assimilation are used as follows.

4.3.3. External revolution operations (ERO)
EROs are applied to the countries with revolution probability (P.). The assimilation process is accomplished just on
the monarchy countries of each imperialist. The country’s movement toward an imperialist means that all the
people in these countries move in the same way towards the empires. As illustrated in Figure 11, the leaders move
toward the empires by x steps. The new position of a leader is calculated as follows:

x ~U (0, Cof,, xd) (64)
where x is a random variable distributed uniformly between 0 and cof , xd . Cofe, is the external assimilation

coefficient greater than 1; d is the distance between leader and empire.
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Figure 11. The external and internal assimilation procedure.

The countries do not move directly towards their empires. They move with a deviation of & ~U(-4,4) from
the connecting line between the country and its imperialist by x units to increase the search area. Estimating 4 as
n/4 (rad) usually leads to a continuous convergence of the countries to the global optimum (Ramezani and Lotfi
2013). The revolution occurs in all the countries. As the revolution is against the empire in monarchy countries, the
people of a country should move the same way.

4.3.4. Internal revolution operations (IRO)
IROs are performed on the people of each country with revolution probability (P;). This assimilation is different in

multinational communities and is implemented in two steps. Firstly, each person in the i" country moves its it

22



position toward the it position of its leader as X ~U (O, Cof,, Xdi). d; is the distance of the i*" position of a person to

the it" position of a leader and Cof;, is the internal assimilation coefficient, which it is greater than 1.
The assimilation procedure occurs in all countries to direct the people toward the leaders, and the revolution
procedure is applied to all countries to improve the position of the people. The internal and external forms of

revolution are shown in Figure 12.
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Internal revolution External revolution
Figure 12. Internal and external revolution procedures.
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4.3.5. Global war

ASBA benefits from the global war procedure as a universal phenomenon that affects the construction of both
countries and societies simultaneously. After a number of iterations, a global war (lgw) is introduced to produce a
new population equal to the initial size of population for the preservation of premature convergence (Rabiee et al.
2012). Then, the new population is merged with the old population. Then, the unified population is sorted in
ascending order based on cost functions. Subsequently, a number of populations equal to the old population are
selected. This process is iteratively repeated a number of times (Ngw). In this paper, the stopping criteria or end of
ASBA is considered when there is only one empire for all of the countries. The pseudo-code of ASBA is illustrated

in Figure A3 (Appendix).

5. DATA GENERATION

There are a lot of test instances in the literature of the VRP such as Cordeau et al. (2001), Dondo and Cerda (2009)
and Liu and Shen (1999), which consider the usual inputs such as positions of depots, demand of customers, time
windows, capacity and number of vehicles. In our research, we consider an OUT policy in the replenishment
process including forecasting and inventory management. Moreover, vehicle failure is the main contribution of this
paper and its related data are not considered in any of these test instances. Additionally, the following inputs are not
considered in any of these popular and publicly available test instances: The position of vehicles at failure point
(x and y coordinates); Position of service centre; Average travel/carrying cost of a failed vehicle; Fixed
repair cost; Target net stock; Target WIP; Shortage cost of per product; Holding cost of products;
Inventory capacity of retailer; Average speed of moving to a failed vehicle; Time to repair vehicle; and
Parameter of exponential distribution for vehicle failure.

Therefore, the existing databases may help only partially and calculated objective functions cannot benchmark
our algorithms; we have to generate lots of parameters. Therefore, we decided to generate some new numerical
examples for this problem. Twenty-four random problems are generated to analyse the proposed methods. These
problems are classified into three groups to analyse the capability of the algorithms in different sizes: large,

medium, and small. In each test problem, there is a distribution network consisting of a depot, set different vehicles
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of various types (MK) and a set of retailers that order G types of products. The depot and retailers are located in a

geographical area of U(0,100) randomly. The number of time periods is 100. The test data and information

generated for the problems are presented in Table 3. In addition, w4 is assumed as the average vehicle capacity.

Gig Is equal to the inventory capacity of the retailers considered for each product. « is assumed to be 0.25. Ak

which is uniformly distributed in range (0.02, 0.5) and P, is uniformly distributed as U [0.95, 0.98].
Table 3. Factors and their levels.

Factors Lewels
Prob. #1: (4x1x2) Prob. #5: (22x5x3)
. Prob. #2: (6x2x2) Prob. #6: (30 x6x4)
Small size
Prob. #3: (10x3x3) Prob. #7: (38x6x 4)
Prob. #4: (14x4x3) Prob. #8: (48x8x4)
Prob. #9: (72x10x5) Prob. #13: (130x12x6)
i . Prob. #10: (92x10x5) Prob. #14: (145x14x6)
(N xMKxG) Mediumsize o\ 411: (104x10x5) Prob. #15: (16014 x6)
Prob. #12: (115x12x5)  Prob. #16: (175x15x6)
Prob. #17: (210x15x8) Prob. #21: (27018 x 8)
Large size Prob. #18: (224x16x8) Prob. #22: (288 x 20 x10)
Prob. #19: (240x16x8) Prob. #23: (305x 20 x10)
Prob. #20: (255x18x8) Prob. #24: (320 x 24 x10)
Demand ordered by retailers (digp) N(100,20): Normal distribution (u,0)

Average cost of travelling (Cx) U (0.5,1.5)
Average costof carrying the failed vehicles (p, ) U (5,15)
Waiting penalty cost () U (1,5)
Lateness penalty cost (")) U (5,10)
Shortage cost of each unit (bigp) U (4.5,12.5)
Holding costof each unit (higp) U (1.5,3.5)

The fixed costof the vehicle (fip)

The fixed repair cost (y,,)

qxxU(10, 50)
qkxU(40, 100)

The average speed (umkkp)

The average speed for the failed vehicles (}/mkkp)

ming < (U (8,12)/q, )

ming  x(U (1L4)/q, )

The replenishment time (g

imkkp)

The vehicle repair time (g, ,.)

U(0.02, 0.05)xW
U(0.12, 0.25)xW

Earliest arrival time (eip)
Latest arrival time (zip)

U(0.1, 0.85)xW
eip+U(0.05, 0.15)xW

The inventory capacity of the retailers for each product ((ﬂig) is estimated as follows:

0, :Zdigpxu—%Ar) , VieN,geG

peP

k KP

(86)

In order to determine gy, the maximum of summation of total demands in all periods is calculated and then

ﬂ«k is generated as a random coefficient of each vehicle type k based on uniform distribution of U[1, 10].

Finally, the capacity of vehicles is estimated as follows:

O

min

Q. =

PIDIPILICEYD)

mean _ pePieN geG

P

Xz&(,

k eK

[(1-0)xai™" ] and g™ =[(1+8)x qf*"

g =U (@™, q"™),
where pand O are coefficients with U[0, 0.1] and U[0, 0.1], respectively. W is considered to be eight hours a day.
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6. PREPARATION AND VALIDATION OF SOLUTION ALGORITHMS

In this section, we conduct an experiment to find the initial solution. Then, parameter tuning is performed. After
that, the validation approaches for proposed solution algorithms are introduced. Finally, the results of the validation
are presented. Note that we implement the algorithms in MATLAB 2013a software product and run on 3 parallel
2.6 GHz PCs with 2GB of RAM.

6.1. Evaluation of the proposed initial procedure

VLA as the developed initial procedure is evaluated. In this regard, the assignment procedure used in the
initialisation process is performed through GA. As illustrated in Figure 13, VLA can help algorithms to find the
optimum solution with lower CPU time. Consequently, the VLA can provide the algorithm with more qualified
initial solutions, which may find better solutions based on their capabilities in a shorter time. This scheme can be
useful especially in large-scale problems and can help to save a great deal of time.
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Figure 13. Effect of VLA on the bestcostand mean cost of population over the different iterations.

6.2. Parameter tuning
The efficiency of metaheuristic algorithms depends significantly on choosing values for their parameters.

Parameter tuning can eradicate premature convergence, deepen searching around interesting regions, and increase
diversity in the search space (Behnamian and Fatemi Ghomi 2011). Therefore, this process can improve the
performance of algorithms through determining miscellaneous parameters before the final runs. In this paper,
response surface methods (RSM), introduced by Box and Wilson in the early 1950s, are used to determine the
values of the parameters (Myers et al. 2009). We use the polynomial response surface function (y) introduced by
Neter et al. (1996) to find the optimal values of parameters and save time.

RSM as one design of experiments (DOE) methods considers a lower bound (X)) and an upper bound (X;) for

each variable. The number of experiments (Ng) contains 2’ factorial points (n;) or a fraction of it (i.e. 2™* or 272

(Montgomery and Myers 2002)) (2J) axial points (nax) coded as 1, and N, central points for each algorithm

as illustrated in Table 4. As presented in Table 4, when the number of factors like ICA, SBA, HGS, and ASBA is
too high, a fraction of factorial points are considered (Myers et al. 2009). For instance, there are eight factors in the
problem for ICA, which lead to 28+16+10=282 experiments in the full scheme. As the number of experiments is

too high, we can use 1/4 fraction scheme, which results in only 28-2+16+8=88 experiments.
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Table 4. Levelof factors in the algorithms with the number of experiments.

Algorithm Factors and their lewels (X;,Xp) Ng = (N Ngx ,ncp)

ICA nPop N|mp Maxdc é Pas Pr lew New 88:(28'2,16,8)
(100,200) (4,8) (100,200)0.03,0.05)/0.2,0.4) (0.2,0.4) (40,100) (1,2)

SBA nPop Ncountry  Nimp é: N Pi Pe 88:(27'2,14,10)
(150,300) (20,40) (4,8) 0.03,0.05)100,200 (0.2,0.4) (0.2,0.4)

nPo i Max;

Hes | Maxlt P_P _ Pn  LSHer e To T 88=(2216,8)

(80,120) (60,100)0.62,0.72(0.2,0.34) (50,80) (4,8) (10,20)  (0.001,0.01)
MaxIt nPop L Siter (93

HPV (300,600) (40,100) (8,12) 20=(2.6.6)

AS BA nPOp Ncountry Nlmp 5 Nd Pi Pe IGW NGW 70:(46,18,6)
(100,200) (20,40) (4,8) 0.03,0.05)100,200 (0.2,0.4) (0.2,0.4) (40,100) (1,2) Min Run Ress V

Note that the impact of different strategies in the parameter tuning process of ASBA (i.e. ASBA g, ASBAcz,
ASBAr and ASBAr) in our experiments is neutralised by considering them in different blocks. HGS parameters
include MaxIt, nPop, P, P, LSiter, MaXip, To and Tr. Furthermore, HPV parameters include MaxlIt, nPop and LS;ie..
Lastly, Maxdc, P,s and Py are the input parameters of ICA.

Since we intend to simultaneously analyse the effectiveness and efficiency of the algorithms by RSM, a
multiple objective decision-making (MODM) problem is used to estimate the input variables by producing the
desired response based on different objectives at the same time. Accordingly, in this paper, a utility function d;(Y;)
provided by Derringer and Suich (1980) is used to optimise the multiple responses. This technique estimates the
appropriate parameters from the objective function and CPU time concurrently. d;(Y;) is calculated as follows:

di(Yi):(:f:E] L <Y, <H,

where d;(Y;) represents the utility function of Y(i), which is the response functions in the form of minimisation. L;

(90)

and H; are the lower and upper bounds, respectively. S is the severity of d;(Y;) by, which the decision maker can
consider various weights for different goals. The severity value can be selected between 0 t010 (a higher severity
means more emphasis on the goal). In this paper, the parameters of S for the objective function and CPU time are 3

and 1, respectively. The desirability of the obtained response can be calculated by the following equation:

D:m/dl(yl)XdZ(VZ)x"'de(ym) (91)
where m is the number of objective functions. The tuned values for parameters, R-squared (R?) and desirability (D)

are estimated and reported in Table 5.

Table 5. Tuned parameters, R-squared (R?) of objective function and CPU time and desirability (D).

. R R
Algorithm Tuned parameters Objective function| CPU time D
ICA PopSize — 192, N, — 7, Maxdc — 198, & — 0.038, P, — 0.34,P, — 0.32,1¢,, — 84, N, — 2 76.2% 78.4% | 0.938
SBA PopSize = 284, N, =36,N, =8 &=0046,N, =192, P, =0.36,P, =04 71.8% 745% |[0.875
HGS Maxlt =112, nPop = 92, P, = 0.68, P, =34,LS, = 64,Max = 6T, =16.6T, = 0.006 82.5% 79.4% | 0.982
HPV Maxlt = 546, nPop = 96,LS, =12 62.6% 71.3% | 0.842
ASBA PopSize = 192, N (.. =32,N =8, & = 0.042, N , =184, P, =0.36, F, = 0.32, I, =86, N, =2 68.2% 68.8% | 0.864

As illustrated in Figure 14, the most important interactions (the highest partial R?-square (P,.s)) of ASBA are
4.37% between Neoyniry and & and 3.2% between P; and Iy over the objective function and also 11.21% between
Ngw and Ny, and 1.26% between Neouniry and Ng over CPU time.

26




33140
34100

w
]
®
&
S

Vo,
A 4 0y @
35725 | R Vo LA AL
T 42 CIPALTALTALT
N SR,
A N NN 5 2 s 0 0
NN o 0o 00 gy s
NN et
e oo o0
Nttt o O L
RSO ool oo o014
ey
25552

SSSe s

=
S
o

SR

S

SR S R

S SO

32570 0‘:‘.:.‘0‘:.
T

e

XX
o
K

(S
X 0.:.¢

32380 =

&
&
"

o
(25
%

Objective function
0
Objective function

Ncountry 00 |,m“ 5 i ) -1.00 7-1.00 IGW
(@) The interaction between Ncountry and & (b) The interaction between P; and lgw

Ay
N

A
i
i

N
NN
NN
o RN
“"\\‘,
SN

4
o
4

4
&
0

Wy

A

Rt

At

i
KK
s

3
>
)

0

o
i LTCL
o
Y e
R 7 e L o
i s g s
3415 G S
’;’;;;/’IIII;IIIII;;"“:&“::
L """
336.25 <

A
AR
XARAY
a8
o
XA

"

R
Rk
AN RN
RN
AN R
S SRR
N

L

QR ER S e >
S,
Seu
R

A
LA
2

CPU time
%

o

S
P e
Rt

=3 =
S TaE SRS

NGW 00— 050
N Imp

1.00  1.00

NCountry

1.00  1.00

(c) The interaction between New and Nimp (d) The interaction between Ncountry and Ng
Figure 14. The most important interactions in parameters of ASBA over objective function (a,b) and CPU time (c,d).
6.3. Validation Approaches
The proposed mathematical model in Section 4 is complicated so that even solving it exactly for small- and
medium-sized cases is impossible. Accordingly, we evaluate the efficiency of proposed algorithm by two
approaches: (1) validation based on a lower bound and (2) validation based on previous solution benchmarks. For
these aims, a comparative performance measure, namely relative percentage deviation (RPD), is defined and

calculated as follows:

Alg., -LB
RPD = gS"L'—B x100 (66)
Where Algs, is a value obtained by a given algorithm and LB is a lower bound of the given problem. The LB is

used instead of the best value among the algorithms especially for the second validation.

6.3.1. Validation Based on Previous Solution Benchmarks

In the literature of IRP, four well-known solution algorithms are existed which are our benchmark methods. Our
validation approach is done through a comparison process among the solutions of them and benchmark methods.
We have considered four benchmark methods as follows. Social-based algorithm (SBA) as an effective population-
based approach (Ramezani et al. 2015) and a basic approach of ASBA. Imperialist competitive algorithm (ICA) as
a popular effective population-based approach, which has significant strength in solving many real-world
permutation problems such as scheduling (Rabiee et al. 2012) and the VRPs (Wang et al. 2011). Hybrid GA and SA
(HGS) are considered an effective method in routing problems integrated with inventory approaches (Karaoglan
and Altiparmak 2010). The popular traditional approaches GA and PSO, two original methods of HGS, are
considered the best evolutionary methods and swarm intelligent algorithms from population-based methods,
respectively (Beheshti et al. 2014; Cheng et al. 2017). HPV developed by hybridisation of particle swarm

optimisation (PSO) and variable neighbourhood search (VNS) is another effective approach in the IRP (Liu et al.
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2016). SA and VNS, two basic methods of HPV, are considered as the best trajectory methods in permutation
problems (Liu and Lin 2005; Popovi¢ et al. 2012).

In summary, overall we are dealing with eight algorithms: 1) four ASBA-based algorithms (i.e. ASBA with
four scenarios); and 2) four benchmark algorithms, namely ICA, SBA, HGS and HPV. Note that the other basic
and traditional metaheuristics such as GA, SA, PSO and VNS are not included in the comparison process due to the
lower quality of their results compared to the other mentioned approaches. Since HGA, HPV, ICA and SCA are
well-known metaheuristic algorithms, we do not explain them in details. However, the construction of the
benchmark algorithms is described briefly in the following subsections. The Initialisation procedure and Encoding
scheme in all methods are similar to the proposed solution algorithms. Interested readers may refer to Karaoglan
and Altiparmak (2010), Liu et al. (2016), Rabiee et al. (2012) and Ramezani et al. (2015) for a more detailed
review of these algorithms.

Social-based algorithm (SBA): As the SBA is a basic approach of ASBA, this algorithm is considered a
benchmark method in this paper. As the construction of this algorithm has a lot of resemblances with ASBA, its
original construction is not presented in this paper. Interested readers are referred to Ramezani and Lotfi (2013) and
Ramezani et al. (2015) for more detail about SBA.

Imperialist competitive algorithm (ICA): ICA was firstly proposed by Atashpaz-Gargari and Lucas (2007) as
a novel effective EA method based on humans' socio-political evolution. ICA has been widely applied to many
non-permutation optimisation problems such as scheduling and the VRP (Bagher et al. 2011; Forouharfard and
Zandieh 2010; Wang et al. 2011). Since this method is well-known, its construction is not presented in this paper.
Interested readers may refer to Atashpaz-Gargari and Lucas (2007) and Rabiee et al. (2012) for more detail about
ICA.

HGS algorithm: The HGS is developed by hybridising two well-known methods, namely GA and SA. The
aim of designing this hybrid algorithm is to combine the strengths of GA and SA to improve the effectiveness of a
single approach (Devika et al. 2014). In HGA, the initial population of individuals with nPop size is generated by
VLA. Moreover, combining strong facets of various methods as a new integrated approach has been growing in
this field of research because of their ability to increase computational power (Behnamian et al. 2009).

We consider GA (proposed by Holland 1992) because it has wide applications in solving permutation
problems such as the VRP, the IRP, scheduling and other operations research problems (Abdelmaguid and
Dessouky 2006; Ho et al. 2008; Mansouri 2005). In the GA, the RWS procedure has been applied to select the
chromosome of crossover and mutation. Chromosomes among individuals are selected to mate and create offspring
in crossover procedures. Additionally, the mutation procedure is performed to maintain diversity in the population
and avoid local optimum solutions. The percentages of the population subject to crossover and mutation are shown
by P. and P,,, respectively. The crossover and swap, reversion and insertion mutations presented in ASBA are used
in HGS as crossover and mutation operators. The GA as the main loop of HGS is repeated MaxIt times, and in each
iteration, the SA algorithm is performed as the local search. We consider SA (introduced by Metropolis et al. 1953
and popularised by Kirkpatrick et al. 1983) because it has been known and widely applied to many permutation
optimisation problems such as scheduling and the VRP (EImi et al. 2011; Gaafar and Masoud 2005; Lin et al.
2009), because of its theoretical guarantee of convergence, good performance on many practical problems, and ease
of implementation (Zhou and Chen 2010). SA boosts the search algorithm to escape from trapping in the local
optimum solutions (Lin et al. 2009) through accepting worse solutions with some probability (Elmi et al. 2011).
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First of all, the SA receives the best solution obtained by the main loop (i.e. GA as an initial solution, and then
neighbours will be found around the initial solution). In the SA algorithm, the swap, reversion and insertion
mutations are used to refine the neighbourhood structures. Each new solution in SA will be considered by the

(-aCH)

acceptance probability function i.e. p =€ where T is the current temperature, AC =C (s’)—C (s), AC is

the difference of system energy the current solution (s) and new neighbour solution (s ") . When AC is non-positive,

the new state is always accepted (Elmi et al. 2011). SA is guided by the initial temperature T, and cooling rate Ts.
These values essentially dictate the acceptability of solutions found during the search (McMullen and Frazier

2000). The temperature reduction form used in SA at each iteration is Tm =Q *Tt where & is temperature

discount rate. SA is repeated as local search LS;, times and considers Max;,: new neighbours at each temperature.
The construction of HGS in the pseudo-code is presented in Figure A4 (Appendix).

HPV algorithm: HPV is constructed by hybridising PSO and VNS algorithms. In this algorithm, PSO forms
the main loop and the VNS algorithm performs the local search. The hybrid approaches are constructed to achieve
a trade-off between the global and local exploitation during the search process (Behnamian et al. 2009). As
proposed by Kennedy and Eberhart (1995), PSO, a metaheuristic solution algorithm, has been used extensively in
different fields including supply chain management, the VRP and scheduling (Panigrahi et al. 2011; Sedighizadeh
and Masehian 2009).

The initial population called swarm with nPop size is generated by VLA in the initialisation process.
Subsequently, this algorithm should iteratively move the population toward a direction, which improves a given

fitness function. Each individual in the swarm is called a particle and is a candidate solution, which is characterised

by a position vector, )(i , and a velocity vector, ti . The velocity of particle i in iteration k is computed as follows:
Vi (K +1) = w, <V, (K) + ¢, x £ (X (K) - %, (K)) + C, x K, (X (k) - X, (k)) (65)

where X ipb , the particle’s personal best, is the best position of a particle in all the previous iterations; X % , swarm

global best, is the best position obtained so far; ¢; and c, are positive constants known as cognitive and social

components, respectively; r, and r, are uniformly distributed samples in the interval [0,1]; and W, is the inertia

weight to control the impact of previous velocity on the current one. The parameters w, ¢; and ¢, are assumed to be
0.9, 2 and 2, respectively (Moslemi and Zandieh 2011). A particle's new position is obtained by adding the velocity
to its current position.

We take advantage of VNS because it is considered a very popular local search method (Sevkli and Aydin
2006) using a series of systematic changes of the neighbourhood structure (NS) within the search process in order
to optimise problems. VNS receives the best solution achieved from PSO as the initialisation solution in each

iteration. Then, a set of NSs symbolised by N, is used to find the near-optimal solution where NS, represents the

maximum number of NSs implemented with a random sequence. The swap, reversion and insertion mutations
presented in ASBA construction are considered as NSs in the HPV algorithm. The VNS is applied NSs repeated
LSier times at each iteration of the main loop, which is repeated MaxIt times. Interested readers may refer to
Kennedy and Eberhart (1995), Hansen and Mladenovi¢ (2001) and Mladenovic and Hansen (1997) for more
detailed literature on PSO and VNS. Figure A5 (Appendix) gives the HPV in pseudo-code.
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6.3.2. Validation Based on a Suggested Lower Bound

In this section, we introduce a lower bound for the solutions of the master model. Comparing the growth rates of
the gaps between the solutions of algorithms (proposed and benchmark algorithms) and the lower bound for
different size of the problem can evaluate the effectiveness and efficiency of the designed algorithms. Accordingly,
each test problem in all of the algorithms is run three times. Since each problem is solved three times, the average
RPD (RPD or ARPD) is defined as the average of the three runs of each algorithm for a given test problem. To
calculate the LB, used in RPD measure, some relaxations are applied. The restrictions are on (a) the time windows
penalty function, (b) limitation of working time and (c) vehicle failure for all vehicles. Relaxing these terms results
in a linear model in which all the vehicles will deliver products to customers without failing or being penalised due
to violation of time windows. Therefore, constraints (14)-(33), (36)-(45) and (50) are eliminated and ryig, and raigp
are converted to parameters. The model with a revised objective function is solved subject to the other constraints
to obtain the LB. The LB model is as follows:

—m'”z(z z z Ck ij Umkkp +Zzhigp(5igp +Oigp)

peP keK m eM i,jeA geG ieN
67
+ Z zblgp Tigp Z Z z f kp OJmkkp ( )
geG ieN keK m eM jeN
Subject to
2 2 2 Ximp =1 VieN,peP (68)
keK m eM ieAi#]
D Ximio T 2 X jimeko = 2Zim ko VieN,m eM, keK,peP (69)
jeA jeA
> > Ximip < > Zingo ~Zimie VSmk €N, M eM,, keK, peP, for some i'eS,, (70)
€Sy 1€Smk i€S «
ZZyigmkkpqu vm, eM,, keK,peP (72)
ieN geG
Zyigmkkqukzimkkp VieN,m eM,, keK,peP (72)
—d o T Tigp (Sig = Sige T Tigp-1) + Naigp (@ =045 1) VieN,geG,peP (73)
dAigp Igpl+(1 Ot)dIgpl VieN,geG,peP (74)
Y D Vigmio = O VieN,geG,peP (75)
keK meM
04 <Oy VieN,geG,peP (76)
Sigp = Sigpt ~ Figp1 + gy T 0151 Uiy VieN,geG,peP (77
Sigp T 0igp1 < @ VieN,geG,peP (78)
Zim ko {01} VieAm, eM, keK, peP (79)
Xiim ko € {01 V(i,j)eAm, eM, keK,peP (80)
Sigp 20 VieN,geG,peP (81)
T 20 VieN,geG,peP (82)
Yigm.kp =0 VieN,geG, m eM,, keK,peP (83)
O 20 VieN,geG,peP (84)
diy, >0 VieN,geG,peP (85)

The LB is an inventory-routing problem (IRP) with proposed replenishment policy. Note that the LB is still NP -
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hard and solving it exactly for real-size problems is impossible. Accordingly, the LB model for real-sized problems
is solved by using a general GA as a well-known method to find LB in all developed algorithms. However, the
accuracy of GA in solving the LB model for small-size problems is investigated by comparing its results with exact
results in the next subsection.

Sixteen types of small-size test problems are generated, which are different in terms of the numbers of
retailers, vehicles and vehicle types. To measure the quality of the objective function as well as the run time of the
coded GA, the mathematical formulation of the LB model (coded on GAMS solver) is utilised. Each test problem is
run 10 times in MATLAB to find the solutions of GA and one time in GAMS to find its global solution. Therefore,
overall 170 runs have been performed in MATLAB and GAMS. Table 6 shows the detailed specifications of the
test problems (e.g. the numbers of retailers, periods and products), the GAMS run time (seconds), the GA average

run time (seconds), GAMS objective value, maximum and average errors (%).

Table 6. The input features and output results of solving small test problems with GAMS and the GA.

g

g 2g | g |s £ ls| ¢

> 52 |2 | g 8 | 8| ¢
o€ 18| 8|85 22|82 5 |58 ¢
|8 |s|5|5|8lEg2 |=5|=5| = |§| §
g | || >|>|a|F8«g/<8|<8| < | & g
= £ 3 3 3t # [0 0L 0L 0] = <
1| 7 [ 4] 6 | 1] 2 | 10 | 43 | 3.1 | 4831 |0.0%| 0.0%
2 | 7 | 4| 6 | 2| 2 | 10 | 51 | 317 | 4548 |0.0%| 0.0%
31 7 [ 4 6 | 3] 2 | 10 | 53 | 31.8 | 4351 |0.8%| 0.2%
4 | 7 [ 4] 6 | 4| 2 [ 10 | 105 | 324 | 4504 [1.7%| 0.3%
5 8 | 4| 7 | 1] 2 | 10 [ 1415 | 343 | 10990 [2.9%| 1.6%
6 | 8 | 4| 7 | 2| 2 | 10 | 1064 | 347 | 10001 |2.2%| 1.2%
7 | 8 | 4| 7 | 3| 2 | 10 | 3260 | 355 | 9520 [2.8%| 1.5%
8 | 8 | 4| 7 | 4] 2 | 10 [ 1072 | 356 | 9522 |3.3%| 2.4%
9 1| 9 | 4| 8 | 1| 2 | 10 | 1955 | 37.3 | 13924 |3.3%| 1.1%
109 | 4] 8 [ 2 2 | 10 [2104 | 382 | 11390 [2.9%| 2.4%
11 9 | 4] 8 | 3| 2 | 10 | 1341 | 381 | 11853 [3.2%] 2.1%
129 | 4] 8 [ 4 2 | 10 [1869 | 387 | 10403 [2.3%| 1.8%
1310 4] 9 | 1 | 2 | 10 | 1860 | 40.6 | 13167 |2.9%| 1.9%
1410 4] 9 | 2| 2 | 10 | 2110 | 412 | 15761 |35%| 2.9%
15| 10 | 4 | 9 | 3 | 2 | 10 | 1845 | 416 | 15155 |2.0%| 1.9%
16 |10 | 4] 9 | 4] 2 | 10 - 425 -

In terms of runtime, it is evident that the GA is much faster than the GAMS s-olver. 'Ehe largest test problem
(#16) was solved by the GA below 43 seconds while GAMS cannot solve it in exactly one hour. When it comes to
the quality of the objective functions, for all test problems, the average and maximum error were less than 2.9%
and 3.5%, respectively. Interestingly, for very small test problems, the GA obtains optimal solutions with no error.

6.4. Validation Results
In this section, we show the validity of proposed solution algorithms based on two presented validation approaches.

6.4.1. Based On Previous Solution Benchmarks

To evaluate the proposed algorithms, firstly the obtained data (objective function and CPU time) are transformed
into RPD values. Then, the mean RPD results of the expected objective function and CPU time are calculated in
Tables 7 and 8, respectively. The results show that from the objective function perspective, ASBA ¢ is better than

other approaches while from the CPU time point of view, ICA yields better solutions.
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Table 7. Average relative percentage deviation in terms of objective function.

. Algorithms
Size  Problem —gp7 ICA HGS HPV ASBAs _ ASBAcs __ ASBAm __ ASBAnr
P1 8.27 13.77 3.75 1411 3.62 6.43 7.21 253
P.2 9.27 14.20 4.07 15.35 3.92 7.33 9.09 2.75
P.3 9.38 11.56 3.98 12.39 3.40 6.25 9.36 2.32
P4 9.95 10.14 4.05 10.12 3.55 5.80 7.21 2.93
Small  p g 8.05 8.10 4.49 9.65 3.59 4.87 7.53 2.36
P.6 6.24 8.00 2.88 10.82 2.86 4.09 5.79 2.52
P.7 7.09 8.19 3.49 10.42 3.04 4.49 6.63 3.01
P.8 6.40 8.09 3.74 10.49 2.71 4.36 5.76 2.28
PO 7.95 8.29 3.63 10.93 3.04 5.29 6.25 2.30
P.10 7.23 8.23 4.61 8.88 3.39 4.81 7.03 2.45
P.11 6.67 8.05 3.75 10.27 2.62 4.17 6.02 2.16
Vedium P12 7.92 8.55 458 13.05 3.58 5.38 6.53 2.32
P.13 8.01 8.70 4.04 11.66 3.22 5.07 7.78 2.30
P.14 7.14 8.19 4.32 11.33 3.35 4.62 7.01 2.25
P.15 7.03 8.17 4.66 10.23 2.88 5.61 6.47 2.30
P.16 6.87 8.10 4.59 9.54 3.37 5.25 6.20 2.26
P17 8.16 9.13 5.60 10.80 441 5.60 7.64 2.61
P.18 6.67 8.01 3.96 9.74 3.10 4.24 6.15 2.22
P.19 7.96 8.28 3.81 9.08 3.32 471 6.29 2.26
P.20 8.78 9.13 4.00 9.71 3.46 4.89 6.81 2.28
Large P.21 8.79 9.06 4.76 10.68 3.80 5.67 6.77 2.46
P.22 7.16 8.21 3.86 9.66 3.00 4.94 6.75 2.22
P.23 6.78 8.08 4.13 9.06 2.88 4.71 6.63 1.99
P.24 7.88 8.12 3.93 8.95 3.15 4.63 7.22 2.01
Average 7.74 9.01 4.11 10.71 3.30 5.13 6.92 2.38
standard deviation 0.995 1.734 0.536 1.630 0.412 0.780 0.898 0.248

Table 8. The average relative percentage deviation in terms of CPU time.

. Algorithms
Size  Problem —gpy ICA HGS HPV : ASBAs __ ASBAcs __ ASBAms ___ ASBAwr
P1 0.06 0.00 485 6.56 0.52 0.31 0.89 2.38
P2 0.27 0.00 3.82 5.14 0.25 0.44 0.77 2.19
P3 0.10 0.00 3.11 3.91 0.10 0.39 0.55 1.86
P4 0.11 0.00 3.48 4.70 0.20 0.31 0.71 1.70
Small o 0.06 0.00 3.17 4.46 0.14 0.29 0.64 1.72
PG 0.06 0.00 3.41 458 0.17 0.27 0.72 1.68
P.7 0.04 0.00 3.53 4.42 0.27 0.25 0.68 1.72
P8 0.03 0.00 3.90 4.81 0.36 0.34 0.92 1.60
P9 0.03 0.00 1.20 273 0.39 0.35 0.96 1.79
P10 0.03 0.00 4.42 4.96 0.46 0.37 0.98 1.83
P.11 0.03 0.00 4.75 5.51 0.61 0.23 1.15 2.00
! P.12 0.03 0.00 5.45 5.65 0.64 0.25 1.44 2.60
Medium . 0.04 0.00 5.93 6.13 0.88 0.44 1.65 2.80
P14 0.05 0.00 6.11 6.68 0.77 0.37 1.78 3.08
P15 0.06 0.00 6.68 7.52 1.07 0.60 2.06 3.26
P16 0.17 0.00 7.84 9.07 1.34 0.80 2.39 3.87
P17 0.25 0.00 8.65 10.48 154 0.02 2.64 737
P18 0.40 0.00 10.45 12.86 1.90 1.20 3.27 5.42
P19 0.39 0.00 10.28 12.76 1.93 1.24 3.30 5.34
P 20 0.42 0.00 11.60 14.50 2.05 1.34 3.88 6.46
Large ., 0.51 0.00 11.13 14.04 2.29 1.54 3.86 5.82
P 22 0.71 0.00 13.25 16.82 2.79 1.94 4.57 7.05
P 23 0.62 0.00 12.59 16.13 2.64 1.83 4.44 6.74
P.24 0.73 0.00 13.86 17.87 2.97 2.11 4.95 7.65
Average 0.22 0.00 6.94 851 T.10 0.76 2.05 354
standard deviation 0.234 0.000 3.595 4.614 0.935 0.605 1.449 2.022

To analyse any significant difference between the effectiveness of the algorithms, a single-factor analysis of
variance (ANOVA) is performed (see Table 9). Three main hypotheses have been checked before using ANOVA:
normality, homogeneity of variance, and the independency of residuals. We studied these hypotheses before using
ANOVA and found that there is no bias in the computational experiments. ANOVA results for the objective
function confirm that there is at least one algorithm that is different in terms of performance measure.

32



Table 9. ANOVA results for the objective function and CPU time of all problems.

Aspect Source DF SS MS F P
Factor 7 4515.49 645.07 563.59 0.000
Objective Function Error 568 650.12 114
Total 575 5165.61
Factor 7 5239.80 748.54 149.89 0.000
CPU Time Error 568 2836.62 4.99
Total 575 8076.42

For pair-wise comparison of the proposed algorithms, Fisher’s least significant difference method (FLSDM) is
employed. The results obtained by FLSDM for the objective function are illustrated in Table 10. As shown in
Figure 15, the means and interval plot of problems in terms of RPD confirm that there is a statistical significance in
the solution quality from the objective function perspective. It can be clearly seen that ASBAyr outperformed the
other algorithms. According to Figure 16, the hybridisation of two policies — ICA and the frog-based method — has
led to better results than other policies used in the ASCA construction. The priority of algorithms in terms of
effectiveness is ASBAy > ASBA ;s> HGS > ASBAcs > ASBAg > SBA > ICA > HPV.
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Figure 15. Means and interval plot for total problems’ Figure 16. Plots of PRD of objective function for the interaction
objective function. between different strategies of ASBA and size of problems.

Subsequently, to assess the efficiency of the proposed algorithms, a single factor ANOVA is performed on the
CPU time obtained by running different problems three times as reported in Table 9. A pair-wise comparison is
also conducted to evaluate the efficiency of the algorithms using FLSDM. The results in Table 10 confirm that the
original ICA delivers a better CPU time than the other approaches. The significance of these results was evaluated
through a statistical evaluation in terms of RPD with 95% confidence interval for CPU time as illustrated in Figure
17. As shown in this figure, the upper and lower bounds for most of the algorithms do not have any overlap.
Therefore, the original ICA and SBA with the minimum lower and upper bounds are the best algorithms in terms of
RPD for the CPU time metric. Figure 18 analyses the interaction of different strategies of ASBA and the size of
problems. It indicates that according to the CPU time resulting from various ASBA policies, the ISA-based policy
is significantly better than the other policies used in construction of ASBA. The priority of algorithms in terms of
their effectiveness (i.e. objective function value) is therefore ASBAHIF> ASBAIB> HGS > ASBACB > ASBAFB
> SBA > ICA > HPV. The priority of algorithms in terms of their efficiency (i.e. computational time) is ICA >
SBA > ASBACB > ASBAIB> ASBAFB > ASBAHIF >HGS > HPV.
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Table 10. Fisher’s pair-wise comparisons for problems’ objective function and CPU time.

RPD of Objective function RPD of CPU time
Algorithms Significant Significant
Lower  Upper difference at Lower  Upper difference at
95% level 95% level
ICA 0.775 1.857 Yes -1.329 0.93 No
HGS -4.246 -3.165 Yes 5.611 7.871 Yes
HPV 2.567 3.648 Yes 7.193 9.453 Yes
SBA ASBAs -5.057 -3.975 Yes -0.262  1.998 No
ASBAcs -3.171 -2.089 Yes -0.582  1.678 No
ASBArR -1.356 -0.274 Yes 0.706 2.966 Yes
ASBAHF -5.998 -4.916 Yes 2.201 4.461 Yes
HGS -5.563 -4.481 Yes 5.811 8.071 Yes
HPV 1.25 2.332 Yes 7.393 9.652 Yes
ICA ASBAs -6.373 -5.292 Yes -0.062  2.198 No
ASBAcs -4.487 -3.405 Yes -0.382  1.877 No
ASBAR -2.672 -1.59 Yes 0.906 3.165 Yes
ASBAHIF -7.314 -6.232 Yes 2.4 4.66 Yes
HPV 6.272 7.354 Yes 0.452 2.712 Yes
ASBAs -1.352 -0.27 Yes -7.003  -4.743 Yes
HGS ASBAcs 0.535 1.617 Yes -7.323  -5.063 Yes
ASBAr 2.35 3.431 Yes -6.035  -3.775 Yes
ASBAHIF -2.293 -1.211 Yes -454  -2.281 Yes
ASBAs -8.165 -7.083 Yes -8.585  -6.325 Yes
HPV ASBAcs -6.278 -5.196 Yes -8.905 -6.645 Yes
ASBAr -4.463 -3.382 Yes -7.617  -5.357 Yes
ASBAHIF -9.106 -8.024 Yes -6.122  -3.862 Yes
ASBAcs 1.346 2.428 Yes -1.45 0.809 No
ASBAis ASBArs 3.16 4.242 Yes -0.162  2.098 No
ASBAHIF -1.482 -0.4 Yes 1.333 3.592 Yes
ASBAcE ASBAR 1.274 2.356 Yes 0.158 2.418 Yes
ASBAHIF -3.368 -2.287 Yes 1.653 3.913 Yes
ASBAFs ASBAHIF -5.183 -4.101 Yes 0.365 2.625 Yes
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Figure 17. Means and interval plot for total problems CPU Figure 18. Plots of PRD of CPU time for the interaction
Time. between the different strategies of ASBA and size of problems.

6.4.2. Based on the Suggested Lower Bound

In this section, a sensitivity analysis is performed to analyse the role of the problem size in the different algorithms.
First, the ARPD of the objective functions is calculated for each problem separately. As illustrated in Figure 19, the
ARPD of different algorithms are plotted over different size problems. It can be observed that with the growth of
the problem size, the efficiency of the proposed algorithm (i.e. ASBA) outperforms other approaches. Moreover,
the growth rate of the gap between ARPD of the proposed algorithms and LB is smaller than other than previous

algorithms showing the superiority of our proposed algorithms over the others especially for large-sized problems.
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As shown in Figure 20, it can be clearly seen that the algorithms have levelled for small test problems (i.e. 1%

to 8" problems) in terms of CPU time but the difference takes an exponential trend after the 9™ test problem.
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According to this figure, HPV results in a better CPU time than other approaches in all the test problems.
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Figure 20. The interaction among different problems and CPU time of algorithms.
7. INSIGHTS

In this section, through sensitivity analyses on the model’s parameters, some insights for practitioners are
presented. To this aim, we perform the sensitivity analysis on 100 periods of the15" test problem. Five analyses are

conducted.

7.1. Proportion of different cost components in total cost

As illustrated in Figure 21, the components of objective function (i.e. total transport cost) including vehicle
transport cost and fixed vehicle cost, time window violation penalty cost, backlogging and inventory costs and also
the cost of the failed vehicles (including the failed vehicle carrying cost and repair cost) are reduced during
different iterations. This figure presents different terms in the total cost objective function optimised by ASBA.

Although the proposed method reduces all costs, based on the input parameters, the rate of reducing in backlogging
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cost is more than the inventory cost. In other words, the cost of backlogging is more important than the inventory
holding cost.
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Figure 21. The trend of objective function components on different iterations resulted by ASBA.

Observation: Our observations show that in terms of the importance of cost components, practitioners should
pay attention to backlogging cost, inventory holding cost, and the cost of the failed vehicles, respectively.

Accordingly, managers should chiefly plan to reduce these cost terms rather than the others.

7.2. Impact of order-up-to-policy on total cost

The replenishment policy used in this paper tries to reduce the effect of disruptions such as vehicle failure by
adjusting the demand order forecast by a single exponential smoothing method. In this method, the order value is
adjusted based on previous period inventory level (net stock) and WIP. As illustrated in Figure 22, the effect of
different values of the net stock and WIP correlation constants for all retailers (i.e. riig, and r,ig,) are analysed on
the problems’ objective function. In this regard, the sensitivity analysis was performed for the standard scope of
these correlations (i.e. from 0 to 1). The values of ry;q, and rig, are considered the same for all retails, products and

periods in this sensitivity analysis. According to the results, by increasing both factors ryi, and rigp, the total cost is
increased too.
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Figure 22. The effect of net stockand WIP correlation constants (riigpand r2igp) on objective function.
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Observation: Figure 22 shows that if ryq, and ryq, are ignored in the forecasting model or selected
inappropriately, the total cost is increased. The appropriate value for both of these factors is between 0.05 and 0.1.
Therefore, the inventory managers should consider a low effect of the net stock and WIP in the forecasting process
of demand.

7.3. Impact of vehicle failure rate on cost components

The effect of different values of the wvehicle failure parameter (based on exponential distribution) on the
components of the objective function (i.e. total transport cost, time window violation penalty cost, backlogging
cost, inventory cost, cost of the failed vehicles and total cost) is presented in Figure 23. Figures 23(a) and 23(b) are
obtained from ASBA in iterations of 36" (as an example for a non-optimal solution) and 184" (as an optimum
solution) respectively. According to Figure 23(a), by increasing the parameter by 50%, the total transport cost, time
window violation penalty cost, backlogging cost, inventory cost, cost of the failed vehicles and total cost are
increased 8%, 26%, 32%, 25%, 42% and 22.1%. The same amount of change in Figure 23(b) results in 4%, 14%,
19%, 21%, 26% and 13.8% increases in the total transportation cost, time window violation penalty cost,

backlogging cost, inventory cost, cost of the failed vehicles and total cost.
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Figure 23. The effect of the parameter of vehicle failure time (exponential distribution) on objective function components.

Finally, it is concluded that

e by increasing the vehicle failure rate, all objective function components increase;

e the highest cost increase is related to the cost of the failed vehicles and then backlogging and inventory costs,
respectively. The difference between backlogging and inventory costs is not significant;

e the proposed model reduces the shortage, the effect of increasing vehicle failure rate, the total cost and all its
components because it (i) assigns the old vehicles to the paths located near the service centre and vice versa, (ii)
forecasts the demand of the next period, and (iii) with appropriate sequences, assigns the retailers to the
vehicles.

Observation: An increase in the vehicle failure rate highly affects backlogging cost and inventory cost,
receptively, among the other cost components.

7.4. Correlation between vehicle failure probability and length of travelled paths

We solved the test problems and obtained optimal solutions for all 100 time periods. For each solution, we
extracted the length of paths determined by the selected vehicles as well as A. A large A shows that a vehicle has a
high chance of failure. Figure 24 shows the relationship between the length of paths and A of vehicles assigned to
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them for period 23.
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Figure 24. The relation between length of paths and the A of vehicles assigned to them for period 23.

The figure has a negative trend direction and shows that the vehicles having a high probability of failure are
assigned to short paths and, quite the opposite, the vehicles with a low probability of failure are allocated to long
paths. In order to investigate the validity of this observation for the other 99 remained periods, we assess the slopes
of all line trends fitted for such figures belonging to all time periods. Accordingly, Figure 25 demonstrates the
percentage of different slope classes among the 100 observations.

Observation: It is clearly obvious that just over 80% of slopes were negative, meaning that vehicles with a
high probability of failure are assigned to short paths and vice versa. Accordingly, it is highly recommended that
practitioners assign archaic vehicles (i.e. vehicles with a high probability of failure) to short paths and new, sound

vehicles are used to service remote customers.
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Figure 25. The relation between length of paths and the A of vehicles assigned to them for period 23.

Percent

7.5. Relationship between vehicle failure probability and proximity to service centre

For each time period and each vehicle, we compute an average distance between the vehicle and the service centre
along the vehicle’s path (DS). DS for vehicle k on path p is calculated by averaging the distances of total failure
points on path p, travelled by vehicle k, from the service centre. First, we observed that in each period, the average
of A for a vehicle having failure is more than the vehicles not having failure. Accordingly, Figure 26 demonstrates
the average of A for the vehicles failed in each time period as well as the average A value for the other vehicles.
Furthermore, according to Figure 27, we found that in each time period, the failed vehicles have a smaller DS than
the others. In Figure 27, the vertical axis shows the discrepancy between DS of the failed and not failed vehicles in
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Figure 27. Discrepancies between DS of failed vehicles and the others in each time period.

Observation: Figures 26 and 27, in combination, indicate that in the optimal solution, the vehicles having a
high failure probability are assigned to paths close to the service centre. Therefore, we highly recommend that

decision makers assign newer vehicles in their fleet to the farther destinations.

8. CONCLUSION
In this paper, the IRP with possibility of vehicle failure is studied. The problem considers multiple periods, multiple
products, holding cost, backlogging cost, soft time windows, multiple heterogeneous vehicles, deterministic-
forecasted demand, variable vehicle speed (before and after failure), capacitated retailers and customer inventory
policy (order-up-to policy). The vehicle failure strategy taken in this research is “fixed centre”. The problem is
mathematically formulated and solved by applying a meta-heuristic algorithms (ASBA) with four scenarios. A
“global war” procedure is embedded in the algorithm to avoid local optima. The comprehensive calibration
methodologies RSM and MODM are employed to reach the best combination of the parameter values. In order to
evaluate the effectiveness and efficiency of the proposed algorithms, some test problems are generated to help us to
compare the proposed algorithms against benchmark methods. The benchmark methods are some popular
algorithms, namely SBA, ICA, HGS and HPV, and a suggested lower bound. We successfully implemented the
algorithm on problems with up to 320 retailers, 24 vehicles of different types and 10 products.

Computational experiments indicate that ASBA outperforms SBA, ICA, HGS and HPV in total cost
performance measure and that HPV outperforms the others in terms of computational time. The hybrid-ICA-frog-
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based policy is more effective than other scenarios in ASBA construction. Our ASBA can solve large-sized
IRPTWs subject to vehicle failure. We observe that the global war procedure can preserve premature convergence
to improve the performance of this algorithm. Furthermore, ASBA with hybrid-ICA-frog-based initialisation policy
can lead to better solutions compared to other initialisation scenarios. Figure 28 offers a decision-making support

tool for planners based on this research.
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Figure 28. The process is taken into our model for predicting order of retailers and delivering them.

When it comes to insights for practitioners, we learned a number of lessons. First, practitioners should adjust
their plans for reducing their total cost with a special focus on backlogging cost, inventory holding cost, and the
cost of the failed vehicles, respectively. Second, ignoring or inappropriately applying the amount of inventory level
(net stock) and WIP in forecasting inventory orders leads to increasing total costs. We observed if the inventory
mangers consider a low effect of the net stock and WIP on the forecasting process of demand, the minimum value
of total cost will be resulted. Third, increasing the probability of vehicle failure (through increasing the parameter
of CDF) leads to increasing the terms of the objective function (total cost) differently. Among the different terms of
cost, the highest cost increases are related to the cost of the failed vehicles and then backlogging and inventory
costs, respectively. Fourth, practitioners intending to reduce total cost should assign vehicles with high probability
of failure to short paths. Furthermore, for serving remote costumers, using vehicles with low failure probability is
advised. Last but not least, assigning vehicles with high probability of failure to some paths that have less distance
to a service centre is in line with the optimal solution.

There are some problems in the area that should be considered in future research. Considering the assumptions
of this research (such as there only being one depot or supplier) can be a useful starting point. For example, in this
research the location of the vehicle service centre is given while we may encounter some applications in which we
need to identify the location of the service centre. Moreover, considering more than one fixed-centre service for
repairing the failed vehicles, rerouting with repairing approaches (as depicted in Figure 1) or a mixture of them can
be interesting. While the current solution techniques of this paper can be applied to other variations of the VRP
(e.g., the initialisation process), other metaheuristic approaches can still be proposed and compared with our
approaches. Finally, some areas are not well-covered in the literature of the IRP. For example, there is only one
study in IRPs considering the time windows (Liu and Lee 2011). As it only considers soft time windows,
considering hard time windows is a gap with many real-life applications.
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APPENDIX

Vehicles failure - related calculation procedure()

Parameters (ﬂ’mkkp ' ﬂmkklp ' Amkktp » Px ’Ck 'umkkp ! ymkkp ! "gimkkp ! ¢mkkp )!
Receive inputs {Variables (z X (i, eA);

im kp * ™ ijm, kp

Iij N | 'ij N ”ij , Isj i, ] € A /IAll distances can either calculate exactly or estimate with a suitable distance function;

p=0t=04, =0
TCC ={}// Total moving or carrying costs, TRC ={}//Total repair costs;

forp =1:|P|
fork =1:|K|
form, =1:|M, |
fori =1:|A|
Iz, =1
fort =1:[T|
If Ay > Mo @ND Z B =0/l The vehicle is broken done
t={1,..t-1}
ﬁmkklp =1
endIf
endfor
for j =1:[A|
If X =1
find(x Iijmkkp‘x ‘ijmkkp =1
endIf
endfor
endIf
endfor
endfor
endfor
endfor

TCC =32 2 2.2 Xim [(1_X Iijmkkp)cklii X Iijmkkp(ck I i + o] ., +Cklsi):|;

peP keK meM ieA jeA

TRC = 2 Z Z zﬁmkktp'//kp;

peP keK myeM, tel

Figure Al. The pseudo-code of vehicles failure-related calculation procedure.
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VLA procedure ()
Step 1: Calculate the total orders of all products g eG dispatched by all retailers in each

period p e P (TO,) as:

1y =ad g, , +@A—a)d,, , /a=0.25
TO, = > > mind,,.0,,), Vp P
ieN geG

Step 2:Put all the vehicles to TNV // TVN ={M,,M,... M, } M, ={,,2,,..m };
Step 3: Calculate the total capacity of required vehicle (TCV) for each period as:
For r=1:] TNV |
RV =¢ // Required vehicle (RV)
Select a vehicle (v) randomly from TNV and eliminate thatfrom TNV
RV =RV wv and TVN =TVN -v

Add the capacity of vehicle (v) to TCV
TCV, =TCV, +q,

Check if selected vehicles capacity can satisfy the received orders, break the loop
If TCv, =TO,; Break

End for
Step 4: Calculate the expected load (EL) required for each vehicle in period p € P as:

TO
EL, :[ %Cvp:lqu , Vv eRV

Step 5: Assign the retailers to vehicles such that the following equation is minimised:

z=2 2 max(x, > b EL.0) VS, <V,veRV

pePveRV

Figure A2. The VLA procedure in the pseudo-code.

ASBA procedure()
L Set parameters (NPOpP, Nygyniry s Nimps Ng» & By Py Tow s Now )s
Initialization () L
Generating initial peoples by VLA() and evaluate them;
L . Select the most powerful N, people as leaders;
Forminitial countries () . .
Randomly allocate the remain people to countries ased on leaders power;

o . {Choice most powerful N, countries as the imperialists;
Form initial empires () ) ) ) o ] o
Assign other countries to imperialists based on imperialists power;
forl:N,
Do Crossover () and Mutation () on person(s) and replace the better solutions;
forl: Nip,
Move people toward thier leader (People assimilaiton );
Revolution among people;
Move leaders / people toward imperialist / leaders (Countries assimilaiton);
Revolution among countries;
If the cost of colony is lower than own imperialist;
Exchanging positions of the imperialist and a colony;
endif
Calculate total power of the empires;
Imperialistic competition () 1 Select the weakest colony of weakest empire and assign it to a strange empire;
Eliminate the powerless empires ( the imperialist with no colony);
endfor
Form new population as the same number as PopSize and evaluate them;
Global war () Merge new and old population;
Sort merged population and eleminate PopSize extra presons;

endfor

Figure A3. The adapted social-based algorithm (ASBA) in pseudo code.
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HGS Procedure()

Set parameters (MaxIt,nPop, P, P, , LS, ,Max;, ,T,, T );

Generate initial population by VLA() and evaluate them;

While (hasn't met stop criterion (Maxit))do

Select P, percent of population with RWS();

Apply crossover operator and evaluate new children;

Select P,, percent of population with RWS();

Apply mutation operators randomly and evaluate new children;

Initialization (){

Crossover operator() {

Mutation operator(){

Population Update ()< Sort this new population;
Eleminate the surplus solutions more than nPop;
SA localsearch ()
| Receive the best solution;
WhileT, =T,
Forl:Max,
Generating (51,52,---,5Mf,x,m ) using one of neighborhood procedure () randomly;
Evaluate new solutions and select the best one (s ');
if AC <0 // AC =C(s")-C(s);
s'—>s
elseif
Generate random number g =U [0,1];
if p<ec’
s'—>s
endif
endif
endfor
Tia=axT Il a= (T ITg) " @/ Maxlt)
endwhile
Report the best solution;
endwhile

Merge initial population with children obtained from Crossover and Mutation;

Figure A4. The pseudo-code of HGS.

HPV Procedure()
Set Parameters (MaxIt,nPop, C,, C,, W, LS, );

Initialization () o ] ]
Produce initial particles with VLA () and evaluate them;

While (hasn't met stop criterion (MaxIt))do
Update the personal best of each particle (%™);
Update global best (X*);
Determine the new velocity (V;)and position of each particle (X,);
Find the best solution;
VNSlocalsearch ()
Consider a set of neighbourhood structuresN  (ns =1,2,...,ns,,.);
Recieve population the best solution as initial solution S™;
foritr =1toLS,,, do
for N, =1tons_,do
S">S;
Determinea randomsolution S"from N // shaking;

if £(S") <f(S")
S” —S" and Break;
elseif f(S")=f(S")
Select one of them randomly and put it in S™;
endif
endfor
endfor
ReportS”;
endwhile

Perform aneighborhoodsearch N, on S’tofind S"and Evaluate S”;

Figure A5. The pseudo-code of HPV.
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