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Abstract

Augmented and virtual reality have evolved signif-
icantly over the last few years providing new ways of
entertainment and interaction with the environment. Al-
though many systems and solutions are currently avail-
able, still there is much left unsettled and some tech-
nologies are missing from many VR/AR devices, such
as foveated rendering and HCI. In this paper, a novel
approach for coarse gaze estimation using EEG sen-
sors with applications in items selection for HCI or
foveated rendering for VR/AR devices is proposed. The
suggested method requires only few electroencephalo-
gram sensors that can be easily added to the current vir-
tual and augmented reality headsets. A supervised ma-
chine leaning approach was suggested utilising novel
features, based on quaternions allowing gaze estima-
tion. Experiments were performed to evaluate the pro-
posed method and a new dataset was designed and cap-
tured. Finally, the introduced learning framework was
compared with other similar techniques demonstrating
further the gain of the proposed descriptors.

1. Introduction
Eye movements are essential in order to gather in-

formation and move through the visual world. They
are linked to personality and reflect cognitive processes
and human emotional states. Eye-gaze tracking (EGT)
is the process of measuring either the point of gaze or
the eye motion in relation to the head. Nowadays, there
are many applications of eye and gaze tracking, includ-
ing human-computer interaction (HCI), supporting dis-
abled people, altering drivers, diagnosing visual disor-
ders, marketing and the understanding of human mental
state. Regarding the applications in Virtual and Aug-
mented Reality (VR/AR) eye tracking is essential for
HCI (menu or item selection) and foveated rendering,
which can improve significantly both the performance
in terms of rendering speed and quality of experience.
This topic of research is separated into two main areas:

eye detection and gaze tracking. Eye detection tries to
locate the eyes of a human shown in an image or a video
sequence, whereas gaze tracking estimates where a per-
son is looking in 3D space. Gaze is tracked using a
device that analyses eye movements (eye tracker), esti-
mating the eyes position and tracking their movement
over time to determine the 3D line of sight.

There are different methods for eye detection and
gaze tracking that can be classified into two categories:
sensor and computer vision based techniques [2, 7].
Sensor based approaches measure electric potentials
utilising the electrooculogram (EOG) or the electroen-
cephalogram (EEG). The eye acts as a dipole, consider-
ing the cornea as the positive pole and the retina as the
negative one. About the EOG sensors, they are located
around the eyes, with the electric potential field to be
steady when the eye is at its normal state. If the retina
approaches one sensor and the cornea the opposite one,
a change in the EOG signal is produced that is used
to track the eye movements. EEG sensors are placed
on the head scalp and they record brain signals and
artifacts, such as EOG and other muscle movements.
Most EEG studies that are not focused on gaze track-
ing, try to remove these artifacts, in order to work only
with brain signals. On the other hand, current methods
for eye tracking, use EEG signals and their EOG arti-
facts to detect saccade and pursuit movements. These
methods use techniques such as Independent Compo-
nent Analysis (ICA) to remove artifacts, extract cer-
tain features, (e.g. amplitude, spectral power) and use
them with classifiers as k-Nearest Neighbour (kNN),
[23, 16, 17, 20, 15, 26].

Computer vision approaches (video oculography,
VOG) use cameras, in order to detect and track eyes
over time. Using the obtained information about the
eyes’ location and the head pose, the gaze direction is
estimated. Eye detection is influenced by the available
eye model, the illumination conditions, viewing angle
and several other parameters, [9]. Other techniques are
based on their geometric and photometric properties:
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shape-based, feature-based, appearance-based and hy-
brid. Some of these techniques employ active infrared
(IR) illumination, since it improves pupil detection [21],
with gaze tracking techniques to relate image data and
gaze direction. Additionally, other eye movements that
can be detected are the fixations and saccades. These
techniques require head and pupil position estimation in
order to track gaze accurately. Most of these approaches
require hardware configurations to obtain head pose in-
variance with most of them to be feature or appearance
based, [10, 24, 25, 19, 22, 18, 12].

Regarding the above video-oculography methods, it
can be argued that they are not suitable for VR/AR due
to the size and the amount of the acquisition devices re-
quired to detect eyes and gaze position. The need of
cameras and light sources limits their applicability on
AR/VR headsets. Therefore, in this work, an approach
that uses the EEG signals to detect a coarse gaze di-
rection is proposed. The proposed method is focused
only on the 4 frontal sensors, since they are affected
the most by EOG artifacts. Also, our aim is the reduc-
tion of the amount of sensors, in order to improve the
usability of virtual reality (VR) and augmented reality
(AR) devices. Additionally, the coarse gaze direction
estimation can improve significantly the overall HCI in
AR/VR devices allowing interaction with the eyes es-
pecially for item or menu interactions. The proposed
approach is based on supervised learning techniques in-
troducing novel feature descriptors based on a simpli-
fied quaternion representation. In the proposed descrip-
tor, the data provided by the 4 frontal EEG sensors are
combined into a single quaternion, and used as input to
machine learning techniques trying to identify the ar-
eas where the eyes are focused on. The remainder of
this paper is organized as follows: Section 2 analyses
the proposed methodology and in section 3 details on
the evaluation process and the obtained results are pre-
sented. Finally, conclusion remarks are given.

2 Methodology
The proposed method for gaze estimation is based

on a supervised learning framework that incorporates a
training and a testing stage, (see figure 1). This section
analyses the suggested methodology, and provides de-
tails for the data acquisition process. Also, all the pre-
processing steps are analysed and the proposed novel
quaternion based descriptor is presented.

2.1 Data collection
Initially, raw data was collected from EEG sensors

placed on the scalp of the participants. During the ac-
quisition process, the subjects were looking at differ-
ent locations on a monitor in front of them. The Tobii
Eye tracker was utilised, which allowed to record both
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Figure 1. The proposed approach
gaze information and the EEG data, synchronized us-
ing time-stamps. Regarding the setup, the subjects were
seated in front of an eye tracker and a PC monitor, while
wearing the EEG headset. The EEG device returns the
amplified signal of the 14 sensors/channels, a value that
indicates the quality of the signal, the gyroscope mea-
surements, the battery level and the time when the cap-
turing process started. The eye-tracker provides infor-
mation that includes the coordinates of the eyes, fixa-
tions, saccades, areas of interest and time-stamps. The
information about the location of the eyes is provided
both in pixel and millimeter coordinates.
2.2 Pre-processing

Since the data is available, the obtained values are
normalised for each channel in order to reduce the sig-
nal differences between the subjects. The average value
is subtracted and the result is divided by their standard
deviation. In addition, a median filter is used to re-
duce the noise produced by the electronic amplifier, the
power line interference and any other external interfer-
ences. An additional pre-processing step that could be
considered is to apply a Butterworth filter between 1
and 40Hz (brain signal frequencies that include part of
EOG frequencies), under 40Hz (brain signal + whole
EOG frequencies) or under 8Hz (EOG frequencies that
includes part of the brain signal frequencies).
2.3 Feature extraction for gaze classification

The training stage is oriented towards the extraction
of features from the preprocessed data of the EEG chan-
nels to create a classification model. The selected EEG
channels are combined into a novel quaternion repre-
sentation and PCA is used to reduce the dimensionality
of the obtained feature vector.

Quaternion Principal Component Analysis
It is true that a vector can be decomposed in linearly
independent components, in the sense that they can
be combined linearly to reconstruct the original vector.



However, depending on the phenomenon that changes
the vector, correlation between the components may ex-
ist from the statistical point of view (i.e. two uncorre-
lated variables are linearly independent but two linearly
independent variables are not uncorrelated). If they are
independent our proposed descriptor does not provide
any significant advantage, but if there is correlation this
is considered. In most of the cases during the feature ex-
traction process complex or hyper-complex features are
generated but decomposed to be computed by a classi-
fier. For example, normals and gradients in 2D/3D are
features that are consisted by more than one element
and this decomposition can imply a loss of information.

To do so, vectorial features can be represented more
precisely using a complex or hyper-complex representa-
tion [1, 14]. Since, in our case and many similar scenar-
ios, vectorial features such as a location, speed, gradi-
ents or angles, are the primary source of information, a
hyper-complex representation of these features is more
efficient allowing better correlation between these chan-
nels [1, 14, 5]. The proposed method exploits the hyper-
complex (quaternion) representation capturing the de-
pendencies within the EEG sensors located on the sides
of the head and the ones over the eyes, [13, 4].

In order to reduce the number of the selected hyper-
complex features without increasing the complexity,
quaternion PCA is applied. In more details, the quater-
nion representation was introduced in [3, 6] as a gener-
alization of the complex numbers. A quaternion q ∈ H
has four components:

q = qr + qii+ qjj + qkk (1)

where qr, qi, qj , qk ∈ < and i, j, and k satisfy

i2 = j2 = k2 = −1, ij = −ji = k
jk = −kj = i, ki = −ik = j

(2)

Conjugation of quaternions denoted by H is analogous
to conjugation of complex numbers elements and is de-
fined as:

qH = qr − qii− qjj − qkk. (3)

The square of the norm of a quartenion is defined as

||q||2 = q2r + q2i + q2j + q2k = qHq. (4)

with (q1q2)
H = qH2 q

H
1 and the four components

(qr, qi, qj , qk) to correspond to the available four EEG
channels (see figure 2).

Let quaternion column vector q = [q1, . . . , qF ]
T ∈

HF where T denotes simple transposition be the EEG
values over time. The conjugate transpose of vector q
is denoted by qH . There is an isomorphy between a
quaternion and a complex 2× 2 matrix defined as

Q =

[
qr + qii qj + qki
−qj + qki qr − qii

]
(5)

Let xl be the F -dimensional vector obtained by
writing in lexico- graphic ordering and form X =
[x1| · · · |xN ] ∈ HF×N . Also we denote by x̄ =
1
N

∑N
i=1 xi and X the sample mean and the centralized

sample matrix X, respectively. A projection vector is
denoted by u ∈ HF and by yi = uHxi the projection
of xi onto u. We want to maximize the (sum of the)
variances of the data assigned to a particular class (gaze
location)

E(u) =
∑N

l=1 ||yl − m̃||2 =
∑N

l=1 ||uH(xi −m)||2
= uH

∑N
l=1(xl −m)(xl −m)Hu

= uHSu
(6)

where S = X̄X̄H . It can be easily proven that matrix S
is a quaternion Hermitian matrix i.e., Sij = SH

ji .
In order to find K projections U = [u1| . . . |uk] ∈

HF×K we may generalize E(U):

Uo = argmaxU∈HF×p E(U)
= argmaxU∈HF×p tr[UHSU]

s.t. UHU = I.
(7)

We aim at solving the above noted problem by using the
isomorphic complex form that can be reformulated as

Ũo = argmaxŨ tr[ŨH S̃Ũ]

s.t. ŨHŨ = I.
(8)

Since S is a quaternion Hermitian matrix, S̃ is a com-
plex Hermitian. Also, given that S̃ is a positive semidef-
inite Hermitian matrix (i.e., it has only non-negative
eigenvalues) the solution Ũ0 is given by the p eigen-
vectors of S̃ that correspond to p largest eigenvalues.
We want an efficient algorithm for performing eigen-
analysis to S̃, which is a complex 2F × 2F matrix and
can be written as S̃ = X̃X̃H where X̃ ∈ C2n×F and
needs O((2F )3) time.

In general, given a quaternion Hermitian matrix
A then it has n nonnegative real eigenvalues (due to
the non-commutative multiplication property of quater-
nions, there exists two kinds of its eigenvalue; in this
paper we are interested only on the left eigenvalues)
l = [σ1, . . . , σn]. Let Ã be its complex form

Ã =

[
Ar + iAi Aj + iAk

−Aj + iAk Ar − iAi.

]
then the eigenvalues of l2n = [σ1, σ1, . . . , σn, σn].
Representing A = BBH , where B is a quaternion ma-
trix, and considering Ã and B̃ to be the complex forms
of matrices A and B, respectively, then, Ã will be given
by Ã = B̃B̃H . So, based on this analysis, we can write
S̃ = X̄X̄H . Also by defining matrices A and B such
that A = ΓΓH and B = ΓHΓ with Γ ∈ Cm×r, and



considering UA and UB to be the eigenvectors corre-
sponding to the non-zero eigenvalues ΛA and ΛB of A
and B, respectively, we finally obtain ΛA = ΛB and
UA = ΓUBΛ

− 1
2

A .
Thus according to the above, in a classification prob-

lem, such as the current one for gaze location, we may
represent the quaternion Hermitian matrix (descriptor)
providing a subspace analysis method in the quaternion
domain. So, assuming we have a quaternion matrix P
with dimension m × n, we consider n to be the total
number of the captured data and m the number of the
actual hyper-complex features. A quaternion PCA of P
as it was analysed above seeks a solution that contains
r (r < m, n) linearly independent quaternion eigenvec-
tors in the columns of Q (m × r) such that P = QA
where the rows of A (r × n) contain the r quaternion
principal component (QPC) series. As a result a solid
representation of the selected quaternion features is ob-
tained, while the computational complexity is low.
Model creation and classification

The dimensionality of the quaternion feature vector
was reduced using Q-PCA, and the final model is cre-
ated using KNN classifiers. The k-nearest neighbors
(KNN) algorithm finds the k-nearest neighbors among
the training data, and they are used to weight the cate-
gory candidates. The performance of this algorithm de-
pends on two factors: the similarity function and the k
value (e.g. if k is too large, big classes will overwhelm
the small ones). The approaches that can be used are
shown in the equations below.

y(di) = argmaxk
∑

xj∈kNN ||y(xj , ck)|| (9)

y(di) = argmaxk
∑

xj∈kNN

||s(di,xj)y(xj , ck)||
(10)

where di is the test data, with xj to belong in class ck,
and s(di,xj) represents the similarity function for di

and xj . Also, the most commonly used similarity func-
tions are Euclidean, City block, Cosine and Correlation
distances.
2.4 Testing

The objective of the testing stage is the classifica-
tion of new raw data. Therefore, new incoming raw
data is preprocessed, transformed into quaternions and
the features are extracted using Q-PCA, following the
same pre-processing steps as in the training stage. Once
the features are extracted, the model created during the
training is used to classify the new input data and deter-
mine the gaze location.
3 Evaluation
3.1 Acquisition process and dataset

Nine healthy participants without severe visual im-
pairment were selected. The population of participants

Figure 2. Only 4 of the 14 channels (AF3,
AF4, F7 and F8) are used and combined in
a single quaternion representation.

Figure 3. Examples of the EEG signals for
each gaze location using (left) all the 14
channels and (right) only the 4 of them.

is formed of 5 females and 4 males aged between 27 and
59 years old of whom 4 wore glasses or contact lenses
during the test. Non-intrusive devices for EEG and eye
tracker data collection were utilised. The EEG signal
was collected using Emotiv EPOC headset. This EEG
headset is formed of 16 sensors; 2 of them are reference
sensors, therefore the brain signal is collected from the
remaining 14 sensors/channels at 128Hz. Nevertheless,
since our aim is to combine our method with wearable
equipment such as Virtual Reality and Augmented Re-
ality devices, only the information of the 4 sensors lo-
cated closer to the eyes are used (see figure 2). The
eye-tracker data is captured using the Tobii Eye tracker,
a device located below the monitor and tracks the pupil
position returning gaze data at 60Hz. These data in-
clude time-stamps of each sample, which this allows the
synchronization with the EEG signal in order to be used
also as ground truth. The duration of the test is 45 sec-
onds; 9 positions of the white area are shown with a
duration of approximately 5 seconds each. Their EEG
signal and gaze data is recorded during that period.

The proposed approach uses the 4 channels located
on the frontal lobe (AF3, AF4, F7 and F8). AF3 and
AF4 are affected by vertical eye movements; and F7
(left) and F8 (right) by horizontal eye movements, (see
Figure 3). Also these signals/data were recorded using
a 128 frame rate EEG recorder.
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Figure 4. (Left) The classification methods
reducing the feature dimensions between
1%-100%. Each line represents a fold in
the cross validation. (Right) The average
F1 scores of the classes

3.2 Features
After the data is preprocessed to reduce the noise, the

proposed novel quaternion descriptors are estimated.
The 4 channels are combined in a single quaternion,
with the four components (qr, qi, qj , qk) to correspond
to the the sensors located on the sides of the head (F7
and F8) and ones over the eyes (AF3 and AF4), re-
spectively. Horizontal movements produce opposite-
going voltage traces in F7 and F8 (e.g. when the eye
is moving to the left F7 amplitude is increased and F8
is decreased), [11]. The changes in the AF3 and AF4
sensors are proportional, when it comes to vertical eye
movements, [8]. The data is split in two different sets:
67% for training and 33% for testing. The separation of
the data is done following the Leave-persons out pro-
tocol, this is, a set of people is removed to obtain the
minimum test set that contains instances of all classes.
Since the number of subjects is small, k-fold cross val-
idation is used to limit overfitting problems. The pro-
posed method uses 9-fold cross validation, with the test-
ing data to be taken from a different set of users on each
fold. Quaternion PCA is used to reduce the features
by 97% and the number of dimensions was selected ac-
cording to the minimum necessary to obtain the best re-
sults. Figure 4 shows the results for each fold reducing
the dimensions between 1% to 100%.
3.3 Results

The classification accuracy of the proposed approach
was evaluated using three different metrics: precision
(P), recall (R) and F1 score. Precision is the number of
true positives (TP) divided by the amount of true posi-
tives plus false positives (FP) P = TP

TP+FP , and recall
is the number of true positives divided by the amount of
true positives plus false negatives (FN) R = TP

TP+FN .
While, the F1 score is defined as F1 = 2 ∗ P∗R

P+R .
Four different classification methods were used in

our comparative study: k-nearest neighbors (k-NN),
Support Vector Machines (SVM), AdaBoost and Ran-
dom Forests. k-NN is a multi class classification

method that assigns new unclassified samples to the
class to which the majority of its k nearest neighbors
belong. It assumes that the k nearest neighbors of a test
sample are located at roughly the same distance from
it (this approach uses cosine distance). SVM classi-
fier is a machine learning algorithm that maps the in-
put features into a higher dimensional feature space. A
linear decision surface is then constructed in this high-
dimensional-feature space so that the margin between
the surface and the nearest point is maximized. Since
SVM is a binary classification method, it is transformed
to a multi-class classifier according to the one vs all re-
lation. AdaBoost classifier combines weak classifiers
to create a strong one. The weak classifier has to solve
a sequence of learning problems and they are weighted
according to their results. The final strong classifier is
a weighted combination of the weak classifiers. Ad-
aBoostM2 is a multi-class AdaBoost version, where
each weak learner is associated to one class. Random
forests is a machine learning classifier that uses a set of
tree predictors and weights their output in order to per-
form a prediction. A tree predictor is a classifier that re-
cursively partitions a data set into smaller subdivisions
according to a set of tests defined on each branch of the
tree. At the end of the three, there are the final nodes
that are linked with the label of the classes.

The outcomes presented in table 1 are the averaged
results of the 9-fold process. The results shown in the
table present the results for each classification method,
using the obtained features in a vector representation or
the proposed one combined in a single quaternion. Re-
garding the novel quaternion representation two combi-
nations of the four channels were utilised and evaluated
altering channel 2 and 3, resulting the following cases
qA = (qr, qi, qj , qk) and qB = (qr,−qj , qi, qk). Ob-
serving the results it can be see the improvement using
the proposed quaternion representation over all the clas-
sifiers. Furthermore, in figure 4 compares all the classi-
fiers in terms of F1 score over the vector and quaternion
representation of the descriptors and it can be seen the
improvement (more than 6%) that is obtained using the
proposed quaternion representation.

4 Conclusion
Virtual and Augmented reality will change the way

humans interact with the environment. Since eye move-
ments are important in human computer interaction,
the proposed approach provides a novel gaze estima-
tion system using EEG signal for selection based tasks
and interactions or foveated rendering. Also, since the
VR and AR headset devices have specific requirements
in terms of size and weight, the proposed system does
not affect the overall design. Our method is using four
EEG sensors located on the front of the head without re-



Table 1. Results for all the classifiers.
Feat. Method Precision Recall F1
Vect. kNN 0.7500 0.6914 0.6896

SVM 0.5838 0.6049 0.5652
Adab 0.4185 0.4568 0.3855

RF 0.5594 0.5432 0.4916
qA kNN 0.7901 0.7407 0.7400

SVM 0.6321 0.6667 0.6215
Adab 0.5691 0.5432 0.5282

RF 0.7031 0.6790 0.6698
qB kNN 0.7741 0.7284 0.7236

SVM 0.6821 0.6667 0.6474
Adab 0.5679 0.5556 0.5426

RF 0.7080 0.6543 0.6457

quiring external cameras. Additionally a novel quater-
nion feature representation was suggested to classify
gaze positions improving significantly the overall ac-
curacy of the available classifiers. Experiments were
performed based on a cross validation approach demon-
strating improvements in the classification precision.
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