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Abstract 

Creation of more physiologically relevant cell models in tissue culture is a requisite for advancing 

medical research. It can involve complex substrates, expensive manufacturing and largely inaccessible 

methods of increasing surface energy and patterning of materials that may be unnecessary in many 

circumstances. An array of various different adherent cell lines (human, mammalian, healthy and 

disease states) were grown on simple sterilised but otherwise untreated thin film surfaces as well as on 

electro-hydrodynamically patterned surfaces to produce topographically patterned culture surfaces. 

Room temperature cure epoxy resin and unmodified poly(methyl methacrylate) (PMMA) thin film 

surfaces were used for cell growth and morphological observations. Differing responses in growth, 

morphology and adherence were observed in a surface- and cell-specific manner. With no complex 

and expensive modifications required, we demonstrate the application of novel, suitable and easily 

patterned materials for use in more advanced tissue culture applications for a variety of clinically 

relevant cell lines showing unique responses and potentially new and wide-reaching applications.   

Key words cell culture, novel material surfaces, human and mammalian lines  
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1. Introduction 

Alternative techniques to animal use for medical testing have been investigated since the 3 R’s:- 

Refine, Reduce and Replace were first proposed over 50 years ago (1). The ethical issues associated 

with animal experimentation have been debated over the ensuing decades but a perceived lack of 

viable alternatives is most often cited as the reason that animals are still used (2) (3). Ethical issues 

notwithstanding, it has been recognised that animal testing is also expensive. Both these factors limit 

where research can be conducted and the type of experimentation that can take place. Furthermore, 

animal tests may not be as reproducible as better controlled alternatives, potentially inhibiting medical 

advances (2) (3) and animal models do not offer an adequate representation of the human body or 

disease, which results in wasted resources and expense in clinical trials (4). This will become 

particularly pertinent with the development of personalised medicine and as drugs become targeted 

towards individual human physiologies. 

Improved cell and tissue culture models should more accurately replicate in vivo conditions (5) (6) (7) 

(8) (9) (10). Cell adhesion and cellular interaction with surfaces is highly complex and is of growing 

interest in academia (2) and in industry (11). Traditional cell culture methods utilise flat, chemically 

or plasma treated polystyrene (PS) surfaces in tissue culture dishes. This is a limiting factor in 

developing better in vitro cell models, as in many cases this does not represent in vivo conditions, nor 

encourage or allow cells to form more representative tissue structures (2). Improving tissue culture 

techniques on patterned surfaces and scaffolds may provide better in vitro models (3). 

Further investigation of these surfaces and materials is needed (5) (6) (7) (8) (9) (10) (12). The 

manufacturing techniques and materials used to fabricate patterned cell culture surfaces and scaffolds 

can be expensive, time-consuming and require dedicated manufacturing environments such as clean 

room facilities (8) (13). If methods used to produce more complex tissue culture surfaces could be 

simplified and made available to every laboratory, this would lead to the advancement of new 

research opportunities and to the development of new protocols (14). 
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The materials used to fabricate the surfaces and scaffolds have many specific physical requirements. 

They should be bio-compatible with a variety of cell types, non-toxic and have no adverse effects on 

the biological tissue. Cells must be able to adhere to and to grow on the material which needs to be 

transparent to allow for the cells to be visualised. The materials must be amenable to specific (for 

particular cell types) and reproducible (for robust analysis) patterning at scales comparable to the 

cells. For large-scale uptake it is also crucial that any surface must require minimal pre-treatment and 

allow simple ‘in-house’ processing and manufacture. Materials that we have examined in this study 

were chosen for their ease of patterning and structuring. Curable resins can be patterned using 

modified nano-imprint techniques. Thermoplastics such as poly(methyl methacrylate) (PMMA) and 

polystyrene (PS) can be shaped by hot embossing methods where the material is softened by heating 

and then patterned by pressing a mould into the surface to shape the softened material (14). The great 

advantage of these kinds of techniques is that they require minimal and affordable equipment and can 

be manufactured in most laboratories. 

Typically polymers used for cell culture such as PS, have their surface energy increased by treatments 

such as corona discharge, surface chemistry enhancement and protein conjugation in order to improve 

cell adhesion (2) (15) (16). Surface treated PS is routinely used in tissue culture as the plate material 

and this and other surface-treated thermoplastics such as PMMA have previously been used with 

many cell lines (7) (8) (17). These kinds of surface treatments can be equipment-heavy and can limit 

the ability for the surface to be further modified or patterned. PS and PMMA can be solution-coated 

onto a glass slide and easily patterned via the hot embossing method mentioned previously. There has 

been little investigation of the use of the native PMMA polymer surface, with previous studies all 

using additional coatings or modifications (14) (17) (18) (19) (20). 

This work has additionally considered the use of a two-part epoxy resin that offers prospects as a 

novel material. While the use of a room temperature curable resin has not been studied before in a 

tissue culture system these materials have some desirable properties that make them biocompatible. 

Epoxy resin has been used for tissue embedding in microscopy as there is no discernible distortion of 

fixed samples once the epoxy has cured, and has value for tissue embedding as it creates a hard 
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composite with adjacent materials of a uniform consistency, allowing for even ultra-thin sectioning. 

The ability of epoxy to form an inert, hard surface that is water insoluble (so will not be effected by 

tissue culture media), the ease of shaping and of moulding when in liquid state and of cold-curing 

means this resin offers a range of applications as a novel tissue culture surface.  

Different types of epoxy resins have been used to produce super-elastic hydrogels (21), some have 

been UV-cured to create hydrogels with acrylamide or alginates (22) others thermo-cured and 

combined with polyamindoamine linkers (23) to provide structures with varying properties suitable 

for bioengineering (22) (24). Hydrogels have a number of applications, notably for mechanical stress 

sensing in cells where deformable surfaces are required. Simple, elegant methods of producing 

micropatterned hydrogels for regulating the size of cell adhesions and traction forces have been 

described (25) and have also been applied to study cell migration (26). Novel means of generating 

grooved surfaces in hydrogels have been used to measure cell alignment and polarisation (27). Whilst 

hydrogels offer advantages such as permitting nutrient diffusion to cells as they are not stable at 

temperatures above 37oC, crosslinking agents are required and care must be taken to avoid toxicity to 

cells (27). Swelling of gel substrates and the effects of varying concentrations of crosslinking agents 

have been investigated (28). 

This study has explored the viability of using the unmodified surface of PMMA and a two part room 

temperature curable epoxy resin with a variety of cell lines using tissue culture treated PS as a control 

surface. These unmodified polymers were subsequently used to create patterned surfaces for tissue 

culture. Whilst surfaces patterned to scales that are comparable to cells have been used previously 

(29), these required substantial modification using expensive techniques. 

2. Methods 

2.1 Materials 

The polymers used to create the moulds and surfaces were poly (dimethylsiloxane) (PDMS) Sylgard 

184 (Dow Corning), epoxy Evo-Stik Epoxy Control resin (Bostik Ltd., Stafford, UK; Product code 

808508) and polystyrene (PS) MW 280,000 (Sigma-Aldrich cat-182427). Toluene (VWR cat-

VWRC28676.366), acetone (VWR cat-VWRC20066.330) AND industrial methylated spirit (IMS) 
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(VWR cat-VWRC23684.360) were used as solvents.  The electrodes were made of made of silicon 

wafer P-type <100> (Sigma-Aldrich cat-647764), and Indian Tin Oxide (ITO) coated glass slide 70-

100ohms 25x25mm (Diamond Coatings). Cells used were all commercial cell lines obtained from 

ATCC: human eye lens epithelial cells B-3(ATCC cat-CRL-11421), human cervical epithelial cells 

(Adenocarcinoma) (HeLa ATCC cat-CCL-2), human eye retinal pigmented epithelium. Htert RPE 

(ATCC cat-CRL-4000), RAT embryonic heart myoblast cells. H9C2 (ATCC cat-CRL-1446), human 

liver epithelial cells (hepatocellular carcinoma). HepG2 (ATCC cat-HB-8065). 

2.2 Preparation of surfaces 

A two-part room temperature cure epoxy resin polymer, Evo-Stik Epoxy Control resin, was chosen as 

this does not create the plate distortion that occurs with a heat cured resin. The polymer is based on 

bisphenol A-epichlorhydrin resin (Mn<700), bisphenol F epoxy resin and trimethylolpropane 

triglycidyl ether; the hardener was Evo-Stik Epoxy Control Hardener (Bostik Ltd.; Product code 

808518) based on triethylenetetramine. 

Very thin layers of epoxy 10 – 20µm in depth (calculated by laser confocal scanning, using a LEXT 

microscope) were applied, as the resin remained clear at this thickness, allowing the cells to be 

observed using an inverted transmission microscope. The epoxy layers were deposited into tissue 

culture plate wells via a printing technique. For the printing technique epoxy was spin-coated onto a 

flat poly(dimethylsiloxane) (PDMS) disk from a solution of two parts dissolved in a mixture of 

toluene and acetone, at 1000-3500 rpm for 30seconds creating a thin layer of uncured resin with the 

thickness dependent on spin speed. The PDMS disks were either 30mm or 15mm in diameter, 

depending on the size of the well. The coated PDMS disks were placed epoxy side down into standard 

tissue culture plate surfaces (6 and 12-well plates, NunclonTM Delta surface, Thermoscientific) and a 

force of approximately 11kN was applied to the disk to ensure contact between the disk and the plate 

whilst the epoxy was curing. Once the epoxy had cured, the PDMS disk was removed leaving a thin 

layer of epoxy coating the well surface.  
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Prior to seeding cells onto the epoxy surface, wells were soaked or washed with cell growth media (of 

the cell line to be used) to remove any residue or chemicals that could potentially leach into the media 

and affect the cells. The surfaces were sterilised using UV light by placing them in a tissue culture 

laminar flow hood (Msc Advantage laminar flow hood, Thermo Scientific) and activating the 

decontamination cycle.  

Surfaces made of PMMA (MW 180 000) were prepared by spin coating the polymer from a solution 

15% by weight in toluene directly onto glass microscope slides. The spin speed was 3500 rpm and the 

subsequent layers were 5-20µm in thickness. These were washed or soaked in media to remove any 

residual solvent material. To sterilize these surfaces, they were dipped into 70% industrial methylated 

spirit (IMS) v/v in de-ionised water (dH2O) followed by UV sterilisation as above.  

 

2.3 Electrohydrodynamic instability patterning 

The electrohydrodynamic (EHD) instability patterning technique was used to structure a thin layer of 

room temperature curable epoxy resin. This technique uses the electric field that exists between two 

non-contacting electrodes when a voltage is applied across them, to pattern a liquid polymer which is 

then solidified, making the pattern permanent (30)(31). A silicon wafer and an indium tin oxide 

coated glass slide (both approximately 20mm x 20mm) were employed as electrodes. During the 

application of the voltage they were separated with insulating spacer rails. These were fabricated from 

a PS layer, spin coated onto the silicon wafer ranging from 1 to 10 µm thick (Figure 1A) again 

achieving the desired thickness by altering the spin speed. On the bottom electrode the area between 

the spacer rails was spin coated with a liquid epoxy resin layer, thinner than the spacers. This left an 

air gap between the resin film and the top electrode when the two were placed together.  

When a voltage was applied across the electrodes, an electric field was produced in both the resin 

layer and the air. Differences in their dielectric constants created a mismatch between the two fields. 

This formed an electrostatic instability at the resin/air interface, causing waves which grew in 

amplitude and eventually reached the top electrode to become columns. When the resin hardened, 
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after around four hours, and the patterns were fixed in place, the voltage and top electrode were 

removed. Once the pillars have formed, separation of electrodes before the resin is cured, causes the 

pillars to assume regular domed rather than the flat topped structures (32).  

The tunability of the patterns produced was dependent on a number of controllable parameters 

including the magnitude of the applied voltage, the electrode spacing and the initial thickness of the 

resin layer as described by Goldberg-Oppenheimer et al (33). The EHD process provides precise 

control over all the experimental parameters (31). Higher electric fields between the electrodes, which 

are the result of using a larger applied voltage and/or thinner spacer rails and epoxy layers, produce 

smaller scale patterns. The thickness of the spacer rails and the epoxy thickness was controlled by 

altering the spin speed during coating, higher speed producing thinner layers. Representative EHD 

prepared surfaces are shown in Figures 1B and 1C. The surface in Figure 1B was fabricated using a 

spacer layer of 4.9 µm, a resin layer 1 µm thick and an applied voltage of 80V; the surface shown in 

Figure 1C was fabricated using a spacer layer of 3.7 µm, a resin layer of 1.8 µm and 162V so with a 

much higher voltage resulting in smaller structures. The EHD technique is known to be highly 

reproducible, using set fabrication parameters i.e. voltages, electrode spacing and polymer thickness 

to create repeatable surface topographies; spacing between the pillars can be easily tuned and highly 

controlled by changing various experimental parameters (30). Limitations on reproducibility arise 

from maintaining uniformity of the surface; whilst height of pillars is regular, controlling the shape of 

pillar bases depends on polymer type, thickness and applied electric field. Some variability may be 

beneficial as it replicates a substrate that is more akin to biological situations.  

Moulds were then taken from the EHD fabricated structures (either flat topped or doomed pillar 

arrays) by surrounding them with a wall of reusable putty and covering them with a layer of PDMS 

(Sylgard 184) in a 10:1 base to curing agent mix. This is shown schematically in Figure 1D. When the 

PDMS had cured, it was separated from the EHD structured surface, leaving a negative imprint of the 

surface in the PDMS (Figure 1D). The mould was then used to fabricate surfaces for tissue culture in 

PS and PMMA via hot embossing and in epoxy via the modified printing technique described 

previously used to prepare the flat epoxy surfaces in the tissue culture wells. The hot embossed 
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PMMA and PS surfaces were manufactured by coating a layer of the polymer from solution in 

toluene, 5-20 µm thick onto a microscope slide. The mould was placed in contact with the PMMA 

and PS using a force of approximately 11kN, and the slide was then heated to 120°C. Once softened, 

the mould was impressed into the polymer. After 1 hour, the slide was left to cool and the mould was 

removed, leaving the EHD pattern imprinted into the polymer surface. Figure 1E shows a laser 

confocal scan of the surface with topographical dimensions along a representative line and a 

magnified section of the hot embossed replica of the surface shown in Figure 1B. The PDMS master 

moulds taken from each of the EHD surfaces can be used to produce multiple identical replicates of 

the EHD original (34) and the epoxy EHD original can be used to produce multiple PDMS master 

moulds (35).  

2.4 Tissue Culture 

A range of cell lines obtained from ATCC were handled in an aseptic manner according to provided 

guidelines. The HeLa human cervical cancer cell line has been widely studied and was the first human 

immortal cell line. The H9C2 rat neonatal cardiomyocyte cell line was chosen as it is a healthy non-

human cell model. The HepG2 human liver carcinoma cell line is clinically significant and grows 

with atypical morphology compared to other adherent cell lines. The human lens epithelial and human 

retinal epithelial cell lines were also investigated in this study because of their importance in vision 

research. The specific cells lines culture conditions are shown in Table 1. Briefly, purchased 

cryopreserved stocks of these cell lines were rapidly thawed to 37OC then added to pre-warmed 

growth media in T-75 culture flasks (NunclonTMDelta surface, Thermoscientific). Cells were allowed 

to achieve a desired confluence and were then dispersed by trypsinisation using 0.25% w/v trypsin 

0.2% w/v EDTA in phosphate-buffered saline (PBS) (Sigma-Aldrich). Following this the trypsin was 

inactivated by re-suspension in growth media containing serum. Cells were then counted and seeded 

out at specific seeding densities on the specialised plates, modified from standard tissue cultureware 

(NunclonTM Delta surface, Thermoscientific) or on unmodified wells (tissue culture treated PS control 

surface). Cells were seeded out at approximately 1x105 cells per well (in 12-well plates for epoxy 
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studies) or 2x105 cells per well (for 6-well plates containing PS or PMMA surfaces) in relevant 

ATCC-recommended medium per cell line (Table 1).  

Cells were allowed to establish for 24 hours, a typical duration that allows cells to sink to the surface, 

spread and adhere and then were assessed under an optical light inverted transmission microscope 

(Nikon) (using x4 or x10 objective) and photographed using a MDX501 PIXIT series camera from 

Lanoptik, using I Works EX software. Alternatively cells were placed inside an Incucyte ZOOM 

automated incubator microscope (Essen biosciences). Media was refreshed every 48 hours. At 24 hour 

time-points, cells were monitored for confluency and morphological changes. Cell growth was 

assessed by confluency rather than by cell counting to maintain consistency between ongoing time 

points on an individual surface. Where applicable, confluency was calculated by use of the Incucyte 

ZOOM software. Images of equivalent confluency from the surfaces were used to assess differences 

in morphology, looking specifically at shape changes relating to size difference and elongation. 

Experiments were all performed in triplicate and conducted for a duration of 192 hours. 

2.5 MTT cell viability assay 

MTT cell viability assay was performed as described previously (36). Briefly, lens epithelial or 

HepG2 cells were prepared and seeded out at approximately 1x105, 2x105 or 3x105 cells/well into 12-

well plates (Nunc, Netherland) with either a flat epoxy surface or unmodified PS tissue culture treated 

control surface in cell line specific medium containing the required supplements (see Table 1) .Cells 

were allowed to establish for 48 hours. Media was removed and the cells washed twice with 37oC 

sterile PBS. Cells were then incubated with 1000µl per well of 0.5mg/ml 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) solution in 37oC cell line specific medium with no additions 

for 3 hours at 37oC. After incubation, the MTT solution was carefully removed and the wells washed 

twice with sterile PBS. Finally, 1000µl of dimethylsulfoxide (DMSO) was added to each well to lyse 

the cells. The cells were then gently agitated to mix the samples and analyzed on a TECAN Infinite 

M200 pro plate reader at a wavelength of 540 nm. An epoxy surfaced well and an unmodified PS 
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tissue culture treated control surface that was left unseeded were used as negative controls. 

Experiments were performed in triplicate. 

3. Results 

3.1.Morphology of cells on unmodified flat PMMA surfaces 

Under standard laboratory culture conditions using tissue culture plasticware (tissue culture treated PS 

control surface) lens cells exhibited typical epithelial cell morphology, as shown in Figure 2A. These 

cells were slightly angular with several sharp protrusions and adhered to the culture surface, with an 

average size of 50µm. Lens cells on PMMA surfaces adhered and grew with their usual morphology 

conserved, and although they took longer to establish they reached confluency during the 

experimental time course (Figure 2B). 

The H9c2 Rat cardiomyocyte cells showed normal morphology and grew to a regular monolayer on 

the unmodified PMMA akin to the PS control surface (Figures 2C and D). HepG2 cells were able to 

adhere and grow on PMMA surfaces with their usual morphology conserved and reached confluency 

during the experimental time period, albeit with a slower rate of early establishment. Retinal cells 

adhered and grew on unmodified PMMA surfaces with their usual morphology conserved (Figures 2E 

and F), at approximately the same rate as cells on PS control surfaces. HeLa cells on PS control 

surfaces showed no observable difference in morphology or growth rate of control cells and cells 

seeded onto PMMA surfaces. All cell lines studied had little or no morphological differences when 

grown on PMMA compared to standard PS tissue culture surfaces. 

3.2.Morphology and viability of cells on unmodified flat epoxy surfaces 

During the experimental period there was no significant difference in lens cell size or morphology 

between cells grown on either the PS control or epoxy surfaces (Figures 3A and B respectively). 

However, it was noted that approximately 5% of the lens cells on the epoxy surface were slightly 

elongated, similar to primary lens cells in culture. Cells seeded onto the epoxy surface grew at a 

slower rate and did not reach full confluency. Control conditions for H9c2 cells are shown in Figure 
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2C. If left to reach confluency they formed long multinucleated cell structures. The H9c2 cultures 

seeded onto the epoxy surface had a different morphology with thinner cells compared to PS control 

surfaces. Cells adhered to the epoxy surface, but growth rate was slower compared to H9c2 cells 

growing on the control PS surface.  

HepG2 cells are a small, round cell type that commonly grow in isolated clusters or ‘islands’ (Figure 

3C). These cells seeded on the epoxy layer showed a very different phenotype; they were slightly 

larger, more angular, more individually spread out and grew as a single monolayer (Figure 3D). 

Retinal epithelial cells under traditional tissue culture conditions are commonly slightly larger, wider 

and more angular than lens epithelial cells. These cells also differed from their control pattern of 

growth in how they reached confluency, with retinal cells appearing as localised ‘wave like’ 

patterning and not like the disordered monolayer of lens epithelial cells at confluency. Although well-

adherent and demonstrating a typical morphology, 5-10% of retinal cells exposed to an epoxy 

substrate showed a much more spheroidal shape. HeLa cells on PS control surfaces exhibit traditional 

morphology and there was no observable difference in growth rate of control cells and cells seeded 

onto epoxy. Cells studied showed some cell-specific morphology on epoxy surfaces, most differently 

in the HepG2 cells.  

MTT cell viability assays on lens epithelial and HepG2 cells indicated no significant difference on 

cell viability between HepG2 cells grown on the epoxy surface compared to the same cell type grown 

on the PS tissue culture control surface. There was a slight loss in cell viability with the lens cells 

(roughly 15%) grown on the epoxy surfaces, compared to the PS control surfaces, which could be 

caused by cell specific initial adherence, likely influenced by the different surface energy of the 

materials. 

 

3.3. Comparative growth rates of cells on flat surfaces 

Cells studied had differing growth rates naturally and varied depending on surfaces used. Lens cells 

grown on the PS control surface reached full confluency in approximately 6 days, as expected with 

the seeding density used (Figure 4A). However, they were unable to reach confluency on epoxy in the 
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time allocated for the experiment, but did so on PMMA. H9C2 cells grew at a similar rate on PMMA 

to PS control surface but were unable to reach confluency on epoxy (Figure 4B). The HepG2 cells on 

the PS control surface or PMMA took approximately 7 days to colonise the entire surface, but cells 

seeded on the epoxy layer reached confluency in half of this time, around 72 hours (Figure 4C). 

Retinal cells on PS control surfaces or PMMA grew relatively fast and reached confluency in 

approximately 6 days, but on epoxy cells were unable to reach confluency during the experimental 

time period (Figure 4D). HeLa cells on PS control surfaces exhibited traditional morphology and there 

was no observable difference between their morphology or growth rate of control cells and cells 

seeded onto epoxy or PMMA surfaces (Figure 4E). 

3.4.Cell interactions with structured surfaces 

Structured surfaces using moulds of EHD instability patterned surfaces and fabricated in PMMA and 

epoxy were seeded with lens epithelial cells and HepG2 cells. The EHD surfaces have an overall 

pattern of columns that are highly ordered at a localised scale. Moulds of surfaces that were composed 

of features with three different sizes were used. The patterned surfaces used for the lens cells were 

mainly fabricated from PMMA since the cells showed better growth on this surface, the HepG2 cells 

were investigated with mainly epoxy surfaces since they seemed to show a preference for this 

material. Human lens epithelial cells are generally about 50 µm in width and when grown on surfaces 

that contained protrusions (either flat-topped pillars or round-topped ‘bumps’) manifested an 

interaction with the surface that was specific to the scale of the topography. On the surface with 

protrusions that were much smaller in scale than cells (less than 1% of cell area size), lens epithelial 

cells were able to adhere and grow to confluence with no obvious difference in morphology to cells 

grown on traditional flat surfaces. This surface contained the smallest features with protrusions spaced 

on average 5 µm apart and ranging from 0.4 to 1.5 µm in height with a round-topped pillar profile.  

Where the surface consisted of flat-topped pillars that were approximately 10% of cell surface area, 

lens epithelial cells initially adhered to the pillars but adhesion did not last. On the flat areas of the 

PMMA surface, surrounding the pillars, cells were only able to grow up to the edges of the structures 
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but not over them (Figure 5A). The pillars had a cross sectional diameter of average 5 µm, spaced at 

roughly 7 µm centre-to-centre with a pillar height of 4 µm. Surfaces tested with the largest 

topography, ’bumps’ of an approximate scale to the lens cells (60-80% of cell surface area), such as 

the surfaces shown in Figure 5B and C, showed a unique interaction. In addition to the PMMA, this 

surface was also fabricated in PS to observe the interaction of the cells with the untreated but 

structured PS surface. Cells attached, grew and elongated from the apex of each individual structure to 

the next on both materials. The structured PS surface, compared to unstructured PS, showed lens 

epithelial cells initially adhering to the tops of the convexities and eventually colonising the entire 

surface whereas they were unable to adhere or grow on unstructured PS. The bumps were up to 4 µm 

in height with an average diameter of approximately 30 µm although, as can be seen in Figure 5B, 

some were half this size and others were considerably larger. Their centre-to-centre spacing was 

around 40 µm, although this also varied widely. 

The surface that consisted of flat-topped pillars that were approximately 10% of cell surface area 

described previously (Figure 5A) was also fabricated from epoxy resin. The lens cells behaved in a 

similar way on the epoxy as they did on the same PMMA surface. They were able to adhere to the flat 

areas of epoxy but unable to attach and grow on the patterned areas. On a PMMA surface that 

consisted of features (roughly 30µm in diameter described previously) which were comparable to the 

size of the cells, the HepG2 cells appeared to interact with the surface features and to arrange 

themselves around the protrusions (Figure 6A).  

The surface with columns roughly 5 µm in diameter with a 7µm centre-to-centre spacing was 

fabricated in epoxy and seeded with HepG2 cells (Figure 6B). Similarly to the lens cells, the HepG2 

cells did not appear able to attach to this surface but were able to adhere to the adjacent flat epoxy and 

can be seen curled up on the patterned areas of the surface. The larger scale surface of bumps with an 

average diameter of around 30 µm was also fabricated in epoxy and seeded with HepG2 cells (Figure 

6C). The cells can be seen clustered around the circumference of the bumps and appear to be 

interacting with the surface features.  
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4 Discussion 

The ability of the cell lines studied to grow on PMMA that had not been surface modified, combined 

with its natural ability to be shaped was not found reported in the literature. This work has shown that 

surfaces patterned at the microscale by hot embossing without the use of clean room techniques could 

provide greater accessibility to advanced tissue culture experiments without the need for using surface 

energy modification equipment or expertise in photo-lithography patterning. Hot embossing of 

PMMA in this way is highly reproducible and can be readily available in most laboratories hence 

benefitting many fields of biological research including biofilm formation and tissue regeneration.  

Though some surfaces such as PMMA and PS have been used as tissue culture substrates previously, 

these, amongst others have, until now, either been surface modified by UV, ozone or plasma 

deposition (7) (17) or else coated with collagen or fibronectin. Such processes are costly, laborious or 

complex, are not readily available (5) (13) (37) (38) and not always reproducible. This paper 

demonstrates that unmodified surfaces can easily be created and moulded or patterned without the 

need for costly techniques and with little or no morphological change in the cells under ‘normal’ 

conditions. 

HepG2 cells have been grown on PMMA following significant surface treatments. However, there is 

a paucity of literature about HepG2 cells on unmodified PMMA (39) and no studies on epoxy resin as 

a tissue culture surface, though it has been used in the production of structured surfaces in PDMS, 

where epoxy was used as a mould master, providing improvement over the more commonly used 

etched silicon in terms of durability as shown by Kamande et al (35). PMMA is widely used as a 

material for intraocular lenses, especially in the developing world (40) and studies have been carried 

out on cell adhesion to intraocular lens materials (41). Human lens cells have been grown on pristine 

PMMA and PS surfaces but with significant modifications (42). No reports of lens cells grown on 

epoxy were found in the literature.  

In the case of HeLa cells, the results show that epoxy resin can be used without affecting cell 

morphology and it offers potential as a material that is easy to pattern for investigating the effects of 
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surface topography on cell growth, alignment and differentiation studies. The protein interaction 

between the epoxy and the extracellular matrix (41)(43), and the reduced levels of adhesion and 

growth rates in lens and retinal cultures are also worthy of further study.  

Results from the experiments in which lens cells were cultured on surfaces covered with different size 

structures, showed changes in the cell morphology (notably an increase in the length of the cells) and 

adherence (which interestingly also appeared to be replicated in the HepG2 cells). The difference in 

microscale structures with flat compared to round tops at an identical scale, also warrants further 

investigation as adherence and focal adhesion formation could be affected by the relative curvature 

(or lack thereof). From a biological perspective, interaction or non-adherence with specific sized 

topographies has implications for intraocular lenses, and the need to avoid irregular cell growth that 

can cause light scatter after cataract surgery. There is also a need to understand cell colonisation and 

potentially infectious biofilm formation on medical implants (44). The variations in cellular 

interactions with the surfaces are multifactorial and could include differences in cytoskeletal rigidity 

(45) varying cellular responses to non-flat topographies and formation of certain attachment sites that 

may influence the length of exploration filopodia (46).  

The epoxy surface altered the growth and pattern of adherence of HepG2 cells to resemble 

characteristics that are akin to monolayers seen in other cell lines, such as the lens epithelial cells. The 

usual ‘order’ of in vitro cell culture consists of cell attachment to the substratum, radial growth of 

filopodia, cytoplasmic webbing, and flattening of the cell mass progressing in a sequential fashion 

(47), is not usually observed in HepG2 cells on treated polystyrene surfaces, as these cells more 

commonly attach to one another in preference to the surface. On the epoxy surfaces produced in this 

work, these cells altered from their normal behaviour and exhibited the usual ‘order’ of growth seen in 

other cells that form monolayers. Interestingly this morphology was also observed following complex 

and expensive modifications of surfaces by NH3 plasma treating and galactosamine grafting (48) 

rather than the unmodified flat epoxy surface presented in this paper.  
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The surface energy of epoxy is known to be fairly low, and when tested by water contact angle in air 

using a sessile drop machine (alongside the other surfaces used in this study) it showed the lowest 

surface energy of all substrates used here. This indicates that the HepG2s cells prefer to grow on a low 

surface energy material, in contrast to the vast majority of cell lines. This concurs with previous work 

on HepG2 cells and other cell lines for which a low or limited range of surface energy is preferable 

for growth (49)(50). The spread of the HepG2 cells on the epoxy patterned surfaces could mean that 

these cells were able to interact with the surface features individually which potentially offers further 

methods of control. It is likely the drastic change in morphology observed on flat epoxy is due to a 

difference between cell-cell interactions and cell-surface interactions. On tissue-culture treated PS 

surfaces HepG2 cells show a great deal of affinity for one another forming clumps but on epoxy 

surfaces they spread out and hence indicate a greater attraction for the surface than for one another. 

This kind of morphology may have multiple uses. It could be more applicable to studies of toxicity, 

siRNA knockdown and penetrance or for investigation of genes involved in cell-cell interactions in 

HepG2 cells and liver cancer research. There is a clinical shortage of liver tissue, and the unlimited 

proliferative capacity of the HepG2 cell model offers a good candidate for liver tissue engineering if a 

greater degree of control on assembly could be reached (allowing for co-cultures with other cell types 

and so on) (51). Tissue engineering is thought to require a scaffold or support structure to establish 

cell growth such as acinar cells for replacement salivary glands (52), and epoxy might serve as this 

scaffold for liver cells, or other secretory cell types. 

The objective of this study was to manufacture and process micro scale surfaces using simple widely-

available techniques and materials so that they could be investigated for use in tissue culture to 

determine different phenotypes and behaviours of cells (with an ultimate goal of creating surfaces that 

could grow more biologically relevant cell models). This required overcoming limitations in tissue 

culture systems as previously mentioned (53)(54). The surfaces tested in this study did not result in 

contamination, despite no antibiotics or anti-fungal agents having been added to the culture. Hot-

embossing with a PDMS master positive, taken from an EHD instability patterned surface, can be 

performed with a simple hotplate for the materials described.  
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Traditional cell culture is a well-established method and a very common research tool in biology and 

medicine (55)(56) but as novel techniques are advancing and expanding the breadth of applications in 

cell biology and medicine (57)(58), fundamental understanding of tissue formation and generation is 

still required. One of these challenges is the large discrepancy between cell kinetics in vivo and in 

vitro and the difficulty in reproducing an artificial microenvironment in which cells behave as they 

would in their natural physiological environment (59). Synthetically nano and micropatterned 

topographies can control a range of cellular behaviours and processes, such as alignment 

differentiation and cytoskeletal organization and offer the potential for gaining greater insights into 

complex cellular processes and functions. (59).  

With tissue regeneration as the ultimate goal in clinical medicine, some procedures have reached 

clinical trials, such as injecting of single cell suspensions of mesynchmal autologous stem cells intra-

myochardially. Nonetheless, the results have been controversial and concerns have been raised about 

the technology (60)(61). New methods to improve cell retention are being developed; pre-cultured 

cells in hydrogels (62) and functionalized hydrogels (containing paracrine signaling elements)(63). 

Development of entire or microtissue implants requires more research into cell systems (64). While 

cutting edge techniques such as bio-printing are showing great promise in regenerative medicine (65), 

these techniques are not available to all researchers, and have limitations such as cost, access to 

equipment, chemical or UV surface modification and technical expertise (66)(67)(68). This paper 

describes a means of improving standard tissue culture conditions by a production of surfaces that 

need no further modifications and are hence readily available and accessible for a range of cell lines 

and applications.  

The fabrication method described in this study utlises aspects of established techniques. 

Electrohydrodynamic patterning (30) has been used successfully in a number of applications such as 

microlens arrays (32), surfaced-enhanced Raman scattering (33), and as a direct tool for fabrication of 

a single surface topography to study cell migration (29). The method has been extended in this work 

to produce a variety of controlled surface topographies eliminating the need for more expensive 

equipment required in techniques such as photo or electron beam lithography (69)(70). Even simpler 
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lithographic fabrication models require equipment that may be available in all laboratories and have 

been used in experiments that investigate protein adsorption, cellular adhesion and migration (71)(72). 

Combining the EHD technique with PDMS to produce multiple molds of an individual EHD surface 

and with the use of the modified hot embossing method allowed for rapid multiple identical replicates 

of a surface on which a variety of cell-lines could grow.  

 

5 Conclusion 

The work introduces further avenues of research showing viability of utilisation of small bespoke 

surfaces for cell culture. Controlling cellular ability to preferentially interact with surfaces would 

enhance understanding of cell growth and differentiation and potentially tissue formation, by 

controlling cell-cell interactions and studying related gene expression changes. This could lead to 

development of more advanced and complex tissue culture surfaces and improved in vitro models and 

eventual reduction of animal models. 
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Figure captions 

Figure 1. Surface preparation methods showing A) EHD patterning, blue-electrode, red-spacer 
material, yellow-patterned fluid (Small panel A= no applied voltage B= initial instability C= fully 
evolved structures); B) and C) micrographs of EHD patterned epoxy surfaces D) a PDMS moulding 
of an EHD patterned surface (red); b Completed mould, separated and trimmed E) Laser confocal 
scan of the polymer surface showing topographical dimensions along the red line across the surface. 

Figure 2. Cell growth responses on control PS tissue culture surfaces and flat PMMA surfaces. 
Micrographs (x10 magnification) showing representative cell morphology of lens cells on A) PS 
control tissue culture treated surface B) poly methyl methacrylate) (PMMA). H9C2 cells on C) PS 
control tissue culture treated surface D) poly methyl methacrylate) (PMMA)retinal cells on E) PS 
control tissue culture treated surface F) poly methyl methacrylate) (PMMA). 

Figure 3. Lens and HepG2 cell growth responses on control PS tissue culture surfaces and flat epoxy 
surfaces. Micrographs (x20 magnification) showing representative lens cell morphology on A) PS 
control tissue culture treated surface B) epoxy thin film surfaces and HEPG2 cells morphology on C) 
PS control tissue culture treated surface D) epoxy thin film surfaces. 

Figure 4. Cell confluency curves on unmodified surfaces showing cell confluency changes over time 
for A) lens Cells, B) h9c2 cells, C) HepG2 cells, D) retinal cells and E) HeLa cells. 

Figure 5. Morphology of human lens epithelial cells in response to topography of pillars and bumps in 
different materials. Lens epithelial cells grown on A) PMMA middle-sized pillared surfaces (x10 
Magnification) B) lens epithelial cells grown large bumped PS surfaces (x20 Magnification) C) lens 
epithelial cells grown large bumped PMMA surfaces (x20 Magnification). 

Figure 6. Morphology of HepG2 cells in response to topography of pillars and bumps in different 
materials. Micrographs (x20 Magnification) of HepG2 cells grown on surfaces of A) large bumped 
PMMA surface. B) epoxy middle-sized pillared surfaces. C) large bumped epoxy surfaces. 
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Table 1. Cell lines and culture conditions. 

Cell 

line 

used 

Catalogue 

number 

(ATCC) 

Cell type Growth medium Growth conditions Desired 

confluency for 

subculturing 

B-3  ATCC 

CRL-

11421 

Human  eye Lens 

epithelial cells 
Eagles Minimum Essential 

Medium (EMEM), 

supplemented with 20% v/v 

Foetal bovine serum (FBS).  

Air 95%, Carbon 

Dioxide (CO
2
) 5% 

37
O

C 

80-100% 

Hela ATCC 

CCL-2 
Human cervical 

epithelial cells 

(Adenocarcinoma) 

EMEM supplemented with 10% 

v/v FBS 
Air 95%, Carbon 

Dioxide (CO
2
) 5% 

37
O

C 

90% 

Htert 

RPE-1  
ATCC 

CRL-4000 
Human eye retinal 

pigmented 

epithelium. 

Dulbeccos Minimum Essential 

Medium F12 (DMEM) 

supplemented with 10% v/v FBS 

and 0.01mg/ml hygromycin B. 

Air 95%, Carbon 

Dioxide (CO
2
) 5% 

37
O

C 

90% 

H9c2 ATCC 

CRL-1446 
RAT embryonic 

heart myoblast cells 
DMEM supplemented with 10% 

v/v FBS 
Air 95%, Carbon 

Dioxide (CO
2
) 5% 

37
O

C 

100% 

Hep 

G2 
ATCC HB-

8065 
Human liver 

epithelial cells 

(hepatocellular 

carcinoma)  

EMEM supplemented with 10% 

v/v FBS 
Air 95%, Carbon 

Dioxide (CO
2
) 5% 

37
O

C 

80% 
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Figure 1. Surface preparation methods.
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Figure 2. Cell growth responses on control PS tissue culture surfaces 
and flat PMMA surfaces. 
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Figure 3. Lens and HepG2 cell growth responses on control PS tissue 
culture surfaces and flat epoxy surfaces.
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Figure 4. Cell confluency curves on unmodified surfaces.
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Figure 5. Morphology of human lens epithelial cells in response to 
topography of pillars and bumps in different materials. 
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Figure 6. Morphology of HepG2 cells in response to topography of 
pillars and bumps in different materials. 
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Highlights 

 

• Use of room temperature cure epoxy resin can be used for tissue culture 

• Significantly different HepG2 morphology was observed  

• Non-clean room required micro scale surface patterning techniques can be applied 

• Surface topography and cell interactions based on specific size of features was observed 


