
Author’s Accepted Manuscript

Analysis of impact of general-purpose graphics
processor units in supersonic flow modeling

V.N. Emelyanov, A.G. Karpenko, A.S. Kozelkov,
I.V. Teterina, K.N. Volkov, A.V. Yalozo

PII: S0094-5765(16)30822-0
DOI: http://dx.doi.org/10.1016/j.actaastro.2016.10.039
Reference: AA6061

To appear in: Acta Astronautica

Received date: 18 August 2016
Revised date: 22 October 2016
Accepted date: 25 October 2016

Cite this article as: V.N. Emelyanov, A.G. Karpenko, A.S. Kozelkov, I.V.
Teterina, K.N. Volkov and A.V. Yalozo, Analysis of impact of general-purpose
graphics processor units in supersonic flow modeling, Acta Astronautica,
http://dx.doi.org/10.1016/j.actaastro.2016.10.039

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/actaastro

http://www.elsevier.com/locate/actaastro
http://dx.doi.org/10.1016/j.actaastro.2016.10.039
http://dx.doi.org/10.1016/j.actaastro.2016.10.039

1

Analysis of impact of general-purpose graphics processor units

in supersonic flow modeling

V.N. Emelyanov
1
, A.G. Karpenko

2
, A.S. Kozelkov

3
, I.V. Teterina

1
, K.N. Volkov

4
, A.V. Yalozo

3

1
Faculty of Rocket and Space Engineering, Baltic State Technical University, St. Petersburg, 190005,

Russia
2
Faculty of Mathematics and Mechanics, St Petersburg State University, Old Petergof, St. Petersburg,

198504, Russia
3
Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center, Sarov, 607188,

Russia
4
Faculty of Science, Engineering and Computing, Kingston University, London, SW15 3DW, United

Kingdom

Abstract

Computational methods are widely used in prediction of complex flowfields associated with

off-normal situations in aerospace engineering. Modern graphics processing units (GPU) provide

architectures and new programming models that enable to harness their large processing power and to

design computational fluid dynamics (CFD) simulations at both high performance and low cost.

Possibilities of the use of GPUs for the simulation of external and internal flows on unstructured

meshes are discussed. The finite volume method is applied to solve three-dimensional unsteady

compressible Euler and Navier–Stokes equations on unstructured meshes with high resolution

numerical schemes. CUDA technology is used for programming implementation of parallel

computational algorithms. Solutions of some benchmark test cases on GPUs are reported, and the

results computed are compared with experimental and computational data. Approaches to

optimization of the CFD code related to the use of different types of memory are considered. Speedup

of solution on GPUs with respect to the solution on central processor unit (CPU) is compared.

Performance measurements show that numerical schemes developed achieve 20 to 50 speedup on

GPU hardware compared to CPU reference implementation. The results obtained provide promising

perspective for designing a GPU-based software framework for applications in CFD.

Keywords

Supersonic flow; Shock tube; Boundary layer; CFD; High-performance computing; Parallel

algorithm; Speedup

1 Introduction

Propulsion power engines play an important role in determining space flight safety issues [1].

Modeling of fluid chemically reacting flows and heat transfer in rocket engines is necessary for

adequate prediction of the functional efficiency and reliability of rocket engines [2–5] and nozzles [6].

It was demonstrated tha graphic processor units (GPU) could accelerate solution of these problems [7,

8]. New generation of propulsion engines wjould also, definitely, need effective mathematical

simulations [9, 10]. The present paper discusses the effectiveness of GPU for fluid dynamics

simulations relevant to space flight safety.

The methods of computational fluid dynamics (CFD) are extensively applied in design and

2

optimization of rocket techniques to get more insight into 3D unsteady flows through fluid or gas

passages. Accurate prediction of compressible flows still remains a challenging task despite a lot of

work in this area. The quality of CFD calculations of the flows strongly depends on the proper

prediction of flow physics (shock waves, rarefaction waves, recirculation regions). Investigations of

heat transfer, skin friction, secondary flows, flow separation and re-attachment effects demand

reliable numerical methods, accurate programming, and robust working practices.

The stagnation in the clock-speed of central processing units (CPU) has led to significant interest in

parallel architectures that offer increasing computational power by using many separate processing

units. Modern graphics hardware contains such an architecture in the form of the graphics processing

units (GPU). GPU platforms including GPU clusters make it possible to achieve speedups of an order

of magnitude over a standard CPU in many CFD applications and are growing in popularity [11].

Figure 1 shows that a recent GPU is significantly more powerful than its CPU contemporary, and that

the computing power of GPUs are increasing at a greater rate than that of CPUs. The GPU employs a

parallel architecture so each generation improves on the speed of previous ones by adding more cores,

subject to the limits of space, heat and cost. CPUs, on the other hand, have traditionally used a serial

design with a single core, relying instead on greater clock speeds and shrinking transistors to drive

more powerful processors. While this approach has been reliable in the past, it is now showing signs

of stagnation as the limit of current manufacturing technology is being reached. Recent CPUs,

therefore, tend to feature two or more cores, but GPUs still enjoy a significant advantage in this area

[12].

3

Figure 1. Floating point operations per second for the CPUs and GPUs

Speed and accuracy are key factors in the evaluation of CFD solver performance. In CFD

applications, the increasing demands for accuracy and simulation capabilities produce an exponential

growth of the required computational resources. High performance computing (HPC) resources are

widely used in engineering applications.

The use of GPUs is a cost effective way of improving substantially the performance in CFD

applications [13]. Taking advantage of any multi-core architecture requires programs to be written for

parallel execution. For CFD, this has traditionally meant splitting the flow domain into several parts

(domain decomposition) that are solved independently on each processor node in a cluster, with the

flow properties at boundaries being communicated between the nodes after each time step (processor

balancing). This is also the process adopted for GPUs, but the GPU introduces several additional

constraints that make the stream programming paradigm particularly useful [14].

Although GPU has attractive characteristics for massively parallel computations, it has not been

implemented in CFD for a long time due to the complex programming techniques. Developers must

have special knowledge about computer graphics which is unfamiliar for general CFD researchers.

But thanks to the CUDA (Compute Unified Device Architecture) library provided by NVIDIA,

researchers are free from the restrictions of computer hardware knowledge and need to concentrate on

CFD algorithms and CUDA programming language.

Depending on the complexity of the CFD problem to represent and solve, structured or unstructured

meshes are used. Computational algorithms are more efficiently implemented on structured meshes,

and data structures to handle the mesh are easy to implement [15, 16]. However, structured meshes

present poor accuracy if the problem to be solved has complex internal or external boundaries. On the

other hand, unstructured meshes present more flexibility and higher accuracy to represent problems

that have complex geometries and boundaries [17]. However, the data structures to handle it are not

easy to implement, and also explicit neighboring information should be stored.

Much of the efforts in running CFD codes on GPUs has been directed toward the case of CFD solvers

based on structured and block-structured meshes [14, 18–23]. These solvers are easily to implement

on GPUs due to their regular memory access pattern. There are various examples of implementation

of CFD solvers on structured meshes for simulation of flows of viscous incompressible fluid [24–26].

Unstructured mesh based analysis methods on HPC systems with shared memory and distributed

memory have been largely studied. However, shared and distributed memory systems are

fundamentally different from GPUs. A GPU is a SIMT (Single Instruction Multiple Thread) engine,

whereas shared and distributed memory systems are MPMD (Multiple Program Multiple Data)

engines. However, the common aspect of these parallel engines is that in both of them the mesh

application is limited by memory latency. Achieving good performance for unstructured mesh based

CFD solvers on GPUs is more difficult due to their data dependent and irregular memory access

patterns [27–29].

Explicit time-marching algorithms are the most convenient ones to be ported on to the GPUs. This is

because there is no iteration, and the new value of a variable depends only on the previous time values.

Hence, the update of a given variable is done independently on variables being updated on other

threads. There is no recursive relation between the variables on the threads, since they are all known at

the previous time step. However, even for explicit algorithms, a few changes are needed for efficiently

4

implementation of numerical algorithms on the GPU [12]. These relate to the use of shared memory

and the layout of data structures. Memory coalescing and block size influence the speed achieved. The

data should be organized such that adjacent threads access adjacent nodal data. In addition, data

should be, where possible, copied to shared memory and re-used as much as possible. Therefore, even

explicit algorithm based CFD codes need to be reorganized to take advantage of the GPU architecture.

When an implicit algorithm is used, the efficiency as well as the convergence are impacted. Implicit

algorithms directly ported to a GPU are not usually work because of the mixed implicit and explicit

updates. It is necessary to remove any recursive updates, so the algorithm could be run on parallel

threads.

The most of the work done so far has either been for relatively small codes written from scratch or for

a small portion of a large existing code. However, GPU support is available in mathematical packages

(MATLAB) and commercial CFD solvers (ANSYS CFX, ANSYS Fluent).

In most cases, time is a precious parameter in space flight safety or post-event technical expertise,

engineers having to deliver results with maximum accuracy in a shortest time possible. These

performance gains can only be achieved using High Performance Computing (HPC) facilities. This

paper aims to highlight the benefits of parallel processing (mainly of GPUs) in the case of space flight

modeling.

The present work is undertaken as a part of a larger effort to establish a common CFD code for

simulation of flows in aerospace and mechanical applications, and involves some basic validation

studies. Up to now, a few researches on fully 3D compressible Navier–Stokes GPU solver for

engineering applications have been reported. The motivation of this paper is to assess the in-house

compressible CFD code, and to demonstrate successful design of a highly parallel computation

system based on GPUs and validate the speedup factor compared with CPU.

The governing equations are solved with finite volume code and high resolution schemes on hybrid

meshes. The code is programmed following the standard of CUDA C language. Single precision

arithmetic is kept through the entire residual computations with the help of latest GPU hardware and

careful design of CFD code. The benchmark test cases include Sod shock tube problems, flat plate

boundary layer problem, compressible flow over NACA0012 and RAE2822 airfoils.The results

obtained are generally in reasonable agreement with the available experimental and computational

data reported in literature. The parallelization methods are studied and speedup factor by GPU cards is

measured.

2 Governing equations

In Cartesian coordinates , an unsteady 3D flow is described by the following equation written

in conservative form

(1)

The pressure is calculated as

 [

(

)]

The flow variables vector, , and the flux vectors, , and , have the form

5

(

)

(

)

(

)

(

)

The components of viscous stress tensor and components of heat flux vector by conduction are found

as

 (

)

Here, is the time, is the density, , , and are the velocity components in the coordinate

directions , , and respectively, is the pressure, is the total energy per unit mass, is the

temperature, and is the ratio of specific heat capacities.

The Sutherland’s law is used to obtain molecular viscosity as a function of temperature

 (

)

where kg/(m s), K and K for air. The thermal

conductivity is expressed in terms of viscosity and Prandtl number as λ=cpμ/Pr, where is the

specific heat capacity at constant pressure, and the molecular Prandtl number is for air.

3 Numerical method

The governing equations solved by the CFD code are of the form

(2)

where is the flow variables vector averaged over the control volume. The flow residual is

where denotes all the spatial differencing terms, and denotes terms from boundary

conditions and possible source terms.

Equation (2) is written in the form

6

(3)

where
 is the differential operator. The subscript refers to the control volume, and the

superscript refers to the time layer.

The three-step Runge–Kutta method is used for discretization of the equation (3) in time [30]

[

]

[

]

Here,

 and

. An advantage of the Runge–Kutta method is that it ensures

positiveness of the difference scheme. If the solution and the operator are positive at the time

 , they also remain positive at the time .

The inviscid flux is found from the relation

where the subscripts and refer to cells on the left and on the right edges of the control volume.

The matrix is presented in the form , where is the diagonal matrix composed from the

Jacobian eigenvalues, and and are the matrices composed from its right and left eigenvectors,

respectively.

The unstructured CFD code developed uses an edge-based data structure to give the flexibility to run

on meshes composed of a variety of cell types. The fluxes through the surface of a cell are calculated

on the basis of flow variables at nodes at either end of an edge, and an area associated with that edge

(edge weight). The edge weights are pre-computed and take into account geometry of the cell. Some

details of the CFD code are provided in [31, 32].

The non-linear CFD solver works in an explicit time-marching fashion, based on a Runge–Kutta

stepping procedure. The flux vector is split into the inviscid and viscous components. The governing

equations are solved with upwind finite difference scheme for inviscid fluxes, and central difference

scheme of the second order for viscous fluxes. For simulation of low-speed flows, convergence to a

steady state is accelerated by the use of low-Mach number preconditioning method. The

computational procedure involves reconstruction of the solution in each control volume and

extrapolation of the unknowns to find the flow variables on the faces of control volume, solution of

Riemann problem for each face of the control volume, and evolution of the time step. The Godunov

exact Riemann solver and the Roe approximate Riemann solver [33] are used in calculations.

The computational procedure is implemented as a computer code in C/C++ programming language.

Parallelization of the computational procedure is performed by a message passing interface (MPI).

CUDA technology is used to implement GPU version of the code.

4 Programming model

CUDA is a parallel computing architecture from NVIDIA which introduced a new programming

model based on high-level abstraction levels which avoid the former graphics pipeline concepts and

7

ease the porting of a scientific CPU application [12]. According to the CUDA framework, both the

CPU and the GPU maintain their own memory. It is possible to copy data from CPU memory to GPU

memory and vice versa.

4.1 Overview

Programming GPUs is unlike traditional CPU programming and massive parallel computers, because

the hardware is different. It is often a relatively simple task to get started with GPU programming and

get speedups over existing CPU codes, but these first attempts at GPU computing are often

sub-optimal, and do not utilize the hardware to a satisfactory degree. Achieving a scalable

high-performance code that uses hardware resources efficiently is still a difficult task.

The GPU is formed by a set of multiprocessors, each one having a number of processors depending on

specific architecture. At any clock cycle, each processor of the multiprocessor executes the same

instruction, but operates on different data. A function executed on the GPU is called a kernel. A kernel

is executed by many threads which are organized forming a grid of thread blocks that run logically in

parallel. All blocks and threads have spatial indices, so that the spatial position of each thread could be

identified in the program. Each thread block runs in a single multiprocessor. A warp is the number of

threads that run concurrently in a multiprocessor (warp size is 32 threads). Each block is split into

warps, and periodically a scheduler switches from one warp to another. This allows to hide the high

latency when accessing the GPU memory, since some threads continue their execution while other

threads are waiting.

A GPU architecture implements different types of memory for storing data (global memory, constant

memory, texture memory, shared memory and registers). This memory structure allows to reduce

global memory accesses and collaboration among threads in the same thread block. In terms of

latency, global memory access is the slowest whereas registers are the fastest. Since the GPU

execution model requires that the information is first placed in global memory and then accessed by

the GPU application, it is necessary to optimize global memory access. Global memory access is

optimized by achieving peak bandwidth and by reducing the number of accesses.

Although GPU provides large bandwidth for global memory operation, the access pattern of the

threads of a warp reduces the achieved bandwidth. To achieve peak bandwidth usage, the GPU

coalesces warp memory operations into two or four memory transactions depending on the size of the

words accessed. Therefore, warp memory access is organized in such a way that threads access

adjacent memory locations. When data is reutilized, it is possible to reduce the number of global

memory accesses by storing the data either in registers or in shared memory. Shared memory is

common for all the threads in the thread block, which allows collaboration among them. Since shared

memory is organized in banks, to avoid bank conflicts threads should access data in different banks.

The performance critical portion of the CFD solver consists of a loop which repeatedly computes the

time derivatives of the conserved variables. The conserved variables are then updated using an

explicit Runge–Kutta time-stepping procedure. The most expensive computation consists of

accumulating flux contributions across each face when computing the time derivatives. Therefore, the

performance of the CUDA kernel which implements this computation is crucial in determining

whether or not high performance is achieved.

4.2 Memory access

8

The operations that are carried out in every iteration of the CFD solver are divided into three parts.

 Local cell analysis to obtain a coefficient for each solution point based only on the interaction with

the other solution in the same cell.

 Neighbor cell analysis to compute a coefficient for each solution point based on the interaction

with its neighbor solution point.

 Update local magnitudes when the local value of the magnitude at the solution point is updated

using the two previously computed coefficients.

The three main stages perform computations based on information stored in main memory, such as the

solution point variables, geometry information, and a set of parameters for cell-oriented or

edge-oriented analysis. Although solution point variables and parameters are used in all three main

stages, they are accessed with different patterns at every stage. These memory patterns limit data

locality between and inside the stages, diminishing efficiency of data caches for reducing memory

latency.

In cell-oriented analysis, a set of coefficients for each solution point is computed based on its own

information as well as the information of the solution points that belong to the same cell. The solution

point information is performed in two steps. The first step involves retrieving the pointer to the

beginning of the cell in the array of solution point variables, and the second step involves accessing

sequentially all the information in the current cell.

In edge-oriented analysis, a set of coefficients for each solution point is computed based on its own

information and the information of its neighbor solution point. Unlike cell-oriented analysis that

traverses the mesh at cell level, edge-oriented analysis traverses the mesh at edge level. Accessing the

solution point information is done in three steps. The first step involves retrieving the pointer to the

solution point, the second step includes retrieving the pointer to the left and right solution point

variables, and the third step involves accessing the two solution points variables. In the Riemann

solver, left and right solution point variables are not physically adjacent, and information is read and

used only once, hence, either on a uni-threaded or multi-threaded solution the cache memories do not

help to reduce memory latency.

In the last stage, the solution point variables are updated utilizing only current solution point

information and coefficients (read and utilized once). Since coefficients and solution point variables

arrays are processed sequentially, cache memories take advantage of spatial locality, and by this way

help to reduce memory latency for both uni-threaded and multi-threaded solutions.

4.3 Advanced possibilities

The time derivative computations are parallelized on a per-cell basis, with one thread per cell [28].

First, each thread reads the cell volume, along with its conserved variables from global memory, from

which it derives physical quantities such as the pressure, velocity, total energy, and the flux

contributions are computed. The kernel then loops over each of all faces of the control volume in order

to accumulate fluxes. The face normal is read along with the index of the adjacent cell, where this

index is then used to access the adjacent cell’s conserved variables. The required derived quantities

are computed and then the flux is accumulated into the cell residual.

This approach requires redundant computation of flux contributions, and other quantities derived from

the conserved variables. Another possible approach is to first pre-compute each cell’s flux

9

contribution, thus avoiding such redundant computation. However, this approach turns out to be

slower because reading the flux contributions requires three times the amount of global memory

access than just reading the conserved variables. The redundant computation is performed

simultaneously with global memory access, which hides the high latency of accessing global memory.

Shared memory is an important feature of GPU hardware used to avoid redundant global memory

access amongst threads within a block. The hardware does not automatically make use of shared

memory, and it is up to the software to explicitly specify how shared memory is used. Information is

made available which specifies which global memory access is shared by multiple threads within a

block. For structured mesh based solvers, this information is known a priori due to the fixed memory

access pattern of such solvers. On the other hand, the memory access pattern of unstructured mesh

based CFD solvers is data dependent.

In the case of an unstructured mesh, the global memory access required for reading the conserved

variables of neighboring control volumes is at risk of being highly non-coalesced, which results in

lower effective memory bandwidth. This is avoided, however, if neighboring faces and edges of

consecutive cells are nearby in memory. This is achieved in two steps. The first step is to ensure that

cells nearby in space are nearby in memory by using a renumbering scheme [28]. The scheme works

by overlaying a mesh of bins. Each point in the mesh is assigned to a bin, and then the points are

renumbered by assigning numbers while traversing the bins in a fixed order. With such a numbering in

place, the connectivity of each cell is then sorted locally on the second step, so that the indices of the

four neighbors of each tetrahedral cell (for triangular mesh) are in increasing order. This ensures that,

for example, the second neighbor of consecutive cells are close in memory.

5 Parallelization technique

The finite volume mesh is generated from input data with the appropriate setting of initial and

boundary conditions. The time stepping is performed by applying a Runge–Kutta TVD method.

The computation steps required by the problem considered are classified into two groups,

computations associated to faces and edges, and computations associated to volumes. The numerical

scheme exhibits a high degree of data parallelism because the computation at each edge/volume is

independent with respect to the computation performed at the rest of edges/volumes. Moreover, the

explicit scheme presents a high arithmetic intensity and the computation exhibits a high degree of

locality.

Solution scheme with the use of GPU resources is shown in the Figure 2. Single arrows correspond to

the commands, and double arrows correspond to commands and data transfers between CPU and GPU

(global memory is used).

10

Figure 2. Solution of CFD problem with the use of GPU resources

The implementation is split between CPU and GPU. Pre- and post-processing steps are done on the

CPU, leaving only the computation itself to be performed on the GPU. For example, the CPU

constructs the mesh and evaluates the face areas, face normals and cell volumes. The initialization of

the flowfield is also done on the CPU. Each time step of the computation then involves a series of

kernels on the GPU which evaluate the cell face fluxes, sum the fluxes into the cell, calculate the

change in properties at each node, smooth the variables and apply boundary conditions. Each kernel

operates on all the nodes (no distinction is made between boundary nodes and interior nodes). This

causes difficulties if an efficient code is to be obtained. For example, the change in a flow property at

a node is formed by averaging the flux sums of the adjacent cells (for mesh with quadrangle cells, four

cells surround an interior node, but only two at a boundary node). This problem is overcome using

dependent texturing. The indices of the cells required to update a node are pre-computed on the CPU

and loaded into GPU texture memory. For a given node, the kernel obtains the indices required and

then looks up the relevant flux sums which are stored in a separate GPU texture. This avoids

branching within the kernel.

A graphical description of the parallel computational algorithm, obtained from the mathematical

description of the numerical scheme, is shown in the Figure 3. The main calculation stages are

identified and the main sources of data parallelism are represented indicating that the calculation

affected by it are performed simultaneously for each data item of a set (the data items represent the

volumes or faces/edges of the finite volume mesh). Time stepping process is repeated until the final

simulation time is reached. At the -th time step, the residual is evaluated to update the state of

each cell. In order to add the contributions associated with each edge, two variables are used in the

algorithm for each volume. The first variable is used to store the contributions to the local time step

size of the volume, and the second variable is used to store the sum of the contributions to the state of

11

cell.

Figure 3. Main calculation stages in the parallel algorithm

The most costly stage in the algorithm is edge-based calculations involving two calculations for each

face communicating two cells. This contribution is computed independently for each face and is

added to the partial sums associated to each cell. For each control volume, the local time step is

computed. The computation for each volume does not depend on the computation for the rest of

volumes and therefore this stage is performed in parallel. The minimum of all the local time steps

previously obtained for each volume is computed. The -th state of each control volume is

approximated from the -th state using the data computed in the previous phases. This stage is also

completed in parallel.

6 Flux calculations

The implementation of the finite volume method using a global memory and register file is illustrated

in the Figure 4. Each time layer calculations are performed in two stages. Two kernels are used for the

parallel implementation of the finite volume method on GPU, one of which calculates the flow

through the faces of control volumes (stage 1), and the other one provides flow variable calculations

on the next time layer (stage 2). On the first stage, flow variables in the centers of control volumes are

stored in global memory (array). One thread is used to calculate the fluxes through the faces of

control volume. Each thread uses the flow variables vector in adjacent control volumes, and .

Fluxes through cell faces are stored in array . On the second stage, a set of threads corresponding to

12

the same number of control volumes is launched to calculate the flow variables vector on a new time

level. The fluxes through the faces and are used, and the solution is computed in the

control volume . The solution is then stored in the array .

Figure 4. Flux calculation (a) and calculation of flow variables vector on a new time layer (b)

The use of shared memory in the calculation of flow variables vector is presented in the Figure 5,

which shows how to copy the data from global memory to shared memory. For example, the

implementation of upwind numerical scheme requires the use of three control volumes to calculate

fluxes and limiters. On step 1, flow variables vector corresponding to the centered location is copied

(fragment a), and on steps 2 and 3 flow variables vectors corresponding to the left and right locations

are copied (fragments b and c). Each thread makes treatment of the three flow variables vectors stored

in the shared memory (fragment d).

Figure 5. Use of shared memory in flux calculations

7 Results and discussion

The GPU version of the CFD code is used and validated for a variety of benchmark test cases.

Numerical calculations are performed with unstructured in-house finite volume CFD code. An

13

equivalent solver is made in C++ to be run in a CPU for benchmarking purposes.

7.1 Sod problem

The Sod problem constitutes a particularly interesting and difficult test case, since it presents an exact

solution to the full system of 1D Euler equations containing simultaneously a shock wave, a contact

discontinuity, and an expansion fan [33]. The analogous 2D steady expansion wave and its interaction

is discussed in [34, 35]. This problem is chosen to validate the numerical schemes and assess the

temporal accuracy of the numerical solution obtained by the present method, since an analytical

solution exists. The initial conditions in the present computation are as follows: , ,

 if (left state), and , , if (right state).

Calculations are performed on various meshes. A number of cells increases from 1024 cells for mesh

1 to 30720 cells for mesh 2, and to 307200 cells for mesh 3. The finest mesh, mesh 4, contains about

three million cells. The time step is s, and the total calculation time is s.

Courant number is equal to 0.85. Calculations are performed on one module of Tesla S1070 platform

with 1.44 GHz (number of cores is 256), and on a single core of CPU AMD Phenom 2 with 3 GHz.

Distributions of flow quantities are presented in the Figure 6 (). Solid line corresponds to the

exact solution of the Sod problem, and symbols correspond to the numerical solution.

Figure 6. Solution of Sod problem: density (a), velocity (b), pressure (c), Mach number (d), entropy

(e), enthalpy (f)

The time required for calculation of one time step, and speedup of calculations are given in the Table

1 (time is given in milliseconds). Option 1 corresponds to Godunov scheme involving exact solution

of Riemann problem, and option 2 corresponds to Roe scheme involving approximate solution of

Riemann problem. For both options, a good growth of speedup, , is observed. However, Godunov

method is not ideal from the parallelization point of view, since the exact solution of the Riemann

14

problem involves a large number of data transfers, reducing the GPU performance. Convergence

speed of Newton iterative solver varies from one control volume to another one.

Table 1. Time (in ms) and speedup for Sod problem

No Mesh 1 Mesh 2

CPU GPU CPU GPU

1 1.63 0.13 12.43 47.70 0.20 245.25

2 0.14 0.07 1.87 5.51 0.17 33.17

No Mesh 3 Mesh 4

CPU GPU CPU GPU
1 460.64 0.92 502.50 4627.61 8.06 574.39

2 43.58 0.57 76.00 436.09 5.22 83.48

7.2 Shock tube problem

The shock tube test case considers a long tube containing a gas separated by a thin membrane. The gas

is assumed to be at rest on both sides of the membrane, but it has different constant pressures and

densities on each side. At time , the membrane is ruptured, and the problem is to determine

ensuing motion of the gas. The solution of this problem consists of a shock wave moving into the low

pressure region, a rarefaction wave that expands into the high pressure region, and a contact

discontinuity which represents the interface.

Unstructured tetrahedral mesh is used to solve 3D shock tube problem. The length of the

computational domain is m. Initial states correspond to the Sod problem (the membrane is

located at). Calculations are based on different meshes. The coarsest mesh contains about

 cells (mesh 1), and the finest mesh contains about cells (mesh 4). The intermediate meshes

contain cells (mesh 2) and (mesh 3) cells. Typical mesh is shown in the Figure 7 (cross

section). The time step is s, and the total computational time is s. Courant

number is equal to 0.85. The calculations are performed on one module of Tesla S1070 platform with

1.44 GHz (a number of cores is 256), and one core of CPU AMD Phenom 2 with 3 GHz.

Figure 7. Unstructured mesh extruded in spanwise direction

The numerical results, shown in the Figure 8, indicate higher resolved solutions for a given time step

and given mesh size than the numerical results reported in [36]. The results computed have no

spurious oscillations at any shock or contact discontinuities.

15

Figure 8. Solution of shock tube problem: density (a), velocity (b), pressure (c)

Speedup of calculations are presented in the Figure 9 (time of calculation of 1000 time steps was

measured). Three indices are used to specify computational option. The first index corresponds to the

solution of Euler equations (option 1, inviscid flow) or to the solution of Navier–Stokes equations

(option 2, viscous flow). The second index corresponds to the time-marching scheme used in

calculations based on one-step (option A) or three-step (option B) Runge–Kutta time-stepping

procedure. The third index corresponds to the exact Godunov (option 1) or approximate Roe option 2)

Riemann solvers. The calculations based on the finest mesh containing about 10 millions of cells

(mesh 4) with Godunov scheme give speedup of 42. For the solution of viscous problem with the

scheme of the second order, the speedup drops to 22.

Figure 9. Speedup for shock tube problem

The time required for calculation of 1000 time steps on the mesh with cells, and memory usage

are given in the Table 2. The option 1 corresponds to GPU parallel calculations based on Godunov

scheme, and the option 2 corresponds to CPU calculations based on Godunov scheme.

Table 2. Time and memory for shock tube problem

No 1 2

Memory, Mb 2582.28 2696.72 1.04

Time, s 305.29 14916.60 48.86

7.3 Flat plate flow

16

The flow over a smooth flat plate is well-known CFD benchmark solution [38], and it is used for

verification and validation of other CFD codes [39].

The length of the computational domain is (before the plate and behind the plate), and

the width of the computational domain is , where is the length of the plate (m). Free

stream velocity (m/s), static pressure (Pa) and static temperature (

K) are fixed on the inlet boundary. No-slip and no-penetration boundary conditions are used on the

plate. The plate surface is adiabatic. Free outflow boundary conditions are applied to the outlet

boundary. Slip boundary conditions are used on the far-stream boundary.

The flat plate boundary layer problem is solved on various meshes. The velocity profile in the

boundary layer is shown in the Figure 10. The flow calculations are based on CPU Xeon X5670 2.93

GHz and one module of Tesla S2050 platform. The computational time in seconds and speedup of

calculations are shown in the Table 3 for one iteration. Increasing a number of nodes from to

 , speedup increases on 10%.

Figure 10. Velocity profile in the boundary layer

Table 3. Time and speedup for flat plate problem

Number of

nodes

CPU GPU S

 0.140 0.003 46.67

 1.406 0.026 54.08

 7.091 0.126 56.28

 14.06 0.251 56.02

8 Conclusion

GPUs have evolved as a new paradigm for scientific computations. They are essentially multi-core

machines with a large number of computational units sharing a common memory. GPUs

cost/performance ratio, and low power consumption make them attractive for high-resolution CFD

computations. However, in order to exploit the inherent architecture of the device, the numerical

algorithm as well as data structures are carefully tailored to minimize the memory access and any

recursive relations in the computational algorithm.

17

Possibilities of the use of GPUs in CFD calculations were discussed. The finite volume method was

applied to solve full Euler and Navier–Stokes equations on unstructured meshes of various topology.

CUDA technology was used for programming implementation of parallel computational algorithms.

Solutions of some benchmark CFD problems on GPUs were presented, and approaches to

optimization of the CFD code related to the use of different types of memory were discussed. Speedup

of CFD calculations varied from 10 to 50 depending on the problem to be solved, computational

procedures and computational resources. This makes GPUs attractive for computing industrial fluid

flows and heat transfer. However, porting legacy codes automatically is not easy. Significant rewrite

of the algorithm and the code is necessary. The time investment is worthwhile because multi-core

architectures of one form or the other are going to be the necessary trend for high resolution and high

performance computing.

The computational procedure was developed as a part of LOGOS multi-functional and multi-purpose

CFD package designed in the Institute of Theoretical and Mathematical Physics of the Russian

Federal Nuclear Center (Sarov, Russia). LOGOS package was widely used in mechanical engineering

and aerospace applications.

Further work is focused on parallel implementation of implicit schemes and convergence acceleration

techniques such as multigrid method and low-Mach preconditioning.

Acknowledgements

This work was partially supported by the Russian Foundation for Basic Research (project

16-01-00267 and project 16-38-60142). The author wishes to thank colleagues from the Russian

Federal Nuclear Center (Sarov, Russia) for access to high performance computing resources and

discussion of the computational results.

References
1. Betelin V.B., Smirnov N.N., Nikitin V.F. Supercomputer predictive modeling for ensuring space

flight safety. ActaAstronautica, 2015, 109, 269–277.
2. Smirnov N.N.,Betelin V.B., Shagaliev R.M., Nikitin V.F., Belyakov I.M., Deryuguin Yu.N.,

Aksenov S.V., Korchazhkin D.A. Hydrogen fuel rocket engines simulation using LOGOS

code.International Journal of Hydrogen Energy, 2014, 39, 10748–10756.

3. Smirnov .N., Nikitin V.F., Stamov L.I., Altoukhov D.I. Supercomputing simulations of detonation

of hydrogen-air mixtures. International Journal of Hydrogen Energy, 2015, 40, 11059–11074.

4. Smirnov N.N., Betelin V.B., Nikitin V.F., Stamov L.I., Altoukhov D.I. Accumulation of errors in

numerical simulations of chemically reacting gas dynamics. Acta Astronautica, 2015, 117, 338–

355.

5. Smirnov N.N., Nikitin V.F. Modeling and simulation of hydrogen combustion in engines.

International Journal of Hydrogen Energy, 2014, 39(2), 1122–1136.
6. Silnikov M.V., Chernyshov M.V., Uskov V.N. Two-dimensional over-expanded jet flow

parameters in supersonic nozzle lip vicinity. Acta Astronautica, 2014, 97, 38–41.
7. Rybakin B.P., Stamov L.I., Egorova E.V. Accelerated solution of problems of combustion gas

dynamics on GPUs. Computers & Fluids, 2014, 90, 164–171.

8. Rybakin B.P. Modeling of 3D problems of gas dynamics on multiprocessing computers and GPU.

18

Computers & Fluids, 2013, 80, 403–407.

9. Smirnov N.N., Betelin V.B., Nikitin V.F., Phylippov Yu.G., Jaye Koo. Detonation engine fed by

acetylene–oxygen mixture. Acta Astronautica, 2014, 104, 134–146.

10. Smirnov N.N., Phylippov Yu.G., Nikitin V.F., Silnikov M.V. Modeling of combustion in engines

fed by hydrogen. WSEAS Transactions on Fluid Mechanics, 2014, 9, 154–167.

11. Owens J.D., Luebke D., Govindaraju N., Harris M., Krüger J., Lefohn A.E., Purcell T.J. A survey

of general-purpose computation on graphics hardware. Computer Graphics Forum, 2007, 26(1),

80–113.

12. Sanders J., Kandrot E. CUDA by example: an introduction to general-purpose GPU programming.

Boston, Pearson Education, 2011.

13. Jacobsen D.A., Senocak I. Multi-level parallelism for incompressible flow computations on GPU

clusters. Parallel Computing, 2013, 39(1), 1–20.

14. Thibault J.C., Senocak I. CUDA implementation of a Navier–Stokes solver on multi-GPU desktop

platforms for incompressible flows. AIAA Paper, 2009-758.

15. Fu L., Gao Z., Xu K., Xu F. A multi-block viscous flow solver based on GPU parallel

methodology. Computers and Fluids, 2014, 95, 19–39.

16. Tuttafesta M., Colonna G., Pascazio G. Computing unsteady compressible flows using Roe’s
flux-difference splitting scheme on GPUs. Computer Physics Communications, 2013, 184(6),

1497–1510.

17. Mavriplis D.J. Unstructured mesh discretizations and solvers for computational aerodynamics.

AIAA Paper, 2007-3955.

18. Scheidegger C.E., Comba J.L.D., da Cunha R.D. Practical CFD simulations on programmable

graphics hardware using SMAC. Computer Graphics Forum, 2005, 24(4), 715–728.

19. Hagen T.R., Lie K.-A., Natvig J.R. Solving the Euler equations on graphics processing units.

Lecture Notes in Computer Science, 2006, 3994, 220–227.

20. Brandvik T., Pullan G. An accelerated 3D Navier–Stokes solver for flows in turbomachines.

ASME Paper, GT2009-60052.

21. Shinn A.F., Vanka S.P., Hwu W.W. Direct numerical simulation of turbulent flow in a square duct

using a graphics processing unit (GPU). AIAA Paper, 2010-5029.

22. Kuo F.-A., Smith M.R., Hsieh C.-W., Chou C.-Y., Wu J.-S. GPU acceleration for general

conservation equations and its application to several engineering problems. Computers and Fluids,

2011, 45(1), 147–154.

23. Fu L., Gao Z., Xu K., Xu F. A multi-block viscous flow solver based on GPU parallel

methodology. Computers and Fluids, 2014, 95, 19–39.

24. Appleyard J., Drikakis D. Higher-order CFD and interface tracking methods on highly-parallel

MPI and GPU systems. Computers and Fluids, 2011, 46(1), 101–105.

25. Meng J., Skadron K. A performance study for iterative stencil loops on GPUs with ghost zone

optimizations. International Journal of Parallel Program, 2011, 39(1), 115–142.

26. Krotkiewski M., Dabrowski M. Efficient 3D stencil computations using CUDA. Parallel

Computing, 2013, 39(10), 533–548.

27. Kampolis I.C., Trompoukis X.S., Asouti V.G., Giannakoglou K.C. CFD-based analysis and

two-level aerodynamic optimization on graphics processing units. Computer Methods in Applied

Mechanics and Engineering, 2010, 199(9–12), 712–722.

28. Corrigan A., Camelli F., Löhner R., Mut F. Semi-automatic porting of a large-scale Fortran CFD

code to GPUs. International Journal for Numerical Methods in Fluids, 2011, 69(2), 314–331.

29. Emelyanov V.N., Karpenko A.G., Volkov K.N. Development of advanced CFD tools and their

application to simulation of internal turbulent flows. Proceedings of the 5th European Conference

for Aeronautics and Space Sciences (EUCASS 2013), 1–5 July, Munich, Germany.

30. Osher S., Chakravarthy S. High resolution schemes and the entropy condition. SIAM Journal on

19

Numerical Analysis, 1984, 21(5), 955–984.

31. Volkov K.N. Large-eddy simulation of free shear and wall-bounded turbulent flows. Atmospheric

Turbulence, Meteorological Modelling and Aerodynamics. USA, Nova Science, 2010, 505–574.

32. Betelin V.B., Shagaliev V.B., Aksenov V.B., Belyakov I.M., Deryuguin Yu.N., Korchazhkin

D.A., Kozelkov A.S., Nikitin V.F., Sarazov A.V., Zelenskiy D.K. Mathematical simulation of

hydrogen-oxygen combustion in rocket engines using LOGOS code. Acta Astronautica, 2014, 96,

53–64.

33. Roe P.L. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of

Computational Physics, 1981, 43(2), 357–372.

34. Sod G.A. A survey of several finite difference methods of systems of nonlinear hyperbolic

conservation laws. Journal of Computational Physics, 1978, 27(1), 1–31.

35. Silnikov M.V., Chernyshov M.V. The interaction of Prandtl–Meyer wave and

quasione-dimensional flow region. ActaAstronautica,2015, 109, 248–253.

36. Silnikov M.V., Chernyshov M.V., Uskov V.N. Analytical solutions for Prandtl–Meyer wave –

oblique shock overtaking interaction. ActaAstronautica,2014, 99, 175–183.

37. Wesseling P. Principles of computational fluid dynamics. Springer, 2000.

38. Schlichting H., Gersten K. Boundary layer theory. Springer Verlag, Berlin, 2000.

39. Volkov K.N., Hills N.J., Chew J.W. Simulation of turbulent flows in turbine blade passages and

disc cavities. ASME Paper, GT2008-50672.

Highlights

 The use of graphics processor units for the simulation of flows on unstructured meshes are

discussed

 CUDA technology is used for programming implementation of parallel computational

algorithms

 Solutions of some benchmark test cases on graphics processor units are reported

 The results obtained provide promising perspective for designing a GPU-based software

framework

