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Abstract 

Computational methods are widely used in prediction of complex flowfields associated with 

off-normal situations in aerospace engineering. Modern graphics processing units (GPU) provide 

architectures and new programming models that enable to harness their large processing power and to 

design computational fluid dynamics (CFD) simulations at both high performance and low cost. 

Possibilities of the use of GPUs for the simulation of external and internal flows on unstructured 

meshes are discussed. The finite volume method is applied to solve three-dimensional unsteady 

compressible Euler and Navier–Stokes equations on unstructured meshes with high resolution 

numerical schemes. CUDA technology is used for programming implementation of parallel 

computational algorithms. Solutions of some benchmark test cases on GPUs are reported, and the 

results computed are compared with experimental and computational data. Approaches to 

optimization of the CFD code related to the use of different types of memory are considered. Speedup 

of solution on GPUs with respect to the solution on central processor unit (CPU) is compared. 

Performance measurements show that numerical schemes developed achieve 20 to 50 speedup on 

GPU hardware compared to CPU reference implementation. The results obtained provide promising 

perspective for designing a GPU-based software framework for applications in CFD. 

 

Keywords 

Supersonic flow; Shock tube; Boundary layer; CFD; High-performance computing; Parallel 

algorithm; Speedup 

 

1 Introduction 

 

Propulsion power engines play an important role in determining space flight safety issues [1]. 

Modeling of fluid chemically reacting flows and heat transfer in rocket engines is necessary for 

adequate prediction of the functional efficiency and reliability of rocket engines [2–5] and nozzles [6]. 

It was demonstrated tha graphic processor units (GPU) could accelerate solution of these problems [7, 

8]. New generation of propulsion engines wjould also, definitely, need effective mathematical 

simulations [9, 10]. The present paper discusses the effectiveness of GPU for fluid dynamics 

simulations relevant to space flight safety. 

 

The methods of computational fluid dynamics (CFD) are extensively applied in design and 
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optimization of rocket techniques to get more insight into 3D unsteady flows through fluid or gas 

passages. Accurate prediction of compressible flows still remains a challenging task despite a lot of 

work in this area. The quality of CFD calculations of the flows strongly depends on the proper 

prediction of flow physics (shock waves, rarefaction waves, recirculation regions). Investigations of 

heat transfer, skin friction, secondary flows, flow separation and re-attachment effects demand 

reliable numerical methods, accurate programming, and robust working practices. 

 

The stagnation in the clock-speed of central processing units (CPU) has led to significant interest in 

parallel architectures that offer increasing computational power by using many separate processing 

units. Modern graphics hardware contains such an architecture in the form of the graphics processing 

units (GPU). GPU platforms including GPU clusters make it possible to achieve speedups of an order 

of magnitude over a standard CPU in many CFD applications and are growing in popularity [11]. 

 

Figure 1 shows that a recent GPU is significantly more powerful than its CPU contemporary, and that 

the computing power of GPUs are increasing at a greater rate than that of CPUs. The GPU employs a 

parallel architecture so each generation improves on the speed of previous ones by adding more cores, 

subject to the limits of space, heat and cost. CPUs, on the other hand, have traditionally used a serial 

design with a single core, relying instead on greater clock speeds and shrinking transistors to drive 

more powerful processors. While this approach has been reliable in the past, it is now showing signs 

of stagnation as the limit of current manufacturing technology is being reached. Recent CPUs, 

therefore, tend to feature two or more cores, but GPUs still enjoy a significant advantage in this area 

[12]. 
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Figure 1. Floating point operations per second for the CPUs and GPUs 

 

Speed and accuracy are key factors in the evaluation of CFD solver performance. In CFD 

applications, the increasing demands for accuracy and simulation capabilities produce an exponential 

growth of the required computational resources. High performance computing (HPC) resources are 

widely used in engineering applications. 

 

The use of GPUs is a cost effective way of improving substantially the performance in CFD 

applications [13]. Taking advantage of any multi-core architecture requires programs to be written for 

parallel execution. For CFD, this has traditionally meant splitting the flow domain into several parts 

(domain decomposition) that are solved independently on each processor node in a cluster, with the 

flow properties at boundaries being communicated between the nodes after each time step (processor 

balancing). This is also the process adopted for GPUs, but the GPU introduces several additional 

constraints that make the stream programming paradigm particularly useful [14]. 

 

Although GPU has attractive characteristics for massively parallel computations, it has not been 

implemented in CFD for a long time due to the complex programming techniques. Developers must 

have special knowledge about computer graphics which is unfamiliar for general CFD researchers. 

But thanks to the CUDA (Compute Unified Device Architecture) library provided by NVIDIA, 

researchers are free from the restrictions of computer hardware knowledge and need to concentrate on 

CFD algorithms and CUDA programming language. 

 

Depending on the complexity of the CFD problem to represent and solve, structured or unstructured 

meshes are used. Computational algorithms are more efficiently implemented on structured meshes, 

and data structures to handle the mesh are easy to implement [15, 16]. However, structured meshes 

present poor accuracy if the problem to be solved has complex internal or external boundaries. On the 

other hand, unstructured meshes present more flexibility and higher accuracy to represent problems 

that have complex geometries and boundaries [17]. However, the data structures to handle it are not 

easy to implement, and also explicit neighboring information should be stored. 

 

Much of the efforts in running CFD codes on GPUs has been directed toward the case of CFD solvers 

based on structured and block-structured meshes [14, 18–23]. These solvers are easily to implement 

on GPUs due to their regular memory access pattern. There are various examples of implementation 

of CFD solvers on structured meshes for simulation of flows of viscous incompressible fluid [24–26]. 

 

Unstructured mesh based analysis methods on HPC systems with shared memory and distributed 

memory have been largely studied. However, shared and distributed memory systems are 

fundamentally different from GPUs. A GPU is a SIMT (Single Instruction Multiple Thread) engine, 

whereas shared and distributed memory systems are MPMD (Multiple Program Multiple Data) 

engines. However, the common aspect of these parallel engines is that in both of them the mesh 

application is limited by memory latency. Achieving good performance for unstructured mesh based 

CFD solvers on GPUs is more difficult due to their data dependent and irregular memory access 

patterns [27–29]. 

 

Explicit time-marching algorithms are the most convenient ones to be ported on to the GPUs. This is 

because there is no iteration, and the new value of a variable depends only on the previous time values. 

Hence, the update of a given variable is done independently on variables being updated on other 

threads. There is no recursive relation between the variables on the threads, since they are all known at 

the previous time step. However, even for explicit algorithms, a few changes are needed for efficiently 
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implementation of numerical algorithms on the GPU [12]. These relate to the use of shared memory 

and the layout of data structures. Memory coalescing and block size influence the speed achieved. The 

data should be organized such that adjacent threads access adjacent nodal data. In addition, data 

should be, where possible, copied to shared memory and re-used as much as possible. Therefore, even 

explicit algorithm based CFD codes need to be reorganized to take advantage of the GPU architecture. 

 

When an implicit algorithm is used, the efficiency as well as the convergence are impacted. Implicit 

algorithms directly ported to a GPU are not usually work because of the mixed implicit and explicit 

updates. It is necessary to remove any recursive updates, so the algorithm could be run on parallel 

threads. 

 

The most of the work done so far has either been for relatively small codes written from scratch or for 

a small portion of a large existing code. However, GPU support is available in mathematical packages 

(MATLAB) and commercial CFD solvers (ANSYS CFX, ANSYS Fluent). 

 

In most cases, time is a precious parameter in space flight safety or post-event technical expertise, 

engineers having to deliver results with maximum accuracy in a shortest time possible. These 

performance gains can only be achieved using High Performance Computing (HPC) facilities. This 

paper aims to highlight the benefits of parallel processing (mainly of GPUs) in the case of space flight 

modeling. 

 

The present work is undertaken as a part of a larger effort to establish a common CFD code for 

simulation of flows in aerospace and mechanical applications, and involves some basic validation 

studies. Up to now, a few researches on fully 3D compressible Navier–Stokes GPU solver for 

engineering applications have been reported. The motivation of this paper is to assess the in-house 

compressible CFD code, and to demonstrate successful design of a highly parallel computation 

system based on GPUs and validate the speedup factor compared with CPU. 

 

The governing equations are solved with finite volume code and high resolution schemes on hybrid 

meshes. The code is programmed following the standard of CUDA C language. Single precision 

arithmetic is kept through the entire residual computations with the help of latest GPU hardware and 

careful design of CFD code. The benchmark test cases include Sod shock tube problems, flat plate 

boundary layer problem, compressible flow over NACA0012 and RAE2822 airfoils.The results 

obtained are generally in reasonable agreement with the available experimental and computational 

data reported in literature. The parallelization methods are studied and speedup factor by GPU cards is 

measured. 

 

2 Governing equations 

 

In Cartesian coordinates        , an unsteady 3D flow is described by the following equation written 

in conservative form 
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The pressure is calculated as 
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The flow variables vector,  , and the flux vectors,   ,   and   , have the form 
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The components of viscous stress tensor and components of heat flux vector by conduction are found 

as 
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Here,   is the time,   is the density,   ,   , and    are the velocity components in the coordinate 

directions  ,  , and   respectively,   is the pressure,   is the total energy per unit mass,   is the 

temperature, and   is the ratio of specific heat capacities. 

 

The Sutherland’s law is used to obtain molecular viscosity as a function of temperature 
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where              kg/(m s),        K and          K for air. The thermal 

conductivity is expressed in terms of viscosity and Prandtl number as λ=cpμ/Pr, where    is the 

specific heat capacity at constant pressure, and the molecular Prandtl number is         for air. 

 

3 Numerical method 

 

The governing equations solved by the CFD code are of the form 
  

  
       

(2) 

where   is the flow variables vector averaged over the control volume. The flow residual is 

                
where      denotes all the spatial differencing terms, and      denotes terms from boundary 

conditions and possible source terms. 

 

Equation (2) is written in the form 
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where     
   is the differential operator. The subscript   refers to the control volume, and the 

superscript   refers to the time layer. 

 

The three-step Runge–Kutta method is used for discretization of the equation (3) in time [30] 
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Here,   
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. An advantage of the Runge–Kutta method is that it ensures 

positiveness of the difference scheme. If the solution and the operator      are positive at the time 

  , they also remain positive at the time     . 

 

The inviscid flux is found from the relation 

         
 

 
                          

where the subscripts   and   refer to cells on the left and on the right edges of the control volume. 

The matrix   is presented in the form      , where   is the diagonal matrix composed from the 

Jacobian eigenvalues, and   and   are the matrices composed from its right and left eigenvectors, 

respectively. 

 

The unstructured CFD code developed uses an edge-based data structure to give the flexibility to run 

on meshes composed of a variety of cell types. The fluxes through the surface of a cell are calculated 

on the basis of flow variables at nodes at either end of an edge, and an area associated with that edge 

(edge weight). The edge weights are pre-computed and take into account geometry of the cell. Some 

details of the CFD code are provided in [31, 32]. 

 

The non-linear CFD solver works in an explicit time-marching fashion, based on a Runge–Kutta 

stepping procedure. The flux vector is split into the inviscid and viscous components. The governing 

equations are solved with upwind finite difference scheme for inviscid fluxes, and central difference 

scheme of the second order for viscous fluxes. For simulation of low-speed flows, convergence to a 

steady state is accelerated by the use of low-Mach number preconditioning method. The 

computational procedure involves reconstruction of the solution in each control volume and 

extrapolation of the unknowns to find the flow variables on the faces of control volume, solution of 

Riemann problem for each face of the control volume, and evolution of the time step. The Godunov 

exact Riemann solver and the Roe approximate Riemann solver [33] are used in calculations. 

 

The computational procedure is implemented as a computer code in C/C++ programming language. 

Parallelization of the computational procedure is performed by a message passing interface (MPI). 

CUDA technology is used to implement GPU version of the code. 

 

4 Programming model 

 

CUDA is a parallel computing architecture from NVIDIA which introduced a new programming 

model based on high-level abstraction levels which avoid the former graphics pipeline concepts and 
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ease the porting of a scientific CPU application [12]. According to the CUDA framework, both the 

CPU and the GPU maintain their own memory. It is possible to copy data from CPU memory to GPU 

memory and vice versa. 

 

4.1 Overview 

 

Programming GPUs is unlike traditional CPU programming and massive parallel computers, because 

the hardware is different. It is often a relatively simple task to get started with GPU programming and 

get speedups over existing CPU codes, but these first attempts at GPU computing are often 

sub-optimal, and do not utilize the hardware to a satisfactory degree. Achieving a scalable 

high-performance code that uses hardware resources efficiently is still a difficult task. 

 

The GPU is formed by a set of multiprocessors, each one having a number of processors depending on 

specific architecture. At any clock cycle, each processor of the multiprocessor executes the same 

instruction, but operates on different data. A function executed on the GPU is called a kernel. A kernel 

is executed by many threads which are organized forming a grid of thread blocks that run logically in 

parallel. All blocks and threads have spatial indices, so that the spatial position of each thread could be 

identified in the program. Each thread block runs in a single multiprocessor. A warp is the number of 

threads that run concurrently in a multiprocessor (warp size is 32 threads). Each block is split into 

warps, and periodically a scheduler switches from one warp to another. This allows to hide the high 

latency when accessing the GPU memory, since some threads continue their execution while other 

threads are waiting. 

 

A GPU architecture implements different types of memory for storing data (global memory, constant 

memory, texture memory, shared memory and registers). This memory structure allows to reduce 

global memory accesses and collaboration among threads in the same thread block. In terms of 

latency, global memory access is the slowest whereas registers are the fastest. Since the GPU 

execution model requires that the information is first placed in global memory and then accessed by 

the GPU application, it is necessary to optimize global memory access. Global memory access is 

optimized by achieving peak bandwidth and by reducing the number of accesses. 

 

Although GPU provides large bandwidth for global memory operation, the access pattern of the 

threads of a warp reduces the achieved bandwidth. To achieve peak bandwidth usage, the GPU 

coalesces warp memory operations into two or four memory transactions depending on the size of the 

words accessed. Therefore, warp memory access is organized in such a way that threads access 

adjacent memory locations. When data is reutilized, it is possible to reduce the number of global 

memory accesses by storing the data either in registers or in shared memory. Shared memory is 

common for all the threads in the thread block, which allows collaboration among them. Since shared 

memory is organized in banks, to avoid bank conflicts threads should access data in different banks. 

 

The performance critical portion of the CFD solver consists of a loop which repeatedly computes the 

time derivatives of the conserved variables. The conserved variables are then updated using an 

explicit Runge–Kutta time-stepping procedure. The most expensive computation consists of 

accumulating flux contributions across each face when computing the time derivatives. Therefore, the 

performance of the CUDA kernel which implements this computation is crucial in determining 

whether or not high performance is achieved. 

 

4.2 Memory access 
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The operations that are carried out in every iteration of the CFD solver are divided into three parts. 

 Local cell analysis to obtain a coefficient for each solution point based only on the interaction with 

the other solution in the same cell. 

 Neighbor cell analysis to compute a coefficient for each solution point based on the interaction 

with its neighbor solution point. 

 Update local magnitudes when the local value of the magnitude at the solution point is updated 

using the two previously computed coefficients. 

 

The three main stages perform computations based on information stored in main memory, such as the 

solution point variables, geometry information, and a set of parameters for cell-oriented or 

edge-oriented analysis. Although solution point variables and parameters are used in all three main 

stages, they are accessed with different patterns at every stage. These memory patterns limit data 

locality between and inside the stages, diminishing efficiency of data caches for reducing memory 

latency. 

 

In cell-oriented analysis, a set of coefficients for each solution point is computed based on its own 

information as well as the information of the solution points that belong to the same cell. The solution 

point information is performed in two steps. The first step involves retrieving the pointer to the 

beginning of the cell in the array of solution point variables, and the second step involves accessing 

sequentially all the information in the current cell. 

 

In edge-oriented analysis, a set of coefficients for each solution point is computed based on its own 

information and the information of its neighbor solution point. Unlike cell-oriented analysis that 

traverses the mesh at cell level, edge-oriented analysis traverses the mesh at edge level. Accessing the 

solution point information is done in three steps. The first step involves retrieving the pointer to the 

solution point, the second step includes retrieving the pointer to the left and right solution point 

variables, and the third step involves accessing the two solution points variables. In the Riemann 

solver, left and right solution point variables are not physically adjacent, and information is read and 

used only once, hence, either on a uni-threaded or multi-threaded solution the cache memories do not 

help to reduce memory latency. 

 

In the last stage, the solution point variables are updated utilizing only current solution point 

information and coefficients (read and utilized once). Since coefficients and solution point variables 

arrays are processed sequentially, cache memories take advantage of spatial locality, and by this way 

help to reduce memory latency for both uni-threaded and multi-threaded solutions. 

 

4.3 Advanced possibilities 

 

The time derivative computations are parallelized on a per-cell basis, with one thread per cell [28]. 

First, each thread reads the cell volume, along with its conserved variables from global memory, from 

which it derives physical quantities such as the pressure, velocity, total energy, and the flux 

contributions are computed. The kernel then loops over each of all faces of the control volume in order 

to accumulate fluxes. The face normal is read along with the index of the adjacent cell, where this 

index is then used to access the adjacent cell’s conserved variables. The required derived quantities 

are computed and then the flux is accumulated into the cell residual. 

 

This approach requires redundant computation of flux contributions, and other quantities derived from 

the conserved variables. Another possible approach is to first pre-compute each cell’s flux 
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contribution, thus avoiding such redundant computation. However, this approach turns out to be 

slower because reading the flux contributions requires three times the amount of global memory 

access than just reading the conserved variables. The redundant computation is performed 

simultaneously with global memory access, which hides the high latency of accessing global memory. 

 

Shared memory is an important feature of GPU hardware used to avoid redundant global memory 

access amongst threads within a block. The hardware does not automatically make use of shared 

memory, and it is up to the software to explicitly specify how shared memory is used. Information is 

made available which specifies which global memory access is shared by multiple threads within a 

block. For structured mesh based solvers, this information is known a priori due to the fixed memory 

access pattern of such solvers. On the other hand, the memory access pattern of unstructured mesh 

based CFD solvers is data dependent. 

 

In the case of an unstructured mesh, the global memory access required for reading the conserved 

variables of neighboring control volumes is at risk of being highly non-coalesced, which results in 

lower effective memory bandwidth. This is avoided, however, if neighboring faces and edges of 

consecutive cells are nearby in memory. This is achieved in two steps. The first step is to ensure that 

cells nearby in space are nearby in memory by using a renumbering scheme [28]. The scheme works 

by overlaying a mesh of bins. Each point in the mesh is assigned to a bin, and then the points are 

renumbered by assigning numbers while traversing the bins in a fixed order. With such a numbering in 

place, the connectivity of each cell is then sorted locally on the second step, so that the indices of the 

four neighbors of each tetrahedral cell (for triangular mesh) are in increasing order. This ensures that, 

for example, the second neighbor of consecutive cells are close in memory. 

 

5 Parallelization technique 

 

The finite volume mesh is generated from input data with the appropriate setting of initial and 

boundary conditions. The time stepping is performed by applying a Runge–Kutta TVD method. 

 

The computation steps required by the problem considered are classified into two groups, 

computations associated to faces and edges, and computations associated to volumes. The numerical 

scheme exhibits a high degree of data parallelism because the computation at each edge/volume is 

independent with respect to the computation performed at the rest of edges/volumes. Moreover, the 

explicit scheme presents a high arithmetic intensity and the computation exhibits a high degree of 

locality. 

 

Solution scheme with the use of GPU resources is shown in the Figure 2. Single arrows correspond to 

the commands, and double arrows correspond to commands and data transfers between CPU and GPU 

(global memory is used). 
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Figure 2. Solution of CFD problem with the use of GPU resources 

 

The implementation is split between CPU and GPU. Pre- and post-processing steps are done on the 

CPU, leaving only the computation itself to be performed on the GPU. For example, the CPU 

constructs the mesh and evaluates the face areas, face normals and cell volumes. The initialization of 

the flowfield is also done on the CPU. Each time step of the computation then involves a series of 

kernels on the GPU which evaluate the cell face fluxes, sum the fluxes into the cell, calculate the 

change in properties at each node, smooth the variables and apply boundary conditions. Each kernel 

operates on all the nodes (no distinction is made between boundary nodes and interior nodes). This 

causes difficulties if an efficient code is to be obtained. For example, the change in a flow property at 

a node is formed by averaging the flux sums of the adjacent cells (for mesh with quadrangle cells, four 

cells surround an interior node, but only two at a boundary node). This problem is overcome using 

dependent texturing. The indices of the cells required to update a node are pre-computed on the CPU 

and loaded into GPU texture memory. For a given node, the kernel obtains the indices required and 

then looks up the relevant flux sums which are stored in a separate GPU texture. This avoids 

branching within the kernel. 

 

A graphical description of the parallel computational algorithm, obtained from the mathematical 

description of the numerical scheme, is shown in the Figure 3. The main calculation stages are 

identified and the main sources of data parallelism are represented indicating that the calculation 

affected by it are performed simultaneously for each data item of a set (the data items represent the 

volumes or faces/edges of the finite volume mesh). Time stepping process is repeated until the final 

simulation time is reached. At the      -th time step, the residual is evaluated to update the state of 

each cell. In order to add the contributions associated with each edge, two variables are used in the 

algorithm for each volume. The first variable is used to store the contributions to the local time step 

size of the volume, and the second variable is used to store the sum of the contributions to the state of 
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cell. 

 

 
Figure 3. Main calculation stages in the parallel algorithm 

 

The most costly stage in the algorithm is edge-based calculations involving two calculations for each 

face communicating two cells. This contribution is computed independently for each face and is 

added to the partial sums associated to each cell. For each control volume, the local time step is 

computed. The computation for each volume does not depend on the computation for the rest of 

volumes and therefore this stage is performed in parallel. The minimum of all the local time steps 

previously obtained for each volume is computed. The      -th state of each control volume is 

approximated from the  -th state using the data computed in the previous phases. This stage is also 

completed in parallel. 

 

6 Flux calculations 

 

The implementation of the finite volume method using a global memory and register file is illustrated 

in the Figure 4. Each time layer calculations are performed in two stages. Two kernels are used for the 

parallel implementation of the finite volume method on GPU, one of which calculates the flow 

through the faces of control volumes (stage 1), and the other one provides flow variable calculations 

on the next time layer (stage 2). On the first stage, flow variables in the centers of control volumes are 

stored in global memory (array  ). One thread is used to calculate the fluxes through the faces of 

control volume. Each thread uses the flow variables vector in adjacent control volumes,   and    . 

Fluxes through cell faces are stored in array  . On the second stage, a set of threads corresponding to 
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the same number of control volumes is launched to calculate the flow variables vector on a new time 

level. The fluxes through the faces       and       are used, and the solution is computed in the 

control volume  . The solution is then stored in the array  . 

 

 
Figure 4. Flux calculation (a) and calculation of flow variables vector on a new time layer (b) 

 

The use of shared memory in the calculation of flow variables vector is presented in the Figure 5, 

which shows how to copy the data from global memory to shared memory. For example, the 

implementation of upwind numerical scheme requires the use of three control volumes to calculate 

fluxes and limiters. On step 1, flow variables vector corresponding to the centered location is copied 

(fragment a), and on steps 2 and 3 flow variables vectors corresponding to the left and right locations 

are copied (fragments b and c). Each thread makes treatment of the three flow variables vectors stored 

in the shared memory (fragment d). 

 

 
Figure 5. Use of shared memory in flux calculations 

 

7 Results and discussion 

 

The GPU version of the CFD code is used and validated for a variety of benchmark test cases. 

Numerical calculations are performed with unstructured in-house finite volume CFD code. An 
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equivalent solver is made in C++ to be run in a CPU for benchmarking purposes. 

 

7.1 Sod problem 

 

The Sod problem constitutes a particularly interesting and difficult test case, since it presents an exact 

solution to the full system of 1D Euler equations containing simultaneously a shock wave, a contact 

discontinuity, and an expansion fan [33]. The analogous 2D steady expansion wave and its interaction 

is discussed in [34, 35]. This problem is chosen to validate the numerical schemes and assess the 

temporal accuracy of the numerical solution obtained by the present method, since an analytical 

solution exists. The initial conditions in the present computation are as follows:     ,     , 

     if         (left state), and         ,     ,      if         (right state). 

 

Calculations are performed on various meshes. A number of cells increases from 1024 cells for mesh 

1 to 30720 cells for mesh 2, and to 307200 cells for mesh 3. The finest mesh, mesh 4, contains about 

three million cells. The time step is           s, and the total calculation time is           s. 

Courant number is equal to 0.85. Calculations are performed on one module of Tesla S1070 platform 

with 1.44 GHz (number of cores is 256), and on a single core of CPU AMD Phenom 2 with 3 GHz. 

 

Distributions of flow quantities are presented in the Figure 6 (     ). Solid line corresponds to the 

exact solution of the Sod problem, and symbols   correspond to the numerical solution. 

 

 
Figure 6. Solution of Sod problem: density (a), velocity (b), pressure (c), Mach number (d), entropy 

(e), enthalpy (f) 

 

The time required for calculation of one time step, and speedup of calculations are given in the Table 

1 (time is given in milliseconds). Option 1 corresponds to Godunov scheme involving exact solution 

of Riemann problem, and option 2 corresponds to Roe scheme involving approximate solution of 

Riemann problem. For both options, a good growth of speedup,  , is observed. However, Godunov 

method is not ideal from the parallelization point of view, since the exact solution of the Riemann 
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problem involves a large number of data transfers, reducing the GPU performance. Convergence 

speed of Newton iterative solver varies from one control volume to another one. 

 

Table 1. Time (in ms) and speedup for Sod problem 

No Mesh 1 Mesh 2 

CPU GPU   CPU GPU   

1 1.63 0.13 12.43 47.70 0.20 245.25 

2 0.14 0.07 1.87 5.51 0.17 33.17 

No Mesh 3 Mesh 4 

CPU GPU   CPU GPU   
1 460.64 0.92 502.50 4627.61 8.06 574.39 

2 43.58 0.57 76.00 436.09 5.22 83.48 

 

7.2 Shock tube problem 

 

The shock tube test case considers a long tube containing a gas separated by a thin membrane. The gas 

is assumed to be at rest on both sides of the membrane, but it has different constant pressures and 

densities on each side. At time    , the membrane is ruptured, and the problem is to determine 

ensuing motion of the gas. The solution of this problem consists of a shock wave moving into the low 

pressure region, a rarefaction wave that expands into the high pressure region, and a contact 

discontinuity which represents the interface. 

 

Unstructured tetrahedral mesh is used to solve 3D shock tube problem. The length of the 

computational domain is      m. Initial states correspond to the Sod problem (the membrane is 

located at        ). Calculations are based on different meshes. The coarsest mesh contains about 

    cells (mesh 1), and the finest mesh contains about     cells (mesh 4). The intermediate meshes 

contain     cells (mesh 2) and     (mesh 3) cells. Typical mesh is shown in the Figure 7 (cross 

section). The time step is           s, and the total computational time is           s. Courant 

number is equal to 0.85. The calculations are performed on one module of Tesla S1070 platform with 

1.44 GHz (a number of cores is 256), and one core of CPU AMD Phenom 2 with 3 GHz. 

 

 
Figure 7. Unstructured mesh extruded in spanwise direction 

 

The numerical results, shown in the Figure 8, indicate higher resolved solutions for a given time step 

and given mesh size than the numerical results reported in [36]. The results computed have no 

spurious oscillations at any shock or contact discontinuities. 
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Figure 8. Solution of shock tube problem: density (a), velocity (b), pressure (c) 

 

Speedup of calculations are presented in the Figure 9 (time of calculation of 1000 time steps was 

measured). Three indices are used to specify computational option. The first index corresponds to the 

solution of Euler equations (option 1, inviscid flow) or to the solution of Navier–Stokes equations 

(option 2, viscous flow). The second index corresponds to the time-marching scheme used in 

calculations based on one-step (option A) or three-step (option B) Runge–Kutta time-stepping 

procedure. The third index corresponds to the exact Godunov (option 1) or approximate Roe option 2) 

Riemann solvers. The calculations based on the finest mesh containing about 10 millions of cells 

(mesh 4) with Godunov scheme give speedup of 42. For the solution of viscous problem with the 

scheme of the second order, the speedup drops to 22. 

 

 
Figure 9. Speedup for shock tube problem 

 

The time required for calculation of 1000 time steps on the mesh with     cells, and memory usage 

are given in the Table 2. The option 1 corresponds to GPU parallel calculations based on Godunov 

scheme, and the option 2 corresponds to CPU calculations based on Godunov scheme. 

 

Table 2. Time and memory for shock tube problem 

No 1 2     

Memory, Mb 2582.28 2696.72 1.04 

Time, s  305.29 14916.60 48.86 

 

7.3 Flat plate flow 



16 

 

The flow over a smooth flat plate is well-known CFD benchmark solution [38], and it is used for 

verification and validation of other CFD codes [39]. 

 

The length of the computational domain is     (    before the plate and     behind the plate), and 

the width of the computational domain is    , where   is the length of the plate (    m). Free 

stream velocity (      m/s), static pressure (          Pa) and static temperature (       

K) are fixed on the inlet boundary. No-slip and no-penetration boundary conditions are used on the 

plate. The plate surface is adiabatic. Free outflow boundary conditions are applied to the outlet 

boundary. Slip boundary conditions are used on the far-stream boundary. 

 

The flat plate boundary layer problem is solved on various meshes. The velocity profile in the 

boundary layer is shown in the Figure 10. The flow calculations are based on CPU Xeon X5670 2.93 

GHz and one module of Tesla S2050 platform. The computational time in seconds and speedup of 

calculations are shown in the Table 3 for one iteration. Increasing a number of nodes from     to 

   , speedup increases on 10%. 

 

 
Figure 10. Velocity profile in the boundary layer 

 

Table 3. Time and speedup for flat plate problem 

Number of 

nodes 

CPU GPU S 

        0.140 0.003 46.67 

        1.406 0.026 54.08 

        7.091 0.126 56.28 

        14.06 0.251 56.02 

 

8 Conclusion 

 

GPUs have evolved as a new paradigm for scientific computations. They are essentially multi-core 

machines with a large number of computational units sharing a common memory. GPUs 

cost/performance ratio, and low power consumption make them attractive for high-resolution CFD 

computations. However, in order to exploit the inherent architecture of the device, the numerical 

algorithm as well as data structures are carefully tailored to minimize the memory access and any 

recursive relations in the computational algorithm. 
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Possibilities of the use of GPUs in CFD calculations were discussed. The finite volume method was 

applied to solve full Euler and Navier–Stokes equations on unstructured meshes of various topology. 

CUDA technology was used for programming implementation of parallel computational algorithms. 

Solutions of some benchmark CFD problems on GPUs were presented, and approaches to 

optimization of the CFD code related to the use of different types of memory were discussed. Speedup 

of CFD calculations varied from 10 to 50 depending on the problem to be solved, computational 

procedures and computational resources. This makes GPUs attractive for computing industrial fluid 

flows and heat transfer. However, porting legacy codes automatically is not easy. Significant rewrite 

of the algorithm and the code is necessary. The time investment is worthwhile because multi-core 

architectures of one form or the other are going to be the necessary trend for high resolution and high 

performance computing. 

 

The computational procedure was developed as a part of LOGOS multi-functional and multi-purpose 

CFD package designed in the Institute of Theoretical and Mathematical Physics of the Russian 

Federal Nuclear Center (Sarov, Russia). LOGOS package was widely used in mechanical engineering 

and aerospace applications. 

 

Further work is focused on parallel implementation of implicit schemes and convergence acceleration 

techniques such as multigrid method and low-Mach preconditioning. 
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Highlights 

 The use of graphics processor units for the simulation of flows on unstructured meshes are 

discussed 

 CUDA technology is used for programming implementation of parallel computational 

algorithms 

 Solutions of some benchmark test cases on graphics processor units are reported 

 The results obtained provide promising perspective for designing a GPU-based software 

framework 

 

 

 

 

 

 

 




