Analytical Methodology and removal of toxic ions in water

Ву

Ahmed Mohamed MOHMOUD

Supervisors:

Dr James Barker,

Associate Professor (Reader in Analytical Science),

Kingston University, UK

Dr Rosa Busquets,

Senior Lecturer in Analytical Chemistry,

Kingston University, UK

July 2017

Declaration

I hereby declare that the research work titled "**Analytical Methodology and removal of toxic ions in water**" submitted by Mr Ahmed Mohmoud (me) and supervised by Dr James Barker and Dr Rosa Busquets is based on actual and original work carried out by Mr Ahmed Mohmoud. I further certify that the research work has not been published or submitted for publication.

Author Name: Ahmed M Mohmoud

Institute: Kingston University

Official Address: School of Life Sciences, Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, UK

Mobile Number: +966536682776 or +447497631927

Email ID: caadil77@yahoo.co.uk or ku0024710@kingston.ac.uk

Acknowledgement and Dedication

I thank God for giving me the health and strength to be able to perform this study. I wish to express my gratitude and sincere appreciation to my supervisors, Dr. James Barker, Associate Professor and Reader of Analytical Science, Kingston University; Faculty of Science, Engineering and Computing; School of Life Science, Pharmacy and Chemistry and Dr Rosa Busquets, Lecturer in Analytical and Forensic Chemistry, Kingston University; Faculty of Science, Engineering and Computing; School of Life Science, Pharmacy and Chemistry, for their valuable guidance, constructive criticism and encouragement during every stage of this project. I would also like to thank Dr Mohamed Emad, Assistant Professor, Taibah University, for letting me use the analytical instrumentations in his laboratory. Dedication goes out to my parents, my wife and children for their kindness and great support.

TABLE OF CONTENTS

Page **4** of **172**

3.8	8 Calibration curves	. 26
4.0	Results and Discussion	. 33
4.:	1 Wells in specific region monitored	. 33
4.2	2 Removal of anions with low-cost sorbents	. 40
5.0 C	Conclusion	. 43
6.0 R	References:	. 45
7.0 A	Annex:	. 49
7.2	1 Signal to noise ratio:	. 49
7.2	2 Limit of detections for the studied anions	. 50
7.3	3 Individual chromatograms for all the samples in six months of study anions	. 52

LIST OF TABLES

Table 1: Dates of water sample collection per batch
Table 2: Distance between the wells and the valley, and depth of each well 19
Table 3: Limit of detections for the studied anions,
Table 4: Anionstock standards solution prepared from solid salts. 24
Table 5: Anion Stock standards made from Reference Standard
Table 6: Monitoring of the TDS and pH in ground water. 34
Table 7: Chloride concentration (mg/L), average, standard deviation and range from Jan-Jun 2016 36
Table 8: Nitrate concentration (mg/L), average, standard deviation and range from Jan-Jun 2016
Table 9: Sulphate concentration (mg/L), average, standard deviation and range from Jan-Jun 2016 38
Table 10: Test with pomegranate gels. 40
Table 11: Test with Dateseed 41
Table 12: Test with Pomegranate peels. 42

LIST OF FIGURES

igure 1: Abyar Mashe in KSA	20
Figure 2: Locations of sample collection	20
Figure 3: Fluoride calibration curve	26
-igure 4: Chloride calibration curve	27
Figure 5: Nitrite calibration curve	28
Figure 6: Bromide calibration curve	29
Figure 7: Nitrate calibration curve	30
-igure 8: Phosphate calibration curve	31
Figure 9: Sulphate calibration curve	32

Abstract

The present work has developed analytical methodology for determining anions (nitrate, nitrite, fluoride, bromide, chloride, phosphate and sulphate) by Ion Chromatography and conductometric detection for the analysis of ground water. The methodology developed was used for monitoring the above mentioned anions in a region of particular interest, located in the outskirts of Madinah Almunawwara, in the Kingdom of Saudi Arabia (KSA). The importance of this study site lies in that the main water supply is ground water extracted from wells. The study was carried out for six months. Eight wells were investigated, and a total of 18 samples were collected from each well. The concentrations of the study anions detected in all wells were lower than the maximum control limit by the WHO for fluoride 2ppm, chloride 250ppm, nitrite 1ppm, nitrate 45ppm and sulphate 250ppm. The maximum control limits for bromide and phosphate have not been set.

Finally, a simple approach to reduce the concentration of such anions by using raw materials widely available in the study region. These raw materials included pomegranate peels, pomegranate gels and date seeds. In a batch study, the sorbent pomegranate gels removed 5.9% fluoride, 51.4% of nitrite, 1.5% bromide and 50.6% of sulphate when working with water spiked with the study anions at a concentration level of 10 mg/L. Dateseeds removed 98.2% of nitrite and 2.2% of nitrate in water spiked also at 10mg/L. In contrast, pomegranate peels were less effective, with just 13.0% removal

of nitrite. These removal capacities indicate that using natural products can be a cost-

effective way of treating water.

Abbreviations

UPLC-ESI-MS	Ultra performance liquid chromatography - electron spray ionisation- mass spectrometry
USEPA	United States Environmental Protection Agency
EC	Electrocoagulation
KSA	Kingdom of Saudi Arabia
PE	Polyethylene
TDS	Total dissolved solids
IC	Ion Chromatography
SD	Standard deviation

1.0 Introduction

It is essential to have safe drinking water. The safety of metropolitan water is controlled by drinking water plants, in contrast, wells used for domestic use in rural areas may be under lower control. Since a variety of different highly mobile toxic anions can leach to ground water, a method for their analysis and removal needs to be available. Various processes of removal of toxic anions are in place *i.e.* ion exchange, adsorption, coagulation and filtration [1] but these are not generally available in households, where low-cost removal methods could be applied.

The presence of certain carcinogen ions such as bromate or chromate (VI) species in water constitutes a direct risk to humans [2], and monitoring and eliminating these ions from water is a priority [3]. It has been reported that the risk to human health by toxic ions can be, for instance, through fertilisers used in crops and the subsequent intake of locally grown vegetables, cereal crops and milk from irrigated sites with such fertilisers [4]. Furthermore, when the water is contaminated with toxic species, these ions, which are mobile, pose a serious threat to the environment and aquatic life in the receiving waters [5]. Some toxic species also accumulate throughout the food chain and may affect human beings, plants and animals alike. The increasing problem of contaminating soil and water has stimulated a search for new low cost approaches to remove these pollutants [6].

Discharge of toxic species from metal processing industries is known to have adverse effects on the environment [7]. Conventional treatment technologies for a removal method from aqueous solution are not economical and generate tonnes of toxic chemical sludge [8]. It is therefore important to have available economical solutions for the removal of toxic substances from water. The use of natural compounds as removers of polluants may emerge in the coming years due to their biodegradability (once the toxic species have been re-extracted), easy availability, low-cost and non-toxic nature [9]. It has been reported that bromate, nitrate and nitrite in drinking water in parts of Saudi Arabia have exceeded the maximum contaminant levels established by the United States Environmental Protection Agency [10].

Methodology for monitoring toxic ions in water is needed. Fast and sensitive methods for the analysis of bromate, nitrate and nitrite in drinking water using UPLC-ESI/MS with low detection limits of 0.03-0.04 μ g/L (ppb) [11] is available in Saudi Arabia, however the instrumentation required is costly and therefore not available to all laboratories .

1.1 Toxicity of ions and metals in human health

The main sources of pollutants are industrial wastewater from mining, metal processing and refining, tanneries, pharmaceutical, chemical and agrochemical industry and municipal wastewater[8]. Toxic metals such as Cd or Pb can displace vital nutritional minerals from their original place, thereby, hindering their biological function. It is, however, impossible to live in an environment free of heavy metals. There are many Page **11** of **172** ways by which heavy metals can be introduced into the body such as consumption of foods, water, beverages, skin exposure, and inhaled air [8].

Faced with increased stringent regulations, heavy metals are among the environmental current list of 126 priority pollutants by the US Environmental Protection Agency. Toxic substances need to be removed from water to protect the people and the environment.

1.2 Removal of toxic species:

Recent research in the area of toxic species removal from water and sediments has focused on the development of materials with increased affinity, capacity, and selectivity for target substances. The existing methods for the removal of toxic species from the environment can be grouped into biotic and abiotic. Biotic methods are based on the accumulation by plants or microorganisms, whereas abiotic methods include physiochemical processes such as precipitation, co-precipitation and adsorption by a suitable adsorbent [2].

Current remediation techniques are categorised into physical (i.e. physisorption), chemical (chemisorption, precipitation, complexation, ion exchange, electrodeposition, and formation of amalgams) or biological techniques which include biofiltration or genetic engineering in the modification of microorganisms. The removal of bromated ions from aqueous solution by modified date seeds and granular activated charcoal has been reported [2]. In this work, the date seeds were modified with iron after a cleaning stage. The growing demand for efficient and low-cost treatment methods and the importance of adsorption has given rise to the so-called low-cost alternative adsorbents Page **12** of **172**

(LCAs) [12]. Researchers are currently interested in finding the production of cheaper ways which therefore could be applied in large scale environmental problems [3]. Some examples of techniques used in the reduction of the concentration of ions from water are now detailed.

1.2.1 Electrocoagulation:

Electrocoagulation (EC) is a technique used in the earlier stages of water treatment. A value of 95% removal efficiency of aluminum using electrocoagulation has been reported. Unlike chemical treatments to remove heavy metals and suspended solids, it does not require strict control of pH or addition of important amount of chemicals. The medium used in EC was natural water containing Ca²⁺ and HCO₃⁻ ions [19]. EC is usually conducted by adding supporting electrolyte to the medium investigated. EC requires low maintenance, no filters and is advancing towards a reduction on the energy required.

1.2.2 Continuous free surface flow wetland/constructed wetland:

It has been reported that constructed wetland (CW)can be used for the removal of heavy metals; however, a disadvantage of free surface flow wetlands is that they require large area, it is a slow remediation process, and the plants need to be collected and generally incinerated. Removal efficiencies of the CW for ions Pb, Cd, Fe, Ni, Cr and Cu were 50%, 91.9%, 74.1%, 40.9%, 89% and 48.3% respectively [13] [14].

1.2.3 Wastewater stabilization ponds and activated sludge processes:

In the stabilization ponds, the removal efficiency of some heavy metals has been reported to be rather low (58% for Cr and less than 20% for Cd, Mn and Pb [15]), whereas the activated sludge process, which takes place by both bioaccumulation and bioadsorption, yielded higher removal efficiencies ranging from 47% for Ni to 95% for Cr, which still is insufficient given the toxicity of some heavy metals, and is dependent on the ion. In fact, activated sludge processes are mainly optimised for the removal of organic matter and have only side-benefits the removal of heavy metals.

1.2.4 Salvinia Natans – an annual floating aquatic fern:

Salvinia Natans has been studied as a species for cleaning water contaminated with toxic species [16]. When fresh biomass was replenished at definite time intervals of treatment, a gradual decrease of toxic metals content in water samples was observed. The metal accumulation in *Salvinia natans* involved rapid passive uptake through adsorption of ions onto plant surface (bio-sorption) followed by active uptake into plant cells.

1.2.5 Withania Frutescens:

The removal of nitrates and phosphates, as well as metals, from water has been reported with an adsorbent consisting of micro-particles of dried *Withania Frutescens* plant (<500 μ m). The adsorption increased with contact time, and the use of Page **14** of **172**

microparticles, rather than the tissue as a whole resulted in an increase in the surface area and an improvement of the kinetics and access to active sites[17]. A wide range of plants and waste products have been investigated for the removal of ions, and only few examples have been discussed here.

Hemp seeds have shown capacity to accumulate metal ions, especially cadmium and zinc [18], and it has been proposed for the phytoremediation of contaminated sites [19]. A phytohemaglutinin from Sunn hemp seeds (Crotalaria juncea) containing metals has been isolated which shows the affinity of the plant and hence its capacity to improve the quality of water [22], although the release of potential toxic ions, such as cyanuric acid, should be monitored. The capacity of pomegranate peel to adsorb lead [21], copper (II) [22] and chromium VI [23] has been proven after having been washed or mildly modified with acid. Activated carbon made from pomegranate husk has been found to be an effective low cost adsorbent for the removal of dyes [24] and Cr (VI) [25] from water.

2.0 Aims and Objectives:

The aim of this work is to develop an analytical procedure for the analysis of anions in ground water and to investigate a number of natural products that could be used to remove anions in ground water.

The objectives of this research are listed as follows. In the first place, analytical methodology based on ion chromatography was developed for the analysis of ions i.e. nitrate, nitrite, fluoride, bromide, chloride, phosphate and sulphate, in ground water. A second objective was to monitor the presence of toxic ions in ground water, within a region that depended on it, for over a period of six months in case a temporal factor affected their levels. The last objective of this work was to investigate a range of natural adsorbents widely available and with low commercial value in Saudi Arabia for the removal of a range of toxic ions.

3. Experimental Methodologies:

3.1 Chemicals and materials.

The reference standard materials sodium fluoride, sodium nitrite, potassium chloride, sodium nitrate, potassium bromide, potassium sulphate and ammonium hydrogen phosphate were all bought from ULTRA Scientific, USA, and were of analytical quality.

The salt chemicals used for the mobile phase were sodium carbonate, from Holyland, KSA, and sodium hydrogen carbonate bought from LOBA Cheme, India, both with analytical quality.

The chemical for the regeneration solution was sulphuric acid bought from LOBA Cheme, India.

All the glassware and sample bottles used for the project were first washed with detergent solutions, then rinsed with tap water and deionised water several times, soaked overnight with 2.0% HNO₃ 69-72%, LOBA Chemie, and finally rinsed with deionised water several times.

3.2 Sampling

The water samples used for this project were collected from wells in Abyar Almashie, Madinah AlMunawrrah region in KSA. The water samples were collected in polyethylene (PE) bottles, placed in a fridge (Ca. 4°C) and analysed within 2 days. A total of eight wells

were monitored and three samples from each well were collected per batch collection for over six months, this gives eighteen samples per well over six months. This is a total of 144 samples for all the eight wells over the six months. The dates when the ground water samples were collected are shown in Table 1. Batch means one days' collection for samples 1 to 8. The map of KSA, including the location of Abyar Mashe is shown in Figure 1. The sampling sites are shown in Figure 2. In that figure, Sample number refers to well number:

Batch number	Date of collection
Batch 1	January 2016
Batch 2	February 2016
Batch 3	March 2016
Batch 4	April 2016
Batch 5	May 2016
Batch 6	Jun 2016

Table 1: Dates of water sample collection per batch

Table 1 is showing the dates when each batch of water samples were collected from the eight wells investigated.

Sample/Well number	Depth of the well (metres)		
1	900	110	
2	1500	200	
3	1500	180	
4	800	140	
5	200	40	
6	250	102	
7	1500	19	
8	100	199	

 Table 2: Distance between the wells and the valley, and depth of each well

Table 2 is showing the distance from each well to the valley. The shortest distance between two wells is 100m (between wells 5 and 8). The longest distance between wells is 3000m (between wells 2 and 7). The diameter of the wells was 0.5m wide, except for well 5 (sample 5) which was 3m wide.

Figure 1: Abyar Mashe in KSA

Figure 2: Locations of sample collection

Page **20** of **172**

3.3 Instruments & Measurements

The analysis of water samples was carried out using the following analytical instruments. Electronic balance that was a Genus AB204-S (Mettler Toledo, Switzerland) and pH meter (HANNA, Mauritius).

Ion chromatography (IC) is a technique used for the separation and determination of ions based on their charge and interaction with the mobile phase and stationary phase. The disadvantage of the use of ion chromatography is the use of buffers and the time that it takes to equilibrate the column with respect to other types of chromatography. The detection system commonly used with IC is a conductivity detector. In this project, the ions which have been investigated are fluoride, chloride, nitrite, bromide, nitrate, phosphate and sulphate. The technique used include the parameters i.e. Metrosep A Supp7-250 anion column (4.0 mm x 250 mm), Suppressed Conductivity Detector, and type 881 Compact IC pro, both from Metrohm Ltd., Switzerland.

3.4 Development of analytical methodology for the analysis of toxic substances

3.4.1 Sensitivity

Diluted standards of different concentrations, i.e 0.05 mg/L - 0.1 mgL, were injected and the limit of detection (LOD) was taken as the concentration with a signal-to-noise ratio. Measuring background noise nearby the peaks from the analytes has shown to be Page **21** of **172** problematic since the baseline was very smooth. This could be due to the instrument working in the mode "Suppressed Ion Chromatography", which is the recommended one for best sensitivity. Due to the difficulties in assessing the level of noise, standards with concentration close to the level estimated to be at the LOD were prepared and measured to confirm the LOD values given in table 3.

	LOD
Anion	(mg/L)
Fluoride	0.05
Chloride	0.05
Nitrate	0.1
Bromide	0.05
Nitrite	0.05
Phosphate	0.05
Sulphate	0.1

Table 3: Limit of detections for the studied anions,

Table 3 is showing the LOD for the studied anions. The lowest detection in the developed method was 0.05 mg/L. The limit of detection (LOD) can be improved in future work. The chromatograms for the study compounds at the LOD are given in Annex 7.2

3.5 Preparation of natural adsorbents

Waste agricultural food products abundant in Saudi Arabia were selected as natural adsorbents. Examples include pomegranate peels, pomegranate gels, and date seeds from consumed food products in Saudi Arabia all with low commercial value. These products were collected from vegetable markets and farms in the local zones of Madinah district. Pomegranate peels were peeled-off, washed with deionised water, dried and ground. Pomegranate gels were cut-open, peeled-off from the juice and the seed, washed with deionised water and dried. The date seeds were prepared by washing with deionised water, dried and ground into powder. 1g of each natural adsorbent was used for analysis as follows. 1g of each sorbent, (pomegranate gels, date seeds and pomegranate peels), was incubated with 100ml of deionised water separately in three separate flasks each spiked at 10mg/L of multi anion standards. The study was carried out in batch mode under gentle shaking (80rpm) for 48h.

3.6 Chemicals for preparation of mobile phase and other solvents

The mobile phase was 3.6mM sodium carbonate/ 2.4mM soidum hydrocarbonate adjusted at pH 8.5. The stock chemicals were sodium carbonate 98% (HOLYLAND, Saudi Arabia) and sodium hydrogen carbonate AR/ACS. Sulphuric acid was used for regeneration, 90-91% (from LOBA Chemie, India)

3.7 Preparation for the standard calibrations:

Initial standards were prepared by preparing stock standards from the solid salt, at the concentration indicated in Table 3, a dilution of stock with deionized water to an intermediate solution of 100 mg/L, and subsequent standards as indicated in tables 4 and 5. These standards made from the solid salts were only used for the initial analysis while developing the method.

Stock salt	Total Stock ppm	Anions	Stock MW (g/mol)	Stock ppm (mg/L)
Potassium bromide	1934.9	Bromide	154.46	1001
Potassium chloride	2104.9	Chloride	74.55	1001.0
Sodium fluoride	2214.5	Fluoride	41.99	1002.0
Sodium nitrite	1501.2	Nitrite	69.00	1001.0
Sodium nitrate	1680.5	Nitrate	103.99	1002.0
Ammonium dihydrogen				
phosphate	1213.6	Phosphate	115.03	1002.0
Potassium sulphate	1815.7	Sulphate	174.26	1001.0

Table 4: Anion stock standards solution prepared from solid salts. The total volume of the standards solutions was 1000ml

	Intermediate	Standard dilutions (ppm)						
Stock solution	standard solution (ppm)	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7
Potassium bromide	100	0.1	0.5	1	2	4	8	16
Potassium chloride	100	0.1	0.5	1	2	4	8	16
Sodium fluoride	100	0.1	0.5	1	2	4	8	16
Sodium nitrite	100	0.1	0.5	1	2	4	8	16
Sodium nitrate	100	0.1	0.5	1	2	4	8	16
Ammonium dihydrogen phosphate	100	0.1	0.5	1	2	4	8	16
Potassium sulphate	100	0.1	0.5	1	2	4	8	16

Table 5: Anion Stock standards made from Reference Standard

Table 5 shows the standards 0.1 to 16ppm prepared from the intermediate standard of the reference materials. The intermediate standards used were prepared from pure reference materials of 1000ppm each, bought from Ultra Scientific Analytical Solutions, USA. These standard dilutions have been used for the calibration curves.

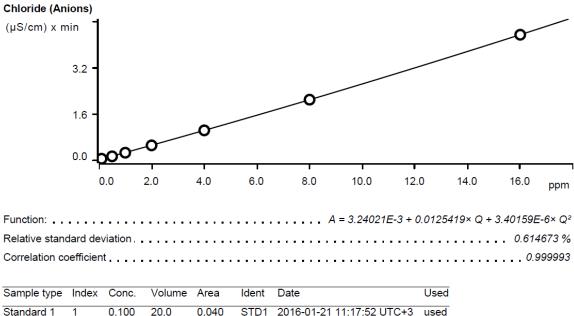
3.8 Calibration curves

The following figures 3-9 show the average standard calibration curves for the ions which have been tested in this work. Seven readings were taken.

2016-01-22 03:03:34 UTC+3 used

Figure 3: Fluoride calibration curve

16.000 20.0


Standard 7

1

6.389

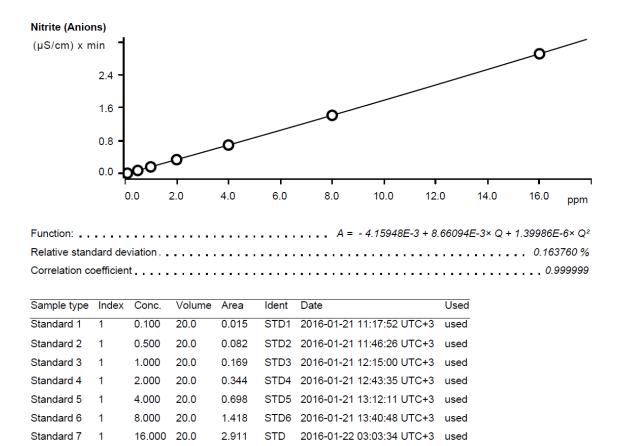
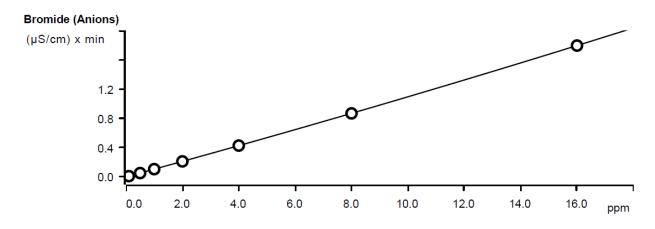
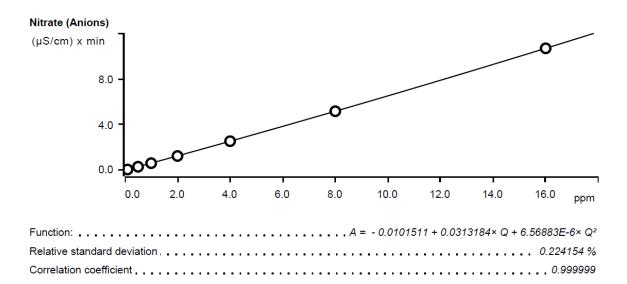

STD

Figure 4: Chloride calibration curve



Sample type	Index	Conc.	Volume	Area	Ident	Date	Used
Standard 1	1	0.100	20.0	0.040	STD1	2016-01-21 11:17:52 UTC+3	used
Standard 2	1	0.500	20.0	0.123	STD2	2016-01-21 11:46:26 UTC+3	used
Standard 3	1	1.000	20.0	0.250	STD3	2016-01-21 12:15:00 UTC+3	used
Standard 4	1	2.000	20.0	0.506	STD4	2016-01-21 12:43:35 UTC+3	used
Standard 5	1	4.000	20.0	1.029	STD5	2016-01-21 13:12:11 UTC+3	used
Standard 6	1	8.000	20.0	2.100	STD6	2016-01-21 13:40:48 UTC+3	used
Standard 7	1	16.000	20.0	4.364	STD	2016-01-22 03:03:34 UTC+3	used

Figure 5: Nitrite calibration curve


Figure 6: Bromide calibration curve

Function: A = - 4.21110E-4 + 5.25679E-3× Q + 1.14012E-6× Q ²
Relative standard deviation
Correlation coefficient

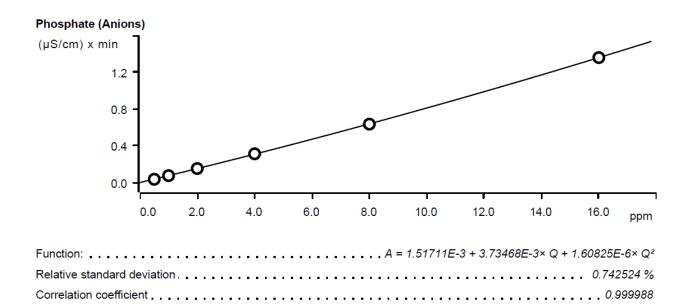

Sample type	Index	Conc.	Volume	Area	Ident	Date	Used
Standard 1	1	0.100	20.0	0.010	STD1	2016-01-21 11:17:52 UTC+3	used
Standard 2	1	0.500	20.0	0.052	STD2	2016-01-21 11:46:26 UTC+3	used
Standard 3	1	1.000	20.0	0.105	STD3	2016-01-21 12:15:00 UTC+3	used
Standard 4	1	2.000	20.0	0.212	STD4	2016-01-21 12:43:35 UTC+3	used
Standard 5	1	4.000	20.0	0.428	STD5	2016-01-21 13:12:11 UTC+3	used
Standard 6	1	8.000	20.0	0.869	STD6	2016-01-21 13:40:48 UTC+3	used
Standard 7	1	16.000	20.0	1.799	STD	2016-01-22 03:03:34 UTC+3	used

Figure 7: Nitrate calibration curve

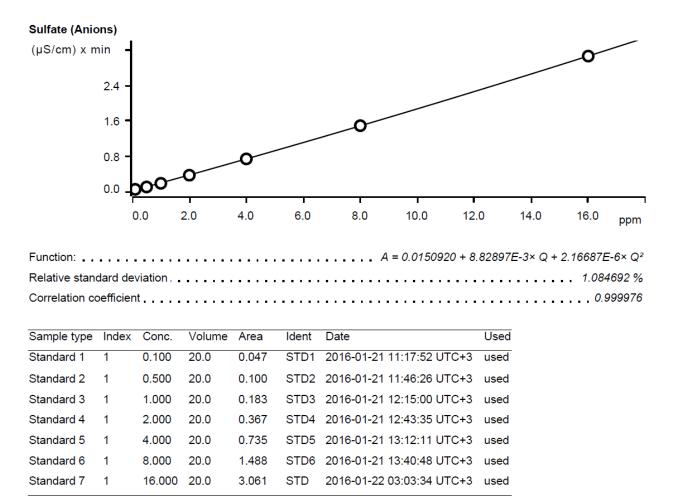

Sample type	Index	Conc.	Volume	Area	Ident	Date	Used
Standard 1	1	0.100	20.0	0.061	STD1	2016-01-21 11:17:52 UTC+3	used
Standard 2	1	0.500	20.0	0.301	STD2	2016-01-21 11:46:26 UTC+3	used
Standard 3	1	1.000	20.0	0.615	STD3	2016-01-21 12:15:00 UTC+3	used
Standard 4	1	2.000	20.0	1.246	STD4	2016-01-21 12:43:35 UTC+3	used
Standard 5	1	4.000	20.0	2.543	STD5	2016-01-21 13:12:11 UTC+3	used
Standard 6	1	8.000	20.0	5.169	STD6	2016-01-21 13:40:48 UTC+3	used
Standard 7	1	16.000	20.0	10.684	STD	2016-01-22 03:03:34 UTC+3	used

Figure 8: Phosphate calibration curve

Sample type	Index	Conc.	Volume	Area	Ident	Date	Used
Standard 1	1	0.100	20.0	n. d.	STD1	2016-01-21 11:17:52 UTC+3	used
Standard 2	1	0.500	20.0	0.037	STD2	2016-01-21 11:46:26 UTC+3	used
Standard 3	1	1.000	20.0	0.077	STD3	2016-01-21 12:15:00 UTC+3	used
Standard 4	1	2.000	20.0	0.154	STD4	2016-01-21 12:43:35 UTC+3	used
Standard 5	1	4.000	20.0	0.315	STD5	2016-01-21 13:12:11 UTC+3	used
Standard 6	1	8.000	20.0	0.637	STD6	2016-01-21 13:40:48 UTC+3	used
Standard 7	1	16.000	20.0	1.362	STD	2016-01-22 03:03:34 UTC+3	used

Figure 9: Sulphate calibration curve

Figures 3-9 show the calibration curves for the anion standards 0.1ppm-16.0ppm, the equation of the lines was y=mx+c, where m was the gradient and c was the intercept. The relative standard deviations percent for the ions differed, with fluoride 0.91, chloride 0.61, nitrite 0.16, bromide 0.14, nitrate 0.22, phosphate 0.74, and sulphate 1.08. The correlation coefficient (R^2) for the ions were all greater than 0.99

4.0 Results and Discussion

4.1 Wells in specific region monitored

Total dissolved solids (TDS) and the pH were measured to characterise the water samples other than the concentration of the study anions. Out of the eight wells where the water samples were collected, well 5 is used for drinking and domestic use; well 7 is for wildlife animals; and all other wells are used for farming. Hence, directly or indirectly, the water quality in these wells can affect human health. Table 6 gives the TDS and pH results of the water samples.

Well number		TC	рН					Depth of well					
namoer	January	February	March	April	May	June	January	February	March	April	May	June	(m)
1	600	690	550	650	620	700	7.2	7.7	7.1	7.2	7.2	7.0	110
2	650	830	680	780	760	760	6.8	7.2	6.9	7.5	7.3	7.2	200
3	790	1070	830	980	940	920	6.9	7.2	6.8	7.0	7.0	6.9	180
4	600	750	600	680	710	400	6.7	7.1	6.8	6.8	6.8	6.8	140
5	300	330	280	290	270	280	6.9	7.7	7.1	7.1	7.1	6.8	40
6	230	250	200	250	240	240	6.8	7.5	7.1	7.0	7.0	6.9	102
7	440	530	510	1010	990	1030	7.2	8.0	7.4	7.7	7.6	7.5	19
8	310	490	480	200	160	160	6.9	8.2	7.8	6.9	7.1	6.8	199

Table 6: Monitoring of the TDS and pH in ground water. The amount of water taken from every well was 4L. The study was carried outin 2016

February, March, and April 2016 were rainy months, and this was a factor leading to high TDS in some wells i.e. wells 3 and 2. Overall the concentration of particles was within a relatively narrow range, well 7 showing a greater variation between the lowest and the highest level of particles. The pH was between neutral and moderately alkaline. Soil pH affects the bioavailability of nutrients and the activity of microorganisms. A pH above 7.8 indicates that the soil and water are expected to be rich in Ca and Mg, although these cations were not measured in this study. Furthermore, acidic pH, (which is not the case), favors heavy metal contamination in aquifers.

Examples of chromatograms of the study anions in the 8 wells are shown in Annex 7.3 and the concentrations of the analytes in the study wells are detailed in Tables 1, 2, 6, 7, 8 and 9 within the results and discussion section.

The following tables (7-9) show the monitoring of the eight wells of ground water over the six months' period. Although seven anions were studied and a method for detecting these anions was set, only three anions were detected in the wells. Here you will find the mean (three samples for each month), the average concentrations, standard deviations and range levels for chloride, nitrate and sulphate over the six months' period.

	January	February	March	April	Мау	June	Average concentration	Average SD
Well 1 (mean ±SD)	272.4±26.9	241.7±24.6	279.7±0.9	272.6±0.6	286.8±1.9	276.9±0.6	271.7	15.6
Well 2 (mean ±SD)	458.4±13.8	372.9±25.1	547.2±1.3	528.4±1.0	549.6±1.6	554.1±0.2	501.8	72.5
Well 3 (mean ±SD)	694.2±37.8	533.4±50.4	841.1±0.8	664.2±1.3	699.5±0.2	742.0±0.5	695.7	100.7
Well 4 (mean ±SD)	359.9±11.3	294.5±12.5	369.6±0.1	328.0±0.5	433.2±0.6	87.8±0.4	312.2	119.3
Well 5 (mean ±SD)	33.0±1.6	23.6±3.1	37.3±0.2	29.7±0.2	22.8±0.5	27.8±1.1	29	5.6
Well 6 (mean ±SD)	19.1±0.7	13.1±1.2	20.6±1.4	12.0±0.1	11.9±0.4	16.0±0.1	15.5	3.8
Well 7 (mean ±SD)	121.8±11.6	88.9±5.9	136.8±1.6	286.0±0.3	306.0±1.1	298.1±1.0	206.3	100.5
Well 8 (mean ±SD)	73.3±3.8	71.9±57.6	154.6±1.0	6.8±0.1	4.5±0.1	4.1±0.1	52.5	60

Table 7: Chloride concentration (mg/L), average, standard deviation and range from January-June 2016

	January	February	March	April	May	June	Average concentration	Average SD
Well 1 (mean ±SD)	23.3±1.5	14.0±1.0	17.5±0.2	16.7±0.0	18.7±0.3	17.9±0.1	18	3
Well 2 (mean ±SD)	16.7±0.4	9.5±0.5	13.5±0.1	13.1±0.1	14.0±0.1	14.4±0.1	13.5	2.4
Well 3 (mean ±SD)	34.3±1.5	22.2±2.0	42.6±0.1	42.2±0.1	43.2±0.0	46.0±0.1	38.4	8.9
Well 4 (mean ±SD)	54.7±1.8	38.6±1.6	50.2±0.2	43.9±0.1	54.3±0.1	13.0±0.1	42.4	15.7
Well 5 (mean ±SD)	10.3±0.3	3.7±0.3	5.7±0.1	5.5±0.0	5.3±0.0	5.4±0.1	6	2.3
Well 6 (mean ±SD)	7.8±0.1	<lod< td=""><td>3.4±0.1</td><td>3.6±0.0</td><td>4.2±0.0</td><td>4.3±0.0</td><td>3.9</td><td>2.5</td></lod<>	3.4±0.1	3.6±0.0	4.2±0.0	4.3±0.0	3.9	2.5
Well 7 (mean ±SD)	12.9±0.5	5.3±0.3	7.9±0.2	3.6±0.0	3.9±0.0	3.7±0.0	6.2	3.7
Well 8 (mean ±SD)	<lod< td=""><td><lod< td=""><td><lod< td=""><td>3.8±0.1</td><td><lod< td=""><td><lod< td=""><td>0.6</td><td>1.5</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>3.8±0.1</td><td><lod< td=""><td><lod< td=""><td>0.6</td><td>1.5</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3.8±0.1</td><td><lod< td=""><td><lod< td=""><td>0.6</td><td>1.5</td></lod<></td></lod<></td></lod<>	3.8±0.1	<lod< td=""><td><lod< td=""><td>0.6</td><td>1.5</td></lod<></td></lod<>	<lod< td=""><td>0.6</td><td>1.5</td></lod<>	0.6	1.5

 Table 8: Nitrate concentration (mg/L), average, standard deviation and range from January-June 2016

LOD for nitrate is 0.1mg/L

	January	February	March	April	Мау	June	Average concentration	Average SD
Well 1 (mean ±SD)	248.1±23.5	176.3±69.6	260.9±0.3	<lod< td=""><td>95.6±3.2</td><td>172.0±78.1</td><td>158.8</td><td>98.1</td></lod<>	95.6±3.2	172.0±78.1	158.8	98.1
Well 2 (mean ±SD)	300.3±12.2	133.9±7.7	340.3±0.4	<lod< td=""><td>139.2±4.9</td><td>177.8±3.9</td><td>181.9</td><td>123.6</td></lod<>	139.2±4.9	177.8±3.9	181.9	123.6
Well 3 (mean ±SD)	801.0±42.8	600.1±56.5	977.5±1.7	<lod< td=""><td>429.8±12.1</td><td>540.0±4.5</td><td>558.1</td><td>336.1</td></lod<>	429.8±12.1	540.0±4.5	558.1	336.1
Well 4 (mean ±SD)	341.8±10.3	249.6±78.2	362.2±0.7	<lod< td=""><td>229.6±5.3</td><td>82.8±32.3</td><td>211</td><td>143.4</td></lod<>	229.6±5.3	82.8±32.3	211	143.4
Well 5 (mean ±SD)	67.4±3.3	24.5±4.2	76.5±0.3	<lod< td=""><td>22.9±0.5</td><td>29.4±0.7</td><td>36.8</td><td>29.2</td></lod<>	22.9±0.5	29.4±0.7	36.8	29.2
Well 6 (mean ±SD)	41.5±1.7	15.0±2.3	32.8±19.9	<lod< td=""><td>15.1±0.4</td><td>20.4±0.2</td><td>20.8</td><td>14.6</td></lod<>	15.1±0.4	20.4±0.2	20.8	14.6
Well 7 (mean ±SD)	223.5±8.8	110.2±9.0	171.4±101.9	<lod< td=""><td>493.7±4.9</td><td>544.3±5.2</td><td>257.2</td><td>216.6</td></lod<>	493.7±4.9	544.3±5.2	257.2	216.6
Well 8 (mean ±SD)	128.7±7.3	64.7±34.6	208.8±86.3	<lod< td=""><td>5.9±0.1</td><td>8.1±0.1</td><td>69.4</td><td>84.4</td></lod<>	5.9±0.1	8.1±0.1	69.4	84.4

Table 9: Sulphate concentration (mg/L), average, standard deviation and range from January-June 2016

LOD for sulphate is 0.1mg/L

The SD ranges in wells 3, 4 and 7 for sulphate, nitrate and chloride, tables (7-9) were included as a way to measure the dispersion of the results across months, and high dispersion has been found, which is dependent on the analyte and well, but not related with the analytical determination itself.

All anions studied in this work have not been found to be contained in the ground water samples tested. The anions, sulphate, nitrate and chloride, found in the study area are probably due to the leaching of the rocks and sand in the area. Other anions are not reported in this data since they were not detected in the eight wells investigated. In April, sulphate has not been detected in the studied region due to experimental error for this month. Although once the samples are collected, the samples are analysed on the same day or the day after. However, for the month of April, the samples were tested a week later. This could be the problem with detecting sulphate on this month.

In a previous study by Khan et al [11], the levels of nitrite, nitrate and bromate in ground water from Saudi Arabia (unknown sites) were 0.56-3.46 mg/L; 0.97-9.65 mg/L; and 3.60-10.2 mg/L, respectively. These are levels that would have been detectable by the developed method based on Ion Chromatography. Indeed, the levels found for nitrate in the study wells were in many of them higher than the ones found by Khan et al. Furthermore, these levels were greater than the concentration set by the EPA as Maximum Contaminant Level (MCL) forNO₃⁻: at 10mg/L, but complies with the guideline set by the WHO and European Commission at 50mg/L with the exception of some samples from Well 4 (Table 8). This can be due to the degradation of organic matter in

our study region. In contrast, nitrite fluoride, bromide, and phosphate were not detected in our study region. Also bromate has not been investigated in this region. [26][27][28]

4.2 Removal of anions with low-cost sorbents

The following results (presented in Tables 10-12) show the tests carried out with the

natural products as low-cost sorbents with spiked water samples.

Table 10: Test with pomegranate gels. 1g of pomegranate was incubated with 100ml ofultrapure water spiked at 10 mg/L of multi-anions standard. The study was carried out inbatch mode under gentle shaking (80 rpm) for 48h.

Spiked Anion	Initial concentration without Pomegranate gels mg/L	Final concentration with Pomegranate gels mg/L	Difference mg/L (final-initial)
Fluoride	10.09	9.49	-0.59
Chloride	9.55	14.07	4.52
Nitrite	9.85	4.80	-5.06
Bromide	9.78	9.63	-0.15
Nitrate	2.17	2.54	0.37
Phosphate	4.97	12.16	7.19
Sulphate	9.65	4.77	-4.88

The results shown in table 10 show that the sorbent, pomegranate gels, released chloride, nitrate, and phosphate anions, this was also observed in a blank. Only fluoride, nitrite, bromide and sulphate have been removed by pomegranate gels with adsorptive capacities of 0.06 mg/g sorbent, 0.5 mg/g sorbent, 0.015 mg/g sorbent and 0.49 mg/g sorbent, respectively. Sulphate is a relatively inert ion that would be expected to decrease when the sorbent had metals with affinity for sulphur.

Table 11: Test with Dateseed. 1g of Dateseed was incubated with 100ml of water. Thestudy was carried out in batch mode under gentle shaking (80 rpm) for 48h. The waterwas incubated with dataseeds spiked at 10 mg/L

Anion		ual concer eseed in ro mg/L		Average concentration mg/L	Difference from spiked	
	1	1 2 3			10mg/L	
Fluoride	10.75	11.01	9.11	10.29	0.29	
Chloride	43.39	43.37	42.56	43.11	33.11	
Nitrite	0.22	0.19	0.12	0.18	-9.82	
Bromide	10.16	10.55	10.13	10.28	0.28	
Nitrate	11.11	11.04	7.21	9.78	-0.22	
Phosphate	13.88	13.32	7.44	11.55	1.55	
Sulphate	9.84	9.83	10.75	10.14	0.14	

Table 11 is showing the concentration of anions removed from the spiked water. Only nitrite and nitrate have been removed by the sorbent, date seeds, with 0.98mg/g sorbent, and 0.022 mg/g sorbent removal respectively. However, the rest of the anions have increased in concentration and this could be due to these leaching from the natural sorbent.

Table 12: Test with Pomegranate peels. 1g of Pomegranate peels were incubated with 100ml of water. The study was carried out in batch mode under gentle shaking (80 rpm) for 48h. The water incubated with Pomegranate peels was spiked at 10 mg/L

Anion	Spiked concentration mg/L	pome	l Concentra egranate pe eplicate mg	els in	Average concentration mg/L	Difference from spiked mg/L	
		1	2	3			
Fluoride	10	11.68	11.90	11.98	11.85	1.85	
Chloride	10	19.96	20.30	20.36	20.21	10.21	
Nitrite	10	8.68	8.66	8.77	8.70	-1.30	
Bromide	10	9.93	10.09	10.10	10.04	0.04	
Nitrate	10	10.16	10.28	10.28	10.24	0.24	
Phosphate	10	15.34	15.61	15.89	15.61	5.61	
Sulphate	10	11.40	11.80	12.13	11.78	1.78	

Table 12 is showing the amount of anions removed from the spiked water. 100ml of deionised water has been spiked with 10mg/L of multi-anion standard and tested with 1g of Pomegranate peels. Only nitrite has been removed by pomegranate peels with 0.13 mg/g pomegranate peels. Hence, pomegranate peel is not a good sorbent for the removal of a broad range of anions.

5.0 Conclusion

A main goal of this work was to develop an analytical method for the analysis of anions in ground water. A methodology which would be used to investigate the presence of anions in the water in a specific region in Saudi Arabia, Abya Almashi village, where ground water is the main source of drinking water. A separation of the study anions was achieved with ion chromatography in 25 min with LODs in the range of 0.05-0.1 mg/L.

A monitoring study of the ions, fluoride, chloride, nitrite, bromide, nitrate, phosphate and sulphate, was carried out over six months (from January to June 2016), showed that all the anions investigated were under the maximum control limit (MCL) with some exceptional, i.e. sulphate was detected higher concentration than the MCL (250mg/L) for wells 3 and 7. Also, chloride showed higher concentration than the MCL (250mg/L) for wells 2 and 3. The range of concentrations obtained for study anions was <LOD-1.2 mg/L for fluoride, 4.1-841.6 mg/L for chloride, sulphate 5.9-979.1 mg/L and nitrate 3.4-56.4 mg/L. The higher level of chloride and sulphate, can be due to soil leaching during the rainy season, however, when the water settles in the wells, the concentration of the anions decrease. Nitrite, bromide and phosphate have not been detected in the studied water samples. TDS was also found to increase in the rainy period. When it rains the water flow fills up the wells and hence increasing the TDS, and when the water settles in the wells the TDS decreases.

A second goal was to find suitable natural products i.e. pomegranate peels, pomegranate gels and date seeds, with low commercial cost for the removal of anions in water, which could be used in households. Pomegranate gels removed 5.9% fluoride, 51.4% nitrite, bromide 1.5% and 50.6% sulphate from ultrapure water spiked at 10 mg/L and with a waster: sorbent mass ratio of 1g:100ml. Date seeds removed 98.2% nitrite and 2.2% nitrate. Pomegranate peels removed 13.0% nitrite. These explored sorbents can be applied to reduce level of sulphate in ground water used by households, as sulphate was one of the ions found in relative high levels there. However, leaching of other substances from the waste materials such as CN⁻ from seeds should be analysed before proposing their use. The advantage of this method is cost-effective; however, further research is required for improving the removal of toxic ions and ensuring its safety.

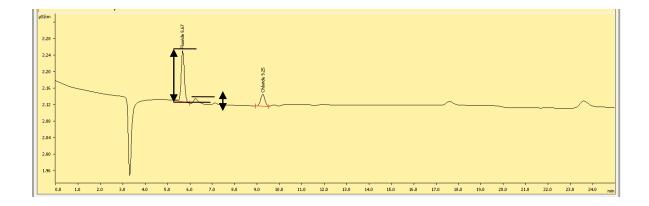
6.0 References:

- [1] M. W. LeChevallier and K.-K. Au, "Water Treatment and Pathogen Control: Process efficiency in achieving safe drinking-water," WHO Drink. Water Qual. Ser., p. 107, 2004.
- M. A. Mohamoud, M. A. Al-Qurashi, F. E. Ali, and M. Emad, "Removal and Kinetic Studies of the Carcinogen Bromate Ion in Drinking Water Using Modified Date Seeds and Granular Activated Carbon," *J. Am. Sci.*, vol. 8, no. 8, pp. 596–601, 2012.
- [3] W. W. Ngah and M. Hanafiah, "Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review," *Bioresour. Technol.*, vol. 99, no. 10, pp. 3935–3948, 2008.
- [4] A. Singh and R. Sharma, "Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India," *Food Chem.*, vol. 48, no. 2, pp. 611–9, 2010.
- [5] P. Kaewkannetra and T. Imai, "Cyanide removal from cassava mill wastewater using Azotobactor vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system," J. Hazard. ..., vol. 172, no. 1, pp. 224–228, 2009.
- [6] A. Hanif, H. N. Bhatti, and M. A. Hanif, "Removal and recovery of Cu(II) and Zn(II) using immobilized Mentha arvensis distillation waste biomass," *Ecol. Eng.*, vol. 35, no. 10, pp. 1427–1434, 2009.

- S. S. Ahluwalia and D. Goyal, "Microbial and plant derived biomass for removal of heavy metals from wastewater," *Bioresour. Technol.*, vol. 98, no. 12, pp. 2243– 2257, 2007.
- [8] M. a. Barakat, "New trends in removing heavy metals from industrial wastewater," Arab. J. Chem., vol. 4, no. 4, pp. 361–377, 2011.
- P. B. Raja and M. G. Sethuraman, "Natural products as corrosion inhibitor for metals in corrosive media - A review," *Mater. Lett.*, vol. 62, no. 1, pp. 113–116, 2008.
- [10] J. R. Williams, "Metals, Metalloids and Toxicity in Date Palms: Potential
 Environmental Impact," *J. Environ. Prot. (Irvine,. Calif).*, vol. 2, no. 5, pp. 592–600, 2011.
- [11] M. R. Khan, S. M. Wabaidur, Z. A. Alothman, R. Busquets, and M. Naushad, "Method for the fast determination of bromate, nitrate and nitrite by ultra performance liquid chromatography–mass spectrometry and their monitoring in Saudi Arabian drinking water with chemometric data treatment," *Talanta*, vol. 152, pp. 513–520, 2016.
- [12] V. K. Gupta and Suhas, "Application of low-cost adsorbents for dye removal A review," J. Environ. Manage., vol. 90, no. 8, pp. 2313–2342, 2009.
- [13] S. Khan, I. Ahmad, M. T. Shah, S. Rehman, and a Khaliq, "Use of constructed wetland for the removal of heavy metals from industrial wastewater," J Env. Manag., vol. 90, no. 11, pp. 3451–7, 2009.

- [14] L. Kropfelova, J. Vymazal, J. Svehla, and J. Stichova, "Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic," *Environ. Pollut.*, vol. 157, no. 4, pp. 1186–1194, 2009.
- [15] G. E. Üstün, "Occurrence and removal of metals in urban wastewater treatment plants," *J. Hazard. Mater.*, vol. 172, no. 2–3, pp. 833–838, 2009.
- [16] B. Dhir and S. Srivastava, "Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans," *Ecol. Eng.*, vol. 37, no. 6, pp. 893–896, 2011.
- [17] M. Chiban, A. Soudani, F. Sinan, and M. Persin, "Wastewater treatment by batch adsorption method onto micro-particles of dried Withania frutescens plant as a new adsorbent," *J. Environ. Manage.*, vol. 95, no. SUPPL., pp. S61-5, 2012.
- [18] V. Angelova, R. Ivanova, V. Delibaltova, and K. Ivanov, "Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp)," *Ind. Crops Prod.*, vol. 19, no. 3, pp. 197–205, 2004.
- P. Linger, J. Müssig, H. Fischer, and J. Kobert, "Industrial hemp (Cannabis sativa
 L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential," *Ind. Crops Prod.*, vol. 16, no. 1, pp. 33–42, 2002.
- [20] B. O. Ersson, "Preparation of the biospecifie affinity adsorbents (A) Divinyl sulfone coupling (B) Coupling to Epoxy-activated Sepharose 6B Extraction and fractionation with ammonium sulphate," vol. 494, pp. 51–60, 1977.
- [21] Ashraf, "Study of biosorptive potential in the peel of Citrus reticulata, Punica granatum, Daucus carota and Momordica charantia," *African J. Biotechnol.*, vol.

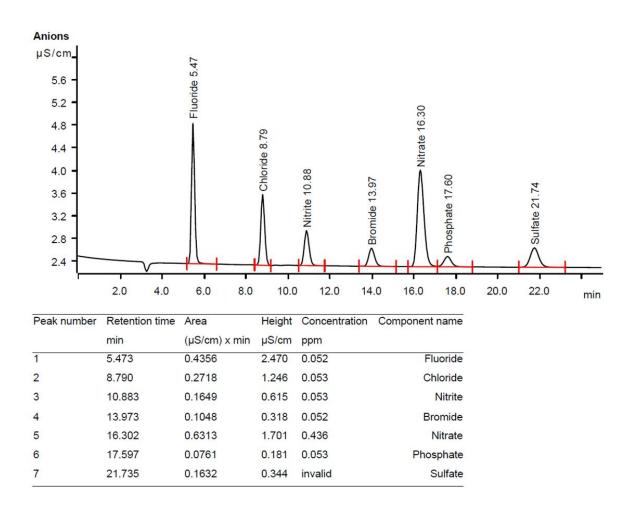
10, no. 68, pp. 15364–15371, 2011.


- [22] E.-S. Z. El-Ashtoukhy, N. K. Amin, and O. Abdelwahab, "Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent," *Desalination*, vol. 223, no. 1–3, pp. 162–173, 2008.
- [23] T. Najim and S. Yassin, "Removal of Cr (VI) from aqueous solution using modified pomegranate peel: Equilibrium and kinetic studies," *J. Chem.*, vol. 6, no. Vi, 2009.
- [24] M. Ghaedi, H. Tavallali, and M. Sharifi, "Preparation of low cost activated carbon from Myrtus communis and pomegranate and their efficient application for removal of Congo red from aqueous solution," ... Acta Part A Mol. ..., vol. 86, pp. 107–114, 2012.
- [25] A. El Nemr, "Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: Kinetic and isotherm studies," J. Hazard. Mater., vol. 161, no. 1, pp. 132–141, 2009.
- [26] United States Environmental Protection Agency, "Drinking Water Contaminants," Am. Child. Environ., no. October, pp. 21–23, 2015.
- [27] H. G. Gorchev and G. Ozolins, "WHO guidelines for drinking-water quality.," WHO Chron., vol. 38, no. 3, pp. 104–108, 2011.
- [28] D. W. Committee, "Draft text of Annex III," 2013.

7.0 Annex:

7.1 Signal to noise ratio:

In order to check the signal-to-noise ratio, low concentrations have been injected, some of which are lower than the lowest concentration used for the calibration curves. Most of the anion standards did not show any signs of background noise, this could be due to the instrument being a "Suppressed Ion Chromatography" which means that it reduces the background noise, so only what is in the sample/standard can be seen.


Fluoride:

This chromatogram shows a 0.05ppm fluoride, which is 10 times less than the lowest concentration (Std1 = 0.5ppm) used for the calibration curves. The signal-to-noise ratio is 1:13. There is second peak which is Chloride. Chloride is present in the salt solid which has been used to make up for this Fluoride solution.

7.2 Limit of detections for the studied anions

The following chromatograms show the limit of detections for Fluoride, Chloride, Nitrite,

Bromide and phosphate, all of which were detected at 0.05ppm.

Anions µS/cm Fluoride 5.43 Chloride 8.78 2.60 Nitrate 16.45 2.50 Sulfate 21.59 Bromide 14.06 Nitrite 10.91 2.40 ٨ 2.30 2.20 2.10 2.00 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 min Peak number Retention time Area Height Concentration Component name min (µS/cm) x min µS/cm ppm 1 5.432 0.0476 0.257 0.108 Fluoride 2 8.778 0.0544 Chloride 0.228 0.204

Nitrite

Bromide

Nitrate

Sulfate

The following is showing the limit of detection for nitrate and sulphate which are

detected at 0.1ppm

3

4

5

6

10.908

14.058

16.452

21.585

0.0150

0.0099

0.0604

0.0407

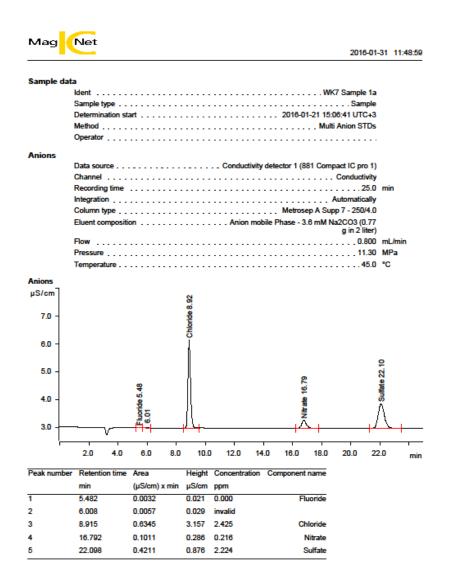
0.047

0.025

0.134

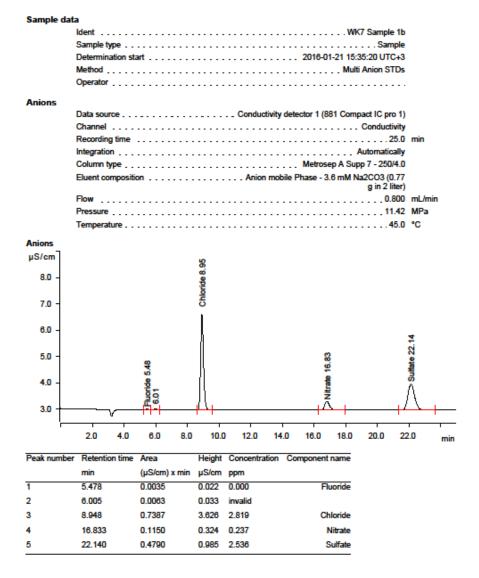
0.056

0.110


0.098

0.113

0.145


7.3 Individual chromatograms for all the samples in six months of study anions

The following pages (54-174) show the individual chromatograms of the water samples from the monitored eight wells. Triplicate water samples were taken from eight wells for over six months, this gives us (3 samples * 8 wells * 6 months), 144 chromatograms. Example on 31/01/2016 sample 1a, 1b and 1c refers to well 1 for the first month, and the rest follows. The data and their details are mentioned in the results and discussion section, summarized in tables 7-9.

2016-01-31 11:49:15

2

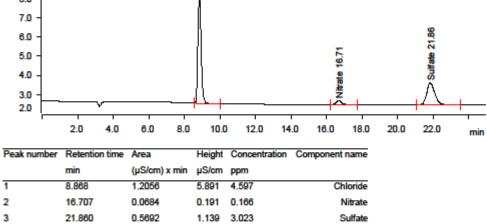
2016-01-31 11:54:00

Sample dat										
Sample da	Ident						MIL	7 Cample (10	
	Sample type									
	Determination st									
	Method									
	Operator						maia	Allonore		
	operator								• ·	
Anions										
	Data source			Conductivit	ty dete	ctor 1 (88	1 Comp	act IC pro	1)	
	Channel							Conductivi		
	Integration									
	Column type							•		
	Eluent compositi	on		Anion m	obile P	hase - 3.	6 mM N	a2CO3 (0.7 g in 2 lite		
	Flow								n) 00 mL/min	
	Temperature									
	remperature									
Anions										
µS/cm			Ξ							
8.0 -			Chloride 8.91							
0.0			ġ							
7.0 -										
1.0			ĭ							
6.0 -			h i							
••• 1									8	
50			1						Sulfate 22.09	
5.0 -		\$				6.7			ate	
4.0		Fluoride 5.48 6.01				Nitrate 16.78			Sul	
4.0 -		1 de	Π			litra			Δ	
		Fluori 6.01	Л.			. Ā			Λ	
3.0									· · -	_
ì—						40.0	40.0			
	2.0 4.0	6.0 8.0	10.0) 12.0 1	14.0	16.0	18.0	20.0	22.0 m	nin
Peak number	r Retention time	Area	Height	Concentration	n Cor	nponent	name			
	min	(µS/cm) x min	µS/cm							
1	5.478	0.0036	0.023	0.000		Flu	oride			
2	6.005	0.0095	0.023	invalid			onue			
						~				
3	8.908	0.7686	3.792	2.932			loride			
4	16.778	0.1212	0.340	0.246			litrate			
5	22.087	0.5065	1.026	2.684		S	ulfate			

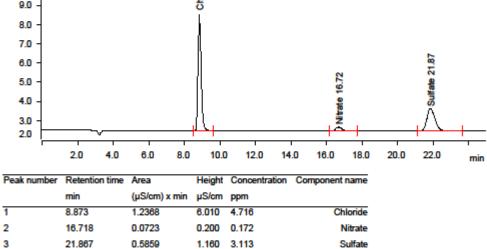
Page 1 of 1

A Metrohm

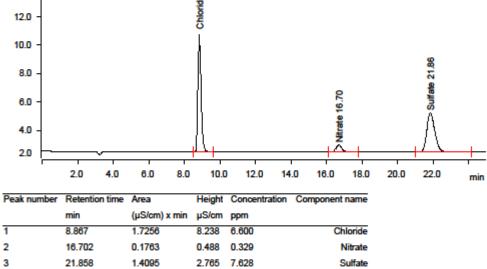
Sample data Ident Anions Data source Conductivity detector 1 (881 Compact IC pro 1) Column type Metrosep A Supp 7 - 250/4.0 Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter) Pressure _______ 11.47 MPa Anions µS/cm Chloride 8.90 10.0 9.0 8.0 70 Sulfate 22.08 6.0 16.79 5.0 Vitrate 4.0 3.0 14.0 16.0 2.0 4.0 6.0 8.0 10.0 12.0 18.0 20.0 22.0 min


Peak number Retention time Area Height Concentration Component name (µS/cm) x min min µS/cm ppm 1 8.903 5.662 4.440 1.1646 Chloride 2 0.0665 16.785 0.185 0.164 Nitrate 3 22.080 0.5413 1.111 2.872 Sulfate

Page 1 of 1



Sample da	ta		
	Ident		
	Sample type		
	Determination start	2016-01-21 17:01:21 UTC+3	
	Method	Multi Anion STDs	
	Operator		
Anions			
	Data source	Conductivity detector 1 (881 Compact IC pro 1)	
	Channel		
	Recording time		min
	Integration		
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition	Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow		mL/min
	Pressure		MPa
	Temperature		°C
Anions			
µS/cm			
· -	8		
10.0 -	Chioride 8.87		
	log log		
9.0 -	ð		
8.0 -			



Sample da	ta		
	Ident	WK7 Sample 2c	
	Sample type	Sample	
	Determination start	2016-01-21 17:30:03 UTC+3	
	Method	Multi Anion STDs	
	Operator		
Anions			
	Data source	Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	Conductivity	
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition	. Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow		mL/min
	Pressure		MPa
	Temperature		°C
Anions			
µS/cm	•		
-	ia ei		
10.0 -	Chioride 8.87		
	Line and Line an		
9.0 -	ö		

Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	18	
1	9 0 0	

4.0 2.0

1

2

3

2.0

Peak number Retention time Area min

8.867

16.703

21.857

4.0

6.0

1.7970

0.1838

1.4637

8.0

(µS/cm) x min µS/cm ppm

10.0

8.570

12.0

6.877

0.507 0.341

2.858 7.929

14.0

Height Concentration Component name

16.0

18.0

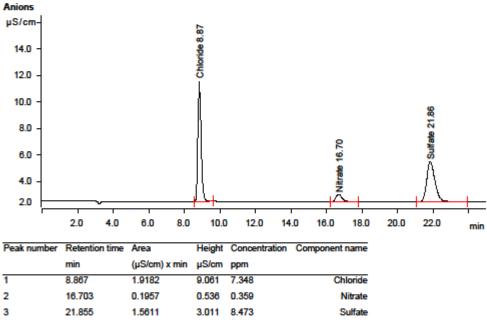
Chloride

Nitrate

Sulfate

20.0

22.0

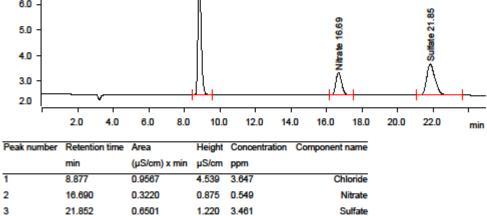

min

Sample da	ita			
	ldent		WK7 Sample	3b
	Sample type		Sam	ple
	Determination start		16-01-21 18:27:28 UTC	+3
	Method		Multi Anion ST	Ds
	Operator			. .
Anions				
Allions	Data source	Conductivity detector	1 (881 Compact IC pro	o 1)
	Recording time			5.0 min
	Integration		Automatica	ally
	-			-
	Eluent composition	Anion mobile Phase	e - 3.6 mM Na2CO3 (0	.77
			g in 2 li	ter)
	Flow			300 mL/min
	Pressure			.53 MPa
	Temperature		4	5.0 °C
Anions				
uS/cm				
P C C C		.87		
14.0 -		Chloride 8, 87		
		lor k		
12.0 -		5		
		l		
10.0 -		1		
				1.8
8.0 -				Sulfate 21.86
6.0 -		1	2	
0.0 -		Ц	16	о А
4.0 -			Nitrate 16.70	A .
		Ω	ž	11

Page 1 of 1

Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm-	5	

_


Sample d	ata
	Ident
	Sample type
	Determination start
	Method
	Operator
Anions	
	Data source Conductivity detector 1 (881 Compact IC pro 1)
	Channel
	Recording time
	Integration Automatically
	Column type
	Eluent composition
	Flow
	Pressure 11.59 MPa
	Temperature
Anions	
µS/cm	•
1	6
8.0 -	Chioride 8.87
0.0	
7.0 -	ō
6.0 -	
	8 S
5.0 -	e 21 6.6
	Nitrate 16.68 Suttate 21.85
4.0 -	
3.0 -	
3.0 -	
2.0	
1	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 min
Peak numb	er Retention time Area Height Concentration Component name
	min (uS/cm) x min uS/cm pom

Peak number	Retention time	Area	Height	Concentration	Component name
	min	(µS/cm) x min	µS/cm	ppm	
1	8.873	0.9101	4.337	3.470	Chloride
2	16.683	0.3084	0.838	0.529	Nitrate
3	21.845	0.6206	1.177	3.301	Sulfate

Page 1 of 1

Sample da	ita		
	ldent		
	Sample type		
	Determination start		
	Method		
	Operator		
Anions			
	Data source	Conductivity detector 1 (881 Compact IC pro 1)	
	Channel		
	Recording time		min
	Integration	Automatically	
	Column type		
	Eluent composition	Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	0.800	mL/min
	Pressure		MPa
	Temperature		°C
Anions			
µS/cm	æ		
1	8		
8.0 -	Chloride 8.88		
	2 E		
7.0 -	ö		
6.0 -	1		
	l l		6

2016-01-31 12:04:09

Sample da	ata
	Ident
	Sample type
	Determination start
	Method
	Operator
Anions	
	Data source Conductivity detector 1 (881 Compact IC pro 1)
	Channel
	Recording time
	Integration Automatically
	Column type
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77
	g in 2 liter)
	Flow
	Pressure
	Temperature
Anions	
µS/cm	~
1	Chicago 28
8.0 -	
0.0	por la companya de la
7.0 -	õ
6.0 -	
	r alte 16.69 Sultate 21.85
5.0 -	9 N N N N N N N N N N N N N N N N N N N
4.0 -	V Rrate 16.69
3.0 -	
3.0	
2.0	
'	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 min
Peak numb	er Retention time Area Height Concentration Component name

Peak number	Retention time	Area	Height	Concentration	Component name
	min	(µS/cm) x min	µS/cm	ppm	
1	8.875	0.9653	4.542	3.679	Chloride
2	16.688	0.3317	0.882	0.564	Nitrate
3	21.845	0.6560	1.214	3.493	Sulfate

Page 1 of 1

2.0

Peak number Retention time Area min (µS/cr

8.882

16.717

21.838

1

2

3

4.0

6.0

0.0716

0.0246

0.1242

(µS/cm) x min µS/cm ppm

0.345 0.312

0.065 0.100

0.225 0.636

Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
Anions	Data source	
	Channel	
	Recording time	
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77	
	g in 2 liter)	
	Flow	
	Pressure	
	Temperature	
Anions		
µS/cm		
µS/cm	8	
1	Chiloride 8.88 21.84	
2.90 -	5 5	
	6.72 Chlori Sulfate 21.84	
2.80 -	ate	
2.70 -	Sulf 6-3	
2.60 -	Sulfa 16.72	
2.00 -		
2.50		
2.40 -	╶───┤╱────┼╨┿─────┼└┶┼───┼└┶┼╴	
2.40 -	l l l l l l l l l l l l l l l l l l l	
2.30 -	l l l l l l l l l l l l l l l l l l l	
2.20	,	
i –		

Page 1 of 1

8.0 10.0 12.0 14.0 16.0

Height Concentration Component name

18.0

Chloride

Nitrate

Sulfate

20.0

22.0

min

2

3

2016-01-31 12:04:52

Sample da	ta	
		Sample
	Determination st	art
	Method	
	Operator	
Anions	Data	Conductivity data data (1991 Compared IC and 1)
		Conductivity detector 1 (881 Compact IC pro 1)
		Conductivity
	-	
	-	Automatically Metrosep A Supp 7 - 250/4.0
		ion Anion mobile Phase - 3.8 mM Na2CO3 (0.77
	Eldent compositi	g in 2 liter)
	Flow	
	Pressure	11.53 MPa
	Temperature	
Anions		
µS/cm_		8
3.00 -		Chloride 8.88 21.84
2.90 -		25 Doil
2.80 -		6.72 Chlor Sulfate 21.84
2.80 -		a a a a a a a a a a a a a a a a a a a
2.70 -		e S
		Ξ A
2.60 -		Nitrate 16.72
2.50	<u>~~</u>	
2.40 -		──────────────────────────────────────
))	
2.30 -	l l	
2.20		
	2.0 4.0	6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 min
Peak numbe	r Retention time	Area Height Concentration Component name
	min	(µS/cm) x min µS/cm ppm
1	8.882	0.0782 0.375 0.336 Chloride

Page 1 of 1

0.070 0.104

0.241 0.688

0.0268

0.1341

16.720

21.838

A Metrohm

Nitrate

Sulfate

Sample da	lata	
-	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77	
	g in 2 liter)	
	Flow	
	Pressure 11.59 MPa	
	Temperature	
Anions		
µS/cm_	ø	
	aŭ aŭ	
3.00 -	- Bernard Be	
2.90 -	6.72 Chloride 8.88 6.72 Suffate 21.83	
2.80 -		
	16.72 • Sulta	
2.70 -		
2.60 -		
2.50		
2.40 -		

2.30 - 2.20		ĺ										
· · · ·	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0	22.0	min
Peak number	Retentio min	n time	Area (µS/cm)	x min	-	Concentra	ation C	omponent	name			
1	8.880		0.0796		0.379	0.341		C	hloride			
2	16.715		0.0283		0.073	0.106		I	Nitrate			
3	21.830		0.1359		0.243	0.698		:	Sulfate			

D Metrohm

Sample da	ata			
	ldent		WK7 Sample	6a
	Sample type			ple
	Determination start		6-01-21 22:17:16 UTC)+3
	Method		Multi Anion ST	Ds
	Operator			
Anions				
Anions	Data source	Conductivity detector	1 /001 Compact IC pr	
	Channel			,
	Recording time			
	Integration			
	Column type			-
	Eluent composition			
	Elden composition	Anion mobile mase	g in 2 li	
	Flow			300 mL/min
	Pressure			.53 MPa
	Temperature			5.0 °C
Anions				
µS/cm				
μο/οπ	2			
	19 19 19 19 19 19 19 19 19 19 19 19 19 1			2
2.70 -	ģ			21.2
	3		~	ate
2.60 -	1		50	Sulfate 21.84
	ľ		Nitrate 16.73	Ň
2.50 -	1	l	trat	11
	·····		Z.	1.
2.40 -		+v		~~
2.10	γ			
2.30 -	ll ll			
2.30	ľ			
2.20	,			

	•									
2.0	4.0	6.0	8.0	10.0	12.0	14.	0 16.0	18.0	20.0	22.0
r Retent	ion time	Area		Height	Concentra	ation	Component	name		
min		(µS/cm)	x min	µS/cm	ppm					
8.882		0.0374		0.178	0.184		C	hloride		
16.730)	0.0091		0.023	0.077		1	Nitrate		
21.835	i	0.0794		0.140	0.397		:	Sulfate		
	er Retent min 8.882 16.730	r Retention time	r Retention time Area min (µS/cm) 8.882 0.0374 16.730 0.0091	r Retention time Area min (μS/cm) x min 8.882 0.0374 16.730 0.0091	r Retention time Area Height min (μS/cm) x min μS/cm 8.882 0.0374 0.178 16.730 0.0091 0.023	r Retention time Area Height Concentration min (μS/cm) x min μS/cm ppm 8.882 0.0374 0.178 0.184 16.730 0.0091 0.023 0.077	r Retention time Area Height Concentration min (μS/cm) x min μS/cm ppm 8.882 0.0374 0.178 0.184 16.730 0.0091 0.023 0.077	r Retention time Area Height Concentration Component min (μS/cm) x min μS/cm ppm 8.882 0.0374 0.178 0.184 Cl 16.730 0.0091 0.023 0.077 Cl Cl <td>r Retention time Area Height Concentration Component name min (μS/cm) x min μS/cm ppm <</td> <td>r Retention time Area Height Concentration Component name min (μS/cm) x min μS/cm ppm 8.882 0.0374 0.178 0.184 Chloride 16.730 0.0091 0.023 0.077 Nitrate</td>	r Retention time Area Height Concentration Component name min (μS/cm) x min μS/cm ppm <	r Retention time Area Height Concentration Component name min (μS/cm) x min μS/cm ppm 8.882 0.0374 0.178 0.184 Chloride 16.730 0.0091 0.023 0.077 Nitrate

A Metrohm

min

Ident	Sample da	ata	
Anions Data source		Ident	
Method		Sample type	
Anions Data source		Determination start	
Anions Data source Conductivity detector 1 (881 Compact IC pro 1) Channel Conductivity Recording time .25.0 min Integration Automatically Column type Metrosep A Supp 7 - 250/4.0 Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter) Flow 0.800 mL/min Pressure 11.53 MPa Temperature .45.0 °C		Method	
Data source Conductivity detector 1 (881 Compact IC pro 1) Channel Conductivity Recording time		Operator	
Data source Conductivity detector 1 (881 Compact IC pro 1) Channel Conductivity Recording time	Anions		
Recording time	Allions	Data source Conductivity detector 1 (881 Compact IC pro 1)	
Integration		Channel	
Column type Metrosep A Supp 7 - 250/4.0 Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter) Flow		Recording time	
Eluent composition Anion mobile Phase - 3.8 mM Na2CO3 (0.77 g in 2 liter) Flow		Integration	
Eluent composition Anion mobile Phase - 3.8 mM Na2CO3 (0.77 g in 2 liter) Flow		Column type	
Flow		Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77	
Pressure		,	
Temperature			
Anions μS/cm 2.70 - CHOOLO 888 2.60 - 2.50 - CHOOLO 10 2.60 - 2.50 - CHOOLO 10 2.40 - CHOOLO 10			
μS/cm 2.70 - 2.60 - 2.50 - 2.40 -		Temperature	
2.70 - 2.60 - 2.50 - 2.50 - 2.40	Anions		
2.60 - 2.50 - 2.40 - 2.	µS/cm		
2.60 - 2.50 - 2.40 - 2.		a de la companya de la	
2.60 - 2.50 - 2.40 - 2.			
2.60 - 2.50 - 2.40 - 2.	2.70 -	21	
2.50		- N B	
2.40 -	2.60 -	6 D	
2.40 -		e A	
2.40 -	2.50		
2.30 -	2.40 -		
2.30 -			
	2.30 -		

ļ					
2.0 4.0	6.0 8.0	10.0 12.0 14	4.0 16.0 18.0	20.0 22.0	min
Retention time	Area	Height Concentration	Component name		
min	(µS/cm) x min	µS/cm ppm			
8.880	0.0395	0.187 0.192	Chloride		
16.720	0.0102	0.026 0.079	Nitrate		
21.857	0.0829	0.144 0.416	Sulfate		
	Retention time min 8.880 16.720	Retention time Area min (μS/cm) x min 8.880 0.0395 16.720 0.0102	Retention time Area Height Concentration min (μS/cm) x min μS/cm ppm 8.880 0.0395 0.187 0.192 16.720 0.0102 0.026 0.079	Retention time Area Height Concentration Component name min (μS/cm) x min μS/cm ppm 8.880 0.0395 0.187 0.192 Chloride 16.720 0.0102 0.026 0.079 Nitrate	Retention time Area Height Concentration Component name min (μS/cm) x min μS/cm ppm 8.880 0.0395 0.187 0.192 Chloride 16.720 0.0102 0.026 0.079 Nitrate

D Metrohm

Ident	Sample da	data	
Determination start 2016-01-21 23:14:37 UTC+3 Method Method Multi Anion STDs Operator Multi Anion STDs Data source Conductivity detector 1 (881 Compact IC pro 1) Channel Conductivity Recording time 25:0 min Integration Automatically Column type Metrosep A Supp 7 - 250/4.0 Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter) Flow 0.800 mL/min Pressure 11:59 MPa Temperature 45:0 °C Anions µS/cm 2.70 2.60 2.50 2.60 2.50 2.60 2.50 2.60 2.50 2.60 2.50 2.60 2.50 2.60 2.50 2.60 2.50		ldent	K7 Sample 6c
Method Multi Anion STDs Operator Operator Anions Data source Conductivity detector 1 (881 Compact IC pro 1) Channel Conductivity Recording time 25.0 Integration Automatically Column type Metrosep A Supp 7 - 250/4.0 Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter) Integrature Flow 0.800 Pressure 11.59 Temperature 45.0<*C		Sample type	Sample
Anions Data source		Determination start	:14:37 UTC+3
Anions Data source		Method	Iti Anion STDs
Anions Data source		Operator	
Data source			
Channel Conductivity Recording time	Anions		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Recording time} & \dots & 250 \\ \text{Integration} & \text{Automatically} \\ \text{Column type} & \text{Metrosep A Supp 7 - 250/4.0} \\ \text{Eluent composition} & \dots & \text{Anion mobile Phase - 3.6 mM Na2CO3 (0.77 \\ g \text{ in 2 liter}) \\ \text{Flow} & \dots & 0.800 \\ \text{Pressure} & \dots & 0.800 \\ \text{Temperature} & \dots & 11.59 \\ \text{MPa} \\ \text{Temperature} & \dots & 45.0 \ ^{\circ}\text{C} \end{array}$			
Integration Automatically Column type			
Column type Metrosep A Supp 7 - 250/4.0 Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter) Flow			
Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter) Flow		-	-
Flow 0.800 mL/min Pressure 11.59 MPa Temperature .45.0 °C Anions 0.800 mL/min μS/cm 0.800 mL/min 2.70 0.900000000000000000000000000000000000			
Flow .0.800 mL/min Pressure .11.59 MPa Temperature .45.0 °C Anions		Eluent composition Anion mobile Phase - 3.6 mM I	
Pressure		Flow	° ,
Temperature			
Anions µS/cm 2.70 2.60 2.50 2.40 2.30			
μS/cm 2.70 - 2.60 - 2.50 - 2.40 - 2.30 -		remperature	
2.70 - 2.60 - 2.50 - 2.40 - 2.30 - 0.20 - 0.10 - 0.	Anions		
2.60 - 2.50 - 2.40 - 2.30	µS/cm	8	N
2.60 - 2.50 - 2.40 - 2.30	1	e e	1.82
2.60 - 2.50 - 2.40 - 2.30		ê	2
2.60 - 2.50 - 2.40 - 2.30	2.70 -	2	liter.
2.40 - 2.30 -		2 2	õ
2.40 - 2.30 -	2.60 -	é	0
2.40 - 2.30 -		*	A
2.40 - 2.30 -	2.50		/\
2.30 -			
	2.40 -		
2.20	2.30 -	l l	
2.20			
	2.20		

6.0

0.0411

0.0105

0.0858

2.0

Peak number Retention time Area min

8.877

16.715

21.823

1

2

3

4.0

8.0

(µS/cm) x min µS/cm ppm

0.192 0.198

0.027 0.079

0.149 0.431

10.0 12.0 14.0 16.0

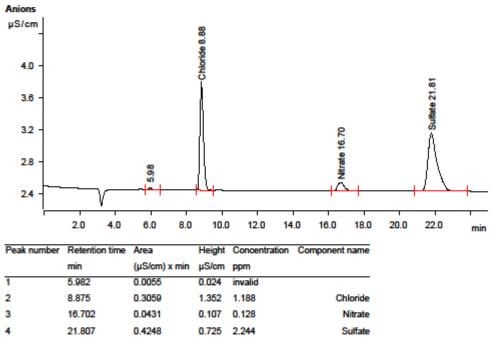
Height Concentration Component name

18.0

Chloride

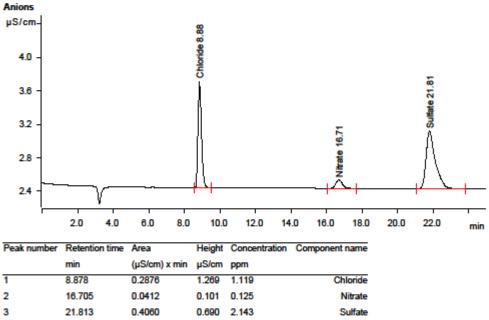
Nitrate

Sulfate

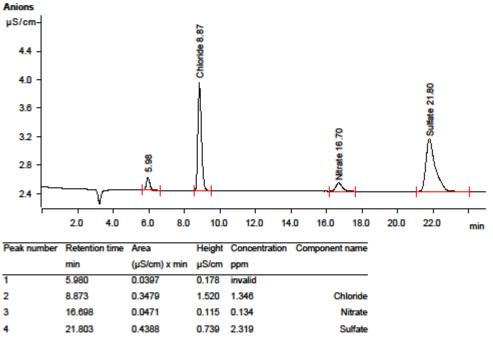

20.0

22.0

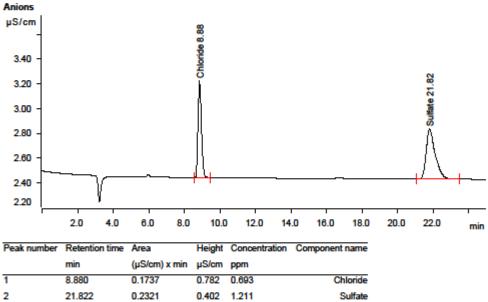
min


Sample da	ta	
	Ident WK7 New Sample a	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C

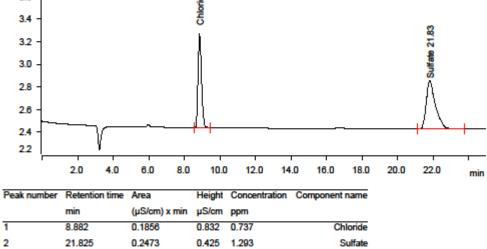
2016-01-31 12:08:06


Sample data	
Ident WK7 New Sample b	
Sample type	
Determination start	
Method	
Operator	
Anions	
Data source Conductivity detector 1 (881 Compact IC pro 1)	
Channel	
Recording time	
Integration Automatically	
Column type	
Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
Flow	min
Pressure	а
Temperature	

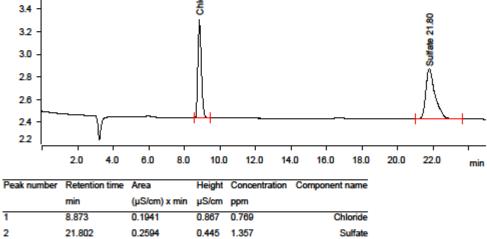
Page 1 of 1



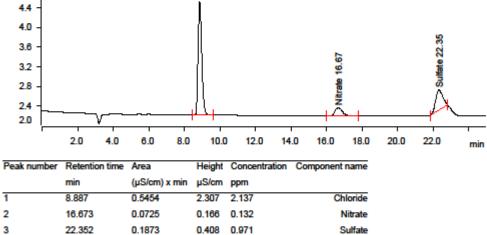
Sample da	ata	
	Ident WK7 New Sample c	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C



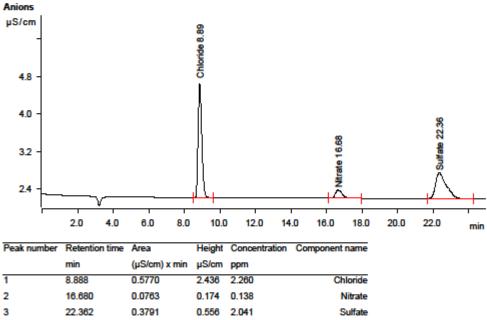
Sample da	ata	
	IdentWK7 Sample 8a	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure 11.64	MPa
	Temperature	°C
Anions		



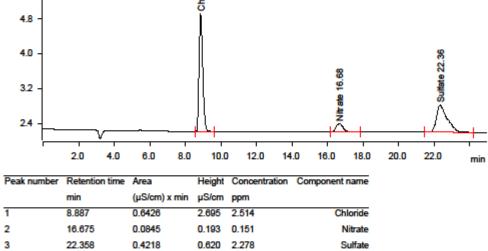
Sample da	ata		
	ldent	WK7 Sample 8b	
	Sample type	Sample	
	Determination start	22 00:11:55 UTC+3	
	Method	Multi Anion STDs	
	Operator		
Anions			
	Data source Conductivity detector 1 (88	1 Compact IC pro 1)	
	Channel	Conductivity	
	Recording time		min
	Integration	Automatically	
	Column type	o A Supp 7 - 250/4.0	
	Eluent composition Anion mobile Phase - 3.6	mM Na2CO3 (0.77 g in 2 liter)	
	Flow		mL/min
	Pressure		MPa
	Temperature		°C
Anions			
µS/cm_			
	a a		
3.6 -	Mide 8. 89		



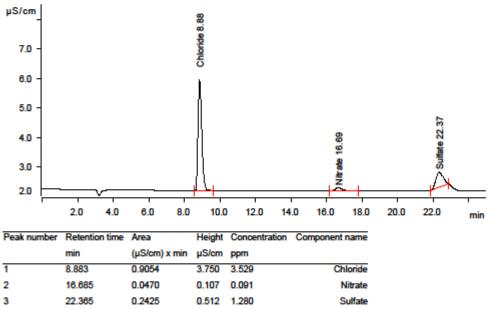
Sample da	ta		
	Ident	WK7 Sample 8c	
	Sample type		
	Determination start	2016-01-22 00:40:33 UTC+3	
	Method	Multi Anion STDs	
	Operator		
Anions			
	Data source	Conductivity detector 1 (881 Compact IC pro 1)	
	Channel		
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition	. Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	0.800	mL/min
	Pressure		MPa
	Temperature		°C
Anions			
µS/cm_	2		
3.6 -	hloride 8.87		
3.4 -	ž		



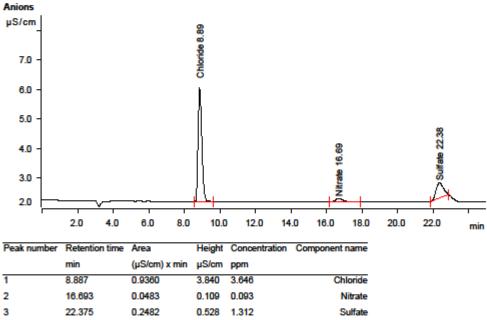
Sample da	ta	
	Ident WK8 sample 1a	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel Conductivity	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	•	
	ě,	
5.2 -	Chiloride 8.89	
	ju j	
4.8 -	5	



Sample da	ata	
	IdentWK8 sample 1b	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
- · · · ·		

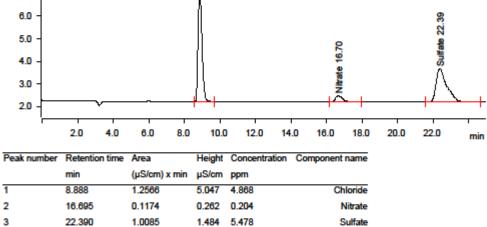


Sample da	ata	
	Ident WK8 sample 1c	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type Metrosep A Supp 7 - 250/4.0	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm		
	8	
5.6 -	ŝ	
5.0	norde 8. 8. 8. 8. 8. 8. 8.	



Sample da	ata	
	Ident WK8 sample 2a	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel Conductivity	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	~	
-	80 80 80	

Sample da	lata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	8 8 9	


Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel Conductivity	
	Recording time	min
	Integration	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	ml /min
	Pressure	
	Temperature	
		-
Anions		
µS/cm	Q	
8.0 -	Chilonide 8.89	
	뤋	
7.0 -	Ê	
	8	
6.0 -		
	1	
5.0 -		-
		538
4.0 -	8	9
	<u>ę</u>	Sulfate 22.38
3.0 -	N Itrate 16.70	ő
		Δ
2.0		
	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22	.0 min

	2.0	4.0	6.0	8.0	10.0	12.0	14	.0 1	6.0	18.0	20.0	22
Peak number	Retenti	on time	Area		Height	Concent	ration	Comp	onent	name		
	min		(µS/cm)	x min	µS/cm	ppm						
1	8.887		1.0312		4.177	4.011			C	hloride		
2	16.695		0.0535		0.120	0.101			1	Nitrate		
3	22.380		0.2686		0.575	1.426			5	Sulfate		

A Metrohm

Sample da	ata	
	Ident	1
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter	
	Flow	mL/min
	Pressure 11.53	MPa
	Temperature	°C
Anions		
µS/cm	Ø	
-	an an	
	ê	
8.0 -	Chioride 8.9	
7.0 -	Ö	
	h	
6.0 -		2.33
	IL	8

Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77	
	g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm		
µə/cm	8	
1	Chilonide 8.88	
9.0 -	, io	
8.0 -	5	
7.0 -		m
6.0 -		8 N
5.0 -		te 2
	() <u>e</u>	Sulfate 22.38
4.0 -	2	∞
3.0 -	Nhrate 16.63	N –
2.0 -		· · · ·
	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22	2.0 min

Peak number	Retention time	Area	Height	Concentration	Component name
	min	(µS/cm) x min	µS/cm	ppm	
1	8.882	1.3613	5.411	5.264	Chloride
2	16.682	0.1276	0.282	0.220	Nitrate
3	22.383	1.0920	1.604	5.926	Sulfate

3.0 2.0

1

2

3

2.0

Peak number Retention time Area

8.888

16.695

22.408

min

4.0

6.0

1.5222

0.1424

1.2182

(µS/cm) x min

8.0

10.0

µS/cm ppm

0.314 0.243

1.789 6.600

5.869

5.984

12.0

14.0

Height Concentration Component name

16.0

18.0

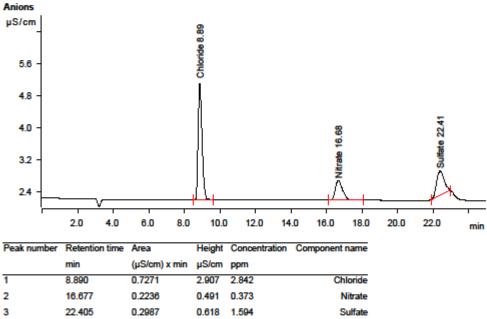
Chloride

Nitrate

Sulfate

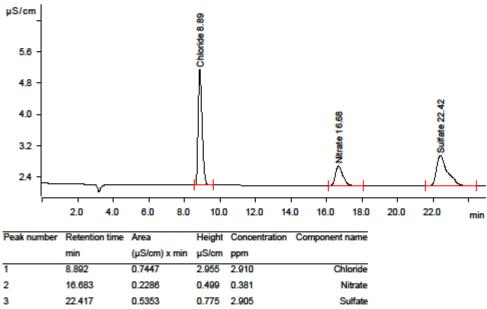
20.0

22.0

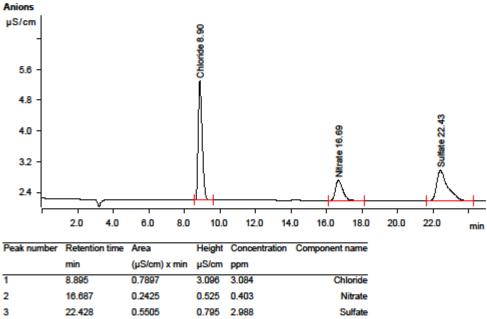

min

Sample data	
Ident	3c
Sample type	ple
Determination start	0+3
Method	Ds
Operator	
Anions	
Data source Conductivity detector 1 (881 Compact IC pro	o 1)
Channel	vity
Recording time	5.0 min
Integration Automatic	ally
Column type	4.0
Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0 g in 2 li	
Flow	800 mL/min
Pressure	.42 MPa
Temperature	5.0 °C
Anions	
uS/cm_	
8	
10.0 - 🦉	
10.0 - 99 9.0 - 55	
8.0 -	
70 -	
	41
6.0 -	82
5.0 - / 8	Sulfate 22.41
4.0 -	ő
5.0 - 4.0 - 3.0 -	$-\Lambda$

Page 1 of 1

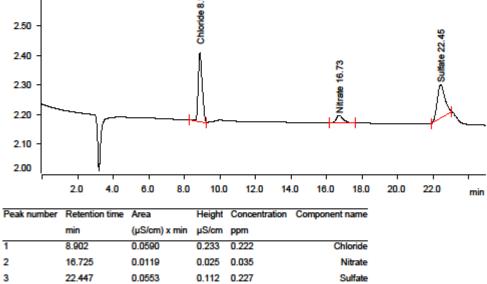


Sample da	ata		
	Ident		
	Sample type	Sample	
	Determination start		
	Method		
	Operator		
Anions			
	Data source	Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	Conductivity	
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition	Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow		mL/min
	Pressure		MPa
	Temperature		°C
Anions µS/cm			



Sample da	lata	
	Ident	e 4b
	Sample type	nple
	Determination start	C+3
	Method	TDs
	Operator	 .
Anions		
	Data source Conductivity detector 1 (881 Compact IC pr	ro 1)
	Channel	ivity
	Recording time	25.0 min
	Integration Automatic	ally
	Column type	V4.0
	Eluent composition	
	Flow	800 mL/min
	Pressure	1.59 MPa
	Temperature	45.0 °C
Anions		
µS/cm	80 80 80	

Sample d	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		



Sample d	ata		
	Ident		
	Sample type	Sample	
	Determination start		
	Method	Multi Anion STDs	
	Operator		
Anions			
Allons	Data source	- Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	Conductivity	
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition	Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow		mL/min
	Pressure		MPa
	Temperature		°C
Anions			
µS/cm	0		
-	ă.		
	ê		
2.50 -	Chloride 8.90		0
	5		2
2.40 -	I	8	9
	l	6.73	ulfate 22.43

2.30 -		+	4	Nitrate 16.7	and the second s
2.10 -	Υ Y				
2.00	¥				
	2.0 4.0	6.0 8.0	10.0 12.0	14.0 16.0 18.0	20.0 22.0 min
Peak number	Retention time	Area	Height Concentra	ation Component name	
	min	(µS/cm) x min	µS/cm ppm		
1	8.898	0.0572	0.227 0.215	Chloride	
2	16.722	0.0115	0.024 0.035	Nitrate	
3	22.430	0.0529	0.108 0.214	Sulfate	

Sample da	ta		
	Ident	WK8 sample 5b	
	Sample type	Sample	
	Determination start	2016-02-22 18:47:06 UTC+3	
	Method	Multi Anion STDs	
	Operator		
Anions			
		Conductivity detector 1 (881 Compact IC pro 1)	
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition	Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	0.800	mL/min
	Pressure		MPa
	Temperature		°C
Anions			
µS/cm		o .	
2.50 -		Chloride 8. 90	e 22.45
2.40 -			ate 2

Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77	
	g in 2 liter)	
	Flow	
	Pressure	
	Temperature	°C
Anions		
µS/cm	0	
2.60 -	Chilonide 8.90	
2.00 7	8	
0.50	ě.	\$
2.50 -	ō	Sulfate 22.45
2.40 -		at a
2.40	2	煮
2.30 -	Nitrate 16.73	Ň
2.30 -		Λ.
2.20	II Z	1λ
2.20	<u>╎</u> ┌──── │/↓ <u></u> ┾─────┤/ <u>╲</u> ┼────	
2.10 -	V	
2.10		
2.00	Y	
	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22	.0 min
	2.0 7.0 0.0 0.0 10.0 12.0 14.0 10.0 18.0 20.0 22	.u min

Peak number	Retention time	Area	Height	Concentration	Component name
	min	(µS/cm) x min	µS/cm	ppm	
1	8.902	0.0714	0.281	0.271	Chloride
2	16.725	0.0150	0.032	0.040	Nitrate
3	22.447	0.0669	0.136	0.293	Sulfate

2.16

2.08

2.00

1

2

2.0

Peak number Retention time Area

min

8.898

22.458

4.0

6.0

0.0339

0.0381

8.0

(µS/cm) x min µS/cm ppm

10.0

0.131 0.122

0.077 0.130

12.0

14.0

Height Concentration Component name

16.0

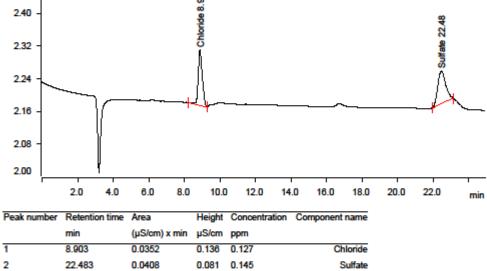
18.0

Chloride

Sulfate

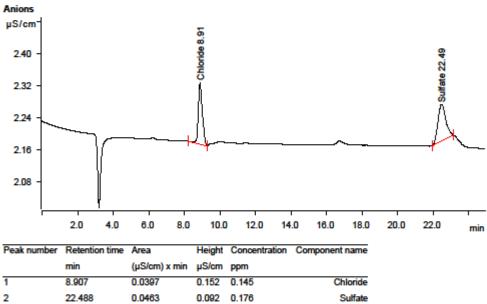
20.0

22.0

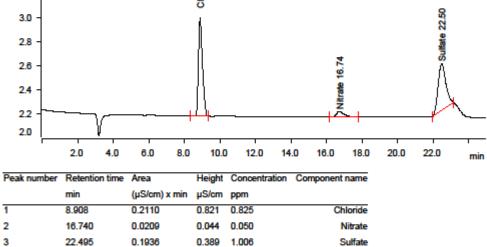

min

Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	0	
2.40 -	Chilonide 8.90	
2.40	e	4
	ě.	8
2.32 -	õ	ate
)	Sulfate 22.46
2.24 -	ll ll	Ă
\		$(\Lambda =$

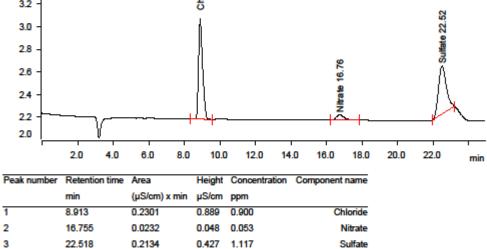
Page 1 of 1



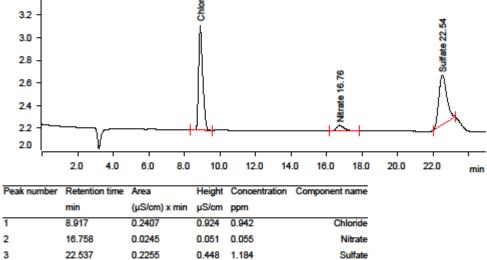
Sample da	ata		
	IdentWK	8 sample 6b	
	Sample type	Sample	
	Determination start	3:16 UTC+3	
	Method Multi	Anion STDs	
	Operator		
Anions			
	Data source Conductivity detector 1 (881 Comp	act IC pro 1)	
	Channel	Conductivity	
	Recording time		min
	Integration A	utomatically	
	Column type	p 7 - 250/4.0	
	Eluent composition Anion mobile Phase - 3.6 mM Na	a2CO3 (0.77 g in 2 liter)	
	Flow	0.800	mL/min
	Pressure		MPa
	Temperature	45.0	°C
Anions			
µS/cm	8		
2.40 -	e e		~



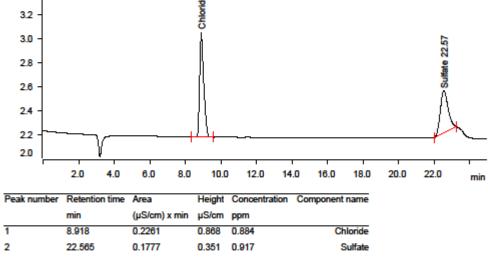
Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		



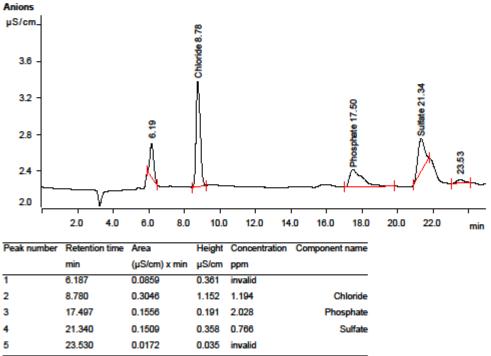
Sample data			
	Ident		
	Sample type		
	Determination start		
	Method		
	Operator		
Anions			
74110113	Data source Conductivity detector 1 (881 Compact IC pro 1)		
	Channel		
	Recording time	min	
	Integration Automatically		
	Column type		
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)		
	Flow	mL/min	
	Pressure	MPa	
	Temperature	°C	
Anions			
uS/cm			
poroli	<u>6</u>		
1	00 92		
32 -	Chloride 8.91		
~ _	5		
20		33	



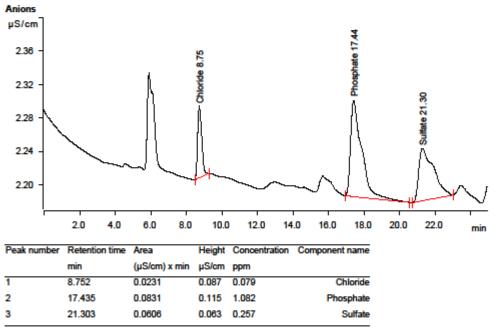
Sample data			
	IdentWK8 sample 7	b	
	Sample type	e	
	Determination start	3	
	Method	s	
	Operator		
Anions			
	Data source Conductivity detector 1 (881 Compact IC pro	1)	
	Channel	ty	
	Recording time	0 min	
	Integration Automatical	у	
	Column type	0	
	Eluent composition		
	Flow	0 mL/min	
	Pressure11.5	3 MPa	
	Temperature	0°C	
Anions			
µS/cm_	6		
3.4 -	Chloride 8.91		
3.2 -	5	0	
3.0 -	4	22.52	



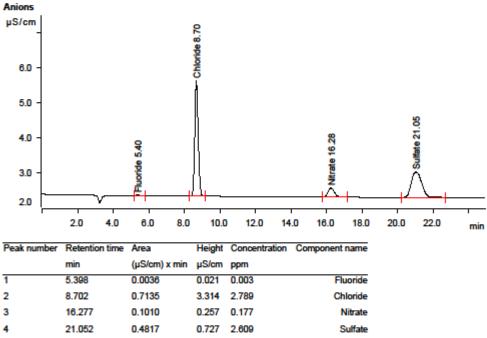
Sample data			
	Ident		
	Sample type		
	Determination start		
	Method		
	Operator		
Anions			
	Data source Conductivity detector 1 (881 Compact IC pro 1)		
	Channel		
	Recording time	min	
	Integration Automatically		
	Column type		
	Eluent composition		
	Flow	mL/min	
	Pressure	MPa	
	Temperature	°C	
Anions			
µS/cm_	8		
	o o		
3.4 -	horide 8.92		
	<u>P</u>		



Sample da	Sample data			
	Ident WK8 sample 8a			
	Sample type			
	Determination start			
	Method			
	Operator			
Anions				
	Data source Conductivity detector 1 (881 Compact IC pro 1)			
	Channel			
	Recording time	min		
	Integration Automatically			
	Column type Metrosep A Supp 7 - 250/4.0			
	Eluent composition			
	Flow	mL/min		
	Pressure	MPa		
	Temperature	°C		
Anions				
µS/cm	8			
1	ë			

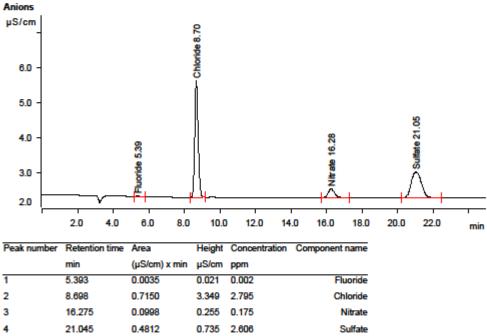


Sample da	ta	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C


Sample da	ata	
	Ident WK8 sample 8c	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C

2016-03-30 10:54:26

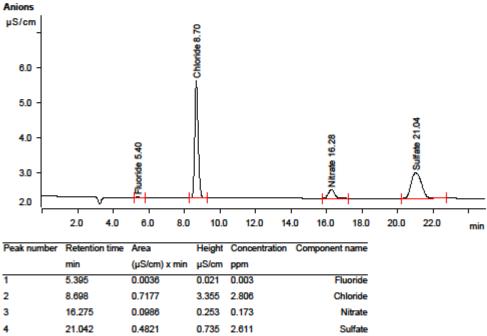
Sample da	ata	
	ldent	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type Metrosep A Supp 7 - 250/4.0	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	02.	



Page 1 of 1

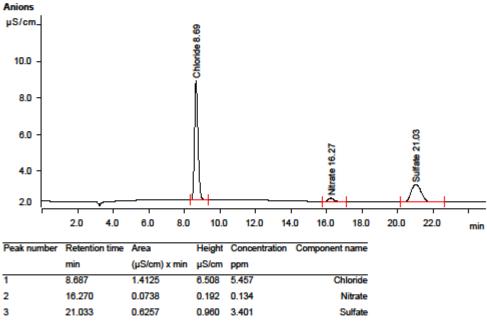
2016-03-30 10:54:40

Sample data			
	Ident		
	Sample type		
	Determination start		
	Method		
	Operator		
Anions			
	Data source Conductivity detector 1 (881 Compact IC pro 1)		
	Channel		
	Recording time	min	
	Integration Automatically		
	Column type		
	Eluent composition		
	Flow	mL/min	
	Pressure	MPa	
	Temperature	°C	
Anions			
µS/cm	<u>g</u>		

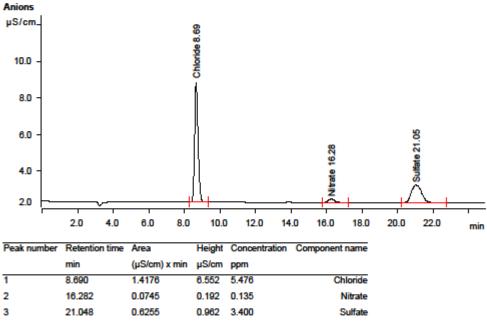


Page 1 of 1

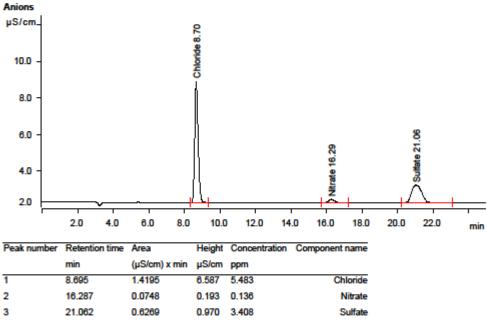
2016-03-30 10:54:55


Sample data			
	Ident		
	Sample type		
	Determination start		
	Method		
	Operator		
Anions			
	Data source Conductivity detector 1 (881 Compact IC pro 1)		
	Channel		
	Recording time	min	
	Integration Automatically		
	Column type		
	Eluent composition		
	Flow	mL/min	
	Pressure	MPa	
	Temperature	°C	
Anions uS/cm	_		

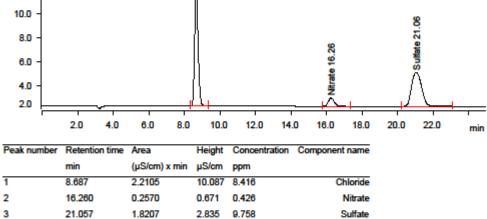
Page 1 of 1



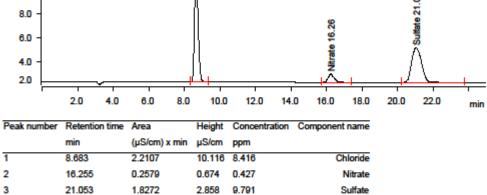
Sample da	ata	
	ldent wk9 sample 2a	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C



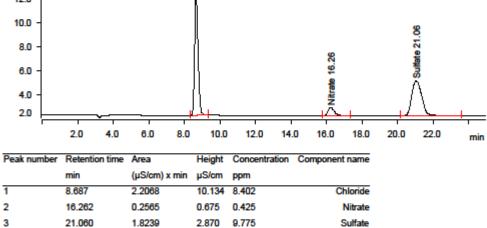
Sample da	ata	
	ldent	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		



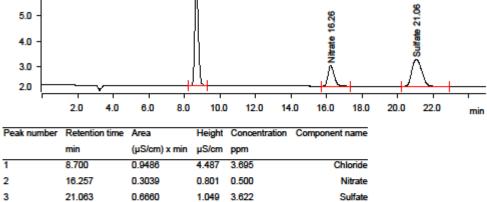
Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		



Sample data					
	Ident wk9 sample 3a				
	Sample type				
	Determination start				
	Method				
	Operator				
Anions	Determine Conductivity detector 1 (001 Compart IC or 1)				
	Data source Conductivity detector 1 (881 Compact IC pro 1)				
	Channel				
	Recording time	min			
	Integration Automatically				
	Column type				
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)				
	Flow	mL/min			
	Pressure	MPa			
	Temperature	°C			
Anions					
-					
µS/cm	8				
-	α, α				
	ž				
14.0 -	Chioride 8.69				
	o				
12.0 -					
	II.				



Sample data						
	Ident	wk9 sample 3b				
	Sample type	Sample				
	Determination start	2016-03-28 14:55:55 UTC+3				
	Method	Multi Anion STDs				
	Operator					
Anions						
		Conductivity detector 1 (881 Compact IC pro 1)				
	-		min			
	-	Automatically				
	Column type	Metrosep A Supp 7 - 250/4.0				
	Eluent composition	Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)				
	Flow		mL/min			
	Pressure		MPa			
	Temperature		°C			
Anions						
µS/cm	9					
_	8.6					
	<u>ģ</u>					
14.0 -	Chioride 8.68					
	0					
12.0 -	l l					
10.0 -						
10.0		8				
I	Д	÷				



Sample data					
	Ident				
	Sample type				
	Determination start				
	Method				
	Operator				
Anions					
	Data source Conductivity detector 1 (881 Compact IC pro 1)				
	Channel				
	Recording time	min			
	Integration Automatically				
	Column type Metrosep A Supp 7 - 250/4.0				
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77				
	g in 2 liter)				
	Flow				
	Pressure 11.81	MPa			
	Temperature	°C			
Anions					
uS/cm					
porem	8				
	eci e				
	, pick				
14.0 -	Chioride 8.69				
12.0 -	Ŭ				
12.0					

Sample da			
	Ident	wk9 sample 4a	•
	Sample type		•
	Determination start		1
	Method	Multi Anion STDs	
	Operator		
Anions			
	Data source	onductivity detector 1 (881 Compact IC pro 1))
	Channel		
	Recording time	25.0	min
	Integration		
	-		
	Column type		
	Eluent composition		
	-	g in 2 liter)	
	Flow		
	Pressure		MPa
	Temperature		°C
Anions			
µS/cm_	9		
	8.7		
8.0 -	<u>8</u>		
0.0	Chloride 8.70		
7.0 -	5		
1.4	L		
6.0 -	1		
···· 7			
50	l l	<mark>به 8</mark>	

3

21.052

0.6673

Sample data Ident Anions Data source Conductivity detector 1 (881 Compact IC pro 1) Column type Metrosep A Supp 7 - 250/4.0 Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter) Pressure ________ 11.87 MPa Anions µS/cm Chloride 8.70 8.0 7.0 6.0 fate 21.05 5.0 Nitrate 16.25 4.0 3 3.0 2.0 18.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 20.0 22.0 min Peak number Retention time Area Height Concentration Component name (µS/cm) x min min µS/cm ppm Chloride 1 8.695 0.9490 3.696 4.505 2 0.3063 0.504 16.247 0.805 Nitrate

A Metrohm

Sulfate

1.055 3.629

3.0 2.0

1

2

3

2.0

Peak number Retention time Area

8.697

16.250

21.057

min

4.0

6.0

0.9488

0.3042

0.6647

8.0

(µS/cm) x min µS/cm ppm

10.0

4.506

0.804 0.501

1.055 3.615

12.0

3.696

14.0

Height Concentration Component name

16.0

18.0

Chloride

Nitrate

Sulfate

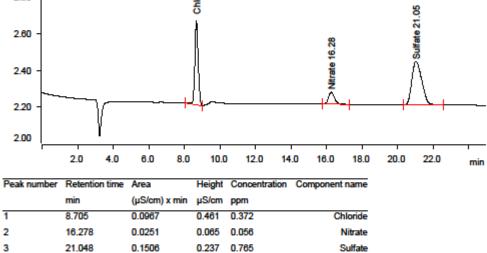
20.0

22.0

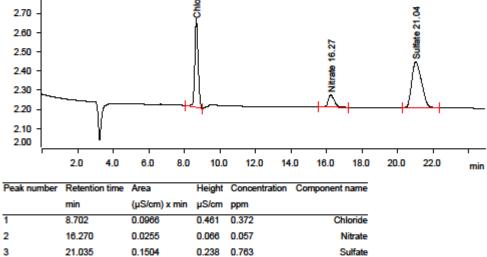
min

Sample da	ta	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions	Data source	
	Channel	
	Recording time	min
	Integration	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm		
p3/cm	8	
	e e e e e e e e e e e e e e e e e e e	
8.0 -	Chioride 8.70	
	5	
7.0 -		
6.0 -	ĺ	
5.0 -	firate 16.25 Sulfate 21.06	
	e 5	
4.0 -	Nitrate 16.	
30 -	$\overline{\mathbf{x}}$	

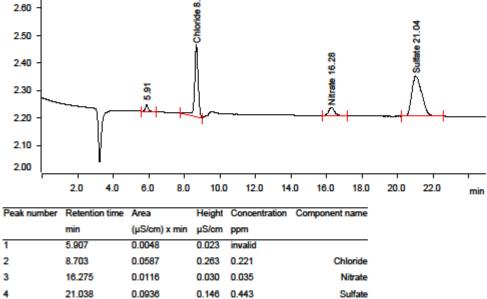
Page 1 of 1


Sample da	ata		
	Ident	wk9 sample 5a	
	Sample type	Sample	
	Determination start		
	Method	Multi Anion STDs	
	Operator		
Anions			
	Data source	Conductivity detector 1 (881 Compact IC pro 1)	
	Channel		
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition	. Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow		mL/min
	Pressure		MPa
	Temperature		°C
Anions			

2016-03-30 10:57:46


Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77	
	g in 2 liter)	
	Flow	
	Pressure 11.92	MPa
	Temperature	°C
Anions		
µS/cm_	_	
	5	
	Chiloride 8.71	
2.80 -	ğ	
	5 8	
	31 Ct	
2 60 -	1	

Page 1 of 1



Sample da	ta		
	Ident		
	Sample type		
	Determination start		
	Method		
	Operator		
Anions			
	Data source	. Conductivity detector 1 (881 Compact IC pro 1)	
	Channel		
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition	Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	0.800	mL/min
	Pressure		MPa
	Temperature		°C
Anions			
µS/cm	0		
-	6		
2.80 -	Chloride 8.70		
	Į.	+	
2.70 -	ō	2	

Sample da	ata	
	ldent	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	8. 2Q	
2.60 -	có a	

Sample da	ata	
	ldent	
	Sample type	
	Determination start	
	Method	
	Operator	
	•	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel Conductivity	
	Recording time	min
	Integration	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	ml /min
	Pressure11.98	
	Temperature	
	remperature	
Anions		
µS/cm	9	
2.60 -	8	
2.00	Chloride 8.70 21.03	
2.50 -	2 × × × × × × × × × × × × × × × × × × ×	
2.00	16.27 Suifate 21.03	
2.40 -	5 E	
2.10	<u><u> </u></u>	
2.30 -	Nitrate 16.27	
~		
2.20 -		
2.10 -	ų –	
2.00		
	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22	.0 min

Peak number	Retention time	Area	Height	Concentration	Component name
	min	(µS/cm) x min	µS/cm	ppm	
1	8.702	0.0547	0.254	0.205	Chloride
2	16.270	0.0114	0.029	0.034	Nitrate
3	21.025	0.0936	0.146	0.444	Sulfate

1

2

3

8.700

16.267

21.020

0.0517

0.0109

0.0325

Sample da	ta	
oumpic du	ldent	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions	Determine Constantivity determine 1 (001 Constant IC on 1)	
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	min
	Integration Automatically	man
	Column type	
	Eluent composition	
	g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	2	
2.60 -	cci Qu	
	Chloride 8.70 21.02	
2.50 -	16.27 Chlori	
	ate	
2.40 -	Sulf 6.2	
	A E Â	
2.30 -	Sulfa	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2.20 -		
2.10 -		
2.10	ľ	
2.00	•	
	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22	2.0 min
		min
Peak numbe	r Retention time Area Height Concentration Component name	
	min (µS/cm) x min µS/cm ppm	

Page 1 of 1

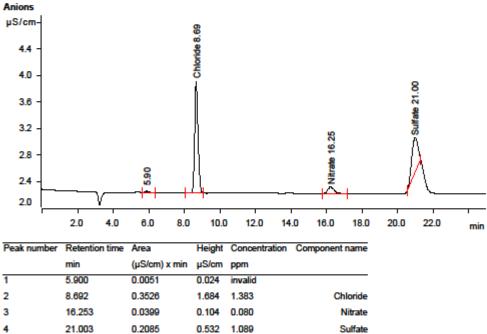
0.241 0.193

0.028 0.034

0.083 0.098

# D Metrohm

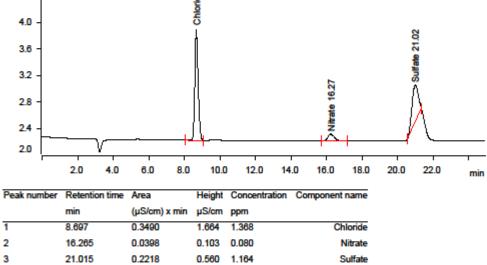
Chloride


Nitrate

Sulfate

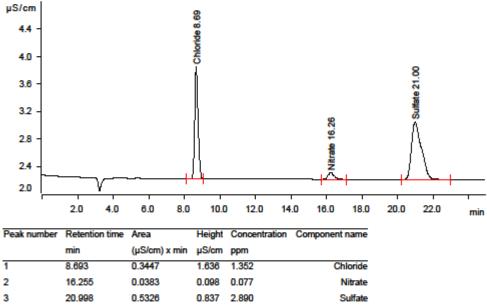


#### 2016-03-30 10:58:56


Sample da	ita	
	ldent wk9 sample 7a	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure 11.92	MPa
	Temperature	°C
Anions		
<b>a</b> (		



Page 1 of 1




Sample da	ata	
	ldent	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type Metrosep A Supp 7 - 250/4.0	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm-	2	
4.4 -	hde 8.70	





Sample d	lata		
	Ident	wk9 sample 7c	
	Sample type		
	Determination start	2016-03-28 21:09:07 UTC+3	
	Method	Multi Anion STDs	
	Operator		
Anions			
	Data source	vity detector 1 (881 Compact IC pro 1)	
	Channel	Conductivity	
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition Anion r	nobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow		mL/min
	Pressure		MPa
	Temperature		°C
Anions			
µS/cm	89 9		





Sample da	ata	
	ldent	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
Anions	Data source	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77	
	g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm		
µ5/cm	R	
- 1	Chloride 8.70	
4.4 -	je je	
	5	
4.0 -	Å	
	6	
3.6 -	Sulfate 21.01	
3.2 -	Lae	
3.2	S	
2.8 -	Π Δ.	
	$\lambda$	
2.4 -	/\ <u>\</u>	
2.0	Υ · · · · · · · · · · · · · · · · · · ·	

	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0	22.0
Peak number	Retentio	n time	Area		Height	Concentra	ition (	Component	name		
	min		(µS/cm) x	min	µS/cm	ppm					
1	8.698		0.3925		1.843	1.539		Ch	loride		
2	21.008		0.2089		0.520	1.092		5	Sulfate		

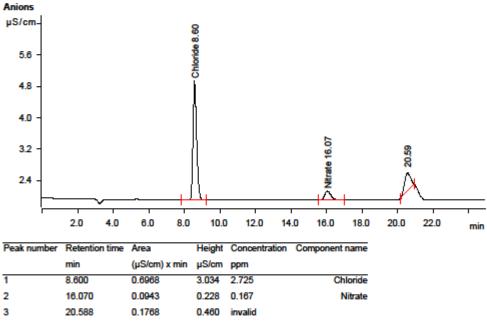
## A Metrohm

min



Sample da	ata	
-	ldent	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77	
	g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
uS/cm		
µS/cm	8	
-	Chloride 8.70	
	Ϋ́ς	
4.4 -	ž	
4.0 -	Ŭ,	
4.0	5	
3.6 -	3	
	Suifate 21.01	
3.2 -	and a second	
	በ ስ	
2.8 -		
24 -		
	~	<u> </u>
2.0	Y ''	· · · · ·
	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22	2.0 min
		min

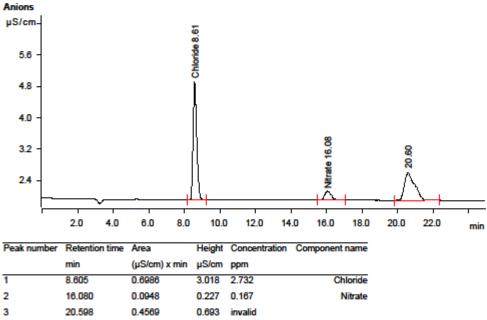
Peak number	Retention time	Area	Height	Concentration	Component name
	min	(µS/cm) x min	µS/cm	ppm	
1	8.698	0.3961	1.858	1.553	Chloride
2	21.013	0.4790	0.749	2.594	Sulfate




Sample d	ata	
	ldent	
	Sample type	
	Determination start	
	Method	
	Operator .	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77	
	g in 2 liter)	
	Flow	
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm		
<b>p</b> 070111	R.	
1	Chiloride 8.70	
44 -	ž	
1.1	5	
4.0 -	Ī	
	8	
3.6 -	3	
3.2 -	Sulfate 21.00	
2.8 -	Ň	
2.0		
2.4 -		
2.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b></b>
2.0		<del></del>
	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22	2.0 min

Peak number	Retention time	Area	Height	Concentration	Component name
	min	(µS/cm) x min	µS/cm	ppm	
1	8.695	0.3936	1.841	1.543	Chloride
2	21.003	0.4763	0.745	2.579	Sulfate

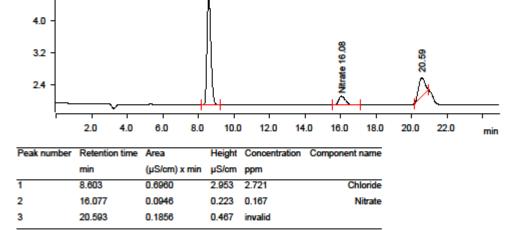



Sample da	ata		
	Ident	wk10 Sample 1a	
	Sample type		
	Determination start		
	Method		
	Operator		
Anions			
	Data source	inductivity detector 1 (881 Compact IC pro 1)	
	Channel	Conductivity	
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition	Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow		mL/min
	Pressure		MPa
	Temperature		°C
Anions			
µS/cm-	8		



Page 1 of 1




Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure 12.09	MPa
	Temperature	°C
Anions		
µS/cm_	5	



Page 1 of 1



Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 o in 2 liter)	
	Flow	ml /min
	Pressure	
	Temperature	0
Anions		
µS/cm		
	a de la compansión de la c	
5.6 -		
0.0	Chiloride 8. 60	
	5	
4.8 -		



Page 1 of 1



Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure	
	Temperature	
		-
Anions		
µS/cm	8	
	Chiloride 8. 60	
9.0 -		
8.0 -	94	
o.u -	U U	
7.0 -		
6.0 -		
5.0 -	<b>o</b>	
4.0 -	<u>e</u> g	
20	20.59 Nitrate 16.08	
3.0 -		
2.0 -		
<u>-</u> ۲		· · ·
	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.	0 min
Peak numbe	er Retention time Area Height Concentration Component name	
reak numbe	e netenuoriume viea neigni concentration component hame	

Peak number	Retention time	Area	Height	Concentration	Component name
	min	(µS/cm) x min	µS/cm	ppm	
1	8.597	1.3661	5.681	5.282	Chloride
2	16.077	0.0723	0.168	0.132	Nitrate
3	20.590	0.2425	0.605	invalid	

Page 1 of 1

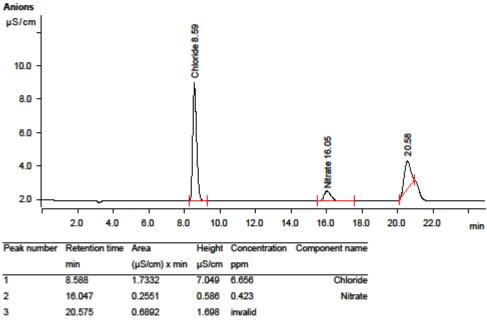


Sample da	lata	
	ldent	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	in
	Pressure	
	Temperature	
Anions		
µS/cm	8	
-	Chiloride 8. 60	
9.0 -	Ę	
8.0 -	6	
7.0 -		
6.0 -	ĥ	
0.0		
5.0 -	0	
4.0 -	20.61	
	20.61 fe	
3.0 -		
2.0		
·		<b>—</b>
	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0	min
Peak numb	ber Retention time Area Height Concentration Component name	
- eax number	regit oncentation on potentialle	

Peak number	Retention time	Area	Height	Concentration	Component name
	min	(µS/cm) x min	µS/cm	ppm	
1	8.602	1.3645	5.647	5.276	Chloride
2	16.087	0.0718	0.166	0.131	Nitrate
3	20.605	0.2480	0.614	invalid	

Page 1 of 1

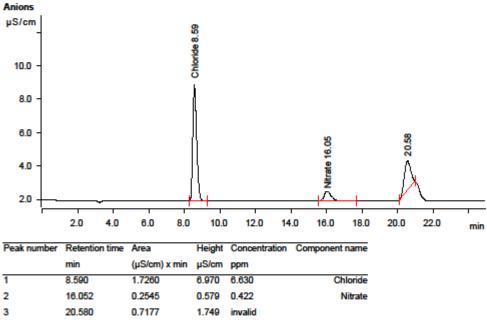



Sample da	ata	
-	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel Conductivity	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
uS/cm		
. 1	S.	
9.0 -	Chiloride 8.59	
8.0 7	2 A	
8.0 -	ō	
7.0 -		
6.0 -		
5.0 -		
4.0 -		
	Nitrate 16.07	
3.0 -		
2.0		
	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.	0 min

	2.0	4.0	6.0	8.0	10.0	12.0	14	.0	16.0	18.0	20.0	22.0
Peak number	Retentio	on time	Area		Height	Concentra	tion	Con	nponent	name		
	min		(µS/cm) x	min	µS/cm	ppm						
1	8.593		1.3696		5.616	5.295			Cł	loride		
2	16.072		0.0721		0.166	0.131			1	Vitrate		
3	20.585		0.2589		0.633	invalid						

Page 1 of 1

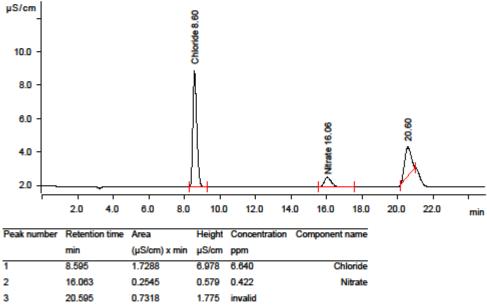



Sample da	ata		
	Ident	wk10 Sample 3a	
	Sample type		
	Determination start	2016-05-05 17:43:38 UTC+3	
	Method	Multi Anion STDs	
	Operator		
Anions			
	Data source Conductivity det	ector 1 (881 Compact IC pro 1)	
	Channel	Conductivity	
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition Anion mobile	Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow		mL/min
	Pressure		MPa
	Temperature		°C
Anions			
µS/cm	æ		



Page 1 of 1




Sample da	ata	
	Ident	)
	Sample type	
	Determination start	1
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	)
	Channel	1
	Recording time	min
	Integration Automatically	1
	Column type	)
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	g S s	



Page 1 of 1



Sample d	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type Metrosep A Supp 7 - 250/4.0	
	Eluent composition	
	Flow	mL/min
	Pressure 12.15	MPa
	Temperature	°C
Anions		
µS/cm	e e	



Page 1 of 1



Sample da	lata	
-	ldent	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	in
	Integration Automatically	
	Column type Metrosep A Supp 7 - 250/4.0	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	g m 2 men Flow	l /min
	Pressure	
	Temperature	
Anions		
µS/cm		
	Chloride 8.61	
	e	
6.0 -	jog l	
	õ	
5.0 -		
5.0	h	
4.0 -	0.00	
	Nitrate 16.07	
3.0 -	, <u>s</u>	
	H Z A	
20 -		

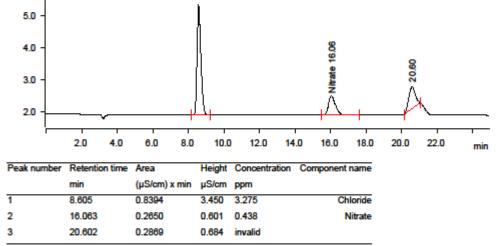
	1 1	1 1	1	1	1 1	1	· · ·
	2.0 4.0	6.0 8.0	10.0	) 12.0 14	.0 16.0	18.0 20	.0 22.0
Peak number	Retention time	Area	Height	Concentration	Component n	ame	
	min	(µS/cm) x min	µS/cm	ppm			
1	8.608	0.8416	3.465	3.284	Chlo	oride	
2	16.070	0.2659	0.604	0.440	Nit	trate	
3	20.612	0.2712	0.650	invalid			

Page 1 of 1

# A Metrohm

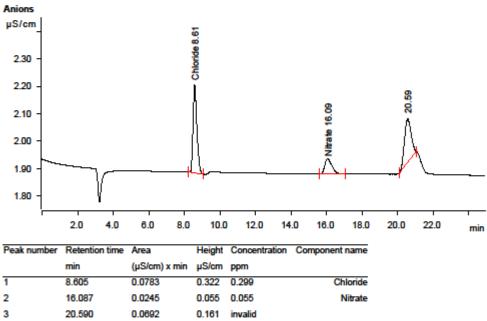
min




Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
Anions	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77	
	g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	8	
	Chiloride 8. 60	
	, and the second s	
6.0 -	ž	
	Ŭ	
5.0 -		
	1 A A A A A A A A A A A A A A A A A A A	
4.0 -	6	
	> 20.61	
3.0 -	50 P	
3.0 -	1 Ž 🕺	

2.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 min Peak number Retention time Area Height Concentration Component name min (µS/cm) x min µS/cm ppm 1 8.603 0.8406 3.474 3.280 Chloride 2 0.2650 Nitrate 16.065 0.606 0.438 3 20.607 0.2785 0.672 invalid

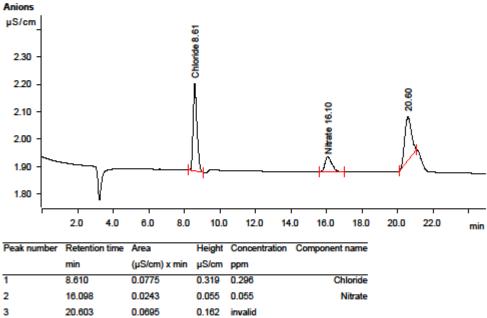
Page 1 of 1




Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	-	
- 1	မ်း	
	Đ	
6.0 -	Chloride 8.61	
	ō	



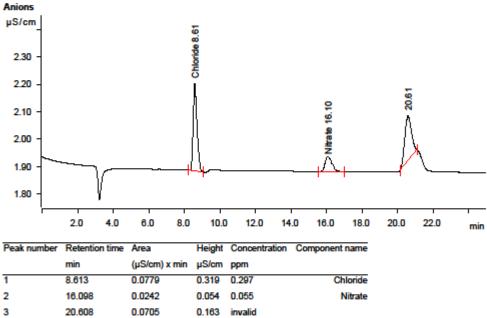



Sample da	ta	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure 12.09	MPa
	Temperature	°C
Anions		



Page 1 of 1

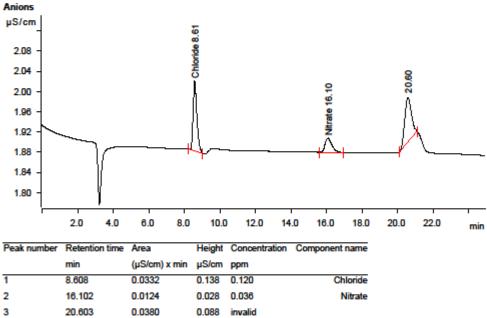



Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type Metrosep A Supp 7 - 250/4.0	
	Eluent composition	
	Flow	mL/min
	Pressure 12.04	MPa
	Temperature	°C
Anions		



Page 1 of 1

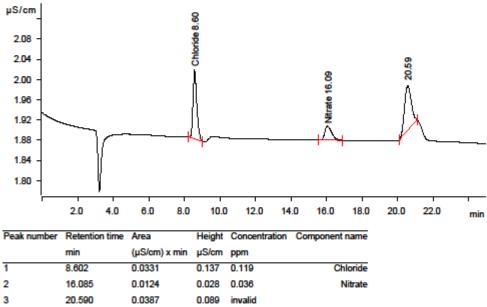



Sample da	ata		
	ldent	wk10 Sample 5c	
	Sample type		
	Determination start		
	Method	Multi Anion STDs	
	Operator		
Anions			
	Data source	- Conductivity detector 1 (881 Compact IC pro 1)	
	Channel		
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition	Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow		mL/min
	Pressure		MPa
	Temperature		°C
Anions µS/cm	_		



Page 1 of 1

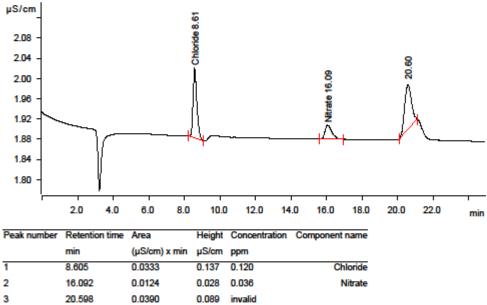



Sample da	ta		
	Ident	wk10 Sample 6a	
	Sample type	Sample	
	Determination start		
	Method	Multi Anion STDs	
	Operator		
Anions			
	Data source	inductivity detector 1 (881 Compact IC pro 1)	
	Channel		
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition	Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	0.800	mL/min
	Pressure		MPa
	Temperature		°C
Anions			
µS/cm	-		



Page 1 of 1

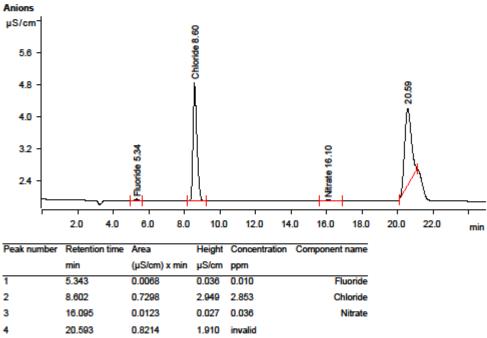



Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	8	



Page 1 of 1

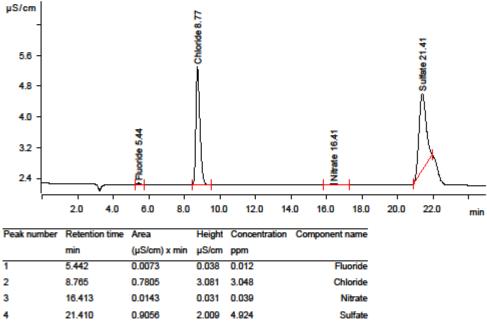



Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	6	



Page 1 of 1

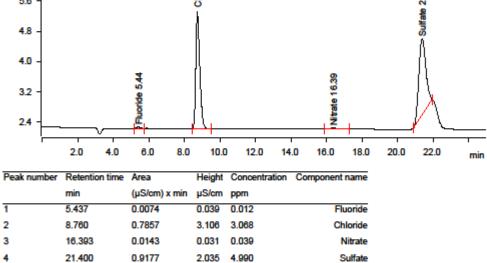



Sample da	ata		
	Ident	wk10 Sample 7a	
	Sample type	Sample	
	Determination start		
	Method	Multi Anion STDs	
	Operator		
Anions			
	Data source	Conductivity detector 1 (881 Compact IC pro 1)	
	Channel		
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition	. Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow		mL/min
	Pressure		MPa
	Temperature		°C
Anions			



Page 1 of 1

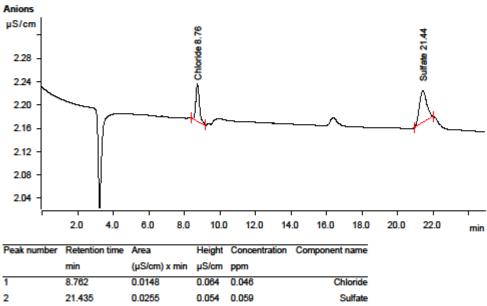



Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	<u> </u>	



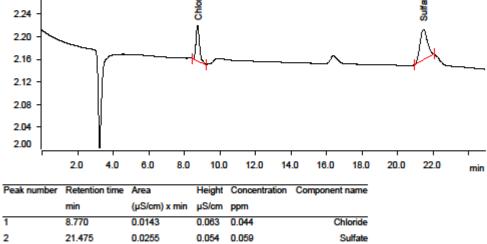


4


Sample data			
	ldent	wk11 Sample 7c	
	Sample type	Sample	
	Determination start		
	Method	Multi Anion STDs	
	Operator		
Anions			
71110115	Data source	onductivity detector 1 (881 Compact IC pro 1)	
	Channel	Conductivity	
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition	Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	0.800	mL/min
	Pressure		MPa
	Temperature		°C
Anions			
uS/cm			
	28		
6.4 -	e 8		
	Chioride 8.76	<del>4</del>	
5.6 -	5	aie 21.40	
		ee ee	

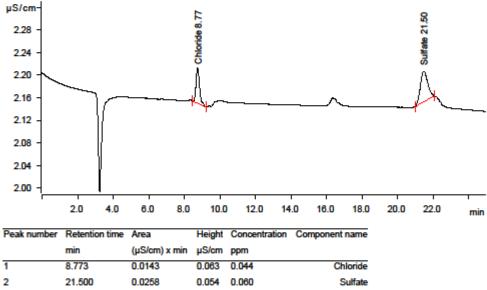


Page 1 of 1



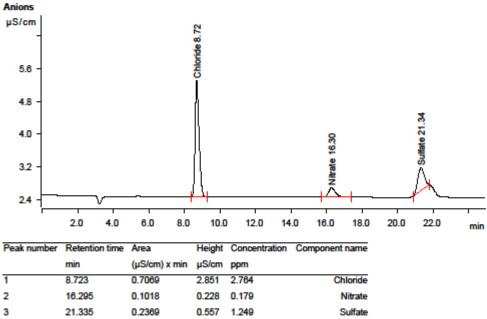

Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		






Sample da	ta		
	Ident	wk11 Sample 8b	
	Sample type	Sample	
	Determination start		
	Method	Multi Anion STDs	
	Operator		
Anions			
Anions	Data source	- Conductivity detector 1 (881 Compact IC pro 1)	
		Conductivity detector 1 (001 compact to pro 1)	
			min
	•	Automatically	
	-	Metrosep A Supp 7 - 250/4.0	
	Eluent composition	Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow		mL/min
			-
Anions			
µS/cm_	2		
	Chioride 8.77	Sulfate 21.48	
2.28 -	<u>ş</u>	17 12	
2.24	2 2		
2.24 -	0	ಹ	
2.20	<	Λ	
	<u> </u>		

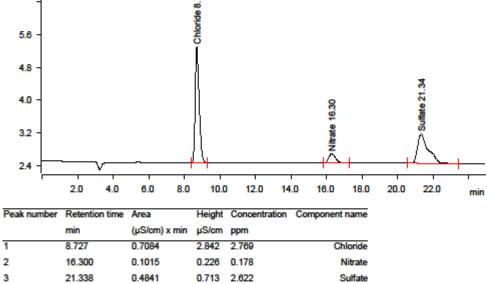





Sample da	ata		
	Ident	wk11 Sample 8c	
	Sample type	Sample	
	Determination start	2016-05-26 01:53:36 UTC+3	
	Method	Multi Anion STDs	
	Operator		
Anions			
	Data source Conductiv	ity detector 1 (881 Compact IC pro 1)	
	Channel	Conductivity	
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition Anion m	nobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow		mL/min
	Pressure		MPa
	Temperature		°C
Anions			
µS/cm-	Ę	22	





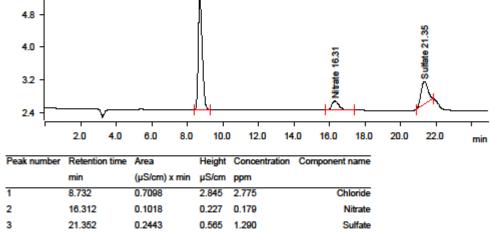

Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure 12.04	MPa
	Temperature	°C
Anions		





#### 2016-06-05 1:41:05

Sample da	ta	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel Conductivity	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	2	
-	ri oo	
	ride 8. 73	




Page 1 of 1



#### 2016-08-05 1:41:25

Sample da	ta	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
	•	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type Metrosep A Supp 7 - 250/4.0	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
uS/cm		
porem	R	
5.6 -	- Chloride 8.73	



Page 1 of 1



1

2

3

8.725

16.320

21.355

1.4344

0.0804

0.3262

#### 2016-06-05 1:42:36

Ident	Sample da	ata	
Determination start         2016-06-02 13:55:13 UTC+3           Method         Multi Anion STDs           Operator         Multi Anion STDs           Data source         Conductivity detector 1 (881 Compact IC pro 1)           Channel         Conductivity           Recording time         25.0 min           Integration         Automatically           Column type         Metrosep A Supp 7 - 250/4.0           Eluent composition         Anion mobile Phase - 3.6 mM Na2CO3 (0.77           g in 2 liter)         Flow           Pressure         11.92           Temperature         45.0 °C           Anions         90           90         90           90         90           90         90           90         90           90         90           90         90           90         90           90         90           90         90           90         90           90         90           90         90           90         90           90         90           90         90           90         90 <td< td=""><td>-</td><td>Ident</td><td></td></td<>	-	Ident	
Method         Multi Anion STDs           Operator         Operator           Anions         Data source           Data source         Conductivity detector 1 (881 Compact IC pro 1)           Channel         Conductivity           Recording time         Conductivity           Recording time         Automatically           Column type         Metrosep A Supp 7 - 25014.0           Eluent composition         Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)           Flow         0.800 mL/min           Pressure         11.02 MPa           Temperature         45.0 °C           Anions         90           90         0           90         0           90         0           90         0           90         0           90         0           90         0           90         0           90         0           90         0           90         0           90         0           90         0           90         0           90         0           90         0           90         0		Sample type	
Operator		Determination start	
Anions         Data source         Conductivity detector 1 (881 Compact IC pro 1)           Channel         Conductivity           Recording time         25.0           Integration         Automatically           Column type         Metrosep A Supp 7 - 250(4.0)           Eluent composition         Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)           Flow         0.800 mL/min           Pressure         11.92 MPa           Temperature         45.0 °C		Method	
Data source         Conductivity detector 1 (881 Compact IC pro 1)           Channel         Conductivity           Recording time		Operator	
Data source         Conductivity detector 1 (881 Compact IC pro 1)           Channel         Conductivity           Recording time			
Channel	Anions	Data source Conductivity detector 1 (881 Compact IC pro 1)	
Recording time			
Integration			nin
Column type			
Eluent composition Anion mobile Phase - 3.8 mM Na2CO3 (0.77 g in 2 liter) Flow			
Flow			
Pressure		g in 2 liter)	
Temperature			
Anions µS/cm 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 0.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		Pressure	/Pa
μS/cm 10.0 - 9.0 - 8.0 - 7.0 - 6.0 - 5.0 - 4.0 - 3.0 - 2.0 - 0.0 -		Temperature	С
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Anions		
8.0 - 7.0 - 6.0 - 5.0 - 4.0 - 3.0 - 2.0 - 0.0 - 1.0 - 1.	µS/cm_	~	
8.0 - 7.0 - 6.0 - 5.0 - 4.0 - 3.0 - 2.0 - 0.0 - 1.0 - 1.		2 8	
8.0 - 7.0 - 6.0 - 5.0 - 4.0 - 3.0 - 2.0 - 2.0 - 0.0 - 1.0 - 1.	10.0 -	ę	
8.0 - 7.0 - 6.0 - 5.0 - 4.0 - 3.0 - 2.0 - 0.0 - 1.0 - 1.	9.0 -	2	
7.0 - 6.0 - 5.0 - 4.0 - 3.0 - 2.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -		ō	
	8.U -		
	7.0 -		
	6.0 -	9	
		21 33 51 33	
	5.0 -		
	4.0 -		
	30 -	Н 🖡 🔨	
2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 min	~~ [		· ·
		2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0	min
Peak number Retention time Area Height Concentration Component name	Peak numbe	er Retention time Area Height Concentration Component name	
min (µS/cm) x min µS/cm ppm		min (µS/cm) x min µS/cm ppm	

Page 1 of 1

5.635 5.539

0.179 0.144

0.753 1.747

# A Metrohm

Chloride

Nitrate



#### 2016-06-05 1:43:00

Sample da	ata
	Ident
	Sample type
	Determination start
	Method
	Operator
	•
Anions	
	Data source Conductivity detector 1 (881 Compact IC pro 1)
	Channel
	Recording time
	Integration Automatically
	Column type
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77
	g in 2 liter)
	Flow
	Pressure
	Temperature
Anions	
uS/cm	
Por 0	<b>R</b>
10.0 -	Chioride 8.73
9.0 -	No.
8.0 -	5
8.0 -	
7.0	
7.0 -	
6.0 -	2
5.0 -	g R
5.0	100 B
4.0 -	Nitrate 16.33
3.0 -	l\ <b>≗</b> ∧.
2.0	
2.0	
	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 min
Peak numb	er Retention time Area Height Concentration Component name

Peak number	Retention time	Area	Height	Concentration	Component name
	min	(µS/cm) x min	µS/cm	ppm	
1	8.732	1.4353	5.632	5.542	Chloride
2	16.332	0.0806	0.178	0.145	Nitrate
3	21.370	0.3295	0.755	1.765	Sulfate

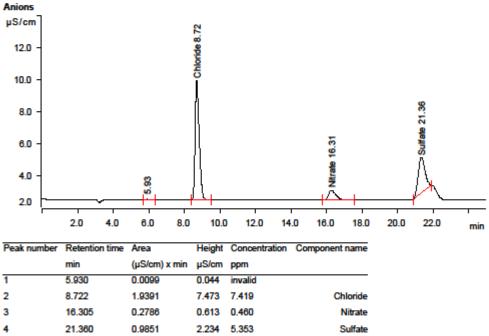
Page 1 of 1

# D Metrohm



#### 2016-06-05 1:43:36

Sample da	lata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
Anions	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	nin
	Integration	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77	
	g in 2 liter)	
	Flow	nL/min
	Pressure	
	Temperature	C
Anions		
µS/cm		
· · · · ·	Chloride 8.74	
10.0 -	ě	
9.0 -	Joi 1	
	õ	
8.0 -		
7.0 -		
6.0 -		
	ate 16.34 Sulfate 21.38	
5.0 -	9	
4.0 -		
30 -	Suffate 16.34	
2.0		
~~		
	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0	min
Peak numb	ber Retention time Area Height Concentration Component name	
- can nullio	en regensorrene reca i regin oonoensasorr oonporenenalite	

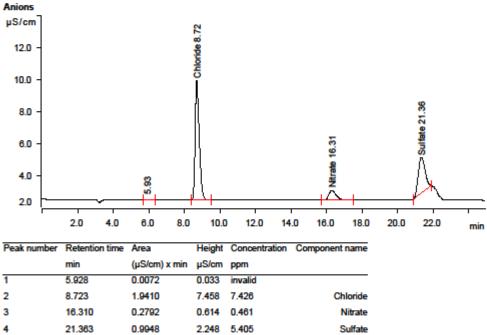

Peak number	Retention time	Area	Height	Concentration	Component name
	min	(µS/cm) x min	µS/cm	ppm	
1	8.735	1.4349	5.589	5.541	Chloride
2	16.335	0.0801	0.177	0.144	Nitrate
3	21.377	0.3395	0.769	1.821	Sulfate

Page 1 of 1



#### 2016-06-05 1:44:20

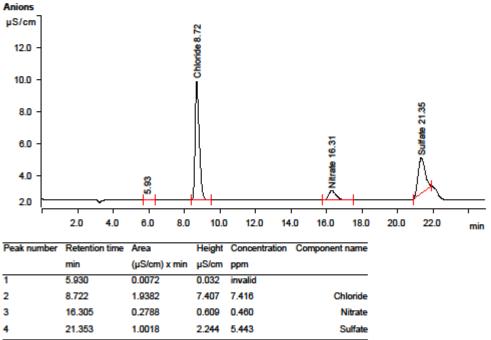
Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure 12.04	MPa
	Temperature	°C




Page 1 of 1



#### 2016-06-05 1:44:40


Sample d	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure 11.92	MPa
	Temperature	°C
Anions		



Page 1 of 1



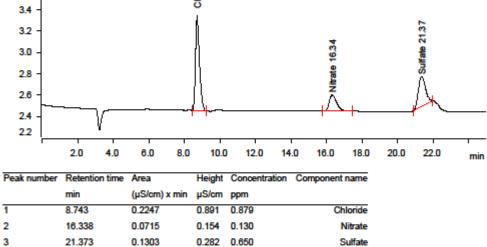
Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C





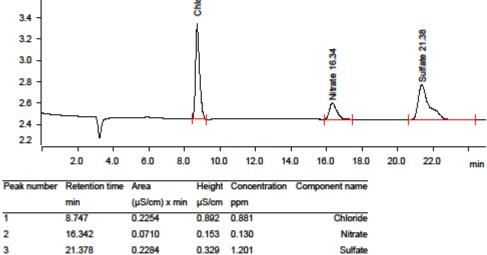
_

#### 2016-06-05 1:51:00


Sample da	ta
	Ident
	Sample type
	Determination start
	Method
	Operator
Anions	
	Data source Conductivity detector 1 (881 Compact IC pro 1)
	Channel
	Recording time
	Integration Automatically
	Column type
	Eluent composition
	g in 2 liter)
	Flow
	Pressure
	Temperature
Anions	
µS/cm	*
-	i⊂ ø
3.6 -	Chioride 8.74
3.0 -	ĝ.
3.4 -	0
32 -	8
	2 R
3.0 -	le 16.33 Sulfate 21.36
2.8 -	Nitrate 16.33
26 -	
2.4 -	
2.2	1
I	2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 min
Peak numbe	er Retention time Area Height Concentration Component name
	min (µS/cm) x min µS/cm ppm

Peak number	Retention time	Area	Height	Concentration	Component name
	min	(µS/cm) x min	µS/cm	ppm	
1	8.738	0.2236	0.891	0.874	Chloride
2	16.332	0.0707	0.154	0.129	Nitrate
3	21.363	0.1270	0.278	0.632	Sulfate

Page 1 of 1



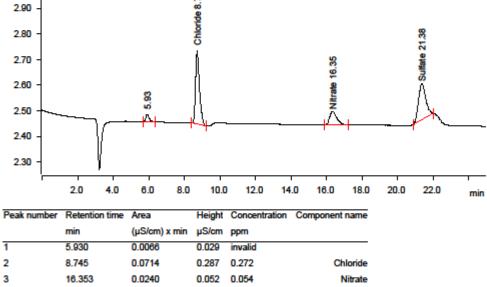

Sample data				
	Ident			
	Sample type	Sample		
	Determination start			
	Method	Multi Anion STDs		
	Operator			
Anions				
	Data source	Conductivity detector 1 (881 Compact IC pro 1)		
	Channel			
	Recording time		min	
	Integration	Automatically		
	Column type	Metrosep A Supp 7 - 250/4.0		
	Eluent composition	. Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)		
	Flow	0.800	mL/min	
	Pressure		MPa	
	Temperature		°C	
Anions				
µS/cm	_			
· -	2.8			
	ě			
3.6 -	hloride 8.74			
	5			





Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type Metrosep A Supp 7 - 250/4.0	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure 12.09	MPa
	Temperature	°C
Anions		
µS/cm	.75	
1	e e	
3.6 -	Norlde 8.75	






4

0.0660

#### 2016-08-05 1:56:22

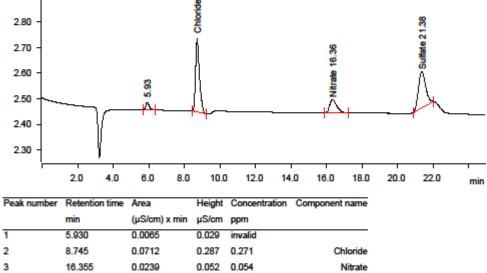
Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel Conductivity	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	so.	
2.90 -	de 8.75 75	



Page 1 of 1

0.141 0.288

## A Metrohm




4

0.0667

#### 2016-08-05 1:56:43

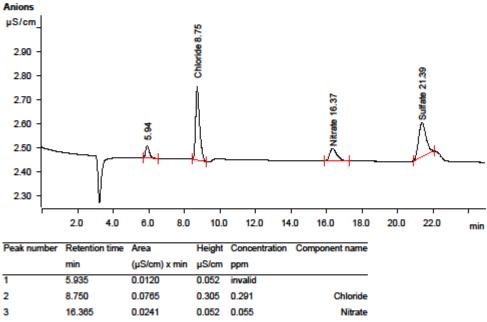
Sample data				
	Ident			
	Sample type			
	Determination start			
	Method			
	Operator			
Anions				
	Data source Conductivity detector 1 (881 Compact IC pro 1)			
	Channel			
	Recording time	min		
	Integration Automatically			
	Column type			
	Eluent composition			
	Flow	mL/min		
	Pressure	MPa		
	Temperature	°C		
Anions				
µS/cm	Ci			
2.90 -	6 80			
2.80	nide 8.75			



Page 1 of 1

0.142 0.292

## A Metrohm




4

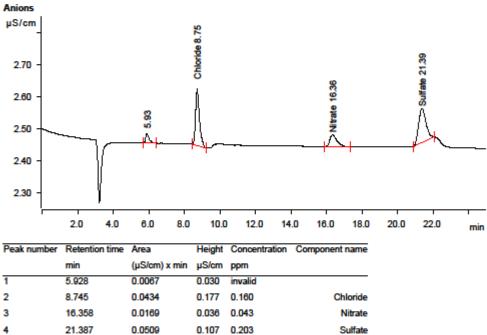
0.0684

#### 2016-06-05 1:57:15

Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure 11.92	MPa
	Temperature	°C
Anions		



Page 1 of 1


0.143 0.301

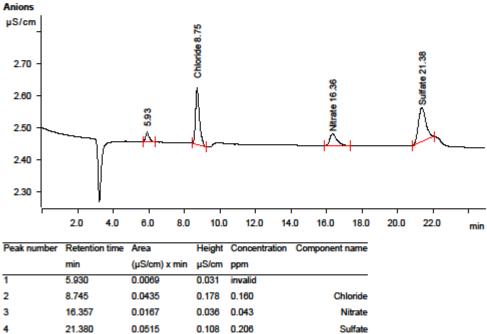
## A Metrohm



#### 2016-06-05 1:57:27

Sample da	ata	
	ldent	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		




Page 1 of 1



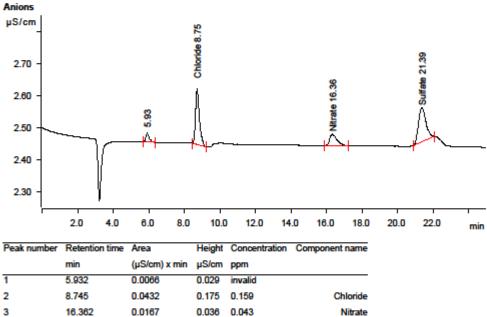
4

#### 2016-06-05 1:57:58

Sample d	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		



Page 1 of 1



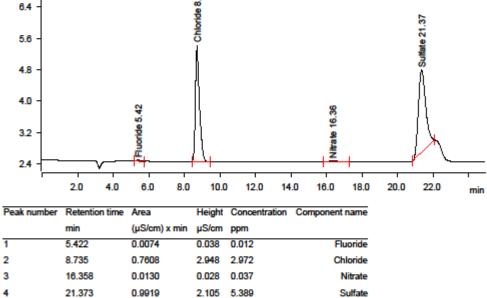

4

0.0514

#### 2016-06-05 1:58:14

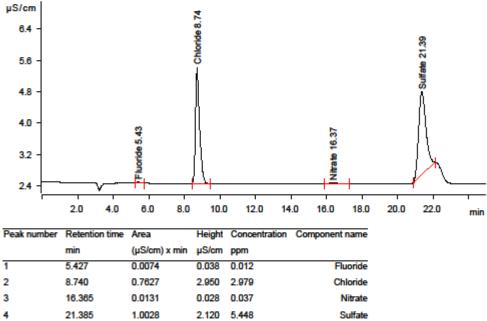
Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure 11.98	MPa
	Temperature	°C
Anions		




Page 1 of 1

0.107 0.206

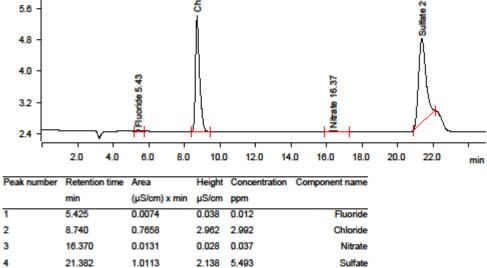
## A Metrohm




Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	8.74	
6.4 -	e de la companya de la	






Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm	4	





#### 2016-06-05 1:59:03

Sample d	ata		
	Ident		
	Sample type	Sample	
	Determination start		
	Method	Multi Anion STDs	
	Operator		
Anions			
	Data source	Conductivity detector 1 (881 Compact IC pro 1)	
	Channel		
	Recording time		min
	Integration	Automatically	
	Column type	Metrosep A Supp 7 - 250/4.0	
	Eluent composition	. Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	0.800	mL/min
	Pressure		MPa
	Temperature		°C
Anions			
µS/cm	*		
64 -	Chloride 8.74		
0.4	贵	8	
	lo	5	
5.6 -	õ	Suitate 21.38	
	l l	특	
4.8 -		0 1	
	Ц	Ц	



Page 1 of 1



Sample da	ata	
	Ident	
	Sample type	
	Determination start	
	Method	
	Operator	
Anions		
	Data source Conductivity detector 1 (881 Compact IC pro 1)	
	Channel Conductivity	
	Recording time	min
	Integration Automatically	
	Column type	
	Eluent composition Anion mobile Phase - 3.6 mM Na2CO3 (0.77 g in 2 liter)	
	Flow	mL/min
	Pressure	MPa
	Temperature	°C
Anions		
µS/cm-	4	
2.60 -	Chloride 8.74 Sulfate 21.40	
2.56 -	hlorid	
2.52 -	о 1	
2.48 -		L
2.44 -		
2.40 -		

2	21.398		0.0292		0.059	0.080		5	Sulfate			
1	8.742		0.0138		0.068	0.042		Ch	loride			
	min		(µS/cm)	x min	µS/cm	ppm						
Peak number	Retentio	on time	Area		Height	Concentra	ition (	Component	name			
	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0	22.0	min
· · · ·												1
2.28 -		ļ										
2.32 -		ľ										
2.36 -												
2.40		ν –										



2

21.410

0.0294

#### 2016-06-05 1:59:54

Sample dat	a		
			sample 8b
		art	
	Method		tion STDs
	Operator		
Anions			
Anions	Data source	Conductivity detector 1 (881 Compac	t IC pro 1)
	•	Aut	
	-		-
	Eluent compositi	on Anion mobile Phase - 3.6 mM Na2(	CO3 (0.77
	-		g in 2 liter)
	Temperature		45.0 °C
Anions			
µS/cm−		10	_
2.60 -		Chloride 8.75	Sulfate 21.41
0.50		ę	8
2.56 -		<u>8</u>	n la
2.52 -		l l	s s
2.48 -		Λ	Λ.
2.44 -			
2.40 -	l (		
2.36 -	l l		
2.32 -	l l		
	1		
2.28 -	<u> </u>		
	2.0 4.0	6.0 8.0 10.0 12.0 14.0 16.0 18.0	20.0 22.0 min
			min
Peak number	Retention time	Area Height Concentration Component name	
	min	(µS/cm) x min µS/cm ppm	
1	8.745	0.0136 0.067 0.041 Chloride	

Page 1 of 1

0.059 0.081

## A Metrohm



2

21.407

0.0295

#### 2016-06-05 2:00:16

Sample dat	a							
	Ident						sample 8c	
	Sample type						Sample	
	Determination st	art			2016-0	6-02 23:29:	13 UTC+3	
	Method					Multi A	nion STDs	
	Operator							
Anions								
	Data source			Conductivit	ty detector 1 (8	381 Compac	t IC pro 1)	
	Channel					C	onductivity	
	Recording time						25.0	min
	Integration					Aut	omatically	
	Column type				Metros	ep A Supp i	7 - 250/4.0	
	Eluent compositi	on		Anion m	obile Phase - 3		CO3 (0.77 g in 2 liter)	
	Flow						0.800	mL/min
	Pressure						12.15	MPa
	Temperature						45.0	°C
Anions								
µS/cm-			-					
2.60 -			2.8				14	
			ê				6 6	
2.56 -			Chloride 8.74				Sulfate 21.41	
2.52 -			ŭ l				б Л	
2.48 -	·····		Д.				$= \Lambda$	L.
2.44 -	1		<b>H</b> V-	<u>_</u>	^	<b>-</b>		T
2.40 -	- V							
2.36 -								
2.32 -	ſ							
2.28 -	ļ							
ì—i	2.0 4.0	6.0 8.0	10.0	) 12.0 1	14.0 16.0	18.0	20.0 22	2.0 mi
Peak number	r Retention time	Area	Height	Concentration	Componen	tname		
r can nambe	min	(µS/cm) x min	-		. componen			
1	8.742	0.0135	0.067	0.041	c	hloride		
-					-			

Page 1 of 1

0.059 0.081

## A Metrohm