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ABSTRACT 

Action recognition research historically has focused on increasing accuracy on datasets in 

highly controlled environments. Perfect or near perfect offline action recognition 

accuracy on scripted datasets has been achieved. The aim of this thesis is to deal with the 

more complex problem of online action recognition with low latency in real world 

scenarios. To fulfil this aim two new multi-modal gaming datasets were captured and 

three novel algorithms for online action recognition were proposed. 

Two new gaming datasets, G3D and G3Di for real-time action recognition with multiple 

actions and multi-modal data were captured and publicly released. Furthermore, G3Di 

was captured using a novel game-sourcing method so the actions are realistic. Three novel 

algorithms for online action recognition with low latency were proposed. Firstly, 

Dynamic Feature Selection, which combines the discriminative power of Random Forests 

for feature selection with an ensemble of AdaBoost classifiers for dynamic classification. 

Secondly, Clustered Spatio-Temporal Manifolds, which modelled the dynamics of human 

actions with style invariant action templates that were combined with Dynamic Time 

Warping for execution rate invariance. Finally, a Hierarchical Transfer Learning 

framework, comprised of a novel transfer learning algorithm to detect compound actions 

in addition to hierarchical interaction detection to recognise the actions and interactions 

of multiple subjects.  

The proposed algorithms run in real-time with low latency ensuring they are suitable for 

a wide range of natural user interface applications including gaming. State-of-the art 

results were achieved for online action recognition. Experimental results indicate higher 

complexity of the G3Di dataset in comparison to the existing gaming datasets, 

highlighting the importance of this dataset for designing algorithms suitable for realistic 

interactive applications. This thesis has advanced the study of realistic action recognition 

and is expected to serve as a basis for further study within the research community. 
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Figure 5-21 Example of a typical failure case caused by noisy skeleton data. The 

colour image (right) shows that this is a block interaction but the 

algorithm detects an attack interaction as the defence action is not 

correctly detected due to incorrect skeleton data for the player on the left. 

This instance will be penalised twice by the action point metric, firstly a 

FP for the attack and secondly a FN for the block. ........................ 184 
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1.3 Acronyms / Abbreviations 

2D Two dimensional 

3D Three dimensional 

4D Four dimensional 

AFD Average Frame Distance 

ARMA Autoregressive Moving-Average Model 

BoW Bag-of-Words 

BPM Body Part Matching 

CCTV Closed-circuit television 

CPU Central Processing Unit 

CSTM Clustered Spatio-Temporal Manifolds 

DFS Dynamic Feature Selection 

DM Diffusion Map 

DTW Dynamic Time Warping 

fn False negative 

FOV Field of View 

FPS First Person Shooter 

fp False positive 

fps Frames Per Second  

G3D Multimodal Gaming Action Dataset 

G3Di Multimodal Gaming Action and Interaction Dataset 

GPU Graphical Processing Unit 

HMM Hidden Markov Models 

HTL Hierarchical Transfer Learning framework 

IR Infrared 

LE Laplacian Eigenmaps 
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LOSOCV Leave-one-subject out cross validation 

MEI Motion Energy Image  

MHI Motion History Image 

MSRC-12 Microsoft Research Cambridge-12 Kinect gesture data set 

NUI Natural User Interface 

OOB Out of Bag 

OS Operating System  

OVA One-vs-All 

PNG Portable Network Graphics 

PSM Peak Segment Matching 

RBFN Radial Basis Function Network 

RGB Red Green Blue 

STIP Spatio-temporal Interest Points 

SVM Support Vector Machine 

TLE Temporal Laplacian Eigenmaps 

TLM Transfer Learning Matching 

tn True negative 

tp True positive 

VLMM Variable-Length Markov models 

VR Virtual Reality 

XML Extensible Markup Language 
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CHAPTER 1  

1 INTRODUCTION 

The research field of human action recognition has rapidly expanded in recent years with 

many innovative applications in a range of sectors including healthcare, education, 

robotics and entertainment (as illustrated in Figure 1-1 to Figure 1-4). In healthcare, action 

recognition enables touch-free browsing of medical images in operating rooms, physical 

therapy at home and in clinics and patient monitoring. In education, action recognition 

can increase the engagement of users by providing realistic and immersive training 

simulations. In robotics, action recognition facilitates natural interaction between humans 

and robots. In entertainment, action recognition enables touch-free interaction with Smart 

TVs and games consoles for more intuitive and natural interaction. A key requirement of 

these interactive applications is the ability to robustly detect actions in real-time so the 

system can provide an appropriate response to the user with no apparent delay. 

 

Figure 1-1 Commercial full body bowling game [1] 

 

Figure 1-2 Professional rehabilitation system 

with biofeedback [2] 
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Figure 1-3 A humanoid robot designed to 

live with humans [3] 

Figure 1-4 Educational game used in the classroom to 

reinforce mathematics skills [4] 

Human action recognition is an active area of research in computer vision. In the past, 

research focused on recognising actions from video cameras. Low level appearance 

features were extracted from the colour images and pose-based approaches were 

previously disregarded due to the complexity of estimating the human pose. However, the 

release of the first low cost depth sensor [5] combined with a real-time state-of-the-art 

pose estimation algorithm [6] has facilitated the rapid growth of research on depth and 

skeleton data. Yao et al. [7] experiments showed that pose-based features outperform low-

level appearance features in a home monitoring scenario. 

Each modality: depth, skeleton and colour as exemplified in Figure 1-5 has advantages 

and disadvantages. Colour and depth data contain contextual information but are both 

dependent on the camera view and the person’s appearance. Depth and skeleton data are 

more robust than colour data when there are occlusions or a lot of illumination changes 

and can even work in total darkness. Skeleton data is both invariant to the camera location 

and subject appearance, but lacks contextual information and does not work well when 

the player is not standing or sitting upright.  
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Figure 1-5 Microsoft Kinect (front) with depth (back left), skeleton (back middle) and RGB (back 

right) images [8] 

Until recently, action recognition research has focused on increasing accuracy on datasets 

in highly controlled environments. These datasets normally contained a single person that 

was instructed to perform a single action clearly performed (see Figure 1-6). Recognition 

was performed offline using pre-segmented action sequences containing a single action 

and information from all the frames to classify the action. The action was recognised after 

its completion and the computation time was unrestricted. These simplifications resulted 

in over inflated accuracy and action recognition algorithms not suitable for real-world 

applications. A recent survey [9] showed perfect or near perfect offline action recognition 

accuracy on simple datasets with a small number of actions.  
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Figure 1-6 Simple boxing sequence with a single person performing a punch (KTH) [10] 

Recent research has pursued the more complex challenge of online action recognition that 

processes a continuous stream of actions in real-time (as shown in Figure 1-7). Online 

recognition systems need to run in real-time however the latency of the recognition can 

vary depending on the application. For example, a sign language recognition system may 

delay recognition until a sequence of words has been parsed [11]. Such systems can 

benefit from increased accuracy by delaying the recognition. However, many applications 

with a human-machine interface in a range of domains including home entertainment, 

healthcare, sports, and robotics do not have this option, as they require low latency since 

the action should be detected before it is completed. Consider a volleyball game where a 

player is about to return the ball to the opposing team, it is important to detect the point 

when the player would hit the ball and update the trajectory of the ball before the action 

finishes. 

 

Figure 1-7 A continuous stream of different actions from the G3D dataset.  
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Online recognition systems for different applications may have very different 

requirements in terms of latency and research has highlighted a trade-off between 

accuracy and latency [12], [13]. High accuracy and low latency is critical for interactive 

games to be responsive to the users’ actions. Accuracy of action recognition may be 

affected by four main sources of intra-class variations: viewpoint, anthropometry, 

execution rate and personal style (as shown in Figure 1-8 and Figure 1-9). The 

introduction of skeleton data has reduced the viewpoint and anthropometric variations as 

variances arising from gender, clothing and hair styles have been removed. Therefore, in 

this thesis the focus is on addressing execution rates and personal style. Execution rate 

variation is due to temporal differences arising from the range of speeds that the same 

human movements can be performed. Personal style can also affect the performance as 

different people may perform the same action differently [14]. 

    

Figure 1-8 Viewpoint differences: changes in 

camera position relative to the subject 

Figure 1-9 Anthropometric variations: 

differences in size and proportions of the 

human body 
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1.1 Problem Summary 

Perfect or near perfect offline action recognition accuracy on existing datasets has been 

achieved. These datasets normally contain a single person that was instructed to perform 

a single action clearly which over-simplifies the task of action recognition.  

Many types of machine learning algorithms have been applied to action recognition but 

the majority of approaches have been applied offline and even the online approaches have 

high latency. The latest online action recognition algorithms are less accurate than the 

offline approaches due to the increased difficulty of the task.  

Evaluation of action recognition algorithms is typically done in isolation, focusing 

historically on high accuracy and more recently also on low latency. However, in reality 

most actions form part of an interaction where the duration of the action is important. 

 

1.2 Aims and objectives 

The aim of this thesis is to deal with the problem of complex action recognition in real 

world scenarios with multiple subjects. To reach the final goal the problem is decomposed 

into a series of simpler tasks which culminate with the most complex task in the last 

technical chapter. A simple action is defined as an action that is performed by a single 

subject in a controlled environment according to a set of instructions. Whereas, complex 

actions form interactions with multiple subjects in real-world scenarios. The first task is 

online action recognition for a single player performing simple actions. The second task 

is early action detection, online action recognition and action prediction for a single player 

performing simple actions. The final task is online action recognition for multiple players 

performing compound actions.  
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The objectives needed to fulfil this aim are: 

 Produce public datasets of a range of simple and complex gaming actions. 

 Design and develop novel algorithms for online action recognition for single and 

interaction for multiple subjects. 

 Develop an evaluation framework for complex action recognition. 

1.3 Contributions 

The first contribution is the capture and release of two new multi-modal gaming datasets, 

G3D and G3Di for real-time action recognition. G3D is the first public gaming action 

dataset to contain multiple actions and multi-modal data (introduced in section 3.4). In 

contrast to existing datasets where the interactions are scripted, G3Di was captured using 

a novel game-sourcing method so the actions are more realistic and more complex 

(introduced in section 5.4). 

The second contribution is a novel online action recognition algorithm, Dynamic Feature 

Selection (DFS), proposed in chapter 3. DFS combines the discriminative power of 

Random Forests for feature selection with an ensemble of AdaBoost classifiers for 

dynamic classification.  

The third contribution is a novel online action recognition algorithm developed by 

modelling the dynamics of human actions with Clustered Spatio-Temporal Manifolds 

(CSTM), proposed in chapter 4. The core of the algorithm creates style invariant action 

templates that when combined with Dynamic Time Warping (DTW) provides execution 

rate invariance to achieve state-of-the-art results for online action recognition and enables 

early recognition and prediction from a continuous stream. 

The fourth contribution is a Hierarchical Transfer Learning framework (HTL), proposed 

in chapter 5. The HTL framework is comprised of a novel transfer learning algorithm for 



 

 

 

 

32 

compound actions in addition to hierarchical interaction detection. Specifically, transfer 

learning is employed to allow the tasks of action segmentation and modelling to be 

performed on a related but simpler dataset, combined with adaptation of body part models 

to improve online action recognition performance on a more complex dataset.  

1.4 Structure of the thesis 

In chapter 2, an overview of related work on action recognition and background 

information that is important in the context of this thesis is presented. First, the sensors 

for capturing human motion using computer vision techniques are introduced and the 

modalities compared. Then, the relevant state-of-the-art real-time pose estimation 

algorithms and pose-based features are investigated. Subsequently, popular machine 

learning algorithms that have been used in academia and commercial game titles for action 

recognition are presented. Finally, the datasets and evaluation metrics that are used to 

validate the contributions to the thesis are reviewed against their applicability to real world 

scenarios. 

Chapter 3 introduces dimensionality reduction techniques that can improve computation 

time and accuracy of action recognition algorithms focusing on feature selection 

approaches. A novel online action recognition algorithm, Dynamic Feature Selection 

(DFS) is proposed and a new gaming action dataset, G3D is presented. Two online action 

recognition algorithms with low latency, AdaBoost and Random Forest, are used as a 

baseline for the new gaming action dataset, G3D. Additionally, the MSRC-12 dataset is 

used to show that the proposed method achieves results comparable to state-of-the-art 

algorithms. 

Different dimensionality techniques are introduced in chapter 4, focusing on feature 

transformation approaches that maintain the temporal dynamics of human actions. Four 

distinctive approaches for action recognition are discussed: offline, online, early and 
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prediction and related works in each of these areas contrasted. A novel algorithm, 

Clustered Spatio-Temporal Manifolds (CSTM), is proposed which achieves state-of-the-

art results for online action recognition and enables early recognition and prediction in a 

continuous stream. 

Chapter 5 presents the challenges of multi-player gaming which include compound 

actions and describes how the action duration becomes important to detect virtual 

interactions. A novel Hierarchical Transfer Learning (HTL) framework is proposed for 

online action recognition of compound actions and interactions. To test the proposed 

framework in a realistic context a new complex multi-player gaming dataset G3Di is 

presented using a novel game-sourcing approach so the actions captured are more realistic 

and challenging in comparison to scripted actions. Experimental results indicate higher 

complexity of the new dataset in comparison to the existing gaming datasets, highlighting 

the importance of this dataset for designing algorithms suitable for real-world 

applications.  

Finally, in chapter 6, conclusions and future work are presented. 
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CHAPTER 2 

2 BACKGROUND AND RELATED WORK 

An overview of related work on action recognition and background information that is 

important in the context of this thesis is presented in this chapter. First, the depth sensors 

for capturing human motion using computer vision techniques are introduced and the 

different modalities compared. Then the state-of-the-art real-time pose estimation 

algorithms and pose-based features that have made this research possible are investigated. 

After popular machine learning algorithms that have been used in academia and 

commercial game titles as well as other areas for action recognition are presented. Finally, 

the datasets and evaluation metrics that are used to validate the contributions to the thesis 

are reviewed against their applicability to real world scenarios. 

2.1 Depth Sensors 

The Kinect [5] originally developed for the Xbox 360 games console initiated a new 

generation of games where the human body was the controller. Due to its low cost and 

innovative depth sensing technology, the Xbox Kinect become the fastest selling gaming 

peripheral [15]. Subsequently, different hardware versions of this depth sensor have been 

developed for the PC (Kinect v1 [16] and v2  for Windows [17]  and the Xtion PRO Live 

[18]) and tablets (Structure Sensor [19]) enabling the rapid development of a wide range 

of applications for both industry and academia.  

The technical specifications for the most popular depth sensors, most of which are 

accompanied by a colour camera are shown in Table 2-1. The trend has been for an 

increase in camera resolution over time and miniaturisation of the sensor. The other key 
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difference between the sensors is the software support available in terms of operating 

system support, drivers and development libraries. The Kinect has the most software 

support for the Windows Operating System (OS) whereas the Structure Sensor has more 

support for the Mac OS and the Xtion PRO Live has the same support for all the major 

operating systems. At the time of recording the datasets in this thesis the Kinect for 

Windows v1 and Xtion (Live) were the only available sensors. The devices have a similar 

specification (see Table 2-1) but as the former has better support for developers in terms 

of libraries and documentation it was selected. The Kinect for Windows v1, contains both 

infrared (IR) and colour sensors (as shown in Figure 2-1) to provide depth and colour data 

at 30 frames per second (fps). 

 
Figure 2-1 Inside the Kinect: Depth and Colour Sensors [16] 

Depth sensors are adversely affected by sunlight as it uses IR technology so it is most 

suited to indoor applications, although it should work well outside at night. They have a 

limited field of view (FOV) which may cause problems for surveillance or robotics 

applications which can be addressed by using multiple sensors. If the FOV from the 

sensors overlap then interference in the IR patterns occurs introducing noise into the depth 

images. This interference can be reduced by additional hardware [20] or eliminated by 

placing the sensors in a pattern where their FOVs do not overlap. However, the latter case 

requires additional techniques to calibrate the sensors [21].    
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Table 2-1 Depth sensor specifications  

 Kinect for 

Windows v1 / 

Kinect for 

Xbox 360 

[16]   

Kinect for 

Windows v2 

/ Kinect for 

Xbox One  

[17]  

Xtion (Live) 

[18]  

Structure 

Sensor [19] 

Date of release 2011 2014 2011 2013 

Dimensions 30.5cm x 

7.6cm x 

6.4cm 

24.9cm x 

6.6cm x 

6.7cm 

17.8cm x 

5.1cm x  

3.8cm 

11.9cm x 

2.8cm x 

2.9cm 

Framerate 30fps 30fps 30 / 60fps 30 / 60fps 

Colour Camera 640 x 480 1920 x 1080 (1280 x 

1024)1 

NA  

Depth Camera 320 x 240 512 x 424 640 x 480 / 

320 x 240 

640 x 480 / 

320 x 240 

Max Depth 

Distance 

4m 8m 3.5m 3.5m 

Min Depth 

Distance 

40cm / 80cm 50cm 80cm 40cm 

Horizontal FOV 57 ° 70 ° 58 ° 58 ° 

Vertical FOV 43 ° 60 ° 45 ° 45 ° 

Number of tracked 

skeletons 

2 6 4 Up to 15 

                                                 

1 The Xtion Live has a colour camera whereas the Xtion does not have a colour camera, both are available 

as a PRO version for developers which are supplied with additional software. 
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2.2 Overview of action recognition 

There is a vast wealth of research on human activity recognition in computer vision. 

Human activities can be conceptually subdivided depending on the level of complexity of 

the activity. The four levels defined by Aggarwal and Ryoo [22] are gestures, actions, 

interactions and group activities (see Figure 2-2).   

 

 

 

 

 

 

 

 

 

Gestures are elementary movements of a person's body part e.g. "stretching an arm".  

Actions are single person activities, such as “punching” and “kicking” that may be 

composed of multiple gestures. For example, a punch is an action that comprises of the 

gestures "raising a hand" and "stretching an arm" [22].  Interactions involve two or more 

persons and / or objects. For example “two people fighting” is a human interaction and “a 

person picking up a gun” is a human-object interaction. Finally, group activities are 

groups of persons performing an activity such as "two groups fighting".  

  

Group 
Activities 

 

Interactions 

 
Actions 

Gestures 

Figure 2-2 Levels of human activities 
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The focus in this chapter is on action recognition as both chapter 3 and 4 cover single 

player games and interaction recognition is introduced in chapter 5 when multiple players 

are introduced. In this thesis, the peak of an action is a key concept, which is defined as 

the moment when the goal of the action is satisfied. For example, in a boxing game the 

aim of punching is to hit the opponent which is fulfilled when the arm is maximally 

extended. The poses in the dataset that fulfil the action goal are manually labelled as peak 

poses with one peak pose labelled for each action instance. Examples of peak poses for 

different actions are illustrated in Figure 2-3. 

 

Figure 2-3 Peak poses for different actions, from left to right: right punch, left punch, right kick, left 

kick and defend 

 

Action recognition in commercial games ranges from heuristic based techniques to 

machine learning algorithms. The approach taken depends on the number and complexity 

of gestures to be performed in the game.  For example, a bowling game only requires a 

few simple gestures and an algorithm can be hardcoded for each gesture.  However, this 

approach may not work well for a greater number of complex gestures where machine 
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learning algorithms are more suitable. Various machine learning techniques can be 

applied to more complex games, for example AdaBoost with a boxing game and exemplar 

matching with a tennis game [23]. The benefit of machine learning algorithms is that they 

can be trained to recognise a wide range of actions including sporting, driving and action-

adventure actions such as walking, running, jumping, dropping, firing, changing weapon, 

throwing and defending. This approach can increase the complexity and appeal of games 

that can be developed to include popular genres like action-adventure games. 

Machine learning algorithms consist of two key phases: the training phase and the testing 

phase as summarised in Figure 2-4. There are different approaches to the training phase 

but they begin with the training data which is processed to obtain features and then used 

with the ground truth action labels to train a learning algorithm. The same pre-processing 

step is used in the testing phase and then the testing data is classified using the trained 

models.  

 

 

 

 

 

Figure 2-4 Action recognition generic pipeline 
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2.3 Feature Extraction 

In general, features can be defined as abstractions of the sensor data. The purpose of pre-

processing is to find the main characteristics of the data that accurately represent the 

original data and discriminate between different classes. There is a vast wealth of research 

on features for human action recognition from video (for a comprehensive review see 

Aggarwal and Ryoo [22]) and 3D data (for a comprehensive review see Aggarwal and 

Xia [24]). Historically, the majority of the algorithms in action recognition were 

appearance-based as low level features can easily be extracted from video sequences. Due 

to recent technological developments in depth camera technology it is now possible and 

economical to capture real-time sequences of depth images. This has resulted in many 

depth and pose-based approaches being developed.   

2.3.1 FEATURES FROM VIDEO  

Appearance based features have several advantages as they require little high-level 

processing and can avoid the difficulties of pose estimation. They are also not restricted 

to the human body so can encode contextual information such as background. The context 

of the environment can be used to further improve accuracy as intuitively certain actions 

will only happen in specific scenes. For example, performing a golf swing in a real golf 

game would require a golf club and will occur outdoors, probably on a green field. 

However, performing a golf swing in a Kinect game the user has no golf club and is 

performing the action indoors. The restricted environment associated with gaming, 

typically the user’s lounge, poses the challenge of missing context. The normal scene and 

objects usually associated with a given action are missing. This lack of contextual 

information in a gaming scenario may mean that appearance-based action recognition 

approaches may under-perform. 
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Bobick and Davis [25] represented each action as a space-time template consisting of two 

images: motion-energy image (MEI) and motion history image (MHI). The two images 

were constructed from a sequence of foreground images which are weighted 2D (𝑥, 𝑦) 

projections of the original 3D (𝑥, 𝑦, 𝑡) data, as illustrated in Figure 2-5. Due to its compact 

2D representation action recognition can be performed in real-time. This approach has 

been extended to modelling actions as 3D space-time volumes [26], [27] but the major 

disadvantage of both the 2D and 3D approaches is the difficulty in recognising actions 

when multiple people are in the scene, due to occlusions if the actions overlap spatially. 

  

Figure 2-5 Actions along with their Motion History Images, from left to right: sit-down, sit-down 

MHI, arms-wave and arms-wave MHI  [25] 

Yao et al. [7], [28] used person detection to track and segment the person of interest from 

a video sequence and then extracted low level features from the action track including 

colour, optical flow, spatial and temporal gradients, as illustrated in Figure 2-6 [7]. 

Segmentation and tracking of people in videos can be difficult due to poor lighting and 

occlusions. To avoid this low level appearance features such as Gabor filter responses 

[29] and optical flow [30] have been applied globally.  

 

Figure 2-6 Appearance-based features, from left to right: colour, dense optical flow, spatial gradients 

and temporal gradients [7] 
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Similarly, spatio-temporal interest points have become popular as they do not depend on 

segmentation and tracking. Spatio-temporal interest points are widely used in object and 

scene recognition and have been extended for action recognition to incorporate the 

temporal information present in videos. Many different feature detectors (cuboids [31], 

3D Harris Corners [32], 3D Hessians [33] and 3D salient points [34]) and descriptors 

(HOG/HOF [35], HOG3D [36], extended SURF [37]) have been proposed. The feature 

detectors are used to find distinctive key points in the video and the surrounding region 

of each key point is used to compute a local descriptor.  

The bag-of-words approach is commonly used for natural language processing and was 

adapted for computer vision tasks by introducing the concept of visual words. The bag of 

visual words approach is very popular for object detection and action recognition [31], 

[35], [59]. The typical bag-of-words approach for action recognition starts by selecting 

spatio-temporal interest points and extracting low level descriptors around these points. 

These feature descriptors are then sampled and clustered to make the video words which 

form the codebook. The features in the training data are assigned to histograms of video 

word occurrences for the entire video sequence. The limitation of the bag-of-words 

approach is that is does not model the spatio-temporal distribution of features so it would 

not be able to differentiate between actions with similar motions but occurred in different 

order. 

Spatio-temporal interest points are generally scale and translation invariant and work well 

with background clutter and multiple people in the scene. However, they are 

computationally intensive especially if using dense sampling which gives the best 

accuracy [38]. Moreover, these appearance-based features may be unreliable in a gaming 

environment due to background clutter and possible lack of illumination.   
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2.3.2 FEATURES FROM DEPTH MAPS 

Various features have been proposed that are based directly on depth images and they can 

be split into four categories: 3D silhouettes, local spatio-temporal, local occupancy and 

3D scene flow. 

2.3.2.1 3D Silhouettes 

Early attempts on action recognition showed that silhouettes, or extremities of silhouettes 

(e.g. head, hands and feet) carry important body shape information [25], [39]. In a depth 

image it is easier to extract the silhouette of a person compared to colour images, 

especially when there is background clutter and bad lighting conditions. In addition, the 

depth image contains additional body shape information across the camera plane which 

enables them to model more than just parallel motions. Several features have been 

proposed to recognise actions based on 3D silhouettes which either project the 3D data to 

2D planes [40], [41] or temporally stack the 3D data. 

Li et al. [40] sample a small set of 3D representative points from the contours of the planar 

projection of the silhouette (see Figure 2-7). Their results show recognition errors were 

halved when using 3D depth data in comparison with 2D silhouettes from colour images. 

Similarly, Jalal et al. [41] use a Radon transform to project 3D silhouettes along specified 

view angles before a further projection to 1D. A significant increase in accuracy over 

conventional binary silhouettes was achieved. 

An alternative set of approaches stack the 3D silhouettes or energy along the temporal 

domain [42], [43] extending the original MHI/MEI (as described in section 2.3.1) to 

achieve superior accuracy.  

The loss of information when computing the projections [40], [41] or temporal stacking  

[42], [43] limits 3D silhouette features to recognising simple atomic actions of single 
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people. Additionally, as shape information is only present on the side of the body facing 

the camera 3D silhouette features are inherently view dependent. 

 

 

Figure 2-7 Left: depth map and right: sampled 3D points [19] 

2.3.2.2 Local Depth Spatio-Temporal Interest Points 

Local spatio-temporal interest points (STIP) are very popular for action recognition from 

video (as discussed in section 2.3.1) and their success has encouraged the exploration of 

spatio-temporal features from depth data. An early attempt by Ni et al. [43] used the depth 

as an auxiliary channel to partition the colour space into layers and the Harris3D [32] 

detector and HOG/HOF [35] descriptors were applied in the traditional manner to the 

colour channel. This was shortly followed by several applications of the Harris3D detector 

to extract the STIPs directly from the depth videos [44], [45]. Cheng et al. [44] extracted 
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local features from both colour and depth and showed that depth features increased 

performance by more than 10% and a fusion of both modalities showed the best 

performance. Harris3D was originally designed for RGB data which is less noisy then 

depth data and does not contain missing values. To overcome this Xia and Aggarwal [46] 

proposed STIPs designed specifically for depth with noise suppression functions which 

outperformed the Harris3D detector. 

Local depth spatio-temporal features are invariant to shifts and scales and naturally deal 

with occlusions and multiple people. However, as the cuboids are extracted from the 

(𝑥, 𝑦, 𝑡) volume these features are view dependent. Secondly, the existing 

implementations require the whole video and the feature computation algorithm is 

computationally expensive limiting its real-time application. 

2.3.2.3 Local Occupancy 

Local occupancy features are the representation of the points that the sensor captured from 

the real world. They were proposed in 3D (𝑥, 𝑦, 𝑧) [47] and 4D space (𝑥, 𝑦, 𝑧, 𝑡) [48], [49] 

and the latter are similar to local spatio-temporal features in that they describe local 

appearance in the space and time domain. In a local occupancy pattern, an occupied 

location will have a value of 1 and others 0. Therefore, in contrast to spatio-temporal 

features the local occupancy is quite sparse as the majority of its elements are zero. 

Another difference is that spatio-temporal features contain background information while 

local occupancy features only contain information around a specific point, which could 

be beneficial in a gaming scenario. 

2.3.2.4 3D Scene Flow 

Optical flow is a feature for action recognition from video and there are promising works 

on 3D scene flow from stereoscopic data [50], [51] but these algorithms have a high 
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computation cost. Depth cameras enable simpler and faster methods to get optical flow in 

3D (𝑥, 𝑦, 𝑧) [52]–[55]. However, the research on 3D optical flow is still in its preliminary 

stage and computing the 3D scene flow in real time is still a challenging task. 

2.3.3  SKELETON FEATURES 

Skeletal data obtained by motion capture (mo-cap) systems has been widely used for film 

making and video game creation. However, these systems are often deployed in 

commercial studios or research labs as they require expensive specialist equipment. 

Recent progression in estimating the human skeleton from low cost depth cameras in real 

time has enabled skeletal data to be captured in peoples’ homes Both systems provide the 

spatial coordinates of joint positions in three dimensions. Spatial coordinates should not 

be used directly for action recognition as there are significant spatio-temporal variants 

between logically related motions [56]. However, various skeleton features can be 

obtained from the joint positions. 

2.3.3.1 Skeleton Data from Motion Capture 

Motion capture systems require special optical markers to be placed on the human body, 

multiple RGB cameras to be positioned around the subject as well as specialist capture 

and tracking software, which must be calibrated before each session as illustrated in 

Figure 2-8. This enables high quality robust capture of joint position and rotation 

information of complex actions. Mo-cap systems have been widely used in commercial 

studios for film making and video game creation. Due to the specialist equipment and 

setup procedure traditional mo-cap systems are not suited to home use. However, body 

suits comprised of inertial sensors, as shown in Figure 2-9 are currently under 

development to enable virtual reality (VR) experiences and mo-cap at home.  
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Figure 2-8 Overview of a commercial motion capture system. Multiple cameras are suspended from 

a rig in the ceiling, the subject has many markers on her body and the specialist software used for 

capturing and tracking the markers is shown. 

 

 

Figure 2-9 Overview of a body suit, currently under development designed for virtual reality or mo-

cap at home. The body suit comprises of 17 inertial sensors and 2 hand controllers, to control the 

game character in conjunction with the Oculus rift to display the game to the player in 3D. 
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2.3.3.2 Skeleton Data from Depth Maps 

The real-time pose recognition algorithm proposed by Shotton et al. [6] accurately 

determines 3D positions of body images from a single depth image (as shown in Figure 

2-10 left). Their approach is based on an object recognition approach and uses no temporal 

information. They proposed an intermediate body part representation (as shown in Figure 

2-10 middle) that simplifies the problem to a per-pixel classification problem. They 

employed a simple depth comparison feature. At a given pixel 𝑚, the features compute: 

𝑓𝜃(𝐼, 𝑚, 𝐮, 𝐯) = 𝑑𝐼  (𝑚 +
𝐮

𝑑𝐼(𝑚)
) − 𝑑𝐼  (𝑚 +

𝐯

𝑑𝐼(𝑚)
)  (2-1) 

where 𝑑𝐼(𝑚) is the depth of pixel 𝑚 in image 𝐼, and 𝐮, 𝐯 are offsets. The normalisation 

of the offsets ensures the features are depth invariant. Finally, local modes are used to 

generate confidence scores of 3D proposals of body joints (as shown in Figure 2-10 right). 

A large and highly varied training set, hundreds of thousands of training images, allowed 

their random forest classifier to estimate body parts invariant to anthropometric 

differences. The algorithm is fast and runs at 200fps enabling pose-based features to be 

obtained in real-time. 

 

Figure 2-10 Overview of real-time pose recognition. From a single input depth image (left), a per-

pixel body part distribution is inferred (middle), local modes are estimated to give proposals for the 

3D locations of body joints (right) [6] 
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2.3.3.3 Extracting Skeleton Features 

Given joint information either from mo-cap systems or depth cameras a range of pose 

based features can be extracted. The simplest feature to extract from the joint positions 

are the position difference features, defined as the difference between pairs of joints [7], 

[23], [57], [58]. This formula has been applied to different joints in a single frame to 

obtain a distance feature and to a specific joint between two different frames to determine 

the joint velocity.  

Joint angle features are more robust than joint distances as they are invariant to scale and 

anthropometric differences. If the joint orientation is computed relative to the world co-

ordinates or the torso then the joint angle feature is also rotation invariant [33], [58]. In 

both cases joint angles were represented by quaternions as this overcomes the difficulties 

of gimbal lock suffered by other representations such as Euler angles. Joint angles can be 

measured in a single frame to determine orientation [23], [33] and also between two 

different frames to measure the angular velocity. The angular velocity has been applied 

to sequential frames [23], [57], [58] and it has also been used to create an offset feature 

by applying it to the first frame and the current frame [57]. The latter assumes that the 

first frame is the neutral pose which may not be the case in a gaming scenario. 

Müller et al. [56] introduced a set of qualitative geometric features to express geometric 

relations between certain body points of a pose. Examples include if hand is above neck 

height or not (see Figure 2-11 left), if two hands are touching (see Figure 2-11 middle) 

and whether a leg is bent or straight (see Figure 2-11 right). Müller et al. [56] also defined 

geometric non-Boolean features such as the absolute speed of certain joints and the 

relative speed of certain joints with respect to other joints. These Boolean features are 

very robust to spatial variations and although they were initially designed for the indexing 

and retrieval of motion capture data, they showed promising results for action recognition 
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as features for a Hough Forest [7] but a large number of random tests was needed to 

optimise the binary test for each tree node.   

 

Figure 2-11 Qualitative features describing geometric relations between the body points of a pose that 

are indicated by red and black markers (image adapted from [56]) 

Yao et al. [7] posed the question “Does Human Action Recognition Benefit from Pose 

Estimation?” Their experiments compared appearance based, pose-based and a combined 

approach in a home monitoring scenario using the same classifier and same dataset. The 

appearance based features used were colour, dense optical flow and spatio-temporal 

gradients.  The pose-based features were qualitative geometric features [56]. Yao et al. 

[7] results showed that the optimum approach was pose-based. This significantly 

outperformed the appearance based approach and was even slightly better than the 

combined approach.   

2.3.4 SKELETON FEATURES USED IN THIS THESIS  

Pose-based features are invariant to subject appearance and have outperformed 

appearance based features so will be used in this thesis. The specific pose-based features 

used in this thesis are: position difference, position velocity, position velocity magnitude, 

angle velocity and joint angles as illustrated in Figure 2-12. These pose-based features 

were selected as they are invariant to the camera location [23].  
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(a) Position Difference 

 

(b) Position Velocity 

 

(c) Joint Angles 

 

(d) Angle Velocity 

Figure 2-12 Pose-based features used in this thesis 

 

Let 𝑝𝑗𝑖,𝑡  ∈  ℝ3 be the 3D location (𝑥𝑗𝑖,𝑡
𝑐 ,𝑦𝑗𝑖,𝑡

𝑐 , 𝑧𝑗𝑖,𝑡
𝑐 ) of joint 𝑗𝑖 at time 𝑡. The position 

difference features are defined as the difference between each joint (𝑗1 − 𝑗𝑛𝑗
) and the hip 

centre 𝑗0 in a single pose, where 𝑛𝑗  is the number of joints in a pose.  

𝑓𝑝𝑑𝑥 (𝑗𝑖, 𝑗0; 𝑡1) = 𝑥𝑗𝑖,𝑡1

𝑐 −  𝑥𝑗0,𝑡1

𝑐  (2-2) 

𝑓𝑝𝑑𝑦 (𝑗𝑖, 𝑗0; 𝑡1) = 𝑦𝑗𝑖,𝑡1

𝑐 −  𝑦𝑗0,𝑡1

𝑐  (2-3) 

𝑓𝑝𝑑𝑧 (𝑗𝑖, 𝑗0; 𝑡1) = 𝑧𝑗𝑖,𝑡1

𝑐 −  𝑧𝑗0,𝑡1

𝑐  (2-4) 

The position velocity features encode the difference over time of a single joint, where 

𝑡1 ≠  𝑡2.  

𝑓𝑝𝑣𝑥 (𝑗𝑖; 𝑡1, 𝑡2) =
𝑥𝑗𝑖,𝑡1

𝑐 − 𝑥𝑗𝑖,𝑡2

𝑐

𝑡1 − 𝑡2
 

(2-5) 

𝑓𝑝𝑣𝑦 (𝑗𝑖; 𝑡1, 𝑡2) =
𝑦𝑗𝑖,𝑡1

𝑐 −  𝑦𝑗𝑖,𝑡2

𝑐

𝑡1 − 𝑡2
 

(2-6) 

𝑓𝑝𝑣𝑧 (𝑗𝑖; 𝑡1, 𝑡2) =
𝑧𝑗𝑖,𝑡1

𝑐 −  𝑧𝑗𝑖,𝑡2

𝑐

𝑡1 − 𝑡2
 

(2-7) 
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The position velocity magnitude feature is defined as the Euclidean distance between a 

single joint separated by time, where  𝑡1 ≠  𝑡2.  

𝑓𝑝𝑣𝑑 (𝑗𝑖; 𝑡1, 𝑡2) =  ‖ 𝑝𝑗𝑖,𝑡1
−  𝑝𝑗𝑖,𝑡2

‖ / 𝑡2 − 𝑡1 (2-8) 

 

The joint angle features are defined as the quaternions of the angle between three 

connected joints in a single pose e.g. right wrist, wright elbow and right shoulder. The 

quaternions 𝑓𝑞  ∈  ℂ4   were built in the standard polar (axis-angle) form: 

𝑓𝑞 = cos (
𝜃

2
) + sin (

𝜃

2
) (𝑖𝑛𝑥 + 𝑗𝑛𝑦 + 𝑘𝑛𝑧) 

(2-9) 

where n is the (unit length) axis of rotation, 𝜃 is the angle, and i, j and k are the imaginary 

basis vectors. 

The angle velocity features 𝑓𝑞𝑑 ∈  ℂ4 are defined as the change in the quaternions of the 

angle over time, where 𝑡1 ≠  𝑡2.  

𝑓𝑞𝑑 (𝑡1, 𝑡2) =
𝑓𝑞 (𝑡1) −  𝑓𝑞 (𝑡2)

𝑡1 − 𝑡2
  

(2-10) 

 

Human actions are a high dimensional and complex phenomenon, which are extremely 

difficult to model by a machine due to variations in viewpoint, anthropometry, execution 

rate and personal style. The introduction of pose-based features has reduced the viewpoint 

and anthropometric variations, as variances arising from gender, clothing and hair styles. 

Therefore, in this thesis the focus of the learning algorithm to address execution rates and 

personal style.  
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2.4 Classification 

There are many types of machine learning algorithms that have been applied to action 

recognition, including nearest neighbour, kernel machines, exemplar matching, state 

models, random forests and boosting approaches. The majority of approaches have been 

applied to offline action recognition so these are reviewed first, evaluating their ability for 

invariance to execution rate and personal style (see section 2.4.1). Then the more recent 

online action recognition methods are analysed focusing on latency (see section 2.4.2). 

Finally, the online action recognition approaches with low latency are described in more 

detail as they will be used in the comparative experiments in this thesis (see section 2.4.3). 

2.4.1 OFFLINE ACTION RECOGNITION 

2.4.1.1 Nearest Neighbour 

Nearest Neighbour is a simple approach which classifies objects based on the closest 

training examples in the feature space. The nearest neighbour approach assigns a sample 

based on a majority vote among the classes of the nearest training samples. The Euclidean 

distance is a common distance metric but suffers the curse of dimensionality for high 

dimensional data. Dimensionality reduction can be used on the feature set prior to 

classification to overcome this problem. An alternative approach is to use a bag-of-words 

(as described in section 2.3.1.) to represent videos as sets of video words and classify the 

histograms using nearest neighbour. More complex classifiers such as Support Vector 

Machines (SVMs) have shown better accuracy than the simple nearest neighbour 

algorithm  [10]. 
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2.4.1.2 Kernel Machines  

Support Vector Machines are a state-of-the-art classifier widely used for pattern 

recognition in many domains especially natural language processing and bioinformatics. 

A basic SVM performs linear classification but when combined with a kernel can solve 

non-linear problems [60]. Schuldt et al [10] used a non-linear SVM to classify simple 

cyclical actions such as jogging and hand waving by extracting spatio-temporal interest 

points in video. Similarly, Laptev et al. [35] used a non-linear SVM for recognition of 

natural human actions such as answer phone, get out of car, sit down and stand up. The 

benefits of SVMs are they are robust and accurate and only require a small amount of data 

for training. 

2.4.1.3 Exemplar Matching 

Exemplar matching approaches use training examples directly to create a representative 

template sequence or set of sample sequences of each action. The sequence of feature 

vectors from a new sequence can be compared with template sequences for the best match. 

Dynamic time warping (DTW) originally developed for speech processing can be used to 

allow for variations in the speed the actions are performed (see Figure 2-13) and achieve 

execution rate invariance. The problem is that using the training examples directly is 

computationally and memory intensive especially if using the DTW algorithm [22], [33]. 

 

Figure 2-13 Exemplar matching between two kicking sequences with different non-linear execution 

rates. Each number represents a particular pose of the subject. [22] 
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Different optimisation techniques have been proposed that involve the removal of 

redundant poses. Clustering can be applied at the pose or sequence level to reduce the size 

or number of templates. Key poses [61] are a representative subset of the template poses 

selected by clustering techniques. Chaaraoui et al. [61] clustered poses in the high 

dimensional space and matched pose sequences with DTW. Gavrila and Davis [62] 

applied the clustering at the sequence level to maintain the temporal history within the 

action templates. Similarly, Veeraraghavan et al. [63] learnt an average sequence from the 

samples of each class of action and a function space capturing the permissible action 

specific time warping transformations. The removal of redundant poses reduces the 

computational cost of template matching and can also improve classification accuracy. 

Combining template matching with DTW achieves execution rate invariance but the 

existing approaches [61]–[63] match the entire action template with pre-segmented 

sequences so observational latency is high and recognition is offline. 

2.4.1.4 State Models 

Hidden Markov Models (HMM) [64] are generative state models with success in speech 

recognition and broad applicability to time series tasks. Yamato et al's [65] were the first 

to use HMMs for action recognition to reliably recognise various types of tennis play. Yu 

and Aggrawal [39] used an HMM for the recognition of a person climbing a fence. The 

benefit of state-based approaches is their ability to quantify the probability of an action.  

The limitation is that most HMM-based recognition approaches [39], [65]–[67] require 

temporal segmentation of the action instances and the entire test sequence must be 

observed before the labels of any time step can be generated which restricts recognition 

to offline settings. 
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Figure 2-14 An example hidden Markov model for the action stretching an arm [22]. 

2.4.2 ONLINE ACTION RECOGNITION 

Most of the existing action recognition algorithms are far from operating online and with 

low latency. Low latency is required to make action recognition methods applicable for a 

range of real-time applications including gaming, surveillance systems, human-computer 

interfaces, intelligent robots and autonomous vehicles. Latency is dependent on two 

separate factors which have been identified as observational latency and computational 

latency [12]. Observational latency is the time it takes the system to observe enough 

frames to make a decision, whereas computational latency is the actual time to perform 

the computation on a frame. Ellis et al. [12] measured observational latency from a rest 

state which is not possible with multiple actions as the subjects may not return to the rest 

state between actions. Therefore, in this thesis observation latency is defined as the time 

after the peak of the action at which the action is detected which at any rate is a more 

suitable measurement for evaluating latency for natural user interface (NUI) applications.  

Both observational and computational latency should be considered to ensure that the 

developed algorithms are suitable for real-time applications. Computational latency can 

be reduced by simplifying the algorithm in order to increase efficiency or in the case of 

algorithms that are suitable for parallelisation utilising the processing power of many 

cores of the central processing unit (CPU) or graphical processing unit (GPU) to decrease 

computational time. There are two distinct approaches to address observational latency: 
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the first is automatic segmentation of the sequence followed by classification of the 

individual actions and the second is to perform continuous classification. 

Automatic segmentation is a natural progression to enable existing offline recognition 

approaches to be used online. De Torre et al. [34] use a clustering algorithm to cut 

sequences into action instances. However, their segmentation algorithm is processed 

offline so subsequent action recognition would also be offline. To overcome this 

limitation Gong et al. [45] fused the segmentation with matching. However, as the 

segmentation is based on capturing transitions between actions, the recognition can only 

occur after the action is complete incurring high observational latency, because of the 

potential difference between peak time and completion time. 

An alternative approach for online action recognition with very low latency is to reduce 

template matching to single pose matching. Ellis et al. [24] automatically reduce the 

number of key poses to a single canonical pose for each action. The disadvantage of such 

an approach is that no temporal history of an action is used, and as a consequence 

matching of just a single pose may lead to false detections especially when different 

actions contain similar poses. 

Eickeler et al. [68] proposed two methods based on HMM for continuous recognition of 

gestures: smoothing and filtering. The former approach achieved high accuracy but with 

high observational latency (12 seconds) which may be acceptable in some applications 

e.g. sign language recognition but not suitable for human-computer interaction. The latter 

approach reduced the time delay of recognition but only if the gestures were temporally 

isolated which limits its suitability for gaming scenarios. Natarajan and Nevatia [69] 

proposed a hierarchical HMM with variable size sliding temporal window to achieve high 

accuracy at low observational latency (average 3.2 frames) and real-time computation 

(28.6fps) for online action recognition. Although, this method allows continuous action 
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recognition the method requires prior knowledge of the structure of the actions, like the 

limbs involved.  

To precisely measure latency Nowozin and Shotton [13] introduced action points, a 

temporal anchor for action instances within a sequence. For example, an action point for 

a punch could be defined as the moment at when the arm is maximally extended. They 

also proposed two recognition models that can detect action points in real time. Their first 

approach, Firing Hidden Markov Model [13] is a variation of HMM with an explicit firing 

state which detects action points when the probability of the action exceeds a threshold. 

In their experiments they compared offline smoothing with online filtering. As expected 

the accuracy of the online variant is significantly lower than of the offline method, as the 

latter incorporates the whole action sequence.  

Nowozin and Shotton second approach, online Random Forests [70] was adapted for 

continuous action recognition using a sliding window approach. Experiments showed that 

Random Forest was simpler, faster and more reliable than the HMM approach [13], [71]. 

However, the fixed size of the sliding window in these approaches is a source of error due 

to execution rate variations. To address this Zhao et al. [72] optimised the size of the 

segment during their pre-processing using a DTW variant for subsequence matching. 

However, as the average length of their templates is 35 frames observational latency is 

high. Sharaf et al. [73] achieved state-of-the-art  results for online action recognition with 

a feature selection approach combined with a SVM. Sharaf et al. used features at multi-

scales to improve execution rate invariance but their approach is computationally limited 

to a couple of levels which limits the execution rate invariance. 

Similarly, a sliding window approach enabled online AdaBoost [23], for action 

recognition in commercially released games but due to commercial sensitivity relatively 

little information was available regarding the technical details. A comparison of Random 

Forests and AdaBoost showed that AdaBoost can provide higher classification accuracy 
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at the cost of less efficient computation [74]. Due to their success for online action 

detection with low latency AdaBoost and Random Forests will be used as baselines in this 

thesis and their implementation details are discussed in section 2.4.3.   

2.4.3 ONLINE ACTION RECOGNITION IN THIS THESIS  

The online action recognition pipeline used in this thesis is introduced and contrasted with 

the offline action recognition pipeline. A more detailed examination of the classifiers 

Random Forest and AdaBoost used for the comparative experiments in this thesis are 

provided in addition to the introduction of Decision Trees which are the foundation of 

both of these classifiers. 

2.4.3.1 Online Action Recognition Pipeline 

The online action recognition pipeline used in this thesis is shown in Figure 2-15. The key 

differences with the offline approach illustrated in Figure 2-4 are the streamed testing 

data, the ground truth labels, evaluation metrics and an additional post-processing step to 

temporally localise the action which depends on the classifier. If the classifier outputs the 

probability of the action label at each frame this can be compared with a threshold to 

determine if an action point has been detected. The testing data is streamed to simulate a 

real-world application where at any point in time only past occurrences are available. For 

repeatability and comparison with other approaches public action recognition datasets 

where available are used. Action point ground truth labels and the action point 𝐹1-score 

performance metric are used to evaluate both latency and accuracy (these are discussed in 

section 2.5.2). 
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Figure 2-15 Online action recognition pipeline, the key differences with the offline approach are the 

streamed testing data, an additional post processing step to temporally detect the action and the 

action point F1 latency measure.  

2.4.3.1.1 Binary Decision Trees 

A Decision Tree [75] is a discriminative classifier. The tree finds one data feature and a 

threshold at the current node that best divides the data into separate classes, as shown in 

Figure 2-16. For classification, an impurity metric is employed. Three common impurity 

measures are entropy, Gini index and misclassification. All the algorithms attempt to 

minimise the impurity at a node but Gini impurity Eq. (2-11), is the most commonly used, 

where 𝑃(𝜔𝑗𝜔
) denotes the fraction of patterns at node 𝑁 that are in class 𝜔𝑗𝜔

. 

𝛾(𝑁) =  ∑ 𝑃(𝜔𝑖𝜔
)𝑃(𝜔𝑗𝜔

)

𝑖𝜔 ≠ 𝑗𝜔

 

(2-11) 
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The Decision Tree searches through the feature vector to find which feature combined 

with which threshold most purified the data. The data is split by branching features below 

the threshold to the left and the remaining features right. This procedure is repeated 

recursively down the left and right branches of the tree. Decision Trees are not affected 

by variance differences in feature variables as each variable is searched only for its 

effectiveness to split the data. Therefore, features do not need to be normalised unlike 

other classifiers. 

 

Figure 2-16 Decision Tree Example for classifying the species of flower (Setosa, Versicolor, Virginica) 

by petal measurements [76] 

 

Decision trees are extremely useful due to their simplicity, ease of interpretation and 

natural way of assigning importance to the data features but they are often not the best-

performing classifiers as they can be prone to overfitting. Nevertheless, they form the 

basis of state-of-the-art machine learning algorithms such as AdaBoost and Random 

Forests which inherit many of their useful properties. 
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2.4.3.1.2 Random Forest 

A Random Forest [70] is a collection of many Decision Trees, each built randomly, as 

shown in Figure 2-17. During learning a random subset of the original features are used 

to build each tree so that they become statistically independent. Random Forests is a multi-

class classifier as at test time votes are collected at the leaves of each of the many trees 

and the maximum vote is the winner. Averaging many trees counterbalances the 

overfitting problems encountered with individual trees. 

 

Figure 2-17 Random Forest: consisting of multiple decision trees learnt on random subsets of the 

training data. At each node a small subset of variables are selected at random and the variable that 

optimises the split is found [77] 
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To ensure each tree is different, a random feature subset is chosen to best split the data 

and the feature subset is different for each subsequent node in the tree. The size of these 

subsets is often the square root of the number of features. To increase robustness Random 

Forests use an “out of bag” (OOB) measure to verify splits. At a given node, training 

occurs on a new subset of the data that is randomly selected with replacement, and 

performance is estimated using the rest of the data (OOB data). The OOB data usually 

contains one third of all the data points and can be used to estimate how well the Random 

Forest will perform on unseen data. If the training data has a similar distribution to the 

test data, the OOB performance prediction can be quite accurate. 

2.4.3.1.3 Boosting 

The aim of boosting is to combine a group of weak classifiers to produce a strong 

classifier. A weak classifier has a slightly better chance of obtaining the correct 

classification than random guessing and can be implemented as decision trees with only 

one split (decision stubs [78]) or at most a few levels of splits. Each classifier has a 

weighted vote 𝜉𝑤 in the final decision making process. A data point weighted distribution  

informs the algorithm how much misclassifying a data point will “cost”. The key feature 

of boosting is that, this cost will evolve so that weak classifiers trained later will focus on 

the data points that were misclassified earlier. 

When the training is complete the final strong classifier Ψ(𝐱) takes a new input vector x 

and classifies it using a weighted sum over the learned weak classifiers 𝜓𝑤 calculated as: 

Ψ(𝐱) =  sign ( ∑ 𝜉𝑤𝜓𝑤(𝐱)

𝑊

𝑖𝑤=1

) 

     (2-12) 

where W is the number of weak classifiers and each classifier has a weighted vote 𝜉𝑤. 
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It should be noted that AdaBoost is a binary classifier whereas action recognition is a 

multiclass problem. There are different strategies for converting binary classifiers into 

multiclass classifiers. One-vs-all (OVA) is computationally simple and as accurate as any 

other approach [79]. OVA trains Ω binary classifiers one for each class to distinguish the 

examples from one class from all other classes. To output a label 𝜔 for unseen example 

z, the Ω classifiers are run and the classifier that outputs the highest certainty score is 

chosen: 

𝜔 = arg max
𝑖Ω=1...Ω

𝑓Ω(𝐳) (2-13) 

2.5 Evaluation 

An overview of the wide range of public action recognition datasets is provided which are 

assessed with regard to the modality of the data and the type of actions. The limitations 

of the existing datasets are presented and the public datasets used in thesis are introduced. 

The ground truth and performance metrics used for action recognition are appraised in 

respect to approaches that can evaluate both latency and accuracy. Finally, cross 

validation approaches are investigated that can provide an unbiased estimate of the 

generalisation error ensuring the proposed algorithms will perform as expected on unseen 

subjects. 

2.5.1 ACTION RECOGNITION DATASETS 

Traditionally, human action datasets were recorded with visible light cameras and consist 

of colour or intensity data (for a comprehensive review of these also see Aggarwal and 

Ryoo [22]). The major problem with these cameras is that there is a considerable loss of 

information related to human motion when the real-world data (3D) is projected to 2D. 

After the recent release of low cost depth sensors there has been a rapid growth of 3D 

datasets that provide depth data and/or skeleton data (for a summary of these datasets see 
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Aggarwal and Xia [24]). The datasets can be categorised based on the scenarios where 

the actions are performed, the general trend has been to move away from scripted 

scenarios in controlled environments to real-life scenarios such as surveillance, daily life, 

movies and sports.   

2.5.1.1 Scripted Scenarios 

A popular method of collecting data is to instruct the participant to perform the desired 

actions in controlled environments. The first scripted scenarios such as the KTH [10] and 

Weizmann [80] datasets (see Figure 2-18) contained simple actions and each video 

sequence only contained one class of action. Motion capture datasets [81] [82][83] capture 

high quality skeleton data (see Figure 2-19) and contain a much wider variety of actions 

including sports and locomotion with multiple action classes in a sequence making them 

more applicable to real-world scenarios. Gaming actions may include sports and 

locomotion actions but there are subtle differences such as the manner the action is 

performed and the viewpoint of the camera. Even simple actions such as walking are 

different in the gaming environment as the player will walk on the spot. The HDM05 

Motion Capture Database [82] database does include locomotion on the spot but not a full 

range of gaming actions.  

 
 

 

Figure 2-18 KTH [10] intensity 

data 

Figure 2-19 HDM05 [82] 

mocap data 

Figure 2-20 Action3D [40] 

depth data 
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Microsoft research specifically developed a gaming action database, MSR Action3D 

Database [40] which initially consisted of a sequence of depth maps (see Figure 2-20) and 

was later extended by a third party to include skeleton data, however the skeleton data is 

very noisy. Subsequently, Microsoft research released another gaming dataset MSRC-12 

[71] captured with the Kinect which contained much more reliable skeleton data than their 

previous dataset. Similarly, Masood et al. [57] also captured skeleton data using the 

Kinect for a gaming dataset with actions based on the game Mirror’s Edge (see Figure 

2-21 for example actions). Nevertheless, the existing gaming datasets only contain one 

action class for each sequence and no corresponding video data is available. There are no 

publicly available gaming action recognition databases that contain multiple action 

classes and all three modalities (video, depth and skeleton). Furthermore, the existing 

gaming datasets are single person whereas most commercial games are multiplayer. 

  

Figure 2-21 UCF Kinect dataset [12] 

2.5.1.2 Real-life scenarios 

The general trend especially with video datasets has been to move away from scripted 

scenarios in controlled environments to real-life scenarios such as surveillance, daily life, 

movies and sports.  In surveillance, datasets such as PETS [84] and i-Lids [85] are 

obtained using security cameras in real outdoor environments such as car parks, airports 

and train stations (see Figure 2-22). Similarly, home cameras can be used to capture daily 

living tasks such as sleeping, cooking and watching TV for the purposes of assisted home 

living and smart homes. 
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Figure 2-22 PETS [84] Figure 2-23 Hollywood 2 [86] Figure 2-24 UCF sports action 

dataset [27] 

An alternative approach to capture real-world scenarios is to extract footage from movies 

and TV. This footage naturally has diverse and cluttered backgrounds and frequently 

moving camera viewpoints. Popular movie datasets are Hollywood [35] and Hollywood2 

[86] datasets (see Figure 2-23). Similarly, sports datasets have been extracted from TV 

footage such as YouTube Action Dataset [59] and UCF sports action dataset (see Figure 

2-24) [27]. The individual actions are realistic but the major limitation of these datasets is 

that they have been segmented into sequences containing a single action. 

2.5.1.3 Datasets used in this thesis 

The focus of this thesis is gaming scenarios so the datasets extracted from movies or 

sporting events are not applicable. There are several existing scripted gaming datasets but 

they only contain one action class for each sequence and no corresponding video data is 

available. Furthermore, the existing gaming datasets are single person whereas most 

commercial games are multiplayer. Therefore, in this thesis two new multi-modal datasets 

containing video, depth and skeleton are proposed to overcome the existing limitations. 

Nevertheless, to compare to existing online action recognition algorithms the MSRC-12 

dataset [71] will also be used. 

The MSRC-12 dataset comprises of 30 people performing 12 gestures. These gestures are 

categorised into two categories: iconic and metaphoric gestures. The iconic gestures 

directly correspond to real world actions and represent first person shooter (FPS) gaming 
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actions. There are six FPS gaming actions: crouch, shoot, throw, night goggles, change 

weapon and kick as shown in Figure 2-25. In contrast to the iconic gestures, the 

metaphoric actions represent abstract concepts for manipulating a music player e.g. raise 

volume of the music. The same gesture is repeated 10 times by each subject, so each 

sequence contains multiple instances of the same gesture. The participants were instructed 

using different instruction modalities such as images, video and text. The instruction 

modality that produced the most accurate results was video plus text so this thesis uses 

this particular subset of the dataset. The dataset was captured using the Kinect but only 

the skeleton data was made publicly available. 

 

(a) Crouch or hide 

 

(b) Shoot with a pistol 

 

(c) Kick 

 

(d) Change Weapon 

 

(e) Night 

Goggles 

 

(e) Throw 

Figure 2-25 MSRC-12 Gaming Actions instructions provided to subjects (image modality) [71] 
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2.5.2 PERFORMANCE METRICS 

Depending on the application action recognition algorithms may have very different 

constraints and requirements and therefore must be evaluated accordingly. If the video 

data is pre-segmented into action instances and processed offline, as in retrieval 

applications for movies, then it is sufficient to evaluate the algorithm purely in terms of 

accuracy. In contrast, online recognition systems process a continuous data stream in real 

time which means the evaluation must incorporate the latency of the detection as well as 

the accuracy.  

2.5.2.1 Annotation 

There are three types of temporal ground truth that are commonly used for action 

recognition: sequence-level, frame-range and action point (as depicted in Figure 2-26). 

There are also spatial annotations which are more relevant to video and depth data than 

skeleton data. 

 

Figure 2-26 Annotation [13] 

The sequence level annotation is the simplest form of annotation which provides an action 

label for each sequence. However, this annotation is only for sequences that are pre-

segmented to contain one type of action that are intended to be processed offline. The 

frame range annotation labels each frame according to the action depicted at that point in 

time and can therefore be used for sequences containing multiple actions. Typically, the 
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label range includes all the frames from the onset (start) to the offset (end) of the action 

but it does not contain a temporal anchor to precisely measure latency which is a critical 

evaluation criterion in human-computer action and gaming. To measure latency Nowozin 

and Shotton [13] introduced action points, temporal anchors for action instances within a 

sequence. An action point has the following formal definition: “An action point of an 

action is a single time instance at which the presence of the action is clear and that can be 

uniquely identified for all instances of the action” [13]. Action Points themselves are not 

about the semantics of a particular action but allow application specific definitions to 

enable reproducible ground truth that has temporal anchors for measuring latency. In this 

thesis, an action point explicitly represents the peak of an action (as introduced in section 

2.2).  

2.5.2.2 Performance metrics 

The performance metrics correspond directly to the annotations: classification accuracy 

is commonly used for sequence level annotation, 𝐹1-score for frame-based annotation and 

Action Point 𝐹1-score for action point annotation. These metrics can be calculated using 

four base cases shown in Table 2-2 for two class problems. Classification accuracy and 

the Frame 𝐹1-score can be evaluated as though they are two class problems even when 

more classes are being recognised. For each sequence (or frame) and for each action there 

is a positive label if the sequence contains the current action and negative label if it does 

not. Similarly, if the recognised action is the same action class as the label this is a positive 

detection and if it is another action class it is a negative recognition. For a positive label 

if the recognised action is also positive, this is a true positive (𝑡𝑝). If the recognised action 

is negative for a positive label this is a false negative (𝑓𝑛). For a negative label, if the 

recognition is also negative, it is a true negative (𝑡𝑛) and it is a false positive (𝑓𝑝) if a 

negative label is detected as positive. This approach however does not work for the Action 

Point 𝐹1-score which is discussed separately in section 2.5.2.2.3. 
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Table 2-2 Confusion matrix for two-class problems 

 Recognised class 

Ground truth Positive Negative 

Positive 

Negative 

𝑡𝑝 : True positive 

𝑓𝑝 : False positive 

𝑓𝑛 : False negative 

𝑡𝑛 : True negative 

2.5.2.2.1 Classification accuracy (sequence level)  

A common performance measure for action recognition is classification accuracy.  

Classification accuracy represents the overall correctness of the model and is calculated 

as the sum of correct classifications divided by the total number of classifications, as 

shown in Eq. (2-14). Confusion matrices are frequently used to breakdown the number of 

correct classifications by class. The attractive feature of the confusion matrix is that the 

correct classifications are displayed along the diagonal axis making it clear when a class 

is misclassified. 

 accuracy =  
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 +  𝑓𝑛 + 𝑡𝑛
 

(2-14) 

Applying the performance metric to simple action recognition datasets is straightforward 

as each sequence contains a single action. The simplest case is when the method 

recognises the action at the sequence level and outputs a single action class for each 

sequence. If the actions are recognised at the frame level an action label is output for each 

frame in the sequence and a majority decision over all frames is taken to decide the action 

label for the complete sequence. In either case, the recognised action label for the 

sequence is compared to the ground truth label for the sequence. This simple metric is 
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even used on more complex datasets such as the movie datasets using the false assumption 

that the sequence contains only one action, even if it actually contains multiple actions. 

This simple approach of applying the performance measure to the entire sequence does 

not measure latency required by real-time applications and is not an accurate measure if 

multiple actions occur in a sequence.   

2.5.2.2.2 Frame 𝑭𝟏-score (frame level) 

In a realistic case, with multiple actions within a sequence the classification accuracy or 

𝐹1-score is more suitably applied to each frame. The 𝐹1-score is more robust than accuracy 

when classes are imbalanced as it is the harmonic mean of precision 𝑝𝑟 and recall 𝑟𝑒 as 

shown in Eq. (2-15). However, frame level metrics do not measure latency which is 

required to make action recognition methods suitable for a range of real-world 

applications.  

𝐹1  =  2
𝑝𝑟  ∙ 𝑟𝑒

𝑝𝑟 + 𝑟𝑒
 

(2-15) 

𝑝𝑟 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

(2-16) 

𝑟𝑒 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

(2-17) 

2.5.2.2.3 Action Point 𝑭𝟏-score (instance level) 

Low latency is critical in interactive gaming to appear responsive to the player’s actions.  

An action performed by the player must be detected as soon as possible to prevent poor 

gameplay. Nowozin et al. [13] proposed a latency aware performance metric for online 

human action recognition. They introduced ‘action points’ as temporal anchors for the 

detection and evaluation of actions in real time. An action label is deemed correct if it is 

detected within a specific time window of size 2Δ which is centred around the ground 

truth action point as illustrated in Figure 2-27. The correct detections are counted as 𝑡𝑝, 
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whilst ignoring multiple correct detections. In the case where no action or the incorrect 

action class is detected within the ground truth window then a 𝑓𝑛 is counted and in the 

latter case a 𝑓𝑝 is also counted. Similarly, to object based metrics for motion detection 

[87] there is no case of 𝑡𝑛 therefore popular evaluation metrics such as accuracy and the 

ROC curve cannot be applied. 

 

Figure 2-27 Action point 𝑭𝟏 metric for a single action: a fixed time window of size 2Δ is centered 

around the ground truth action point annotation (marked ●) and used to split the three detected 

action points into correct (marked ○) and incorrect detections (marked ×). If there is more than one 

detected action point within the ground truth window only one prediction is counted. All incorrect 

detections are counted. 

 

For a specified amount of latency (Δ) the action point 𝐹1 score [13] determines whether a 

detection made at time 𝑡𝑑𝑎
 for action 𝑎 is correct in relation to a ground truth action point 

at time 𝑡𝑔𝑎
 by using the following formula: 

Φ𝑎 (𝑡𝑑𝑎
, 𝑡𝑔𝑎

, Δ) =  {
1    if  | 𝑡𝑔𝑎

 −  𝑡𝑑𝑎
|  ≤  Δ

0    otherwise               
 

(2-18) 

For a specified amount of latency (Δ) precision 𝑝𝑟 and recall 𝑟𝑒 are measured for each 

action 𝑎 and combined to calculate a single 𝐹1-score. 

𝐹1(𝑎, Δ)  =  2
𝑝𝑟𝑎

(Δ) 𝑟𝑒𝑎
(Δ)

𝑝𝑟𝑎
(Δ)  +  𝑟𝑒𝑎

(Δ)
 

(2-19) 
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As online action recognition algorithms need to detect multiple actions, the mean 𝐹1 score 

over all actions is used, defined as: 

𝐹1(𝛢, Δ) =  
1

|𝛢|
 ∑ 𝐹1(𝑎, Δ)

a ∈ 𝛢

 
(2-20) 

2.5.3 CROSS VALIDATION 

The ability of action recognition algorithms to correctly classify new examples that differ 

from those used during training can be measured by its generalisation error. If a large 

amount of data is available then the training and test set can be created by taking 

independent samples and a third set, the validation set can be created to tune the model’s 

parameters. In many real world applications, it is expensive and time consuming to collect 

a large dataset and segmenting the data into training and testing is inappropriate. In 

gaming datasets, these difficulties are reflected by the small number of users captured. In 

such scenarios where a limited amount of training data is available, a hold-out procedure 

can be applied to obtain a reliable estimate of the algorithms generalisation error.  

One of the most common hold out procedures is cross validation which involves 

portioning the dataset into complementary subsets, training the model on one subset 

(training set) and validating the model on the other subset (the test set). Multiple rounds 

of cross validation can be performed and the results averaged to reduce the variability of 

the generalisation error. K-fold cross validation involves partitioning the original sample 

into randomly partitioned sub-samples. A typical value of K is 10 and the extreme version 

is leave-one-out cross validation which leaves out one training sample each time, however 

in the case of time series data involving human these approaches can provide optimistic 

estimates that may cause overfitting as the data samples in the training and testing sets are 

not independent. Leave-one-subject out cross validation (LOSOCV) overcomes this 

problem by leaving out all observations from the same subject providing an unbiased 
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estimate of the generalisation error ensuring the algorithm will perform as expected on 

unseen subjects [88]. Generalisation to unseen subjects is a typical requirement for real-

world applications so LOSOCV will be used for experiments in this thesis. 

2.5.4 EXPERIMENTAL SETUP 

Many personal computers have two or four cores that enable multiple threads to be 

executed simultaneously and in the near future computers are expected to have 

significantly more cores. To take advantage of these developments in hardware, the 

algorithms developed in this thesis have been designed to use parallel programming where 

appropriate to decrease training and testing time. The PC used for experiments in this 

thesis has the following specification: 

Hardware Software 

Processor: Intel Core i7-2600 CPU @ 

3.40GHz 

Operating System: Windows 7 

Memory: 6.00GB IDE: Visual Studio 2010, Matlab 2011a 

Number of cores: 4 Programming languages: C# and Matlab 

Number of logical processors: 8 Libraries: EmguCV v2.3, OpenCV v2.4.3, 

Kinect SDK v1.7 

2.6 Conclusion 

Many state-of-the-art action recognition algorithms are appearance based which have the 

benefits of little to no high level processing and encoding contextual information. The 

problem is that most of these algorithms are far from being real-time and the lack of 



 

 

 

 

76 

contextual information in a gaming scenario may mean these approaches underperform.  

Due to recent advances in depth camera technology and a reliable pose estimation 

algorithm, alternative approaches based on depth maps and skeleton data have been 

proposed. Skeleton features have reduced the viewpoint and anthropometric variations 

and have outperformed colour features and therefore will be used exclusively in the 

experimental sections of this thesis. Therefore, in this thesis the focus is developing 

learning algorithms that address execution rates and personal style.  

There are many types of machine learning algorithms that have been applied to action 

recognition but the majority of approaches have been applied offline and even the online 

approaches have high latency. Notable exceptions are AdaBoost and Random Forests that 

have been successfully applied online with low latency, so, they will be used as baselines 

in this thesis. Both observational and computational latency should be considered when 

developing algorithms to ensure that they are suitable for real-world applications. 

Approaches to simplify existing algorithms need to be investigated in addition to selecting 

algorithms that are suitable for parallelisation to ensure low computational latency. 

Continuous classification is preferable over automatic segmentation to ensure low 

observation latency and sliding window approaches need further investigation to 

determine their effect on execution rate invariance. 

There are many public datasets containing video sequences for action recognition but 

none specifically containing gaming actions which differ from sports and locomotion 

actions in the manner they are executed and the viewpoint of the camera. There are several 

existing scripted gaming datasets recorded with the Kinect but they only contain one 

action class in each sequence whereas real games contain a variety of different actions. 

Furthermore, the existing gaming datasets are single person whereas most commercial 

games are multiplayer. Therefore, in this thesis two new multi-modal datasets containing 

video, depth and skeleton are proposed to overcome the existing limitations. Nevertheless, 
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to compare the proposed algorithms to existing online action recognition algorithms the 

MSRC-12 dataset will also be used. 

Classification accuracy is the performance measure used to compare the state-of-the-art 

offline action recognition algorithms. The simple manner in which it is applied to the 

entire sequence does not incorporate latency constraints required by real-time applications 

and is not an accurate measure if multiple actions occur in a sequence. Nowozin et al. [13] 

proposed a latency aware performance metric for online human action recognition. They 

introduced ‘action points’ as temporal anchors for the detection and evaluation of single 

person actions in real time. The Action Point 𝐹1-score will be used in this thesis to evaluate 

the single person action recognition algorithms and it will be extended to evaluate 

interaction recognition. 

The existing online action recognition methods use action points and the algorithms have 

been specifically designed to detect actions that are momentary and discrete in nature. 

The existing approaches cannot detect the duration of the action peak which is critical for 

detecting interactions and is addressed in chapter 5. Additionally, the existing approaches 

cannot detect multiple concurrent actions performed by the same subject such as walking 

and waving. In chapter 5 progress toward overcoming this limitation is made by detecting 

actions that are performed in quick succession and temporally overlap. The existing 

approaches cannot detect continuous activities such as walking or running or a sequence 

of movements such as dancing. Detecting long range temporal dependencies is out of the 

scope of this thesis but detecting individual walking steps or dance movements can be 

considered the same as detecting a punch or kick which are the main focus of this thesis. 
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CHAPTER 3 

3 ACTION RECOGNITION USING DYNAMIC FEATURE 

SELECTION 

3.1 Introduction 

Action recognition algorithms suitable for real-world applications must be capable of 

processing a continuous stream of multiple actions in real-time. The latency of the 

recognition can vary, depending on the application. For example, a sign language 

recognition system may delay recognition until a sequence of words or an entire sequence 

is parsed [11]. Such systems can benefit from increased accuracy by delaying the 

recognition. However, applications such as interactive computer games based on human 

actions do not have this luxury, as they require recognition with low latency. Nevertheless, 

the majority of existing action recognition approaches have been applied offline and even 

the online approaches have high latency. Notable exceptions are AdaBoost [23] and 

Random Forests [70] that have been applied online with a sliding window approach to 

achieve low latency. 

Dimensionality reduction techniques have been used in conjunction with machine 

learning algorithms to reduce the number of considered features to improve computation 

time and reduce memory requirements. Furthermore, when the dimensionality of the 

feature set is high, some features may be irrelevant or noisy and therefore removing these 

features can improve accuracy. There are many different dimensionality reduction 

techniques that can be divided into feature selection and feature transformation. Feature 

selection methods choose a subset of important features whereas feature transformation 

methods form new features, that are fewer in number than the original. Due to the large 
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number of existing dimensionality reduction techniques this chapter will focus on feature 

selection approaches and the following chapter on feature transformation techniques.  

There are many public datasets containing video sequences for action recognition [10], 

[27], [35], [59], [80], [84]–[86] but none specifically containing gaming actions. There 

are several existing scripted gaming datasets recorded with a depth sensor [40], [57], [71] 

but they only contain one type of action in each sequence whereas commercial games 

contain a variety of different actions. Therefore, in this chapter a new multi-action, multi-

modal dataset (G3D) containing video, depth and skeleton is captured to evaluate the 

proposed algorithm and made publicly available for other researchers.  

The contributions in this chapter are two-fold; (1) a novel algorithm for online action 

recognition, Dynamic Feature Selection which combines the discriminative power of 

Random Forests for feature selection with an ensemble of AdaBoost classifiers for 

dynamic classification to improve accuracy [89] and (2) a new gaming action dataset, 

G3D [90] which is the first public gaming action dataset to contain multi-actions and 

multi-modal data. 

3.2 Related Work 

A review of both offline and online action recognition algorithms in addition to relevant 

datasets and evaluation metrics are presented in section 2. In this review the focus is on 

feature selection in general and then specifically how it has been applied to action 

recognition. The aim of feature selection is to find the most discriminative subset of 

features that contribute most to the performance of the classifier. Numerous feature 

selection methods have been developed which can be divided into wrappers, filters and 

embedded methods [91].  
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Filter methods select subsets of variables by ranking individual variables with scoring 

functions such as correlation coefficient or mutual information criterion. The variable 

ranking is performed as a pre-processing step independent of the classifier. The benefits 

of these approaches are their simplicity and computational efficiency. However, wrapper 

and embedded methods may give a better performance improvement over filter methods 

[91]. 

Wrapper methods are a simple and powerful way to address the feature selection problem. 

They use the prediction performance of a given classifier to assess the relative usefulness 

of subsets of features. The optimal feature subset can be found by testing all possible 

subsets. However, as there are (2𝐷 − 1) possible combinations of 𝐷 features, it is 

computationally unfeasible for large numbers of features [92]. A wide range of search 

strategies have been proposed to address this issue, including forward selection, backward 

selection, best-first, branch-and-bound, simulated annealing and genetic algorithms (see 

[93] for a review). In pose-based action recognition genetic algorithms have been used to 

determine the optimum set of skeleton joints which improved recognition rates [94].  

Embedded methods incorporate variable selection in the process of training and can be 

more efficient than wrapper methods. Decision trees [75] and Random Forests [70] 

contain a built-in mechanism to perform variable selection that can estimate the 

importance of each feature during the classification process.  

Random Forests were employed by Negin et al. [95] as a discriminative feature selection 

tool to improve the action recognition performance of a Support Vector Machine (SVM) 

with a small fraction of the original pose-based features. It should be noted that [95]  was 

published around the same time as the method proposed in this chapter [89] and at the 

time they were both the first to employ Random Forests as a feature selection mechanism 

for action recognition. The key difference is [95] used features extracted from the entire 

sequence which were processed offline whereas the proposed, Dynamic Feature Selection 



 

 

 

 

81 

is online [89]. A couple of years later Sharaf et al. [73] achieved state-of-the-art  results 

for online action recognition with a similar feature selection approach that combined 

Recursive Feature Elimination with a SVM. Sharaf et al. selected features at multi-scales 

to improve execution rate invariance but their approach is computationally limited to a 

couple of levels which limits the execution rate invariance. 

In contrast to selecting hand-crafted features, deep learning approaches have been used to 

learn features from unlabelled video data [96]–[98]. The benefit of deep learning is that 

the features can be automatically selected without the use of prior knowledge and they 

have achieved comparable or even better accuracy than engineered features for offline 

action recognition. Nevertheless, deep learning approaches require large amounts of 

training data.  

3.3 Methodology 

The main contribution of this chapter is a new approach to dynamically select the most 

discriminative pose based features for online action recognition. Specifically, Random 

Forests are used for feature selection, while a novel ensemble of AdaBoost models is 

proposed for dynamic classification. The classifiers work as local experts as different 

features sets are better able to discriminate different actions. In contrast to existing 

approaches [13], [71], [95] where the features are extracted from a fixed number of frames 

(e.g. 1 second) the proposed features represent a single frame to improve execution rate 

invariance. Execution speed may differ between action classes and between subjects and 

it is also important in the gaming scenario where different actions may be performed in 

quick succession. The proposed method has two key phases: an offline training phase and 

an online testing phase. 
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3.3.1 TRAINING PHASE 

The training phase consists of two key steps: Random Forests for feature selection and a 

novel ensemble of AdaBoost models for dynamic classification, as depicted in Figure 3-1 

and summarised in Table 3-1. The proposed approach is generic so it could use features 

from any modality but in this thesis pose-based features are used for their viewpoint and 

anthropometric invariance.  

The feature vector for a given pose is represented by 𝐱 ∈  ℝ𝐷 , where 𝐷 = 297 features. 

The features are a combination of 57 position difference features, 60 position velocity 

features, 20 position velocity magnitude features, 80 joint angle features and 80 angle 

velocity features (for more details see section 2.3.4). 

 

 

Figure 3-1 Dynamic Feature Selection (Training) 
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Table 3-1 Dynamic Feature Selection Algorithm (Training) 

1. Feature Selection 

a. Train a Random Forest on the training set to obtain a set of 𝑛𝑇 decision trees. 

b. For each feature over all the trees in the forest calculate the average 

importance score using Breiman's [70] algorithm. 

c. Rank the features in order of importance. 

d. Group features into subsets of an increasing number of important features. 

i. The first feature subset is obtained by selecting the features with the 

importance values higher than threshold τ1.  

ii. Then add the features with the importance values higher than τ2 to get 

the next feature subset. 

iii. Repeat step (ii) until all features have been added to a subset and you 

have 𝑛𝜏 feature subsets, where 𝑛𝜏 ˂˂ D. 

2. Classification 

a. For each feature subset (1: 𝑛𝜏): 

i. Train an AdaBoost classifier using only the features selected for that 

subset 

3.3.1.1 Feature Selection 

Random Forests [70] are a collection of Decision Trees [75], where each tree is randomly 

grown. Details on these classifiers are provided in the background section (see sections 

2.4.3.1.1 and 2.4.3.1.2). Random Forests are generally used as a discriminative classifier 

however in this chapter they are proposed as a discriminative feature selection tool, to 

estimate the importance of each feature.  

Specifically, Breiman's [70] variable importance algorithm is calculated for each feature, 

by randomising this feature in each tree and measuring the percentage increase in the test 
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set error rate of the "out of bag" permuted features in comparison to the original features. 

The greater the increase in percentage error then the greater the importance of the feature 

for that tree. The average of this number over all trees in the forest is the importance score 

for the feature. The original 𝐷 features can then be ranked in order of importance.  

A simple static feature selection mechanism is to learn an importance threshold and 

discard features of lower importance, the reduced set of features can then be used to train 

another Random Forest or other classifier. Negin et al. [95] employed Random Forests as 

a discriminative feature selection tool to improve the action recognition performance of a 

Support Vector Machine (SVM) with a small fraction of the original pose-based features.  

In contrast, the method proposed in this chapter uses a dynamic feature selection 

mechanism to improve accuracy by combining the discriminative power of Random 

Forests for feature selection with an ensemble of classifiers for dynamic online 

classification. The novelty of the proposed feature selection is the creation of multiple 

feature training sets instead of one feature set as in previous work. Given 𝐷 features, the 

proposed approach creates 𝑛𝜏 feature subsets, where  𝑛𝜏 ˂˂ D by thresholding the ranked 

features from 1 to 𝐷 into groups as depicted in Figure 3-1 and summarised in Table 3-1.  

Sharaf [73] found that different actions have different temporal scales therefore it is 

conceivable that the features which differentiate actions may change throughout the 

temporal duration of an action, particularly at the onset and offset of an action. My 

hypothesis is that different features sets are better able to discriminate different actions 

than a single feature set. The proposed approach is that multiple feature sets can be 

employed to train an ensemble of classifiers, which work as local experts at each frame 

to obtain better combined classification accuracy. 

Examining the feature sets selected at each frame, reveals that the first feature set  

discriminated better between the action classes (punch, kick and defend) whereas the latter 
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feature sets were better able to discriminate the ‘Other’ action. The ‘Other’ action 

represents all the non-action frames and can be used to determine the start of an action 

which is critical for online action recognition. Therefore, selecting the highest confidence 

from a series of classifiers gives improved discrimination between the action classes and 

‘Other’ class in comparison to individual classifiers. Results to support this are 

demonstrated in section 3.5.4.1.  

3.3.1.2 Dynamic Classification 

The novelty of the proposed classification is that the optimum feature subset is 

dynamically selected at each frame by training an ensemble of classifiers with different 

feature subsets. If the classifiers are run in parallel there should be no significant increase 

in computational time. The proposed framework is generic but to evaluate the 

performance AdaBoost [99] was selected as the classifier. Details on this classifier are 

provided in the background section (see section 2.4.3.1.3). The proposed training for 

dynamic classification assumes that 𝐷 features have been grouped into 𝑛𝜏 feature subsets. 

Then an ensemble of 𝑛𝜏 AdaBoost models, one for each different feature subsets is learnt 

as depicted in Figure 3-1 and summarised in Table 3-1. 

3.3.2 TESTING PHASE 

During testing an AdaBoost model is dynamically selected at each frame based on the 

highest detection to provide real-time classification as illustrated in Figure 3-2 and 

summarised in Table 3-2. 
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Table 3-2 Dynamic Feature Selection Algorithm (Testing) 

1. For each frame use each feature subset and corresponding multiclass classifier 

to give  𝑛𝜏 classifications.  

2. Store the highest certainty for each action at each frame. 

3. Add the highest certainty at each frame to a sliding window and sum results 

over the window for each action. 

4. The action label for the current frame is the most confident classification for all 

actions. 

5. The action points for a sequence are detected by a change in action label. 

 

 

Figure 3-2 Dynamic Classification (testing) 
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Pose-based features for each frame are split into the same feature subsets learnt during 

training. Each feature subset is used as input for the appropriately trained AdaBoost model 

and each model makes individual detections. The most confident (highest) classification 

from all the models for each action is recorded as shown in Figure 3-3. The ‘Other’ action 

represents all other frames that are not the actions specifically being detected and are 

important to detect the point in time a specific action occurs. 

 

Figure 3-3 Frame based certainties for a fighting sequence from the G3D dataset 

 

Frame based certainties are summed over a sliding window of 𝑛𝑤 frames to smooth results 

to reduce false positives and increase accuracy as shown in Figure 3-4. The most confident 

classification determines the action label for a frame. A change in a frame based action 

label detects the action points for the sequence as shown in Figure 3-4. 

 

Figure 3-4 Smoothed results for a fighting sequence from the G3D dataset and detected action points 

for 𝒏𝒘 = 10 
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The novel dynamic method for feature selection presented in this section can improve 

accuracy for online action recognition at low latency. To evaluate its performance in a 

gaming scenario a new dataset is required. 

3.4 G3D Dataset 

A new dataset, G3D for real-time action recognition in gaming, containing synchronised 

video, depth and skeleton data has been captured.  This dataset is publicly available at 

http://dipersec.kingston.ac.uk/G3D/ to allow researchers to develop new action 

recognition algorithms for video games and benchmark their performance.  Due to the 

formats selected it is possible to view all the recorded data and tags without any special 

software tools. 

 

Figure 3-5 Colour image 

 

Figure 3-6 Depth map 

 

Figure 3-7 Skeleton data 

 

The Microsoft Kinect enables easy capture of synchronised video, depth and skeleton 

data. The three streams were recorded at 30fps in a mirrored view so Figure 3-5 to Figure 

3-7 are actually a right punch. The PNG image format was selected for storing both the 

depth and colour images as it is a lossless format, suitable for online access and is open 

source.  The resolution used to store both the depth and colour images was 640x480.  The 

raw depth information contains the depth of each pixel in millimetres and was stored in 

16-bit greyscale (see Figure 3-6) and the raw colour in 24-bit RGB (see Figure 3-5).   

http://dipersec.kingston.ac.uk/G3D/
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The 16-bits of depth data contain 12 bits for the depth distance (0-4096mm), 1 bit reserved 

for the sentinel values (which was not used and fixed at 0) and 3 bits to identify the player. 

The player index can be used to segment the depth maps by user, as illustrated in Figure 

3-8 where the player (blue pixels) can be easily distinguished from the background. The 

depth information was also mapped to the colour coordinate space and stored in a 16-bit 

greyscale. Combining the colour image with the mapped depth data allows the user to also 

be segmented in the colour image. 

The XML text format was selected for storing the skeleton information as it is human 

readable and again suited for online access. The root node the XML file is an array of 

skeletons. Each skeleton contains the player’s position and pose. The pose comprises of 

20 joints. The player and joint positions are given in x, y and z co-ordinates in meters.  

These positions are also mapped into the depth (see Figure 3-8) and colour co-ordinates 

spaces. The skeleton data includes a joint tracking state, displayed in Figure 3-7 as tracked 

(green), inferred (yellow) and not tracked (red). In many cases the inferred joints will be 

accurate as in Figure 3-8 but certain situations where limbs are occluded the inferred joints 

may be inaccurate as in Figure 3-9. Consequently, pose data may need to be combined 

with colour or depth data to improve accuracy. 

 

Figure 3-8 Correctly inferred joints (yellow).  

 

Figure 3-9 Incorrectly inferred joints (yellow).  

 

This dataset contains 10 subjects, individually performing 20 gaming actions : punch 

right, punch left, kick right, kick  left, defend, golf swing, tennis swing forehand, tennis 
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swing backhand, tennis serve, throw bowling ball, aim and fire gun, walk, run, jump, 

climb, crouch, steer a car, wave, flap and clap, grouped into seven categories: fighting, 

golf, tennis, bowling, FPS, driving and miscellaneous. Most sequences contain multiple 

actions in a controlled indoor environment with a fixed camera, a typical setup for gesture 

based gaming. The subjects were given basic instructions as to how to perform the action, 

similar to those issued in a Kinect game. Nevertheless, the subjects were free to perform 

the gesture with either hand or in the case of a side facing action stand with either foot 

forward to create a diverse dataset. Each sequence is repeated three times by each subject. 

However, in contrast to the MSRC-12 dataset [71] different actions for the same category 

are mixed together within a sequence and the sequence is repeated three times. Figure 1 

shows example skeleton data for a fighting sequence. This resulted in over 80,000 frames 

of video, depth and skeleton data. All the frames in the dataset that contain actions were 

manually labelled in a separate file with an appropriate tag.  Each tag represents a single 

action and contains the action class e.g. Punch Right and frame number representing the 

peak of the action (as shown in Figure 3-10). The XML tags are also publicly available. 

 

Figure 3-10 A fighting sequence from the G3D dataset with "action point" ground truth 

 

In contrast to the existing gaming datasets, the G3D dataset is more realistic as it contains 

multiple actions within each sequence rather than repeating the same action multiple times 

as in MSRC-12 [71] and MSRAction3D [40] datasets (for a review of these datasets see 
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section 2.5.1.1). Additionally, G3D is the only gaming dataset to provide synchronised 

colour, depth and skeleton data, although in this thesis only the skeleton data is used. 

3.5 Results 

The proposed Dynamic Feature Selection framework was tested with publicly available 

gaming datasets against state-of-the-art approaches for online action recognition with the 

same experimental setup. 

3.5.1 DATASETS 

Existing gaming datasets are limited so G3D (introduced in section 3.4) was specifically 

captured for real time action recognition containing multiple actions in each sequence and 

also for a comparison with existing methods the publicly available gaming dataset MSRC-

12 [71] (summarised in 2.5.1.3) was used. Both datasets provide sequences of skeleton 

data captured using the Kinect pose estimation pipeline at 30fps. Action point annotations 

of the peak poses are available for the MSRC-12 dataset and G3D dataset to precisely 

measure the latency of action recognition methods as well as the accuracy (described in 

section 2.5.2.1). 

A “leave-person(s) out” cross validation protocol (described in section 2.5.3) was used 

where a set of people is removed to obtain the minimum test set that contains instances of 

all actions. For the MSRC-12 dataset this may be more than one actor as not every actor 

performs all the actions for the video + text modality2. For the G3D dataset this is simply 

one actor as all actors perform all the actions. The remaining large set is used for the 

training. This process is repeated 10 times with different subsets to obtain the general 

                                                 

2 This is the instruction modality used to teach the subjects how to perform the actions in the MSRC-12 

dataset. 
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performance. The total number of training and testing instances for each dataset used in 

the following experiments is shown in Table 3-3. 

Table 3-3 The total number of training and testing instances for gaming action datasets 

Dataset Actions Subjects Repetitions Cross 

Validation 

Training 

Action 

Instances 

Testing 

Action 

Instances 

G3D 5 10 3 10 1350 150 

MSRC-12 6 10 10 10 5400 600 

3.5.2 PERFORMANCE METRICS 

For a fair comparison with existing approaches the same latency aware metric was used 

as initially proposed by [71] and later adopted by [73]. The detected action points are 

compared to the ground truth action points using the action point metric (described in 

section 2.5.2.2.3) to obtain a mean F-score at a fixed latency Δ, where Δ = 333ms3.  

3.5.3 COMPARATIVE STUDY 

The following is a brief summary of the comparison algorithms and the parameters used. 

For all the experiments the number of positive training samples selected around the action 

point was ±8 and all other samples were used as negative training samples. The optimal 

positive sample size was found by varying this parameter between ±1 and ±20 on the 

training set.  

                                                 

3 A fixed latency of 333ms was already used for online action recognition and was adopted for a fair 

comparison with existing methods. 
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 Random Forests: is a state-of-the-art approach for low latency online action 

recognition [13], [71]. The 3 parameters that affect the performance of the 

Random Forest are the number of trees in the forest, the depth of each tree and the 

number of selected features at each node. Exhaustive searching of every 

combination of these 3 parameters is computationally prohibitive so in order to 

find the optimal forest configuration, 27 forests were trained with a combination 

of (10, 50 and 200) 𝑛𝑇 trees, of depth (4, 6 and 8) with (10, 100 and 297) features 

selected at each node. Parameter selection was performed using cross validation 

on the training set, results of the cross validation are shown in Figure 3-11, Figure 

3-12 and Figure 3-13. The best values of 200 trees, of depth 8 and 10 features at 

each node were found.  

 AdaBoost: A comparison of Random Forests and AdaBoost in a different field 

[74] showed that AdaBoost can provide higher classification accuracy at the cost 

of less efficient computation. The standard version of AdaBoost is sensitive to 

noise in the dataset so Gentle AdaBoost [100] was selected as it gives less weight 

to outlier data points. As AdaBoost is also based on Decision Trees it has similar 

parameters: the number of weak classifiers which is the number of trees and the 

depth of the trees. Similarly, exhaustive searching is computationally prohibitive 

so in order to find the optimal configuration, 16 models were trained with a 

combination of (10, 50, 100 and 200) trees of depth (1, 3, 5 and 8). Parameter 

selection was performed using cross validation on the training set, results of the 

cross validation are shown in Figure 3-14 and Figure 3-15.The best values of 100 

trees and depth 5 were found.  

 Dynamic Feature Selection: The proposed method in this chapter combines 

Random Forests for feature selection with a novel dynamic variation of AdaBoost 

for online classification. The optimum parameters for Random Forest and 
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AdaBoost as described above were used for these experiments. The feature 

importance thresholds τ were set every 10% between 10% and 100%, so there 

were 10 feature sets 𝑛𝜏 in these experiments. 

A smoothing window 𝑛𝑤 of size 10 frames was applied to the frame based certainty 

results, which were provided by all the approaches except Random Forest which produced 

a direct classification for each frame. The final output from the algorithms tested is the 

set of detected action points for each sequence.  
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Figure 3-11 F1 results when varying the number of trees in the Random Forest, with depth 

fixed at 8 and number of selected features fixed at 10. 

 

Figure 3-12 F1 results when varying the depth of the trees in the Random Forest, with 

number of trees set at 200 and number of selected features set at 10. 

 

Figure 3-13 F1 results when varying the number of selected features at each node of a tree 

in the Random Forest, with depth fixed at 8 and number of trees set at 200. 
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Figure 3-14 F1 results when varying the depth of the trees in Adaboost, with the number 

of trees set at 100. 

 

Figure 3-15 F1 results when varying the number of trees in Adaboost, with depth fixed at 

5. 

3.5.4 PERFORMANCE EVALUATION 

The experimental results show that the proposed Dynamic Feature Selection framework 

improves accuracy across both datasets in comparison to AdaBoost and Random Forest 

without any feature selection. For the MSRC-12 and G3D datasets there is a 7% and 3% 

increase in performance respectively to the baseline AdaBoost method (see Table 3-4). 

The smaller increase on the latter dataset is because the F-score is already much higher 

for the AdaBoost method so there is less scope for improvement. The Dynamic Feature 
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Selection accuracy is not significantly different to state-of-the-art results with a 95% 

confidence and the computation time is 30% faster (see Table 3-4 for details). 

 

Table 3-4 Action Point F1-scores at Δ=333ms and computation times, the average and standard 

deviations over ten leave-persons-out runs are shown. The results shown in italics were published by 

the method authors, all other results were re-created. 

 Random 

Forest 

[71] 

Random 

Forest 

Ada- 

Boost 

 

Dynamic 

Feature 

Selection 

SVM-

RFE  

[73] 

Feature 

Vector 

Multi-

frame 

Single-

frame 

Single-

frame 

Single-

frame 

Multi-

frame 

No. of 

features 

4550 297 297 297 100-

10220 

Action Point F1-scores 

 

G3D 

- 0.894 

± 0.155 

0.884 

±  0.147 

0.910± 

0.128 

0.937 

 

MSRC-

12 

0.765  

± 0.070 

0.619 

± 0.148 

0.675 

± 0.156 

0.744 ± 

0.270 

- 

Computation Time (per frame) 

 

G3D 

- 1.029ms 

± 0.014 

1.088ms 

± 0.02 

1.001ms  

± 0.038 

- 

MSRC-

12 

- 0.398ms 

± 0.016 

0.808ms 

± 0.329 

1.846ms  

± 0.035 

2.63ms  

(100 

features) 

2.704ms  

(200 

features) 

2.779ms  

(300 

features) 

11.908ms 

(10220 

Features) 
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Comparing the accuracy achieved by Fothergill et al. [71] on the MSRC-12 dataset using 

a Random Forest approach and the baseline Random Forest method presented in this 

chapter it can be noted that there is a significant drop in performance. The main difference 

between these Random Forest implementations is that Fothergill et al. [71] used a fixed 

feature vector of 35 frames whereas in this chapter a single frame feature vector was used. 

A more detailed analysis of the results by action (as shown in Figure 3-18 and Figure 

3-19) reveals that the single frame feature vector performs poorly on the change weapon 

action. The action point of the change weapon as illustrated in Figure 3-16 is similar to 

poses in the night goggles as illustrated in Figure 3-17 so without the temporal history it 

is difficult to discriminate between these actions. Therefore, these experiments 

demonstrate that the temporal history of the action is important to differentiate between 

similar actions.  

 

Figure 3-16 Change Weapon Action Point 

frame 

 

Figure 3-17 Night Goggles frame near the end 

of the action 

 

Although a fixed size feature vector [71] incorporates temporal history, it is not invariant 

to changes in execution rate. Sharaf [73] were able to achieve state-of-the-art results on 

the G3D dataset by performing action detection across different temporal scales to 

improve execution rate invariance but their approach was computationally limited to a 

couple of temporal scales. In conclusion, to improve on the existing state-of-the-art 

approaches a method is required that can incorporate temporal history and be execution 

rate invariant. 
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Figure 3-18 G3D Fighting results by action, all experiments conducted with a single-frame feature 

vector 

 

  

Figure 3-19 MSRC-12 Fighting results by action, all experiments conducted with a single-frame 

feature vector 
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3.5.4.1 Insights on Feature Selection 

Existing feature selection approaches for action recognition [73], [95] incorporated 

temporal information from the entire action which resulted in very large initial feature 

vectors (13300 and 10220 features). These approaches focused on reducing features to 

enable real-time performance and were able to dramatically decrease the number of 

features to 10% of the original, which resulted in a decrease in computation time whilst 

maintaining or even improving the results.  

However, the Dynamic Feature Selection approach began with a single frame feature 

vector (297 features) for execution rate invariance and real-time performance so the focus 

was on improving the accuracy by using an ensemble of AdaBoost classifiers. The 

intuition behind the increase in accuracy is that the classifiers work as local experts at 

each frame as different features sets are better able to discriminate different actions. This 

is supported by Sharaf [73] who found that different actions have different temporal 

scales. An analysis of which feature set is selected at each frame also supports this 

hypothesis, as in the G3D dataset the punching, kicking and defending actions favour the 

top 10% of features whereas the other action favours all the features (as shown in Figure 

3-20). Similarly, in the MSRC-12 dataset the majority of actions selected the top 10% of 

features and the other action selected all the features (as shown in Figure 3-21).  

In conclusion, the Dynamic Feature Selection approach is comparable to state-of-the-art  

results provided on the G3D and MSRC-12 datasets with a reduced computation time. 

The proposed method has an improved execution rate performance over existing 

approaches but at the expense of not being able to detect similar actions. 



 

 

 

 

101 

 

Figure 3-20 Feature Importance (G3D) 

 

Figure 3-21 Feature Importance (MSRC-12) 

3.6 Summary 

This chapter introduced a novel method for Dynamic Feature Selection for online action 

recognition that combines the strengths of feature selection with local expert classifiers. 

Specifically, the feature selection method built into Random Forest was used to determine 

feature subsets and then the reduced feature vectors used to train an ensemble of AdaBoost 

classifiers. In contrast to existing approaches using feature selection, recognition occurs 

dynamically at each frame to select the most confident classification.  

Additionally, a new dataset G3D for gaming action recognition was captured and made 

publicly available containing synchronised video, depth and skeleton data. This 

multimodal dataset has enabled researchers worldwide to evaluate action and pose 
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recognition algorithms. In contrast to the existing gaming datasets, the G3D dataset is 

more realistic as it contains multiple different actions within each sequence rather than 

repeating the same action multiple times. 

Experiments on G3D and MSRC-12 publicly available datasets demonstrate that the new 

Dynamic Feature Selection algorithm for real-time action recognition improves the 

accuracy of baseline algorithms at low-latency. The results are also comparable to state-

of-the-art algorithms and further analysis indicates that the proposed method improves 

execution rate invariance over existing approaches but at the expense of confusing actions 

that contain similar poses. In conclusion, temporal history is important as actions with 

similar poses must be distinguished. However, the existing state-of-the-art approaches are 

not invariant to execution rate changes and require seeing the entire action. The next 

chapter investigates an alternative approach based on dimensionality reduction that 

includes temporal history and is also execution rate invariant. 
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CHAPTER 4 

4 ACTION RECOGNITION USING CLUSTERED SPATIO-

TEMPORAL MANIFOLDS 

4.1 Introduction 

The previous chapter demonstrated that feature selection can improve accuracy and 

reduce computation time of online action recognition. However, the existing approaches 

fail to address execution rate invariance (section 3.2). This chapter focuses on feature 

transformation that maps the original high dimensional feature space to a much lower 

dimension, resulting in fewer features that are a combination of the original features. The 

advantage of feature transformation is that it handles the situation in which multiple 

features collectively provide good discrimination even if they provide relatively poor 

discrimination individually. Specifically, this chapter investigates the use of spatio-

temporal manifolds that have been previously used for offline action recognition. The 

benefit of these manifolds is that they maintain the temporal history of the action to 

improve accuracy for action recognition and enable action prediction. Action prediction 

is a recent development in human action recognition, it involves forecasting future 

occurrences based on recent observations. 

Action prediction is a very difficult problem for machines but is naturally performed by 

humans to coordinate their actions in time and space to accomplish their goals. 

Experimental results in human-human interaction in a table tennis game showed that 

action prediction improves performance [101]–[103]. Action prediction can enhance 

many applications with a human-machine interface in a range of domains including home 

entertainment, healthcare, sports, and robotics. For example, a personal robotic assistant 
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for the elderly can enable independent living by assisting with a range of cognitive and 

physical tasks to improve their quality of life. Natural social interaction between the robot 

and patient is important for acceptance of the robot in the patient’s home and can also 

provide vital social contact for the patient [104]. 

Action recognition can be categorised into four distinctive approaches: offline, online, 

early and prediction (as illustrated in Figure 4-1). Traditionally, action recognition is 

performed offline using pre-segmented action sequences containing a single action and 

all the observations are used to classify the action. Similarly, early action recognition is 

typically performed on pre-segmented sequences but using as few observations as 

possible from the start of the sequence. In contrast, online action recognition approaches 

have the more complex task of classifying a continuous stream of actions in real-time. 

Additionally, temporal localisation of the action peak before the action is complete is 

required in applications that demand low latency (see section 2.5.2.1 for definitions and 

examples). Action prediction aims to estimate future action occurrences based on recent 

observations. Prediction on a continuous stream with temporal localisation of the action 

peak before it occurs is a very challenging scenario. 

In this chapter a novel algorithm is presented that models the dynamics of human actions 

with Clustered Spatio-Temporal Manifolds (CSTM). The core of the algorithm creates 

novel style, invariant action templates that when matched with a sliding window variant 

of Dynamic Time Warping (DTW) provides execution rate invariance for continuous 

action classification in real-time, for early recognition. The proposed action templates 

provide the ability to follow the progression of an action and combined with new Peak 

Key Poses enable action detection with low latency. Furthermore, future progress can be 

estimated using regression for action prediction. 
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Figure 4-1 Observations required for offline, early, online action recognition and prediction 

4.2 Related Work 

Existing feature transformation approaches are analysed first, which have only been 

applied to offline action recognition. Then, a general review of the more recent research 

into early, online action recognition and prediction approaches is provided. For a broad 

review of online action recognition approaches see section 2.4.2. 

4.2.1 FEATURE TRANSFORMATION 

Schwarz et al. [105] use feature transformation with Laplacian Eigenmaps (LE) to 

suppress individual style. LE considers the spatial relationships between poses, but 

ignores the temporal relationships which are critical for recognising similar actions. This 

limitation has been overcome by spatio-temporal action manifolds [106]–[109]. 
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Lewandowski et al. [106], [108] proposed Temporal Laplacian Eigenmaps (TLE) that 

extend LE by preserving the temporal structure and suppressing the stylistic variations of 

the data in the low dimensional space. Gong and Medioni [107] proposed a directed 

traversing path on a spatial manifold to incorporate the temporal dimension. They 

proposed Dynamic Manifold Warping for temporal alignment followed by spatial 

similarity of sequences on their manifold. Vemulapalli et al. [109] proposed a new 

representation of skeleton data as a Lie Group which is a 6D curved manifold. Human 

actions were modelled as curves on this manifold. DTW was used for execution rate 

invariance and additionally Fourier Temporal Pyramids to handle noise. The final 

classification was performed with linear SVM and achieved state-of-the-art results for 

offline action recognition. The spatial-temporal manifolds [106]–[109] are invariant to 

personal style and execution rate invariant but as the whole sequence is used for 

classification the action recognition has high observational latency and requires the action 

to be pre-segmented.  

In related work, Paiement et al. [110] performed online quality assessment of human 

movement using a Diffusion Map (DM) to model normal movements. Like LE, DMs are 

a feature transformation approach that preserve the spatial structure in the low 

dimensional space but ignore the temporal relationships. Nevertheless, this is addressed 

in this approach by a separate pose and dynamic model and importantly the assessment is 

frame-by frame for continuous quality assessment making it suitable for online 

applications. 

4.2.2 EARLY ACTION RECOGNITION 

Early action recognition aims to determine the action class based on as few observations 

as possible, even when only part of the action has been seen. Existing early activity 

recognition approaches extend popular activity recognition methods such as bag-of-words 
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(BoW) [111], [112], sequential state models [113], [114] and maximum margin methods 

[115]–[117].  

Ryoo [111] proposed two extensions to the bag-of-words paradigm for early activity 

recognition: Integral bag-of-words (Integral BoW) and Dynamic bag-of-words (Dynamic 

BoW). The integral histogram models spatial changes in the visual words but the temporal 

relations are ignored. Dynamic BoW overcomes this limitation by splitting an activity into 

subsequences and using a sequential matching algorithm. Dynamic BoW outperforms 

Integral BoW which highlights the importance of temporal modelling for early 

recognition. Both approaches determined accuracy on sequences that were manually pre-

segmented to contain a single action where results were calculated after observing ratios 

from 0.1 to 1.0, where 0.5 represents half the action and 1.0 the full action. Dynamic BoW 

achieves reasonable accuracy when half the activity has been observed. However, the 

accuracy of both approaches is significantly reduced in the early part of the activity. 

Similarly, Cao et al. [112] use the bag-of-visual-words technique on video segments to 

incorporate local spatio-temporal features. Each video is uniformly divided into equal 

length segments and a mixture of segments of varied length and temporal shifts is used to 

improve execution rate invariance. However, this approach is limited to the number of 

scales and shifts that can be computed. 

Sequential state models [113], [114] are effective at early recognition as they intrinsically 

preserve temporal order. Davis and Tyagi [113] proposed a Hidden Markov Model 

(HMM) for rapid and reliable early action recognition on manually pre-segmented 

sequences. Li and Fu [114] propose ARMA-HMM, an integrated autoregressive moving-

average model (ARMA) with a HMM for early activity recognition on pre-segmented 

sequences. ARMA-HMM predicts future poses to enrich the partially observed activity 

sequences and improve early recognition. However, the reliance on manual pre-
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segmentation which has to be performed offline, negates the benefit of the early detection 

of these approaches. 

Lan et al. [116] developed a max-margin framework for early action recognition that 

achieves state-of-the-art  results when half the action has been observed in a manually 

pre-segmented sequence but the accuracy is significantly reduced in the early part of the 

activity. Kong et al. [117] extend the max-margin approach to multiple temporal scales 

and achieve state-of-the-art results when the full action has been observed which is 

equivalent to the classic offline action recognition problem but accuracy is lower than Lan 

et al. [116] when observing half of the action. 

Hoai and De la Torre [115] proposed max-margin early event detectors for early detection 

of a range of human activities i.e. facial expressions, gestures and actions. They extended 

Structured Output SVM to accommodate sequential data. Their learning formulation is a 

constrained quadratic optimisation problem to ensure monotonicity of the detection of 

partial activities. To evaluate their approach Hoai and De la Torre [115] concatenated 

manually pre-segmented sequences to form longer sequences containing multiple actions 

to temporally detect the action as soon as possible which is an improvement over the 

previous scenarios in this section of single action evaluation. However, they considered 

each action individually by placing the action of interest at the end of the sequence and 

lowering the false positive rate until it reached 0% to ensure their algorithm did not detect 

the action of interest before it started. Due to these artificial conditions it is not clear how 

their approach would perform in a real-world scenario of detecting multiple actions in a 

continuous stream. 

The majority of existing approaches [111]–[114], [116], [117] for early activity 

recognition focus on classifying the action as soon as possible using pre-segmented 

sequences. These approaches achieve reasonable accuracy after observing half the action 
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but manual pre-segmentation simplifies the task of early detection which inflates accuracy 

and limits the applicability of these approaches to real-world scenarios.  

4.2.3 ACTION PREDICTION 

Action prediction is a recent development in human action recognition, which has 

received relatively little attention and is also the most difficult task as it involves 

forecasting future occurrences based on recent observations. 

Sequential state models [67], [114] are able to predict future poses as they intrinsically 

preserve temporal order. Li and Fu [114] proposed ARMA-HMM, which predicts future 

poses to enrich the partially observed activity sequences. The focus of their work was to 

improve early recognition so the accuracy of the predicted poses was not evaluated. Also, 

Galata et al. [67] proposed variable-length Markov models (VLMM) to encode high-order 

temporal dependencies for animation of human activities. They synthesised hypothetical 

activity sequences using the VLMM as a stochastic generator to create realistic animations 

with statistically accurate variations. However, the aim of their work was to generate 

synthetic poses rather than predict actual future poses.  

Vondrick et al. [118] demonstrated the difficulty of predicting actions by demonstrating 

that human subjects also fail to accurately predict actions in 30% of the cases when given 

a single frame one second before the action starts. To handle this ambiguity they develop 

a deep network architecture to produce multiple predictions and use large amounts of 

unlabelled video data to capture common sense knowledge about the world. Although 

they are still far from human performance on this task they are able to achieve reasonable 

accuracy for such a complex task. However, further analysis of their training frames 

shows that the start of an action is also an ambiguous concept as some examples do contain 

pose information that reveal the intended action and others contain contextual information 

that may be used to determine the action. In a gaming scenario, there is no contextual 
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information which may make prediction more difficult. Also, as gaming datasets are more 

difficult to collect than YouTube videos there is currently not enough training data 

available for the gaming scenario to train deep networks. 

There is relatively little research into action prediction and the approaches vary widely in 

their goals, ranging from improving early action recognition, through generating synthetic 

sequences to predicting the action class before the action starts. The last is the most 

interesting and challenging especially in scenarios where there is no contextual 

information. 

4.3 Methodology 

Three algorithms are proposed in this section with the same core but different extensions 

to enable early action recognition, online action recognition and action prediction. The 

core of these methods are the proposed Clustered Spatio-Temporal Manifolds, which are 

compact style invariant models of the dynamics of human actions. They enable action 

classification in a continuous stream for early action detection in addition to the ability to 

follow the progress of the action so that the peak can be detected with low latency or even 

predicted.  

The spatio-temporal manifolds are created by feature transformation to reduce style 

variance whilst still maintaining the temporal dynamics of the action. The first 

contribution is to generate key poses by clustering the manifolds and projecting the cluster 

centres. These key poses reduce computation time and in contrast to existing approaches 

are not selected from the training data but are style invariant as they are generated from 

the manifold. Another benefit of generating the key poses from the manifold is that they 

can be temporally ordered to form original action templates.  
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The action templates are effectively matched using DTW for execution rate invariance. 

The second contribution is to reduce the high observational latency of template matching 

by employing a sliding window approach to match template fragments with low latency. 

Peak key poses are the third contribution to enable explicit location of action peak for low 

latency action recognition and even action prediction. 

The proposed methods all consist of the same training phase which generates the action 

templates and a unique testing phase that depends on the task: early action recognition, 

online action recognition and prediction. 

4.3.1 TRAINING PHASE 

To create the spatio-temporal action templates there are four key stages: feature 

transformation, clustering, ordering and projection (as shown in Figure 4-2). Human 

actions are represented by a large number of spatio-temporal features, so the first stage is 

to reduce the dimensionality. Temporal dynamics are critical for action recognition and 

prediction so a dimensionality reduction method that preserves the temporal structure of 

the data in the embedded space is employed. Temporal Laplacian Eigenmaps (TLE) [106] 

is a nonlinear feature transformation technique, that finds a new set of dimensions that are 

combinations of the original dimensions. TLE has previously been used for offline action 

recognition from video sequences [106] and is suited to any time series data that contains 

repetitions. 
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Figure 4-2 Action templates with four key stages: dimensionality reduction, clustering, ordering and 

projection. 

 

Pose-based features can be viewpoint and anthropometric invariant as well as generated 

in real-time with a pose estimation method [6]. Normalising the skeleton poses and 

obtaining the joint angles removes the viewpoint variations. Similar to Lewandowski et 

al. [106] quaternions 𝑓𝑞  ∈  ℂ4 (as described in equation (2-9), were calculated for 13 

joint angles for each skeleton pose, so each high dimensional feature vector has 52 

dimensions. Although the proposed framework is evaluated with skeleton data, the 

method can also be applied to other time series data. 
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4.3.1.1 Dimensionality reduction 

Temporal Laplacian Eigenmaps (TLE) algorithm [106] is an unsupervised nonlinear 

method for dimensionality reduction for time series data. Given a set of points  

𝐗 =  (𝐱𝑖𝑟
) (𝑖𝑟=1…𝑛𝑟) distributed in high dimensional space  (𝐱𝑖𝑟

 ∈    ℝ𝐷), which in this 

chapter 𝐷 = 52, TLE is able to discover their low dimensional representation 𝐘 =

 (𝐲𝑖𝑟
) (𝑖𝑟=1…𝑛𝑟), (𝐲𝑖𝑟

 ∈    ℝ𝑑) where 𝑑 ≪ 𝐷 and 𝑛𝑟 is the number of points in the time 

series, as shown in Figure 4-4. The key feature of the embedded manifolds is that the 

temporal structure of the data is implicitly preserved in the low dimensional space.  

Two neighbourhood graphs are constructed during the process of dimensionality 

reduction, one with adjacent temporal neighbours and another with geometrically similar 

neighbours, as illustrated in Figure 4-3. The adjacent temporal neighbours are the 2𝑛𝑢 

closest points in the sequential order. Repetition neighbours are the 𝑛𝑣 points similar to 

𝐱𝑖𝑟
, extracted from repetitions of time series fragments, based on the minimum DTW 

distances using the Euclidean metric.  

 

Figure 4-3 TLE: temporal neighbours (green dots) of a given data of a given data point, 𝐱𝒊𝒓
, (red dots) 

in a) adjacent and b) repetition graphs. [106] 
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Neighbourhood connections defined in the Laplacian graphs place neighbours from the 

high dimensional space nearby in the embedded space. Consequently, the temporal 

neighbours preserve the temporal structure and the spatial neighbours reduce style 

variability by aligning the time series in the embedded space. 

The number of low dimensions d is a key parameter in the dimensionality reduction 

process but there is no consensus on how this should be determined. Cross validation is 

the simplest solution but computationally prohibitive. An estimate of the intrinsic 

dimension is the most computationally efficient solution and various approaches have 

been proposed. The Maximum Likelihood Estimation (MLE) [124] is a state of the art 

approach that applies the principle of maximum likelihood to the distances between close 

neighbours.  MLE provides good estimates of the intrinsic dimensionality on simulated 

and real datasets, furthermore the source code is available4 making the implementation 

trivial. 

4.3.1.2 Clustering 

Clustering is then performed on the embedded manifold to remove redundant information. 

k-means [119] is applied to cluster the 𝑛𝑟 low dimensional points 𝐘 into 𝑛𝑐 clusters 𝐂 =

{𝐜𝑖𝑐
} (𝑖𝑐=1…𝑛𝑐), 𝐜𝑖𝑐

 ∈   ℝ𝑑, where 𝑛𝑐 ≪ 𝑛𝑟 as shown in Figure 4-4. Removing redundant 

information reduces the computational time of the subsequent action recognition and may 

also improve accuracy. Additionally, the clusters provide key points throughout an 

action’s lifecycle that can be used to determine the current and even predict future 

                                                 

4 http://www.mathworks.com/matlabcentral/fileexchange/40112-intrinsic-dimensionality-estimation-

techniques/content/idEstimation/MLE.m  

http://www.mathworks.com/matlabcentral/fileexchange/40112-intrinsic-dimensionality-estimation-techniques/content/idEstimation/MLE.m
http://www.mathworks.com/matlabcentral/fileexchange/40112-intrinsic-dimensionality-estimation-techniques/content/idEstimation/MLE.m
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progress. The number of clusters (𝑛𝑐 = 35) was set based on existing experiments for 

offline action recognition [106]. 

 

Figure 4-4 Clustered Spatio-Temporal manifold with the low dimensional points  

𝐘 shown as points, coloured according to their cluster and the cluster centers 𝐂 as black circles 

4.3.1.3 Ordering 

The clusters discovered by k-means are unordered so the temporal relationships from the 

embedded manifold are exploited to order the clusters. A first-order Markov chain [120] 

is constructed for each action to chronologically link the clusters. The Markov chain is 

defined by the transition matrix  = (𝑖𝑐𝑗𝑐
) (𝑖𝑐=1…𝑛𝑐,𝑗𝑐=1…𝑛𝑐) where 𝑖𝑐𝑗𝑐

 are the cluster 

transition probabilities. The transition probability from cluster 𝑖𝑐 to cluster 𝑗𝑐 is found by 

counting connections between temporal neighbours on the manifold. If transitions to the 

same cluster are ignored, the maximum transition probability for each cluster will 

represent the temporal order 𝐨 = (𝑜𝑖𝑐
)(𝑖𝑐=1…𝑛𝑐) between the clusters as shown in Figure 

4-5 and in Eq. (4-1), where 𝑖𝑐  ≠ 𝑗𝑐. 

𝑜𝑖𝑐
= arg max

𝑗𝑐

 ( 
𝑖𝑐𝑗𝑐

 ) (4-1) 
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Figure 4-5 Cyclic clustered action manifold and highest probability transitions 

4.3.1.4 Projection 

Selecting key poses removes redundant information to improve classification accuracy 

and reduce the computational latency of template matching. In similar work, key poses 

were created by k-means clustering of training poses and selecting the closest pose to the 

cluster centre [61]. This reduces stylistic variation by selecting an average pose but as the 

key pose represents an individual some personal style will remain. To eliminate personal 

style the proposed method uses the clusters from the low dimensional action manifolds 

and projects their centres to the high dimensional space, using the Radial Basis Function 

Network (RBFN)  mapping to generate new poses that are not present in the training 

dataset.  

One limitation of TLE is that it places the 𝑛𝑟 points in a low-dimensional space but it does 

not learn general mapping functions that will allow new points to be projected from the 

low to the high dimensional space. RBFN mapping functions  allow projecting new data 

between the low and high dimensional spaces [106]. Using 𝛘 = {𝐲𝑖𝑟
, 𝐱𝑖𝑟

} (𝑖=𝑖𝑟…𝑛𝑟) as a 

training set, RBFN5 are trained to learn the mapping between the low and the high 

dimensional space [106]. Then using the RBFN mappings the cluster centres 𝐂 are 

                                                 

5 Matlab function newrbe() was used to design an exact radial basis network with the training set 𝛘. 
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projected into the high dimensional space to generate key poses 𝐤 ∈   ℝ𝐷, that form the 

action templates 𝐊𝒂 = (𝐤𝑖𝑜
) (𝑖𝑜=𝑜1…𝑜𝑛𝑐), by using the temporal order 𝐨 found between 

clusters, as illustrated in Figure 4-6. 

 

Figure 4-6 Right punch action template 

4.3.1.5 Peak key pose selection 

Key poses have been used with template matching for offline action classification [61] 

but the novel contribution is to select the key pose that represents the peak of the action 

for online classification. Peak key poses are a novel concept, which are related to but are 

not the same as action points [13] or canonical poses [12]. Peak key poses also represent 

a single pose but in contrast to existing approaches  they are selected from the key poses 

rather than the training poses so they are invariant to individual style. 

To select the peak key poses, the peak poses from the training data are matched against 

the key pose templates (for the definition of a peak pose see section 2.5.2.1). To increase 

robustness, fragments of poses are matched rather than single poses which enables actions 

with similar poses to be correctly matched based on the temporal pose history before the 

action peak. To extract a fragment 𝑓𝐺  from a sequence of poses 𝐒 =  (𝐬𝑖𝑠
) (𝑖𝑠=1…𝑛𝑠), 

(𝐬𝑖𝑠
 ∈    ℝ𝐷),  Eq. (4-2 is used, where 𝑛𝑓 is the required number of poses in the fragment, 

𝑖𝑓 is the index of the last pose, 𝑛𝑠 is the number of poses in the sequence and 𝑖𝑓  ≤  𝑛𝑠 and 

𝑖𝑓 − 𝑛𝑓  ≥ 0. 

𝐤𝑜1
… … 𝐤𝑜𝑛𝑐
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𝑓𝐺(𝐒, 𝑖𝑓) = (𝐬𝑗𝑓
) (𝑗𝑓=𝑖𝑓−𝑛𝑓,𝑖𝑓−𝑛𝑓+1,…,𝑖𝑓) (4-2) 

Assuming the peak poses in the training data have been manually selected for each action 

and their indices stored:  𝛈 = (𝜂𝑖𝜂
)(𝑖𝜂=1…𝑛𝜂) , the peak key poses are selected as follows: 

for each action 𝑎 and for each peak pose index 𝜂𝑖𝜂
, the matching key pose index 𝑖𝑚 is 

found by minimising the DTW distance (described in the section 4.3.1.5.1) between the 

peak pose fragment from the training poses 𝐗 and the key pose fragments from the action 

templates 𝐊𝒂, as in Eq. (4-3 and shown in Figure 4-7.  

𝑖𝑚(𝜂𝑖𝜂
) = arg min

𝑖𝑘 ∈ 1…𝑛𝑐

 𝑓𝐷(𝑓𝐺 (𝐗, 𝜂𝑖𝜂
) , 𝑓𝐺(𝐊𝒂, 𝑖𝑘)) (4-3) 

To find the peak key pose index 𝑖𝑝 for the action 𝑎, 𝛇 is initialised (𝛇 = 01,𝑛𝑐
) and each 

time a matching key pose index 𝑖𝑚 is found 𝜁𝑖𝑚
 is incremented. The peak key pose index 

𝑖𝑝 for the action is the key pose index, with the maximum number of matches (𝑖𝑝(𝑎) =

arg max 𝛇).      

 

Figure 4-7 Template fragment matching: peak pose fragment (left), matched key pose fragment 

(right) 
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4.3.1.5.1 Dynamic Time Warping Algorithm 

DTW [121] is a well-known algorithm for matching time-series data that allows “elastic” 

transformation to gain execution rate invariance, as illustrated in Figure 4-8.  

  

Figure 4-8 Comparison of the Euclidean and DTW matching. (a) The Euclidean matching 

compares the samples at the same time instants, whereas (b) the DTW measure compares samples 

with similar shapes to minimise the distance [122].  

 

The similarity of any two time series data, a query sequence 𝐐 =  (𝐪𝑖𝑞
) (𝑖𝑞=1…𝑛𝑞), 𝐪𝑖𝑞

 ∈

   ℝ𝐷  and a reference sequence 𝐑 =  (𝐫𝑖𝑟
) (𝑖𝑟=1…𝑛𝑟), 𝐫𝑖𝑟

 ∈    ℝ𝐷 can be computed using 

the standard DTW distance metric as follows. 

Initially, a local dissimilarity function is used, in this work Euclidean distance 𝑓𝛿 is 

employed, to create a cross-distance matrix 𝚪 ∈  ℝ𝑛𝑞 × 𝑛𝑟 between 𝐐 and 𝐑. Specifically, 

for any pair of 𝐪𝑖𝑞
 and 𝐫𝑖𝑟

: 

𝚪(𝑖𝑞, 𝑖𝑟) =  𝑓𝛿(𝐪𝑖𝑞
, 𝐫𝑖𝑟

) (4-4) 

Then warping paths are created so that the distortion along the matrix can be minimised, 

as demonstrated in Figure 4-9.  
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Figure 4-9 Cross-distance matrix 𝚪 between sequences 𝐐 and 𝐑, showing the optimum warping path 

𝐋, that minimises the distance between 𝐐 and 𝐑 [123]  

A warping path 𝐋𝑖𝐿
 (𝑖𝐿 = 1 … 𝑛𝐿)   is defined as:  

𝐋(𝑖𝐿) = (𝑓𝑄
𝐿(𝑖𝐿), 𝑓𝑅

𝐿(𝑖𝐿)) (4-5) 

where 𝑓𝑄
𝐿  ∈ {1 … 𝑛𝑞} , 𝑓𝑅

𝐿
  ∈  {1 … 𝑛𝑟}   are functions that stretch the time axis of 𝐐 and 𝐑 

respectively, and 𝑛𝐿  is the length of the path. 

For any 𝐋 the accumulated distortion on the path 𝛿, is calculated as: 

𝛿(𝐐, 𝐑) =  ∑ 𝚪(𝑓𝑄
𝐿(𝑖𝐿), 𝑓𝑅

𝐿(𝑖𝐿))

𝑛𝐿

𝑖𝐿=1

 

(4-6) 

Finally, the DTW distance is calculated by choosing the path 𝐋 that stretches the time 

index as to minimise the Euclidean pair-wise distance between 𝐐 and 𝐑 as described 

below: 

𝑓𝐷(𝐐, 𝐑) =  min
𝐿

𝛿(𝐐, 𝐑) (4-7) 

1

𝑖𝑞1

𝑖𝑟

𝑛𝑟

𝑛𝑞
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4.3.2 TESTING PHASE 

The testing stages depend on the task (online, early action recognition or prediction) but 

there is a common base of online template matching with Dynamic Time Warping for 

execution rate invariance [121]. Existing approaches for offline action recognition use the 

entire action template which inherently has high latency [61]. To enable online 

recognition a sliding window approach matches recent test poses with action template 

fragments, as illustrated in Figure 4-10.  

 

Figure 4-10 Template fragment matching: observed test poses and matched action template 

4.3.2.1 Early Action Recognition 

Early action recognition aims to determine the action class, based on as few observations 

as possible, even when only part of the action has been seen. The majority of research in 

this area is on activities from video sequences [111]–[117]. In existing work [111]–[114], 

[116], [117] the sequences are pre-segmented to contain a single activity and evaluation 

is performed at different observation ratios, from 0.1 to 1. So an observation ratio of 0.5 

represents the first half of the action and an observation of 1 is the conventional offline 

action recognition approach. Since the test sequences in this thesis are not pre-segmented, 

as they consider the real-time application of action recognition, the proposed method 

assigns an action label for each frame in a continuous stream using a sliding window. The 
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sliding window contains the recent and current observations from the test stream to ensure 

no future information is incorporated into the method. 

The proposed method for early action recognition is online template matching where the 

current test pose fragment is matched against sliding windows on each of the different 

action templates to obtain key pose fragments. The action class of the most similar key 

pose fragment is used as the action classification label for the current frame. DTW allows 

"elastic" transformation so actions in the test stream performed at different speeds to the 

action templates can be matched. Formally, early action recognition for each sequence of 

test poses 𝐙 =  (𝐳𝑖𝑡
) (𝑖𝑡=1…𝑛𝑡), 𝐳𝑖𝑡

 ∈  ℝ𝐷 is performed as follows: to find the action 

classification label 𝑎′ for the current pose 𝐳𝑖𝑡
, the normalized DTW distance between the 

test pose fragment and test poses from all the action templates are minimised according 

to: 

𝑎∗(𝑖𝑡) = arg min
𝑎∈1…𝐴

 (min
𝑖𝑘∈𝑛𝑓…𝑛𝑐

𝑓𝐷 (𝑓𝐺(𝐙, 𝑖𝑡), 𝑓𝐺(𝐊𝒂, 𝑖𝑘))) (4-8) 

The minimum normalised DTW distances for each frame of a sample sequence in the 

G3D dataset against each action template are shown in Figure 4-11. The lowest distance 

over all the actions represents the matched action class as illustrated inFigure 4-11. 
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Figure 4-11  (Top) Normalised DTW distance for each frame (Bottom) Action classification label for 

each frame. At this stage all frames are classified as an action, even the neutral frames. To overcome 

this limitation action points are detected at the next stage to only classify the peak frame of each 

action. 

4.3.2.2 Online Action Recognition 

To enable continuous action recognition to be suitable for real-world applications a single 

point needs to be identified for each action, rather than classifying individual frames. For 

this reason action points [13] were introduced which are action labels with temporal 

anchors. Action points are used in this section to detect the peak of the action and each 

action point is represented by an action label 𝑎 and a timestamp 𝑡𝑑.  

Combining online template matching with peak key poses enables online action 

recognition with high accuracy and very low latency. To explicitly locate the moment 

where an action reaches its peak, poses are followed as they progress through the early 
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stages of the action and the peak is detected by comparing the matched poses with the 

peak key pose. 

For each test pose stream 𝐙 =  (𝐳𝑖𝑡
) (𝑖𝑡=1…𝑛𝑡) online action recognition is performed as 

follows: the first step is to find the action classification label 𝑎∗ for the current test pose 

𝐳𝑖𝑡
 using the online template matching described in section 4.3.2.1. The second step is to 

determine the progress of the current action by locating the key pose on the action 

template that is the closest match to the current test pose. To find the matching key pose 

index 𝑖𝑚 for the current test pose index 𝑖𝑡,, the normalised DTW distance for the test pose 

fragment against test poses from all the action templates are minimised according to Eq. 

(4-9). 

𝑖𝑚(𝑖𝑡, 𝑎∗) =  arg min
𝑖𝑘∈𝑛𝑓…𝑛𝑐

𝑓𝐷 (𝑓𝐺(𝐙, 𝑖𝑡), 𝑓𝐺(𝐊𝒂, 𝑖𝑘)) (4-9) 

The third step is to determine if the action has reached its peak. The peak key pose can be 

conceptually projected onto the clustered action manifold to illustrate that the peak pose 

is detected when the matched key pose index 𝑖𝑚 is the same as (or slightly greater) than 

the peak key pose index 𝑖𝑝 (as shown in Figure 4-13) and is formally defined in Eq. (4-10).  

𝜑(𝑖𝑚 , 𝑖𝑝, 𝑛𝑘) =  {
1    if  0 ≤ 𝑖𝑚 − 𝑖𝑝  ≤  𝑛𝑘  

0          otherwise               
 

(4-10) 

where 𝑖𝑚 is the matched key pose index for the current test pose 𝐳𝑖𝑡
, 𝑖𝑝  is the index of the 

peak key pose and 𝑛𝑘 is the maximum number of poses after 𝑖𝑝 allowed to detect a peak 

pose. This can also be illustrated in graph format as shown in Figure 4-12 where the key 

pose index 𝑖𝑘, is plotted for each frame and where this cluster index line crosses the peak 

key pose line (dotted horizontal line) for the corresponding action an action point is 

detected (o).  
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Figure 4-12 Clustered Action Manifold cluster indices for each frame with ground truth action points 

(*) and detected action points (o) 

 
Figure 4-13 Right Punch Clustered Action Manifold with peak key pose index 𝒊𝒑 with matched key 

pose index 𝒊𝒎and last matched key pose index 𝒊𝒍. 

4.3.2.3 Action Prediction 

There are relatively few approaches to action prediction and the approaches vary widely 

in their goals, ranging from improving early action recognition [114], through generating 

synthetic sequences [67] to predicting the action class before the action starts [118]. In 
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this section a novel approach to action prediction is proposed where action peaks are 

predicted in a continuous stream before the peak has been observed. Action points are 

used in this section to represent the action peak and each prediction is represented by an 

action label 𝑎, a timestamp for the predicted action peak 𝑡𝑝 to determine the timeliness of 

the prediction and a timestamp at the time the prediction was made 𝑡𝑑 to measure how far 

in advance the predictions can be accurately made.  

For each test pose stream 𝐙 =  (𝐳𝑖𝑡
) (𝑖𝑡=1…𝑛𝑡), online prediction is performed as follows: 

the first step is to find the action classification label 𝑎∗ for the current test pose 𝐳𝑖𝑡
 using 

the online template matching, using Eq. (4-8) described in section 4.3.2.1. The second 

step is to determine the progress of the current action by locating the key pose index 𝑖𝑚 

on the action template that is the closest match to the current test pose, using Eq. (4-9), 

described in section 4.3.2.2. The third step is to store the 𝑛𝑚 most recent sequential pose 

matches of the current action class 𝑎′ to maintain the history of the action progress 𝛉 =

(𝑖𝑚(𝜃𝑡, 𝑎∗))(𝜃𝑡=𝑖𝑡−𝑛𝑚…𝑖𝑡). 

The fourth step is to perform the action prediction using the recent action history and 

regression. Although the dynamics of human actions are nonlinear in the high dimensional 

space, their embedded clustered spatio-temporal representation is locally linear. This is 

demonstrated in Figure 4-12, which shows time along the horizontal axis and the key pose 

index along the vertical axis. Therefore, linear regression is proposed to quickly predict 

the action peak. For the current test pose 𝐳𝑖𝑡
, when 𝑛𝑚 sequential key pose matches of the 

same action class 𝑎′ have been observed, their key pose indices 𝛉, are fitted to a straight 

line by least-squares regression and the equation of the line is derived by Eq. (4-11). 

(𝛼′(𝑎∗, 𝑖𝑡), 𝛽′(𝑎∗, 𝑖𝑡)) = argmin
𝛼,𝛽

∑ (𝑖𝑚(𝜃𝑡, 𝑎∗) −  𝛼 −  𝛽𝑡𝑖)2

𝑖𝑡

𝜃𝑡=𝑖𝑡−𝑛𝑚

 

(4-11) 
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where 𝛼′ is the y-intercept of the least squares line and 𝛽′ is the gradient. 

The least squares line is extended to predict future poses using the derived equation. The 

peak key pose line is a horizontal line with a y-intercept of the peak key pose index 𝑖𝑝  for 

the corresponding action. The point where the extended least squares line intersects the 

peak pose horizontal line is the estimated time 𝑡𝑝 of the peak with time of detection 𝑡𝑑 =

 𝑖𝑡 (see Figure 4-14). Extreme cases are excluded by setting thresholds on the minimum 

and maximum gradient of the slope. The gradient of the line represents the execution 

speed of the current test subject and is independent on the speed of subjects observed in 

the training set. Fast subjects will match key poses in the action template faster than 

slower subjects resulting in a steeper slope. A key benefit of the proposed temporal 

prediction is that it is invariant to execution speed as it utilises the gradient of the slope 

which is formed based on the speed of the current subject. 

 

Figure 4-14 Linear regression at time 𝒕𝒅 to predict the time 𝒕𝒑 at which the partially observed action 

will reach its peak. 

The core of the methods proposed in this chapter are based on style invariant spatio-

temporal action templates that can be efficiently matched with DTW for execution rate 

invariance for early action recognition and combined with peak key poses for reliable 
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online action recognition. Furthermore, the spatio-temporal templates are suitable for fast 

linear regression to enable action prediction. 

4.4 Results 

4.4.1 DATASETS 

The performance of the proposed algorithms are evaluated using publicly available 

datasets designed specifically for real time action recognition: G3D (introduced in section 

3.4) and MSRC-12 [71] (summarised in 2.5.1.3). Both datasets provide sequences of 

skeleton data captured using the Kinect pose estimation pipeline at 30fps. Action point 

annotations of the peak poses are available for the MSRC-12 dataset and G3D dataset to 

precisely measure the latency of action recognition methods as well as the accuracy 

(described in section 2.5.2.1). Comparative studies are conducted separately for 

performance in the specific tasks of online action recognition, early action recognition 

and action prediction. 

A “leave-person(s) out” cross validation protocol (described in section 2.5.3) was used 

where a set of people is removed to obtain the minimum test set that contains instances of 

all actions. For the MSRC-12 dataset this may be more than one actor as not every actor 

performs all the actions for the video + text modality. For the G3D dataset this is simply 

one actor as all actors perform all the actions. The remaining large set is used for the 

training. This process is repeated 10 times with different subsets of people to obtain the 

general performance. The total number of training and testing instances for each dataset 

used in the following experiments is shown in Table 3-3. 
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4.4.2 ONLINE ACTION RECOGNITION 

4.4.2.1 Performance Metrics 

For a fair comparison with existing approaches the same latency aware metric was used 

as initially proposed by [71] and later adopted by [73]. The detected action points are 

compared to the ground truth action points using the action point metric (described in 

section 2.5.2.2.3) to obtain a mean action point 𝐹1-score at a fixed latency Δ, where Δ = 

333ms.  

4.4.2.2 Comparative Study 

Clustered Spatio-Temporal Manifolds that are proposed in this chapter are evaluated 

against the three algorithms discussed in the previous chapter: Random Forests, 

AdaBoost and Dynamic Feature Selection (see section 3.5.3 for more details on the 

algorithms and parameters).  

Clustered Spatio-Temporal Manifolds: To learn manifolds for each action the 

algorithm requires manual segmentation of the start and end of the action and all frames 

are used for training. It is important to note that this segmentation is only required in the 

training phase and is not performed in the testing phase. The annotated action points are 

additionally used to learn the peak key poses. The parameters for the proposed approach 

are the target dimensionality 𝑑, the number of clusters 𝑛𝑐 in the manifold, the fragment 

size 𝑛𝑓 and the number of clusters 𝑛𝑘 that can be skipped at the peak. The target 

dimensionality (𝑑 = 3), was determined by applying the maximum likelihood intrinsic 

dimensionality estimator [124]. The number of clusters (𝑛𝑐 = 35) was set based on 

existing experiments for offline action recognition [106]. The number of poses in the 

fragment (𝑛𝑓 = 10) was set to match the size of the smoothing window 𝑆 in the previous 

chapter. To find the value for 𝑛𝑘 an exhaustive search was performed within the training 
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set to maximise the F-score. The optimum value is (𝑛𝑘 = 0) for the MSRC-12 and 

(𝑛𝑘 = 14) for the G3D dataset. No smoothing window was applied to the frame based 

distance results, and the final output from the algorithm was the detected action points for 

each sequence.  

4.4.2.3 Online Recognition Results 

Table 4-1 Action Point F1-scores at Δ=333ms, the average and standard deviations over ten leave-

persons-out runs are shown. The results shown in italics were published by the method authors, all 

other results were generated by my own implementations. 
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(0.148) 

0.675 

(0.156) 

0.744 

(0.270) 

- 0.773 

(0.124) 

The experimental results show that the proposed Clustered Spatio-Temporal Manifolds 

achieved state-of-the-art accuracy for online action recognition with low latency. The 

experiments demonstrate the proposed method achieves the highest accuracy, 77.3% and 

97.8% on the MSRC-12 and G3D datasets respectively (see Table 4-1 for a comparison 

with existing approaches). A breakdown of the results by action shows increased 
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performance of the proposed method over the comparative methods in every action in the 

G3D dataset (see Figure 4-16). The graphs show the methods’ action point 𝐹1-score 

(defined in 2.5.2.2.3) for each action in the dataset and the average across all actions. 

There is also considerable improvement on actions in the MSRC-12 dataset with similar 

poses (e.g. change weapon and night goggles) which were difficult to discriminate without 

the temporal history (see Figure 4-17). The higher accuracy of the proposed method may 

be attributed to the improved execution rate invariance gained by matching template 

fragments with DTW instead of fixed size feature windows as used by Fothergill et al. 

[71] and Sharaf et al. [73]. Although both Zhao et al. [72] and Ellis et al. [12] also perform 

online action recognition they use the non-gaming actions in the MSRC-12 dataset so a 

comparison with their accuracy results is not possible.  

The proposed method runs in real time (60fps) with low average observational latency of 

2 frames (67ms). The observational latency of the proposed approach is very low in 

comparison to Zhao et al. that have an observation latency of 830-1500ms. The 

significantly lower observation latency of the proposed method was achieved by using 

considerably less frames in the sliding window than Zhao et al. in conjunction with the 

explicit identification of the peak key pose.  

Figure 4-15 is an example sequence from the G3D dataset which illustrates the low 

latency that is achieved by the explicit peak pose (dotted horizontal line). The ground truth 

action points (*) and the vertical dashed lines represent the time window (±Δ) where the 

action point is deemed to be correctly detected. The detected action points (o) show that 

the proposed approach has a very low latency and high accuracy. 
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Figure 4-15 Clustered Action Manifold cluster indices for each frame with ground truth action points 

(*) and detected action points (o) 

 

 

Figure 4-16 G3D Fighting Online Action Recognition Results by Action 
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Figure 4-17 MSRC-12 Fighting Online Action Recognition Results by Action 

 

4.4.3 EARLY ACTION RECOGNITION  

The existing work on early recognition has been done in the video modality on activities 

that were pre-segmented [67], [111]–[117] and therefore a direct comparison is not 

feasible. Instead pose-based approaches for online action recognition have been adapted 

for early action recognition in a continuous stream to evaluate their effectiveness at a 

similar task. 

4.4.3.1 Performance Metrics 

In the video domain, Hoai and De la Torre [115] recorded the F1-scores as the action of 

interest unrolled from 0.1 to 1 and refer to this as the F1-score curve. However, the 

percentage of action observed can only be calculated for sequences that have been pre-

segmented to contain a single action. Also, in the video domain, Lan et al. [116] use the 

temporal distance (in frames) to report accuracy. In real world scenarios such as gaming 

the videos are not pre-segmented, instead action points are provided as temporal anchors 
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and the latter frame-based metric seems the most appropriate measurement. For example, 

the methods’ performance at a temporal stage -20 describes the classification accuracy 

given all of the testing frames up to 20 frames before the action peak. 

4.4.3.2 Comparative Study 

The three algorithms evaluated in the previous chapter are adapted for early action 

recognition: Random Forests, AdaBoost, Dynamic Feature Selection (see section 3.5.3 

for more details on the algorithms parameters). Before the final detection step these 

algorithms output a frame based classification that is used for early action recognition. 

Similarly, Clustered Spatio-Temporal Manifolds, the algorithm proposed in this 

chapter, also outputs a frame-based classification before the final action detection (see 

section 4.4.2.2 for more details on the algorithm parameters). 

4.4.3.3 Early Action Recognition Results 

The proposed method significantly outperforms all of the comparative methods at all 

temporal stages across both datasets as illustrated in Figure 4-18 and Figure 4-19. The 

graphs show the methods’ frame 𝐹1-score (defined in 2.5.2.2.3) at different temporal 

stages from 20 frames before the action peak -20 to the peak of the action 0. The proposed 

method reaches 80% accuracy 16 and 10 frames before the action peak on the MSRC-12 

and G3D datasets respectively, whereas the comparative methods achieve less than 30% 

accuracy at similar stages. The significant improvement in classification accuracy 

especially in the early stages of the action can be attributed to the proposed temporal 

models. The majority of failure cases were in the neutral or very early stage of the action 

as shown in Table 4-2 and Table 4-3 where the action is ambiguous. The proposed method 

achieves 97.8% and 100% accuracy on the MSRC-12 and G3D dataset respectively at the 

action peak. The failure cases at the action peak in the MSRC-12 dataset were mainly due 

to the Change Weapon action which in some cases appears very similar to the neutral pose 
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at the peak as illustrated in Table 4-3. The action peak frame based F1 results are higher 

than the action point F1 scores reported in the previous section because the frame based 

metric used in this section is only concerned with classification and not the temporal 

detection of the action peak of which the latter is a more difficult task. Finally, the 

proposed approach obtains 76.3% on the MSRC-12 dataset 20 frames before the peak 

which may be attributed to the fact that the MSRC-12 actions typically have longer onset 

than G3D actions, especially the Change Weapon, Shoot and Throw actions. 

 

Figure 4-18 G3D Frame F1-scores, the average over ten leave-persons-out runs are shown 

 

Figure 4-19 MSRC-12 Frame F1-scores, the average over ten leave-persons-out runs are shown 
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Table 4-2 G3D Temporal Frame Based Results: Correct classifications are shown in green and failure 

cases in red. The majority of failure cases were in the neutral or very early stage of the action. 

Frame -20 -15 -10 -5 -0 

Trial_22_s
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Right Punch  
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Table 4-3 MSRC-12 Temporal Frame Based Results: Correct classifications are shown in green and 

failure cases in red. The majority of failure cases were in the neutral or very early stage of the action 

but there were also some cases at the peak of the action as in some cases the peak pose for Change 

Weapon is very similar to the neutral pose. 

Frame -20 -15 -10 -5 -0 

Trial_p2_1

_8a_p03_f

556-571 

     

Actual 

Detected 

Throw 

Throw 

Throw 

Throw 

Throw 

Throw 

Throw 

Throw 

Throw 

Throw 

Trial_p2_2

_12A_p25

_f377-397 

     

Actual 

Detected 

Kick 

Shoot 

Kick 

Shoot 

Kick 

Kick 

Kick 

Kick 

Kick 

Kick 

Trial_p2_2

_6A_p26_

f447-467 

   
 

 

Actual 

Detected 

Shoot 

Shoot 

Shoot 

Shoot 

Shoot 

Shoot 

Shoot 

Shoot 

Shoot 

Shoot 



 

 

 

 

138 

Trial_p3_2

_10A_p02

_f1123-
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Actual 
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Weapon 

Change 

Weapon 

Change 

Weapon 
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Weapon 

Shoot 

Change 

Weapon 

Kick 

4.4.4 ACTION PREDICTION  

The existing work on action prediction has also been performed in the video modality and 

therefore a comparison is not feasible. Instead, the comparative pose-based approaches 

for early action recognition have been extended with the same linear regression as 

described in 4.3.2.3 to evaluate their effectiveness at action prediction. 

4.4.4.1 Performance Metrics 

Huang and Kitani [125] use average frame distance (AFD) to evaluate the accuracy of 

their predicted poses. AFD is a good measure of the spatial prediction but does explicitly 

measure the latency of the temporal prediction. In the proposed method the emphasis is 

on the temporal prediction of the peak pose, to the best of my knowledge there are no 

existing metrics for predicting the peak of the action. However, the Action Point 𝐹1-score 

(defined in section 2.5.2.2.3) is a latency-aware metric for online action recognition that 

can be adapted to measure the accuracy of the predicted action points 𝑡𝑝𝑎
 instead of 

measuring the accuracy of the detected action points 𝑡𝑑𝑎
, by modifying Eq. (2-18) to Eq. 

(4-12). 
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Φ𝑝 (𝑡𝑝𝑎
, 𝑡𝑔𝑎

, Δ) =  {
1    if  | 𝑡𝑔𝑎

 −  𝑡𝑝𝑎
|  ≤  Δ

0         otherwise               
 

(4-12) 

For a new test sequence, the arrival of data can be simulated and the predicted action point 

𝐹1-scores recorded. The predicted action point metric measures instances rather than 

frame based predictions so it will be referred to as the action point 𝐹1-score curve. 

4.4.4.2 Comparative Study 

To extend the early recognition algorithms with linear regression, the methods need to 

output a certainty measure for each action at each frame, as illustrated in Figure 3-3. This 

is the case for two out of the three algorithms evaluated in the previous section: AdaBoost 

and Dynamic Feature Selection. Random Forests could not be adapted for prediction 

as the frame based result was a classification. Clustered Spatio-Temporal Manifolds, 

the algorithm proposed in this chapter, outputs a cluster index for each frame which can 

be used in conjunction with the peak key pose index for prediction. The parameter 

required for prediction is the number of sequential frames for the linear regression. An 

exhaustive search was performed on the training set and the optimum result for AdaBoost 

and Dynamic Feature Selection was (𝑛𝑚 = 2) and for the Clustered Spatio-Temporal 

Manifolds the optimum value was (𝑛𝑚 = 6). 

4.4.4.3 Action Prediction Results 

To measure how precisely the peak of the action can be predicted for all subjects the action 

point 𝐹1 metric was captured as the continuous stream progressed. The proposed method 

significantly outperforms all of the comparative methods at all temporal stages on the 

G3D dataset as illustrated in Figure 4-20 and across the majority of temporal stages on 

the MSRC-12 dataset as illustrated in Figure 4-21. The graphs show the methods’ action 

point 𝐹1-score (defined in 2.5.2.2.3) at different temporal stages from 20 frames before 

the action peak -20 to the peak of the action 0. The proposed method works in a continuous 
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stream, where the prediction is made as early as possible and early incorrect predictions 

decrease the final 𝐹1-score. Even at the action peak prediction accuracy is less than online 

action recognition as the latter approach delays the detection until the peak has been 

observed. The proposed method reaches 38.1% and 45.6% 10 frames before the action 

peak. Predicting the point in time at which the peak pose will occur is a much more 

complex task than early detection of the action class or online action recognition, so a 

decrease in performance is expected.  This is supported by the fact that the comparative 

approaches only reached a maximum of 24% at 10 frames before the action peak. The 

improvement in prediction of the proposed method can be attributed to the style invariant 

temporal model that is learnt for each action which includes explicit identification of a 

generic peak key pose.  

 

Figure 4-20 G3D Action Point F1-score curves, the average over ten leave-persons-out runs are shown 

 

Figure 4-21 MSRC-12 Action Point F1-score curves, the average over ten leave-persons-out runs are 

shown 
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A key benefit of the proposed prediction framework is that it is invariant to execution 

speed; the experimental results show that the regression line for a faster subject has a 

steeper gradient than the regression line for slower subject performing the same action 

and in both cases the action peak is detected correctly (see Figure 4-22).  

 

 

 

 

Figure 4-22 Two subjects performing a (right kick), at different speeds (classified right kick 

poses •, classified left kick poses •, ground truth peak pose ∗, predicted peak pose ◦) 
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4.5 Summary 

The core of the proposed methods in this chapter are the Clustered Spatio-Temporal 

Manifolds, which are compact style invariant models of the complex dynamics of human 

actions. They enable action classification in a continuous stream for early action detection 

in addition to the ability to track the progress of the action so that the peak can be detected 

with low latency or even predicted. 

The spatio-temporal manifolds were created by feature transformation to reduce style 

variance whilst still maintaining the temporal dynamics of the action. The manifolds were 

clustered and the cluster centres projected to create key poses which reduced computation 

time and the key poses were temporally ordered to create action templates. 

The action templates were effectively matched using DTW for execution rate invariance. 

To reduce the high observational latency of template matching a sliding window approach 

was used to match template fragments with low latency. The proposed approach achieved 

high accuracy for early action recognition and in contrast to existing approaches can 

operate in a continuous stream. 

Peak key poses were introduced to explicitly locate the moment where an action reaches 

its peak which enabled low latency recognition before the completion of the action. 

Experimental results on publicly available gaming action datasets demonstrate state-of-

the-art high accuracy with very low latency.  

This chapter also introduced the novel and challenging problem of predicting the action 

peak in a continuous stream. The proposed solution integrates the recent action progress 

history with regression for fast estimation of the peak. Experiments on public action 

recognition datasets showed that the proposed method outperforms the comparative 
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approaches and makes reasonable predictions even when there is a significant variation 

in the style and execution rate of the subject.   
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CHAPTER 5 

5 COMPOUND ACTION RECOGNITION USING HIERARCHICAL 

TRANSFER LEARNING  

5.1 Introduction 

The previous chapter reported high accuracy and low latency for action recognition but 

as the existing gaming datasets were recorded with scripted scenarios the actions are 

temporally isolated and easy to segment. In contrast, this chapter introduces a novel game-

sourcing approach for recording realistic actions where the subjects are recorded whilst 

playing Kinect Sports [126], a commercial video game. Sports games introduced the 

element of competition so the actions captured were more realistic and challenging in 

comparison to scripted actions. Subjects in the new game-sourced dataset (G3Di) 

performed multiple actions in quick succession which resulted in actions with 

indistinctive boundaries. When multiple actions are performed in quick succession 

movements from different actions may temporally overlap, which are termed in this thesis 

as compound actions (see section 5.4 for examples). 

Furthermore, none of the existing gaming datasets contain multiple players (MSRC-12 

[71], MSR Action3D Database [40] and G3D (introduced in section 3.4)). A wide range 

of applications could benefit from recognising the actions of multiple users including 

home entertainment, healthcare, sports, and robotics. For example, a personal robotic 

assistant for the elderly in a care home could interact with multiple staff and patients to 

appear more natural. Another example is a training simulation for health care 

professionals where multiple trainees could interact with a virtual patient, which would 

emulate the real-life scenario. The Xbox Kinect already has many games titles that are 
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multi-player. Multiplayer computer games encourage people to interact with other players 

across the globe or friends and family in the same living room. The interactions can be 

collaborative or competitive depending on the game and the mode. Boxing is naturally a 

competitive sport but team sports can be played either collaboratively with friends on the 

same team or competitively with friends on the opposing team. For example, one can play 

table tennis alongside a friend in a doubles match or against a friend in a singles match. 

The players can act simultaneously or after a short delay depending on the sport. For 

example, in boxing the actions are concurrent but other sports such as table tennis have a 

delay between one person acting and the other reacting. 

Evaluating action recognition algorithms is typically done in isolation, focusing 

historically on high accuracy and more recently also on low latency. However, in reality 

most actions form part of an interaction where the duration of the action becomes 

important. In normal human interaction, people physically interact with each other, like 

in a real boxing match. Recent technological developments, such as low cost depth 

sensors, have enabled a new form of interaction which is virtual, for example a full body 

boxing game illustrated in Figure 5-1. 

  

Figure 5-1 Boxing interactions: A real attack (left) occurs when one person punches the other person 

and makes physical contact, in contrast a virtual attack (middle) and a virtual block (right) occur 

when both players face the screen and perform actions toward the computer screen so there is no 

physical contact. 
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To overcome the challenges presented by realistic multiplayer datasets a Hierarchical 

Transfer Learning (HTL) algorithm is proposed which is comprised of a hierarchical 

interaction detection and evaluation framework in addition to a novel transfer learning 

mechanism for recognition of compound actions.  

To enable the recognition of higher-level interactions a hierarchical approach is employed 

which is based on the recognition of actions. The motivation is that actions are easier to 

recognise first and can then be used for recognising higher-level interactions. For 

example, a virtual interaction between two people such as a block in a boxing game could 

be recognised as a punch action and a defence counter action. The benefits of the proposed 

hierarchical approach is that it reduces the amount of training data required and 

interactions are recognised more efficiently as redundancy is reduced in the recognition 

process by using actions multiple times. Due to the complexities introduced by the 

compound actions, transfer learning is employed to allow the tasks of action segmentation 

and modelling to be performed on a related but simpler dataset, combined with model 

adaptation to improve performance on the more complex dataset. Furthermore, actions 

are represented by discriminative body parts to provide the flexibility to match test poses 

that are not in the training dataset by introducing independence between limbs. 

5.2 Related Work 

Previous chapters have focused on online action recognition of scripted actions whereas 

this review considers recognising actions from a real world scenario. First, existing 

datasets are reviewed in terms of the complexity of the actions and the number of subjects 

(see section 5.2.1). Then, as the diversity and complexity of real-world datasets makes 

accurate labelling difficult and time consuming techniques for transferring knowledge 

from simple to complex datasets are reviewed (see section 5.2.2). Next, as commercial 
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games are often multiplayer, existing work on interaction is reviewed (see section 5.2.3). 

Finally, interaction performance metrics are evaluated for their suitability for evaluating 

real-time applications (see section 5.2.4). 

5.2.1 DATASETS 

The problem with the existing gaming datasets, MSRAction3D [40], MSRC-12 [71] and 

G3D, is that the scenarios were scripted so the subjects’ movements are not realistic. In 

scripted datasets, the participants are instructed beforehand on how and when to perform 

the actions, which results in actions that are temporally isolated. In these datasets, the 

player often returns to the neutral position between actions making them easier to segment 

and recognise. However, in fast paced competitive computer games like boxing, players 

skip returning to the neutral position between actions, which results in compound actions. 

There are no existing gaming datasets containing compound actions. 

Existing interaction datasets contain multiple actors and similar to action recognition can 

be categorised into scripted scenarios [127]–[129] and realistic scenarios. The scripted 

datasets contain simple interactions such as hand shaking, hugging and kicking performed 

in staged environments which may be indoors or outdoors, with participants captured from 

a side view. The majority contain video data [128] and some also contain depth and 

skeleton data [129], [127]. However, the latter contain noisy and unreliable skeleton data. 

The realistic scenarios include surveillance [84], [85] and movie / TV datasets [86], [130].  

The surveillance datasets focus specifically on surveillance of public spaces for example 

train stations using a CCTV camera viewpoint [84]. The movie datasets [86] contain a 

range of activities from various camera viewpoints.  Neither of these groups of datasets 

are suited to gaming scenarios due to the types of activities they contain. There are no 

known publicly available databases containing gaming interactions with multiple players. 



 

 

 

 

148 

5.2.2 TRANSFER LEARNING 

Transfer learning is a machine learning approach to store knowledge gained whilst solving 

one problem and apply it to a different but related problem. It has been beneficial to many 

machine learning research areas, including classification, regression and clustering 

problems to reduce the need to collect and label training data [131]. However, transfer 

learning applied to action recognition is a relatively new topic with limited research in the 

computer vision community. Transfer learning has been used for cross-view action 

recognition [132], [133] to recognise human actions from different views. In both cases 

the methods were tested offline on a multi-view dataset (IXMAS) [134], which comprised 

of simple actions with simple backgrounds so it has limited applicability to real world 

scenarios.  

More significantly transfer learning has been used cross-dataset [135], [136] to harness 

lab datasets to facilitate real-world action recognition. The aim is to generalise action 

models built from a source dataset to a target dataset, to alleviate the problem of labelling 

complex sequences. The source dataset typically has a clean background and each video 

clip may involve only one type of action and a single person, which describes most lab-

collected datasets. In contrast, in the target dataset the background may be cluttered and 

there may be multiple people and multiple actions which may overlap temporally. Cross-

dataset learning aims to adapt the existing classifier from a source dataset to a new target 

dataset, while requiring only a small or even no labelled samples in the target dataset.  

Ma et al. [135] built a model within a multi-task framework so the actions of one domain 

are associated with its own features. The general Schatten p-norm was applied to mine 

the shared components between the lab data and the real world data. The main advantage 

of their approach is the ability to share knowledge between the two datasets even if they 

have different action categories. However, the method was tested offline with sequences 

containing just a single action.  
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Cao et al. [136] combine model adaption and action detection into a Maximum a Posterior 

(MAP) estimation framework for action detection. The advantage of this approach over 

the previous method is that it can perform spatial-temporal detection of the action within 

a sequence. However, as a search for the optimal 3D sub-volume is performed across all 

frames in the target sequence this approach is also offline.  

Charkraborty et al. [137] used a probabilistic optimisation model of body parts using 

HMM. Their method is able to distinguish between similar actions by only considering 

the body parts that have a major contribution to the actions, for example, legs for walking, 

jogging and running and arms for boxing waving and clapping. The problem is that the 

popular action recognition datasets e.g. KTH and Weizmann do not contain body part 

labels and they are very time consuming to annotate so to overcome this they trained on 

the HumanEva dataset and tested on the KTH and Weizmann datasets. The detection of 

body parts took 333ms per frame and additionally HMM has high observational latency 

which means this approach is not feasible for real-time action recognition. 

The existing approaches for transfer learning regarding actions are offline so the 

knowledge transferred from the source to target dataset is in relation to the action class 

and both computational and observational latency are high. An idea that has not been 

considered before is the potential for transfer learning to improve online action 

recognition, where knowledge about the temporal localisation of the action needs to be 

transferred in addition to requirements for low latency. 

5.2.3 INTERACTION RECOGNITION 

Another limitation of the existing gaming datasets that they are single player, whereas 

commercial games are often multiplayer. The literature reviews in previous chapters have 

focused on online action recognition of a single subject. In contrast this review considers 

multiple subjects who are typically researched in terms of their interactions with each 
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other. In traditional interaction recognition the subjects physically interact in the real 

world whereas in this chapter the interest is in virtual interaction where multiple subjects 

interact through a computer. 

In human activity recognition there is a vast wealth of research on interaction recognition 

and traditionally approaches were appearance based as low level features could be quickly 

extracted from colour sequences. Recent work [24], [40], [43] suggests that human 

activity recognition accuracy can be improved by using features from 3D data. Pose-based 

features from skeleton data are a very effective representation for human motion [7], [71], 

[89], [127], [129] so the focus of this thesis is on pose-based approaches.  

Due to the development of a real time pose estimation algorithm [6] from depth streams 

many recent activity recognition algorithms are based on skeletal joint information. In a 

recent review of human activity recognition from 3D data [24], the authors concluded that 

most current approaches only deal with a single human subject. Subsequently, the features 

are based on joints from a single skeleton such as the pairwise joint location difference 

feature [7], [71], [89]. 

These pose-based features were extended to multiple skeletons by Yun et al. [127] to 

model human interactions. Their experiments showed that the distance between all pairs 

of joints was the optimum set of joint features for real-time interaction. This feature 

measures the pairwise joint distance in each skeleton, as well as between the two 

skeletons. This feature set was specifically designed for person to person interaction 

where the distance between the joints of the people aids the classification in some cases. 

For example, the distance between two people can easily be used to differentiate between 

approaching and departing. However, this feature set is not so relevant for other actions, 

especially in virtual human interaction where there is no physical interaction between the 

people. However, if this feature is required it is trivial to rotate the skeletons in a virtual 

interaction scenario to face each other.  
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Further research by Hu et al. [129] with pose-based features from multiple skeletons 

discovered that an interaction can be represented by a positive and negative action. Their 

results showed that the positive action on its own was discriminative enough to classify 

the interactions in their dataset, so the interaction recognition was simplified to positive 

action recognition. This works for simple scenarios where there is only one outcome from 

an action, such as the punching in their dataset where the first person punches and the 

second person falls away from the hit. However, in more complex scenarios there are 

more than one possible reactions from a punch, for example, a hit as just described or a 

block where the second person defends themselves by raising their hands in front of their 

face. If the skeletal information from the second person is ignored it will be very difficult 

to differentiate between these two interactions. 

5.2.4 EVALUATION METRICS 

Similarly, to action recognition a common performance measure used for interaction 

recognition is classification accuracy which is applied to the entire sequence. For 

example, an interaction label is predicted for each frame in the sequence and a majority 

decision over all frames is taken to decide the interaction label for the complete sequence. 

However, this approach can only be applied to pre-segmented sequences containing the 

same interaction which is not the case for many real-world applications. 

To overcome this limitation of sequence-based evaluation, frame-based evaluation 

metrics have been developed [128], [138]. Escalera et al. [138] introduced a Jaccard index 

that can evaluate sequences with multiple action/interaction classes with respect to time. 

Ryoo and Aggarwal [128] proposed spatial and temporal bounding boxes to evaluate 

sequences with multiple interactions with respect to both space and time. Both approaches 

are evaluated based on the overlap between the system detection and the ground truth 

labels. These application metrics include temporal constraints but do not explicitly 

measure the latency of the detection. 
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An alternative performance metric is the localisation of each action, used when multiple 

actions occur simultaneously in video or depth data. An action label for each pixel of each 

frame is predicted, illustrated in Figure 5-2 with actions colour coded. Each action has a 

ground truth rectangular bounding box for each frame and a correct action localisation 

occurs if the dominant pixel label within the bounding box matches the ground truth [139]. 

This level of annotation is more difficult and more time consuming than temporal labels 

and is not necessary for skeleton data as a simple identity tag can be used to discriminate 

between multiple people in a scene. 

 

Figure 5-2 Localisation results from the Multi-KTH dataset, red - handclapping, blue - boxing, yellow 

- running, pink - walking, green - hand waving [139] 

 

Low latency detection is critical for real world applications such as gaming and 

surveillance. Nowozin et al. [13] proposed the Action Point 𝐹1-Score which is the latency 

aware performance metric which has already been used to evaluate the online action 

recognition algorithms in previous chapters. They introduced ‘action points’ as temporal 

anchors for the detection and evaluation of actions in real time. However, there are no 

existing metrics for interaction recognition that explicitly measure latency. 
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5.3 Methodology 

The proposed method Hierarchical Transfer Learning for online action and interaction 

recognition consists of three phases: offline training and model adaptation, and online 

testing phase as illustrated in Figure 5-3. The expected input is skeleton data, specifically 

joint angles which are viewpoint and anthropometric invariant and can be generated in 

real-time with a pose estimation method [6]. A key contribution of the proposed method 

in this chapter is that the body part model can be automatically configured to detect actions 

based on the body parts that are the most discriminative for a particular action. Another 

key contribution is a transfer learning strategy to allow the tasks of action segmentation 

and whole body modelling to be performed on a related but simpler source dataset, 

combined with automatic body part model adaption on a more complex target dataset. 

The final key contribution is the hierarchical interaction detection framework, which 

recognises actions first and then infers higher-level interactions.  

 

Figure 5-3 Methodology Overview 
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5.3.1 TRAINING PHASE (SOURCE DATASET) 

 
Figure 5-4 Training overview which is performed on the source dataset for each action 

 

The training phase is based on CSTM which was introduced in the previous chapter for 

online action detection, explained in detail in section 4.3.1 and summarised here. CSTM 

achieved high accuracy and low latency for multiple actions that were separated 

temporally. The contribution in this chapter is to adapt the action templates to detect 

compound actions by representing actions by their most discriminative body parts. The 

two key stages in training of CSTM are dimensionality reduction and key pose generation. 

Dimensionality reduction of the skeleton data produces spatio-temporal manifolds which 

removes individual style whilst maintaining the temporal ordering of the poses. Clustering 

the manifolds and projecting the cluster centres back to the high dimensional space creates 

key poses. An individual key pose represents a generic pose from an action at a specific 

point in time and the sequence of these key poses represent the entire action (as illustrated 

in Figure 5-5). A major benefit of the clustering is that the number of key poses is 

significantly lower than the original number of training poses which dramatically reduces 

the computation time and enables the approach to scale efficiently to much larger datasets.  
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Figure 5-5 Right punch action template, consisting of key poses k1 to km where m is the number of 

clusters  

5.3.2 MODEL ADAPTATION PHASE (TARGET DATASET) 

 
 

Figure 5-6 Model Adaptation overview which is performed on the target dataset for each action 

 

To detect compound actions a body part template matching algorithm is proposed. 

Representing actions using body part models allows independence between the body parts 

𝐁 = (𝐛𝑖𝑏
) (𝑖𝑏=1…𝑛𝑏) (as illustrated in Figure 5-7). Each body part is represented by joint 

angles indices, so body parts can be described at any level of granularity, in the proposed 

approach most of the body parts contain four joints to represent semantic body parts such 

as arm and leg. The contribution of this section is to automatically select each body part 

based on their discriminative ability to detect specific actions. Selecting  individual body 

parts, creates flexible body part configurations at different levels of granularity e.g. whole 

body, upper body or right arm and atypical combinations such as right arm and left leg. 
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Figure 5-7 Body parts: the skeleton is divided into body parts, right arm  (red), left arm (blue), right 

leg (green), left leg (pink) and torso (black). 

 

There are three main steps to adapt the action templates of the whole body learnt from the 

source dataset for body part template matching: a) learning the most discriminative body 

part combinations, b) detecting the most representative peak key pose and c) optimising 

the peak segment threshold.  

All three steps use exemplar matching between the peak poses in the target dataset training 

poses and the action templates to find the optimum matching parameters. To incorporate 

the temporal history of the action and increase the robustness of the matching process 

sequences of poses are matched rather than single poses. To extract a fragment from a 

sequence of poses Eq. (4-2) is used. 

DTW [121] is a well-known algorithm for determining the similarity of time-series data 

that allows “elastic” transformation to gain execution rate invariance. The similarity of 

two series of poses, the query sequence 𝐐 =  (𝐪𝑖𝑞
) (𝑖𝑞=1…𝑛𝑞), (𝐪𝑖𝑞

 ∈    ℝ𝐷)and the 

reference sequence 𝐑 =  (𝐫𝑖𝑟
) (𝑖𝑟=1…𝑛𝑟), (𝐫𝑖𝑟

 ∈    ℝ𝐷), can be computed using the 

standard DTW distance metric using Eq. (4-4). In the previous chapter the DTW distance 

was computed for the whole body (see section 4.3.1.5 for more details). To increase 

flexibility a selective DTW distance measurement is proposed: 
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𝑓𝑊(𝐐, 𝐑, 𝐰) =  ∑ 𝑓𝐷(𝐐𝑖𝑏
, 𝐑𝑖𝑏

)𝑤𝑖𝑏

𝑛𝑏

𝑖𝑏=1

 

(5-1) 

For two series of poses, the query sequence Q and the reference sequence 𝐑, the similarity 

of body parts is computed independently using the standard DTW distance metric 𝑓𝐷. A 

selective combination 𝐰 = (𝑤𝑖𝑏
) (𝑖𝑏=1…𝑛𝑏), 𝑤𝑖𝑏

 ∈   [0,1] of the body part distances 

provides a discriminative distance metric for compound actions. 

5.3.2.1 Body Part Combinations 

The most discriminative body part combinations for each action are discovered by 

maximising the ratio of intra-class matches between the labelled peak poses in the training 

data of the target dataset and the action templates. This procedure is repeated for all body 

part combinations, so for computational efficiency binary selection, i.e.  𝑤𝑖𝑏
 ∈   {0,1}  for 

each of the body parts was employed, which results in 2𝑛𝑏  permutations. For each 

permutation 𝜀, the intra-class ratio 𝜌 is computed by the number of intra-class matches 𝜇 

over the number of total training instances in the target dataset 𝑛𝑔. The intra-class matches 

are counted for each action by exemplar matching between the peak poses from the 

training data of the target dataset and the key poses from all the action templates. For each 

action 𝑎, if the closest matching action template is the same action this is counted as an 

intra-class match. The maximum intra-class ratio represents the most discriminative body 

part combination for each action, as illustrated in Figure 5-8 and summarised in Algorithm 

5-1. 
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Algorithm 5-1 Learn the most discriminative selection factor for each action 

Input: Given a set of training poses from the target dataset 𝐆 =  (𝐠𝑖𝑔
) (𝑖𝑔=1…𝑛𝑔), 

, 𝐠𝑖𝑔
 ∈  ℝ𝐷  with manually selected peak poses from 𝐆 represented by their indices  

𝛈𝑎 = (𝜂𝑖𝜂
𝑎)(𝑖𝜂

𝑎=1…𝑛𝜂
𝑎) and a set of learnt action templates 𝐊𝑎 = (𝐤𝑖𝑘

) (𝑖𝑘=1…𝑛𝑐) 

For each action 𝑎 = 1: 𝐴 

1. For each permutation 𝜀 = 1: 2𝑛𝑏 of body parts 

1.1. Initialise 𝜇 = 0 

1.2. For each peak pose index, 𝑖𝜂
𝑎 = 1 … 𝑛𝜂

𝑎  

1.2.1. Extract the peak pose fragment  using Eq. (4-2) 

1.2.2. 𝑎′ = min
𝑎∗ ∈1….𝐴

𝑓𝑊(𝑓𝐺(𝐆, 𝑖𝜂
𝑎), 𝐊𝑎∗, 𝐰𝜀) using Eq. (5-1) 

1.2.3. If 𝑎′ = 𝑎 

1.2.3.1. Intra-class match so increment 𝜇 

1.3. Compute intra-class ratio 𝜌𝜀 =
𝜇

𝑛𝜂
𝑎 

2. Select the most discriminative selection factors, 𝐰𝑎 = arg max
𝜀

𝜌𝜀  

3. Store 𝐰𝑎 
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Figure 5-8 Body Part Combinations: The selection factors (W) are optimised for each action based 

on their ability to discriminate compound actions in the target dataset. The bottom skeletons show 

potential body parts configurations for the defence (left) and right punch (right) actions. 
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5.3.2.2 Peak Key Pose Selection 

In the previous chapter, peak key poses were proposed as the generic representation of 

action peak and were automatically selected from the key poses by exemplar matching 

with the training data (see section 4.3.1.5 for more details). To increase robustness on 

compound actions the exemplar matching in this chapter is performed using the most 

discriminative body parts rather than the whole body. The peak key poses are therefore 

selected as follows: for each action and for each peak pose in the training data of the target 

dataset, the best matching key pose is found (as shown in Figure 5-9). A peak key pose 

can be represented by its index 𝑖𝑘 in the action template. For each action, the best 

matching index 𝑖𝑚 is found by minimising the distance between the peak pose fragments 

and the key pose fragments using the most discriminative body part combination. The 

peak key pose 𝑖𝑝 for the action, is the key pose that has the maximum number of matches, 

as summarised in Algorithm 5-2.  
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Figure 5-9 Peak key pose selection: each action is considered independently at this stage. 
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Algorithm 5-2 Learn the peak key pose 

Input: Given a set of training poses from the target dataset 𝐆 =  (𝐠𝑖𝑔
) (𝑖𝑔=1…𝑛𝑔) 

, 𝐠𝑖𝑔
 ∈  ℝ𝐷 with manually selected peak poses from 𝐆 represented by their indices  

𝛈𝑎 = (𝜂𝑖𝜂
𝑎)(𝑖𝜂

𝑎=1…𝑛𝜂
𝑎) and a set of learnt action templates 𝐊𝑎 = (𝐤𝑖𝑘

) (𝑖𝑘=1…𝑛𝑐) and 

learnt selection factors 𝐰𝑎:  

For each action, 𝑎 = 1: 𝐴 

1. Initialise  𝛇 = 0(𝑖ζ=1..𝑛𝑐) 

2. For each peak pose index, 𝑖𝜂
𝑎 = 1 … 𝑛𝜂

𝑎 

2.1. Extract the peak pose fragment, 𝑓𝐺(𝐆, 𝜂𝑖𝜂
𝑎) using Eq. (4-2) 

2.2. Find the best matching key pose index  

𝑖𝑚 =  arg min
𝑖𝑘 ∈1…𝑛𝑐

 𝑓𝑊 (𝑓𝐺(𝐆, 𝜂𝑖𝜂
𝑎) , 𝑓𝐺(𝐊𝑎 , 𝑖𝑘), 𝐰𝑎) 

2.3. Increment 𝜁𝑖𝑚
 

3. Determine the peak key pose index 𝑖𝑝(𝑎) = arg max
𝑖ζ

𝛇𝑖ζ
 

5.3.2.3 Peak Segment Detection 

Some existing methods for online action recognition detect the action as a single point in 

time [71], [140] whereas others incorporate the duration of the action [141], [142]. A 

single point in time accurately represents the peak of some actions, for example a punch. 

However, this is not the case for all actions, such as the defence, whose goal is defined as 

“when two hands are positioned in front of the face” as in reality the hands remain in front 

of the face for a significant period of time. To overcome the limitation of action points, 

action segments are proposed. In contrast to an action point, an action segment has 

temporal duration. The duration of the action peak is critical for recognising interactions 

when either subject performs actions with extended action peaks. An example is a 

multiple player boxing game, where one subject defends whilst the other subject punches 
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him multiple times. These should all be detected as blocking interactions, but without 

considering the duration of the defence action, only the first would be detected as a block 

and the subsequent punches incorrectly as attacks as illustrated by Figure 5-10. 

 

 

Figure 5-10 (Top) Interaction detection based on action segments which correctly detects 

actions with long duration. (Bottom) Interaction detection based on action points, which only 

works if both actions occur at the same time and incorrectly detects interactions if an action 

has a long duration. 

Peak key poses proposed in chapter 4 were limited to detecting a single temporal point so 

this chapter extends the peak key pose matching to incorporate the duration of the peak. 

The peak key pose matching is performed using DTW to ensure execution rate invariance 

and the normalised DTW distances recorded for each frame is illustrated in Figure 5-11. 

To detect actions in real-time the lowest body part DTW at each frame is compared with 

the threshold 𝑇. If the distance is large ( > 𝑇) then this is not the peak of an action as it is 

not similar to any of the peak key poses. However, if the distance is sufficiently small ( ≤

𝑇) then this represents the action peak, as shown by the coloured segments on Figure 

5-11. The graph shows that selecting a single threshold for multiple actions, can detect 

actions with both short (punches) and long (defence) duration.  
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Figure 5-11 Normalised DTW distances: the lowest value represents the most similar action, where 

this value is lower than the threshold 𝑻 it represents the detected action. The right punch is displayed 

in yellow, left punch displayed in green and the defence in magenta. 

 

Similar to [141], [142] a threshold 𝑇 is introduced but instead of specifically learning a 

threshold for each action a single threshold for all actions is learnt. Confining the 

threshold to a single parameter reduces the time taken to adapt the model and this time 

will not increase even if more actions are considered, providing scalability to larger 

datasets. The threshold 𝑇 and fragment size 𝑛𝑓 are learnt on the training part of the 

target dataset by optimising the action point 𝐹1 metric (defined in section 2.5.2.2.3) with 

the proposed body part template matching algorithm (summarised in Algorithm 5-3) but 

using the training data from the target dataset rather than the testing data.  

𝑇
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5.3.3 TESTING PHASE (TARGET DATASET) 

To enable the recognition of higher-level interactions, a hierarchical approach is 

employed in the testing phase which is based on the recognition of actions, as illustrated 

in Figure 5-12. The motivation is that actions are easier to recognise first and can be then 

used for recognising higher-level interactions. The benefits of the proposed hierarchical 

approach is that it reduces the amount of training data required and interactions are 

recognised more efficiently as redundancy is reduced in the recognition process by using 

actions multiple times. 

 

Figure 5-12  Hierarchical view of interaction recognition performed on the target dataset  

5.3.3.1 Online Action Recognition 

The proposed online Body Part Matching algorithm combines the three elements learnt 

from the model adaptation phase: Body Part Combinations, Peak Key Pose and Peak 

Segment Detection threshold to detection compound actions with low latency. 
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The Body Part Matching algorithm instead of a binary decision for matching a peak key 

pose uses the threshold 𝑇 to enable detection of the duration of the peak of an action. The 

algorithm is summarised here and formalised in Algorithm 5-3. For each test pose in a 

continuous stream from the target dataset the test pose fragment is extracted. The test pose 

fragments are matched against the action templates with the selective DTW of the most 

discriminative body parts (proposed in section 5.3.2). The minimum DTW distance is 

compared against the threshold to determine if the action peak has been reached. If the 

action peak has extended duration as in the case of the defence action then the proposed 

algorithm will keep outputting the same action until the peak has been passed.  

Algorithm 5-3 Body Part Matching algorithm 

Input: Given a sequence of testing poses from the target dataset 𝐇 =

 (𝐡𝑖ℎ
) (𝑖ℎ=1…𝑛ℎ), , 𝐡𝑖ℎ

 ∈  ℝ𝐷 and a set of learnt action templates 𝐊𝑎 =

(𝐤𝑖𝑘
) (𝑖𝑘=1…𝑛𝑐) and learnt selection factors 𝐰𝑎, peak key poses indices 𝑖𝑝(𝑎) the 

learnt fragment size 𝑛𝑓 and the learnt distance threshold 𝜏: 

For each test pose index 𝑖ℎ = 1 … 𝑛ℎ: 

1. Extract the current test pose fragment, 𝑓𝐺(𝐇, 𝑖ℎ) using Eq. (4-2) 

2. For each action, 𝑎 = 1: 𝐴 

2.1. Extract the key pose fragments, 𝑓𝐺(𝐊𝑎 , 𝑖𝑝(𝑎)) using Eq. (4-2) 

3. 𝛿 = min
𝑎∗ ∈1...𝐴

𝑓𝑊(𝑓𝐺(𝐇, 𝑖ℎ), 𝑓𝐺(𝐊𝑎∗ , 𝑖𝑝(𝑎 ∗)), 𝐰𝑎∗) using Eq. (5-1) 

4. If 𝛿 <  𝑇 

4.1. 𝑎′ = arg min
𝑎∗ ∈1...𝐴

𝑓𝑊(𝑓𝐺(𝐇, 𝑖ℎ), 𝑓𝐺(𝐊𝑎∗ , 𝑖𝑝(𝑎 ∗)), 𝐰𝑎∗)  

4.2. Output action 𝑎′ 
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5.3.3.2 Hierarchical Interaction Detection Framework  

The proposed Hierarchical Interaction Detection Framework enables online interaction 

recognition between people by detecting their individual actions independently and 

combining them by a set of interaction rules to infer the interaction. This modular 

approach is applicable for NUI and enables interaction between people that are not in the 

same physical location. Actions from different people are detected independently. At each 

frame, these detections are combined to infer the current interaction. The interaction rules 

include the valid combinations of actions together with timing constraints. The 

interactions for the G3Di dataset are depicted in Table 5-1. The action a and counter action 

a’, are checked at each frame to detect interactions in real time. To check if the action and 

counter actions temporally overlap two constraints must be satisfied. The first constraint 

is that the action must start before (or at the same time) the counter action ends (𝑎𝑠  ≤

 𝑎′
𝑒). The second constraint is that the counter action must start before the action ends 

(𝑎′𝑠  ≤  𝑎𝑒). Overlapping examples are shown in Figure 5-13 and non-overlapping 

examples are shown in Figure 5-14. Finally, a timing constraint 𝑡𝑐 is used for scenarios, 

such as table tennis, a delay is expected between the action and counter action (𝑡𝑐  >  0). 

Action segments are used to represent the peak of the actions and interactions are detected 

if the action and counter segments overlap either at the same point in time or after a fixed 

delay, as defined by: 

𝜓 (𝑎𝑠, 𝑎𝑒 , 𝑎′𝑠, 𝑎′𝑒)  =  {
1 𝑖𝑓 𝑎𝑠 + 𝑡𝑐  ≤  𝑎′𝑒 𝑎𝑛𝑑 𝑎′𝑠  ≤  𝑎𝑒 + 𝑡𝑐 
0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

 (5-2) 

where the subscripts 𝑠 and 𝑒 represent the start and end of the action segment respectively 

and 𝑠 ≤  𝑒.  
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Figure 5-13 Cases A-D, examples of overlapping actions and counter actions, assuming 𝒕𝒄 = 0 

 

 

Figure 5-14 Cases E and F, examples of non-overlapping actions and counter actions, assuming 𝒕𝒄 = 

0 
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Table 5-1 Gaming interactions for the boxing and table tennis scenarios in G3Di. 

Sport Action Counter Action Interaction 

Boxing Right Punch Defend Block 

 Left Punch Defend Block 

 Right Punch Other Attack 

 Left Punch Other Attack 

 Right Punch Right Punch Attack 

 Right Punch Left Punch Attack 

 Left Punch Left Punch Attack 

Table Tennis Serve Forehand hit Rally 

 Serve Backhand hit Rally 

 Serve Other Miss 

 Forehand hit Forehand hit Rally 

Table Tennis Forehand hit Backhand hit Rally 

 Forehand hit Other Miss 

 Backhand hit Backhand hit Rally 

 Backhand hit Other Miss 

    

Volleyball Action Counter Action Interaction 

 Underhand hit Underhand hit Set 

 Underhand hit Overhand Hit Set 

 Overhand Hit Underhand hit Set 

 Overhand Hit Overhand Hit Set 

 Jump Hit Underhand Hit Set 

 Jump Hit Overhand Hit Set 

 Underhand hit Jump Hit Attack 

 Overhand hit Jump Hit Attack 
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Sport Action Counter Action Interaction 

 Jump hit Jump Hit Attack 

    

Football Action Counter Action Interaction 

 Kick Kick Block 

 Kick Block Block 

 Kick Save Block 

5.4 G3Di dataset 

A new multimodal interaction dataset has been captured, for real time multiplayer gaming 

and is publicly available6. G3Di was captured using a novel game-sourcing approach 

where the users were recorded whilst playing Kinect Sports [126], a commercial video 

game. Sports games introduced the element of competition between the players so the 

actions captured were more realistic and challenging to recognise in comparison to 

scripted actions. Subjects in the new game-sourced dataset (G3Di) performed multiple 

actions in quick succession which resulted in compound actions, comprising of 

movements from different actions. For example, in a full body fighting game a player may 

throw punches in quick succession, one arm may still be finishing the previous punch 

whilst the other arm is performing the next punch or a player may leave one arm in the 

defend position and punch with the other arm (as shown in Figure 5-16). Detecting 

compound actions is a more complex problem than recognising actions which are 

temporally isolated. 

The proposed recording environment as illustrated in Figure 5-15 allowed the capture of 

realistic gaming actions. The setup shows two players as the version of depth sensor used 

                                                 

6 G3Di can be downloaded from http://dipersec.kingston.ac.uk/G3D/ 
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was limited to full skeleton tracking of two people. The recording environment contains 

two overlapping depth sensors: one for playing a commercial game on a standard games 

console and the other to capture the colour, depth and skeleton data. The disadvantage of 

using two sensors with overlapping fields of view is that considerable noise is introduced 

to the depth data and consequently the skeleton data, due to infrared interference. 

Specifically, the depth sensor used the Kinect v1, derives depth by projecting a structured 

light code onto the scene and comparing the projected pattern with the stored pattern. To 

overcome this problem a motor was attached to one depth sensor to vibrate it and therefore 

reduce the interference between them as observed in experiments by Butler et al. [20]. 

 

Figure 5-15 Recording environment with 2 depth cameras for simultaneous gameplay and recording. 
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Figure 5-16 Complex fighting sequences between multiple players, performing multiple actions in 

quick succession so that the movements temporally overlap (G3Di) [143]. Each row represents a 

different sequence with visual examples taken every 3 frames. 
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Figure 5-17 Synchronised colour, depth and skeleton data from a boxing game 

Due to the formats selected, it is possible to view all the recorded data and metadata 

without any special software tools. The three streams were recorded at 30fps in a mirrored 

view. The depth and colour images were stored as 640x480 PNG files and the skeleton 

data in XML files. The raw depth information contains the depth of each pixel in 

millimetres and was stored in 16-bit greyscale and the raw colour in 24-bit RGB. The 16-

bits of depth data contain 12 bits for the depth distance (0-4096mm), 1 bit reserved for 

the sentinel values (which was not used and fixed at 0) and 3 bits to identify the player. 

The player index can be used to segment the depth maps by user. The depth information 

was also mapped to the colour coordinate space and stored in a 16-bit greyscale. 

Combining the colour image with the mapped depth data allows the user to also be 

segmented in the colour image.  

Each skeleton contains the player's position and pose: the pose comprises of 20 joints and 

the joint positions are given in X, Y and Z coordinates in meters. These positions are also 

mapped into the depth and colour image coordinate spaces. The skeleton data includes a 

joint tracking state, displayed in Figure 5-17 as tracked (green), inferred (yellow) and not 

tracked (red). The joint tracking state provides the confidence of the coordinates for each 

joint. If the joint is tracked, the confidence in the coordinate data is very high. Whereas, 

if the joint is inferred by calculating it from other tracked joints, the confidence in the 

coordinate data will be very low. This is important information for developers of 

multimodal algorithms fusing data between the skeleton data and other modalities.  
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To the best of my knowledge this is the first dataset comprised of virtual interactions, 

meaning that two players interact with each other through a computer interface. This 

dataset contains 12 people split into 6 pairs. Each pair performed 18 gaming actions from 

Kinect Sports [126], for six sports games: boxing (right punch, left punch, defend), 

volleyball (serve, overhand hit, underhand hit, jump hit, block and jump block), football 

(kick, block and save), table tennis (serve, forehand hit and backhand hit), sprint (run) and 

hurdles (run and jump). Most sequences contain multiple action classes in a controlled 

indoor environment with a fixed camera, a typical setup for gesture based gaming. The 

people played the game in a training mode to become familiar with the movements before 

they were recorded. The actual game was recorded and particular sections where several 

different actions were performed multiple times by each player were selected for the 

dataset. The key features of the gaming datasets are summarised in Table 5-2. G3Di is the 

only gaming dataset to contain interactions and additionally contains more complex 

actions as it is the only dataset to be recorded using a commercial game. 

Table 5-2 Comparison of gaming datasets. 

Dataset Classes Subjects Data 

sources 

Instruction 

Modality 

Scenario 

MSRC-12 [71] 12 30 Skeleton Scripted Actions 

MSRAction3D 

[40] 

20 10 Depth 

+Skeleton 

Scripted Actions 

G3D  20 10 Colour 

+Depth 

+Skeleton 

Scripted Actions 

G3Di 18 12 Colour 

+Depth 

+Skeleton 

Game-sourced Actions 

+Interactions 
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5.4.1 DATASET ANNOTATION 

The ground truth for the action dataset was conventionally annotated by manually 

labelling each action point and each action segment, whereas the interaction ground truth 

was automatically constructed from the action ground truth labels. The ground truth 

interactions are automatically labelled based on the set of rules that govern the interactions 

for a particular game (as described in Section 4.2). 

5.5 Results 

In this section experiments are presented to evaluate the ability of the proposed online 

action and interaction recognition methods to improve accuracy at low latency in complex 

scenarios. Previously used algorithms are used to determine the complexity of the new 

dataset in comparison with the existing gaming datasets and to determine the ability of 

existing approaches to detect compound actions and interactions between multiple 

subjects.  

5.5.1 DATASETS 

The performance of the algorithm is evaluated using publicly available datasets designed 

specifically for real time action and interaction recognition: G3D (introduced in section 

3.4) and G3Di (introduced in section 5.4). Both datasets contain multiple actions in each 

sequence in a controlled indoor environment with a fixed camera, a typical setup for NUI 

applications. Both datasets provide sequences of skeleton data captured using the Kinect 

pose estimation pipeline at 30fps. However, G3D contains scripted actions which are 

temporally well separated whereas G3Di was captured using a game-sourcing approach 

where multiple users were recorded whilst playing computer games and consequently 

contains compound actions which overlap temporally. G3Di also contains noisier skeleton 

data than G3D as there was interference from multiple Kinects during the recording, 



 

 

 

 

176 

making it more realistic of a home scenario where there may be interference from the 

sunlight. 

The G3D dataset contains 10 subjects performing 20 gaming actions grouped into seven 

categories. The fighting category was selected as it has the same actions as the G3Di 

boxing category although there are substantial variations in execution rate as well as 

personal style between these two datasets due to the different recording environments. 

The G3D fighting category contains five gaming actions: right punch, left punch, right 

kick, left kick and defend. 

The G3Di dataset contains 12 people split into 6 pairs. Each pair interacted through a 

gaming interface showcasing six sports: boxing, volleyball, football, table tennis, sprint 

and hurdles. Boxing is a competitive sport and the interactions can be decomposed by an 

action and counter action. The boxing actions were right punch, left punch and defend 

and the interactions between the players are shown in Table 5-1. The total number of 

action and interaction instances used for the experiments is shown in Table 5-3. 

Table 5-3 The total number of action and interaction instances used from each dataset 

Dataset Action 

Classes 

Interaction 

Classes 

Subjects Action / 

Interaction 

Instances 

Frames 

G3D  

(Boxing) 

5 NA 10 150 actions 12,870 

G3Di 

(Fighting) 

3 2 12 317 actions  

257 interactions 

6,784 

5.5.2 SKELETON DATA 

Joint angles are viewpoint and anthropometric invariant and can be generated in real-time 

with a pose estimation method [6]. More specifically, the skeleton poses are first 
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normalised and then the three angles defining each joint position are computed and 

represented by a 4-D quaternion. The skeleton is parameterised as a high dimensional 

feature vector by concatenating quaternions for all joints. For each pose 13 quaternions 

are calculated so each feature vector has 52-dimensions (see [141] for more details). 

5.5.3 PERFORMANCE METRICS 

To evaluate the performance of both action and interaction recognition algorithms on the 

new dataset, action and interaction online metrics and ground truth annotation are 

required. For action recognition, the latency aware action point 𝐹1 metric used in previous 

chapters is employed.  

For interaction evaluation the existing frame based metrics [128], [138] include temporal 

constraints but do not evaluate the latency of the detection. To overcome these limitations 

the action point 𝐹1 metric which evaluates accuracy and latency is extended to cover 

interactions. The interactions are evaluated in a similar manner to action points, to obtain 

a single 𝐹1-score for an easy comparison of different interaction algorithms. The 

acceptable latency of the interaction is application specific and can be adjusted with the 

Δ parameter. The Action Point 𝐹1-score (defined in section 2.5.2.2.3) can be adapted to 

measure the accuracy of the detected interaction points 𝑡𝑑𝑖
 against the ground truth 

interaction points 𝑡𝑔𝑖
, by modifying Eq. (2-18) to Eq. (5-3). 

Φ𝑖 (𝑡𝑑𝑖
, 𝑡𝑔𝑖

, Δ) =  {
1    if  | 𝑡𝑔𝑖

 −  𝑡𝑑𝑖
|  ≤  Δ

0       otherwise               
 

(5-3) 

 

To clarify the assessment of interaction points a dummy timeline for a boxing game has 

been created (Figure 5-18), showing the ground truth and the detected points for actions 

and interactions. The precision and recall are measured for each interaction and both of 
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these measures are combined to calculate a single interaction 𝐹1-score. To measure 

accuracy for multiple interactions, the mean interaction 𝐹1-score is calculated over all 

interactions. 

 

 

Figure 5-18 A timeline for a boxing game, showing the true positives (TP), false positives (FP) and 

false negatives (FN). A TP, is a correct interaction identified within Δ frames of the ground truth. A 

FN, is an undetected interaction on the ground truth. 

5.5.4 COMPARATIVE STUDY  

The following is a comparison of a range of algorithms which are plugged into the 

interaction framework illustrated in Figure 5-3. The main methods are AdaBoost, 

Clustered Spatio-Temporial Manifolds and Hierarchical Transfer Learning. The other 

methods are used to show specific elements of the proposed method in isolation to validate 

their effectiveness. 
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 AdaBoost: AdaBoost has shown high accuracy and low latency for online action 

recognition [59], [140]. AdaBoost was trained on the source dataset and the 

parameters: the number of training frames around each peak pose the sliding 

smoothing window size were optimised on the training part of the target dataset 

and the method was evaluated on to the target testing data. 

 Clustered Spatio-Temporial Manifolds (CSTM): CSTM proposed in chapter 4 was 

trained on the source dataset and the parameters: the template size and the peak 

pose detector were optimised on the training part of the target dataset and the 

method was evaluated on to the target testing data. 

 Peak Segment Matching (PSM): is an extension of CSTM which instead of a 

binary decision for matching a peak key pose introduces a threshold to detect 

actions with extended duration. 

 Body Part Matching (BPM): is an extension of PSM which instead of using the 

standard DTW in the matching process, uses a selective DTW based on the most 

discriminative body parts to detect compound actions. 

 Transfer Learning Matching (TLM): is an extension of PSM which instead of 

training and testing on the same dataset. Learns the action templates on a simpler 

dataset, and performs model adaption on a more complex dataset. 

 Hierarchical Transfer Learning (HTL): The proposed method in this chapter, 

combines the previous three approaches. Transfer learning is applied to Peak 

Segment Matching, allowing knowledge to be transferred from simple actions in 

a source dataset to compound actions in a target dataset by adapting the body part 

models and peak key poses. The parameters: peak segment matching threshold 
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(T=0.22) and fragment size (𝑛𝑓 = 7) were optimised on the training part of the 

target dataset and the method was evaluated on the target testing data. 

For all the above experiments leave one-person out cross validation on the target 

dataset was performed; each cross validation fold was trained on 11 subjects and tested 

on the remaining subject. 

5.5.5 ONLINE ACTION AND INTERACTION RESULTS 

The proposed method HTL outperforms existing state-of-the-art approaches for fast 

online action and interaction recognition, as shown in Figure 5-19. Both AdaBoost and 

CSTM show a significant drop in accurately detecting actions on the G3Di (Fighting) 

dataset in comparison with previously published results [140] on the G3D (Boxing) 

dataset. This is significant especially as the G3Di (Fighting) actions are a subset of the 

G3D (Boxing) actions but confirms the hypothesis that compound actions are more 

difficult to detect than multiple actions that are temporally well separated. 

Additionally, the recognition accuracy for each category of action and interaction is 

highlighted for a more detailed analysis of each method, as shown in Figure 5-20. A 

significant outcome is that even though CSTM can detect all of the action categories, it is 

unable to detect any interactions which are comprised of actions with duration, 

specifically the block interaction. In addition to showing the limitation of this approach, 

it also highlights a weakness of the action point metric [13] which does not incorporate 

the duration of the action peak. Interaction detection is improved by the baseline method 

Peak Segment Matching (PSM) which instead of a binary decision for matching a peak 

key pose introduces a threshold which can detect the duration of the peak. The key 

contributions of this section are the body part template matching (BPM) and the transfer 

learning strategy (TLM). Individually, applied to the baseline method, these contributions 

actually decrease the action and interaction recognition but together (HTL) they form a 
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powerful combination that significantly increases the action and interaction recognition, 

as shown in Figure 5-19. Intuitively, the body part model is only useful if adapted to the 

target dataset. 

In this thesis, the interest is developing action recognition approaches that are suitable for 

NUI applications. Research has shown that a delay of 100ms is not perceivable by the 

user [144]. Therefore, in this section the comparison is against online action recognition 

methods that are capable of fulfilling this requirement.   
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Table 5-4 shows that all the methods evaluated are capable of detecting actions with a low 

average latency of approx. 2 frames, which is equivalent to 66ms. The online action 

recognition methods with high latency (830-1500ms [14], 2000ms [141]) were not 

evaluated as they are better suited to other applications. 

Figure 5-21 illustrates a typical failure case caused by noisy skeleton data at the action 

level resulting in an incorrect interaction to be inferred. The main limitation of the 

proposed approach is that only the skeleton modality is utilised which is subject to 

interference from sunlight. 

The proposed approach outputs a maximum of one action label for each subject for each 

frame so it cannot manage simultaneous multiple actions at the same time e.g. walking 

and waving. This limitation does not arise from the underlying algorithm but an 

implementation decision. Currently, if the distances of multiple actions cross the 

threshold, the action with the lowest distance is selected. In these cases, the algorithm 

could be easily adapted to output multiple labels but this would need to be validated on 

datasets containing multiple simultaneous actions. 
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Figure 5-19 Performance comparison of the different approaches. The proposed method (HTL) 

outperforms the others for both action and interaction detection. 

Figure 5-20 Action recognition results (left) and interaction recognition results (right) for each 

category of the G3Di (Fighting) dataset using different algorithms 
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Table 5-4 A comparison of the average action latency 

Method Average Action Latency 

 (frames) 

AdaBoost  2.12 

CSTM 2.00 

PSM 1.60 

TSM 1.41 

BSM 1.94 

HTL 2.36 

 

 

 

 

Figure 5-21 Example of a typical failure case caused by noisy skeleton data. The colour image 

(right) shows that this is a block interaction but the algorithm detects an attack interaction as 

the defence action is not correctly detected due to incorrect skeleton data for the player on the 

left. This instance will be penalised twice by the action point metric, firstly a FP for the attack 

and secondly a FN for the block. 
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5.6 Summary 

In this work a novel Hierarchical Transfer Learning algorithm was proposed for fast 

online action and interaction recognition. It overcomes the limitations of existing 

approaches by representing the human body as parts and learning the most discriminative 

parts needed to detect compound actions. A transfer learning strategy was introduced to 

allow the tasks of action segmentation and whole body modelling to be performed on a 

related but simpler dataset. Combined with body part model adaptation on a more 

complex dataset to introduce independence between limbs and provide the flexibility to 

match poses that are not in the source dataset. Evaluation on a public target dataset that is 

more challenging and realistic than the source dataset shows the proposed transfer 

learning algorithm significantly increases performance at low latency. As the target 

dataset was recorded whilst users were actually playing a game the actions are more 

natural than subjects that are given instructions or restrictions and demonstrates the 

viability of the proposed algorithm for use in real-world applications. The proposed 

hierarchical interaction framework recognises individual actions with low latency for real-

time interaction detection. The incorporation of the action duration in the framework 

improved both the action and interaction performance. 

Furthermore, a novel, realistic and challenging human interaction dataset, G3Di for real 

time multiplayer gaming was introduced. It overcomes the limitations of existing 3D 

gaming datasets that only contain a single player with simple action sequences. Sports 

games introduced the element of competition between the players so the actions captured 

were more realistic and challenging in comparison to scripted actions. G3Di contains 

synchronised colour, depth and skeleton and the players were captured from the front 

view, which improved the quality of the skeleton data. Experimental results indicate 

higher complexity of the new dataset in comparison to the existing gaming datasets, 
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highlighting the importance of this dataset for designing algorithms suitable for realistic 

interactive applications.  
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CHAPTER 6 

6 CONCLUSIONS AND FUTURE WORK 

Action recognition research historically focused on increasing accuracy on datasets in 

highly controlled environments. The majority of action recognition algorithms have been 

applied offline and even the online approaches have high latency. These simplifications 

have resulted in over-inflated accuracy and action recognition algorithms not suitable for 

real-time applications. In contrast, this thesis dealt with the more complex problem of 

online action recognition with low latency in real world scenarios. 

6.1 Contributions 

In this section the main contributions to fulfil the aim of realistic action recognition are 

summarised. 

6.1.1 REALISTIC GAMING ACTION DATASETS 

Perfect or near perfect offline action recognition accuracy on scripted datasets has been 

achieved. These datasets normally contained a single person that was instructed to 

perform a single action clearly which over-simplified the task of action recognition.  

6.1.1.1 Issues 

There are many public action recognition datasets which can be categorised into scripted 

and realistic scenarios. Movies and sports footage have enabled action recognition from 

video sequences that are realistic but none of these datasets contain gaming actions. 

Gaming actions are found within scripted gaming datasets captured by depth sensors but 

each sequence only contain repetitions of the same action whereas real games contain a 
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variety of different actions. Additionally, in scripted datasets if there is a delay between 

actions the subject often returns to the neutral position when changing action. However, 

in fast paced competitive computer games, like boxing, players do not return to the neutral 

position between actions, which creates compound actions. Furthermore, the existing 

gaming datasets are single person whereas commercial games are often multiplayer.   

6.1.1.2 Proposed Solutions 

Two new gaming datasets, G3D and G3Di were presented for real-time action 

recognition. G3D was the first public gaming action dataset to contain multiple actions 

within each sequence making it more like commercial games. G3Di was captured using a 

novel game-sourcing method so the actions captured were more complex and as realistic 

as those in commercial games. Additionally, G3D and G3Di are the only two gaming 

datasets to provide synchronised colour, depth and skeleton data. Experimental results 

indicate higher complexity of the G3Di dataset, highlighting the importance of this dataset 

for designing algorithms suitable for real-world applications.  

6.1.1.3 Future Work 

Due to the technical limitations of the depth sensor used to record both datasets (Kinect 

for Windows v1), the number of subjects was limited to two players and there was 

interference from multiple sensors when using the game-sourcing approach. Due to recent 

technological improvements the Kinect for Windows v2 can track the skeleton of up to 

six players in real-time and has significantly less interference between multiple sensors. 

Future work would be to record a new gaming action dataset using the proposed gaming 

sourcing approach with the latest depth sensor to have more precise colour, depth and 

joint information as well as more players. 
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6.1.2 DYNAMIC FEATURE SELECTION 

There are many types of machine learning algorithms that have been applied to action 

recognition but the majority of approaches have been applied offline and even the online 

approaches have high latency. Both observational and computational latency have been 

considered when developing the proposed algorithm to ensure that they are suitable for 

real-world applications.  

6.1.2.1 Issues 

Most of the existing action recognition algorithms are far from operating online and with 

low latency. Notable exceptions are AdaBoost and Random Forests with a sliding window 

to perform continuous action recognition.  However, the fixed size of the sliding window 

in these approaches is a source of error due to execution rate variations. A comparison of 

Random Forests and AdaBoost showed that AdaBoost can provide higher classification 

accuracy at the cost of less efficient computation.  

6.1.2.2 Proposed Solutions 

A novel method for Dynamic Feature Selection for online action recognition was 

presented that combines the strengths of feature selection with local expert classifiers. 

Specifically, the feature selection method built in to Random Forest was used to determine 

feature subsets and then the reduced feature vectors used to train an ensemble of AdaBoost 

classifiers. In contrast to existing approaches using feature selection, recognition occurs 

dynamically at each frame to select the most confident classification. Experiments on 

G3D and MSRC-12 datasets demonstrate that the new Dynamic Feature Selection 

algorithm for real-time action recognition improves the accuracy of baseline algorithms 

at low-latency. 
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6.1.2.3 Future Work 

To overcome the fixed sliding window problem of the proposed algorithm the size of the 

sliding window was reduced to a single pose. However, this resulted in the loss of 

temporal history of the action and the inability to train the classifier to detect actions with 

similar poses. There are currently no sliding window approaches that maintain the 

temporal history and are execution rate invariant, although the multi-scale temporal 

window is currently the best compromise. Further research into an execution rate invariant 

sliding window technique could improve the accuracy of existing online action 

recognition approaches. 

6.1.3 CLUSTERED SPATIO-TEMPORAL MANIFOLDS 

Existing online action recognition approaches fail to maintain the temporal history of an 

action in a manner that is execution rate invariant so alternative solutions are investigated. 

Spatio-temporal manifolds have been previously applied to pre-segmented sequences 

containing single actions but the key benefit of these manifolds is that they maintain the 

temporal history of the action which in addition to improving online action recognition 

could be exploited for early action recognition and even prediction. 

6.1.3.1 Issues 

Spatial-temporal manifolds are invariant to personal style and execution rate invariant but 

as the whole sequence is used for classification their observational latency is high which 

is why they have only previously been applied to offline recognition. The majority of 

existing approaches for early activity recognition focus on classifying the action as soon 

as possible and have been applied to pre-segmented sequences. Manual pre-segmentation 

simplifies the task of early detection which inflates accuracy and limits the applicability 

of these approaches to real-world scenarios. There is relatively little research into action 

prediction and it is the most interesting and challenging task especially in scenarios where 

there is no contextual information. 
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6.1.3.2 Proposed Solutions 

Novel algorithms for early and online action recognition as well as prediction were 

presented based on Clustered Spatio-Temporal Manifolds. These style invariant compact 

representation of the dynamics of human action were projected to create action templates. 

Fragments from the action templates were matched using DTW for execution rate 

invariance for early recognition of the action. The proposed approach achieved high 

accuracy and in contrast to existing approaches operates in a continuous stream. 

Novel peak key poses were introduced to explicitly locate the moment where an action 

reaches its peak which enabled low latency recognition before the completion of the 

action. Experimental results on publicly available gaming action datasets demonstrate 

state-of-the-art accuracy with very low latency. Furthermore, the peak key poses enabled 

prediction of the action peak when the recent action progress history was combined with 

regression. 

6.1.3.3 Future Work 

The proposed algorithms for early and online action recognition and prediction have only 

been evaluated with a single player but commercial computer games are often multiplayer. 

The drop in performance on the task of action prediction tasks highlights the complexity 

of the problem and is an interesting area for further research. 

6.1.4 HIERARCHICAL TRANSFER LEARNING  

Evaluation of action recognition algorithms is typically done in isolation, focusing 

historically on high accuracy and more recently also on low latency. However, in reality 

most actions form part of an interaction where the duration of the action becomes 

important. 
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6.1.4.1 Issues 

The diversity and complexity of real-world datasets makes accurate labelling difficult and 

time consuming. To overcome this, transfer learning has been employed to transfer 

knowledge from a simpler domain to a more complex target domain. Nevertheless, the 

existing approaches were limited to offline action recognition. An area that has not been 

explored before is the potential for transfer learning to improve online action recognition. 

6.1.4.2 Proposed Solutions 

A novel Hierarchical Transfer Learning framework was proposed for fast online action 

and interaction recognition. It overcomes the limitations of existing approaches by 

representing the human body as parts and learning the most discriminative parts needed 

to detect compound actions.  

A transfer learning strategy was introduced to allow the tasks of action segmentation and 

whole body modelling to be performed on a related but simpler dataset. The transfer 

learning approach also incorporates body part model adaptation on a more complex 

dataset to introduce independence between limbs and provide the flexibility to match 

poses that are not in the source dataset. 

Evaluation on G3Di dataset shows the proposed transfer learning algorithm significantly 

increases performance at low latency. The proposed hierarchical interaction framework 

recognises individual actions with low latency for real time interaction detection. The 

incorporation of the action duration in the framework improved both the action and 

interaction performance. 

6.1.4.3 Future Work 

Due to computational issues of learning the selection factors to discriminate the body parts 

were binary, better accuracy may be possible by weighting each body part.. However, an 
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exhaustive search for the optimum combination of weights would no longer be feasible 

approach so alternative approaches such as genetic algorithms would need to be 

investigated. 

Another limitation of the proposed algorithms in this thesis is that only the skeleton data 

is utilised which is subject to interference from sunlight. Future work would be to improve 

the robustness of the algorithm by fusing features from the depth or colour stream with 

the skeleton features to evaluate their effectiveness using the G3Di multi-modal dataset. 

6.2 Epilogue 

This thesis aimed to deal with the problem of complex action recognition in real world 

scenarios with multiple players. New action recognition datasets were captured that 

incorporated the challenges of real-world applications. Novel algorithms were developed 

to overcome these challenges in real-time and advance the study of realistic action 

recognition. This research is expected to serve as a basis for further study within the 

research community. 

The future of action recognition as demonstrated in this thesis is online rather than offline 

and recognising multiple rather than single people. This enables a wide range of novel 

applications including home entertainment, healthcare, sports, and robotics. For example, 

a personal robotic assistant for the elderly in a care home could naturally interact with 

staff and patients. In future, it is important not only detect the actions in real-time but to 

also automatically assess the quality of the action. Automatically assessing the quality of 

actions using computer vision is a very new topic with limited research. Key challenges 

are how to determine the quality of an action and how to validate this against expert 

opinion. Nevertheless, this will extend the range of potential medical applications to 
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medical diagnosis, home based rehabilitation and ambient assisted living. Similarly, the 

range of sports applications would increase to include sports training and analysis for 

improving performance or entertainment. Robust real time action recognition could have 

a huge impact on society, radically changing the way we interact with machines and 

revolutionising our lives. 
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8 APPENDIX 

 



8.1 Symbol table 

Symbols Details Meaning Method 

𝒂 𝑎 ∈   ℝ1 Action index General 

𝒂’ 𝑎’ ∈   ℝ1 Action index General 

𝒂* 𝑎* ∈   ℝ1 Action index General 

𝒂𝒆 𝑎𝑒 ∈   ℝ1 Action segment end HLE 

𝒂𝒔 𝑎𝑠 ∈   ℝ1 Action segment 

start 

HLE 

𝒂′𝒆 𝑎′𝑒 ∈   ℝ1 Counter action 

segment end 

HLE 

𝒂′𝒔 𝑎′𝑠 ∈   ℝ1 Counter action 

segment start 

HLE 

𝐛 (𝐛𝑖𝑏
) (𝑖𝑏=1…𝑛𝑏) Low level body 

parts 

HLE 

𝒄 𝐜 ∈  ℝ𝑑 Low dimensional 

cluster 

CSTM 

𝒅 𝑑 ∈   ℝ1 Number of 

dimensions in the 

low dimensional 

space 

General 

𝒅𝑰  Function to get the 

depth of a pixel in 

image I 

Pose Estimation 

𝒇𝑮  Function to extract 

a fragment from a 

sequence of poses 

CSTM 

𝒇𝒑𝒅𝒙  Difference feature 

function for x 

Pose-based features 

𝒇𝒑𝒅𝒚  Difference feature 

function for y 

Pose-based features 

𝒇𝒑𝒅𝒛  Difference feature 

function for z 

Pose-based features 



𝒇𝒑𝒗𝒙  Position velocity 

feature function for 

x 

Pose-based features 

𝒇𝒑𝒗𝒚  Position velocity 

feature function for 

y 

Pose-based features 

𝒇𝒑𝒗𝒛  Position velocity 

feature function for 

z 

Pose-based features 

𝒇𝒑𝒗𝒅  Position velocity 

magnitude function 

Pose-based features 

𝒇𝒒 𝑓𝑞  ∈  ℂ4 Quaternion  

    

    

    

    

𝒇𝒒𝒅  Angle velocity 

function 

Pose-based features 

    

    

    

    

𝒇𝛀  OVA function OVA 

𝒇𝛉  Depth comparison 

function 

Pose estimation 

𝒇𝜹  Euclidean distance DTW 

𝒇𝑸
𝑳  𝑓𝑄

𝐿  ∈ {1 … 𝑛𝑞} Stretching Q time 

axis 

DTW 

𝒇𝑹
𝑳  𝑓𝑅

𝐿  ∈ {1 … 𝑛𝑟} Stretching R time 

axis 

DTW 



𝒇𝑫  Dynamic Time 

Warping Function  

DTW 

𝒇𝑾  Weighted Dynamic 

Time Warping 

Function  

DTW 

𝒈 𝑔 ∈   ℝ𝐷 Training pose in 

target dataset 

HTL 

𝒉 ℎ ∈   ℝ𝐷 Testing pose in 

target dataset 

HTL 

𝒊  Use with subscript 

for first index 

Reserved  

𝒊𝒃 𝑖𝑏 ∈ 1 … 𝑛𝑏 Body part index HTL 

𝒊𝒄 𝑖𝑐 ∈ 1 … 𝑛𝑐 Index of cluster, 

Row index of 

transition matrix 

CSTM 

𝒊𝒇 𝑖𝑓 ∈ 1 … 𝑛𝑐 Index of the last 

pose in a fragment 

CSTM 

𝒊𝒈 𝑖𝑔 ∈ 1 … 𝑛𝑔 Index of training 

pose TARGET 

dataset 

HTL 

𝒊𝒉 𝑖ℎ ∈ 1 … 𝑛ℎ Index of testing 

pose TARGET 

dataset 

HTL 

𝒊𝒌 𝑖𝑘 ∈ 1 … 𝑛𝑐 Key pose index CSTM 

𝒊𝒍 𝑖𝑙 ∈ 1 … 𝑛𝑐 Last matched key 

pose index 

CSTM 

𝒊𝒎 𝑖𝑚 ∈ 1 … 𝑛𝑐 Matching key pose 

index  

CSTM 

𝒊𝒐 𝑖𝑜 ∈ 1 … 𝑛𝑐 Ordered index of 

cluster 

CSTM 

𝒊𝒑 𝑖𝑝 ∈ 1 … 𝑛𝑐 Peak key pose index CSTM 

𝒊𝒒 𝑖𝑞 ∈ 1 … 𝑛𝑞 Query sequence 

index 

CSTM 



𝒊𝒓 𝑖𝑟 ∈ 1 … 𝑛𝑟 Reference 

sequence index  

CSTM 

𝒊𝒔 𝑖𝑠 ∈ 1 … 𝑛𝑠 Index of pose in a 

sequence 

CSTM 

𝒊𝒕 𝑖𝑡 ∈ 1 … 𝑛𝑡 Index of testing 

pose 

CSTM 

𝒊𝒘 𝑖𝑤 ∈ 1 … 𝑊 Index of weak 

classifier 

AdaBoost 

𝒊𝑳 𝑖𝐿 ∈ 1 … 𝑛𝐿 Warping path index DTW 

𝒊𝜼 𝑖𝜂 ∈ 1 … 𝑛𝜂 Peak pose index in 

training data 

CSTM 

𝒊𝝎 𝑖𝜔 ∈ 1 … 𝑛𝜔 Index of gini 

impurity  

Decision Trees 

𝒊𝛀 𝑖Ω ∈ 1 … Ω Index of binary 

classifier 

OVA 

𝒋  Use with subscript 

for second index 

Reserved 

𝒋𝒄 𝑗𝑐 ∈ 1 … 𝑛𝑐 Column index of 

transition matrix 

CSTM 

𝒋𝒇 𝑗𝑓 ∈ 1 … 𝑛𝑐   

𝒋𝒊 𝑗𝑖 ∈ 1 … 𝑛𝑗 Column index of 

transition matrix 

CSTM 

𝒋𝝎 𝑗𝜔 ∈ 1 … 𝑛𝜔 Index of gini 

impurity  

Decision Trees 

𝐤 𝐤 ∈   ℝ𝐷 Key pose 

 

CSTM 

𝒎  Pixel Pose estimation 

𝒏  Use with index to 

represent number 

of items 

Reserved 

𝒏𝒃 𝑛𝑏  ∈   ℤ1 Number of body 

parts 

HTL 



𝒏𝒄 𝑛𝑐  ∈   ℤ1 Number of clusters CSTM 

𝒏𝒇 𝑛𝑓  ∈   ℤ1 Number of poses in 

a fragment 

CSTM/HTL 

𝒏𝒈 𝑛𝑔  ∈   ℤ1 Number of poses in 

training dataset 

(TARGET) 

HTL 

𝒏𝒉 𝑛ℎ  ∈   ℤ1 Number of poses in 

testing dataset 

(TARGET) 

HTL 

𝒏𝒋 𝑛𝑗  ∈   ℤ1 Number of joints in 

a pose 

General 

𝒏𝒌 𝑛𝑘  ∈   ℤ1 Maximum number 

of allowed key 

poses after peak 

key pose 

CSTM 

𝒏𝒎 𝑛𝑚  ∈   ℤ1 Number of 

sequential matched 

poses 

CSTM 

𝒏𝒒 𝑛𝑞  ∈ ℤ1 Number of poses in 

query sequence 

CSTM 

𝒏𝒓 𝑛𝑟  ∈   ℤ1 Number of poses in 

reference sequence 

CSTM 

𝒏𝒔 𝑛𝑠  ∈   ℤ1 Number of poses in 

a generic sequence 

CSTM 

𝒏𝒕 𝑛𝑡  ∈   ℤ1 Number of poses in 

testing set 

CSTM 

𝒏𝒖 𝑛𝑢  ∈   ℤ1 Number of 

temporal 

neighbours 

CSTM 

𝒏𝒗 𝑛𝑣  ∈   ℤ1 Number of 

repetition 

neighbours 

CSTM 

𝒏𝒘 𝑛𝑤  ∈   ℤ1 Number of frames 

in smoothing 

window 

DFS 



𝒏𝑳 𝑛𝐿  ∈  ℤ1 Length of the 

warping path 

DTW 

𝒏𝑻 𝑛𝑇  ∈  ℤ1 Number of trees DFS 

𝒏𝜼 𝑛𝜂  ∈  ℤ1 Number of peak 

poses in the 

training data 

CSTM 

𝒏𝝉 𝑛𝜏  ∈  ℤ1 Number of 

thresholds / feature 

subsets 

DFS 

𝐨 𝐨 = (𝑜𝑖𝑐
)(𝑖𝑐=1…𝑛𝑐) 

𝑜𝑖𝑐
∈   ℝ1 

Temporal cluster 

order 

CSTM 

𝒑𝒋𝒊,𝒕 𝑝𝑗𝑖,𝑡  ∈  ℝ3 The 3D location ( 

𝑥𝑐 ,𝑦𝑐 , 𝑧𝑐 ) of joint 

𝑗𝑖 at time 𝑡 

General 

𝐪 𝐪 ∈    ℝ𝐷 Query pose CTLE 

𝐫 𝐫 ∈    ℝ𝐷 Reference pose CTLE 

𝐬 𝐬 ∈    ℝ𝐷 Pose CTLE 

𝒕  Reserved for time, 

use subscript 

 

𝒕𝒄 𝑡𝑐  ∈   ℝ1 Timing constraint HTL 

𝒕𝒅𝒂
 𝑡𝑑  ∈   ℝ1 Detection time of 

the action point 

Evaluation Metrics 

𝒕𝒈𝒂
 𝑡𝑔  ∈   ℝ1 Ground truth time 

of the action point 

Evaluation Metrics 

𝒕𝒑𝒂
 𝑡𝑝  ∈   ℝ1 Estimated time of 

the action  point 

Evaluation Metrics 

𝒕𝒅𝒊
 𝑡𝑑  ∈   ℝ1 Detection time of 

the interaction 

point 

Evaluation Metrics 

𝒕𝒈𝒊
 𝑡𝑔  ∈   ℝ1 Ground truth time 

of the interaction 

point 

Evaluation Metrics 



𝐮  Depth image 

feature offsets 

Pose estimation 

𝐯  Depth image 

feature offsets 

Pose estimation 

𝐰𝒂 𝐰𝒂 = (𝑤𝑖𝑏
)(ib=1….nb)  

𝑤𝑖𝑏
∈ [0,1] 

Weights for low 

level body parts 

HTL 

𝐱 𝐱 ∈   ℝ𝐷 Feature vector for a 

pose 

DFS/CSTM 

𝒙𝒄  𝑥𝑐 ∈   ℝ1 x co-ordinate of 3D 

joint location 

Pose based features 

𝐲 𝐲 ∈   ℝ𝑑 Manifold points CSTM 

𝒚𝒄  𝑦𝑐 ∈   ℝ1 y co-ordinate of 3D 

joint location 

Pose based features 

𝐳 𝐳 ∈   ℝ𝐷 Feature vector for a 

testing pose 

CSTM/HTL 

𝒛𝒄  𝑧𝑐 ∈   ℝ1 z co-ordinate of 3D 

joint location 

Pose based features 

𝑨 𝐴 ∈   ℝ1 Number of actions General 

𝐁  𝐁 = (𝐛𝑖𝑏
) (𝑖𝑏=1…𝑛𝑏) Body part model HTL 

𝐂 𝐂 = {𝐜𝑖𝑐
} (𝑖𝑐=1…𝑛𝑐) 

𝐜𝑖𝑐
∈   ℝ𝑑 

Low dimensional 

cluster centers 

(unordered) 

CSTM 

𝑫 𝐷 ∈   ℝ1 Number of features 

in the high 

dimensional space 

General 

𝑭  Reserved   

𝑭𝟏 𝐹1  ∈   ℝ1 𝐹1- score General 

𝐆 𝐆 =  (𝐠𝑖𝑔
) (𝑖𝑔=1…𝑛𝑔)  

𝐠𝑖𝑔
 ∈  ℝ𝐷 

High dimensional 

poses from TARGET 

training data set 

HTL 

 



𝐇 𝐇 =  (𝐡𝑖ℎ
) (𝑖ℎ=1…𝑛ℎ) 

𝐡𝑖ℎ
 ∈  ℝ𝐷 

High dimensional 

poses from TARGET 

testing data set 

HTL 

 

𝑰  Image Pose estimation 

𝐊𝒂 𝐊𝒂 = (𝐤𝑖𝑜
) (𝑖𝑜=𝑜1…𝑜𝑛𝑐) 

𝐤𝑖𝑜
∈   ℝ𝐷 

Action templates 

containing ordered 

key poses 

CSTM 

 

𝑳 𝐿 ∈  ℝ𝑛𝐿× 2 Warping path 

indices 

CTLE 

𝑴    

𝑵  Node in decision 

tree 

General 

𝑷  Function of the 

fraction of patterns 

Decision Trees 

𝐐 𝐐 =  (𝐪𝑖𝑞
) (𝑖𝑞=1…𝑛𝑞) 

𝐪𝑖𝑞
 ∈    ℝ𝐷 

Query sequence of 

poses 

CSTM 

𝐑 𝐑 =  (𝐫𝑖𝑟
) (𝑖𝑟=1…𝑛𝑟) 

𝐫𝑖𝑟
 ∈    ℝ𝐷 

Reference 

sequence of poses 

CSTM 

𝐒 𝐒 =  (𝐬𝑖𝑠
) (𝑖𝑠=1…𝑛𝑠) 

𝐬𝑖𝑠
 ∈    ℝ𝐷 

Sequence of poses CSTM 

𝑻 𝑇 ∈  ℝ1 Threshold for peak 

segment matching 

HLE 

 

𝑾 𝑊 ∈  ℝ1 Number of weak 

classifiers 

AdaBoost 

𝐗 𝐗 =  (𝐱𝑖𝑟
) (𝑖𝑟=1…𝑛𝑟) 

𝐱𝑖𝑟
 ∈  ℝ𝐷 

High dimensional 

poses from training 

data set 

CSTM 

𝐘 𝐘 =  (𝐲𝑖𝑟
) (𝑖𝑟=1…𝑛𝑟) 

𝐲𝑖𝑟
 ∈  ℝ𝑑 

Low dimensional 

poses from training 

data set 

CSTM 

𝐙 𝐙 =  (𝐳𝑖𝑡
) (𝑖𝑡=1…𝑛𝑡) Testing poses CSTM 



𝐳𝑖𝑒
∈  ℝ𝐷 

𝜶 𝛼 ∈  ℝ1 Gradient regression 

line 

HTL 

𝜷 𝛽 ∈  ℝ1 Intersection 

regression line 

HTL 

𝜸  Gini impurity 

function 

Decision trees 

𝜹 𝛿 ∈  ℝ1 Αccumulated 

distortion on the 

DTW path 

DTW 

𝜺  Permutation HTL 

𝜻  Peak pose matches CSTM/HTL 

𝛈𝒂 𝛈𝒂 = (𝜂𝑖𝜂
)(𝑖𝜂=1…𝑛𝜂) 

𝜂
𝑖𝜂

∈ ℝ1 

The peak poses 

indices in training 

set for each action 

HTL 

𝛉 𝛉 = (𝜃𝑖𝜃
)(𝑖𝜃=1…𝑛𝜃) 

𝜃𝑖𝜃
∈ ℝ1 

Sequential key pose 

matches of the 

same class 

HTL 

𝝀 𝜆 ∈  ℝ1 Cluster transition 

probability 

CSTM 

𝝁 𝜇 ∈  ℤ1 Number of intra-

class matches 

HTL 

𝝃  Weighted vote AdaBoost 

𝝆 𝜌 ∈  ℝ1 Inter class ratio HTL 

𝛕 𝛕 = 𝜏1, 𝜏2, … . , 𝜏𝑛𝜏
 

 

Thresholds for 

feature importance 

subsets 

DFS 

𝝋  Peak pose 

detection function 

CSTM 

𝛘 𝛘 = {𝐲𝑖𝑟
, 𝐱𝑖𝑟

} (𝑖𝑟=1…𝑛𝑟) Training set for 

radial Basis 

Function Network 

CSTM 

𝝍  Weak classifier AdaBoost 



𝝎  Class General 

𝚪 𝚪 ∈  ℝ𝑛𝑞 × 𝑛𝑟 DTW Pairwise 

distance matrix 

DTW 

∆ ∆ ∈   ℝ1 Latency (ms) Evaluation metric 

  = (𝑖𝑐𝑗𝑐
) (𝑖𝑐=1…𝑛𝑐,𝑗𝑐=1…𝑛𝑐) 

𝑖𝑗 ∈ ℝ1 

Transition matrix of 

cluster transition 

probabilities 

CSTM 

𝚽𝒂  Action point 

detection 

evaluation function 

Evaluation metric 

𝚽𝒑  Action point 

prediction 

evaluation function 

Evaluation metric 

𝚽𝒊  Interaction point 

detection 

evaluation function 

Evaluation metric 

𝚿  Strong classifier AdaBoost 

𝛀  Number of binary 

classifiers 

OVA 

 

8.2 Ethics 

 



 

Research Proposal 
 
1. Applicant Information 
 
Main Applicant: Victoria Bloom, DIRC, Kingston University 
Experimental Dates: January 2012 – October 2014 
 
2. Research Proposal 
 
2.1 Background and Rational for Research 
 
The gaming industry in recent years has attracted an increasing large and diverse group of people.  A 
new generation of games based on natural interaction such as dance and sports games have 
increased the appeal of gaming to family members of all ages. (1) 
 
The latest technological advancement in natural interaction is the Kinect developed by Microsoft for 
the Xbox 360 games console.  Microsoft’s slogan is “You are the controller”, which captures their 
concept of a controller free experience allowing the user to control the game with body movements.  
The titles released to date for the Kinect include driving, dance or sports games that recognise a 
small set of actions.  
 
There is a vast wealth of research on human action recognition in computer vision and this project 
will combine it with gaming to advance the state of the art methods for action recognition.  These 
algorithms will be optimised for performance which is one of the main issues in video games. 
The algorithms will be trained to recognise a wide range of actions including sporting, driving and 
action-adventure actions such as walking, running, jumping, dropping, firing, changing weapon, 
throwing and defending.  This could increase the complexity and appeal of games that will 
developed to include action-adventure games similar to Lara Croft. 
 
The restricted environment associated with gaming, typically the users lounge poses unique 

challenges for human action recognition.  The challenges are related to the lack of context in the 

lounge where the normal background and objects usually associated with a given action are missing.  

For example, performing a golf swing in a real golf game would require a golf club and may take 

place on a green field.  Performing a golf swing in a Kinect game the user has no golf club and is 

performing the action in their lounge.  This lack of contextual information may mean that the state 

of the art appearance-based action recognition approaches may under perform.   

 

However, due to recent progress in pose estimation by Microsoft research group (2) early pose 

based approaches are being revisited by action recognition researchers.   Yao et al. (3) experiments 

showed that pose based features outperform low-level appearance features in a home monitoring 

scenario.  Pose based action recognition approaches may be the solution to the contextual 

challenges faced in the gaming environment and warrant further investigation. 

 

To compare the performance of both the appearance and pose based approaches a dataset of a 

range of gaming actions is required containing video, depth and skeleton data. 

There are already publicly available datasets with sports and locomotion actions containing video 

and skeleton data (4-6).  However, as mentioned previously there is a difference between 

performing a real action and a gaming action.  Even simple actions such as walking are different in 

the gaming environment as the player will be walking on the spot.   The   MPI HDM05 Motion 



Capture Database (5) database does include locomotion on the spot.  However, to get the full range 

of gaming actions required it is necessary to record our own dataset.  To encourage further research 

in the field of action recognition in gaming it is intended to make the dataset publicly available 

online. 

 

2.2 Research Design and Protocol 
 
Study Design – Same for full study and pilot study 
20-30 healthy subjects between the ages of 18-65 with different morphologies, weights, heights and 
clothing. This diversity, as well as the considerable size of the test sample, is required in order to 
obtain activity models capable of generalising over a population of different subjects. 
 
Subjects will report to the laboratory on one occasion to complete the testing process. 
Subjects will be asked to perform different gaming actions (walking on the spot, 
running on the spot, kicking, punching etc.). To examine the validity of the proposed protocol 
during the pilot study, subjects will be asked to perform each of the activities several 
times. 
 
Participants and Recruitment 
Subjects will be recruited from the Kingston University population.  An invitation to participate will 
be sent via a StudentSpace notice.  All subjects will participate on a completely voluntary basis and 
will be asked to complete an informed consent form to check their suitability to participate. 
 
Location 
All testing will take place either in the Biomechanics Laboratory (EM03) at Kingston University  or if 
mocap data is not required room SB122 or SB329 at Kingston University. 
 
Procedures  
Subjects will be asked to perform several different natural interaction gaming actions, walking on 
the spot, running on the spot, kicking, punching etc. Subjects will have their activities captured 
during the trials using Microsoft’s Kinect.  The Kinect can be used as a motion capture system that 
does not require the user to wear any markers / special clothing or hold any controllers.  The device 
contains an infrared projector and sensor that measures depth and a video camera for capturing 
images.  It can be used in conjunction with software to produce skeleton data (joint positions and 
angles) of users in its field of view. 
 

To compare the performance of both the appearance and pose based action recognition approaches 

the data capture will need to include the image, depth and skeleton data provided by the Kinect. 

If initial tests prove that the Kinect skeleton data is not yet robust enough then motion capture data 
will also need to be recorded.  A motion capture system consists of several infrared cameras and a 
set of reflective landmarks attached to the body.  It is also used in conjunction with software to 
produce skeleton data (joint positions and angles) of users in its field of view. 
 
Statistical Analysis 
Features will be extracted from the captured data and used as input to the machine learning 
algorithms developed for action recognition.  The features extracted will differ for each type of data 
captured.  The features extracted from the image will be low level features such as colour, spatial 
and temporal gradients and dense optical flow.  The features extracted from the depth map will be 
low level such as pixel depth or higher level such as silhouettes and visuals hulls.  The features 



extracted from the skeleton data will be low level such as joint positions and angles and high level 
such as qualitative geometric features (3). 
The captured features will then be split into three datasets and used to train, validate and test the 
machine learning action recognition algorithms developed so the performance of the algorithms can 
be compared. 
 
Data Storage and Confidentiality 
All personal data entered on the informed consent forms will be kept in a locked cabinet within the 

Digital Imaging Research Centre and will conform to the Data Protection Act 1998.  Personal data will 

be kept for further research of the Human Body Group once this project has finished.  Personal data 

will be stored indefinitely. 

 

All recorded data (image, depth and skeleton) will be made publicly available on a Kingston 

University webpage.  No individual personal data will accompany this data.  However, as the video 

contains colour images of the participants they may be identifiable.  Recorded data will remain 

public once this project has finished. 

 

Only the investigators will have access to both personal data and recorded data collected from the 

study.  In order to have access to the personal data, new researchers belonging to the group should 

ask for permission filling a form and justifying their necessity. In case of approval, they could have 

access to the personal data during the period of their particular project. 

 

Consent and approval for video, depth and skeleton data to be posted on the internet will be sought 

after the activity has taken place and the participants have had the opportunity to view their 

footage. 

 
If a participant decides to withdraw their consent, they can request removing any data that allows 
their identification at any time. In this case, their video and/or depth and/or skeleton and/or MoCap 
data will be deleted from the dataset. However, if this data has already been made public there is no 
guarantee that someone has not already made a copy of the footage concerned. 
 
3 Ethical Considerations 
 
3.1 Informed Consent 
Prior to participation, all subjects will be required to complete an Informed Consent and Health 
Screening questionnaire (please see appendixes below) in order to attain their suitability for the 
investigation and potential contraindications to exercise. All participants are free to leave the trial at 
any point without question. 
 
3.2 Risk Assessment 
The risks involved in completing this investigation are minimal, since the activities to be performed 
are similar to those experienced playing Kinect games for the Xbox 360.  
 
3.3 Confidentiality 
Please see section 2.2 (Data Storage and Confidentiality) for confidentiality measures. 
 
3.4 Conflicting Interests 
No researchers involved in this investigation have any conflicting interests or stand to gain financially 
from the outcome of the testing. 



 
3.5 Bodily Contact 
There may be minimal bodily contact such as touching hands to perform co-operative gaming 
actions, the participants will have a clear idea of the nature of any bodily contact in advance.  There 
will be no force in the bodily contact (no punching or kicking etc.) so there is no risk of any injuries 
from the contact. 
 
 
 
4 Risks and Benefits 
All potential risks will be conveyed to the participants clearly through the information sheet and 
informed consent document.  
Subjects may enjoy performing the range of gaming actions and will have the opportunity see a 
silhouette and skeleton representation of their body. 
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Participant Information Sheet 
 

 
 
Validation Study of  Action Recognition in Video games  
 
 
Thank you for showing interest in this current investigation. If you choose to take part 
in the investigation you will be asked to fill out and sign an informed consent form to 
make sure there are no current contraindications to your participation. If you choose 
not to participate in the investigation, thank you for your time. All information obtained 
during the course of the study will be kept completely confidential. If after reading this 
sheet you have any questions regarding the project please feel free to ask before you 
complete the informed consent form. 
 
What is the purpose of the study? 
The aim of this study is to examine algorithms for natural interaction with video games performed 
by applying computer vision techniques.  
 
Why have I been chosen? 
We are looking for subjects aged between 18 and 65 years old with different morphologies, weights, 
heights and clothing styles. 
 
Do I have to take part? 
No. Once you have read this information sheet the choice is yours. Even after this time you 
are free to withdraw from the investigation at any time without any negative effects. 
 
What will happen to me if I take part? 
You will be asked to attend the Kingston University Biomechanics Laboratory for one session where 
you will be asked to perform different gaming actions (walking on the spot, 
running on the spot, kicking, punching etc.). The study will take place using a Microsoft Kinect video 
and depth camera that registers the activity and movements that you will perform.  In addition, a 
Motion Capture system may be used which consists of several cameras able to register the position 
of a set of reflective markers attached to your body.  
 
What are the possible disadvantages and risks of taking part? 
The risks involved in completing this investigation are minimal, since the activities to be performed 
are similar to those experienced playing Kinect games for the Xbox 360.  
 
What happens when the research study stops? 
You will be under no obligation for any further testing. Once the data is analysed, you will be 
able to obtain a full set of data if you wish. 
 



Will my taking part be kept confidential? 
All personal information entered on this form will be kept strictly confidential and kept in secure 
storage.  
 
All recorded data (image, depth and skeleton) will be made publicly available on a Kingston 

University webpage. They may be used for research purposes by researchers in Kingston University 

or other institutions. Parts of the data may appear in academic papers  or public research 

presentations. No individual personal data will accompany this data.  However, as the video contains 

colour images you could be identified.   

 

Your consent and approval for video, depth and skeleton data to be posted on the internet will be 

sought after the activity has taken place and you will have had the opportunity to view your footage. 

If you wish to withdraw your consent at any time, all recorded data (image, depth and skeleton) will 
be deleted from the dataset.  However, if this data has already been made public there is no 
guarantee that someone has not already made a copy of the footage concerned. 
 
Who is organising and funding the study? 
This study is organised by members of staff from Faculty of Science, Engineering and Computing, 
Kingston University. No one involved in the study stands to gain financially from the investigation. 
 
What will happen to the results of the research study? 
The results may be presented at national and international conferences as well as in scientific 
journals.  
 
All personal details, as previously stated, will be kept confidential but you may be identified from the 
video images.  
 
Who has reviewed the study? 
The Kingston University Faculty of Science, Engineering and Computing Faculty Research Ethics 
Committee has reviewed the study. 
 
Contact for further information. 
Further information may be obtained from: 
 
Victoria Bloom, 
Faculty of Science, Engineering and Computing, 
Kingston University, 
Penrhyn Road, 
Kingston Upon Thames, 
Surrey, 
KT1 2EE. 
Tel: +44 (0) 020 8547 2000 Ext. 62923 
Email: k1044104@kingston.ac.uk  
 

mailto:k1044104@kingston.ac.uk


 
 
Faculty of Science, Engineering and Computing 
 
Digital Imaging Research Centre 
 
Informed Consent Form for Kinect Recording - Strictly Confidential 
 
Name: ……………………………………   Date of Birth: ……………………… 
 
Contact Number: …………………………  Email: ……………………………... 
 
Height:……………………………………  Weight: …………………………… 
 
Sex: ………………………………………    Left or right handed: .......... 
 
Please answer the following questions truthfully and completely. The purpose of this questionnaire 
is to establish that you are of sound body to participate in the current investigation.  Please answer 
questions 1-4 now and the remaining questions after the activity has taken place. 
 
Q.1) How would you classify your current activity level? Please indicate below: 
 

Low  Moderate  High  Very  High 
 

Q.2) Do you suffer from or have every suffered from any injured or condition that will cause 
changes to the way you walk or move? 
 

Yes  No 
 
Details: 
..................................................................................................................................................... 
............................................................................................................................................... 

 
 

Q.3) Do you know of any reason why you should not to participate in the proposed 
exercise testing protocol? If yes please give details. 
 

Yes  No 
 

Details: 
..................................................................................................................................................... 
............................................................................................................................................... 
 
Q.4) Please confirm that you have read and fully understand the Participant Information 
sheet provided. 
 
Yes  No 



Q.5) Have you had the opportunity to view your recorded video footage? 
 
 Yes No 
 
 
 
Q.6) Do you permit the usage of the recorded video for the purposes of research on Computer Vision 
algorithms?. 
 

Yes  No 
 
 

Q.7) Do you permit the publication of the recorded video in scientific papers, conferences, 
workshops and websites for the purposes of research on Computer Vision algorithms? 
 

Yes  No 
 

Q.8) Have you had the opportunity to view your recorded depth data? 
 
 Yes No 
 
 

 
Q.9) Do you permit the usage of the recorded depth data for the purposes of research on Computer 
Vision algorithms?. 
 

Yes  No 
 
 

Q.10) Do you permit the publication of the recorded depth data in scientific papers, conferences, 
workshops and websites for the purposes of research on Computer Vision algorithms? 
 

Yes  No 
 

Q.11) Have you had the opportunity to view your recorded skeleton data? 
 
 Yes No 
 

 
 

Q.12) Do you permit the usage of the recorded skeleton data for the purposes of research on 
Computer Vision algorithms? 
 

Yes  No 
 

Q.13) Do you permit the publication of the recorded skeleton data in scientific papers, conferences, 
workshops and websites for the purposes of research on Computer Vision algorithms? 
 

Yes  No 
 
 



 
 
Statement by participant 
 
 
I confirm that I have read and understood the information sheet/letter of invitation for this study.  I 
have been informed of the purpose, risks, and benefits of taking part. 
 
(Title of Study)----------------------------------------------------------------------------------------------- 
 
I understand what my involvement will entail and any questions have been answered to my 
satisfaction. 
 
I understand that my participation is entirely voluntary, and that I can withdraw or request 
destroying any data that I may be identifiable at any time before the data becomes public  without 
prejudice. 
 
I understand that all information obtained will be treated with the strictest of confidence. 
 
I understand that research data gathered for the study may be published and be disseminated to the 
scientific community, and that I may be identified as a subject. (please delete if you disagree). 
 
Contact information has been provided should I wish to seek further information from the 
investigator at any time for purposes of clarification. 
 
    
Participant’s Signature: ..................................................................................... 
 
Date: .................................................................................................................. 
 
 
Statement by investigator 
 
I have explained this project and the implications of participation in it to this participant without bias 
and I believe that the consent is informed and that he/she understands the implications of 
participation. 
 
Name of investigator: ..................................................................................... 
 
Signature of investigator: ................................................................................ 
 
Date: ................................................................................................................ 
 

 



 
 
Faculty of Science, Engineering and Computing 
 
Digital Imaging Research Centre 
 
Informed Consent Form for Testing in the Biomechanics Laboratory - Strictly Confidential 
 
Name: ……………………………………   Date of Birth: ……………………… 
 
Contact Number: …………………………  Email: ……………………………... 
 
Height:……………………………………  Weight: …………………………… 
 
Sex: ………………………………………    Left or right handed: ........... 
 
Please answer the following questions truthfully and completely. The purpose of this questionnaire 
is to establish that you are of sound body to participate in the current investigation.  Please answer 
questions 1-4 now and the remaining questions after the activity has taken place. 
 
 
Q.1) How would you classify your current activity level? Please indicate below: 
 

Low  Moderate  High  Very  High 
 

Q.2) Do you suffer from or have every suffered from any injured or condition that will cause 
changes to the way you walk or move? 
 

Yes  No 
 
Details: 
..................................................................................................................................................... 
............................................................................................................................................... 

 
 

Q.3) Do you know of any reason why you should not to participate in the proposed 
exercise testing protocol? If yes please give details. 
 

Yes  No 
 

Details: 
..................................................................................................................................................... 
............................................................................................................................................... 
 
Q.4) Please confirm that you have read and fully understand the Participant Information 
sheet provided. 
 

Yes  No 
 



Q.5) Have you had the opportunity to view your recorded skeleton data? 
 
 Yes No 
 
Q.6) Do you permit the usage of the recorded skeleton data for the purposes of research on 
Computer Vision algorithms? 
 

Yes  No 
 
 

Q.7) Do you permit the publication of the recorded skeleton data in scientific papers, conferences, 
workshops and websites for the purposes of research on Computer Vision algorithms? 
 

Yes  No 
 
 
 
Statement by participant 
 
 
I confirm that I have read and understood the information sheet/letter of invitation for this study.  I 
have been informed of the purpose, risks, and benefits of taking part. 
 
(Title of Study)----------------------------------------------------------------------------------------------- 
 
I understand what my involvement will entail and any questions have been answered to my 
satisfaction. 
 
I understand that my participation is entirely voluntary, and that I can withdraw or request 
destroying any data that I may be identifiable at any time without prejudice. 
 
I understand that all information obtained will be treated with the strictest of confidence. 
 
I understand that research data gathered for the study may be published and be disseminated to the 
scientific community, and that I may be identified as a subject. (please delete if you disagree). 
 
Contact information has been provided should I wish to seek further information from the 
investigator at any time for purposes of clarification. 
 
    
Participant’s Signature: ..................................................................................... 
 
Date: .................................................................................................................. 
 
 
Statement by investigator 
 
I have explained this project and the implications of participation in it to this participant without bias 
and I believe that the consent is informed and that he/she understands the implications of 
participation. 
 



Name of investigator: ..................................................................................... 
 
Signature of investigator: ................................................................................ 
 
Date: ................................................................................................................ 
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APPLICATION FORM FOR ETHICAL REVIEW RE4 
 
SECTION A 

 
Project title: 
 
 
 
 
Name of the lead applicant: 

Name (Title / first name / surname): Miss. Victoria Bloom 

Position held: PhD Student 

Department/School/Faculty:  Faculty of Science, Engineering and Computing 

Telephone: +44 (0) 020 8547 2000 Ext. 62923 

Email address: k1044104@kingston.ac.uk 

 
Name of co-applicants: 

Name (Title / first name / surname): Dr. Dimitrios Makris 

Position held: Reader 

Department/School/Faculty:  Faculty of Science, Engineering and Computing 

Telephone: +44 (0) 020 8547 2000 Ext. 67082 

Email address: D.Makris@kingston.ac.uk 

 

Name (Title / first name / surname): Dr. Vasileios Argyriou 

Position held: Senior Lecturer 

Department/School/Faculty:  Faculty of Science, Engineering and Computing 

Telephone: +44 (0) 020 8547 2000 Ext. 62591 

Email address: Vasileios.Argyriou@kingston.ac.uk 

 
Is the project 

Student research Yes X No  

KU Staff research Yes X No  

Research on KU premises Yes X No  

 
If it is STUDENT research: Course: PhD Multiple Action Recognition in Video Games 
 
Supervisor/DoS: Dr. Dimitrios Makris _____________________________________ 

 
SECTION B 

 
Has approval for the project already been granted by another ethics committee? 

Yes  No X 

If NO, proceed to Section C;  
If YES, please complete the rest of this section before going to the declaration in Section D: 
 
Name of the committee:  __________________________Date of approval:  _______ 
 
Please attach the submission made to that committee, together with the approval letter. The Faculty 
Research Ethics Committee (FREC) may require further information or clarification from you and you 
should not embark on the project until you receive notification from the FREC that recognition of the 
approval has been granted. 
 
  

Multiple Action Recognition in Video Games 

mailto:k1044104@kingston.ac.uk
mailto:D.Makris@kingston.ac.uk
mailto:Vasileios.Argyriou@kingston.ac.uk
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SECTION C 
 
Briefly describe the procedures to be used in this research involving human participants  
 
 
 
 
 
 
 
 
Summarise the data sources to be used in the project: 
 

 
    The project will require 4 types of data related to human objects: 

1. Motion Capture (MoCap) data of human objects captured at the Biomechanics Lab (Sports 

Science) in Kingston University the commercial system “Qualysis”. MoCap data describes the 

motion parameters of 3D human articulated motion. The output is a text file with the coordinates of 

a set of markers that have been attached to the subject. The data will be anonymous and does not 

allow person identification (e.g. no image is captured) 

2. Video data captured using the Kinect from volunteers that have given their consent.  Video or 

image extracts may be published only if volunteers give their consent. 

3. Depth data captured using the Kinect from volunteers that have given their consent. The data will 

be anonymous. Depth data may be published only if volunteers give their consent. 

4. Skeleton data captured using the Kinect from volunteers that have given their consent. The data 

will be anonymous. Skeleton data may be published only if volunteers give their consent. 

5.    The HumanEva Video and MoCap data (http://vision.cs.brown.edu/humaneva/) which has been 
published for research purposes. 
 

6. The Motion Database HDM05  MoCap data (http://www.mpi-inf.mpg.de/resources/HDM05/) which 
has been published for research purposes. 

 
7. The CMU MoCap Dataset MoCap data (http://vision.cs.brown.edu/humaneva/) which has been 

published for research purposes. 
 

 

 
 

 

 
 
Estimate duration of the project (months):  _____36 months__________________________ 
 
 
State the source of funding: __ PhD studentship funded by SEC Faculty __ 
 
Is it collaborative research? 
 

 Yes  No x 

 

Subjects will be asked to perform different natural interaction gaming actions, walking on the spot, running 
on the spot, kicking, punching etc. Subjects will have their activities captured during the trials using 
Microsoft’s Kinect and by a Motion Capture (mocap) system. 

http://vision.cs.brown.edu/humaneva/
http://www.mpi-inf.mpg.de/resources/HDM05/
http://vision.cs.brown.edu/humaneva/
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If YES, name of the collaborator institutions:  
 
1.  ____________________________________________________________________ 

2.  ____________________________________________________________________ 
 

3.  ____________________________________________________________________ 

4.  ____________________________________________________________________ 

5.  ____________________________________________________________________ 

6.  ____________________________________________________________________ 

Provide a brief project description (max. 150 words). This should be written for a lay audience 
 

There is a vast wealth of research on human action recognition in computer vision and this 
project will combine it with gaming to advance the state of the art methods for action 
recognition.  These algorithms will be optimised for performance and trained to recognise a 
wide range of actions.   
 

Due to recent progress in pose estimation by Microsoft research group early pose based 

approaches are being revisited by action recognition researchers.   Pose based action 

recognition approaches may be the solution to the contextual challenges faced in the gaming 

environment and warrant further investigation. 

 

To get the full range of gaming actions required for training and testing the algorithms 

developed it is necessary to record our own dataset.  To encourage further research in the 

field of action recognition in gaming it is intended to make the dataset publicly available 

online. 

 

 
Risk Assessment:  Does the proposed research involve any of the following?   
  

Children or young people under 18 years of age? 
 

Yes  No x 

 
If YES, have you complied with the requirements of the CRB?  YES  NO 
 
 

People with an intellectual or mental impairment, temporary or permanent?   
Yes 

  
No 

x 

 

People highly dependent on medical care, e.g., emergency care, intensive 
care, neonatal intensive care, terminally ill, or unconscious?   

 
Yes 

  
No 

x 

 

Prisoners, illegal immigrants or financially destitute? 
 

 
Yes 

  
No 

x 

 

Pregnant women? 
 

 
Yes 

  
No 

x 

 

Will people from a specific ethnic, cultural or indigenous group be involved, 
or have the potential to be involved in the proposed research? 

 
Yes 

  
No 

x
x 
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Assisted reproductive technology?  
Yes 

  
No 

x 

 

Human genetic research? 
 

 
Yes 

  
No 

x 

 

Epidemiology research? 
 

 
Yes 

  
No 

x 

 

Stem cell research? 
 

 
Yes 

  
No 

x 

 

 Use of environmentally toxic chemicals? 
 

 
Yes 

  
No 

x 

 

Use of radioactive substances? 
 

 
Yes 

  
No 

x 

 

Ingestion of potentially harmful or harmful dose of foods, fluids or drugs?  
Yes 

  
No 

x 

 

Contravention of social/cultural boundaries? 
 

 
Yes 

  
No 

x 

 

Involves use of data without prior consent? 
 

 
Yes 

  
No 

x 

 

Involves bodily contact? 
 

 
Yes 

x  
No 

 

 

Compromising professional boundaries between participants and 
researchers? 

 
Yes 

  
No 

x 

 
 
 

Deception of participants, concealment or covert observation? 
 

 
Yes 

  
No 

x 

 
 

Will this research significantly affect the health* outcomes or health 
services of subjects or communities? 

 
Yes 

  
No 

x 

Note* health is defined as not just the physical well-being of the individual but also the social, emotional and 
cultural well-being of the whole community. 
 

Is there a potential for enduring physical and/or psychological harm/ 
distress to participants? 

 
Yes 

  
No 

x 

 

Does your research raise any issues of personal safety for you or other 
researchers involved in the project? (especially if taking place outside 
working hours or off University premises) 

 
Yes 

  
No 

x 

 

Will the research be conducted without written informed consent being 
obtained from the participants? 
 

 
Yes 

  
No 

x 

 

Will financial/in kind payments (other than reasonable expenses and 
compensation for time) be offered to participants? (Indicate in the proposal 

 
Yes 

  
No 

x 
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how much and on what basis this has been decided) 

 

Is there a potential danger to participants in case of accidental unauthorised 
access to data? 

 
Yes 

  
No 

x 

 
 
N.B. If you have answered YES to any of these questions, you should address them fully in your 
project proposal and show that there are adequate controls in place. 
 
 
Storage, access and disposal of data 
Describe what research data will be stored, where, for what period of time, the measures that will be put in 
place to ensure security of the data, who will have access to the data, and the method and timing of 
disposal of the data. (Reference to the relevant paragraphs of the Ethics Guidance to be added) 

 
All personal data entered on the informed consent forms will be kept in a locked cabinet within the 
Digital Image Research Centre and will conform to the Data Protection Act 1998.  Personal data 
will be kept for further research of the Human Body Group once this project has finished.  
Personal data will be stored indefinitely. 
 
All recorded data (image, depth and skeleton) will be made publicly available on a Kingston 
University webpage.  No individual personal data will accompany this data.  However, as the 
video contains colour images of the participants they may be identifiable.  Recorded data will 
remain public once this project has finished. 
 
Only the investigators will have access to the personal data collected from the study.  
 
In order to have access to the personal data, new researchers belonging to the group should ask 
for permission filling a form and justifying their necessity. In case of approval, they could have 
access to the personal data during the period of their particular project. 
 
Consent and approval for video, depth and skeleton data to be posted on the internet will be 
sought after the activity has taken place and the participants have had the opportunity to view 
their footage. 
 
If a participant decides to withdraw their consent, they can request removing any data that allows 
their identification at any time. In this case, their video and/or depth and/or skeleton and/or 
MoCap data will be deleted from the dataset. However, if this data has already been made public 
there is no guarantee that someone has not already made a copy of the footage concerned. 
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SECTION D 
 
To be signed by all applicants 
 
Declaration to be signed by the applicant(s) and the supervisor (in the case of a student): 
 

 I confirm that the research will be undertaken in accordance with the Kingston University Guidance and 
procedures for undertaking research involving human participants 

 

 I will undertake to report formally to the relevant Faculty Research Ethics Committee for continuing 
review approval. 

 

 I shall ensure that any changes in approved research protocols are reported promptly for approval by 
the relevant Faculty Research Ethics Committee. 

 

 I shall ensure that the research study complies with the law and University policy on Health and Safety. 
 

 I confirm that the research study is compliant with the requirements of the Criminal Records Bureau 
where applicable. 

 

 I am satisfied that the research study is compliant with the Data Protection Act 1998, and that 
necessary arrangements have been, or will be made with regard to the storage and processing of 
participants’ personal information and generally, to ensure confidentiality of such data supplied and 
generated in the course of the research.  
(Note: Where relevant, further advice should be sought from the Data Protection Officer, University 
Secretary’s Office) 

 

 I shall ensure that the research is undertaken in accordance with the University’s Single Equality 
Scheme. 

 

 I will ensure that all adverse or unforeseen problems arising from the research project are reported 
immediately to the Chair of the relevant Faculty Research Ethics Committee.  

 

 I will undertake to provide notification when the study is complete and if it fails to start or is abandoned; 
 

 (For supervisors, if the applicant is a student) I have met and advised the student on the ethical aspects 
of the study design, and am satisfied that it complies with the current professional (where relevant), 
departmental and University guidelines. I accept responsibility for the conduct of this research and the 
maintenance of any consent documents as required by this Committee. 

 

 I understand that failure to provide accurate information can invalidate ethical approval. 
 
 

Signature of lead applicant: …….…………..Date:…01/02/2012…………… 
 

Signature of co-applicant: … ……..Date:… 01/02/2012…………………… 
 

Signature of co-applicant: … ……………..Date:… 01/02/2012…………… 
 
Signature of co-applicant: …………………………………..Date:……………………… 
 
Signature of supervisor:…………………............................Date................................. 
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CHECKLIST 
 
Please complete the checklist and attach it to your application: 
 
Project title:  ____Multiple Action Recognition in Video Games___________________________ 
 
Lead Applicant:  __ Miss Victoria Bloom________ ____________________________________ 
 
Date of application:  __1st February, 2012_________________________________________ 
 
 
 

Before submitting this application, please check 
that you have done the following:  (N/A = not applicable) 

Applicant Committee use 
only 

 
 

Yes No N/A Yes No N/A 

 
All questions have been answered  

x 
 

 
 

 
 

 
 

 
 

 
 

 
All applicants have signed the application form 

x      

 
The research proposal is attached 

 
x 

 
 

 
 

 
 

 
 

 
 

 
Correspondence from other ethics committees is attached 

  x    

 
Informed Consent Form is attached 

 
x 

 
 

 
 

 
 

 
 

 
 

 
Participant Information Sheets are attached 

 
x 

 
 

 
 

 
 

 
 

 
 

All letters, advertisements, posters or other recruitment material 
to be used are attached 

 
x 

 
 

 
 

 
 

 
 

 
 

All surveys, questionnaires, interview/focus group schedules, 
data sheets, etc, to be used in collecting data are attached 

 
x 

 
 

 
 

 
 

 
 

 
 

Reference list attached, where applicable x 
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RESEARCH PROPOSAL GUIDELINES 
 
Provide a description of the proposed research plan and procedures, using the following headings. Show 
clearly that the research protocol gives adequate consideration to participants’ welfare, rights, beliefs, 
perceptions, customs and that cultural heritage, both individual and collective, will be respected in the 
course of your research. 
 
Research plan and protocols 
 
 What is the rationale for the research? 
 What is the research design/method? 
 Where will the project be conducted? 
 What is the participant group(s) and why has it been selected? 
 How many participants will be recruited and what is the rationale for that number? 
 How, by whom, and where, will potential participants be selected and approached to receive the invitation 

to participate? (Attach a copy of letters, advertisements, posters or other recruitment material to be used) 
 How much time will potential participants have to consider the invitation to participate? 
 What is required of participants?  (Attach a copy of any testing protocols, interview schedules, data 

sheets, informed consent, etc to be used.)   
 Relevant experience of researchers 
 Data storage and access to data 
 Explain how the information you receive will be analysed/interpreted and reported.  What specific 

approaches or techniques (statistical or qualitative) will be employed?  
 Dissemination  

 

Ethical consideration 
 

 How will voluntary participation be ensured? 
 Is active consent being sought from all participants for all aspects of the research involving them?  If No, 

why not? 
 How will participants’ privacy be protected during the recruitment process, or access to tissue samples, or 

access to records? 
 What are the benefits and risks to participants and how will risks be minimised? 
 Are there any potential conflicts of interest for the researchers? 
 Do the researchers have any affiliation with, or financial involvement in, any organisation or entity with 

direct or indirect interests in the subject matter or materials of this research?  Do the researchers expect 
to obtain any direct or indirect financial or other benefits from conducting this research? 

 Are there any restrictions on the publication of the results of this study? If yes, who has imposed them 
and what are they? 

 Will the research involve payments/rewards/inducements to participants? 
 How will confidentiality/anonymity of information received be ensured? 
 Any other ethical issues specific to your research? 

 
Risk/benefit analysis 
 

 Clearly justify any potential risks to participants (however minimal) by the potential benefits of the 
research.  

 Disclose any foreseeable risks (for example the discomfort of having your views challenged by others 
in a focus group, or that associated with negative feedback about a learning assessment). 

 Direct benefit to participants 
 How risks and benefits identified here will be communicated to the participants (e.g., through the 

informed consent document)? 
 Identify any costs and compensation 
 

 


