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Abstract
Smart metering infrastructure allows for two-way communication and power transfer. Based
on this promising technology, we propose a demand-side management (DSM) scheme for a
residential neighbourhood of prosumers. Its core is a discrete time dynamic game to schedule
individually owned home energy storage. The system model includes an advanced battery
model, local generation of renewable energy, and forecasting errors for demand and genera-
tion.We derive a closed-form solution for the best response problem of a player and construct
an iterative algorithm to solve the game. Empirical analysis shows exponential convergence
towards the Nash equilibrium. A comparison of a DSM scheme with a static game reveals
the advantages of the dynamic game approach. We provide an extensive analysis on the
influence of the forecasting error on the outcome of the game. A key result demonstrates that
our approach is robust even in the worst-case scenario. This grants considerable gains for the
utility company organising the DSM scheme and its participants.

Keywords Dynamic game · Smart grid · Demand-side management · Energy storage ·
Battery modelling · Uncertainty · Game theory

1 Introduction

Climate change poses a serious threat to the global ecosystem. To limit the increase in
global average temperatures, it is critical to restrict greenhouse gas emissions. Currently,
burning fossil fuels accounts for the largest share of CO2 emissions by humans into the
atmosphere. Renewable energy sources, such as wind and solar, have a much smaller carbon
footprint and should be employed instead [16]. Due to the intermittent nature of these sources,
their integration into the power system can be a challenging task. Our research investigates
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possibilities for more efficient and environment friendly access to electricity by means of
energy storage and renewable energy generation.

The concept rests upon the implementation of a technologically advanced power grid. In
contrast to the current power grid, this smart grid features two-way communication and power
transfer between the utility company (UC) and individual households [7]. Its decentralised
nature is expressed through distributed generation and storage of energy, with individual
households capable of doing both. These households are called prosumers (combination of
producer and consumer). Moreover, the deployment of smart meters allows households to
accurately measure electricity demands in real time. This permits the implementation of
demand-side management (DSM) schemes. Within such schemes, the UC incentivises users
to avoid consumption during peak hours by means of dynamic pricing tariffs. These tariffs
determine the price per energy unit based on the aggregated load of all users (cf. [4,10,24]).
This will eventually allow them to reduce investments into fast ramping technologies, needed
otherwise.

In [4,9,11,24,28], consumers react to these price incentives by rescheduling their appli-
ances, thus potentially interfering with their habits. Among them, [4,9,24] additionally model
the usage of energy storage systems. All of these users are aiming at a reduction in the peak-
to-average ratio (PAR) of the aggregated load, since achieving this eventually translates into
financial benefits for the participants. The methods of choice to obtain the desired schedules
are almost always based on game-theoretic concepts. Only [9] deviates by using convex opti-
misation. Since the DSM scheme directly influences the routines of the users, their comfort
levels play an important role. For instance, Yaagoubi et al. [28] found that when acceptable
comfort levels are preserved, the amount of savings from the energy bill reduces by more
than half of the optimum. Note that all these studies have the common idea of scheduling the
usage of appliances and batteries in a day-ahead manner.

Day-ahead scheduling that does not interfere with the users can solely be realised through
energy storage systems. Nguyen et al. [12] and Pilz et al. [17] followed this approach and
showed that considerable gains are achievable without interrupting the habits of the con-
sumers. Nguyen et al. [12] put their focus on developing a distributed algorithm, while Pilz
et al. [17] implemented an advanced batterymodel, providing insight into how specific battery
characteristics influence the participation behaviour and thus the outcome of the game.

This work builds on these previous results and extends the approach of Pilz and Al-Fagih
[17] in two directions. Firstly, we introduce a more sophisticated underlying game structure
for the DSM scheme, namely a discrete time dynamic game. Within this formulation, the
action space is continuous instead of the discrete options available in [17]. As a consequence,
the outcome for the players improves as they can make more fine-grained decisions. Another
advantage is that this allows for the derivation of a best response strategy and thus does
not require a computationally expensive search for the best response. Secondly, we analyse
the influence of the forecasting error for demand and energy generation on the scheduling
outcome. In order to assure the stability of the grid, a real-world application requires themech-
anism to be resilient against eventual errors in the predictions, as they will undoubtedly occur.

Our contributions are as follows:

(1) We introduce a novel discrete time dynamic game for energy storage scheduling among
prosumers in the smart grid. The closed-form solution to the best response problem
is derived by means of a dynamic programming approach. The ensuing iterative algo-
rithm converges quickly towards the Nash equilibrium. Direct comparison with similar
approaches, i.e. [12,17,28], reveals the superiority in terms of both achieved PAR reduc-
tion and computational costs.
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(2) A complete day-ahead DSM scheme, consisting of prosumers with realistically mod-
elled batteries, local renewable energy sources, and forecasting errors for demand and
generation is simulated. In contrast to previous works which merely simulate individual
days, our scheduling period covers a full year. The length of the simulation allows for an
in-depth analysis of the influence of the forecasting errors as well as the impact of the
number of participants in the DSM scheme.

(3) We show that the proposed dynamic game approach is robust with respect to the fore-
casting errors, even in the worst-case scenario. The respective results exhibit only small
deviations in the PAR reduction outcomes compared to runs with accurate predictions,
and hardly any influence on the financial benefits for the DSM participants.

(4) For the first time, a comparison of how different compositions of neighbourhoods per-
form in the DSM scheme is presented. We find that a community consisting of a mix
of consumer types can achieve best results. This is furthermore supported by an exten-
sive analysis of scenarios with randomly generated battery and generation parameters,
indicating the overall robustness of our game-theoretic approach.

This paper is organised as follows. In Sect. 2, we give an overview of the system, provide
details of the DSM protocol, introduce the battery and the renewable energy model, and
explain the pricing tariff. Section 3 contains detailed information about the dynamic game.
Furthermore, it includes the derivation of the best response solution and the description of the
iterative algorithm. The simulation parameters and the data sets for demand and generation
data are presented in the beginning of Sect. 4. Then, we compare our approach with the
static game approach of Pilz and Al-Fagih [17], show the influence of the forecasting errors,
investigate the neighbourhood composition, and analyse the robustness by simulating a large
number of randomly generated scenarios. Section 5 concludes the paper and points out future
research directions.

2 SystemModel—A Smart Grid Neighbourhood

In this section, we build the basis to the formulation of the battery scheduling game presented
in Sect. 3. We introduce the concept of a smart grid neighbourhood that participates in a
demand-side management (DSM) programme to reduce their electricity bills. Each of the
participants is equipped with an individually owned lithium-ion battery in addition to a
photovoltaic (PV) cell which generates electricity. Models for both the battery and the PV
cell are stated in detail. Moreover, we clarify the specific smart meter infrastructure that is
necessary to implement the DSMprogramme, as well as the role of the single utility company
(UC) running this programme.

2.1 Neighbourhood and Demand-SideManagement Programme

Consider a residential neighbourhood is comprised of M houses. Each of these is equipped
with a smartmeter. Smartmeters are capable ofmeasuring electricity consumption accurately
and at a higher frequency than the usual monthly or quarterly readings. Furthermore, these
devices can communicate directly with the utility company. This eventually allows for the
implementation of the DSM programme and also eliminates the need for on-site readings.
For our proposed model, we assume that we are able to obtain readings in regular intervals.
Based on the reading frequency, we split each day into T discrete intervals and denote the
set of all intervals by T .
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Fig. 1 Systematic sketch of the neighbourhood. Solid arrows stand for power flow, while dotted arrows stand
for information flow. The top half of the figure represents a participating household of the DSM scheme. It is
equipped with a lithium-ion battery and a solar panel. The solar panel can directly charge the battery, but to run
any appliance its direct current needs to be converted to alternating current by the inverter. The smart meter
collects data and executes the schedule obtained from the author’s scheduling software selma, which is based
on a dynamic game. A non-participating household is depicted in the bottom left corner. It is also equipped
with a smart meter, collecting data and communicating with the utility company. The complete neighbourhood
consists of a number of households (cf. bottom right) that belong to either one of the shown categories. All of
them are served by the same utility company

We assume that theM houses are served by the sameUC. In order to incentivise consumers
to participate in the DSM scheme, the UC offers them a specific pricing scheme, which
eventually reduces their electricity bills. Details can be found in Sect. 2.3. Let us denote the
set of households who participate in the DSM programme byN ⊂ M, whereM is the set of
all households in the neighbourhood. The total number of participants is N = |N |. Besides
the different pricing scheme, the participants of the DSM possess their own battery storage
system and have solar panels installed. An overview of the neighbourhood is shown in Fig. 1.

The DSM scheme can be seen as a protocol, which is gone through repeatedly. In our
study, the protocol is run once per day. Note that this is a completely automated process run
by our scheduling software selma (short for: Scheduler for Electricity in Local MArkets),
which needs to be installed on a consumer access device given to each participant of the
scheme. The algorithm to obtain the schedules is based on a discrete time dynamic game,
which will be introduced in Sect. 3.1.

Before the start of each scheduling period, selma forecasts the demand1 of the respective
household for each interval t ∈ T of the upcoming day. This information is sent to the UC.
The smart meters of non-participants are not able to forecast their own demand. Thus, the

1 As of today, the forecasting module is not included into selma. For this study, we assume this information
to be given and refer the reader to [3,5] for details on demand forecasting.
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UC performs the forecasting step for these households, based on historically collected data.
Eventually, forecasted demand curves are aggregated and the information is sent to each
DSM participant. Note that no information about individual neighbours is shared, but only
aggregated information. This provides anonymity to all consumers.

Based on this input, the households play a dynamic non-cooperative game (cf. Sect. 3).
The outcome of the game is a set of schedules, one for each household, which specify how
they can make best use of their battery system. The households will follow these schedules
throughout the day, even if their actual demand differs from the forecasted one. In Sect. 4,
we investigate the influence of the forecasting error and show the robustness of the approach
even in the worst-case scenario. At the end of the scheduling period, the electricity costs for
each consumer is calculated based on the agreed pricing terms and the protocol starts over
again.

2.2 Individual Households

Households that participate in the DSM scheme are equipped with a lithium-ion battery and
PV cells. In this subsection, we introduce the battery model and clarify how the battery can
be used.Moreover, details on the PV system are provided. Finally, we clarify the terminology
of demand, net demand, and load of a household based on the usage of their battery and PV
cells.

2.2.1 Battery Model and Decision Variables

In this paper, we employ the same battery model as used in [17]. This includes charging,
discharging, and self-discharging characteristics of a lithium-ion battery. In fact, the same
model may also be applied for lead–acid battery systems (but not nickel-based batteries
due to their different charging behaviour). As all our simulations are based on a real-world
lithium-ion battery system, in the following we will only refer to them as such.
Charging Lithium-ion batteries are charged in a two-stage process [22]. In the first stage,
the state of charge (SOC) increases linearly. This stage is called the ‘constant current’ (CC)
stage, with a charging rate limited by ρ+ > 0. In the second stage, i.e. the ‘constant voltage’
(CV) stage, the effective charging rate levels off exponentially towards the point where the
SOC reaches the nominal maximum capacity smax of the battery. The point of transition from
the first stage to the second is indicated by a SOC s∗ and an associated time t∗, which needs
to be specified for the respective battery. During both stages, we additionally consider losses
due to the specific charging efficiency η+ with 0 ≤ η+ ≤ 1. Additionally, certain losses
occur from the hybrid inverter (cf. Fig. 1), modelled by ηinv with 0 ≤ ηinv ≤ 1. The hybrid
inverter transforms the direct current from either the battery or PV into alternating current
at usable voltage and frequency for the household appliances. It also works in the reverse
direction to charge the battery.

To obtain an insight into how the households can make use of their battery system, let us
look at a specific example (cf. Fig. 2a). Given a certain value for the SOC, e.g. s′, we can
associate a time t ′ and thus specify a point on the charging curve.

Within the next interval of length Δt , the decision variable a+ of how much to charge the
battery will lie in H+ (

s′) = {
a+|h+ (

s′, a+) ≤ 0
}
, with

h+ (
s′, a+) =

( −a+
a+ − φ+ (

s′)
)

. (1)
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(a) (b)

Fig. 2 Schematic illustration of the charging and discharging behaviour of a lithium-ion battery. The graph
on the left (right) shows the characteristic charging (discharging) curve. Given a certain state of charge s′, the
grey area stands for the achievable state of charge within the following interval. The right axes represent the
possible decisions when charging (discharging), where H+ (

s′
)
(H− (

s′
)
) summarise the decision intervals.

The discrepancy between the achievable state of charge and the decision interval are due to losses, i.e. imperfect
efficiencies while charging (discharging)

In other words, a+ is limited by 0 < a+ ≤ φ+ (
s′) < smax − s′. We use the notation above

to comply with the one shown in [13]. The upper limit φ+ (
s′) is described by the charging

curve, as described above,

φ+ (
s′) =

{
ρ+�t if CC charged

smaxγ1 exp
[
−�t

γ2

]
if CV charged

, (2)

where γ1, γ2 are defined such that the charging curve is smooth at the transition point (t∗, s∗).
The discrepancy between the grey-shaded area and the charging curve in Fig. 2(a) results
from an imperfect charging efficiency. In fact, based on the decision variable a+ the SOC of
the battery changes according to the charging transition equation

s
(
t ′ + �t

) = s
(
t ′
) + ηinv η+a+ . (3)

Discharging and Self-DischargingWemodel the discharging behaviour of lithium-ion batter-
ies by a linear decrease in the SOC. Here, the slope is given by the discharging rate ρ− < 0.
In order to account for the usual sharp drop off of the discharging rate at low capacities,
discharging is prohibited below a minimum SOC smin. Again, we also consider losses due to
the specific discharging efficiency η− with 0 ≤ η− ≤ 1 and the hybrid inverter.

In Fig. 2b, a specific example is given, to clarify how the user can discharge its battery.
Within the respective interval, the decision variable a− of how much to discharge the battery
will lie in H− (

s′) = {
a−|h− (

s′, a−) ≤ 0
}
, with

h− (
s′, a−) =

(
a−

−a− + φ− (
s′)

)
. (4)

In other words, a− is limited by s′ − smin < φ− (
s′) ≤ a− < 0 and

φ− (
s′) = ρ−�t ηinv η−. (5)
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The dependency on s′ in (5) is implicitly given by the fact that we cannot go lower than
smin. Note that φ− also depends on the efficiency parameter, such that the actual amount
taken from the battery in correspondence with the decision variable a− (grey-shaded area in
Fig. 2b) is given by the discharging transition equation

s
(
t ′ + �t

) = s
(
t ′
) + a−

ηinv η− . (6)

In the following subsection, we will see that φ− is additionally limited by the demand of the
specific household, i.e. one can only discharge as much as is needed to run all appliances.

Whenever the battery is neither charging nor discharging, it will be subject to self-
discharging. We model this type of behaviour with an exponential decline. This case
corresponds to the decision variable a = 0. The respective self-discharging transition equa-
tion is given by

s
(
t ′ + �t

) = s
(
t ′
) · (1 + ρ̄)�t (7)

where ρ̄ < 0 is the self-discharging rate.
For later usage (cf. Sect. 3.1), we summarise the transition equations for charging, dis-

charging, and self-discharging into a single transition equation f , i.e.

s(t + �t) = f (s(t), a) =

⎧
⎪⎨

⎪⎩

s(t) + ηinv η+a, a > 0

s(t) + a/(ηinv η−), a < 0

s(t) · (1 + ρ̄)Δt , a = 0

. (8)

Furthermore, we combine the restrictions of the decision variable due to the battery restric-
tions for charging and discharging, i.e.

h(s, a) =
(

a − φ+ (s)
−a + φ− (s)

)
. (9)

2.2.2 PV Model

We model the solar panel as an additional source of electricity besides the grid connection.
The output of the nth household’s PV system during interval t is denoted by wt

n . It can serve
two purposes: (1) direct usage by household appliances and (2) charging the battery.Whereas
direct usage is influenced by the efficiency of the hybrid inverter, charging the battery does
not require any inversion and thus only depends on the charging efficiency of the battery.

An important parameter of the PV installation is the nominal kilowatt peak kWp of the
system. It is a measure of the size of the system and denotes the maximum output that can be
expected under standardised conditions. A PV system which operates at its maximum capac-
ity, e.g. kWp = 3 kW, for one hour will produce 3 kWh. Note that identifying the optimal
size of the PV installation does not fall within the scope of this article. An approximated
scale is obtained from Zhang and Grijalva [29] and Olaszi and Ladanyi [15] (cf. Sect. 4.1).

2.2.3 Demand, Net Demand, and Load

We define the demand d̄ tm ≥ 0 of a household m ∈ M as the amount of electricity that is
needed to run all its appliances during the time interval t ∈ T . Thus, the total daily demand
schedule can be written as d̄m = (

d̄0m, . . . , d̄T−1
m

)
. Throughout the paper, we assume that the
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demand cannot be shifted. Thus our approach is fully non-intrusive and does not influence
the behaviour of the user.

Combining the demand d̄ tn of a household n ∈ N with the generated electricity wt
n from

the solar panel gives the net demand

dtn = d̄ tn − ηinv wt
n , (10)

where ηinv is the efficiency of the inverter (cf. Fig. 1). Theoretically, this value can be smaller
than zero, i.e. when the effective generation is larger than the demand in the specific interval.
Practically, we ensure dtn ≥ 0 by storing all excess energy directly in the battery. For house-
holds m /∈ N , that do not participate in the DSM scheme, the net demand is identical to the
demand.

Let ltm denote the load, i.e. the amount of energy drawn from the grid by householdm ∈ M
during interval t ∈ T . For households which do not participate in the DSM scheme, the load
equals their demand. For the others, the load depends on the decision atn taken at the specific
interval. In other words, it combines the net energy demand with the amount of energy that
is charged or discharged by the battery

ltn = dtn + atn , (11)

where max
{−dtn, φ

−} ≤ atn ≤ φ+. The lower boundary expresses the fact that one cannot
discharge more than is actually needed to fulfil the net demand, while at the same time all
battery restrictions remain valid. Due to this condition and (10), we ensure that ltm ≥ 0 for
all m ∈ M and all intervals t ∈ T . We write lm = (

l0m, . . . , lT−1
m

)
for the schedule of loads

of a specific household. Furthermore, we can calculate the total load on the grid for interval
t by

Lt =
∑

m∈M
ltm . (12)

Similarly, we define the average aggregated load of all households other than n during time
interval t by

Lt−n = 1

M − 1

∑

m∈M\n
ltm . (13)

2.2.4 Forecasting Errors

The DSM protocol states that households send a forecast of their net demand to the UC. This
depends on the demand as well as the electricity generated by the solar panel. Both variables
will introduce errors that need to be accounted for. In this paper, we consider the worst-
case scenario. [3] gives a comprehensive overview of the current techniques for short-term
demand forecasting. They specifically investigate how combining forecasts obtained from
an integrated auto-regressive moving average, an artificial neural network, and a similar day
approach can improve the short-term load forecast. From [3], we obtain an upper limit for
the forecasting error εd , expressed as a percentage of the actual demand. Similarly, [5] gives
an insight into 24-hour PV power output prediction. The forecasting error εw is also given
as a percentage of the actual generation.

The worst-case scenario is constituted when these two errors carry opposing signs and are
correlated between all the participants. This becomes clear from (10), since both contributions
for the net demand enter with different signs. Intuitively, it makes sense that in the worst case
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the forecasted net demand is smaller than the actual demand. This is because a too small
forecasted net demand does disguise the incentive to make use of the battery system. With
the same argument, the worst-case solar forecast is higher than the actual one. It might imply
a sufficient SOC of the battery, when in reality more charging would have been necessary.

2.3 The Utility Company

Throughout the paper, we assume a single utility company (UC) serves all the consumers in
the neighbourhood. The UC runs a DSM scheme in order to reshape the load profile. To be
more precise, they want to achieve a flatter profile such that investments into fast ramping
technology, which is needed to deliver peak demand, can be reduced. The incentive for the
users to limit consumption during peak hours is given by a dynamic pricing tariff: the cost per
energy unit is calculated separately for each interval and depends on the aggregated load of
all users in the neighbourhood. Following [11,12,17,28], we employ a quadratic cost function
gt :

gt (y) = c2 · y2 + c1 · y + c0, t ∈ T , (14)

where y is the aggregated load at time t given by Lt and the coefficients c2 > 0, c1 ≥ 0,
and c0 ≥ 0. Similar to [11,17,24], we employ a proportional billing scheme, where each
participant of the DMS scheme pays for their share of the consumption, i.e. the electricity
bill Bn yields

Bn = −Ωn

∑

t∈T
gt ∀n ∈ N , (15)

with

Ωn =
∑

t l
t
n∑

t
∑

k l
t
k
. (16)

For households that do not participate in the DSM scheme, a standard fixed-price tariff is
employed, i.e.

Bm = p
∑

t

l tm ∀m ∈ M \ N . (17)

3 Dynamic Battery Scheduling Game

In this section, we formulate the non-cooperative dynamic game between the households that
possess individual energy storage and photovoltaic (PV) installations. To do so, we introduce
the relevant notation and relate it to their respective ‘real-world’ meaning according to our
system (cf. Sect. 2). Furthermore, the notion of a Nash equilibrium (NE) is defined and an
important result concerning the link between the NE for the whole game and the NE for a
subgame is provided. Subsequently, a dynamic programming algorithm is presented from
which we derive a closed-form expression of the best response, i.e. the best decision a player
can make in response to fixed decisions of other players. Eventually, we use this result to
construct an iterative algorithm that computes a NE of the game.



906 Dynamic Games and Applications (2020) 10:897–929

3.1 Definitions and Game Formulation

Formally, the game belongs to the category of discrete time dynamic games (cf. [13]), where
players make their decisions sequentially in stages. These stages directly correspond to the
daily intervals introduced in Sect. 2.1. For each stage, we define a state of the game, i.e. the
current state-of-charge (SOC) of all batteries, representing the configuration of the overall
system. Furthermore, we define a transition equation that models the evolution of this state
based on the decisions of the players. In other words, the players will choose actions that are
directly related to their battery usage, which in turn depends on the state of the game. We
consider a game with open-loop information structure, which means that the initial state of
the game is known by all players. In this game, players want to minimise their energy bill,
i.e. their utility function, which depends not only on their own but also on the decisions of
all other players. In a nutshell, we have:

Definition 1 Our discrete time dynamic game with open-loop information structure consists
of the following components:

(1) A set of players, i.e. participating households (cf. Sect. 2.1),N = {1, 2, . . . , n, . . . , N },
where N denotes the number of players.

(2) A set of stages, i.e. intervals (cf. Sect. 2.1), T = {0, 1, . . . , t, . . . , T − 1}, where T
denotes the number of stages and thus the number of decisions a player can make in the
game.

(3) Scalar state variables stn ∈ Sn ⊂ R denoting the SOC of the nth player’s battery at
stage t ∈ T ∪ {T }. Collectively, we denote the state variables of all players at stage t by
st := (

st1, s
t
2, . . . , s

t
N

) ∈ S := S1 ×S2 × · · · ×SN ⊂ RN . In the open-loop information
structure, it is assumed that the initial state s0 is known2 to all players n ∈ N .

(4) Scalar decision variables atn ∈ Ht
n

(
stn

) ⊂ An ⊂ R (for definition of Ht
n see item

(5)) denoting the usage of the battery of the nth player at time t ∈ T . Collectively, we
denote the decision variables of all players at stage t by at := (

at1, a
t
2, . . . , a

t
N

) ∈ A :=
A1 × A2 × · · · × AN ⊂ RN . Furthermore, we define the schedule of battery usage of
an individual player n ∈ N as a collection of all its decisions in the stages of the game
by an := (

a0n , a
1
n, . . . , a

T−1
n

)
. A strategy profile is denoted by a := (a1, a2, . . . , aN ).

(5) A set of admissible decisions Hn
(
s0n

) := {
an | htn

(
stn, a

t
n

) ≤ 0, t ∈ T
} ⊂ RT for the

nth player. The function htn
(
stn, a

t
n

)
has been defined in (9) Sect. 2.2.1, capturing the

restrictions posed on the battery. We denote Ht
n

(
stn

) := {
atn | htn

(
stn, a

t
n

) ≤ 0
} ⊂ R

(6) A state transition equation

st+1
n = f tn

(
stn, a

t
n

)
, t ∈ T , n ∈ N , (18)

governing the state variables
{
st

}T
t=0. The function f tn

(
stn, a

t
n

)
is the discretised version

of the transition equation (8) defined in Sect. 2.2.1, showing how a decision of the player
influences the state of its battery for the upcoming stage.

(7) A stage additive utility function

Un
(
s0n , (an, a−n)

) = −gTn
(
sTn

)
−

T−1∑

t=0

gtn
(
stn,

(
atn, a

t−n

))
(19)

2 Later, we will see that the solutions/schedules require the players to deplete their battery towards the end
of the scheduling period (cf. finite-horizon effect) to achieve maximum utility. This means as long as none of
the players deviates from their respective schedule this knowledge is implicitly shared.
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for the nth player, where a−n := (a1, a2, . . . , an−1, an+1, . . . , aN ) denotes the decisions
of all other players. The function gtn

(
stn,

(
atn, a

t−n

))
has been defined in (14) Sect. 2.3

capturing the costs to the nth player at the t th stage. Note that the utility function depends
only on the initial state variable s0n , since the subsequent states s

t
n are determined by (18).

The function

gTn
(
sTn

)
= sTn (20)

expresses a penalty for the nth player that is incurred by ending up in state sTn , i.e. its
SOC, at the end of the scheduling period.

We represent the decision problem of the nth player as the following optimisation problem:

Gn (a−n) given s0 ∈ S
maximise

an
Un

(
s0n , (an, a−n)

)

subject to atn ∈ Ht
n

(
stn

)

st+1
n = f tn

(
stn, a

t
n

)

(21)

Moreover, the game is referred to as {G1,G2, . . . ,GN }.
Definition 2 A strategy profile â = (

â1, . . . , âN
)
is a Nash equilibrium for the game

{G1, . . . ,GN } if and only if for all players n ∈ N we have

Un
(
s0n ,

(
ân, â−n

)) ≥ Un
(
s0n ,

(
an, â−n

))
, ∀an ∈ Hn

(
s0n

)
. (22)

3.2 Analysis of the Game

In order to analyse the game {G1, . . . ,GN }, we follow the dynamic programming (DP) idea
by Nie et al. [13]. To do so, we introduce notation for subproblems of (21). Furthermore, we
show an important result about Nash equilibria for these subproblems, which constitutes the
basis for the DP algorithm. Applying the general algorithm eventually leads us to an analytic
formulation of the nth player’s best response ân , given the strategies a−n of other players at
stage t of a T -stage game.

3.2.1 Subgame Formulation

For subproblems that are only interested in decisions taken from stage t ′ onwards, we write:

st
′,T−1
n :=

(
st

′
n , . . . , sT−1

n

)
, st

′,T−1 :=
(
st

′
, . . . , sT−1

)

at
′,T−1
n :=

(
at

′
n , . . . , aT−1

n

)
, at

′,T−1 :=
(
at

′
, . . . , aT−1

)

UT−t ′
n

(
st

′
n ,

(
at

′,T−1
n , at

′,T−1
−n

))
= −gTn

(
sTn

)
−

T−1∑

τ=t ′
gτ
n

(
sτ
n ,

(
aτ
n , aτ−n

))

Ht ′,T−1
n

(
st

′
n

)
:=

{
at

′,T−1
n | hτ

n

(
sτ
n , aτ

n

) ≤ 0, τ = t ′, t ′ + 1, . . . , T − 1
}

.
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For t ′ ∈ T , we define a subproblem of the nth player as the following optimisation problem:

GT−t ′
n

(
at

′,T−1
−n

)
given st

′ ∈ S

maximise
an

UT−t ′
n

(
st

′
n ,

(
at

′,T−1
n , at

′,T−1
−n

))

subject to at
′,T−1
n ∈ Ht ′,T−1

n

(
st

′
n

)

st
′+1
n = f t

′
n

(
st

′
n , at

′
n

)

(23)

Therefore, the subgame is referred to as
{
GT−t ′

1 ,GT−t ′
2 , . . . ,GT−t ′

N

}
.

Theorem 1 Let â = (
â0, . . . , âT−1

)
constitute aNash equilibrium for thegame {G1, . . . ,GN }

with the corresponding trajectories of states ŝ = (
ŝ0, . . . , ŝT

)
. Consider the sub-

game
{
GT−t

1 , . . . ,GT−t
N

}
for each t ∈ T . Then, the truncated strategy ât,T−1 =

(
ât , ât+1, . . . , âT−1

)
comprises a Nash equilibrium for the subgame

{
GT−t

1 , . . . ,GT−t
N

}
.

Proof The proof can be found in ‘Appendix A.1’. 
�

3.2.2 The DP Algorithm and Derivation of the Best Response Solution

Based on the results of the previous subsection, we can formulate the following DP algorithm
to find the solution to the decision problem Gn(a−n) (21), i.e. the optimal decision for the
nth player given the decisions a−n of the other players.

Algorithm 1: DP algorithm for player n ∈ N to find the solution to (21).

Input: T , a−n , s0

t ← T
1 for each sT ∈ S do

V 0
n (sTn ) ← gTn

(
sTn

)

2 while t > 0 do
t ← t − 1

3 for each st ∈ S do

âtn ← argmax
atn∈Ht

n(stn)
−gtn

(
stn,

(
atn, a

t−n

)) − V T−t−1
n

(
ft

(
stn, a

t
n

))

V T−t
n (stn) ← max

atn∈Ht
n(stn)

−gtn
(
stn,

(
atn, a

t−n

)) − V T−t−1
n

(
ft

(
stn, a

t
n

))

end
end

end

Output: ân
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Let us apply Algorithm 1 to obtain the result to the decision problem Gn(a−n) (21) in
closed form. Note that both for loops (lines 1 and 3) are treated implicitly by keeping sT and
st unspecified throughout the computations.

Given the total scheduling length T , the aggregated decisions a−n of all other players, and
the initial SOC s0 of the batteries, at the first step (t = T ) we set V 0

n (sTn ) = sTn according to
(20).With this, we enter thewhile loop (line 2) which overwrites t to now represent t = T −1.
We solve for the best decision âT−1

n by solving the following problem:

âT−1
n = argmax

aT−1
n

gT−1
n︷ ︸︸ ︷

−c2
(
dT−1
n + aT−1

n + LT−1−n

)2 − c1
(
dT−1
n + aT−1

n + LT−1−n

)
− c0

− sT−1
n − aT−1

n
︸ ︷︷ ︸

V 0
n

where we made use of the transition equation (18) to rewrite V 0
n . The solution is computed

as

âT−1
n = −sT−1

n ,

and subsequently we have

V 1
n = −c2

(
dT−1
n − sT−1

n + LT−1−n

)2 − c1
(
dT−1
n − sT−1

n + LT−1−n

)
− c0.

With this, the first step is done and we again overwrite t to now represent t = T − 2. In this
stage, we solve the following problem:

âT−2
n = argmax

aT−2
n

−gT−2
n

(
sT−2
n ,

(
aT−2
n , aT−2−n

))

+ c2
(
dT−1
n −

[
sT−2
n + aT−2

n

]
+ LT−1−n

)2

+ c1
(
dT−1
n −

[
sT−2
n + aT−2

n

]
+ LT−1−n

)
+ c0.

The solution is computed as

âT−2
n = 1

2

(
dT−1
n − dT−2

n − sT−2
n + LT−1−n − LT−2−n

)
,

from which we obtain

V 2
n = −c2

2

(
dT−1
n − dT−2

n − sT−2
n + LT−1−n − LT−2−n

)2

− c1
(
dT−1
n − dT−2

n − sT−2
n + LT−1−n − LT−2−n

)
− 2c0,

finalising the second step. This procedure can be done for all subsequent steps. As the
equations increase quickly in size, they become infeasible to quote here. Fortunately though,
our calculations provided insight into recurring patterns, which all the solutions seem to
follow. Eventually, the solution for an arbitrary stage t of the T -stage dynamic game can be
written as



910 Dynamic Games and Applications (2020) 10:897–929

âtn = 1

T − t

[
T−1∑

τ=t+1

(
dτ
n + Lτ−n

) − stn − (T − t − 1)
(
dtn + Lt−n

)
]

(24)

Note that during the derivation the nonlinear battery constraints are not strictly considered.
Similar to the forecasting errors (cf. Sect. 3.3), these are considered in our simulation when
the equilibrium schedules are actually executed. Furthermore, we want to highlight that the
optimal decision (24) for nth player at time t only depends on the current and future forecasted
net demand data, the current SOC of the battery, and the average load (13) on the grid caused
by all the other households. This can be vaguely reminiscent of an alternative and elegant
mean-field-type approach [6,8] in which each player reacts directly to an aggregated signal
from the group.

3.3 The Algorithm and Execution of NE Schedules

Similar to [17], wemake use of a best response algorithm (cf. Algorithm 2) to find the solution
to the game. Whereas in [17] an extensive search for optimal schedules ân was performed,

Algorithm 2: Best response algorithm for finding a pure NE based on [23]

Input: T , s0

initialise random strategy profile a = (an, a−n)

1 while there exists a player n for whom an is not a best response to a−n do
2 for each n ∈ N do
3 for each t ∈ T do

âtn ← best response to a−n based on (24)
end
an ← (

â0n , . . . , â
T−1
n

)

end
end

Output: â

here we can compute the best response for each stage (line 3) analytically by means of (24)
and concatenate the results to obtain the optimal schedule ân in response to a−n . Performing
this computation for each player n ∈ N (line 2) results in a new strategy profile a. We iterate
this (line 1) as long as ‘there exists a player n for whom an is not a best response to a−n’. In
the actual implementation, this check is done by comparing the current strategy profile with
the one obtained from the previous iteration. If it did not change, up to machine precision,
an equilibrium is reached and â = (

ân, â−n
)
constitutes the Nash equilibrium. This iterative

approach is a type of cobweb method [2] which theoretically does not converge for every
given scenario. An analysis of the convergence behaviour is performed in Sect. 4.2.

Based on the definition of a NE, no household can benefit from unilaterally deviating from
its respective schedule. Nonetheless, we have to keep in mind that it is based on forecasted
demand and renewable generation. Whenever either the demand or the generation does not
match the forecasted value, it might not be possible anymore to strictly follow this NE
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schedule. In the analysis in the subsequent sections, we assume that every individual always
seeks to be as close as possible to their determinedNE schedule. To illustrate the idea: imagine
a NE schedule of household n requires them to discharge an amount x in a certain interval.
Due to a forecasting error for the renewable generation, this has not been charged fully and
can thus not be delivered. In this case, the schedule will discharge as much as possible during
this interval. The deviation from the NE will decrease the benefit in terms of PAR reductions
and achieved savings for the consumer. Anticipating the results, we want to highlight that in
the following section we show that the solution is robust with respect to these deviations and
gives considerable improvements in comparison with other approaches in the literature.

4 Results and Discussion

In this section, we firstly summarise important simulation parameters and introduce the spe-
cific data sets for electricity demand and generation from the photovoltaic (PV) installation.
After analysing the convergence behaviour of the iteration algorithm, we compare the game-
theoretic approach introduced in thismanuscript (cf. Sect. 3.1)with a simpler non-cooperative
static game, revealing the advantages of the dynamic treatment. Subsequently, the analysis
of how the participation rate of the DSM scheme and the forecasting errors influence the
scheduling outcome is shown. Finally, we consider the influence of the composition of the
neighbourhood on the peak-to-average ratio (PAR) reduction. This is an important mea-
surement of the effectiveness of the DSM scheme. We consider the PAR of the aggregated
electricity load (12) over the respective scheduling period. It is defined by

PAR = T · maxt∈T Lt
∑

t∈T Lt
. (25)

4.1 The Simulation Setup

In the real-world application, the smart meter of individual households collects data about
electricity demand and generation from the available PV installation.As specified in Sect. 2.1,
the demand-side management (DSM) protocol requires participants to send forecasts of the
demand and generation to the utility company. These forecasts are based on historically
collected data. In order to run our simulations, we omit this forecasting step and rather make
use of two publicly available data sets.
Demand data The demand data stem from the OpenEI data set [27]. It contains 365 days
of simulated hourly data3 for households in TMY3-locations in the USA [14]. The building
models used for this simulation can be found in [26]. Based on an additional survey, all
buildings are put into one of three different categories. They differ with respect to their overall
consumption. Following [27], we refer to them as LOW, BASE, and HIGH consumers. For
all simulation runs, we picked the same M = 25 households, in close vicinity to each other,
to represent our neighbourhood.With respect to their consumption categories, we have seven
LOW, nine BASE, and nine HIGH users.
PV data Data for the PV generation are based on real-world measurements [19] in the UK.
They contain hourly values for days between September 2013 and October 2014. Note that
latitude and climate zone of the measurement location are similar to the ones of the demand
data. Under the assumption that the weather for all households in the neighbourhood is the

3 We make use of T = 24 for all simulations, if not stated otherwise.
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Table 1 Battery parameters
Variable Value

η+ 0.958

η− 0.958

ηinv 0.960

ρ+ 5.0 kW/h

ρ− − 7.0 kW/h

ρ̄ − 0.001

smax 13.5 kWh

smin 0.0 kWh

s∗ 9.46 kWh

Parameters for a Tesla-inspired [25] home battery storage
system

same, we use data from the same site for each of them. An estimate for the kWp value is
obtained from looking at the highest hourly output in the course of a whole year. Its value is
wmax = 3.7 kWh, which is why we assume kWp ≈ 4 kW. We account for different sizes of
PV installations by scaling the data set with a household specific factor pn . About 6% of the
collected data were corrupted. We set all these values to w = 0.0 kWh. This does not pose
any problem for our simulation results, but can be seen as realistic failures of the installation.
Battery and pricing parameters The parameters of the battery are based on the Tesla Power-
wall 2 [25] data sheet. The choice to employ this battery system is motivated by two reasons:
(1) the same battery was used in [17], allowing for a direct comparison of the results; (2) a
non-extensive analysis of different battery systems showed that the Tesla Powerwall 2 qual-
ifies as a representative of state-of-the-art technology. Please see ‘Appendix A.2’ for more
details. A summary of the battery parameters is given in Table 1. The data sheet only specifies
the round-trip efficiency η = η+ · η− of the battery. Without loss of generality, we assume
that charging and discharging contribute equally, yielding η+ = η− = √

0.918.
For the parameters in the cost function (14), we use c2 = 0.03125 $/MW2, c1 =

1.0 $/MW, and c0 = 0, following other studies [17,20]. This allows to directly compare
our results. In ‘Appendix A.3’, the influence of these coefficients on the potential savings for
the households is analysed.

4.2 Convergence Behaviour of the Algorithm

Let us provide an insight into the convergence behaviour of Algorithm 2. The condition
that needs to be fulfilled to declare equilibrium is stated as ‘there exists no player n for
whom his current action an is not a best response to the actions a−n of the other players’
(cf. Algorithm 2, line 1). Within our specific implementation of selma, the stopping criteria
are based on the L2 difference between the action profiles of two consecutive iterations,
i.e. when this difference is smaller or equal to 10−15 the algorithm breaks out of the loop.
Associated with the current action profile during each iteration are also the energy bills for
each participant.
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Fig. 3 Convergence analysis of Algorithm 2. The change in the average bill of the DSM participants between
consecutive iterations is plotted over the iteration number. The ordinate is scaled logarithmically. Bars are
coloured according to the algebraic sign of the change. The specific data points stem from a simulation in
Sect. 4.4 with 64% participation rate and without forecasting errors (Color figure online)
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Fig. 4 Iteration statistics. The mean number of iterations per day is plotted over the participation rate in per
cent. The values stem from the simulations undertaken in Sect. 4.4. In addition to the average over 365 days,
the standard deviation is shown for each data point.

Results In Fig. 3, the absolute change in the average bill B = 1/N
∑

n Bn (cf. (15)) is shown
for a randomly selected day of the simulation shown in Sect. 4.4. To cover the large scale of
different changes, a logarithmic representation is chosen. The respective sign of the change
is then expressed in the colour of the bar.

Figure 4 shows how the number of average iterations per day depends on the number of
participants in the DSM scheme. The values are again taken from the simulations in Sect. 4.4.
Discussion The results give evidence of a correctly working iteration algorithm (cf. Algo-
rithm 2). From Fig. 3, we see that between any two consecutive iterations, the absolute
change in the average electricity bill is monotonically decreasing. Furthermore, we observe
that the rate of this decrease is almost linear in the semi-logarithmic plot, hinting towards an
exponential relationship.
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Due to the exponential convergence towards a Nash equilibrium, only few iterations are
needed to obtain the equilibrium schedules. The specific number of iterations depends on
the number of participants taking part in the DSM scheme. This is comparable to the ones
shown in [12]. Figure 4 shows that the average number of iterations increases monotonically
with the number of participants. Moreover, the variation across the number of iterations for
individual scheduling periods is small, as shown by the standard deviation. This is a strong
result, as it shows that the convergence properties are insensitive to different demand data of
the individual participants. During experimentations with the code, more than one million
games were solved which all converged to a Nash equilibrium.

The small number of iterations directly translates to small computational times and thus
does not hinder a real-world application. Typical 365-day simulation runs take about 30 s on a
single core of ani7-3770SCPUand require less than 1GBofmemory.Note that in the real-
life scenario, the scheduling process is initiated once before the scheduling period and only
needs to calculate the equilibrium schedules for the upcoming day. In summary, we expect
no difficulties in implementing a DSM scheme based on our scheduling software selma.

4.3 Comparison Between a Static and a Dynamic DSM Scheme

In [17], a similar DSM scheme to the one described in Sect. 2.1 was examined. Both are based
on a battery scheduling game for households of a neighbourhood served by the same utility
company (UC). Their main difference is the underlying game that determines the schedules
for the upcoming day. Whereas in this paper we employ a discrete time dynamic game, Pilz
and Al-Fagih [17] made use of a simpler non-cooperative static game in which players were
only able to choose between four discrete options for each interval. For a more thorough
description please see [17]. For the sake of comparison, none of the households is equipped
with PV cells.

In this subsection, we compare the two approacheswith respect to their success in reducing
the PAR of the aggregated load. To this end, the same parameters for each household and also
the same demand data are used. Households do not have the capability of on-site generation,
but are equipped with the same batteries (cf. Table 1). The upcoming day is divided into
T = 12 intervals, and we assume N = M = 25, i.e. every household takes part in the DSM
scheme. As in [17], we simulate full weeks by using the state-of-charge (SOC) values of the
batteries at the end of the scheduling period as the initial configuration for the following one.

Results Figures 5a, b show the aggregated load curves achieved by the DSM schemes for
forecasts given by week 12 and week 38 of the demand data set [27], respectively. For
completion, we also simulated week 25 and week 51 as done in [17]. A summary of the
achieved results is given in Table 2.

On average, a 14% and 32% decrease in the PAR value was achieved by the static and the
dynamic games, respectively. To understand the differences of the outcomes, we explicitly
look at the schedules that are obtained in the NE of the respective games. Figure 6 shows
these schedules exemplarily for day 5 of week 38 (Fig. 5b, cf. Figure 3 in [17]) together
with the aggregated load and aggregated SOC above it. Each row illustrates the equilibrium
schedule of one household.

Discussion Comparing the aggregated load curves (cf. Fig. 5) shows that a DSM scheme
based on a dynamic game can achieve an almost flat profile. Nevertheless, depending on the
given data, the outcome of the scheduling is subject to a finite-horizon effect. Empirically,
we observe peaks and troughs at the end of the scheduling period if the demand for the final
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Fig. 5 Load comparison. The aggregated load of all households in the neighbourhood is plotted over time.
The simulation domains cover seven days that were each scheduled consecutively. The aggregated demand is
given as a reference. The orange curve results from a DSM scheme employing a static scheduling game [17],
while the green one stems from a DSM scheme employing a dynamic game. Other than the underlying game
structure, all parameters are identical (Color figure online)

interval is lower than the average demand of the whole day. This indicates that the starting
time of the DSM scheme has an influence on the achievable outcome. Nonetheless, this
parameter is fixed through the DSM scheme protocol, thus asking for alternative solutions to
the finite-horizon effect. Future work will aim to eliminate the influence of the starting time
altogether.

In Table 2, we observe that on average the dynamic game reduces the PAR value more
than twice as much as the static game. However, with respect to the individual weeks the
static game shows a smaller standard deviation of 0.04 and thus seems to be more consistent.
Its achieved reductions are all between 10.4 and 15.3%, while the range of reductions by
the DMS scheme with the dynamic game is 23.9–40.9%. The differences with respect to the
standard deviations is again owed to the finite-horizon effect. It is also present in the case
with the static game, but, due to generally worse outcome, does not alter it as much as the
results of the dynamic scheduling game.

We can further understand the differences between the static and dynamic game from
Fig. 6. The restriction to four discrete options for each interval in the static case, i.e. (1)
remain idle, (2) charge half interval, (3) charge full interval, and (4) use battery, results in a
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Table 2 PAR comparison

Reference Static Dynamic

Period

Week 12 1.623 (0.005) 1.374 (0.070) 1.013 (< 0.001)

Week 25 1.574 (0.033) 1.410 (0.035) 1.198 (0.016)

Week 38 1.685 (0.031) 1.439 (0.080) 1.231 (0.015)

Week 51 1.718 (0.037) 1.468 (0.082) 1.015 (0.001)

μ 1.650 (0.064) 1.423 (0.040) 1.114 (0.117)

Peak-to-average ratios calculated as the average over the individual days ofweek 12,week 25,
week 38, and week 51 for the case without storage system (Reference) and both underlying
games of the DSM scheme. μ gives the average over all 4weeks. Static: game employed
in [17]; dynamic: gamedescribed inSect. 3.1. The values in parentheses represent the standard
deviation

majority of intervals where the battery remains idle. This is because of a lack of incentive
to charge the battery by the two given amounts. In the dynamic game, players can choose
to charge their battery from a continuous spectrum of decisions in a given interval. This
difference becomes most apparent when looking at the aggregated SOC of all participants.
Whereas the maximal SOC in the static case is approximately 64kWh, almost twice as much
(120kWh) is charged in the dynamic case. In summary, it shows that the increased flexibility
of the dynamic game is better suited to minimise the PAR of the aggregated load.

Note that all these comparisons allow for strong conclusions as they are based on the
identical data set [27] and also all the other parameters, such as number of players N and
number of time intervals T , are chosen to be the same. Nevertheless, comparisons with other
results in the literature are possible: compared to the work by Nguyen et al. [12], a better PAR
reduction is achieved while also the number of iterations to obtain the equilibrium solution
is lower by two orders of magnitude. Similarly, the PAR reduction of Yaagoubi et al. [28]
is worse than the approach shown in this manuscript. As they schedule not only the battery
but also shift other household appliances, a comparison of the computational costs is not
appropriate.

4.4 Influence of Participation Rate and Forecasting Errors

The question of how many participants are needed to obtain considerable gains in terms of
PAR reduction and savings is important. Moreover, within this subsection the robustness
with respect to the forecasting errors (cf. Sect. 2.2.4) is shown. To do so, we assume the
forecasting error for the demand to be εd = 8% for every household [3], which could be
obtained from a forecast performed by an artificial neural network, and is approximately
2.5 times higher than the best forecast obtained by them. This is independent of whether
the household participates in the DSM scheme or not. The forecasting error for the solar
generation is set to εw = 10% in accordance with [5,21]. Rana et al. [21] make use of a
neural network and clustering of weather data to forecast half hourly solar power output for
the upcoming day. Note that only participants of the DSM scheme are equipped with PV
cells and thus subject to the forecasting error. The values are taken to represent a worst-case
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Fig. 6 Nash equilibrium schedule comparison. The schedules for all participating households of the demand-
side management scheme for a single scheduling period (week 38, day 5, cf. [17]) are shown together with
their respective aggregated load and aggregated state of charge (SOC). (a) The underlying game structure is
a static non-cooperative game from Pilz and Al-Fagih [17]. Within each interval, players can choose between
four discrete decisions. (b) Here, the game structure is the dynamic game introduced in Sect. 3.1. Note that
the schedules employ the same scaling

scenario. Subsequently, any real-world scheduling result should fall in the interval between
the worst-case outcome and the respective outcome without any forecasting error.

We simulate a full year and average over the obtained PAR values for the individual days.
All participants are equipped with a lithium-ion battery (cf. Table 1) and a solar cell. The size
of the PV installation depends on the user’s category. For LOW,BASE, andHIGHconsumers,
we use pn = 0.3, pn = 0.5, and pn = 0.7, respectively. Starting with all 25 households
taking part in the DSM scheme, we eliminated three users, i.e. one randomly selected from
each consumer category, in each subsequent run. Non-participant still exhibit the specified
forecasting error for their demand.
ResultsFigure 7 shows the reduction in the PARvalue over the rate of participating consumers
for the scenarios with and without forecasting errors. It includes not only the mean values,
but also the standard deviation. Note that we slightly shifted the results for both runs along
the abscissa to increase readability. An additional axis on the left indicates the absolute PAR
values.Whereas the PAR reduction is the interest of the UC, the financial rewards, i.e. savings
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Fig. 7 Peak-to-average ratio (PAR) reduction dependency on the participation rate. The mean PAR reduction
in per cent is plotted over the participation rate in per cent. The right-hand axis shows the absolute values of
the PAR. In addition to the average over 365 days, the standard deviation is shown for each data point. The
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data points are slightly shifted along the abscissa to increase readability
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Fig. 8 Savings dependency on the participation rate. The mean bill reduction in per cent for participants of the
demand-side management scheme is plotted over the participation rate in per cent. In addition to the average
over 365 days and participants, the standard deviation between different participants is shown for each data
point. The simulations were run for a scenario with forecasting errors and one without forecasting errors. The
difference between the two curves is plotted against the right-hand axis

off the energy bill, are the interests of the participants of the DSM scheme. Figure 8 shows
the average saving per day for all participants both with and without forecasting error. For
further insight, it also illustrates the difference between the two curves.
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Fig. 9 Influence of forecasting error on the achievedPARvalue. ThePARvalues for three different participation
rates are plotted over the forecasting error. Here, the abscissa refers to the worst-case scenario as described
in Sect. 4.4, e.g. at 0.6 a forecasting error with the magnitude of 60% of the worst-case is assumed. In the
reference case, no game is played, so the forecasting error does not influence the PAR value

Discussion Although a worst-case scenario is simulated, the outcome with respect to PAR
reduction (cf. Fig. 7) and electricity bill (cf. Fig. 8) reduction shows considerable gains for
the UC and the participants of the DSM scheme.

Without forecasting error, the PAR reduction monotonically improves with the proportion
of the participants. This stands in contrast to the results shown in [24], where a minimum
is reached at medium range participation rate. In comparison with other studies, such as [9,
12], we conclude that our dynamic game performs as good as their respective scheduling
approach.At 100%participation rate, a reduction of−33.3%(5.8%) is achieved, in agreement
with the results shown in Sect. 4.3. It should be noted that a perfectly flat load profile
corresponds to an approximately −40% reduction of the PAR. Thus, the outcome is close
to the theoretical optimum. When looking at the standard deviation, we observe that it is
lowest for the simulation run with 52% participation rate and increases towards both ends
of the spectrum. On the lower end of participation rate, the fluctuations of the PAR value
for different days are just an artefact of the data set in use. Small numbers of participants
have not enough influence on the overall neighbourhood to change this. When regarding
large participation rates, the PAR value is considerably reduced. The increase in the standard
variation for these runs stems directly from the finite-horizon effect already discussed in
Sect. 4.3.

The results for runs with forecasting errors follow the results without errors closely.
Figure 9 shows how the forecasting error affects the achieved PAR values for three selected
participation rates when transitioning from the perfect forecast to the worst-case scenario as
depicted in Fig. 7. For low participation rates, the difference is negligible but starts to increase
when more households participate in the DSM scheme. Nevertheless, even in the worst-case
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scenario, a reduction of −27.8% (8.9%) is achieved at 100% participation rate (cf. Fig. 7).
With respect to the standard deviation, we again recognise similarities to the runs without
forecasting errors. Smallest variations in the PAR reduction are obtained for participation
rates around 50%, while we again see increasing variations at high participation rates. Here,
the increase is distinctly larger than in the other runs. The reason behind this difference is
directly explained by the forecasting error. As more participants join the DSM scheme, the
absolute amount of deviation from the actual demand and production is increasing.

It is worth noting that the result for a participation rate of 76%, i.e. a reduction of−27.7%
(4.4%) (cf. Fig. 7), is very promising from a practical point of view. The UC might not be
able to convince everybody to participate in the DSM scheme, but can still gain reductions
in the PAR value close to what is achievable at maximum participation.

In [18], it is investigatedwhat happenswhen no forecast is calculated. Rather than calculat-
ing the forecast, the demand data of the current day are used as the input to the dynamic game
that determines the schedules for the next day. It turns out that this approach is oversimplified
and results in distinctly worse outcomes (cf. [18, Figure 5]), i.e. it shows the importance of
a suitable forecasting mechanism.

The savings that participants of the DSM scheme can gain increase monotonically with
the share of participants. Furthermore, we observe that the variations between different par-
ticipants are negligible. This is due to the particular proportional billing scheme employed
in the scheme (cf. Sect. 2.3). It ensures fairness in the sense that LOW and HIGH consumers
can gain equally by signing up for the DSM scheme. The difference between runs with and
without forecasting errors reveals that the forecasting error does not influence the bill reduc-
tion to a great extent. Since the two curves are almost non-separable to the unaided eye,
the difference is shown in the same plot (cf. Fig. 8). It becomes clear that the difference is
actually decreasing for larger numbers of participants.

This highlights that the dynamic scheduling game ensures robust and beneficial results
for the participants of the DSM scheme, even in the worst-case scenario.

4.5 Consumer-Type Dependency

Results The results in Sects. 4.3 and 4.4 are all based on a neighbourhood consisting of a mix
of the three different consumer types (LOW,BASE, andHIGH). Figure 10 shows the possible
PAR reductions for mono-type neighbourhoods. To allow for comparison, M = 25 is kept
constant. Furthermore, we use the same forecasting errors of εd = 8% and εw = 10% for
the demand and renewable energy generation, respectively (cf. Sect. 4.4). All the simulations
consider a scheduling period of a full year.

We also calculated the average savings that are achieved by the participants of the DSM
scheme. These results are presented in Fig. 11 together with the reference of a mixed neigh-
bourhood (cf. Fig. 8) with forecasting errors.
DiscussionWhen comparing different compositions of neighbourhoods, we can gain further
insight into the conditions for which the DSM scheme works most efficiently. At first glance,
Fig. 10 reveals that given a low rate of participants in the scheme, the actual type of consumer
is not crucial. Figure 12 shows the difference between the respective results for mono-
type neighbourhoods and a mixed neighbourhood. A closer look shows that mono-LOW
communities are always worse in reducing the PAR value of the aggregated load than any of
the other ones. The results in terms of both themean PAR reduction and the standard deviation
get even worse with more than two-thirds of households participating in the scheme. Similar
observations for mono-type neighbourhoods are found in [24].
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Fig. 10 Peak-to-average ratio (PAR) reduction for different neighbourhoods. The mean PAR reduction in per
cent is plotted over the participation rate in per cent for different mono-type consumer neighbourhoods. In
addition to the average over 365 days, the standard deviation is shown for each data point. For comparison, the
results of a mixed neighbourhood (cf. Fig. 7) are also presented. Note that the data points are slightly shifted
along the abscissa to increase readability
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Fig. 11 Savings for different neighbourhoods. The mean bill reduction in per cent for participants of the
demand-side management scheme is plotted over the participation rate in per cent for different mono-type
consumer neighbourhoods. In addition to the average over 365 days and participants, the standard deviation
between different participants is shown for each data point. For comparison, the results of a mixed neighbour-
hood (cf. Fig. 8) are also presented

For both mono-BASE and mono-HIGH neighbourhoods, it can be observed that they
perform better (< 1%) in an interval of medium participation rate than the mixed neighbour-
hood. Nevertheless, at N = M the obtained PAR reduction is smaller by 1.8% and 4.5%,
respectively. Considering the variation of these mean PAR reduction values, it becomes clear
that it is most beneficial to have a mixed-consumer neighbourhood.
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Fig. 12 Differences between neighbourhoods in peak-to-average ratio (PAR) reduction. The values shown are
based on the results represented in Fig. 10

Figure 11 shows the average bill reduction for the participants of the DSM scheme for
different participation rates. Generally, they show the same behaviour already observed in
Fig. 8. The influence of the proportionality factor in the billing scheme (15) is clearly visible.
Although the mixed-consumer neighbourhood achieves better PAR reduction, the average
savings are almost identical to a mono-BASE neighbourhood. A neighbourhood that purely
consists of HIGH consumers can save about 11% off the energy bill and is consistently most
rewarding for the participants independent of the participation rate.

4.6 Robustness

Results In order to evaluate the robustness of the game-theoretic approach, we simulate a large
set of scenarios with randomly generated parameters. The parameters under consideration are
the size of the PVarray of the individual households, themaximumcapacity of the lithium-ion
battery, and the charging and discharging efficiencies. The change in capacity and efficiency
can either be interpreted as an ageing effect of the Tesla Powerwall 2, or as using batteries
from different manufacturers for different participating households. An overview of the range
of these parameters is shown in Table 3. All other parameters are kept constant at the values
used throughout the other experiments, i.e. M = 25, T = 24, εd = 8%, εw = 10%, and
all other battery parameters as in Table 1, to allow for a fair comparison. For each set of
random parameters, we consider a simulation period of one year. Figure 13 shows the results
for various participation rates for 2048 years each.
Discussion: The median PAR value over all the simulated years is monotonically decreasing
with an increase in the participation rate. At 100% participation rate, a median PAR value of
1.198 is achieved, which equals a reduction of−28%when compared to the scenario without
the DSM scheme.

When comparing the median PAR values over 2048 years and random parameters with
the ones obtained over one year and fixed parameters (cf. Fig. 7), it becomes clear that the
former ones perform slightly worse, differing by < 2.5%. This was expected due to the
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Table 3 Parameter ranges
Robustness study Other studies

Uniformly drawn from Fixed at

wmax (kWh) [0.0, 8.0] 4.0

smax (kWh) [2.8, 13.5] 13.5

η+ [0.900, 0.958] 0.958

η− [0.900, 0.958] 0.958

Instead of using the same battery and (scaled) PV installation
for each participant of the DSM scheme, the parameters are
drawn uniformly from the given ranges in the simulation runs
to analyse the robustness of the scheduling performance

following reason: prior studies (not shown) in which only one of the four parameters was
randomly changed at a time revealed that the maximum capacity smax of the battery has the
biggest influence on the PAR reduction. Since all of the randomly generated scenarios have
the previously analysed scenario as an upper limit in terms of the available storage capacity,
a decreased performance can be explained by the loss of effective flexibility.

Note that the same iteration statistics as shown in Fig. 4 are observed independent of
the chosen parameters. With a total of > 6.7 million simulated days, this provides further
confidence in the correctly working iteration algorithm and its convergence behaviour.

All in all, we see that with the more realistic assumption of differing battery and solar
installations the DSM scheme performs well and shows inherent robustness.

5 Conclusion

In this paper, we propose a demand-sidemanagement (DSM) scheme based on a discrete time
dynamic game. Its purpose is to reduce the peak-to-average ratio (PAR) of the aggregated
electricity load by scheduling the usage of individually owned (lithium ion) energy storage
systems. The utility company running the scheme incentivises users to take part by offering
fair financial benefits. To ensure realistic outcomes, an advanced battery model is employed.
Furthermore, the integration of local energy generation in the form of photovoltaic cells is
taken into account.

The DSM scheme is suitable for real-world implementation for five reasons: firstly, it is
based on a complete model of the neighbourhood including storage systems, local energy
generation, and crucially forecasting errors of both demand and generation. Secondly, com-
putational costs to obtain schedules for the upcoming period are small and require only
little amounts of memory. This was achieved by deriving a closed-form solution for the best
response problem of an individual player. The ensuing iterative algorithm seems to con-
verge exponentially towards a Nash equilibrium and thus obtains the strategy profiles for
one scheduling period in a fraction of a second. Thirdly, the resulting schedules are robust
with respect to the worst-case forecasting errors. Whereas the error weakens the effect of
the PAR reduction by ≤ 5.5%, the corresponding savings off the energy bill for the partici-
pants of the scheme are hardly changed. Fourthly, we provide evidence that a neighbourhood
that consists of various types of consumers performs best in such a DSM scheme. Since a
mixed community is more probable than a mono-type community, this is a promising result.
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Finally, simulations with randomly generated parameters for battery and photovoltaic instal-
lation have provided insight into the expected outcomes of the DSM scheme for batteries of
different age and performance. The effective loss of flexibility leads to a PAR reduction of
< 2.5%, showing the robustness of the DSM scheme.

A direct and in-depth comparison of a DSM scheme with an underlying static game
revealed the advantages of the dynamic game approach. Players are overall more active and
thus able to achieve distinctly better results. Further comparisons with the literature in terms
of PAR reduction and computational costs show the superiority of our approach.
FutureWork In futurework,weplan to corroborate our resultswith an evenmore sophisticated
approach to treat the uncertainties caused by the forecasts of demand and renewable energy
generation. There are two main approaches that can be considered: (1) robust (finite) game
theory [1], which can be seen as a generalised version of a Bayesian game; (2) a two-step
approach that first determines day-ahead schedules and then refines them throughout the day
by using most recent data. The latter might be realised in a sliding window framework which
would potentially eliminate the finite-horizon effects that can be encountered in our solutions.
Furthermore, one could also think about modelling risks associated with the uncertainties
directly in the utility function by means of the conditional value-at-risk measurement.

Whereas the current approach investigates a rather small community of households, it is
worth to also explore the other end of the spectrum when the number of players becomes
large. The method of choice here is mean field game theory in which the behaviour of the
system is examined in the limit of an infinite number of players.
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Appendix

A.1 Proof of Theorem 1

We prove the theorem by contradiction. Suppose ât,T−1 is not a Nash equilibrium to the

subgame
{
GT−t

1 , . . . ,GT−t
N

}
. Then, for some n ∈ N , there must exist another strategy

http://creativecommons.org/licenses/by/4.0/
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n with the corresponding sequence of states
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âτ
n , âτ−n
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)
.

That is in contradiction to our assumption that â is a Nash equilibrium for the game
{G1, . . . ,GN }. Consequently, our assumption about ât,T−1 is proved to be false. Thus, ât,T−1

indeed comprises a Nash equilibrium of the subgame
{
GT−t

1 , . . . ,GT−t
N

}
. 
�

A.2 Battery Justification

Various companies produce home energy storage systems. To name just a few, there are
Mercedes, Tesla, BMW, Nissan, and Powervault. Some of them are specialised in second-
life batteries taken from their electric cars, while others (such as Tesla) produce these batteries
for their special purpose. As most manufacturers provide technical data sheets, we were able
to run our simulations for the demand-side management scheme, assuming that households
are equipped with different batteries. The results in Fig. 14 stem from scenarios with 76%
participation rate, forecasting errors as used in Sect. 4.4, and all participants with the exact
same battery model. This is not supposed to compare different systems, but rather to show
that this battery (also employed in [17]) can be taken as a representative of state-of-the-art
technology. In this particular simulation run, it achieves a peak-to-average ratio reduction
similar to the best in the field. Also, the savings off the energy bill are close to the best
competitors.

A.3 Influence of Pricing Parameters

Throughout the paper, a quadratic cost function (14)with constant coefficientswas used based
on previous studies [17,20]. In this section, the specific choice of these coefficients is justified
and the influence of them on the obtainable savings for the consumers is analysed. In order to
get a thorough overview, a wide range of coefficients was considered, i.e. c2 ∈ [10−4, 106],
and c1 ∈ [10−3, 105]. Note that for simplicity the constant term is kept at c0 = 0. The
average savings over a simulation period of one year for N/M = 100%, including forecasting
errors as discussed in Sect. 4.1, are shown in Fig. 15. We can observe three regions in this
representation: (1) a plateau, where the relative savings are equal to≈ 17%, (2) a transitional
region where the savings are diminishing, and (3) a second plateau of negative savings
(≈ −1.5%), i.e. the consumers actually have to pay more given these pricing coefficients.
The previously used pricing coefficients, that lead to an average saving of 10% per year, are
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Fig. 14 Battery justification. The mean peak-to-average ratio reduction in the aggregated load over 365 days is
plotted over the mean savings off the electricity bill for participants of the demand-side management scheme
with different battery systems. For all runs, we assumed N/M = 76%, εd = 8%, εw = 10%, and the same
pricing parameter as introduced in Sect. 4.1. A close-up of the bottom left-hand corner is shown in a subplot.
For all data points, we also provide the standard deviation in both variables

Fig. 15 Average savings. The average savings in per cent over one year for various pricing coefficients c2
and c1 in (14) are shown. Furthermore, the values c2 = 0.03125 and c1 = 1.0, that are used throughout the
manuscript, are highlighted

located in the second region. This means that by changing the pricing coefficients an even
higher cost reduction could be achieved. It can be observed that as long as the quadratic term
in the cost function is dominant the consumers can expect a financial gain from playing the
game. Only when c2 � c1 the advantage is lost.

While these results are all based on simulations in the presence of forecasting errors, we
can report that without forecasting errors the resulting savings differ by< 1% for each of the
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considered sets of coefficients in the represented range, following the results shown in Fig. 8.
This can be explained when looking at the effect the forecasting error has on the actual load
curve of the households. In Sect. 4.4, we saw that the PAR of the aggregated load changes by
only a few per cent when introducing inaccurate forecasted demand and generation data. A
rough estimate shows that changing the load x per cent could also be interpreted as a change
in the coefficients c1, c2 by the same amount and twice the amount, respectively.

c′
2 · l2 != c2 ·

(
l + l · x

100

)2

= c2 · l2 + c2 · l2 · 2x

100
+ c2 · l2 ·

�
�

��
≈ 0

x2

10000

⇒ c′
2

c2
≈ 1 + 2x

100

In such a narrow margin, the function plotted in Fig. 15 is indeed almost flat.
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