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Abstract: Energy use in internal combustion engine passenger vehicles contributes directly to CO2

emissions and fuel consumption, as well as producing a number of air pollutants. Optimizing
the vehicle velocity by utilising upcoming road information is an opportunity to minimize vehicle
energy use without requiring mechanical design changes. Dynamic programming is capable of such
an optimization task and is shown in simulation to produce fuel savings, on average 12%, compared
to real driving data; however, in this paper it is also applied in real time on a Raspberry Pi, a low
cost miniature computer, in situ in a vehicle. A test drive was undertaken with driver feedback
being provided by a dynamic programming algorithm, and the results are compared to a simulated
intelligent cruise control system that can follow the algorithm results precisely. An 8% reduction in
fuel with no loss in time is reported compared to the test driver.
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1. Introduction

The increasing level of CO2 in the Earth’s atmosphere is known to be one of the leading causes
of global warming [1]. The contribution of the transport sector globally is estimated to be 23% of
which road transport was responsible for three quarters in 2013 [2]. Combustion of both gasoline
and diesel fuel produces CO2 [3], along with a number of undesirable emissions. In order to reduce
the impact of passenger vehicle CO2 emissions on global warming, regulations have been put in
place by governments across the globe [4] and are increasingly being tightened. In addition to the
regulation of emissions, there is an economic incentive to reduce energy use and fuel consumption in
passenger vehicles.

The approaches to fuel consumption reduction can be grouped into two types: the first
involves changes to the mechanical design of the vehicle, such as weight reduction, aerodynamic
improvements, as well as more complex changes, such as the introduction of hybrid electric
powertrains; the second type of approach involves modifying driver behaviour by such means as
navigation systems that select the most economical route [5], car sharing [6] and training or guidance
to improve the style of driving [7]. Such approaches can be applied to the existing vehicle population,
thus having an impact in a fast and cost-effective manner.

It is the modification of driving style that will be the focus of this paper, specifically the
longitudinal velocity and gear selection. Training drivers in economical or eco-driving has been
shown to improve fuel consumption [7–9]; however, the increased mental workload in complex traffic
environments means eco-driving techniques cannot always be applied. The following general rules
were presented in an EcoWILLpublication [10] for providers of driver training:
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1. Anticipate traffic flow
2. Maintain a steady speed at low engine speed
3. Shift up early

The ability to anticipate traffic flow depends on the road layout and visibility amongst other
factors and, therefore, is unreasonable to be expected consistently of a driver; however, the use of
map data is becoming more prevalent in modern vehicles allowing a real-time eco-driving guide to
be implemented in a vehicle. From the rules noted above, the velocity and gear selection are clearly
the most important factors for the eco-driving guide to focus on.

Optimization of vehicle velocity has been frequently investigated in the literature for
Heavy Goods Vehicles (HGVs) due to the cost of fuel consumption to haulage companies [11].
Publication [12] proposes a Model Predictive Control (MPC) algorithm to minimize fuel consumption,
as well as deviation from a desired velocity. This approach is simulated with an HGV with artificial
road profiles. An MPC algorithm is also developed in [13] to produce a time and fuel optimal velocity
profile, with an average computation time of 1.26 s in simulation, but real-time implementation is
considered only for further work.

Dynamic Programming (DP) [14] is applied to the problem of HGV velocity optimization in [15]
at free-way speeds with a reduction in fuel consumption of 3.5% shown compared to a standard cruise
control system. As HGVs are limited to a maximum speed that is lower than a passenger vehicle and
drive predominantly on free-ways, the optimization problem is less complex than that of a passenger
vehicle. DP is applied to a hybrid electric passenger vehicle in [16] considering road sections with
varying speed limits on both highway and free-way routes. Traffic conditions are included in the
optimization system presented in [17] with different levels of traffic information provided to the
optimization system, and the effects are simulated. Breaking a journey into 2.5 km sections and
optimizing the velocity for consecutive sections results in a fuel savings of 4% over a fixed velocity
profile with no loss of time. Hybrid electric buses are the application of DP for energy management
in [18] and in [19], where gear shift scheduling is the focus with fuel savings shown over the standard
shift schedule.

It is seen then that DP shows promise as a method both for vehicle velocity and gear
optimization; however, due to the dynamic nature of the road environment, there is a requirement to
regularly update the control policy based on the current situation the vehicle faces. The application
of DP in optimizing both vehicle velocity and gear selection is detailed here with emphasis on the
real-time implementation of such an algorithm. As DP reduces a complex optimization problem into
a multi-stage discrete optimization problem, consideration must be given to the number of stages and
the discretisation of the system. The exponential increase in algorithm complexity with an increased
decision variable range is investigated to ensure a compromise between the quality of results and
algorithm computation time and, thus, the feasibility of real-time implementation.

2. Methodology

In [20], a DP problem is presented as having two main features, a cost function that increases
cumulatively and a system that can be described by a discrete time model. Such a model can be
described as follows:

xk+1 = fk(xk, uk), k = 0, 1, ..., N − 1. (1)

where xk+1 represents the state of the system currently and fk is the transition relationship, which is
a function of the current state xk and uk the control decision. The state and control vectors are:

xk =
[
v g

]T
(2)
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uk =
[
uv ug

]T
(3)

where v is the vehicle velocity (m·s−1), g is the vehicle current gear, uv is the demanded velocity
(m·s−1) and ug is the demand gear selection. The other feature noted above, the cost function, is
defined by the following:

Jk =
λ

µt
Jt +

1 − λ

µ f
J f (4)

where Jk is the total cost for a discrete step, k, Jt is the cost due to the time taken, J f is the cost due to
the fuel consumed, λ is a weighting factor to prioritize time or fuel and µt and µ f are normalisation
factors for time and fuel, respectively. As the units of fuel and time are not comparable, normalisation
is required to ensure that the maximum values for each correspond to a cost value of one in the overall
cost function (4). The cost due to the time taken is calculated according to:

Jt =
∆s

vavg
(5)

where ∆s (m) is the distance covered during the step and vavg (m·s−1) is the average speed for the step.

J f = ṁ f (τe, ωe)

(
∆s

vavg

)
(6)

where ṁ f is the fuel consumption rate (g·s−1) multiplied by the duration, in seconds, as calculated
in Equation (5). The fuel consumption rate assumes a steady state engine model based on torque, τe,
and speed, ωe. The total cost for a velocity profile is described by the summation of each step cost
and a terminal cost, g(xN):

J = g(xN) +
N−1

∑
k=0

Jk(Jt, J f ) (7)

The possible decisions at each step can be presented as a multi-dimensional grid, known as a
search space. In this case, the distance along the road, the vehicle velocity and the gear selection make
up a three-dimensional search space, as shown in Figure 1. Three transitions are shown illustrating
velocity and gear changes, where transition (a) is to a higher velocity, while shifting to a higher gear
(b) is to a lower velocity while remaining in the same gear and (c) is maintaining velocity while
shifting to a lower gear.

Figure 1. Dynamic programming search space with transitions (a) increasing velocity and selecting a
higher gear; (b) decreasing velocity and (c) maintaining velocity and selecting a lower gear.
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The complexity of the algorithm (O) can be calculated from the dimensions of the search space:

O(Ns · N2
v · N2

g) (8)

where Ns is the number of distance intervals between s0 and smax, Nv is the number of velocity
intervals and Ng is the number of gears. As can be seen, the number of distance intervals has a
linear relationship with complexity as opposed to the velocity and gear intervals, which both have
an exponential relationship with complexity. The gear interval spacing is fixed by the discrete nature
of the automatic transmission; however, the relationship described in Equation (8) assumes that all
gears Ng are available to be reached from each of the gears, which in reality is not feasible. With the
structure of the algorithm and search space specified, the calculation of each transition is detailed.

2.1. Vehicle Model

An essential part of the optimization algorithm is the vehicle model that is used in each transition
calculation. It is important that the model is accurate, but can also produce results in a sufficient
time so as to not impact the real-time deployment of the algorithm. For a given transition, the
start and end velocity are known, and so, a backward or quasi-static vehicle model [21] is utilised.
The vehicle velocity is dictated by the forces acting to accelerate or decelerate the vehicle.
These forces are presented according to Newton’s second law and developed from [22] in the time
domain. As the road state changes with position and this can be measured directly rather than
estimated based on velocity and time, there are advantages to presenting the model with position
as an input variable. The drawback with this is that standard equations with time as a variable need
to be converted to consider position instead. The relationship noted in [23] between acceleration in
the time domain and the spatial domain equivalent is an application of the chain rule:

dv
dt

=
ds
dt

dv
ds

= v
dv
ds

(9)

where s is the distance along the road (m), v is the vehicle velocity (m·s−1) and t is the time (s).
This results in an equivalent to the equation from [22] as follows:

mvv(s)
dv
ds

= Ft − (Fa(v, vw) + Fr(α(s)) + Fg(α(s))) (10)

where mv is the vehicle mass including a nominal equivalent inertial mass (kg) and v(s) is the vehicle
velocity (m·s−1), as a function of position. Ft is the tractive force applied by the tyres of the driven
wheels (N); Fa is the aerodynamic drag force of the vehicle (N), a function of vehicle and wind velocity,
vw. Fr is the rolling resistance (N); Fg is the gravitational force acting on the vehicle (N); and both are
functions of the road gradient, α(s), which itself is a function of road distance, s.

The sensitivity of the vehicle model to changes in parameters is highlighted in Figure 2 with road
gradient changes having by far the most impact on the total resistive forces under normal weather
conditions, followed by wind speed, which becomes significant when above average wind speeds
are considered. Both the gradient and wind speed can change during the course of a given journey.
The road gradient is known from enhanced map data, and the wind speed can be estimated using
historical local data or weather forecast data. The vehicle mass on the other hand has less effect, and
while it can change between journeys with additional passengers or luggage, it is unlikely to change
significantly during the course of a single journey being optimized.
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Figure 2. Vehicle model resistive force sensitivity to change in (a) mass; (b) gradient and (c) wind
speed. The difference in total force resulting from a change from the default to the maximum and
minimum of each variable is plotted for vehicle speeds from 10 m·s−1 to 30 m·s−1. The range of values
are +10–−10% for mass, +5%–−5% for gradient and maximum headwind to maximum tailwind
of 30 m·s−1.

In order to find the fuel consumption for a given transition, the engine speed and torque are
required to be calculated. For a transition between v0 and v1, the acceleration, which is assumed
constant, can be calculated and used in Equation (10) to find the required traction force at the wheels,
Ft. Using this force and the wheel radius, rw (m), the torque equivalent at the wheels (τw) in (N·m)
is found. This traction torque is related to the torque available from the engine via the final drive
and transmission ratios. Similarly, the engine speed, ωe, can be calculated from the drivetrain ratios.
The engine speed and torque are then used to find the fuel consumed from a Brake-Specific Fuel
Consumption (BSFC) map produced by the vehicle manufacturer to identify the efficiency of the
engine over a wide range of operating points. Where the engine operating point does not correspond
exactly with a data point in the map, interpolation is required.

With the optimization problem and vehicle model defined, the algorithm was tested in the
offline simulation on a number of real road profiles that were constructed based on measured
data from real journeys undertaken unassisted by any eco-feedback system and with data logging
equipment onboard. Using a commercial datalogger [24] to record GPS position, as well as all
messages on the Controller Area Network (CAN) bus, journeys could be analysed retrospectively
by reconstructing the road profile from the GPS longitude, latitude and elevation measurements.
The position coordinate pairs were used to incorporate speed limit data into the road model by
requesting such information from the Here routing service [25] at each position in the road. Pertinent
data recorded from the CAN bus included vehicle speed, engine speed, calculated engine torque
and a rolling fuel consumption measurement. The recorded fuel consumption is measured from the
requested fuel injection quantities and updated at a rate of 5 Hz.

The velocity and gear profiles generated by the unassisted driver were used by the vehicle model
to simulate fuel consumption and to compare to the algorithm results, and on average with λ = 0.5,
the fuel savings were 12% and the time savings 3%. In order to assess if these improvements could
be transferred from simulation to an in-vehicle eco-feedback system, such a system was developed.
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2.2. Hardware

While the approach of DP aims to represent problems in a format that is suited to evaluation by
a computer program, the process of implementing such a program to solve the DP problem still
involves several obstacles. Two scenarios were considered where the DP algorithm would have
to be implemented, the first being a simulation environment to allow testing of various scenarios
and the second being implementation on a hardware platform capable of running the algorithm in
real time in a test vehicle. MATLAB and Simulink are utilised across many academic and industrial
fields, particularly the automotive industry [26] for modelling and simulation work, and were used
to simulate the DP algorithm for testing.

(a)

(b)

Figure 3. In-vehicle deployment of the eco-feedback system (a) Test route and (b) on the extra urban
roads, including multi-lane free-way and single-lane country roads.
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To run the DP algorithm in a vehicle, a hardware platform was required that was compact,
portable, had a flexible operating system and enough processing power to run the necessary software
and hardware components that would form the complete system. The Raspberry Pi 2B single-board
computer with a quad-core 900-MHz processor and 1 Gb of RAM was used for this application.
The in-vehicle implementation is shown in Figure 3 along with the route used for testing. Details of
the hardware are given in Table 1 and Figure 4. As the software implementation of the algorithm
had to be flexible enough to perform adequately in both simulation and real-time implementation,
the choice of programming language used to execute the algorithm is a crucial factor decision.

Table 1. Hardware components’ details.

Item Model

1 Mini PC Raspberry Pi 2 Model B
2 Display Raspberry Pi Touch screen [27]
3 USB GPS Receiver GlobalSat BU-353-S4 [28]
4 CAN Bus Interface SK Pang PiCAN2 Board [29]
5 USB 4G Modem ZTE MF823
6 CAN Bus OBD Connector SK Pang OBDII to DB9F

1

2

3

4

5

6

Figure 4. Hardware component setup.

2.3. Software

The C programming language has a long history of use in the automotive industry [30], and its
speed of execution made it the most suitable candidate in which to implement the DP algorithm.
The Raspberry Pi 2B has a Debian-based operating system pre-installed, capable of running a
wide variety of programming languages; however, to ensure the consistency of results between
the simulation and real-time implementation, the same code was to be used. Simulink is able to
run code that has been produced in C as an S-function compiled using the MATLAB Executable
(MEX) compiler, and so, the same DP algorithm code could be used in both simulation and real-time
implementation, giving confidence that the simulated results would be transferable. While the core
of the DP algorithm was to be written in C, an interface with external inputs, such as GPS position,
was required. This interface was written as a Python script due to the ease of development and
existing libraries for interacting with peripherals, such as GPS receivers and CAN bus interfaces.
The DP algorithm implemented in C code can be run from within the Python script by compiling the
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C code and linking it so that it can be accessed in the same way as a standard Python library function.
The C code is compiled using the GNU Compiler Collection (GCC) [31].

The overall software package considers the acquisition of data, the integration of the DP
algorithm, a road information database, data logging and the displaying of relevant data on a
Graphical User Interface (GUI) along with audible feedback. In order to provide each of these tasks
with sufficient computational power, the multiple cores of the Raspberry Pi 2 were utilised with the
multiprocess library in Python [32].

Data Acquisition

The system relies on a number of data sources that need to be considered for data logging and
extraction of the relevant data.

To ensure that the DP algorithm provides usable and relevant results, it is vital that the current
status of the vehicle be known at the algorithm start. These data are available for transmission on
the internal communication network of the vehicle, the CAN bus. In order to communicate on
this network, a hardware interface is required between the Raspberry Pi and the vehicle On-Board
Diagnostics (OBD) port, which has a connection to the CAN bus. Such an interface board is
commercially available as the SK Pang PiCAN2 CAN Bus Interface Board [29], and an existing
Python library [33] can be utilised to access the data on the network. Once the Raspberry Pi has been
configured to communicate with the PiCAN board using the General Purpose IO connector (GPIO)
and the device is set up as a network interface, the Python Library is able to access the CAN bus.

All control modules in the vehicle communicate on the CAN bus, resulting in a large amount
of data passing through the bus network. The CAN specification [34] details a standard format
for messages that includes an 11-bit identifier to allow filtering so that only messages required by
the relevant system are read from the CAN bus. Using confidential manufacturer-specific message
identifiers, provided by Jaguar Land Rover Limited, the required data can be extracted in this way.

Once retrieved, the required messages have to be converted so that the relevant data are
in a readable format in the Python script and are subsequently logged, as well as used to
update the current vehicle status. This process was developed using a Microsoft Windows-based
CAN bus logging and replaying software package, BUSMASTER [35], which is able to replay
previously-recorded CAN bus messages to simulate the network traffic of a particular vehicle from
which CAN bus data have been recorded.

In order to locate the vehicle within the road section database, a Global Position System (GPS)
receiver is used to measure the vehicle’s longitude and latitude. A USB GPS receiver [28], a GlobalSat
WorldCom Corporation Model BU-353-S4 is used with an existing Python library [36] that provides a
conversion from a variety of GPS communication protocols to a standard, readable JavaScript Object
Notation (JSON) format. With the vehicle longitude and latitude known, the road section data are
interrogated to identify the closest road section to the current vehicle position using a brute-force
search approach.

As the traffic conditions play an important role in the ability to follow an optimal velocity profile,
a method for receiving real-time traffic data in the vehicle is required. A ZTE MF823 4G USB Modem
is used to establish a mobile Internet connection, enabling traffic data to be acquired from the Here
routing service [25]. A request is sent to the service for each pair of coordinates on the current road
section, and the response is parsed to extract the “SpeedLimit” and “TrafficSpeed” data, which both
contain the speed in m·s−1.

2.4. Algorithm Implementation

When all of the current data required by the DP algorithm have been made available in the
Python script, they are passed as a number of arguments to the DP C program for execution.
The current vehicle speed, gear and engine torque are provided along with the weighting factors used
in Equation (4). The current position in the road data is also provided along with a road identifier to
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allow retrieval of the relevant road section from a database of road data. This database is developed
to replicate the data fields from the Advanced Driver Assistance Interface Standard (ADASIS) that
are relevant for the DP algorithm and would be provided by a commercial eHorizon system, but
without the cost of such a system. Using a combination of GPS data recorded from previously-driven
routes with speed limit data from the Here routing service mentioned above, the road database is
constructed. Using the current vehicle longitude and latitude coordinate pair, the distance to each
data point of the road can be calculated using the haversine formula [37] used in the navigation.
The nearest point of road data to the current position is used as the starting point of the horizon data.

With the horizon data and current vehicle status provided to the DP algorithm, the optimisation
can begin. A forward DP algorithm is implemented that calculates the transition cost for each step in
the horizon from the current position to the end of the horizon. In order to reduce the computational
load, an assessment is made at each step of the physically-realisable states possible in the next step,
and only feasible transition costs are calculated. The physically-realisable states are assessed based
on the maximum traction force available at the wheels that can be generated at the current engine
speed and the maximum braking torque, each of which are used in Equation (10) to find a maximum
and minimum velocity, respectively. During a gear shift, an idle fuel consumption is used during
the disengagement, and an intermediate velocity is calculated with no propulsion force. This is
followed by the engaged portion of the shift where the velocity of the next step is achieved and fuel
consumption calculated as a transition from the intermediate velocity to the next step velocity. As the
algorithm is to be used repeatedly with a receding horizon, the cost function includes a terminal
cost to penalise velocity trajectories that benefit the current horizon at the cost of future horizons,
for instance by reducing the velocity drastically at the end of the horizon and, thus, requiring a high
acceleration at the beginning of the following horizon. An overview of the DP algorithm software
implementation is shown in Figure 5.

Current 
Vehicle State

Optimisation
Parameters

Search Space
Parameters

Current 
Horizon Data

main()

initialise()

terminalCost()

optimal()

for gear ≤  gear_max
    calcFeasible()
        for velocity ≤ vel_feasible
            stepCost()
   
 

calcSteps()

for gear ≤  gear_max
    calcFeasible()
        for velocity ≤ vel_feasible
            stepCost()
   
 

firstStep()

Figure 5. Dynamic programming software overview.

2.5. User Interface

To test the algorithm in a vehicle, it was required to provide a User Interface (UI) that would
present information to both test personnel and the test driver. The operating status of the system
components was required to be presented for the test personnel without interfering with the driver
feedback system. Driving feedback had to be presented to the driver in the most straightforward way
to ensure that the feedback could be followed without providing too much distraction. A combination
of audible and visual feedback was implemented allowing driver preference to enable either or both
of the elements. The design of UI is a discipline in its own right, and the design of automotive UI
in particular presents a variety of challenges [38]; so the merits of the UI design in this case are out
of the scope of this work. On completion of the DP algorithm, the initial portion of the optimal
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velocity profile is compared to the current velocity, and the driver feedback is developed from this
to advise either maintaining, increasing or decreasing speed to follow the optimal profile. The driver
feedback is provided by means of a GUI deployed on a 7-inch touch screen display [27]. A tick
icon or coloured arrow pointing up or down represents each piece of advice and is displayed on the
GUI, as shown in Figure 6, along with a voice command generated from a text to speech library [39].
Current and aim velocity and gear selection are also displayed along with a number of system status
indicators. The optimisation results are converted to whole miles per hour as the standard units on
U.K. roads. A plot of the current optimal velocity profile and legal speed limit is also displayed for
testing purposes.

Figure 6. Driver feedback GUI with guidance to increase speed based on current speed (38) and aim
speed (43) with current gear (5) and guidance gear (8). Status of GPS, datalogger (Log) and vehicle
data connection (OBD) shown for testing purposes. Optimal Velocity profile shown on plot with speed
limit for current road selection and position along that road.

3. Results and Discussion

Following deployment of the algorithm and associated interface on the Raspberry Pi hardware,
the driver eco-guidance system was tested in a mid-sized Sports Utility Vehicle (SUV). Data were
recorded from the vehicle during a journey on extra urban roads with driver guidance provided
with a weighting of λ = 0.5, as a balance between fuel and time, and a receding horizon of 1.5 km.
The results of this test drive were compared with simulated results to assess the ability of the driver
to follow the eco-guidance, as well as the ability of the system to present guidance that is applicable
to the current road conditions.

The velocity and gear profiles recorded during the test were fed into the vehicle model
and used to verify that the fuel consumption produced by the vehicle model was accurate.
As shown in Table 2, the model calculates a fuel consumption of 4.90 l/100 km, which is
2.9% higher than the recorded fuel consumption of 4.76 l/100 km. Similarly accurate fuel
consumption results were produced across a range of recorded journeys, where historical wind
speed data were available from the U.K. Meteorological Office [40]. To validate the vehicle
model results, firstly, the recorded engine speed and torque were used with the BSFC map to
test its accuracy, then the recorded vehicle and engine speeds and gear were used to test the
transmission model. Finally, the entire model was tested with recorded vehicle speed and gear
and the road profile as inputs and fuel consumption as the output. This simulated test drive
fuel consumption was compared to simulated data generated by the vehicle model following the
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DP profile precisely, as seen in Figure 7, and the fuel consumption and road section times are
shown in Table 2. The DP algorithm was applied with fuel and time weightings of λ = 0.3, 0.5
and 0.7. The wind speed for the area of the test was on average 6.5 m·s−1 [40] in a north-westerly
direction producing a tailwind for the duration of the journey. The use of simulated fuel consumption
for the comparison as opposed to that recorded was to ensure that any difference in fuel consumption
was due to the velocity and gear profile used rather than discrepancies between the model and the
real vehicle.

Table 2. Fuel consumption and time from a 5 km section of the test drive. The recorded test drive
velocity and gear profile are used to simulate fuel consumption and compared to results from the
DP algorithm with an upper velocity constraint of (1) legal speed limit, (2) traffic speed +10% and
(3) driver speed +10%.

Constraint
Fuel Consumption Difference Time Difference

(l/100 km) (%) (min) (%)

Test Drive (Recorded) 4.76 3.88
Test Drive (Sim) 4.90 0 3.88 0

Legal Limit
DP, λ = 0.3 4.61 −5.95 3.36 −13.46
DP, λ = 0.5 5.52 12.64 3.03 −21.98
DP, λ = 0.7 5.91 20.46 2.95 −23.94

Traffic Speed
DP, λ = 0.3 4.44 −9.36 4.15 6.87
DP, λ = 0.5 4.47 −8.80 4.13 6.50
DP, λ = 0.7 4.85 −1.14 4.06 4.70

Driver Speed
DP, λ = 0.3 4.50 −8.28 3.88 0.01
DP, λ = 0.5 4.99 1.71 3.74 −3.60
DP, λ = 0.7 5.28 7.76 3.71 −4.49
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Figure 7. Speed limit-constrained velocity profiles from driver data (solid black) and DP optimal
velocity (solid grey λ = 0.3, dashed grey, λ = 0.5 and dotted grey, λ = 0.7) with the speed limit upper
velocity constraint. Legal speed limit and real-time traffic shown as the dashed black line, upper and
lower, respectively.
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The velocity profile produced by the driver is shown in Figure 7 with the legal speed limit and
real-time traffic information, while the three DP velocity profiles are also shown. The driver velocity
profile includes a reduction in speed prior to 19 km, which does not correspond with the speed limit
data, but follows more closely the traffic velocity profile due to a roundabout. In this example, the DP
algorithm only considers the legal speed limit and not the traffic speed, hence the deviation.

Using the real-time traffic information recorded during the journey, the effect of traffic on the
DP algorithm can be investigated retrospectively. As seen in Figure 8, the driver velocity follows the
traffic velocity rather than the speed limit; however, there is still deviation from the real-time traffic
information around 16 km and 17.5 km. As such, the DP algorithm is unfairly disadvantaged by the
implementation of the traffic speed as an upper limit; for this reason, a +10% upper bound is allowed
above the traffic speed. The results are shown in the middle section of Table 2 with improvements in
fuel consumption for λ = 0.3 and λ = 0.5 coupled with journey times that decrease, but do not meet
the test drive time. Even for λ = 0.7, the results are still worse for time, which can be attributed to
the upper speed limitation. For an entirely unbiased comparison, it would be necessary for the DP
algorithm to exceed the traffic speed by more than the allocated 10% as the driver does. Increasing
the reliability and timeliness of the traffic information would minimise this issue. In order to see
the impact of a fairer comparison, a window of +10% was applied to the driver velocity and used
as an upper limit for the DP algorithm, as shown in the lower section of Table 2 with the velocity
profiles shown in Figure 9. This allows both lower journey times and fuel consumption results to be
achieved with a 8.28% savings in fuel with no loss in time for λ = 0.3. A 3.6% reduction in time with
a 1.71% increase in fuel consumption is achieved with λ = 0.5, with these results highlighting the
potential for the DP algorithm when followed precisely by an intelligent cruise control system rather
than driver feedback.
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Figure 8. Traffic speed-constrained velocity profiles from DP and driver data with a 10% limit above
the traffic speed-constraining DP algorithm. Driver velocity (solid black), traffic speed (dashed black),
algorithm profiles with λ = 0.7 (dotted), λ = 0.5 (dashed) and λ = 0.3 (solid grey).
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Figure 9. Driver speed-constrained velocity profiles from DP and driver data with a 10% limit above
the driver velocity-constraining DP algorithm. Driver velocity (solid black), traffic speed (dashed
black), algorithm profiles with λ = 0.7 (dotted), λ = 0.5 (dashed) and λ = 0.3 (solid grey).

The gear selection of the optimization algorithm and the driver are shown in Figure 10,
highlighting the foresight of the algorithm; as the driver and traffic speed reduces at 18.5 km, the
algorithm initiates coasting in neutral gear. It is also observed around 17 km that the driver uses
Gear 8, while the algorithm remains in Gear 9; this behaviour was observed occasionally during the
test run due to the automatic gearbox overriding the driver selection of Gear 9. The test road section
elevation and gradient are shown in Figure 11 with a mostly downhill road slope, which along with
the speed limit restrictions has the most influence on the DP algorithm velocity and gear profile.
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Figure 10. Gear profiles of the optimization algorithm and driver selection where zero corresponds
to neutral, and the discontinuity in the driver gear selection is due to gear shift operations where no
gear is selected.
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Figure 11. Test road section profile with elevation (left axis) and gradient (right axis).

Algorithm Sensitivity

The search space considered for the DP algorithm implemented in the test was sized to balance
the quality of results with computation time, with a distance step interval of 50 m and 30 steps in
the horizon, giving a total of 1.5 km. The velocity interval was 1 m·s−1 as a compromise, as noted
above, but also with consideration given to the ability of either a human driver or cruise control
system to track precisely a target velocity. As a driver aid, the feedback system shows potential to
save fuel; however, even greater benefits could be realised with automation of the vehicle velocity
regulation in an intelligent cruise control system. In this scenario, the algorithm output is not limited
by the driver, and a more detailed velocity profile can be accurately followed. Further investigation is
presented here into the sensitivity of the algorithm to vary the search space parameters of the velocity
discretisation interval and horizon length.

As noted in Equation (8), the complexity of the algorithm is exponentially related to the
number of velocity intervals. This behaviour is confirmed by the simulation in Figure 12,
which shows the number of calculations and computation time for a fixed horizon length of
1.5 km with a varying velocity discretisation interval. The total number of calculations of the
vehicle model reduces from 3 × 108 down to 3 × 104 as the velocity interval increases from
0.1–2. Similarly, the calculation time reduces from 19 s down to 0.05 s. This relationship
between complexity and velocity discretisation is consistent across a variety of roads with the
caveat that the absolute values of calculation time and count decrease when the search space
is restricted by speed limit, as shown by the two curves in Figure 12. The influence of this
interval on the quality of the optimization results is shown in Figure 13, where the total cost
(lowest plot) of the optimal profile is shown to increase as the discretisation interval increases.
The total cost is a product of the journey time and fuel consumption, as in Equation (4); however,
neither increase linearly with the interval size in Figure 13, which can be attributed to different
velocity profiles being possible at a given interval, which presents opportunities to reduce the fuel
consumption at the expense of journey time, and vice versa.
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Figure 12. Optimization computational load and calculation time as a function of the velocity
discretisation interval. Results shown for three different roads.
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Figure 13. Optimization results as a function of the velocity discretisation interval, with journey time
change (top), fuel consumption change (middle) and total cost change (bottom), using λ = 0.5 and
three separate road sections.

4. Conclusions

This work has highlighted the potential of real-time vehicle speed optimization as a mechanism
for energy use reduction. By balancing computation time with the accuracy of the results, it is
shown that such optimization can be applied in real time and deployed in a vehicle, such that
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changes to route or driving conditions can be updated and immediately impact the algorithm results.
A driver feedback system is demonstrated in a test vehicle that uses the optimal velocity profile
for the upcoming road to guide the driver to more economical driving. Even greater benefits are
demonstrated in simulations of following the optimal velocity profile exactly, with an 8% reduction
in fuel consumption produced. The development of an intelligent cruise control system to implement
the optimal velocity profile could achieve similar results. The impact of traffic and wind speed
on these results is highlighted as an area where improvements in live data sources for both would
be beneficial.

Further tests are required to identify the energy saving potential of the system across a wide
range of drivers and road profiles. The DP algorithm interface can be extended to communicate with
a commercial map database as part of an eHorizon system using the Advanced Driver Assistance
System Interface Specification (ADASIS) to allow testing on a large number of roads without
additional road measurement required. Improvement in the feedback system user experience is not
considered in this work; however, the integration of the algorithm with an eco-cruise control system
would remove the need for driver feedback, thus improving the results and driver experience.
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