
PhD Thesis.

A Distributed Imaging Framework for the analysis and

visualization of multi-dimensional bio-image datasets, in High

Content Screening applications.

Submitted to:

Faculty of SEC

Kingston University

Surrey

UK

By

Colin Anthony MCLAY

April 2015

Abstract

This research presents the DFrame, a modular and extensible distributed

framework that simplifies and thus encourages the use of parallel processing, and

that is especially targeted at the analysis and visualization of mUlti-dimensional

bio-image datasets in high content screening applications. These applications

typically apply pipelines of complex and time consuming algorithms to multiple bio

image dataset streams and it is highly desirable to use parallel resources to exploit

the inherent concurrency, in order to achieve results in much reduced time scales.

The DFrame allows pluggable extension and reuse of models implementing

parallelizing patterns, and similarly provides for application extensibility. This

facilitates the composition of novel parallelized 3D image processing applications.

A client server architecture is adopted to support both batch and long running

interactive sessions. The DFrame client provides functions to author applications

as workflows, and mediates interaction with the server. The DFrame server runs

as multiple cooperating distributed instances, that together orchestrate to execute

tasks according to a workflow's implied order. An inversion of control paradigm is

used to drive the loading and running of the models that themselves then

coordinate to load and parallelize the running of each task specified in a workflow.

The design opens up the opportunity to incorporate advanced management

features, including parallel pattern selection based on application context, dynamic

'in application' resource allocation, and adaptable partitioning and composition

strategies. Generic partitioning and composition mechanisms for supporting both

task and data parallelism are provided, with specific implementation support

applicable to the domain of 3D image processing.

Evaluations of the DFrame are conducted at the component level,' where specific

parallelizing models are applied to discrete 3D image filtering and segmentation

operators and to a ray tracing implementation. A complete integrated case study is

then presented that composes component entities into multiple image processing

pipelines to more fully demonstrate the power and utility of the DFrame, not only in

terms of performance, but also to highlight the extensibility and adaptability that

permeates through the design, and its applicability to. the domain of multi

dimensional image processing. Results are discussed that evidence the utility of

the approach, and avenues of future works are considered.

I

Table of Contents

Abstract .. 1

List of Figures ... VI

List of Tables .. IX

Acknowledgements .. X

Chapter 1 Introduction .. 1

1.1 Motivations and challenges .. 2

1.1.1 Multi-dimensional Image Processing ... 2

1.1.2 Parallel Processing .. 4

1.2 Aims and Objectives ... 7

1.3 Contribution .. 9

1.4 Structure of the Thesis .. 11

Chapter 2 Parallel Programming Languages and Libraries .. 14

2.1 Introduction .. 14

2.2 Common Systems Supporting Parallel Processing .. 15

2.2.1 Shared Memory Systems .. 16

2.2.2 Distributed Memory Systems ... 18

2.2.3 Hybrid and Heterogenous Systems ... 19

2.3 Parallel Programming Models ... 19

2.3.1 Data Parallelism .. 20

2.3.2 Task Parallelism .. 21

2.3.3 The SPMD Model. .. 22

2.3.4 Communication ... 22

2.4 Theoretical Performance Considerations .. 23

2.5 Languages and libraries supporting parallel programming 24

2.5.1 Shared Memory Programming .. 26

2.5.2 Message Passing ... ; ... 29

2.5.3 GPU Programming .. 31

2.5.4 Distributed Shared Memory Languages .. :31

2.5.5 Partitioned Global Address Space Languages .. 32

2.S.6_HPCS Languages .. 33

2.5.7 The Actor Model. .. 3~

2.5.8 Functional and Declarative Programming .. 36

2.6 Reliability and Fault Tolerance ... 37

II

2.7 Summary .. 38

Chapter 3 Parallel Programming Frameworks ... 41

3.1 Introduction .. 41

3.2 Patterns of Parallel Programming ... 42

3.3 Frameworks Overview ... 44

3.4 Parallel Programming Frameworks ... 45

3.4.1 Template Based and Auto Generated Frameworks .. 46

3.4.2 Frameworks Modelling Specific Patterns .. .48

3.4.3 Graph based frameworks .. 52

3.4.4 Data flow and Streaming Frameworks ... 54

3.4.5 Composition and Workflow .. 56

3.5 Dqmain Specific Frameworks .. 57

3.5.1 Parallel Frameworks for Evolutionary Algorithms, Simulations and AI.. 57

3.5.2 Image Processing Frameworks ... 58

3.6 Domain Specific Languages ... 59

3.7 Service Oriented Architecture .. 60

3.7.1 Distributed Services .. 61

3.7.2 The Spring Framework ... 62

3.8 Summary ... 63

Chapter 4 The DFrame .. 66

4.1 Introduction .. 66

4.2 The Argument for a New Approach ... 66

4.3 Conceptual Overview ... 68

4.3.1 Design Core Concepts ... 70

4.3.2 Image Processing .. 74

4.3.3 Technological Choices .. 75

4.4 The DFrame Architecture .. :· .. 78

4.4.1 Runtime Configuration ... 80

4.4.2 The Task Specification ... : 81

4.4.3 The Task Graph Specification and Workflow component..': 81

4.4.4 The DFrame Server Run Loop .. 82

4.4.5 The Plugin Manager ;· ... 84

4.4.6 'The DFrame Dispatcher (communication) :: 84 .

4.4.7 Tasks, Partitioners and Composers : 86

4.4.8 Models ... 87

III

4.4.9 The DFTaskSplitter ModeL ... 88

4.4.10 The Master Worker ModeL .. 91

4.4.11 The Scatter Gather Master Worker ModeL .. 94

4.4.12 The Mesh Model. .. 95

4.4.13 Modules ... 98

4.5 An Imaging Toolkit. .. , 98

4.6 DFrame Graphical User Interface ... 100

4.7 Summary ... 104

Chapter 5 DFrame Component Evaluations ... 107

5.1 Introduction .. l 07

5.2 Cluster Hardware Contiguration .. 1 08

5.3 Averaging Image Operators applied to 3D Bio-Cell Images110

5.3.1 2D Averaging Filter Applied to a 3D Bio-Cell Image 110

5.3.2 3D Averaging Filter Applied to Multiple 3D Bio-Cell Images l11

5.3.3 Master Worker Model Performance Results ... 112

5.3.4 Discussions ... 116

5.4 Sobel 3D Image Operator ... 1 17

5.4.1 Background ... 117

5.4.2 Sobel Operator Parameters ... 118

5.4.3 Image Partitioning Strategy .. 119

5.4.4 3D Cell Image Results .. 1 21

5.4.5 Discussion ... 126

5.5 3D Image Segmentation ... 129

5.5.1 Background ... 129

5.5.2 3D Image Watershed Segmentation .. 129

5.5.3 Image Partitioning Strategy and the Mesh ModeL .. 131

5.5.4 Mesh Model Performance Results .. 133

5.5.5 Discussion .. : .. 139

5.6 Visualization Ray Tracing .. : ... 142

5.6.1 Background ... 142
"

5.6.2 Ray Tracing Module Tests .. 144

5.6.3 Parallelised Ray Tracing Results .. 147

5.6.4 Discussion ... 152

5.7 Summary ... 155

Chapter 6 A DFrame Application to Analyse Multiple Sequenced 3D Bio-Cell Images

IV

to Detect Sarcoma Cell Invasion Signatures .. 157

6.1 Introduction .. 157

6.2 Motivation and research background to 3D image capture 158

6.3 DFrame Pipeline Design ... 160

6.4 Cell Segmentation and the Histogram Design .. 164

6.5 Cell Invasion Signature Detailed Results ... 168

6.5.1 Sequence 1 Invasion Signatures .. 171

6.5.2 Sequence 2 Invasion Signatures .. 176

6.5.3 Sequence 3 Invasion Signatures .. 179

6.5.4 Sequence 4 Invasion Signatures .. 186

6.6 Cell Invasion Signature Mid-Point Summary Plots ... 190

6.7 DFrame Pipeline Performance .. 195

6.8 Discussion ... 198

6.9 Summary ... 202

Chapter 7 Conclusions and Future Research .. 204

7.1 Introduction .. 204

7.2 Principle Findings ... 205

7.3 Critical Evaluations and Limitations .. 206

7.4 Future research ... 208

7.5 Summary ... 210

Appendix ... 211

A.l. Scientific Visualization .. 211

A1.1 Preliminary pipeline prototyping .. 211

Al.2 Iso-surface visualization prototype ... 212

Al.2 Ray tracing visualization first prototype ... 215

G lossary ... 217

References ... 223

v

List of Figures

Figure 2.1: Typical Uniform Memory Access (UMA) .. 16

Figure 2.2: Typical Non Uniform Memory Access (NUMA) .. 17

Figure 2.3: Typical Distributed Memory Access ... 18

Figure 3.1: Common master-worker variants .. ;48

Figure 3.2: Map-reduce simple schematic ~ .. 50

Figure 4.1: Overview of the Distributed Imaging System Architecture 68

Figure 4.2: Task graph showing task dependencies and decompositions into sub tasks 72

Figure 4.3: Task graph showing DFrame splitting of simple sub-branches 73

Figure 4.4: Adaptive processor groups when running a simple task graph 74

Figure 4.5: Schematic of the Distributed Framework Target Architecture 77

Figure 4.6: DFrame Component Architecture .. 78

Figure 4.7: Simple Schematic of the DFrame runtime interactions 79

Figure 4.8: Outline of an typical (abridged) task graph xml file .. 82

Figure 4.9: Message packing and unpacking protocol schematic .. 85

Figure 4.10: Class diagram of the DFrame Task interface and ancillary classes 87

Figure 4.11: Task graphs showing implicit and explicit splitting .. 89

Figure 4.12: Sequence diagram master-worker model: main interactions of a master 93

Figure 4.13: Sequence diagram master-worker model: main interactions of a worker 94

Figure 4.14: A sequence diagram showing the initial setup of a mesh model.. 96

Figure 4.15: A sequence diagram showing the processing stages of a mesh model.. 97

Figure 4.16: The DFrame Graphical User Interface .. .101

Figure 4.17: The GUI 3D Image Viewer ... 102

Figure 4.18: The GUI File Menu ... :
c

•• 103

Figure 4.19: The GUI Edit Menu ... 104

Figure 5.1: Schematic of the HPC Cluster architecture at Kingston University l08

Figure 5.2: Simple Example PBS Script.. .. 109

Figure 5.3: Time with each worker processing one image slice of a 3D imagel13

Figure 5.4: Speedup with each worker processing one image slice of a 3D image113

Figure 5.5: Time with each worker processing one 3D image ... 114

Figure 5.6: Speedup with each worker processing one 3D image 115

Figure 5.7: Kernel filters for a 3D Sobel operator .. 1'18

Figure 5.8: Input image x-y slice oflabelled sarcoma cells ... 121

Figure 5.9: Sobel operator output image x-y slice detecting nuclei oflabelled sarcoma cells

VI

... 122

Figure 5.10: Sobel operator processing time .. 123

Figure 5.11: Sobel operator speedup when applied to a 3D image 123

Figure 5.12: Sobel operator efficiency ... 124

Figure 5.13: Sobel operator timings using 16 processor cores (MPE/Jumpshot) 125

Figure 5.14: Segmentation input image slice (Sobel operator output image x-y slice

detecting nuclei of labelled sarcoma cells) ... 134

Figure 5.15: Segmentation output image slice oflabelled sarcoma cells 134

Figure 5.16: Processing time of a 3D watershed segmentation operator 135

Figure 5.17: Speedup of a 3D watershed segmentation operator 136

Figure 5.18: Efficiency of a 3D watershed segmentation operator 136

Figure 5.19: Segmentation stacked processor timings ... 137

Figure 5.20: Exchange data timings of a 3D watershed segmentation operator 138

Figure 5.21: Segmentation timings using 16 processor cores (MPE/Jumpshot) 139

Figure 5.22: Camera orientation and ray trace schematic .. 145

Figure 5.23: Ray Trace detail through 3D image planes .. 146

Figure 5.24: Ray trace full view of sarcoma cells 14MB 3D Image 147

Figure 5.25: Ray trace zoom view of a single sarcoma cell 14MB 3D Image 148

Figure 5.26: Ray trace full view of multiple sarcoma cells. 97MB 3D Image 149

Figure 5.27: Ray trace zoom view of multiple sarcoma cells. 97MB 3D Image 149

Figure 5.28: Ray trace execution time .. 151

Figure 5.29: Ray trace speedup .. 151

Figure 5.30: Ray trace efficiency ... 152

Figure 6.1: Schematic of invasion assay apparatus .. 160

Figure 6.2: Simple 3D imaging pipeline to detect cell position ... 161

Figure 6.3: Multiple 3D imaging pipelines operating in parallel.. 163

Figure 6.4: Mask applied to a 3D multi-cell image to generate z-dimension histograms .. 165

Figure 6.5: Mask applied to a partitioned 3D multi-cell image to generate z-dimension

histograms .. : 166

Figure 6.6: Visualization of cell movement through the z-dimension for three cells 167

Figure 6.7: 3D Image x-y slice from the first image of sequence 1 171

Figure 6.8: 2D x-y mask for sequence 1. ; .. · ... 171

Figure 6.9: Sequence 1: Cell invasion plots for Cell 43 and Cell 73 172

Figure 6.1 0: Sequence 1: Cell invasion plots for Cell 108 and Cell 135 173

Figure 6.11: Sequence 1: Cell invasion plots for Cell 164 and Cell 182 174

VII

Figure 6.12: Sequence 1: Cell invasion plots for Cell 205 and Cell 234 175

Figure 6.13: 3D Image x-y slice from the first image of sequence 2 176

Figure 6.14: 2D x-y mask for sequence 2 .. 176

Figure 6.15: Sequence 2: Cell invasion plots for Cell 76 and Cell 136 177

Figure 6.16: Sequence 2: Cell invasion plots for Cell 187 .. .178

Figure 6.17: 3D Image x-y slice from the first image of sequence 3 179

Figure 6.18: 2D x-y mask for sequence 3 .. 179

Figure 6.19: Sequence 3: Cell invasion plots for Cell 44 and Cell 64 180

Figure 6.20: Sequence 3: Cell invasion plots for Cell 79 and Cell 80 181

Figure 6.21: Sequence 3: Cell invasion plots for Cell 105 and Cell 116 182

Figure 6.22: Sequence 3: Cell invasion plots for Cell 136 and Cell 151.. 183

Figure 6.23: Sequence 3: Cell invasion plots for Cell 177 and Cell 211 184

Figure 6.24: Sequence 3: Cell invasion plots for Cell 246 ... 185

Figure 6.25: 3D Image x-y slice from the first image of sequence 4 186

Figure 6.26: 2D x-y mask for sequence 4 .. 186

Figure 6.27: Sequence 4: Cell invasion plots for Cell 58 and Cell 101 187

Figure 6.28: Sequence 4: Cell invasion plots for Cell 136 and Cell 163 188

Figure 6.29: Sequence 4: Cell invasion plots for Cell 188 and Cell 230 189

Figure 6.30: Sequence 1: Cell invasion signature mid-point plots191

Figure 6.31: Sequence 2: Cell invasion signature mid-point plots 192

Figure 6.32: Sequence 3: Cell invasion signature mid-point plots 193

Figure 6.33: Sequence 4: Cell invasion signature mid-point plots 194

Figure 6.34: Image Sequence 1: DFrame pipeline total time ... 197

Figure 6.35: Image Sequence 1: DFrame pipeline speedup ... 197

Figure 6.36: Image Sequence 1: DFrame pipeline efficiency .. 198

Figure A.1: Rendering of a sphere with 2 smoothing cycles applied to the normals 214

Figure A.2: Rendering ofa sphere with 20 smoothing cycles applied to the normals 214

Figure A.3: Prototype GUI visualizing iso-surface of 3D cell biology 216

Figure A.4: Prototype GUI visualizing ray tracing of 3D cell biology 216

VIn

List of Tables

Table 5.1: Kingston University cluster node core and memory details 109

Table 5.2: Partitioning information for the Averaging filter tests 111

Table 5.3: Partitioning information for the Sobel operator tests .. 120

Table 5.4: Partitioning information for the Segmentation tests ... 133

Table 6.1: Processor core counts and process groups for the case study test.. 195

IX

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisors. Firstly, I

am indebted to my Director of Studies, Dr. Andreas Hoppe for his unwavering

support and guidance throughout the project. His motivation, enthusiasm, belief

and encouragement have propelled me through the project, enjoying the triumphs

and enduring the disappointments that are an inevitable part of such an intense

process. Our regular and numerous technical discussions have helped greatly in

forming a cohesive, clear and balanced project spanning both the parallel

processing and image processing domains. Secondly I would like to thank Dr.

Souheil Kaddaj for his considerable advice and inspiration in the overall approach

and direction, and as important for having the opportunity to leverage his expertise

on the complex parallel processing aspects of the project and have benefited

greatly from all the feedback and suggestions. Thirdly I would also like to thank Dr.

Darrel Greenfield for the many discussions on various aspects of the project

ranging from image 10 to MPI. The sage advice from all of my supervisors has

been critical to the success of this project, including the guidance on scope and

depth and ensuring that I maintained focus on the important core components of

the project. I have been fortunate to have had such positive mentors with wide

ranging subject knowledge, insightful guidance and timely advise,

recommendations, support and also reassurance whenever my resolved wavered,

as it often did.

I also thank the technical staff at Kingston University for their support on an

operational level. The project has made extensive use of the parallel processing

facilities of the University, and being conducted on a part time basis, it has taken a

long time to complete. Inevitably during that time, the cluster resources have

evolved, being expanded, merged and reconfigured, and the assistance of the

technical staff, in particular Colin Bethel has been very much appreciated.

Finally, I thank my family for their understanding and committed support and for

the unilateral acceptance of the often extended periods of virtual absence where I

was totally immersed in driving the project forward. They are my most treasured

accomplices through life, and without their total encouragement and support it

would have been inconceivable to push the endeavour to a conclusion, and I am

lucky, grateful and very proud.

x

Chapter 1 Introduction

Advances in light microscopy and image processing led to the development of

quantitative image analysis techniques in cell biology. The combination of confocal

microscopy and reliable fast scanning of a sample at varying focal planes enabled

the means to build up large 3D bio-image datasets (Gu 1996). A common

motivating example in biomedical research is the capture of numerous 3D images

from across a population, and to analyse them to detect anomalous conditions.

Another related area of interest is the analysis of time lapsed 3D image

observations on dynamic samples. For example, as part of a recent study to

identify kinases that affect lung cancer cell migration (Lara, Mauri et al. 2011),

multiple- sequences of 3D image stacks were automatically captured for 18 hours

(1 image/10 min), from a prepared 96 well plate cell motility assay.

It is impractical to manually analyse datasets of such size and number and this

has prompted the development of automated imaging systems. These High

Content Screening (HCS) systems are an efficient approach for assessing cell

features (Loo, L. F. Altschuler, S. J. 2007). HCS uses automated microscopy to

capture images of cells from a large number of cell culture dishes. Individual cells

are resolved using segmentation techniques, so that features quantifying cell

structure can be extracted for analysis, for thousands of cells. The study of

dynamic processes of living cells in 3D, at high spacial and temporal resolutions is

demonstrably feasible, and becoming more important and routine. The size of

these 3D datasets is an order of magnitude larger than 2D images, and the

applied image processing techniques are substantially more computationally

expensive.

Commercial HCS systems generally bring other constraining factors into

consideration. For instance, the detailed workings of proprietary algorithms may

not be published, they often cannot be adapted, and extensibility can be restricted.

The user may have to lobby for inclusion of unsupported features, and must

accept the cadence of product development life cycles. In the non commercial

sector, ImageJ (Perez, Pascau 2013) is a very popular.open source laboratory

work horse for analysing and visualising images, but is geared towards manual

operation applied to individual images. CellProfiler (Carpenter, Jones et al. 2006)

is also a notable open source image analysis software allowing the construction of

1

a pipeline of algorithms to apply to cell images, and it can be arranged to replicate

a pipeline across a cluster of nodes such that batches of images can be processed

concurrently. However, there is limited support for time-lapsed multi-dimensional

image analysis, or parallelised algorithms.

This state of affairs motivates the core focus of this work, namely to facilitate

applying parallel processing technologies to advanced dynamic 3D bio-image HCS

applications to reduce the time to results, feedback and insight. To provide context

and argument for a new approach, the following section expands on the

motivations and challenges both in the domain of 3D image processing and in that

of parallel processing. The aims and objectives of the research are then formally

presented, followed by a section outlining the Significant contributions and a brief

description of the organization of the thesis.

1.1 Motivations and challenges

1.1.1 Multi-dimensional Image Processing

As outlined above, an HCS image processing application is usually arranged to

apply pipelines of sophisticated and compute intensive operators to multiple

streams of images. An archetypal pipeline design comprises multiple operators to

prepare an image, extract features and analyse them, and then to visualize the

results. Insights derived from this process then drives further adjustments and

iterations. There is evidently scope for running separate streams in parallel, and

there is often considerable opportunity to exploit parallelism within each operator.

A brief discussion on types of image processing operators is presented below,

elucidating those characteristics of an operator that are suitable and thus motivate

parallel processing, and those that present challenges. It is also noted here that

parallel processing is particularly attractive when handling large high resolution 3D

images, not only because of the increased compute requirements, but also due to

the ability to sufficiently partition and distribute such datasets while still maintaining

enough computations for each part, compared to the introduced communication

overhead (a trade off dependant on the characteristics of a particular distributed

system). Another related advantage is that such data partitioning can also be of •

benefit in the handling of these extreme scale datasets by reducing the per node

memory footprint (which also offers the potential to improve cache usage).

2

Image processing operators are categorised as 'local operators' when the

calculation of an output image point is dependent only on a corresponding input

image point or that input image point and its neighbours. Examples of these

include smoothing, edge detection and thresholding operators, where a small

kernel image is convolved locally with each input image point, to produce an

output image. These local operators are particularly suited to parallel processing

as an image can be partitioned into smaller sub-images and the appropriate kernel

is then convolved independently with each partitioned sub-image. Output sub

images are then recomposed to produce the output image. A minor complication is

introduced in that boundary information has to be supplied along with each sub

image increasing its size, commensurate with the size of the small kernel being

applied. Smoothing operators are often used early in an imaging pipeline to

prepare an image, while edge detection and thresholding operators form part of

the image processing armoury to segment an image as a precursor to feature

extraction (Sonka, Hlavac et al. 2008).

Another prominent image segmentation approach is the region growing technique

that seeks to label image regions that are similar according to some stipulated

criteria. Region based operators are more global in nature, and thus more

challenging to parallelise. By definition, global operators require some form of

com~unication amongst the processing entities, and the extent of this will impact

the performance of parallel processing. In the case of region growing, distinct

regions may span multiple sub-images of an image partitioned for parallel

execution, and will require communication amongst the processes to carefully

resolve and label the distinct regions. In general, greater consideration has to be

made about how to effectively partition and distribute the processing of global

operators, and the expected worth. Indeed, such considerations also motivate the

search for alternative algorithms more suited to parallel execution.

Once an image has been segmented for some purpose, relevant features can be

extracted based on the segmentation, and passed to analysis operators which can

take many forms. For instance, a bio-cell based image segmentation may report

features such as each cell's maximum length, breadth and volume, and across an

image stream can report on a cell's motility. Analysis can then be performed to

investigate cell size, shape and movement and there is often scope to run this in

parallel, for instance by arranging for separate processing elements to extract

3

features from different cells and to then pass those features over to appropriate

machine learning regression or classification algorithms (Bishop 2006) which are

themselves parallelizable in many cases.

It is usually desirable to visualize the overall output of a pipeline, and possibly

even the output of intermediate stages. Even in a fully automated system,

anomalous or interesting output is usually marked or highlighted for subsequent

manual inspection. An example may be the visualization of interesting artefacts

revealed through the analysis. For 3D images, processing becomes

commensurately more complex, one technique being to use direct volume ray

tracing to zoom into and explore interesting areas of an image. This is a very

powerful technique, and since individual rays can be processed separately, is well

suited to parallel processing.

It is evident that there is plenty of scope for parallelizing a typical 3D image

processing pipeline. Apart from separate streams, many of the common image

processing operators themselves exhibit inherent parallelism, and there are also

similar opportunities to be found during the more general analysis stage and for

visualization, to employ parallel processing. That these compute intensive
,

pipelines are likely to be run and rerun repeatedly argues strongly for the use of

parallel processing, motivating its use to reduce time to results and to provide a

more interactive experience.

1.1.2 Parallel Processing

In informal usage, the terms 'parallel processing' and 'distributed computing' are

often used interchangeably, but there is a distinction. The term 'Parallel

Processing' is usually used to describe a single application that creates sub-tasks

of a particular task, that are to be executed at the same time usually on a set of

homogenous computers connected using a dedicated high throughput network.

The related term 'Distributed Computing' is used to describe applications that

create tasks to be executed at different locations and at different times, using

different resources, a prototypical example being the client server architectures

implemented across heterogenous collections of computers (e.g. Beowulf clusters)

connected over a more general and perhaps less reliable network. Parallel

processing is also more about speed up and high performance computing (HPC),

whereas distributed computing is about robustness using remote resources, with

4

core considerations being fault tolerance, availability and quality of service.

However, both concepts do emphasise 'cooperation' (c.f. 'concurrent computing'

where threads/processes compete for resources). This work concentrates

primarily on parallel processing, but it is noted that parallel processing can also

form part of a broader distributed computing system, aspects of distributed

computing are relevant, and the distinction is somewhat blurred.

Parallel processing can be distinguished from it's serial counterpart in at least

three core areas: the creation and support of parallel execution, an induced

requirement for communication and synchronization amongst the cooperating

processes, and the handling of partial failures must be considered. An early paper

highlighting these differences (8al, Steiner et al. 1989) is also illuminating in

identifying nearly 100 distributed programming languages at that time! If a

computation can be partitioned into independent subtasks, then 'task parallelism'

can be exploited by arranging to execute the subtasks concurrently on multiple

processors, to achieve a reduction in the total execution time of the computation,

the essence of high performance computing (HPC). As well, datasets can often be

partitioned to also leverage 'data parallelism'. Task and data partitioning for

parallelism results in the need for communication to distribute the work, collect

results and implicitly or explicitly manage dependencies between the subtasks.

There are compelling reasons for using parallel processing. A very simple concept

and core attraction is to provide performance improvements such that the time to

execute complex computations can be completed in much reduced timescales. A

related motivator is the observation that many problems contain considerable

scope for parallel execution, although it is important to note that a specific problem

will still require careful analysis to identify the form and extent of the parallelism it

contains. Nonetheless, as noted above, 3D imaging HCS applications present

many opportunities to leveraging parallelism.

However, the conceptual simplicity masks the varied and formidable challenges

that must be addressed to effectively harness parallelism. Testament to these

challenges is that sequential processing has reigned supreme until very recently,

in part due to the relative Simplicity of the Von Neumann single processor model

as compared to the complexity of parallel execution. Interestingly, Von Neumann

. did recognise the advantages of parallel processing (Neumann 2000) . However,

technological challenges have beset continued improvements in the single CPU,

5

including the design and manufacture at ever decreasing scales, the 'power wall',

and limits to Instruction Level Parallelism (ILP) (Wall 1991) . This has resulted in a

profound shift to designing 'scaled in' parallelism, with the emergence of multi-core

processor designs, and active research into many-core units (Gschwind 2006) .

Indeed, it has been noted that the computing landscape is undergoing

fundamental changes and the renewed interest in parallel processing is being

forced upon a reluctant and concerned industry (Asanovic, Bodik et al. 2006) .

Where in the past, the complexities of parallel processing could be sidestepped by

relying on Moore's law and waiting for a faster single CPU, or kept somewhat

manageable by building clusters from single CPU components, the true 'parallel

age' has now arrived and should be embraced.

It is also worth emphasising the distinction between the identified parallelism in a

problem, and the challenge of mapping that parallelism onto hardware for parallel

execution, both endeavours being core to successfully parallelising a computation.

However, they are not entirely independent of one another. For example, when the

system architecture is pre-defined, this can constrain the approach to parallelism

that can be taken. Even if a choice of hardware architecture can be made, it may

not be possible to minimise the execution times of every problem using that same

hardware, due to differing problem requirements. As well, a particular language

may be appropriate for some problem but awkward to apply to others. The

designer has to first identify parallelism and then map that onto a system that may

not be optimal for the particular problem. A prime goal of parallel processing

designers is to address this challenge transparently (Tanenbaum, Steen 2006),

but full transparency is not always achievable in practice, having to be balanced

with efficiency. Finding a suitable parallel ising strategy for a given problem,

managing the distribution of data and organising safe access and processing to

take advantage of locality is challenging and substantially increases the burden of

the programmer.

A major challenge is that using low level parallel processing technologies directly
-

is an onerous and error prone enterprise that requires specialized skills. The

diversity of distributed compute architectures is served by an even greater

diversity of lower level languages and libraries, resulting in a somewhat

bewildering choice of technologies. Identifying parallelism in a problem can

sometimes be obvious (but not always), but applying this in practise is a difficult

6

endeavour. At a low level, reasoning is much harder, and this motivates the

argument that a higher level framework is all but essential to enable the productive

construction of novel and complex parallelised 3D imaging applications, which is

the focus of this work.

1.2 Aims and Objectives

The aim of this research is to devise and develop a modular and extensible

distributed framework which for brevity is called the DFrame. Targeting distributed

and shared memory system architectures, the DFrame will be built on top of MPI

technology. The DFrame will facilitate the independent development of models

implementing parallel processing patterns, and apply these to the parallel

processing of multi-dimensional bio-image datasets in the context of HCS

applications. The DFramewili be extensible to allow for the subsequent

incorporation and reuse of new models and application algorithms, and will thus

enable the composition of novel parallelised image processing applications. As

important, the DFrame design is intended to open up the opportunity to

incorporate advanced management features, including automated parallel pattern

selection based on application context, adaptable partitioning and composition

strategies and dynamic 'in application' resource allocation. Furthermore, by

shielding users from the complexities of low level parallelization, such a framework

could bring the power of MPI to a wider audience, outside the High Performance

Community.

Supporting this aim will be the development of 3D image processing infrastructure

and operators that will be used to test the framework. A complete integrated case

study of a pipelined HCS application will also be included. The analysis of the

results will demonstrate the degree of success of the apprdach in terms of

performance and its suitability in the targeted domain. Insights derived from this

work are expected to guide future research.

Objectives for the distributed framework

7

1. The DFrame server core will be developed such that multiple running

instances of the DFrame can be started and arranged to cooperate with one

another.

2. Plugin mechanisms will be designed, to load models implementing parallel

....

patterns and the application algorithms that will use them.

3. An integrated workflow component will understand and orchestrate the

running of workflow specifications (i.e. task graphs). Each node in the

workflow will itself be potentially parallelised according to a selected model.

4. A higher level messaging protocol will be devised so that domain specific

messages can be passed around the distributed system. This will be

integrated into an MPI packing and unpacking mechanism, for transparent

message passing (for DFrame and parallel control model use).

5. Partitioning, execution and composition interfaces will be specified that

applications can implement, for reuse in the parallel processing models.

6. Design and integrate master-worker and mesh models to provide initial

parallel patterns well suited to many operations in image processing.

7. Provide a DFrame graphical user interface (GUI) client to facilitate

authoring of task graph specifications, and allow interaction with the

DFrame server (using MPI), to run task graph specifications and receive

results.

Objectives for multi-dimensional image processing

8

1. An image 10 (input-output) library will be developed specifically for storing

and retrieving 3D images to and from disk.

2. An imaging toolkit will provide 3D image operators. Initially this will include
.

averaging filters, a 3D Sobel filter and a 3D image watershed segmentation

operator. A separate direct volume rendering visualization (ray tracing)

library will also be provided.

3. A module will be developed containing infrastructure to integrate imaging

toolkit algorithms into appropriate parallel control models. Implementations

of DFrame interfaces (driven by the DFrame models) will organise the

partitioning, execution of 3D image application code and the composition of

results. Implementations of the DFrame message protocol will allow for

transparent distribution and gathering of 3D image partitions.

4. Run the DFrame with simple 'one parallelized task' workflows, to test the

individual image operators and collect and analyse the results. Integrated

diagnostics will capture timing measurements for this purpose. This will

provide feedback at the individual image operator level.

5. Run the DFrame in the context of a complex pipeline workflow on multiple

sequences of 3D images, to fully test the DFrame at the component level

and at the broader application level when running multiple pipelines each

containing multiple parallelised 3D image operators.

6. Analyse the results in terms of performance and the success of the overall

process of composing and running complex image processing workflows

using the DFrame. Include recommendations to further develop the

framework.

1.3 Contribution

This thesis presents the DFrame, a modular and extensible distributed framework

that facilitates the use of parallel processing in large scale multi-dimensional

image HCS applications, and thus enables speed up in these applications to

obtain results in much reduced timescales. The user is spared much effort by

reusing a framework that takes care of the details of managing a parallel problem

efficiently. Specifically, the framework is necessary to bridge a gap not present in

existing imaging systems that tend to focus on the image processing and not on

the parallelisation. As such they are limited to simple batch processing of

configured pipelines of algorithms and are often constrained in the parallel

processing models they support.

Extensibility and adaptability permeate throughout the design of the DFrame. New

models implementing mainstream and novel patterns of pa'rallel processing can be

plugged in to extend the framework, that can then be reused across multiple

applications. Application modules then plug in to the parallelising models to ..
. ,

leverage and reuse already available functionality. In this way, the DFrame

provides the flexibility to compose new and novel parallelised multi-dime'nsion

image processing applications. The DFrame design provides a clear separation of

concerns for those improving and extending the distributed framework and those

using the framework for domain applications. Parallelisation experts can develop

and plug in new parallel models into the framework, and the core framework itself

can be separately developed, improved and enhanced. Application developers can

9

...

then focus on designing their specific domain algorithms and link them into

modules that hook into the parallel models. Specifically, they will be shielded from

much of the effort and complexity associated with developing programs for parallel

execution and thus will be encouraged to leverage parallel processing resources

via the proposed framework.

The DFrame uses an inversion of control paradigm to drive and manage the

parallel runtime of the system, loading and running distributed model instances

that themselves then coordinate to load and run application code, according to

composed task graph specifications (workflows). The incorporated workflow

component operates in concert with the core runtime, to manage the execution of

tasks according to dependencies defined in a task dependency graph, processor

groups being apportioned amongst the tasks according to resource availability and

by application code requirements and characteristics (using advanced features of

MPI). Appropriate model selection can be adapted based on the context in which a

task runs. Generic partitioning and composition mechanisms for supporting both

task and data parallelism are provided, with specific implementation support

applicable to the domain of 3D image processing, including integrated automated

partitioning strategies that adapt to the shape of the input 3D image data.

A simple GUI has been designed and implemented in QT4 (Blanchette,

Summerfield 2008) that allows users to compose parallelised tasks into these

dependency graphs using 'drag and drop' functionality, to express the required

application workflows. The DFrame defines an API that exposes the available

modules, and their functions, allowing the GUI client to retrieve and render

information describing each application module and the functions it supports. The

design also allows for the interactive update of node parameters with immediate

parallelised rerun of the pipeline (or pipeline part), and inspection of the output.

This should provide rapid feedback on the effect of specific parameter

adjustments. ,

As part of the proof of concept, a 3D imaging toolkit library is provided with general

3D image 10, and image structure facilities. Other utilities include averaging filters

and a gradient operator (edge detector), a watershed image segmentation

algorithm and a direct volume ray tracing module is implemented. Infrastructure

that bridges the imaging domain into the framework is also provided, including all

the general 3D image partitioning apparatus that is required to partition, distribute,

10

gather and compose 3D images across multiple parallelised image processing

algorithms (with 'ghost' cell support). For parallel processing control, pluggable

master-worker and mesh models are provided. A cancer cell invasion case study

is conducted that provides useful preliminary information on the success of

applying the framework to a specific real world 3D image HCS application.

The DFrame provides a foundation for further research into parallel processing

itself, and by alleviating some of the burden of parallel processing, it encourages

the development of image processing algorithms that can be plugged in and

reused by other researchers. A main motivator is to utilise parallel resources to

provide faster research results in the multi-dimensional image processing domain,

with specific emphasis on HCS. Together with the plugin mechanism for parallel

patterns and application code, the DFrame can be composed into an application

itself, and run in a client server fashion on long running batch or interactive

sessions, and the project provides new information and insight on the success of

this approach.

1.4 Structure of the Thesis

In this introduction, the target image processing application is described as the

specific motivator for a novel distributed framework. Specific motivations and

challenges are reviewed pertinent to the domain of 3D image processing and to

that of parallel processing. The aims and objectives are formally stated, and finally

the core contributions of the research are outlined.

Chapter 2 presents a review of the common computer architectures that support

parallelism, and the languages and libraries developed to help program_these

systems. The architectures include shared memory and the more scaleable

distributed memory systems, and the review elaborates on the categorisations in

terms of creating and controlling parallelism and the appropriate process

communicatio~ methods. The abstract modelling of parallelism, and the diverse

software models and programming paradigms developed to support these system

architectures is discussed. A selection of parallel languages and libraries is then

reviewed that have evolved to support these models and paradigms. These

assessments are of central interest to the project, in helping to determine t~e

technology to adopt for a distributed framework suited to 3D image processing in

an HCS context.

11

•

Chapter 3 moves to a higher level, reviewing patterns of parallel processing and

their combination with components to form useful parallel programming

frameworks. The definition of a pattern is introduced, along with a brief review of

some development methodologies that leverage patterns and the concept of

pattern languages. Consideration then turns to the concept and utility of

frameworks, and a critical review of various representative frameworks designed

to support patterns of parallel processing. The common goal of such frameworks

being to simplify and assist the development of applications that can benefit from

parallel processing. Although no one framework was deemed entirely suitable as a

distributed framework for the targeted image processing applications, the review is

important in assessing aspects of these frameworks that would be required or

helpful to such a framework.

Chapter 4 presents the DFrame, a novel distributed framework that provides

extensible support for different parallel processing models, and pipeline

composition of tasks using these models. The case is argued, for a new approach,

and the target application requirements are discussed. Concepts are then

introduced that form the basis for the distributed framework. An overview of the

DFrame architecture follows, and then a more detailed look at each component.

The DFrame is of course only half the of equation, providing the generic parallel

processing framework. Since the target is 3D image processing, the chapter goes

on to describe a basic imaging toolkit designed to interface with the DFrame

generic interfaces to provide core 3D image processing functionality. The chapter

concludes with a brief description of a Graphical User Interface (GUI), used to

construct and manage task graphs and to communicate with a DFrame root

instance to request the running of a task graph specification as a workflow.

Chapter 5 centres on evaluating the DFrame at the component level, with the

evaluations conducted in the context of 3D imaging of cells. The evaluations

include parallelised components to de-noise 3D images, and to apply edge

detection and region based cell segmentation techniques. A parallelised server

side direct volume rendered visualization capability is also developed and

evaluated. The objectives being twofold, firstly to demonstrate the design of the

DFrame at the component level, and secondly to test the developed 3D imaging

capability to filter, detect and segment cells in 3D cell biology images, together

with the bridging infrastructure that links into the DFrame. These components

12

forming a useful initial collection of functionality in a basic toolkit for the

construction of practical parallelised 3D imaging applications.

Chapter 6 presents an integrated case study evaluating a dynamic pipeline of

tasks comprised of 3D image operators. This clearly demonstrates the DFrame

capability in terms of flexibility and adaptability at both the component level and

the task graph level. Objectives include the selection of the best performing

models suitable for a task according to the context in which a task is running, and

the automatic adapting of partitioning strategies to optimise each task computation

across multiple DFrame instances. Another prime objective at the task graph level

is to automatically adapt resource allocation according to the characteristics of

tasks and also through metrics captured during the running of the task graph

workflows. The case study application focuses on extracting sarcoma cell invasion

signatures from time lapsed sequences of 3D cell biology images, and results are

presented that verify the technique, alongside the framework performance results.

Chapter 7 concludes with an assessment of the project, and provides insight into

further works.

13

..

Chapter 2 Parallel Programming Languages and

Libraries

2.1 Introduction

The motivations for harnessing parallel processing are becoming ever more

compelling, with advances in scientific and business technologies fuelling a data

explosion running alongside the trend towards ubiquitous and more economic

parallel processing hardware. Despite the challenges, the decreasing cost of

hardware is making the use of parallel processing more appealing, and whilst the

cost of development effort remains high, parallel processing is becoming more

prevalent. A key aim of this project is to reduce the barrier to entry to harnessing

parallel processing, by developing a framework that will assist in the effort, with

target applications in the domain of image processing. In order to make a

reasoned decision on the technologies to use, the parallel processing arena must

be reviewed in considerable detail.

This chapter first considers the fundamental approaches in computer architecture

that support parallel processing. It is worth clarifying that while the term

'concurrency' describes those sections of a program that may be run in parallel,

the term 'parallel processing' describes the extent to which the identified

concurrency can be actually realized on specific hardware. Common architectures

include the shared memory Symmetric Multi-processors (SMP) and Non-Uniform

Memory (NUMA) systems, and the more scaleable distributed memory systems

that are a composite of these, and elaborates on the categorisations in terms of

creating and controlling parallelism and the appropriate process communication

methods. These include the shared memory SymmetriC Multi-processors (SMP)

and Non-Uniform Memory (NUMA) systems, and the more scaleable distributed

memory systems that are a composite of these, and elaborates on the

categorisations }n terms of creating and controlling parallelism and the appropriate

process communication methods. The focus then moves on to look at the abstract

modelling of parallelism, reviewing the diverse software models and programming

paradigms developed to support these common parallel processing system

architectures. It is also noted that while the parallel hardware architecture directly

influences the models that must express their capabilities, models themselves can

14

influence the evolution of hardware architecture, often due to application

requirements. A selection of languages and libraries is then reviewed that have

evolved to support these models and parallel programming paradigms in order to

efficiently write programs for these systems. These span from the lower level

parallel programming languages that form the bedrock of parallel programming, to

some popular higher level abstractions. This chapter review is an important part of

the project, as the assessment of target system architectures, and the available

software languages and libraries that support modelling parallelism on these

architectures is of central interest to the project, in helping to determine the

technology to adopt for a distributed framework suited to 3D image processing and

high content screening.

2.2 Common Systems Supporting Parallel Processing

Parallelism is supported in hardware by the provision of multiple CPU's and

associated memory and 10 subsystems. Varied interconnect arrangements,

hierarchical memory and multi-core and many-core processors have added

complexity to these increasingly diverse system architectures. Specialised

components such as GPU's add to the fray. Indeed, parallelism spans multiple

levels from instruction level parallelism to distributed machines. Instruction level

parallelism (ILP) is at the compiler level, and has many facets such as instruction

pipelining, superscalar execution, speculative execution driven by branch

prediction, and out of order execution. An account of instruction level parallelism

and its limits can be found in (Wall 1991). Limits also exist due to the 'memory

wall' effect (McKee 2004), where a disparity between processor speed and slower

memory access speed can in the worst case clamp performance to the.speed of

main memory access. The core focus of this chapter cont~asts how parallelism is

arranged on shared memory and distributed memory architectures, but it is noted

that these architectures are still crucially impacted by instruction level parallelism

and memory wall effects.

Flynn's taxonomy (Flynn 1972) classifies computer architecture according to the

number of instruction streams and data streams. Although rather dated, it is still

popular due to it's simplicity, identifying only four classes. The single instruction

single data (SISO) class is associated with the typical single processor machine,

while the single instruction multiple data (SIMO) class maps to data parallel

15

systems such as the traditional vector processing machine. The multiple

instruction single data (MISD) class is associated with pipeline architectures and

the more general multiple instruction multiple data (MIMD) class maps to the most

flexible and general (task) parallel systems. In the following sections the most

common architectures in use today are reviewed, and these all typically map to the

MIMD quadrant of Flynn's taxonomy (somewhat reducing its utility) .

2.2.1 Shared Memory Systems

These comprise multiprocessor systems in which all the processors have access

to a common address space. Systems that share memory must ensure efficient

access to the shared memory whilst maintaining consistency. Uniform Memory

Access (UMA) architectures arrange processors and memory such that memory

access speed is similar for all processors. Figure 2.1 shows a simple Symmetric

Multi-Processor UMA design. The interconnect is usually either via a bus or

crossbar switch.

CPU

Interconnect

Figure 2. J: Typical Uniform Memory Access (UMA)

In modern systems, hierarchical memory subsystems have evolved to cater for the

disparity in memory access speeds and CPU speed . System efficiency and scaling

is further improved by using Non Uniform Memory Access (NUMA) architectures

where processors have high speed access to local memory and lOwer speed

access to remote memory. Algorithm designs can be more challenging as they

have to consider data locality so that where possible, processors use local high

speed memory to improve performance (Terboven , Schmid I et al. 2012) . Complex

cache coherence schemes are generally used to ensure that processors 'see'

16

consistent data (e .g. cache coherent NUMA or ccNUMA). Figure 2.2 shows a

simplified typical NUMA arrangement which can be recognised as a logical scaling

of the Symmetric Multiprocessor design . Although all CPU's can access both

memory1 and memory2 as one address space, access speeds vary. For instance

CPU1 can only access memory2 via a remote interconnect, which will typically be

much slower than it's local interconnect to memory1. Many other variants of the

NUMA arrangement can be found in the literature (e.g. (Kumar, Grama et al.)) .

CPU) CPU
4

Local Interconnect Local Interconnect

Remote Interconnect

Figure 2.2: Typical Non Uniform Memory Access (NUMA)

A primary attraction of a shared memory system is that communication is implicit

via shared 'critical' regions of the common address space, which avoids

unnecessary data copying. However, synchronisation constructs must be used to

manage contention , guarantee consistency and avoid introducing unnecessary

blocks, race conditions and deadlocks. Synchronisation can complicate

programming considerably, and requires great care and proficiency. Additional

concerns such as managing data locality, avoidance of cache thrashing and false

paging face the programmer (Jin , Li et al. 2001). Scaleability has historically been

an issue with shared memory systems, as memory access bottlenecks can

significantly degrade performance. Moreover, on 32bit systems, the maximum

amount of memorY that could be addressed was limited (this is not an issue with

today's 64bit architectures) . Shared memory systems typically rely on operating

system support through 'process' and 'thread' constructs to express parallelism.

17

2.2.2 Distributed Memory Systems

In these systems, processors have their own memory address space as shown in

Figure 2.3. There is no global shared memory and communication is via message

passing between cooperating processes. Advantages of this architecture are that

memory scales with the number of processor-memory units, synchronisation

amongst processes is explicit and the cache coherence problem is eliminated . A

programmer can avoid the complexity of managing concurrent accesses to local

memory, and must instead arrange for the explicit communication between

processes. The main challenges to scaleability in these systems are internode

communication speed and network topology and reliability . Whereas in a shared

memory system critical regions can inhibit processing , in distributed systems it is

the explicit communication that can impede performance.

Remote Interconnect

Figure 2.3: Typical Distributed Memory Access

Communication speed is generally much slower than computation , being impacted

by protocol overhead costs, network latency and bandwidth limits, and can

significantly affect the performance of a parallel application. Programmers rely on

hardware support, and software optimization techniques to mitigate these

communication overheads, such as using latency reduction (e.g. by simplifying

protocols) , optimising localisation to avoid latency, and prefetching or latency

hiding where computation and communication are arranged to overlap. These

optimisations can require judgements that depend on the nature of the problem. Of

course, if processing is kept predominantly local , so that many independent

processes execute on distinct data or execute distinct tasks, then interprocessor

18

communication can be much reduced. This is an extreme but not uncommon

situation categorised as 'embarrassingly parallel processing'. Other common

communication reduction scenarios include the distribution of tasks and data,

followed by an independent processing phase, and a final results 'collection' phase

(e.g. variants of the master/worker and map-reduce parallel models).

As processor counts increase, it becomes increasingly infeasible to fully connect

them, and so more practical network topologies are sought that match an

application's requirements. Rather than mandating a topology, application designs

must often account for the expected or available target topologies (e.g. mesh,

torus, hypercube, butterfly etc.). In moving away from a fully connected system, as

well as latency and bandwidth, the designer must consider the message path

between nodes (properties such as network diameter) (Kumar, Grama et al.). A

topology that is suitable for one application may not be optimal for another, and it

is interesting to note that the IBM Blue Gene architecture has two separate

interconnects, a 3D torus for inter-process point-to-point communication, and a

tree network for collective operations (Peterka, Yu et al. 2008). In modern

switched systems, topology issues can be significantly reduced.

2.2.3 Hybrid and Heterogenous Systems

With the rise of muti-core and many-core processors and systems, hybrid and

heterogeneous systems are emerging that include both shared memory and

distributed memory technologies. Hybrid systems refer to the combining of shared

and distributed memory models across multicore and many core systems, while

heterogenous systems extend this to include general purpose GPU's (AI

Gharaibeh, Jeffery et al. 2012) . In a hybrid arrangement, the programmer must

have expertise in both the message passing and shared memory models, and the

technologies that implement them. In heterogenous systems, the parallel ~

programmer must also acquire expertise in GPU programming. This is significant

and in addition to domain expertise, and has prompted efforts to devise higher

level abstractions that present a common model across these different lower level

models.

2.3 Parallel Programming Models

Models (parallel programming or otherwise) are extensively used in software at

19

-

multiple levels to abstract, simplify, organise, generalise and idealise concepts.

They provide guidance, clarity and also constraint. Generally, a good model

should provide a high degree of abstraction, express important concepts, be

simple and stable and sufficiently removed from the concrete architecture to be

more robust and long lived when the architecture changes. Parallel programming

models are numerous and diverse, spanning many different architectures and

levels of abstraction (Leopold 2001) (note that in (Leopold 2001), abstract models

that specifically focus on API's and algorithm design are referred to as paradigms).

A very good recent survey of contemporary parallel programming models can also

be found in (Diaz, Munoz-Caro et al. 2012).

In this section, attention is restricted to those core parallel programming control

models and memory models that are fundamental to the clear expression of

parallelism, and that are widely used as a basis for categorising parallel

programming languages and libraries. These control and memory models tend to

align with particular system architectures (see previous section), and so there is

often a natural pairing of control and memory models. In order to arrange for

parallel execution, parallelism must be identified and expressed. A computation

must be decomposed into parts that can be executed concurrently. The

predominant partitioning strategies are task and data decomposition. These are

related aspects of a common goal to sub divide a problem into parts that can be

executed concurrently. Hence the data parallel, task parallel and the related Single

Program Multiple Data control models are specifically reviewed in the following

sub-sections, and then the associated distributed and shared memory models,

emphasising the impact on communication. It is not always possible to absolutely

categorise languages according to one control model and one memory model, as

some languages and libraries support multiple models. Hence the core models are

outlined, and a review of languages and libraries implementing these models is

separated out to a subsequent section.

2.3.1 Data Parallelism

Data parallelism considers how data can be partitioned, with each data partition

then being operated on concurrently. Traditionally, pure data parallelism (SIMD in

Flynn's taxonomy) impliCitly mapped data to specialised vector processors.

However, pure data parallel languages are too inflexible for general use, as each

20

recipient of data is constrained to execute the same instructions on the data in lock

step. Another issue is that it is difficult to map the logical data parallelism with the

available physical parallelism of current more general purpose architectures (this

was not an issue on historical data parallel specific architectures). Nowadays,

there is more interest in the looser definition of data parallelism, as the explicit

partitioning and distributing of data for processing. Typically this is on non vector

processors although vector capabilities are also available on some of these

processors, such as Intel's SSE (Siewert). Some higher level languages do

provide implicit support for general data parallelism via a global view of distributed

data structures (e.g. Chapel - see section 2.5.6), and indeed higher level

languages can be categorised according to whether they support a local or global

view of distributed data structures.

2.3.2 Task Parallelism

Task parallelism considers whether the application can be broken down into

independent subtasks that can be executed concurrently. Often a task

dependency graph is required that defines which tasks can be run concurrently

and which tasks depend on the results of other tasks. Once a program is broken

down to express parallelism, other considerations must be dealt with such as task

scheduling (onto processors), and efficient distribution of data into processor

memory caches. This then requires coordination of communication and

synchronisation to ensure efficiency and avoid race conditions and deadlock (Le.

an aspect of correctness not considered in serial computing). Although optimally

mapping a program (task) graph onto a processor graph is known to be NP hard

(Garey, Johnson 1997), sub optimal solutions are usually adequate. T~e speed up

attained is dependent on optimising the load balance suc~ that processors are

assigned similar amounts of work to maximise concurrency, and by minimising

extra overhead that is particular to parallel processing.

In the general case the runtime model can arrange for a static or dynamic number

of processes to be available. In the static case the number of processes (and often
. .

threads) is fixed. at program start up and tasks are mapped to processes that are

already running. In the dynamic case, the number of processes (and threads) can

be modified at runtime according to program requirements, for example using fork

join mechanisms. In some variants the number of processes may be fixed but the

21

number of threads per process is variable.

2.3.3 The SPMD Model

The Single Program Multiple Data (SPMD) computation model originally proposed

in 1984 (Darema 2011) has a single program running on all participating

processes. Although these processes collectively cooperate to execute the

program, at any instance in time each process can run a different section of the

program and operate on different data (c.f. Flynn's MIMD quadrant, of which this is

a variant). The flexibility, and reuse of one program has proved to be a very

practical parallel programming paradigm. It is particularly suited to distributed

system architectures and is the core mechanism for creating parallel execution in

many popular languages and libraries supporting these architecture (e.g.

PVM(Geist , Beguelin et al. 1994)and MPI implementations). The SPMD model

can also easily be implemented on shared memory systems as well, when a 'share

nothing' approach is favoured. The SPMD model is essentially a static process

model with one instance of the program running on each process, although the

number of threads per program can be either static or dynamic. Hence, in

comparison with the general task parallelism model, which is more usually

associated with dynamic thread creation on shared memory systems, the SPMD

model offers more user control of the physical parallelism.

2.3.4 Communication

The parallel execution of decomposed tasks and data generplly implies a

requirement for communication, such that information can be transferred between

the separate processes and threads according to the particular parallel processing

requirements. Alongside control models, languages are also categorised

according to the memory model they support, as this fundamentally impacts the

mechanisms ~hat must be provided to arrange for communication. In shared

memory systems, communication takes the form of updates to critical regions of a

shared address-space by multiple compute entities, whereas in message passing

systems data is explicitly passed between its compute entities. These dominant

communication strategies have different characteristics that require particular

attention to ensure effective parallelisation, and impact the design of languages

and libraries supporting them.

22

Shared memory systems that update critical regions of memory must arrange for

synchronised serial access such that the memory is consistent to all processes

and it can be quite challenging to maximize concurrency while avoiding race

conditions and deadlocks. In shared memory systems, memory access is much

slower than cpu usage so even here, memory accesses must be considered

carefully. Indeed in NUMA arrangements, data locality is still very important.

Distributed memory systems must communicate using message passing, and this

presents other challenges. Synchronization is explicitly specified in the

communication statements, which can be helpful in making clear when control

process interaction ~ccurs (when information is being transferred), but still requires

complex reasoning. The communication fabric is now very important as is the

network topology. That data has to be copied from one address space to another

imposes copy and transport overhead, as well as increased memory usage, and

this can severely impact the success of a parallelised computation. For this

reason, distributed systems operate more efficiently at a coarser grain, arranging

for communication to be conducted with a smaller number of messages containing

more data, rather than a larger number of messages container less data, and so

suits algorithms that align more with a coarse grained approach.

2.4 Theoretical Performance Considerations

Although it seems intuitive that using multiple processors will lead to increased

performance, Amdahl (Amdahl 1967) pointed out that this would be difficult in

practise, due to irregularities in the computation of practical problems, and that

'housekeeping' would also add an unavoidable and significant serial fraction to

parallel computations. This serial fraction places an upper bound on the speed up

that can be achieved by increasing the number of processors used on a fixed size

problem (ignoring super linear speed up and cache aggregation). Amda~1 -

described the problem, and it's subsequent mathematical formulation is known as

Amdahl's law. This sobering view was reframed in terms of problem size by

Gustafson (Gustafson 1988) to demonstrate that linear speed up was attainable,

and Yuan shi (Shi 1996) subsequently pointed out the equivalenc~ of these

approaches. Because Gustafson's law (also known as the Gustafson-Barsis law)

reframes the speedup metric in terms of the accuracy of a computation that can be

achieved in a fixed time (Le. let the time remain constant and increase the number

23

of processors and problem size), it is sometimes referred to as 'scaled speedup'.

Amdahl's law and the Gustafson-Barsis law are ideals that do not take into

account the efficiency loss incurred in communication. The Karp-Flatt metric

addresses this issue in what is called the 'experimentally determined serial

fraction' (Karp, Flatt 1990). Another very useful metric is the 'isoefficiency metric'

which can be used to compute the scalability of a parallel system (Grama, Gupta

et al. 1993). This provides a function of the increase in speed up as the number of

processors is increased. Efficiency can be maintained by increasing the problem

size, but this may lead to memory problems if increasing the problem size more

than linearly increases the memory usage. An excellent comparison of these

various metrics can be found in (Quinn 2003). It is now generally understood that

for many practical problems, the serial fraction can be very small, allowing near

linear speed up. In practise, system architecture will also affect the performance

calculations. For example, bandwidth and latency effects on communication

speeds on distributed systems.

2.5 Languages and libraries supporting parallel programming

Significant challenges confront the programmer wanting to harness parallel

resources. It is clear that assistance is needed, and a large number of

programming languages have been developed over the years to help express

parallelism, although the choice can add to the programmer's dilemma. Here a

representative subset of languages that provide explicit support for parallel

programming are reviewed. As outlined in the previous section, parallel

programming languages can be categorised according to how they support the

expression of parallelism such as the identification of parallel regions and how

processes are created and managed (control models) and how communication

and synchronisation are expressed and handled (memory models). This is

particularly influenced by their intended target system architecture (see the

Architecture section above). As well as using these models to broadly categorise

parallel programming languages (at all levels of abstraction), programming style is

also considered. Furthermore, many languages provide support for parallel

processing through libraries, or a combination of language constructs and core

support libraries. So alongside specific language constructs, languages that have

core libraries supporting parallel programming are also considered, and

specifications and libraries that are not core to a particular language. The review

24

extends to higher level programming abstractions where a shared memory

programming paradigm is imposed on a physically distributed m'emory system

using distributed memory systems (OMS) and Partitioned Global Address Space

(PGAS), and where the message passing paradigm is imposed on shared memory

systems (Actors). It is also noted in these sections that the lower level

programming abstractions for shared memory and distributed memory systems

commonly use the imperative programming style, as a core method of defining

sequential behaviour. This style of programming (c.f. C/C++, Java, Pascal, Ada

etc.) is composed of a sequence of commands that are executed one after the

other, where order is crucial and memory management is explicit. Programming

languages are commonly categorised according to the programming models or

paradigms that they expect programmers to adhere to, the most common being

imperative, declarative, functional, object oriented and process oriented

paradigms, although the distinction is often blurred with many languages

supporting multiple paradigms. Declarative and functional programming languages

represent higher level abstractions, and will be briefly discussed in the context of

parallel programming in a subsequent subsection.

Regardless of which language is used, the final processing will be a transformation

into microcode suitable for a target machine architecture. This assumes a

corresponding compiler is available that can convert a program to efficient

machine instructions. A language must either have it's own compiler, or a program

must be translated to a form that some appropriate and available compiler can

parse and process. In any case, a compiler for a parallel programming language

will to a lesser or greater extent incorporate the runtime infrastructure that

implements the expressed parallelism, so it is critical that a compiler is available

that can generate an efficient parallelised implementation .. Although the reviews

concentrate on languages that provide constructs for the explicit expression~ of

parallelism, it should be noted that another area of automatic parallel programming

research is in auto-parallel ising compiler technology itself, where attempts to

identify and generate parallel code is performed during compilation. However, this

has had limited success, in part due to incomplete information available to the

compiler with regard to ascertaining parallel regions (i.e. a lack of knowledge of

the semantics of a problem), and has mainly been constrained to loop checking.

To apply this technique, programs must still be serially described in the first

instance.

25

2.5.1 Shared Memory Programming

Many languages and libraries rely on operating system support for shared memory

parallel processing through 'process' and 'thread' constructs. A process has

considerable set up overhead, as it must initialise and manage all it's resources

and ongoing execution state. To set up multiple processes, a process can fork

new processes, and again explicitly set up the environment of each forked

process, including shared memory. Threads are lightweight virtual processes that

run within the context of their creating process, and can utilise resources of the

process, much reducing resource and lifecycle management overhead within a

particular application. Typically, programs developed for the shared memory

model implement parallelism using threads, placing the burden of managing non

determinism and access to shared memory critical regions on the programmer

(Lee 2006). To illustrate the use of threaded programming, this section reviews

two popular and established programming languages, C++ and java, and in

particular, the libraries they use to express concurrency in shared memory

systems.

C++ (Stroustrup 2000) is a superset of the C programming language (Kernighan

1988) , providing many additional facilities to aid the programmer, core amongst

these being the concept of a 'class' to support object oriented programming, and

'templates' to support generic programming. However, C++ does not have direct

language support for expressing concurrency, this functionality being incorporated

via a library when required. Pthreads (Josey 2011) is the de facto standard low

level thread library in UNIX environments (POSIX threading library IEEE 1003.1 c-

1995), providing operating system support for thread creation and management,

together with facilities to control access to critical regions of shared memory .

Considerable expertise is required to write correct and maintainable programs

using pthreads. It should be noted that although the operating system will attempt

to automatically assign threads to processors in an efficient manner, there is no

direct relationship between the number of threads and number of processors, a

point of concern to parallel processing performance (many operating systems do

however provide system calls that can be used to determine the number of

available processors and set processor affinity). Compilation of programs written in

higher level languages and libraries can integrate pthreads under the covers,

making this consideration still relevant. The 'Windows threading API' available on

26

the Windows operating system is broadly similar to pthreads, although there are

significant differences. For example the API largely uses the one 'HANDLE' type,

which the system resolves as required at runtime, trading programming simplicity

at some cost to runtime performance.

Threads based programming is the assembly language of shared memory parallel

programming, allowing the programmer to reason about sequential processes

making blocking system calls {191 Tanenbaum,Andrew S. 2006;}. In this sense,

they aid parallel programming, but conversely their unstructured nature is not so

well suited to high performance computing development. Working at a higher

abstraction, OpenMP is the defacto standard for shared memory explicit parallel

programming in C/C++ and Fortran programs. OpenMP is comprised of a

collection of compiler directives (pragmas), runtime library routines and

environment variables (OpenMP 2011) . Whereas pthreads is low level and largely

unstructured, OpenMP provides block structured constructs to organise parallel

sections of code and particularly supports the expression of task and work-sharing

centric fork join parallelism. At it's core OpenMP itself implements a task based

master-worker model, spawning child threads to provide concurrent execution of

tasks. An OpenMP preprocessing phase converts the compiler directives to thread

parallel code. This generated code is preprocessor and target compiler dependent,

but should be more consistent and performant. A programmer is thus relieved of

this effort and the manual code is correspondingly reduced, improving

maintenance, with openMP transparently managing thread creation, lifecycle, and

synchronisation. Although tasks can be implemented and composed, OpenMP is

primarily appropriate for loop based data parallelism rather than for the design of

whole systems, being used to introduce parallelism incrementally to sections of

existing code where thread based parallelism is appropria~e. Also, code

incorporating openMP pragmas and directives can still be run in a uniprocessor

environment. A good introduction to OpenMP(open multi-processing) can be

found in (Quinn 2003).

Intel Threading Building Blocks (TBB) (Reinders 2007) is a C++ template library

for multi-core parallel programming. At a similar abstraction level to OpenMP, it

provides a task based parallel abstraction above platform specific thread

implementations. TBB provides iteration patterns (as templates - e.g. the

tbb:paralieLfor template function) for task based parallelism, transparently

27

managing the underlying threading details and complexity for the programmer.

Whereas OpenMP is more a C based library, TBB is designed to be more aligned

with the Object Oriented and template based approaches common to C++.

Although at a higher abstraction than threads, the programmer still requires a

significant understanding of shared memory parallel programming concepts such

as synchronisation and barriers, to fully utilise the versatility of these frameworks,

and in the case of TBB, skill in C++ templates. For an overview of these and

similar frameworks with examples, see (Chen, Bairagi 2010) .

The java programming language' (Gosling, Joy et al.) has become very popular,

java programs being compiled to java byte-code that runs on a java virtual

machine (JVM). As such, java programs can run on any platform for which a JVM

has been written. In this sense, java programs adhere to a 'run anywhere'

philosophy (Le. anywhere a JVM is available). Although designed with a syntax

similar to C++, java removes some of the more controversial aspects such as

multiple inheritance, and includes automatic heap memory management through a

garbage collection mechanism, thus removing a time consuming and error prone

aspect of programming. Java has included thread support in its core java.lang

package since JDK 1.0. A programmer arranges parallel execution by creating and
r

starting Thread objects (Lea 2000b) . Synchronization mechanisms are provided

to arrange safe communication across shared memory. The code that the thread

executes can be implemented within the run method of the thread or any object

implementing a runnable interface can be passed to the thread as the code to run,

prior to starting the thread. As with pthreads, the arrangement for concurrency will

not necessarily translate to parallel execution, as this depends on the resources

available and the underlying process scheduling. As well, being low level

constructs, java threads have the same pitfalls as pthreads in terms of lack of

structural support. However, a java.util.concurrency package is available (since

JDK 1.5) that provides more high level threading support through facilities such as
"

an ExecutorService, Executors, Futures and Callables that handles much of the

details of managing threads (e.g. creating and managing thread pools). Indeed a

whole armoury is available to the concurrency programmer that also includes

blocking queues, synchronous queues, countdown latches, semaphores etc. to

assist in concurrent programming. Furthermore, in JDK 1.7 a fork-join framework

has been added (Lea 2000a) , that is more tuned to parallel processing rather than

concurrent programming, the core implementation incorporating a work stealing

28

algorithm (borrowing ideas from the Cilk programming language). This framework

is intended to assist parallel programming by imposing a more structured

approach to creating and controlling parallelism, and tuned to using multiple

processors (still using worker thread pools under the covers). A main usage being

to express the 'fork-join' patterncommonly used in recursive divide and conquer

algorithms.

2.5.2 Message Passing

The message passing paradigm is a natural fit for distributed memory

architectures, and languages targeting this architecture employ message passing

as the base abstraction. CSP (Hoare 1978), (Hoare 1985) was an early and

influential attempt to apply rigour and theory to processes, process composition

and communication (a 2004 version of the book "Communicating Sequential

Processes" is also available on line at http://www.usingcsp.com/cspbook.pdf). In

CSP, sequential processes execute on their own variables and only communicate

by sending and receiving messages across 1/0 'channels' ('distributed assignment'

semantics) with non determinism being handled using guarded statements. The

original CSP is now known as Theoretical CSP, and has influenced the design of

many imperative distributed programming languages, Occam (May 1983) being it's

most well known direct language descendant. Occam was originally developed by

INMOS for transputer systems, the design of which meshes well with message

passing communication. The CSP and Occam approach is also referred to as

'process oriented programming'. Occam-pi (Welch 2012) is also an important area

of research, extending Occam to include features from the pi calculus (Milner

1982), (Milner 1995), (Milner 1999). The 'Go' programming language p~ovides a

contemporary example using the channel paradigm to send and receive messages

(Doxsey 2012).

..
In the past, parallel hardware vendors typically implemented highly optimised

message passing libraries for their systems, which were fast but not portable. A

highly successful portable library called the Parallel Virtual Machine (PVM) was

conceived in 19~9; gained huge popularity throughout the 90's and is still popular

today as a message passing system to hook up disparate heterogeneous

computer clusters, provide dynamic reconfiguration and some fault tolerance·

(Geistet aI., 1994). However, the proliferation of different message passing

29

implementations continued to raise portability concerns, and the need for some

standard was generally realised. This led to the development the Message

Passing Interface specification.

The Message Passing Interface (MPI) (Gropp, Lusk et al. 1999a) is the assembly

language for writing portable and scaleable applications for distributed memory

systems using the message passing model, explicitly specifying the

communication protocols for point to point and collective communications. MPI

introduces the concept of a communicator which provides a context to multiple

communications and is also suited for library development and fault tolerance

(Geist et aI., 1994). It also provides a feature for an application to specify

topological information. Version 2 (MPI-2) adds dynamic processes, remote

memory access, and parallel 110 capabilities (Gropp, Lusk and Thakur, 1999), but

not process migration among nodes. MPI is a library based approach targeting

distributed memory systems, so data copying and buffering now become

prominent as impediments to performance. The optimum grain size of an

application is influenced by the cost of communication. Close coupled systems can

support finer grain size, and more loosely coupled systems work better at coarser

grain sizes. For this reason, MPI is more suited to coarse grained algorithms,

because fine grained data copying and transfer generally impacts performance.

The specification includes bindings for C and Fortran. Bindings for C++ were

added in version 2, but later deprecated and removed in version 3 as these added

maintenance overhead to the specification with little advantage over the C

bindings. As C++ can use a pthreads library to express threaded programming, it

can use a library implementing the MPI specification to arrange for distributed

programming using the message passing model (using that library's C bindings).

Although targeted at distributed architectures, the message passing model can be

used on shared memory machines, to leverage the model's advantages and to

provide consistency across hybrid systems. This can be simply achieved by

programmatically partitioning shared address space into disjoint parts and

programming using MPI. That processes are only visible to the outside world via

the messages they send and receive aids software modularity in composing larger

programs.

Java has already been mentioned as a programming language suitable for

concurrent programming on shared memory systems, but also has considerable

30

library support for distributed programming. In particular, java remote method

invocation (RMI) offers advanced library support for distributed 'programming, that

hides much of the low level details behind remote object interfaces. Through this

mechanism, code and data can be passed to remote instances either by reference

or by value, providing a very powerful distributed programming abstraction.

However, java objects are marshalled and unmarshalled automatically using a

rather heavyweight protocol, so RMI is more normally associated with distributed

computing, although there have been efforts to adapt and improve for efficient

parallel processing (Maassen 2001).

2.5.3 GPU Programming

The trend towards parallelism through multi-core and many-core processors has

also led to an interest in harnessing the processing power and vectorising

capabilities of GPU's for general purpose processing (GPGPU: General Purpose

GPU's). Indeed, complex heterogenous systems mix shared memory, message

passing and GPU processing (Liang, Li et al. 2012) . Vendor specific parallel

programming kernel type languages such as CUDA (Farber 2011) , and more

recently the open standard heterogeneous openCL platform are garnering more

interest (Gaster, Howes et al. 2013) , to incorporate GPU resources and harness

resources across heterogeneous systems.

2.5.4 Distributed Shared Memory Languages

The increasing prevalence of hybrid architectures having both distributed and

shared memory led to the development of distributed shared memory (DSM)

models. Instead of using multiple technologies such as MPI, pthreads ,and

openMP to develop parallel programs, these models aim'to provide one consistent

logical shared memory model across distributed systems. The underlying ft

movement of data is managed transparently by the system, easing the

programmers'task. In relieving the programmer's burden, these systems must

solve fundamental issues that include replication of data across nodes and

maintaining dat~ consistency and coherence (Li, Hudak 1989a). These early

systems had no concept of data locality, impacting program efficiency. Porting

shared memory programs to a DSM model to leverage the scalability of distributed

systems should be straightforward. There are numerous DSM implementations,

31

examples include IVY (Li, Hudak 1989b) and Mirage (Fleisch, Popek 1989). A

number of other implementations, along with the viability and issues associated

with DSM are surveyed in (Nitzberg, Lo 1991).

2.5.5 Partitioned Global Address Space Languages

The PGAS languages similarly define a global address space over distributed

memory architectures, again aiming to provide one paradigm across shared

memory and distributed memory architectures. As such, PGAS can be considered

a memory model, often associated with an SPMD control model. These higher

.. level languages also allow shared memory semantics to be used across

distributed systems and extend the distributed shared memory model by logically

partitioning the global shared memory to exploit processor locality. As popular

examples, Co-Array Fortran (CAF) and Unified Parallel C (UPC) extent the C

programming language to implement the PGAS programming model. CAF and

UPC both follow the SPMD model with all processes starting and finishing together

(c.f. openMP declarations within one process spawning other processes

dynamically), and have constructs to allow synchronization amongst processes

(processes are referred to as threads in UPC and images in CAF). Where CAF

and UPC differ is in their approach to managing distributed memory. CAF uses a

special dimension called a co-array to reference memory across images, and so

variables declared with a co-array must be replicated in shape and size across all

images. In this way, images can reference global memory using logical co-array

indexes. UPC declares distributed arrays using a shared keyword and blocking

factor qualifiers, and accessed using shared pointers. In this approach the

distributed memory extents does not have to be the same across all the UPC

threads. Somewhat incongruous with the SPMD model, UPC also supports a

upc_forallioop (c.f. openMP). 80th CAF and UPC usually rely on remote direct

memory access and global address space support (e.g. the GAS Net

communication layer (80nachea 2002». An interesting comparison of UPC with

MPI collectives can be found in (Nishtala, Zheng et al. 2011), and a discussion

describing a hybrid MPIIUPC model in (Dinan, 8alaji et al. 2010).

Titanium (Yelick, Hilfinger et al. 2007) is another PGAS language worthy of note,

being an explicitly parallel dialect of java that supports the SPMD model. Titanium

extends java for parallel scientific computing, including support for multi-

32

dimensional arrays, immutable classes, cross language calls and templates, and

introduces the concept of regions as a memory management alternative to

garbage collection, which is difficult to implement on distributed systems.Titanium

is a local view language with distributed arrays being built from local sub-arrays

and global pointers distributed through an exchange operation. Local and global

pointers implement locality control in Titaniums PGAS memory model, using the

local pointer declaration qualifier.

2.5.6 HPCS Languages

In 2002, DARPA initiated it's High Productivity Computing Systems (HPCS)

program to rejuvenate and encourage the HPC industry to improve efficiency,

productivity and performance (Dongarra, Graybill et al. 2008). The X 10, Chapel

and Fortress languages (Weiland 2007), developed as part of this initiative

received substantial support from DARPA, with the more prolonged support for

X10 and Chapel. Although Fortress is an interesting HPCS language developed by

Sun micro-systems, that uses a more mathematically inclined symbolic syntax, the

review below focuses on X10 and Chapel, as these emphasis the salient points of

the HPCS initiative, to partition but provide a global view, with the facility to

incorporate locality information.

X10 (Charles, Grothoff et al. 2005) is a PGAS language developed by IBM,

targeted at non uniform SMP clusters. A core design goal being to increase

productivity for scaleable parallel programming with both distributed and shared

memory paradigms being spanned by the one higher level language. The syntax

of the language is designed to be accessible to java programmers with functional

programming features (single assignment, mutable shared memory but no

mutable global memory) . Concurrency in X 10 is expressed using the 'async'

keyword to spawn processes, with the 'finish' keyword controlling concurrency

extent, where condition and reduction operations can also be specified. Phased

computations 'can also be introduced using the clock functionality which acts as a

generalised barrier. X10 recognises the significant difference. in shared memory

and distributed r:nemory communication performance, and provides explicit
..

programming support to express processing locations using the concept of

'places'. Under the covers, place shifting using 'at(p/ace) <statement or

expression>' is implemented by sending a message to another process, the

33

processing is then performed at that location. Meanwhile the sender suspends

awaiting the response. So X10 encourages the programmer to consider where the

data is, and rather than accessing remote data directly, the programmer can move

processing to the data using the places abstraction. At one place, using shared

memory, the 'atomic' keyword is used to delineate statements that must be

performed atomically, with respect to other atomic statements going on at that

place (lock free synchronisation). This design maps well to hardware 'transactional

memory', which was the X10 designers' intent. However, if transactional memory

is not available, then atomics are implemented using one global lock, the serial

acquisition of which can cause scaleability issues. To circumvent this, a library is

available that provides low level locks and ancillary support (a failure of the

language in this respect). X10 programs can be compiled to C++ (native) or to java

(managed runtime), although the java target is currently restricted to one place.

When an X1 0 program is run, the number of places is stipulated. Scheduling of

activities is implemented using a work stealing algorithm, borrowing ideas

introduced into the cilk programming language (8Iumofe, Joerg et al. 1995)(Joerg

1996), the benefit being that each spawned process has it's own queue.

The Chapel language developed by Cray is an imperative, block structured

language with a multithreaded programming model supporting task and data

parallelism, concurrency and nested parallelism. It is a new language, although the

base syntax draws from C, Java Fortran and Ada, together with 'modules' from

Pascal and Modula. The design is guided by the objective to align with the

experience of the HPC community, to ease transfer of skills. It specifically

incorporates data parallel features from ZPL (Chamberlain, Choi et al. 2000) which

itself is a sublanguage of the Orca family of languages (8al, Kaashoek et al.

1992), and is also influenced by High Performance Fortran (HPF) and the Cray

MTATM/Cray XMTTM extensions to C and Fortran (Cray Inc.), a"nd targets

development on both high performance computers and commodity clusters. A core

design goal is to improve productivity, whilst matching the performance and

portability of lower level models such as MPI and OpenMP (Chamberlain, Choi et

al.), (Chamberlain, Callahan et al. 2007) (the name Chapel is derived from

'Cascade High Productivity Language). Chapel supports tuning for locality using

the locale type which maps to a unit of uniform memory access such as an SMP

node, giving the programmer control over placement of tasks and data (c.f. X10's

places), and also provides global multidimensional array distributed data

34

structures. These global view abstractions encourage thinking about the whole

problem rather than how to fragment it, and can significantly simplify programming

(i.e. Chapel is a 'global view' language rather than a fragmentedllocal view).

Associated with these constructs, 'domains' are a feature core to implementing

data parallelism, defining index sets for array definition, manipulation, reallocation

and distribution. Domains can index distributions across a set of locales. Task

Parallelism is supported through forall, begin and cobegin parallel statement

constructs, synchronisation being expressed with single and synch variables.

Chapel supports a novel multi-resolution philosophy, so that programmers can

span a programming spectrum from the very abstract high level distribution

statements, down to machine level statements using the 'on' clause for task

placement.

2.5.7 The Actor Model

The Actor model (Hewitt, Bishop et al. 1973) is an inherently concurrent model.

Actors are 'share nothing' compute entities that communicate with each other

using the message passing paradigm. The high level of abstraction is attractive to ,

programmers, as it removes the necessity to deal with low level constructs (e.g.

threads, synchronization and 110). Upon receipt of a message an Actor can

undertake some local computation, alter its state, create other Actors and

communicate with other Actors synchronously or asynchronously using a mailbox

metaphor. Actors are commonly implemented as, or mapped to separate

processes or threads. This simple speCification provides a very powerful model of

scaleable concurrency, and aids reasoning about the inherent complexity of

indeterminate parallel systems. Although introduced more than 40 yea~s ago, the

Actor model is arguably more relevant today due to the in~reasing ubiquity of

multicore and many-core systems.

The Erlang functional programming language (with some declarative features) has

direct support for concurrency, distribution and fault tolerance, with the Actor

model being built into the language itself. In Erlang, Actors are 'spawned' as

processes. Evol~ing within the telecoms industry, Erlang is designed to support
"

large scale concurrency. Although Erlang's emphasis is on distributed processing

and fault tolerance rather than parallel processing speed, it has influenced a

number of other languages including some whose objectives are more focus on

35

performance.

Scala (Odersky, Spoon et al. 2010) is a contemporary object oriented language

that also supports the functional style of programming and provides library support

for Actors, the implementation being influenced by Erlang's functional

programming style. Scala programs are compiled to byte-code that can then be

run on a JVM (Java Virtual Machine). In Scala, primitives and statics are absent,

the prime construct being an object. Scala actors provide a high level abstraction

for concurrency based on message passing, as an alternative to more complex

low level thread programming that requires mastery of synchronisation

mechanisms to manage communication and data integrity amongst competing or

cooperating threads. Any thread Signalling and coordination being hidden within

the Scala concurrency package. Scala is interesting in that it provides support for

both thread based and event based Actors. A thread based Actor maps directly to

a thread of control, with state being maintained on the thread's stack and

communication is via send and receive messages. However, when an application

must scale to thousands or millions of Actors, it is more appropriate to implement

Actor's based on a 'react' event based style with closures for continuation. Despite

increased complexity due to the 'inversion of control' in an event based system,

the Actor implementation is much more lightweight, implemented atop a thread

pool, with state now stored in continuation closures rather than stack frames. There

has been considerable debate on the relative merits of thread based and event

based models (Lauer, Needham 1979), and Scala attempts to unify these

competing styles through Actors (Haller, Odersky 2007).

Akka (Kuhn, Antonsson et al.) is an excellent Actors library for highly concurrent

systems in Java and Scala that also uses the Erlang style Actor model, providing a

platform for writing concurrent, event driven, scaleable, fault to.lerant applications.

Asynchronous non blocking message passing scales across multicores and

multiple nodes. Like Scala, Akka compiles to byte-code that runs on the JVM, and

can thus integrate with Java and Scala.

2.5.8 Functional and Declarative Programming

The functional programming paradigm composes programs as a hierarchy of

function expressions, providing an elegant alternative to the imperative style of

programming (Backus 197~). Theses programs are largely stateless, they work

36

with immutable data and can be very concise, Lisp, Scheme and Haskel being

amongst the more well known examples. Erlang and its descendant Scala also

support the functional programming style. Although the functional programming

paradigm appears to align well with parallel programming, it has not enjoyed the

expected success in this arena. Although stateless function expressions map well

to parallelisation, the parallelism is implicitly fine grained and load balancing is

hard to predict, since it is not generally know how long any particular expression

would take to execute. Indeed, at certain scales, the cost of setting up for parallel

execution, and subsequent communication may outweigh the gains from

concurrent execution itself. This inability to infer a suitable grain size of parallelism

has hampered successful use of functional programming languages for parallel

processing. As well, the high level abstraction means that programmers do not

have direct access to control the parallelism (c.f. the more flexible

imperative/procedural languages).

The declarative programming model puts the focus on what to do, rather than how

to do it. The most ubiquitous example being Sal, which states what to do in order

to retrieve data from a database in concise, easy to read and understand

declarative statements. A database implementation transforms these statements

into an execution plan (which can include concurrent processing). Again, this style

of programming is at a high level of abstraction, and so the user must usually rely

on the underlying implementations to find and impose any parallelism (which

obviates any direct low level bespoke programming to improve efficiency), trading

ease of use and increased productivity against less control.

2.6 Reliability and Fault Tolerance

Not much has been said about reliability and fault tolerance, but in the multi

processor world this becomes more relevant. With increased processor counts,

the probability that anyone processor will fail increases. A failure of one processor

participating in' a computation across a group of processors could mean the loss of

results across all the participating processors. Often this is accepted as an

inconvenient but.infrequent event and if encountered processing is just restarted.

However, having multiple processors does also offer an opportunity for the

programmer to weave redundancy into algorithms to account for local faults or

simply to duplicate processing of the same algorithm, an extra burden for the

37

programmer but in certain circumstances it is worthwhile. One simple approach is

to provide checkpointing, where intermediate results are continuously stored so

that if a failure occurs the processing can resume from a check point rather than

from the beginning. One thorny issue here is that the programmer must decide

how much data and processing replication is required (e.g. in order to reduce the

risk to that of a single processor). In other cases, it is left to the container to

manage faults, but even here an algorithm would usually need to interact to

resume execution, meaning application software must still be 'fault tolerant aware'.

Systems can also be categorised according to their stance on fault tolerance and

reliability: one differentiator between parallel processing (high performance) and

distributed systems may be the usage: parallel processing emphasis on speedup,

whereas distributed systems emphasis reliability (fault tolerance) and resource

sharing.

2.7 Summary

Today, the dominant scaleable high performance computing systems typically

comprise clusters of multi-core and many-core nodes, where internode

communication uses message passing and intra-node communication can use

message passing or shared memory. Vector processing capabilities and the use of

general purpose graphics processing units add further variety. The resultant

complex mix of scaled in and scaled out parallelising capabilities complicates how

to efficiently utilise these technically advanced systems. The task of this chapter

has been to provide a critical review of the more typical systems, and to highlight

various parallel control and memory models used to categorise them and help to

understand and manage the complexity. The chapter then goes on to consider a

representative selection of programming languages and libraries that have been

developed to support parallelism within the context of these systems and models.

The goal of such efforts being to elucidate the merits and limitations of the various

programming approaches, so that an informed decision can be made as to what

approach may be best suited to the task of applying parallel processing in the

image processing domain, specifically the desire to leverage these systems to

parallelise multiple complex 3D image processing algorithms.

It is apparent that message passing cannot be avoided, being required to

accommodate internode communication. When appropriate, using shared memory

38

is attractive, avoiding main memory copy overhead (although all systems must still

consider cache memory behaviour). However, scaleability has proved problematic,

and the burden of managing access to critical regions of memory using explicit

synchronization and lock management can be more onerous than the implicit

synchronization afforded by message passing. It is of course a contentious debate

as to whether synchronizing via message passing or across memory critical

regions is the more difficult. Higher level languages were reviewed that attempt to

provide a common programming model across shared and distributed systems,

the latest evolution ·of such languages (PGAS/HPCS) incorporating mechanisms

that allow the programmer to cater for locality of data, an admission that this

information is often required in order to write efficient parallel programs. Recently,

interest has also been rekindled in languages that enforce a message passing

only style (Actors), illuminating the trend back towards the 'messages only' style.

In any case, it is evident that even these higher level languages are still quite

complex, and require considerable expertise in parallel processing, including

knowledge of the underlying systems, to be used effectively. Although a large

improvement on the more lower level programming languages, the assumed goal

to provide tools that simplify parallel programming is thus blunted to some degree.

Deliberating on this review, in the context of an image processing requirement, it is

evident that the low and more high level languages that support both message

passing and shared memory systems would be suitable candidates for

parallelising image processing applications. However, none would be sufficient in

themselves to provide complete transparency to the image domain (application)

programmer, and thus some framework would be required to bridge the gap. Such I

a framework could be built using any of these languages, but the very n~ed for

such a framework to separate the parallel processing from. application domain

processing means that the more powerful and low level parallel processing

approach can be retained. The assumption being that experts in parallel'

processing would develop and maintain this aspect.

To summarise, the extensive review of current parallel systems and programming

language and lib~ary support was motivated by a desire to determine the ..

implementation strategy of a parallel processing framework, and to that aim

assess the various approaches to arrange for parallel execution and gain an in

depth appreciation of the issues and various solutions. Ultimately, a more low level "

39

approach is chosen, specifically a combination of C++ and MPI. This being driven

by the above considerations but also other aspects including extensibility and

future proofing (C++ is a popular broad market language), performance and the

intended distributed target architecture. As well, MPI is the de-facto standard

message passing specification, such that both C++ and MPI will appeal to a large

class of users, and avoid learning new languages whose future may be uncertain.

In the next chapter, the review moves up a level to consider parallel programming

frameworks expressing parallel programming patterns, setting the scene for the

introduction of the proposed distributed framework, build using C++ and MPI.

40

Chapter 3 Parallel Programming Frameworks

3.1 Introduction

Languages that support parallel processing form the generic underpinning of

development for programs harnessing parallelism. Their utility is in providing

abstractions that the programmer can use to express and manage parallelism in a

program. As generic tools, these languages cannot provide help at higher levels

that are domain specific, and this is the responsibility of the programmer, using an

appropriate language to craft the program requirements. This is an arduous

exercise and it is good software practise to consider extracting common patterns

of use where possible, and implement such functionality in reusable components

and frameworks.

This chapter reviews patterns of parallel processing and their combination with

components to form useful parallel programming frameworks. The definition of a

pattern is introduced as the description of a recurring problem together with some

prototypical solution, together with a brief review of some development

methodologies that leverage patterns and the idea of pattern languages.

Consideration then turns to the concept and utility of frameworks, and a review of

various frameworks designed to support patterns of parallel processing. Template

based and auto generative frameworks are discussed, and frameworks that are

constrained to model specific patterns. The review then goes on to look at data

flow and streaming frameworks, and leads into composition and workflow

frameworks. Finally, some representative application specific frameworks are

reviewed in the interesting evolutionary algorithm domain and the project's target

image processing domain. The common goal of such frameworks being to simplify

and assist the development of applications that can benefit from parallel

processing. Although no one framework was deemed entirely suitable as"a

distributed framework for the target image processing applications, the review is

important in assessing aspects of these frameworks that would be helpful. In

subsequent chapters, a variant lightweight framework is proposed, whose ..

architecture incorporates many of the positive aspects of the reviewed

frameworks, and allows for simple extension of the framework itself. The impetus

for such a framework initially emerged from consideration of image processing

41

algorithms and applications, although the framework can be otherwise

generalised.

3.2 Patterns of Parallel Programming

In making sense of the world, people use their pattern recognition capabilities to

categorise and simplify the vast stream of information continually presented to

them. By the same token, identifying recurring patterns is useful in software

engineering. A pattern encompasses the description of a recurring problem in

some domain, a context in which It is relevant, and a known prototypical solution

that has wide acceptance amongst the domain experts (this format is particularly

standard to the software industry). Introduced by Christopher Alexander in the

context of building architecture (Alexander, Ishikawa et al. 1977), the concept has

subsequently been adopted as the 'lingua franca' for communicating design reuse

in object oriented software development, popularised by the seminal book 'Design

Patterns' (Gamma, Helm et al. 1995). Patterns emerge from experience within a

particular domain, encode best practise and facilitate communication and reuse. It

is common for many patterns to be identified, supporting various recurring

problems within a domain. Many of these patterns are related, and indeed an

application solution is often composed of many interconnected patterns. The

composition of patterns may itself form a reusable pattern. Consequently, patterns

can be usefully further organised into taxonomies and pattern languages, with

languages evolving over time to incorporate new patterns as they are identified.

Subsets of a pattern language are often also relevant across a number of

domains. In (ZOllighoven 2004), a simple taxonomy of patterns is described that

identifies application domain patterns as high level "conceptual patterns", design

patterns that form the "micro architectures for software construction", and

programming patterns that map to source code constructs and idioms.

The project's particular focus is on patterns pertinent to parallel processing.

Parallel processing is considerably more complex than its serial counterpart, and

identifying patterns here has the potential to significantly improve development

productivity. Analysing the potential parallelism in an application is of course

crucial. Identifying concurrency and its characteristics, and mapping to appropriate

algorithmic structures and implementations is core, the premise being that patterns

can significantly assist in this effort. In 'Patterns for Parallel Programming'

42

(Mattson, Sanders et al. 2004) , a pattern language for parallel programming is

proposed. The language is organised into four design spaces that delineate

specific temporal stages in the development of a parallel program. The finding

concurrency design space includes patterns that aid in the initial identification of

exploitable concurrency. This is a significant first analysis step, with domain

knowledge being required to discern and map to appropriate patterns such as task

and data decomposition. Next, an algorithmic structure design space includes

patterns that are suitable in the primary refinement and expression of identified

concurrency, such as task parallelism, divide and conquer, geometric

decomposition etc. A subsequent supporting structures design space contains

patterns that. allow the organisation and mapping of identified concurrency into

programmable constructs. Here is found familiar patterns such as SPMD, Master

worker, Loop parallelism, Fork-join, Shared data and Shared queue. Lastly, an

implementation mechanisms design space presents various choices that can be

used in implementing a parallel program, such as threads, processes,

synchronisation and message passing. The categorisation of 'design spaces'

within this pattern language present an overarching temporal pattern that outlines

a methodology in developing a parallelised application.

The Parallel Computing Laboratory at Berkeley is at the forefront of research into

application development techniques that facilitate the use of parallel processing

(Su, Catanzaro et al. 2009), and a core part of this effort is in defining its own

pattern language (Catanzaro, Keutzer 2010), (Keutzer, Mattson). Their approach

is to study specific applications, explore algorithmic changes and implementation

choices and 'discover' and 'lift' reusable patterns. Their pattern language places

more emphasis on the hierarchical levels of patterns (and also division between

application and programming frameworks - see the frame~orks section).

Structural and computational patterns are at the highest level, respectively

describing patterns that concern the organisation of an application (coarse grain)

and the computations within that organisation (fine grain). This domain centric top

level, broadly architects the application structure and does not in itself mandate

parallelism. At the next level are algorithm strategies whose aim is to exploit
.,

concurrency (e.g: where a higher level computation pattern would guide the choice

of algorithm strategy). Next are implementation strategies describing patterns

realised in source code. A useful distinction is made at this level between program

structure patterns and data structure patterns. At the lowest level are parallel (or

43

concurrent) execution patterns such as thread pools and message passing

strategies, and this level is also usefully partitioned into program counter patterns

and coordination patterns. A premise of this pattern language being that a full

understanding of a problem or application will allow the extraction of core

structure, enable identification of patterns of para"elism, which wi" then facilitate

mapping to suitable para"elisation strategies (hence the group's focus on study of

applications. c.f. the finding concurrency design space above).

The pattern languages reviewed above differ in their emphasis on temporal and

structural characteristics. At a higher level, Berkeley's patterns are influenced by

architectural style and computation patterns. At the lower levels, Berkeley's

classification also incorporates ideas from the earlier proposals in 'Patterns for

Para"el Programming'. Despite their significant differences in content and

emphasis, some aspects of the Structural and computational patterns map into the

finding concurrency and algorithmic structure design spaces. The algorithm and

implementation strategies straddle the algorithmic structure and the supporting

structures design spaces, and the parallel execution patterns map closely to the

implementation mechanisms design space. A complementary review of the above

can also be found in the thesis (KEKEC 2010) , which goes on to use the design

spaces methodology to design and implement a para"el processing example

(dynamic list management) on a multi-core processor based real time embedded

system.

3.3 Frameworks Overview

Software Frameworks are closely related to patterns. Frameworks are an object

oriented reuse technique that combines the concept of components and patterns

(Johnson 1997). In (ZOllighoven 2004) they are described as "prefabricated

software structures that usually implement design patterns ... ". Frameworks are the

composition of component building blocks and commonly implement concepts

described using patterns. As such, frameworks are more concrete than patterns,

providing code that realises the core infrastructure of an application, usually as

abstract classes, and defining the intended interaction of these classes, or control

flow of a program that uses the framework. Users then extend the framework

classes to implement specialised applications. A framework can be implemented

within a library that a user program calls, and in this case the user is responsible

44

for ensuring the interactions that the framework defines. However, in order to

enforce the control flow, inversion of control is commonly employed, where the

framework drives the program and users of the framework plug in specialised

functionality pertinent to their requirements. In this arrangement, the framework

calls or drives the 'plugged in' components. Inversion of control is a common

characteristic rather than a defining feature of a framework, often used to further

distinguish them from libraries (where a library contains code that a user calls).

Of particular interest in this chapter are frameworks that support parallel

programming. In an influential early work, Cole introduced 'algorithmic skeletons'

((Cole 1991)). Similar to frameworks, skeletons implement patterns to provide a

structural outline to manage specific parallel computations. A user adds

implementation to fill out the skeleton to produce a specialised solution. Cole goes

on to consider four example skeletons: "fixed degree divide and conquer",

"iterative combination", "clustering" and "task queues". Cole argues that the

additional constraints imposed by a skeleton, as compared to general

programming languages, guide the user to a suitable solution, and deters

inappropriate implementations. He uses the notion of an abstract machine based

on algorithmic skeletons, as a higher level abstraction to aid development. Similar

to the earlier discussion on patterns, Cole makes the point that skeletons can

extract and record best practise from programmers' experiences (this point

extends to frameworks in general). Cole acknowledges that the introduction of a

level of abstraction can impact efficiency, whilst pointing out the advantage that

the abstraction will have in separating the application programmer from the

detailed skeleton implementations. Also, see (Gonzalez-Velez, Ley ton 2010) for a

recent survey of algorithmic skeleton frameworks.

In the following sections, a number of representative parallel programming

frameworks are reviewed.

3.4 Parallel Programming Frameworks

Frameworks can be categorised by their level of abstraction, where generally,

higher level frameworks trade productivity for efficiency. Frameworks at a high

level of abstraction can completely shield the programmer from the complexities of I

parallel programming, but by the same token can remove access to potential low

level machine or architecture specific tuning efficiencies. Conversely, lower level

45

frameworks can provide such flexibility, but require much more specialised parallel

and architecture specific programming skills. In this chapter, interest is primarily

focused on higher level abstractions that aid application programmers in

harnessing parallel processing resources more transparently, but it is

acknowledged that these abstractions are commonly built on lower level more

explicit languages and libraries that support parallel processing models and

frameworks that were covered in chapter 2. The separating out of levels of

abstraction is a common and very useful practise, allowing specific expertise to be

brought to bear at each level. For example, application programmers can use the

higher level abstractions of parallel models and frameworks and thus be more

productive developing domain code, whilst parallel programming experts

concentrate on implementing the orthogonal low level parallel programming part.

At a very high level, parallel processing can be embedded within a domain specific

application framework. Here the parallelism is implicit and completely transparent

to the programmer, who has only to implement any required domain specific

specialisations. However, this removes any opportunity to reuse the parallelising

part of the code, which may be largely orthogonal to the application framework.

Still at a high level of abstraction, instead of embedding parallel processing within

a framework specialised for a particular application, a generic parallel framework

can be employed. In this arrangement, a separate framework provides the

required parallel support structure required by the application, but does not tightly

integrate with a particular application. These more generic frameworks can be

useful across a broad range of applications, and this increased reuse can result in

a more tested and robust framework. They can still be embedded in applications

but through distinct interfaces.

3.4.1 Template Based and Auto Generated Frameworks

Rather than providing an already implemented generic and plugin extensible

framework, another approach is to have a required specific framework

automatically generated from appropriate parallel pattern specifications. A pattern

template repository or library then provides a collection of templates for the known

parallel patterns. Extensibility is supported by being able to add new patterns to

the library. An example of this approach is the Parallel Design Patterns process,

implemented as the Correct Object-Oriented Pattern-based Parallel Programming

46

System (CO 2 P 3 S) (MacDonald, Anvik et al. 2002) , itself influenced by earlier

work on Design Patterns and Distributed processes (DPnDP) (Siu, Simone et al.

1996) and the "Frameworks" template-based approach (Siu, Simone et al. 1996,

Singh, Schaeffer et al. 1991) , and ultimately being distilled into a tool independent

Parallel Design Pattern (PDP) process for pattern based parallel programming

(MacDonald 2002) . Applications are auto-generated from parametrized design

pattern templates, allowing the customisation of parallel patterns to a specific

problem (the application developer providing the specific application code). These

systems are independent of programming language and parallel architecture. As

well, this is very flexible in terms of supporting application specific interfaces, and

in generating. otherwise useful support code. A prime advantage is the guarantee

of parallel structure correctness of the generated framework (but not user code!).

In order to support openness, the system allows for low level modification of the

generated code, if found necessary to improve performance. It is acknowledged

that this would then remove any guarantee of correctness. Furthermore, these

manual modifications results in bespoke code that is less portable and

maintainable (a common trade off, to be reconciled when tuning for performance).

The authors recognise that any low level programming would require expert

parallel programmers, and make the distinction between this work and application

programmers work (implying that low level programmers may be needed during

application development). Another consideration is that the template parameters

used to generate the code are applied at compile time rather than at run time,

which may constrain flexibility in tuning performance, although it should be

possible to provision for runtime parameters as well. The current implementation

of CO 2 P 3 S is in java using threads (Le. for shared memory systems).

Alongside work in defining a pattern language, the PALLA~ group at the Parallel

Computing Laboratory at U.C. Berkeley (Su, Catanzaro et al. 2009) , is engaged in I

ongoing research into parallel libraries and parallel frameworks (Asanovic, Bodik

et al. 2008) (Catanzaro, Keutzer 2010), noting that different frameworks can

expose different design patterns that are then parameterised with plug in

components. A prime objective being to separate out the application development
..

productivity by use of a framework, from an efficiency layer concerned with the

design and implementation of that framework. One promising line of research into

building parallel frameworks is 'Selective Embedded, Just In Time specialization'

(SEJIT) (Catanzaro, Kamil et al. 2010). In this approach, templates form

47

generalised frameworks , and specialized code and parameters are then set in at

runtime (i.e. specialization of the template - c.f. C++ templates) . The approach

separates out the low level parallel programming from domain development, such

that "efficiency" experts can develop and enhance parallel programming support

for multicore and gpu environments. A novel aspect being that parallel processing

is selectively introduced, when it is expected to improve performance.

3.4.2 Frameworks Modelling Specific Patterns

Master Worker

The master worker pattern of parallel processing is ubiquitous. It is simple and

flexible, and particularly suited to 'embarrassingly parallel' problems that can be

divided into tasks that can be independently executed . Asynchronous use allows

for increased tolerance, and task size can be adjusted to ensure that tasks

requiring varied processing times are executed optimally where a demand driven

approach supports automatic load balancing. The pattern also lends itself to hybrid

implementations, where message passing paradigms (e.g. MPI) can be used at

the coarse level between nodes, and shared memory techniques can be used at a

finer level (e.g . threads, openMP).

Application

(a) Simple Master-Worker (b) Hierarchical Master-Worker

Figure 3. 1: Common master-worker variants

Figure 3.1 (a) shows the simplest and most common master-worker arrangement.

One master is in control of retrieving work as discrete tasks that can be run

independently in parallel , and of distributing them to a set of available workers for

execution. The black arrowed lines in the figure depict the flow of work to the

48

workers. The partial results from each worker are then returned to the master for

delivery back to the application as depicted by the solid blue arrowed lines. The

means by which the work is partitioned and recomposed is application dependent.

The most serious draw back to the master-worker pattern is that the master can

become a bottleneck and impede speed up. This can be acute when the master

must coordinate the partitioning, as well as delivery of work, and the gathering and

composing of results. One way to alleviate this is to arrange for the results from

each worker to be delivered via another route to the application (if possible) such

as via the file system, as depicted by the dashed blue arrowed lines. It could also

be organised that each worker retrieves its work from the file system, and the

master processing could then be more lightweight (not shown).

Another common way to alleviate the load on a single master is to introduce a

hierarchy of masters, such that each child master is responsible for a sub-set of

the work, as shown in Figure 3.1 (b). In this case, the root master and child

masters can work at a courser grain, which can improve performance for

applications that suit this variant. A hierarchical arrangement presents an

increased choice as to how each master and child master coordinates the

distribution of work and collection of results. The diagram cannot show all the

possibilities, but as an example does similarly depict an alternative route to deliver

the results to the application, via the dashed blue arrowed lines.

The master-worker pattern can provide relatively straightforward fault tolerance if a

worker fails, as the master can simply reassign the incomplete work to another

worker for execution. However, the master itself does present a single point of

failure. This is often addressed through checkpointing, that records what work has

been processed prior to the failure, so that execution can begin from thc~t point,

rather than restarting an entire computation.

MW (Goux, Kulkarni et al. 2000, Goux, Linderoth et al. 2000) is a C++ framework

that allows applications to parallelise computations using the master-worker

paradigm. It is targeted for scientific use in a meta-computing environment such as

Condor (Thain, Tannenbaum et al. 2005). MW provides a 'top level' application

programming interface (API) to applications in the form of Master (MWDriver),

Worker (MWWorker) and Task (MWTask) abstract classes that applications

implement (specialise). A prime objective being to provide a convenient and

simple abstraction to the application programmer, to harness parallel compute

49

resources. MW also provides a 'bottom level' Infrastructure Programming Interface

(IPI , another similar contemporary term is 'Service Provider Interface' or SPI) that

allows for portability across grid computing toolkits by defining the communication

and resource management as abstract classes. IPI implementations have used

PVM and the Condor high throughput system, with the IPI design allowing other

implementations including MPI. This adheres to good software practise, where a

model provides an abstraction at one level , and provides interfaces to abstraction

levels above and below it. The core abstracts the communication and resource

management to abstract classes. Of note is that MW provides support for fault

tolerance. In the Master worker paradigm, if a worker fails the task can be

restarted . However, the master can be a weakness and MW provides a

checkpointing interface to allow applications to record checkpoints as processing

progresses.

MapReduce

The MapReduce programming model (Dean, Ghemawat 2008) abstracts parallel

distribution and aggregation to provide a simple framework for parallel processing .

Figure 3.2 depicts a simple schematic of the initially proposed master worker

arrangement, with the master creating mapper and reducer workers and assigning

user supplied map and reduce operations to them.

50

Input
Work

Intermediate
Results

Distributed File System

Figure 3.2: Map-reduce simple schematic

Central to the operation of MapReduce is the concept of a key-value pair. Each

mapper takes from the input domain a logical value identified by'a key, and applies

a user supplied map implementation to transform the value to some intermediate

key-value pair in the target domain. This intermediate output is stored to disk.

Each reducer is assigned an intermediate output key, and applies a user supplied

reducer implementation to the intermediate output values for that key to compose

the final results.

Many variants of the MapReduce model can be formulated, being influenced by

the target architecture and type of problem. For instance, other control structures

might be used for instantiating and managing the mapper and reducer processes,

and intermediate output can be delivered directly to reducers and only stored to

disk when there is insufficient memory, as is often the case for 'Big Data'

problems. There are many ancillary elements used to augment Map Reduce

systems, including optional combiners that can pre-aggregate a mapper's

intermediate output, and partitioners to partition the intermediate output, ensuring

that each reducer receives input associated with the key it is assigned.

The Hadoop framework (Cutting 03/19/2012) is a popular open source java

implementation of the map reduce programming model together with a supporting

distributed 'Hadoop file system' (HDFS). IBM uses an augmented variant of

Hadoop in its Big Insights product (Ebbers, De Souza et al. 2013)). This style of

programming is well suited to the handling of unstructured data and similar

approaches can be found in earlier works such as the P3L Pisa Parallel

Programming language (Bacci, Danelutto et a\. 1995), which supports map-reduce

along with other parallel programming patterns (e.g. farm).

For applications that can be posed in terms of map and reduce functions, the
-

programmer need only implement the map and reduce abstractions, and is

otherwise largely shielded from the complexities of parallel programming. The

system arranges the mapping onto distributed resources, and the collection of

results. However, some problems may not be easily expressed as map and

reduce functions making it difficult to program them directly in MapReduce, while

others may not fit well with a MapReduce structure, leading to performance issues

(e.g. bottlenecks). The sweet spot for MapReduce appears to be for huge 'Big

Data' problems that are not that hard, and only require a forward sweep through

the data.

51

For analysis problems that require an iterative approach, the MapReduce batch

oriented model can be particularly cumbersome and inefficient, and this has

motivated other approaches to fill this space. One of note is Spark, an in memory

distributed computing engine targeting Big Data analytics (Zaharia, Chowdhury et

al. 2010) and in particular machine learning algorithms, many ofwhich are highly

iterative in nature. Spark's main data structure is the 'read only' Resilient

Distributed Data (ROD) which is reminiscent of distributed shared memory

techniques (but specific to one data structure). Spark applications typically create

pertinent ROD representations and define transformations on them. Actions are

then defined to run these transformations, with the Spark system organising ROD

distribution and processing. Of additional note is Spark's novel fault tolerance

approach using the concept of lineage to rebuild data lost through failed processes

rather than traditional checkpointing. Although the ROD abstraction seems

potentially restrictive, the in-memory iterative approach is attractive and Spark is

becoming increasingly popular.

3.4.3 Graph based frameworks

Although designed for 'Big Data', the MapReduce model is not a natural fit for

large graph problems. This has prompted efforts to devise frameworks specifically

for this type of problem, prominent amongst these is Pregel, described as a

"framework for processing large graphs" (Malewicz, Austern et al. 2010). Pregel

uses a generic programming style (it is implemented in C++), the core element

being an abstract vertex class. Much as MapReduce requires the user to provide a

compute function, users subclass the vertex class to provide bespoke functionality.

Although the generics mechanism mandates that vertex subclasses use the same

types, this restriction can be circumvented by using more flexibility types. Pregel is

inspired by the venerable Bulk Synchronous Parallel (BSP) model proposed by

Valiant (Valiant 1990), where processing progresses as a series of super steps,

with synchronization between each super step. Within each super step, each

vertex receives messages from its input vertexes, computes a user function, sends

output messages to its output vertexes, and vertexes can also be created,

removed and even adjust their output edges to adapt the graph topology. The

input messages are those that were send on the previous super step, and a

vertex's output messages will be delivered in the next super step, a message

passing paradigm being used. That processing is synchronized after each super

52

step allows for much simpler reasoning, and deterministic behaviour. A large

graph must be partitioned in order to distribute vertexes amongst the available

processors and in the default implementation, vertexes are simply assigned to

partitions according to a hash on the vertex's id. This is admittedly not ideal and for

many problems the user may have to provide a custom mapping to optimally

distribute vertexes amongst the processors. Distributed processing is orchestrated

via a master-worker model, with fault tolerance arranged through checkpointing.

Earlier graph based approaches abound, prominent amongst these being the

Parallel Boost Graph Library (paralleIBGL). ParallelBGL is also a template based

distributed graph library, that can use MPI as its communication substrate

(Gregor, Lumsdaine 2005). It is a distributed counterpart to the renowned Boost

Graph Library. In parallelBGL, a graph is represented as a distributed adjacency

list, with graph partitions being stored locally as vertex-output edge adjacency lists. I

As important to this library is the concept of process groups, these representing an

extension of the BSP model where super steps are executed followed by internode

communications, but where communication could be arranged within a step for

specific requirements. In this way, synchronization points are introduced into graph

algorithms to ensure deterministic behaviour (which of course requires

considerable skill). Another feature of the library is support for ghost cells, through

distributed property maps that essentially allow replication of remote data locally.

This is a useful feature for some algorithms, but care needs to be exercised in its

use, as data replication overhead can impact scalability. ParallelBGL is a very

efficient and quality choice for handling reasonably sized graphs, whereas Pregel

is designed to scale to very large graphs. Most users will not be developing graph

algorithms for parallelBGL, but instead will want to use the already devel9ped and

battle hardened graph algorithms available.

The two examples chosen here are representative of multiple graph based ~

approaches, evidencing that each must still grapple with the fundamental

problems of optimising partitioning and distribution. Of course, a key observation is

that these libraries are only of use to problems that can be repr.esented as graphs,

and as such would only form part of a larger application that required more than

just a graph processing ability. In these applications, multiple libraries would have

to be employed, and to leverage distributed processing, they would have to be

distributed libraries, likely introducing integration challenges. Graph parallel

53

approaches are stateful, in that the data structure values are updated in situ as

processing proceeds, in contrast to the data flow approach, presented in the

following section.

3.4.4 Data flow and Streaming Frameworks

The data-flow programming paradigm explicitly describes parallelism by

representing a program as a graph of connected nodes, where nodes process

input data, produce output data, and each node can execute asynchronously when

all its inputs are available. The pure data-flow model initially gained prominence as

an instruction level data driven alternative to the Von Neumann sequential control

flow model, its multi-locus control being proposed as a means to ameliorate

memory latency and synchronization overhead inherent in the control-flow model

(Arvind, Iannucci 1983). However, it became apparent that this fine grained model

had shortcomings, such as the increased overhead incurred in arranging

instruction execution and in detecting enabled instructions, and as important, in

handling more complex data structures (Lee, Hurson 1993). This has motivated

the development of hybrid (or macro) courser grained approaches to data-flow

where multiple instructions at a node proceed according to the sequence control

flow model, and inter-node control follows the data-flow model. In a multi

processor architecture, this hybrid data flow approach is usually implemented at

the thread level. The data-flow model has much in common with functional

programming, wrestling with similar issues such as grain size and data structures,

and using similar solutions such as statelessness and immutability.
. ~

A number of frameworks supporting the data-flow model have been implemented,

and here interest particularly extends to those 'hybrid' examples that also offer

application level patterns of parallel programming. In (Aldinucci,Anardu et al.

2012), the 'macro data-flow' pattern based programming framework is proposed as

a structured parallel programming approach targeting multicore architectures. The

authors argue that fine grained data-flow has historically had mixed performance
-

results, and that a coarser grained (Le. a macro task) approach is more

appropriate. Of note are the common core issues of task size and communication.

The paper also mentions an optimisation to 'group' subgraphs that are too fine

grained into a single node. The data-flow graphs are compiled from structured

programming environments, and expressed within these environments as

54

compositions of provided parallel design patterns such as pipe, farm and map

reduce. Efficient macro data-flow interpreters then automate the running of the

macro data-flow graphs. An API allows for the introduction of new patterns, thus

supporting extensibility.

A related research effort, FastFlow (Aldinucci, Danelutto et al. 2012) is a

framework supporting development of multicore parallel programming, particularly

suited to stream based applications. It uses a layered approach to separate low

level parallel programming (Le. threads and synchronisation) from intermediate

and high level pattern based development. Although accessible, the low level

programming layer is more the domain of the framework developers, and includes

thread and syrichronisation management, and asynchronous lock free queue

constructs used for composition and communication in data-flow or streaming

based applications. At the intermediate level, developers can compose graph

representations of programs using skeletons of predefined parallel programming

patterns, connecting via queues. Similar to Intel's TBB's pipeline streaming

support, this level requires some knowledge of parallel programming. At a higher

level, problem solving environments can be built that support abstractions for

specific domain usage (e.g. a parallel Monte Carlo simulation abstraction) -largely

removing an application developer's exposure to parallel programming. The main

aim of the framework is again to reduce programmer effort by providing skeletons

of common parallel programming patterns. The skeletons are parametrizable, with

parameters being supplied at compile time. A flexible feature of the framework is

that parallel patterns can be arbitrarily nested, within other parallel patterns as

appropriate. The data-flow and streaming approach places emphasise on

composition, as a core concept. This is in contrast to imperative paradiglTls that

use composition to organisation and connect software components, through more

varied interfaces (see next section). The framework could be extended across a

distributed architecture using the streams paradigm, but its application in this

context would o~ course be constrained to problems that fit well with a streams

based approach.

In closing this sect.ion it should be pointed out that implementing a thread based

hybrid or macro data-flow model targeting shared memory multiprocessors does

inherit the limitations of thread level parallelism, principally in terms of scalability.

Indeed, such concerns have also renewed interest in the design of data-flow

55

processors (Hurson, Kavi 2008).

3.4.5 Composition and Workflow

Composition is an overloaded concept. It is an effective core software engineering

methodology for building up a complex application from constituent components

that may also include one or more frameworks, with frameworks often being build

similarly from multiple components. However, in this section the interest is on

frameworks supporting the concept of a workflow, and in this context composition

is used to describe the construction of large graphs of compute entities that can

potentially be run in parallel (Le. as a composed workflow), exploiting parallelism

at the component level. Each component may also itself be parallelised in a

nested fashion. Related to the composition of component or task graphs is the

data flow through such a graph, and together these specify a runtime workflow.

The most common and more amenable graphs are directed acyclic graphs that

mandate the direction of dependencies and have no cycles.

The Pegasus framework (Deelman, Singh et al. 2005) separates the logical or

abstract directed acyclic graph representation of an application workflow's

components and data dependencies, from that workflow's mapping onto

distributed resources for execution (Pegasus stands for "Planning for Ex- ecution

in Grids"). The mapping of workflow tasks to resources is generally an NP

complete problem, and so heuristics are often employed to help map to 'near

optimal' acceptable solutions, with the goal being to minimize the execution time.

This separation simplifies application development, improves flexibility, tools can

be used for the workflow composition, and the mapping to concrete resources can

be automated, which is the core Pegasus functionality, handing off work to a job

scheduling and resource management sub-system such as Condor-G (Frey,

Tannenbaum et al. 2002) or PBS (Henderson 1995). As is common with workflows

that have an executive at the component/task level, Pegasus has some built-in

fault tolerance to re-execute tasks. The Pegasus framework emphasises the merit

in separating the workflow definition (or application description and commonly

expressed as a DAG), from it's eventual mapping to resources for execution,

which may not be known or change.

Cascade (Tagliasacchi, Best et al.) is a Parallel Processing framework facilitating

parallelisation in complex C-+:+ systems. Users implement Cascade Task 's and

56

compose them into a task dependency graph. At run time a CascadeJobManager

instantiates threads to execute the tasks according to the defined dependencies.

The framework is designed to exploit task parallelism at the thread level

(implemented in C++ and using pthreads), and includes explicit expression and

management of data-flow, interactive and real-time dependencies to optimise

performance. The authors point out that Cascade can be integrated with, or

contain other parallel constructs such as OpenMP and map/reduce, presumably

with a commensurate increase in programmer effort and complexity. As with many

frameworks specifically targeting shared memory architectures, integration into

distributed architectures may be non trivial.

3.5 Domain Specific Frameworks

These frameworks provide core infrastructure and support libraries that are

specific to a domain. Parallelisation of such frameworks can be incorporated at the

outset, although it is also common to subsequently introduce this functionality

once the utility of the application has been established, and performance becomes

a concern. In this section, a selection of application frameworks that have

incorporated parallel and distributed patterns are reviewed.

3.5.1 Parallel Frameworks for Evolutionary Algorithms, Simulations and AI.

Optimisation problems are inherently compute intensive, and usually have a high

degree of implicit parallelism. As an example, evolutionary computations seek to

find an optimum solution for a given problem using an analogy to Darwinian

evolution, using selection, crossover and mutation operators. The evaluation of

solutions found can be very compute intensive, and that ea'ch candidate'solution

can be evaluated independently lends itself to parallelism. Distributed BEAGLE

(Gagne, Parizeau et al. 2003) is an extension to the BEAGLE framework for h

..
evolutionary computations, supporting a master-slave model to distributed the

work amongst available processors, and recognising that the grain size of tasks

has a significant impact on the speedup obtained. Distributed BEAGLE also

embeds an Island model that divides the global population into separate sub-. .

populations that includes migration between these populations, a fine grained

model suitable for SIMD architectures and hierarchical hybrids of these models.

Communication is achieved via an xml data protocol communicatfng over TCPIIP

57

sockets

Similarly, the ParadisEO (parallel and distributed evolving objects) (Cahon, Melab

et al. 2004) extends the 'Evolving Objects' framework and incorporates reusable

parallel and distributed meta-heuristics for both evolutionary computation, and

supports local search optimisation problems using a layered architecture of

solvers, runners and helpers. For evolutionary computations, ParadisEO

distinguishes three parallel and distributed models, the Island cooperative model

to partition the population, the parallel evaluation of the population, and the

distributed evaluation of an individual. These form a hierarchy, where sub

populations are distributed for execution, a master (farmer) will then apply

selection, crossover and mutation on each sub-population to evolve new solutions,

and the quality of each solution is then evaluated, potentially again in parallel.

Local search optimisations is similarly parallelised. The emphasis in ParadisEO is

on a multi-layer and modular architecture, expressing the advantages in terms of

design and code reuse, of using a framework. The framework supports both

shared memory communication models using posix threads, and distributed

memory models through PVM or MPI, and a higher level 'channel' abstraction.

Goals include maximising design and code reuse, flexibility and adaptability, utility,

transparent and easy access, performance and robustness.

Note that in the above examples, the parallel support structures such as master

slave are embedded into these frameworks, although it is acknowledged that they

could be extracted and generalised for reuse as the parallelisation is usually

orthogonal to the function of the application and should be separated out. Tightly

integrated frameworks can be tuned to the application domain, but remove the

advantage of code reuse.

3.5.2 Image Processing Frameworks

Image processing applications typically use compute intensive algorithms.

Furthermore, many of these algorithms exhibit inherent parallelism. To this end, a

number of libraries and frameworks have been proposed and implemented, to

realise performance improvements. To shield the end user from the details of

parallel programming, libraries commonly implement parallel versions of image

processing operators. In this way, the user is unaware of the underlying parallel

processing. An interesting approach (Seinstra, Koelma et al. 2002) introduces the

58

notion of parallelizable patterns in order to increase code reuse, and improve

maintainability. In this data parallel image processing library, a single uniform api

is provided although the underlying implementation can be sequential or

para\lelised. The parallelizable patterns encompasses the maximum amount of

work that can be processed either sequentially or in parallel, and this is

implemented once, and used in both the sequential and parallel implementations,

so removing maintenance issues due to code duplication.

In (Nicolescu, Jonker 2002) it is recognised that data and task parallelism when

used separately are relatively limited, and that exploiting both can yield better

performance. This is particularly applicable to image processing, and a processing

environment is proposed in which data parallelism is supported using algorithmic

skeletons, and task parallelism through composition. Here the skeletons are

abstractions encapsulating particular patterns of parallelism, where image

operators are implemented as higher order functions, shielding the programmer

from the data parallelism details. The programmer can compose these functions

as tasks that are the nodes of a directed acyclic macro-dataflow graph (called an

image application task graph in this context, examples indicating this as implicit in

the program structure, rather than as explicit task objects, being implemented in

C). In this way, both data and task parallelism are exploited. A cost model is also

proposed, to optimise task scheduling, accounting for the expected communication

costs of data distribution within tasks and redistribution across tasks, and

computation costs of the tasks.

3.6 Domain Specific Languages

This chapter has so far focused on frameworks, highlighting key charac~eristics

including reuse and user guidance. This section broadens the discussion to

include an alternative that can be employed at the domain level, namely a domain I

specific language (DSL). In contrast to frameworks written in a general purpose

programming language such as C++, Java or Scala, a DSL defines its own higher

level bespoke syntax and semantics for a particular domain. The main motivation

for the development of a DSL is that a domain expert can then develop the domain

specific aspects of an application in a higher level language that is more naturally

expressive of that domain. Many characteristics of frameworks have their

counterpart in DSLs. For instance reuse is manifest in a DSL as the concepts it

59

defines are reusable across multiple applications and a DSL confines and guides a

user perhaps even more so than frameworks since the user is restricted to the

defined language (and user code does not normally extend a DSL). Some of the

limitations of frameworks are also evident in a DSL, with the so called 'framework

gap' having its equivalent in a DSL that does not completely specify its domain.

Creating and using a DSL does introduce its own challenges. A DSL is usually

embedded into a host language and thus extra transformation steps are required

to convert the DSL syntax to a target language representation for compilation, a

converter being required for each target language. As with frameworks, multiple

DSLs may be needed to support various domains in one application, and these

may not mesh well within the target language. A detailed comparison of

frameworks and DSLs is elucidated through an e-commerce case study in

(Johansen 2009).

Returning to the theme of this chapter, a core interest is how to integrate various

DSLs into a parallel processing environment. The Pervasive Parallelism

Laboratory at Stanford University is working on the 'Delite Compiler Framework

and Runtime', that includes infrastructure to facilitate creating parallelised DSLs,

together with compilation and parallel runtime support (Brown, Sujeeth et al.

2011). It is incumbent on the DSL developer to identify parallelism within the

domain, and map that to parallel patterns made available within the Delite

framework, an admittedly challenging exercise. This also implies that the DSL

developer can only use the parallel patterns available at the time the DSL is

created, which may be restrictive. However, another core aim .of the research is

about multiply transforming and compiling a single program so that it can be run

on many different parallel architectures (e.g. multi-core, gpu). Besides being

restricted to the parallel patterns that the framework encodes, this implies a further

restriction in that an application can only run on hardware for which Delite has

implemented a complier. Further insight as to the advantages and disadvantages
"

of the compiler versus library approaches will undoubtedly unfold as this important

research progresses.

3.7 Service Oriented Architecture

The frameworks reviewed so far in this chapter have placed the greater emphasis

on parallel processing performance. As outlined in the introduction, distributed

60

computing brings modularity and reuse to the fore, the focus shifting to

architectural considerations that aid flexible composition of modular applications,

with performance being also measured in terms of reliability and scaleability,

rather than just processing speed. The most popular architectural style that

supports the provision of scaleable distributed computing, especially in the realm

of business applications, is the Service Oriented Architecture (SOA) and it will be

illuminating to briefly review its merits and limitations. It should be noted that due

to its popularity, and the manner of its rise to eminence, SOA is defined in more

than one standard and one can gain a better footing by first consulting the Object

Management Group paper that provides guidance on the standards landscape in

this respect (Heather Kreger IBM, Jeff Estefan NASA/Jet Propulsion Laboratory

2009). This chapter section confines itself to the core concepts of SOA pertinent to

distributed computing, and goes on to review how services can be productively

realized using the Spring framework (Johnson, Hoeller et al. 2013).

3.7.1 Distributed Services

The essence of SOA is about organizing the distribution of application capabilities

through loosely coupled services. Each service encompasses some self contained

functionality and exposes it to other services via an agreed communication

protocol. A service may enlist multiple other services to provide its function. This

architectural style promotes reuse and composition of applications by connecting

services. It is a common practise for applications to be organised into multiple

horizontal layers (also referred to as 'tiers'). A three layer arrangement might

contain a presentation layer, a business layer and a data tier layer and the SOA

approach extends this to allow for vertical layering. For example, a busin~ss layer

may be composed of multiple connected services that collaborate to provision the

business logic of the application. The architecture allows for the independent

development, testing and maintenance of services, with flexible update and

addition of thes~ into an application (c.f. a monolithic application where the whole

application may have to be redeployed after an update). Another major attraction

of this approach is that the number of service instances deployed can be adjusted

to align with the load requirements, and services can be swapped out for

maintenance or upgrade.

There are some challenges and pitfalls to the SOA approach. Although the

61

-

modularity can aid system understanding from an architectural perspective, it can

also become a burden if care is not taken. The granularity of the splitting up of

functionality into separate services must be carefully considered, as this impacts

the extent of service dependencies. Related to this, multiple concurrent service

interactions can quickly become complicated, and applying consistent security

across multiple services can be difficult. The attraction of swapping out services

for upgrade may not actually be a simple matter, for instance if a service API

changes. Admittedly this is not specific to SOA, but does become important with

myriad interfaces to manage. Reliability and performance may suffer when all

service calls are to remote interfaces, using heavy communication protocols. An

ameliorating observation is that collaborating services are often run on the same

data centre cluster where the connecting fabric is local and high speed. Fault

tolerance becomes more important because myriad distributed services increase

the chance of service failure, and this may require complicated application specific

recovery mechanisms (conversely, the architecture allows for the provision of

redundancy). Given the pros and cons, it is readily apparent that SOA isn't a silver

bullet, and doesn't obviate the need for good application and system design.

However, it is demonstrably successful in providing an organising architecture for

the flexible and adaptable composition of distributed applications, and it fits very

well with the emerging trend towards cloud infrastructure technologies. A SOA is

also applicable to 'Big Data' problems that are amenable to course grained

decomposition, where the computation of each partitioned task significantly

outweighs the service communication overheads.

3.7.2 The Spring Framework

There are numerous libraries and frameworks that have evolved to assist the

development of SOA systems. A popular choice is the Spring framework, which

provides a lightweight application container together with a number of supporting

modules. Of chief interest here is the inversion of control (IOC) module that

facilitates the flexible assemble of applications, which of course includes SOA

services. IOC is a seasoned software technique to decouple the execution of an

abstraction from its implementation. Control is handed over to the framework,

which then facilitates the dynamic binding of specific implementations at runtime

(this is also commonly encountered in event driven systems). Although IOC

facilitates modularity, and loose coupling of components, the prime advantage is in

62

enabling extensibility, where new implementations of behaviour can be plugged

into a service. This is an contrast to traditional programs, where application logic is

statically expressed as an integral and fixed part of the program. The Spring

framework uses dependency injection to implement IOC (Fowler 2004), with

annotations in code, and configuration files describing how the framework should

'wire up' an application. Another common dynamic binding technique to implement

IOC is through the use of a service locator. IOC is a very powerful technique, that

will be of central importance to the proposed design of a distributed framework in

the next chapter.

A second powerful module worthy of mention before concluding this section is the

Spring MVC framework, used to implement the 'model view controller' architectural

pattern in an application's presentation layer (Fowler 2006). This greatly simplifies

the exposing of a service's remote interfaces, typically as REST endpoints

(Fielding 2000), again by the incorporation of annotations in code, and is a key

enabler to productively creating services for SOA systems. The communications

overhead is necessarily significant in SOA services, to provide robust and secure

interactions, and this does of course bear heavily on the type and extent of parallel

processing that can be arranged within this architecture, and hence the usage is

more focused on distributed computing.

3.8 Summary

The future route to more performant computing will be via parallel processing.

There has been limited success in automatically parallel ising programs. Low level

parallel programming requires considerable specialised skill. It is anticipated that

the majority of programmers will be application domain developers rather than

skilled parallel programmers (system designers) (Samuel H: Fuller, Lynette I.

.. Millett et al. 2011). This implies that higher level abstractions must be sought, that

can provide an adequate level of productivity for application programmers and

leave the lower efficiency .Iayer to parallel programming experts. Parallel

programming frameworks fit the bill, providing core reusable infrastructure code

together with abst~act interfaces that users can hook into to leverage and extend

the framework functionality. It is widely accepted that higher level abstractions

trade ease of use and productivity for efficiency and performance. So a parallel

processing framework must be judged not only on the productivity it affords, but

63

also on the performance it provides. Lower level parallel processing frameworks

are often 'open' for this reason, such that they can be tweaked to improve

performance for specific applications.

A broad range of frameworks, represented at varying levels of abstraction that

support many parallel programming patterns have been reviewed. All these

frameworks aim to assist the user, by supplying implemented core parallel

processing infrastructure, with those at a higher level also providing domain

specific libraries. Useful categorisations are based on the abstraction of a

framework in terms of the level of exposure to the details of the underlying parallel

processing implementation, and on the generic or application specific design intent

of the framework. It is recognised that in the general case, parallel processing is

orthogonal to the domain specific application, and it is good programming practise

to separate out this aspect to improve reuse, development, testing and

maintenance.

Some common attractive features of a parallel processing framework can be

discerned from this review. In generic parallel processing frameworks, the user

supplies specialised code that is then inserted into appropriate parallel patterns,

parallelisation is then automatic based on the available resources. Common

patterns should be available as a core part of the framework, but because it is

difficult to predict the requirements of future applications, a framework should be

extensible, such that novel parallel patterns can be easily plugged in. As well, it is

desirable for a framework's design to be broad enough to accommodate

distributed and shared memory systems, and hybrids of these'and also allow the

inclusion of GPU resources when applicable. Many of the frameworks reviewed

target shared or distributed memory systems, but not both. Task and data

parallelism should be supported, with facilities to compose task graphs and

execute tasks according to the implied dependencies, and partition data for each

task as appropriate to improve performance. Openness is a double edged sword

as it is often necessary to allow for potential low level performance optimisations

on specific systems, so a framework should be open, but effort should be made to

remove or reduce the need for optimisations, or to automate optimisations

whenever practical. To this end, parallel processing frameworks should employ

diagnostics and feedback of runtime statistics to continually monitor and improve

the parallel runtime of the framework and the application code. This can also feed

64

back into further development of both the framework itself, and application code

that uses it. A lot is said about optimised manual code being much more

performant than generic code (Le. provided by frameworks). However, the

assumption is that expert programmers are available, with sufficient time to

commit. These assumptions do not always apply, and it may be that the more

generic but heavily used and tested code evolves to be more perform ant than the

average manually written code.

Instead of embedding a framework into an application or sections of an application

in an ad hoc fashion, for many applications it is arguably favourable to hand over

execution control to a parallel framework. Certainly this inversion is attractive in

image processing applications where pipelines and workflows are defined, which

are in any case usually delegated to workflow runtime infrastructure for execution.

When a framework runs 'plugged in' parallel patterns and application code, the

ensemble becomes the composed application. Indeed, the application can be run

as a separate server. These ideas feed into the requirements for a novel parallel

processing framework introduced in chapter 4.

Finally, some of the shortcomings of frameworks should be admitted. There is

always a learning curve to using a framework, even if comprehensive

documentation is available (as it should be). The design of a framework may be

incomplete or not be intuitive to all users. There can be framework gaps, with

functionality falling short of domain requirements, framework overlap and issues of

framework composition and cohesion can surface, or incomplete design intention

and limited or no access to source code can impede understanding and usage

(Mattsson, Bosch 1997). Extensibility can address many issues, but if core

functionality is missing, the framework must be modified. By its nature,. a ~

framework guides but also constrains. This is intended to assist, but may be too

restrictive. The framework design must be carefully crafted to get the right balance

here. Also, much is stated about the separation of concerns, but a framework is

bound to its users via the interfaces it exposes. These interfaces must also be

carefully designed, as once a framework is in general use it is m.ore difficult to

update these interfaces and maintain backward compatibility.

65

Chapter 4 The DFrame

4.1 Introduction

Previous chapters have outlined common parallel programming models,

languages and patterns, and a number of implementing frameworks have been

reviewed. It is evident that many choices confront the designer, who must prioritise

and compromise according to the specific aims of a particular framework. While

some frameworks focus primarily on real time performance, others regard

simplicity, flexibility and reuse as core. Still other approaches hold scalability as

paramount with specific target hardware in mind, and many more frameworks

target particular domains. The various approaches reflect not only the increased

choice space that anyone wanting to harness parallel resources must contend

with, but also the priority given to the myriad characteristics particular to parallel

programming. Indeed, two frameworks may strive to support the same set of

characteristics such as performance, scaleability, openness and reuse, but the

framework designs will certainly differ if the priority given to each characteristic is

different. Even if the core parallel processing goals are similar, differing solutions

are often proposed based on the designers experience, target users and

subjective aspects such as what constitutes 'ease of use'. Simplicity, generality

and flexibility are all in tension and compromise is unavoidable.

4.2 The Argument for a New Approach

None of the reviewed frameworks fully provide the required flexibility, extensibility

and adaptability at every level, and all the particular requirements sought, and so

research began on how to support the core aims in a separate flexible parallel

processing framework, driven by a specific focus to aid the speed up of 3D image

processing, with, an emphasis on supporting high content screening of cell biology

imaging. It was immediately apparent that the effort expended on the parallel
-

processing aspect was going to be demanding, and that this effort would be

specialised and largely orthogonal to the image processing itself, and as such

should be separated out and generalised into a framework, allowing for

independent development and reuse. Further consideration led to the

determination that parallel programming patterns would provide the necessary

66

structures that could separate and organise the parallel programming not only for

flexibility and reuse, but also for extensibility, maintenance and testing, and allow

tools to be devised to aid further development and runtime diagnostics. As outlined

in chapter 1, the requirements include the ability to have a long running interactive

experience, as well as provide batch processing for background high content

screening of multiple 3D images. This suggested the need for a client server

architecture, with clients composing and forwarding task specification graphs to a

relatively long lived parallel processing server, that would automatically manage

the parallel processing of each task according to dependencies expressed in the

graphs. Alongside performance, the framework would prioritise flexibility,

extensibility, adaptability and reuse at the parallel processing level and at the

application level, this being important as it is not known in advance, all the parallel

patterns to support or the imaging applications that will be composed and run. The

long running batch processing or interactive sessions provide an environment in

which ongoing performance feedback can be captured and used to automatically

adapt the framework in terms of compatible parallel pattern selection and tuning to

optimise task execution, and also the splitting to create process groups and their

assignment to tasks so that the tasks can be further partitioned and parallelised.

This chapter introduces a new and novel distributed framework, referred to as the

'DFrame', designed to provide the required levels of flexibility, extensibility,

adaptability and reuse. Chapter 5 then presents preliminary evaluations of per task

(data) parallelism where the DFrame is applied to 3D imaging filters, segmentation

and visualization operators and Chapter 6 goes on to present a completely

integrated case study of a 3D image processing pipeline application that brings

into relief both task and data parallelism and more fully demonstrates the power

and adaptability of the DFrame in a real world application.T~e framework-is

primarily designed for use in an 'in house' high content screening image

processing application, and so is initially targeted at Kingston University

researchers. Of qourse, even in this context it is still of prime importance to aim for

Simplicity in use, and so a simple GUI is provided for presenting the available

functions, composing task graphs which constitute specific application workflows,

connecting to a server instance and running the composed workflows.

Figure 4.1 shows a schematic of the distributed imaging architecture, in the

context of the targeted image processing (high content screening) applications,

67

and interactions with the distributed framework. Parallelisation is to be supported

at every stage of the anticipated core image processing pipeline. The logical order

of the project is apparent, where 3D filters and segmentation algorithms are first

being parallelised, which are necessary to extract features that can be piped into

the analysis stage. Also the visualization is progressed to provide feedback on

inputs and outputs at all stages of an image processing pipeline.

3D Segmentation
Filters Algorithms

Feature Extraction

II

Pattern Classification
Neural Networks

PCA etc.

Feature Analysis

u
DFrame

-

Direct Volume
Rendering (Ray

Tracing) etc.

Visualization

1

Implemented

Future

Figure 4. J: Overview of the Distributed Imaging System Architecture

-

Although the schematic makes clear that image processing is key at least in the

feature extraction and visualization stages of the processing , it is anticipated that

the feature analysis stage will require more general and quite different

parallelisation strategies, and this encourages the design of a more general

distributed framework. So although the distributed framework design must map to

and work well with image processing, a principle of the design is to be generic

enough to cater for other usages within a pipeline, such as in an analysis stage.

4.3 Conceptual Overview

Good software practise encourages the separation of concerns through modular

design and the composition of software systems from component building blocks.

68

As well, frameworks provide additional organising structure, guidance and support

for programmers, reducing development effort and increasing productivity.

Applying these principles, a key part of this research is to provide a framework that

allows for the separation of core parallelisation infrastructure from domain image

processing functionality, a prime motivator being to encourage independent

development and reuse of the paraJlelisation support framework and the image

processing domain, as far as possible. The research endeavour will also help

illuminate the extent to which such parallelism can be made transparent to the

user, and in the general case bring into relief aspects of parallelism that must be

explicitly managed and to identify and implement image processing support code

to integrate with the paraJlelising infrastructure. Related goals are to reduce

programmer effort and provide help with reasoning about how to effectively

parallelise with minimum disruption to domain code and so specifically to

encourage parallelisation of compute intensive 30 image processing functionality.

Parallel processing can be broadly broken down into the following steps:

• Functional (task) decomposition and distribution.

• Data decomposition and distribution.

• A computation phase or phases with optional interlaced communication

dependent on the problem being solved.

• Recomposition and delivery of resultant data.

A particular problem may not require either functional or data decomposition, but

some method of assigning work and data to independent processes will be
-

required by definition, to parallelise processing. Likewise, processing is only useful

in that a result is produced, assembled and made available or delivered to some

target destination. This naturally leads to a requirement to separate out the ~

decomposition, distribution, execution, collection and composition strategies,

concepts fundamental to arranging for parallel execution.

If distributed tasks ,are independent, then the computation phase is quite

straightforward and parallelisation is usually very effective. More complexity is

involved when there exist dependencies amongst the distributed ta,sks such that

an order is imposed on task execution. In this case, the expected parallelism can

69

be severely impacted by these dependencies, and effort must be made to ensure

that dependencies are minimised and managed to optimize parallelisation. For

instance, an adjustment of the task granularity or reworking of the domain

algorithms can help. It is always important to compare parallel execution with

serial execution, but even more so in these cases, to ensure parallelisation is

effective and worthwhile, and a framework should provide rudimentary facilities to

monitor performance in this regard and adapt processing to optimise. The

following sections describe how the proposed DFrame incorporates these

concepts to support parallel execution.

4.3.1 Design Core Concepts

The DFrame encompasses a modular design, with separated extensible support

for models that implement parallel patterns. This facility enables experimentation

with different parallelisation designs and assists and encourages evolution of

model variants that express known patterns, and also the introduction of entirely

new patterns. A growing infrastructure will thus be available to encourage the use

of parallel processing of domain functionality, and allow users to devise and

contribute new functionality to the parallelising framework for specific purposes. As

well, the research should bring out common salient features and core aspects and

issues of parallelising image processing operators.

Inversion of control (IOC) was introduced in the previous chapter (see section

3.7.2) as a technique that decouples an abstract representation from its

implementation. This encourages modularity and loose coupling, and most

importantly facilitates the dynamic binding of specific implementations at run time,

which is key to extensibility. In practise, IOC is typically arranged .by handing over

control to a framework, that can then manage the dynamic runti~e binding of

implementations and drive execution. IOC forms a central part of the DFrame

design, where ~ultiple DFrame instances load and execute models implementing

parallel patterns, which in turn load and execute application code. Inversion of

control allows for the extensibility that is such an essential part of the DFrame

design to enable novel parallel models and application code to be 'plugged in'.

This mechanism is described in more detail in the following sections.

The DFrame design draws together the concepts of decomposition (partitioning),

distribution, execution, collec~ion and recomposition in models and tasks. Models

70

lie at the heart of the DFrame design, implementing diverse parallel patterns of

execution and working in concert with a task's specification to achieve parallel

execution of a task. A task in this context is a DFrame defined structure that

contains application provided implementations of partitioner, executor and

composer interfaces. The DFrame defines generic unstructured and structured

variants of the partitioning and composition interfaces that applications can

implement to provide bespoke flexible decomposition and composition strategies.

Operationally, a model will use a task's partitioner to obtain and distribute parts for

execution, and similarly after gathering results will use that task's composer to

effect recomposition. Logic implemented within each model defines the details of

how the distribution and collection is effected, and will map to the parallel pattern

the model implements. A model drives execution of the distributed application

code through the task provided executor interface. Implicit in this description is that

models are distributed entities, being managed by distributed DFrame instances.

Model implementations can expose which decomposition and composition

interfaces they support, and the DFrame can use this information to identify which

models are suitable for a given task and so allow automatic adaptability within the

DFrame, in its choice of model to use for a given task. The aim being to allow a

more flexible mapping of compatible models to tasks such that the best model may

be chosen at runtime based on the task itself, and the context in which it is

running. The DFrame will also be able to use other information about the

algorithmic characteristics of a task in order to further determine suitable models

and adapt to an optimum model, such as whether each partitioned sub-task

requires the same time to process, which is often related to data size.

The interplay between a task and an associated model arrange for a more fine

grained parallelism, where each task defines a parallel unit 'of execution usually

exhibiting data decomposition. At a broader level, a core objective of the DFrame

design is to incorporate support for the assembly of multiple such tasks into task

graphs. These graphs then define any task dependencies that impose an order on

task execution. Indeed, by these means, the DFrame is used to construct

complete bespoke applications through the workflows that these graphs define.

The design also allows the DFrame to assess the resource requirements for a task

not only on its own, but also in the context of its placement in a task graph, to

determine the optimum execution plan in terms of what models to use for each

71

task, and what level of resources (processes) would optimise performance. This

coarse grained parallelism adds considerable flexibility and power to the

framework.

Task 1 Task 2 Task 3 Task 4

Master-Worker sub tasks Mesh model sub tasks

Figure 4.2: Task graph showing task dependencies and decompositions into sub tasks

In Figure 4.2 a simple task graph representing a pipeline application is shown.

Each task has an associated model implementing a parallel pattern of execution.

In this figure, Task 2 is using a Master-Worker model to arrange for unstructured

parallel execution , whilst Task 3 is using a structured mesh model (although not

shown, Task 1 and 4 will also be associated with models) . At a more advanced

level, the DFrame can detect (or be explicitly directed) that the output data from

task 2 is used as input to task 3, and in this this case can choose to keep the data

distributed if the models are compatible. As well, the model associated with task 2

may be adapted to align with the model used in task 3, with the participating

DFrame instances caching such models and data to reduce set up and distribution

costs and thus improve performance. This behaviour is described in more detail in

the DFrame architecture section.

Figure 4.3 shows a task graph with multiple branches. Each task is again

associated with a model (not shown). This figure depicts another feature of the

DFrame design. When a task graph splits into sub-branches, the DFrame can

arrange for the splitting of the available processes into appropriate processor

groups, such that each sub-branch is assigned a number of processes. This

72

translates to the number of DFrame instances that will participate in parallel

execution of the sub-branch, and hence the number of processes available to

each task and its associated model. The DFrame can arrange this in a recursive

manner, and in the figure this is shown at 'split l' and 'split 2'. It is the responsibility

of the DFrame to manage this, with tasks and models working with the resources

that the DFrame supplies. In the figure, it can be seen that after task 1 executes,

task 2 and 5 can execute in parallel , and the DFrame will perform a split (and

transfer data as appropriate) on the number of available processors such that task

2 and task 5 each get a proportion , assuming there are sufficient processors to do

this. It is also seen that after task 5, a further split is initiated, and the available

processors are further split. Indeed, the DFrame can inspect the workflow

described in the task graph, and make an initial adjustment to the splitting

statically, and can also subsequently readjust the processor group assignments,

adapting to runtime performance feedback. Merging will be automatically handled.

Task 2 "" Task 3 Task 4

/
, -

, , ,
"" "" Task 1 ,. Task 5

~
Task 6 ,. Task 7

Task 8 Task 9 , -Sp It 1 Split 2

Figure 4. 3: Task graph showing DFrame splitting of simple sub-branches

Figure 4.4 shows a processor grouping view of the task graph depicted in Figure

4.3 , when running the DFrame over 32 processors. Initially the DFrame may

decide to run the tasks according to the layout shown in Figure 4.4 (a). On multiple

runs , the DFrame will collect metrics that determine that the branch containing

tasks 2, 3, and 4 is consistently completing earlier than the task 5 branch , and on

subsequent runs can elect to reassign more of the available processors to the task

5 branch, and in this example, to the processor group running tasks 6 and 7 as

shown in Figure 4.4 (b) . This dynamic adjustment is possible due to the designed

separation of resource usage from task execution , and scheduling at the

73

processor group level rather than the processor level. Every processor group has

a root process for that group, that is responsible for running the sub-task graph

within that group.

, IT2 , r' T41 T5 IT6, T7 ITS, T91

I I

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • --t>

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
~ "'-/

Spl it 1 Split 2 Spl it 1 Spl it 2

(a) (b)

Figure 4.4: Adaptive processor groups when running a simple task graph

To summarise briefly, the DFrame runs models which themselves arrange for the

parallel execution of tasks. The DFrame manages the number of processors that

will participate in a specific model run and thus the extent of parallelism at the task

level. Built into the DFrame is the ability to adapt the resources supplied to tasks

(via models) within task graphs, and also to determine and adapt model selection

based on individual task characteristics , and the context in which a task is run .

Within a model run , the task partitioning strategy can be arranged to be

dynamically adapted at runtime such that the distribution strat~gy is determined

that optimises processing efficiency in terms of speed up and memory usage.

4.3.2 Image Processing

Although inclining towards supporting generic parallelism, the DFrame design is

influenced by an immediate requirement to cater for common image processing

operators. Given this intention, the DFrame of course maps well to usage in image

processing applications and this section provides a brief overview of the already

included support infrastructure that links the more generic DFrame to specific 3D

image processing capabilities.

In 3D image processing , data decomposition implies the partitioning of a 3D image

and distribution of the parts to independent processes for the computation phase.

74

It is evident that such decomposition and distribution is useful to a large number of

parallel image processing operators and such functionality should be available for

reuse to any programmer parallel ising 3D image processing applications. So

ancillary support for the decomposition and recomposition of 3D images is

provided, that can be integrated into models implementing parallel patterns that

plug into the parallel framework. As well as flexible strip and block decomposition

patterns, support for a 'ghost cell' or 'halo' pattern is provided (Kjolstad, Snir 2010)

. Often in image processing, stencils are defined on a local sub volume of an

image, and the computation involves the application of this stencil to each cell of

the image. When an image is partitioned and distributed, it often is necessary to

exchange data at boundaries between neighbours, and an implementation of the

ghost cell pattern facilitates this (also referred to as 'halo exchange'). Such

partitioning infrastructure bridges the image processing domain into the parallel

processing framework. Note that decompositions such as strip and block, and

associated ghost cell patterns are generic concepts, and the research efforts

include implementations specific to 3D image domain decomposition and

recomposition.

The DFrame support for models that encompass parallel patterns of execution and

associated task and data decomposition is designed to map well to the

requirements of a 3D image parallel processing system. Image operators map to

the coarse grain task parallelism, and each image operator can be applied to

partitions of a 3D image, executing on independent processes in data parallel

fashion. In sum, (at least) two levels of dependencies are distinguished: at a lower

level there is the decomposition of a task into sub-tasks that work together on a

single parallel computation and often employ data decomposition (e.g. at the

image operator level), and at a higher level the composition. of these tasks into a

. task graph that defines dependencies such as the order of application of image

operators (more functional centric). The SUb-tasks of a single task progress

processing in concert using the same parallel model, while each task in a task

graph specifies the particular model and hence parallelising patterns it uses.

4.3.3 Technological Choices

As reviewed in chapter 2 the technological choices available to implement the

framework are many. Target systems for this research include distributed HPC

75

clusters of multiprocessor nodes connected via fast inter-node communication

networks, so the framework provides core support for the distributed memory

model (message passing). Although it is common that processors on one node are

able to access shared memory, the framework's initial implementation focuses on

a homogenous message passing approach for both inter-node and intra-node

communications, relying on the underlying message passing implementation to

optimise resource usage. For instance, many message passing implementations

can be configured to pass messages via shared memory when appropriate (e.g.

IBM Power8 systems (IBM». That said, the framework is designed to be open

such that models directly using posix threads or openMP, and models that harness

GPU resources can be plugged in to form hybrid and heterogeneous software

systems. Such systems would pave the way to potentially interesting further

research.

It should be noted that there is a trade off between honing and optimising code for

a particular architecture, and making programs efficient on multiple hardware

architectures. This is pertinent as the DFrame provides a more high level facility

via a framework, to reduce effort in developing, improving, extending and

maintaining an imaging system that utilises parallel processing. A large body of

literature emphasises the importance of designing programs to align with the

target system's memory hierarchies to arrange optimised flow through the memory

caches, and to leverage compiler optimisations etc. (e.g. (National Center for

Atmospheric Research)). This is of course in tension with making programs

efficient on multiple hardware architectures. The implemented !TIodels are targeted

at the Kingston University clusters, but other models can be plugged in that are

more suitable for different architectures, so there is some flexibility and future

proofing. As well, the domain decomposition implementations adhere to interfaces,

such that the interfaces can be more long lived while the implementations could be

updated to align with different architectures.

A prime goal is to maximise performance, so the framework is implemented in

C++, a low level powerful programming language allowing full control to develop

very efficient implementations (with commensurate effort). Also, the framework is

designed to be extensible, so using an existing well known and supported

language should lower the learning curve and encourage contribution to and

extension of the framework. Users can create models and applications that can

76

plug into the framework in a familiar language, and be able to leverage existing

domain code and third party libraries (e.g. Boost (Schling 2011)). The target

architecture is an HPC cluster (Figure 4.5), and this aligns very well with a SPMD

message passing model of parallel computing and so MPI is used to support the

message passing model of parallel execution.

Visualisation
Work station

D
=:1

Control &
feedback

Image
data OJ

- LJJq
Database

Head node
,,/" ./' results
~ i'4----- I--- --1- -------,

-=- III
1 1 1
1 1 work 1
1 1 1
1 1 1
1 1 1

P
I. 1 1 .

r -wocessm p 1 Feature Ext aft IOn

1 1 1

~~ ~~ ~L7
~ ~ -- - -
Node No e ----- No e

2 n
~

11 11 11
OJ Em ED

parallel 110

Figure 4.5: Schematic of the Distributed Framework Target Architecture

Complementing C++, MPI is the assembly language of parallel programming upon

which very performant implementations can be programmed. MPI is the

established de facto standard parallel programming model for distributed memory

systems within the HPC community, and similar reasoning applies in that many

model developers would be familiar with MPI and able to contribute without the

extra burden of learning to use a new technology with an uncertain future. A key

feature for libraries writers is MPl's concept of a communicator. Using separate

communicators ensures that communication can be scoped to an application or

77

library and also can provide separation within a library. This concept is leveraged

extensively in the DFrame design to provide separation of the DFrame from

application code, and more directly within the DFrame to create and isolate

process groups that are participating in sub-sections of a parallelised computation.

Finally, C++ and MPI are seasoned open standards driven by a wider cross

vendor community.

4.4 The DFrame Architecture

The DFrame's modular design provides an extensible architecture that enables the

flexible plugin of models that implement parallel patterns, and the plugin of

application code modules. (see Figure 4.6). The DFrame Core is comprised of the

runtime management infrastructure, a client proxy and configuration , timing and

diagnostics capabilities. The DFrame runtime manages the workflow and plugin

components, and drives models implementing parallel patterns, according to client

requirements, and integrating timing and diagnostics. A dispatcher component

provides high level access to a communication subsystem, providing the means

for DFrame instances to interact. The models implementing parallel patterns are

also encouraged to use the dispatcher, but the design is open in this respect.

Application Libraries

MPI

Figure 4.6: DFrame Component Architecture

78

A client Graphical User Interface (GUI) is also provided to allow a user to author

specifications, remotely interface with a DFrame server to run specification

graphs, and to view results (data visualizations) which can then reveal insights that

guide further exploration .

Before exploring the component design in more detail in the following sections, it

will be helpful to first give a brief overview of the DFrame runtime design, to

provide context. In Figure 4.7, a simple schematic is shown, that exemplifies the

typical arrangement of the DFrame at runtime. The DFrame executable is passed

to a runtime system as the MPI program to execute on each processing instance,

along with information requesting the number of processes (for example, the

DFrame executable is passed directly to mpiexec, or via a cluster manager such

as MOAB). One instance is configured to take up the role of 'root process', and it is

with this instance that clients interact. All other DFrame instances await further

instructions from the root process, that will define how they are to set up and

participate in any parallel processing task. The design aligns with the SPMD

model , targeted at scalable distributed compute resources and communicating

using the message passing paradigm, where the same program is running on a

number of separate processes. All the DFrame instances operating in concert to

accomplish parallel execution.

79

~ --- - - - - ------- --- - - --------------------- --------------I

: DFrame Process -- :

Client Process DFrame Root Process
Model

~
~

: Module

MPI

Server proxy

Server cluster ------:
o DFrame Process --: __________________________________ ~_ -__ .-_--__ -_-__ - _-__ - _-_-_-_-_--_J __

o

Figure 4. 7: Simple Schematic of the DFrame runtime interactions

At runtime, DFrame instances use an inversion of control paradigm to drive

models implementing parallel patterns which themselves drive modules that link to

application code, which in many cases can be unaware of the context in which it is

running. This is in contrast to typical library usage to support parallel programming

where the parallelism is woven into the application code via library calls, which can

severely constrain further development and maintenance. The rationale for the

extensible design is so that models implementing as yet unsupported parallel

patterns can be plugged in, together with application code. The inversion of control

ensures that the parallel models drive application code, giving guidance and

constraint to ensure correct operation, and productive development of novel

parallelised applications. Also, as the DFrame is the executable passed to the

runtime system, developers do not have to set up a bespoke runtime arrangement

for every parallel application. An application developer supplies the application

code module, and at runtime provisions specifications that dictate the models and

modules to load, together with model and application parameters that specify the

runtime set up and execute details. The DFrame runtime will then manage the

processing, adapting to optimise execution.

4.4.1 Runtime Configuration

The runtime behaviour of all DFrame instances can be configured. This is

accomplished via a configuration file available to all instances. Diagnostics can be

enabled to capture timing information for analysis and feedback on performance

(with scope to adjust model parameters). Timings for each DFrame instance are

gathered onto the root process for viewing or storage, and also provide feedback

that the DFrame can use to adapt model selection, parameter assignment and

processor resource allocation. Logging can be enabled for debugging of each

DFrame instance, and for the plugged in components. DFrame client access is

also set up via the configuration. A remote client can be configured, in which case

the DFrame sets up an MPI Client proxy to listen on a specific port

(MPLOpen_port), and also publishes name information (MPLPublish_name) to a

name server that clients can lookup when establishing a connection. A local client

can also be configured, and in this case the required runtime graph of task

specifications are stored in a file, and the local client is configured to access this

information from the file. The remote client allows support for an interactive

experience, whilst the local client is useful for batch (background) processing.

80

At runtime, each DFrame instance participates in initialising the MPI environment,

and reads configuration information to ascertain the runtime set up, including the

type of client to support. Only one DFrame instance, referred to as the 'root' or

'server' instance, will set up to support a client and this defaults to process O. If the

client is a remote client, this DFrame will initiate an MPI Client proxy and await

connections and run requests. If a local client is configured, runtime specifications

will be read from a file.

4.4.2 The Task Specification

In Figure 4.7 , each DFrame instance, including the client is depicted as having a

task specification or graph of task specifications (a workflow). This is central to the

design of the DFrame. A task specification contains information that brings

together the DFrame, a model implementing a parallel pattern, and the application

code that the model will interact with. A typical specification will define a model

library and a model within that library, and possibly a model group for adaptive

model selection. The specification will also provide parameters that will define the

application code module, and specific functions within that module, that the model

will link to and drive. So the task specification contains information pertinent to the

DFrame itself, on which models should be loaded, and information for models to

resolve corresponding application code. As well, the specification will contain

parameters for the application code itself, such as the input and output data or

data location, and other parameters specific to application code control.

4.4.3 The Task Graph Specification and Workflow component

A task graph specification is a graph that defines dependenCies between·task
..

specifications, and thus allows the composition of complex parallel processing

applications. The term 'task graph specification' is used to describe an author~d

xml specification, and it is realised at runtime as an instance of a DFrame"'

workflow. A task graph specification can be authored in a client GUI or a simple

text editor. An abridged sample is shown in Figure 4.8.

81

<?xml version='l.O' encoding='ISO-8859-I'?>

<project>

<nodes>

<node module="imageTkModule">

<id> 1377719795</id>

<function name="average3D">

<task>

<property name="modeILihrary">mwmodels</property>

<property name="model">master _ worker</property>

<property name="module">imageTkModule</property>

<!- other properties omitted ->

</task>

</function>

<layout>

<x>-217.5</x>

<y>-10</y>

</Iayout>

</node>

<!- other nodes omitted ->

</nodes>

<edges>
<edge>

<source nodeld="1377719795"/>

<destination nodeld="13 77719820"/>

<ledge>

L <!-. other edges omitted ->
<ledges>

<I roj~ct> _____________________________ -,

Figure 4.8: Outline of an typical (abridged) task graph xmlfile

When a DFrame server instance receives or obtains a graph of task specifications,

it is passed to a workflow component on the root process which creates a

workflow representation, and orchestrates the runtime order of each task

specification, according to the task dependencies implied by the graph. As

described, each task specification (i.e. each node in the task graph) defines the

parallel processi,ng model to use, the module code to load, and associated

parameters.

4.4.4 The DFrame Server Run Loop

A key design of the DFrame is its use of the 'inversion of control' paradigm, where

DFrame instances form the distributed executing program that drives application

code through models implementing parallel patterns. It does this by initiating a run

82

loop on each instantiated DFrame instance. Each DFrame instance creates a root

DFrame context, in which is stored a communication context, a message packer

and dispatcher, and information such as an instances rank in that context. These

DFrame contexts can also reference a workflow. In fact each DFrame instance

manages a stack of such contexts and this is described in more detail in the

DFrameSplitter section below. The usual execution flow is for a root DFrame

instance (one whose rank is zero within its context) to receive a task graph

specification as a workflow, either from a client, or another DFrame instance. The

DFrame will then initiate execution of the workflow within that context. A core

insight here is that the workflow is then executed within the scope of a

communicator that defines the process group within which the workflow will be

processed. Assuming there is more than one process in the context, the execution

of each task starts with the broadcast of the task specification to each DFrame

instance participating in the parallel processing in that context. In this way, all

DFrame instances now have global state within the context, that specifies the

parallel model and module code to set up and execute, together with any pertinent

parameters. Each DFrame instance inspects the received task specification and

extracts the model library and model parameters that indicates the name of the

model library and model to use (or model group to select from), and with this

information loads a model instance, passing the task specification as an initialiser

parameter (in the implementation, the model plugin manager is called to retrieve

an appropriate model factory that can create the specified model). In this way, all

DFrame instances load the specified model from the appropriate model library,

and call the models 'run' method, passing the task specification. Each model

instance drives application code and manages parallel proc~ssing interactions

according to the parallelising pattern defined by the model. The DFrame monitors

the time taken to run each parallelised task, and can both report this information

and potentially use it to adjust further processing.

In this way, the DFrame core provides a lightweight but powerful mechanism for

setting up extensible parallel programs using the SPMD programming model, and

orchestrating the running of multiple such programs according to the task

specification graph.

83

4.4.5 The Plugin Manager

A central feature of the DFrame architecture is the ability to plugin in new models

for different parallel patterns or variants of the same pattern that use interfaces

defined by the DFrame. As well, application modules that use these models are

plugged in using the same approach, implementing interfaces defined by the

models that they plug into. Dynamic library loading is utilised to effect this

extensibility (Open Group (Reading 2013). Separate to the configuration file,

model plug ins are specified in a modelPlugins.txt file that maps a model name to

the implementing library. Similarly,' modules are added to the system by updating a

modulePlugins.txt file that maps module names to the implementing library

(modules will likely be more numerous than models, as many will reuse the same

model). Using a plug in manager, DFrame instances load these libraries, and

maintain a cache mapping of names to libraries, to provide access to the required

libraries via name lookup. This is core to the functioning of the DFrame, with task

specifications containing name information on which model and modules to load

and run, which is more flexible than directly looking for library files.

4.4.6 The DFrame Dispatcher (communication)

The DFrame dispatcher is designed to provide a higher level of abstraction to the

communication layer, shielding the programmer from lower level message passing

libraries. The design facilitates the passing of message objects between

processes, rather than using low level facilities directly. This has a twofold

advantage in that it affords a more high level simpler communir.ation abstraction to

the DFrame core, the models and modules, and secondly that it separates the low

level communication from the DFrame, allowing scope to swap out the low level

message passing subsystem (adhering to good design practice). Messages and

the associated message packing design are integral to the DFrame architecture. A

simple schemati,c of the message packing and unpacking protocol is shown in

Figure 4.9. The dispatcher delegates message packing to a packer object that

serialises a message object to a packed array for sending, and deserialises a

received packed array to a message object. The packing mechanism relies on the

provision of an array of Messagelnfo objects that describe the structure of the

message contents (the type, size and data of a message's fields). To facilitate

object reconstruction, the first two entries in the packed array specify the module

84

name and object class id, such that the packer can resolve to and call the correct

object implementation when deserialising an array of Messagelnfo objects.

Message

Messagelnfo(j getlnfo)
setlnfo(Messagelnfo[])

1

*
Messagelnfo

int getType()
T[] getValue()
int getSize()

Exa m pleMessagel mpl

std : :string getName()
int getCount()

Unpack (receive)

Pack (send)

!Size!Type! Data !Size!Type! Data !Size!Typel Data ISizelTypel Data
~ ________ ~II~ __________ J~ ______________________________ _

Module
Name

Object
Class Id

Object Instance Data

Figure 4.9: Message packing and unpacking protocol schematic

The dispatcher provides higher level methods for non blocking and blocking point

to point communications, and methods for blocking collective communications,

that accept and return message objects. Using the packer mechanism, the

dispatcher converts the message objects from and to message buffers used by the

underlying communication mechanism, which in the current implementation is

MPI. Indeed, the methods exposed by the dispatcher map closely to the

underlying MPI specification , wrapping to provide the higher level abstraction. In

the case of the non-blocking point to point operations, higher level abstractions are

also provided to allow users to test and wait for calls to complete. When

appropriate, this leverages a powerful feature to allow the caller to do useful work

in parallel with ongoing communication .

85

4.4.7 Tasks, Partitioners and Composers

Before going on to look at models in more detail, it is first helpful to describe the

DFrame's generic 'Task' interface. First, some care has to be taken to distinguish

the concept of a Task in the DFrame from that of a task specification. While a task

specification defines the set up and interplay between the DFrame, models and

application code, the Task interface describes a generic way for models to interact

with application code. In order to arrange for parallel execution, an application

needs some means of expressing how it should partition, execute and compose its

parallel computations. This can be" done in a bespoke manner, and aligned with

custom models, but a more generic interface allows the possibility to use any

model that supports the interface. This allows both for reuse and also opens up

the possibility to adapt the selection of appropriate models for example to improve

performance. Such an approach also guides the application developer.

The Task interface and its core ancillary classes is shown in Figure 4.10.

Essentially, these classes define the partitioner, executor and composer

components of a parallel execution at the model-task level. A model that works

with the Task interface can access a known Partitioner interface, and thus be able

to request partitions from application code without knowing the details of the

implementation. It is up to the the application module code that links to the model

to provide an appropriate implementation. Similarly, the application module code

implements the Composer and Executor interfaces. Thus models using these

interfaces can apply parallel patterns to application code generically. It is the

models themselves, in collusion with the DFrame that will arrange for the

distribution of the retrieved partitions, the delivery to application code for execution

and the subsequent gathering and redelivery to application code for composition.

86

Partitioner

/
Message getNextPartitionO
int getNumberOfPartitionsO
...

i Task
Structu red Pa rtitioner

void setUp(TaskSpecification spec)
Partitioner getPartitione() Message getPartition(int x. int y. int z)

Composer getComposerO

~
.. .

Executor getExecutorO
...

i Composer

ExampleTasklmpl void compose(Message message)
.. .

void setUp(TaskSpecification spec)
.. .

Executor

Message execute(Message message)
.. .

Figure 4.10: Class diagram of/he DFrame Task interface and ancillary classes

4.4.8 Models

Model libraries are developed separately to implement parallel patterns of

execution , and are subsequently plugged into the DFrame. A model library can

include more than one model, and so must expose all its available models and

allow model instantiation through DFrame defined interfaces. A DFrame defined

mechanism following the factory pattern is used to instantiate model instances

(Gamma, Helm et al. 1995). Indeed, models are interposed between the DFrame

core and the application modules, and as such must support two interfaces.

Firstly, a model must implement a 'model' interface to allow integration into the

DFrame runtime, such that the model's lifecycle can be managed by the DFrame.

Secondly, a model defines its own interfaces that application code using the model

must implement. As already described, the DFrame also defines a generic Task

interface that models can instead choose to expose to applications, and if this

mechanism is used, the model can become much more flexible and reusable

(although encouraged, this is not mandated so as to keep the design 'open'). The

DFrame-Model interface allows provision of the dispatcher for the models use, and

optionally the setting of a client. DFrame instances then manages the runtime

behaviour, distributing tasks, resolving and loading the particular model specified

for the current task, and each participating DFrame instance then runs the same

87

model, effectively handing over control to each model instance. The model is then

in charge until it returns control to the DFrame. Models already provided and

described in the following sections include a special task splitter model that

integrates closely with the DFrame, a master-worker model, a variant scatter

gather master-worker model and a mesh model. Note that the core design of

parallelising models is in the expectation that there will be more than one process

available to a model. However, this may not always be the case, and in a splitting

scenario, a model may only have one process made available to it, and in this

condition it would arrange to run its computations locally.

4.4.9 The DFTaskSplitter Model

As already described in the concepts section above, the DFrame manages the

running of task specifications via models, and at a higher level the DFrame also

manages the assignment of process groups to the running of each task

specification according to the task graph specification, and accounting for the

number of processors available. This process group management is handled by a

DFTaskSplitter. In order to maximise flexibility, and to align with the DFrame

design, the DFTaskSplitter is actually implemented as a model that plugs into the

DFrame, and provided by a core DFrame model factory. A DFTaskSplitter can be

automatically invoked when a DFrame instance managing a workflow encounters

an explicit split in the task graph and thus determines that branches of the graph

can be run concurrently. Being implemented as a model, the DFTaskSplitter can

also be explicitly defined in a task specification as part of the task graph. This is

very useful in cases where the task graph itself does not explicitly represent

multiple branches, but where the introduction of an explicit splitter can generate

multiple branches dynamically. Figure 4.11 (a) shows a snippet of a task

specification graph that employs implicit splitting. In this case the' DFrame will

automatically insert a splitter. From a task graph point of view, this behaviour is

considered as static, since branches are all predefined. In Figure 4.11 (b) a splitter

is explicitly referenced in a task specification, and is run by DFrame instances as a

normal task that invokes a splitting model, and instigates the model's associated

behaviour to generate task branches dynamically.

88

Task 1

/-
Implicit Split:
A DFTaskSplitter
is automatically
inserted here

Task 2

Task 4

Task 6

Task 2

Task 3

Task 5

Task 7

(a)

Task 3

DfT"kSpl;ttec 1 ~t-{~-~::~-~---]------~_5~~~--_-j~

;x6~~~~~~~itter r····························1 r····························l /

is defined in the ~ Task 6 ~ ..•............ ~ Task 7 V-
i ! I ! task specification , ,

(b)

All branches are
explicitly defined
in the task graph
specification

One branch is
explicitly defined
in the task graph
specification

Other branches are
generated according
to the DFTaskSplitter
specification

Figure 4.11 : Task graphs showing implicit and explicit splitting

When the DFrame determines that a splitter should be invoked, either implicitly or

through an explicitly defined task specification, the splitter task is handled in a

similar manner to normal task specifications. Namely, the splitter task is broadcast

to all DFrame instances participating in the current context, and each instance

then identifies the model to load from the task specification. In this case, the

DFTaskSplitter is loaded on each instance (hence is designed as a model, to

dovetail in with the DFrame core design). Internally, the current implementation of

a DFTaskSplitter uses the MPI_Comm_split collective operation to effect the

splitting of a process group into sub process groups. This is a general and very

powerful feature of MPI. Ordinarily, the splitter will split the process groups into

equal sub groups according to the number of task specification branches at that

point in the task graph, or into sub groups according to the dictates of a dynamic

89

task splitter. However, information can also be provided in the distributed task

specifications that can modify this behaviour. As well, for an explicitly defined

dynamic splitter, application partitioner code can provide information on the

number of task branches to create, and possibly the size, in terms of expected

computation effort required in each branch. Application code can also provide

other parameters to propagate into the generated branches (all this leveraging the

normal DFrame design of model-module interaction).

In operation, a splitter splits the current process group into a number of sub

process groups. The root of each sub-process now needs a workflow itself, to run,

and this is arranged from the root process of the parent group that is driving the

split. At the point of the split, this root can infer the root process of each sub group

root and can thus send it a sub-workflow. The sub-workflow is extracted from the

main workflow being managed by the parent group. The functionality to extract a

sub-workflow at a particular location in the parent workflow is implemented in the

workflow component. The splitter then updates the task starting the newly

extracted sub-workflow with any defined parameters, and sends to the root

process of each newly formed process group. The managing process also sets in

a sub-workflow to itself. At the same time, each DFrame instance creates a new

DFrame context and sets as its current context. This new context is added to the

DFrame instance's context stack and is where the newly created communicator is

cached. Each new process group is now running as an isolated process group,

with its root process managing the running of a sub-workflow and distributing tasks

to other processes in the group according to the normal DFrame core design. As

the splitting design distributes control, it can also help reduce the likelihood of the

root process or group root processes becoming a bottleneck.

The splitting of process groups into sub-process groups can be repeated to form a

hierarchy of sub-process groups within process groups, with each DFrame

containing a stack of DFrame contexts that represent the current state of the

splitting. As sub-workflows complete, contexts are popped off the context stack,

and a DFrame instance then reverts to the next context up the stack which will

represent the parent process group, and this will continue until a DFrame is again

operating within the root context (the global process group).

As well as the DFrame context that manages communications across process

groups, the DFrame also has a facility to cache model contexts. Model contexts

90

are used by models to cache and propagate data from task to task, and this

feature would also be leveraged to support more complex task graphs.

The current design of the DFTaskSplitter allows for the splitting of a regular task

graph where the dependencies of the task are such that sub-branches can be

independently run. In a more general case where a task graph has very irregular

and complex interdependencies, the splitting of process groups would be even

more involved. A modified splitter can be implemented and plugged in to cater for

such cases and it is envisaged that this would likely make use of MPI's inter

communicator features to support more convoluted task interactions. This is not

pursued further, as the current design more than caters for the intended target

usage, but it is acknowledged as an interesting avenue of further research.

4.4.10 The Master Worker Model

The master-worker model is the ubiquitous model of embarrassingly parallel

computing. It is a versatile model, especially suited to managing tasks with no

inter-task communication. Each task computes a sub-problem, and returns the

result. In this arrangement, the. master becomes the centralised task scheduler. A

prime attraction is that load balancing becomes automatic, with each worker either

explicitly requesting another task once it has completed its current task, or is

automatically given another task once it returns the results of its current task. The

master is responsible for managing the distribution of tasks and signalling to

workers when all tasks have been completed. In some circumstances, the

manager can become a bottleneck as it has to resolve the tasks to execute and

communicate with each worker to distribute tasks and gather results. When this is

an issue a hierarchically distributed master-worker variant can be used such that a

supervisor manages multiple master processes, which themselves manage a

subset of worker (Aida, Natsume et al. 2003). Other alternatives include employing
..

a distributed task scheduling algorithm where each process manages its own task

queue, with processes taking work from, or offloading work to neighbouring

processes depending on workload (in this arrangement, a mechanism is required

to detect when a computation is complete).

As a first model for the DFrame, a simple master-worker model is implemented. In

Figure 4.12, a simplified sequence diagram shows the DFrame interactions to set

up and run the master-worker. This model uses the DFrame's generic Task api,

91

and in the simplified schematic, interactions on the Task are shown, with the

associated partitioner, executor and composer interfaces excluded for clarity.

Using the Task api increases the reusability, flexibility and adaptability of this

common parallel programming model. The DFrame receives a task graph

specification from a client, and from this creates a workflow representation and

hands it to the workflow component. The DFrame then requests the next enabled

task specification from the workflow, and broadcasts it to all participating DFrame

instances. Each DFrame inspects the task specification to establish the

appropriate model library and resolves and loads the specified master-worker

model from that library, and runs the model. Each model instance then queries the

DFrame to similarly resolve the specified module library to use. By default, the root

process model runs as master, loading the master application code from the

module factory (the process to run as master can be configured). All other models

run as workers, loading the worker application code similarly. The master then

requests work from the application code (via a task's partitioner), and distributes to

worker processes. Workers complete each received parcel of work and send

results back to the master which itself passes on to application code (via a task's

composer). While there is more work, the master continues to send work to

workers, and the workers continue returning results. Once a computation is

complete, the master sends a 'no more work' signal to the workers. The

application code is primarily responsible for managing the results, but the model

can Signal the client that the current task has completed and also send data,

depending on the specification. Figure 4.13 shows the corresponding simplified

sequence diagram for workers engaged in the master-worker model. The

processing is similar, but without client and workflow interactions.

Like many approaches to parallelising applications, the master-worker model

brings to the fore the required explicit partitioning of tasks and data. Although the

onus remains with the application module code to partition the problem into tasks
"

that can be distributed for parallel processing, the master worker model adheres to

the defined Task interfaces, so the application provides this partitioning through

defined generic interfaces. In the targeted imaging applications, this means the

partitioning of the 3D images and handing of the partitions to the master which in

turn sends to available workers, and also providing the task executor (worker

implementation) to apply to each partition. After the execution phase, the results

are handed back to the application module's implementation of a generic

92

composer interface, which then assembles, commonly into a resultant transformed

image. It is recognised that implementing partitioning and composition patterns is

onerous in itself, and by using the generic partitioning and composition interfaces,

an application can provide implementations that can be reused. This is a useful

feature of the DFrame design, in that various partitioning and composition

strategies can be implemented once, and reused transparently thereafter. In a

subsequent section, a rudimentary imaging toolkit is described that provides some

of this partitioning infrastructure for reuse in a 3D imaging system.

1 DFrameMain 1

1 DFrame I new
I

run

new ·1 DFrame Dispatcherl I MPI I
new J Client

1 I
receive() :spec

~

new(spec)
·1 Workflow 1 loop

-;:::J nextTask() : taskSpec]
broadcast send(taskSpec) MPI broadcast

new
: Model Factory 1

getModel(taskSpec) 1 new I MWModel 1
J I

run(taskSpec)

getTaskFactory(taskSpec)

-
new ·1 Task Factory

I Task r ~etTask(taskSpec)

(master)

setUp(spec)

loop

getWork() :work ~ send(work) MPI send

setResult(result) receive() : resu It MPI receive

tearDown()

Figure 4. J 2: Sequence diagram master-worker model: main interactions of a master

93

J

Only the essentials of the DFrame operation pertinent to the lifecycle of a model

are shown in the schematics. Mechanisms such as the recording and collection of

timing diagnostics are not shown, as this would obscure the core interactions

relevant to running the models. Similarly, detail such as the message packing and

unpacking is omitted for clarity.

I DFrameMaln I

I DFrame new
I

run

new I DFrame Dispatcherl I MPI I
broadcast receive(spec) MPI broadcast

new -I Model Factory I

getModel(spec) new I MWModel I I

run(spec)
receive() :work MPI receive

getTaskFactory(spec)

new I Task Factory I

I Tclsk I new JletTask(spec)

(worker) I

setUp(spec)

execute(work) send(result) MPI send

Figure 4.13: Sequence diagram master-worker model: main interactions of a worker

4.4.11 The Scatter Gather Master Worker Model

A variant master-worker model is also implemented, that uses collective

communications. This model assumes that all the tasks are of similar size, taking

the same processing time to complete. In this case, instead of distributing tasks

94

individually to each worker in a round robin fashion, the master can request from

application code a number of tasks equal to the number of workers and the

master. Then using a scatter collective operation, all the tasks are distributed to

the workers in one call. The aim being to leverage the optimised collective

distribution implementations of the underlying communication mechanism (e.g.

MPI_Scatter). In the same way, once workers have processed the received tasks,

they all participate in a collective gather operation (e.g. MPI_gather), to collect all

the results on the master process. Whilst there is more work, another scatter

gather cycle is undertaken, and once all work is complete, a final scatter-gather

sends a no more work signal to the workers (the penultimate scatter gather may

also contain some work tasks and some 'no more work' control tasks). In this

model, the master also participates in the execution of work.

4.4.12 The Mesh Model

In addition to the master-worker models, a regular mesh model is also

implemented. This again has high value in the image processing domain, as it is

often desirable to split an image into a regular mesh of sub image partitions and

process separately to speed up the computations, but where there is then an

induced requirement to exchange data amongst neighbours (unlike the simple

master-worker). The mesh model design accepts an explicit partitioning

specification set into the task specification, or a dynamic partitioning strategy can

be used to implicitly calculate a partitioning that maps to a suitable processor

topology, based on the number of processors available and the image shape.

Figure 4.14 shows the initial interactions to set up a regular mesh model amongst

processes. The first set up stages are similar to the set up of the master-worker

model, with the DFrame receiving a task graph specification, from which a

workflow representation is created and handed to the workflow. The DFrame

runtime then retrieves the next enabled task and broadcasts to set up the task run.

In this case a mesh model is then resolved, loaded and run on each DFrame

instance, with each model itself then requesting the appropriate module code to

run (application code) via the DFrame, again according to the task specification.

The root process of the mesh model first instigates the loading of the data (e.g. a

3D image) and determines the partitioning information, either explicitly from the

specification or from an associated dynamic partitioning strategy. When chosen,

95

the dynamic partitioning of the data will depend both on the shape of the data

itself, and on the number of available processors. The result is an appropriate

processor topology specification, which is broadcast to all DFrame process

instances that are to participate in the collective operation to set up the mesh. If

the number of processors exceeds that required by the defined topology, then only

a subset will be used (if there are not enough processors, then an error is

reported) . Under the covers, the implemented mesh model uses MPl's topology

API's to create the regular mesh communication pattern. This allows for relatively

straightforward coordinate indexing of neighbours, that simplifies the exchange of

data amongst neighbours, which would otherwise require significant bookkeeping

for example in a 3D imaging application.

I DFrameMain I

I DFrame I new
I

run

new
: DFrame Dispatcherl I MPI I

broadcast(spec) MPI broadcast

new
: Model Factory I

getModel(spec) . n new
.: Mesh Model I

run(spec)

._--- 1----_._-------_._---------- load data

Ilmage FactOry~ new I

I Input I new read() :image d
Image3dl

IlmagepartitionStrategy I new

0- getPa rtitionSpec

I
ImagePartitioner I new

I
setup mesh -----------_._---j---------_. __ ._-----_._------_._-- I

/
I broadcast(spec) MPI broadcast

The image loading and partitioning ~
strategy are determined on one

create topology 1 MPI cart creat~ process, and the information is then
broadcast to all other processes that
participate in creating the mesh

Figure 4. 14: A sequence diagram showing the initial setup of a mesh model

96

After the initial setup of the mesh topology, the data can be partitioned and

distributed as it is now known to which processor each partition should be sent.

This is now quite simply arranged using the coordinates generated when setting

up the mesh topology, which affords a much more natural way to reference

partitions to processors. Once, all the partitions (e.g. 3D sub-images) have been

distributed to the requisite DFrame instances, the main execution loop of the mesh

model is entered. This proceeds to execute each local task (e.g. an image

operator) , on the received partition. After each execution, and assuming there are

further executions, an exchange data step is initiated between neighbours so that

results in one partition can be propagated to neighbouring partitions. The

exchange of data proceeds along each dimension, such that boundary data (ghost

regions) is swapped . For example, the boundary data is exchanged in the x, y, and

z dimensions for a 3D image. The design uses non blocking sends and receives

so that the multiple data exchanges in each dimension can occur concurrently if

supported by the underlying communication sub-system.

I Mesh Model I I DFrame Dispatcherl I MPI I
J,
:: load data
:~-I~_-'-'-'---'-'-.-'--:

1
I- "" ImagePartit ioner ~ .-I)~~-.~ : ::

,~ ,

),
: :setup mesh
: £~'-:::_-_-:::J
III'
ItI'

:'y
dist ributeData

getPartit ions() I

I send(sublmage) MPI send
loop ~

----- ~ execute()
I

.

I
exchangeData

send(ghostData) MPI send

receive() :ghostData MPI receive

.- ---
recomposeData

setPartitions() receive(sublmage) MPI receive

Figure 4. J 5: A sequence diagram showing the processing stages of a mesh model

97

One facility being woven into the DFrame, is the ability to distribute further tasks

(e.g. image operators) to already distributed data. This is pertinent to the mesh

model, as, in addition to multiple exchanges of neighbour data during the parallel

processing of one operator, an exchange of data between separate operators can

be arranged that avoids the overhead of gathering and then redistributing data

between successive operators in a pipeline for instance, that require a similar

communication pattern. Once all processing and exchanges have completed, the

resulting partitions are normally gathered onto the root mesh model process, for

delivery to application code, or an explicitly stipulated target output.

4.4.13 Modules

Like models, module libraries are developed separately to implement or link to

application code, and similarly use a plugin mechanism to register with the

DFrame. A particular module will implement interfaces exposed on a target model

which in most cases will be the already described generic Task and associated

partitioner, executor and composer interfaces defined within the DFrame, so as to

allow the swapping in and out of model variations. So in addition to the model

name, a task specification will also contain the module name to use and ancillary

information to determine the objects to use from the module. For example, to

interface to a master worker model, the specification will contain parameters to

identify the appropriate master and worker implementations to use from the

appropriate module. The DFrame loads the specified model, and will also then

provide access to the specified module code, to the model. A }ightweight module is

supplied in the prototype, the 'imaging toolkit module', which links appropriate

parallel pattern models to image processing application code described in the next

section. The module code links to application code rather than being in the same

library, to provide separation and clarity of use, although this approach is not

mandated it can help to distinguish the parallel aspects of the image processing

such as partitioning and composition.

4.5 An Imaging Toolkit

Although the DFrame is designed as a generic parallel processing framework, the

impetus for its inception is to support the parallelisation of image processing

applications, and in particular to speed up the compute intensive high content

98

screening of 3D images. To this end, application infrastructure code supporting 3D

image storage and retrieval, 3D image data manipulation, partitioning and

recomposition is provided in a basic 'imaging toolkit' library. The 3D image 10

design is an adaptation and port to C++ of ImageJ's Tiff encoder and decoder

software. The adaptation being to load from and save to the toolkit's high level 3D

image objects. The 3D image object design allows for direct access to image voxel

data using a more natural 3 dimension indexing (Le. identifying an image voxel

using x,y,z coordinates). This is accomplished in the implementation by an integral

3D pointer structure.

A prime use case is to be able to geometrically partition large 3D images into sub

images that can be sent to separate processing elements that then apply a

compute stage to each sub-image. Subsequently, these sub-images often have to

be gathered and recomposed into a resultant image. To address this, a prototype

3D image partitioning component is incorporated into the imaging toolkit, that

includes a 3D image partitioner and composer along with an extensible

Partitioning Strategy design. The Partitioning Strategy design separates out the

strategy from the partitioner and composer, so that different partitioning strategies

I

I
can be devised and injected in the future. The partitioner and composer can be I
explicitly set with a partitioning specification, or a partitioning strategy instance can I
be injected to take care of this aspect more automatically. Once a partitioner has r

an associated 3D image and a partitioning specification, sub-images can be

retrieved from the partitioner for distribution. The partitioning specification can also

define sub-image 'ghost cell' requirements (boundary cells), and if specified the

partitioner will return expanded sub-images that include the ghost cell data

(geometric decomposition and ghost cells are commonly used together) .. The 3D

composer inverts the partitioning, recomposing sub-image$ into a complete 3D

image again. Partitioners and composers normally come in pairs, such that a

composer is then recomposing sub-images from a corresponding partitioner, using

the same partitioning specification.

Although the partitioning in the imaging toolkit is specific to images, the concept is

generalised, being abstracted out to a more generic partitioning api, so that ..

models can directly use the partitioning functionality without knowing about

imaging per 5e. The mesh model uses the partitioning information to set up an .

appropriate topology and distribute sub-images transparently to application code.

99

Furthermore, the mesh model arranges for the exchange of sub-image boundary

data on completion of a computation step, again transparent to application code.

This separates the domain application from the parallel model and allows the

model to move data around on behalf of and transparent to application code, but

the model must of course have information on how to partition applications data,

and this is via a generic api, with an application supplying an appropriate

implementation. The partitioning functionality can be reused across a broad range

of image processing algorithms. That useful communication patterns are captured,

and the implementations to effect and support these patterns specific to image

processing are provided means that they can then be tested and improved

separately to the domain code that ultimately uses them.

As well as the imaging infrastructure above, that can be used across many

algorithms that parallelise 3D image processing, the imaging toolkit also provides

some specific image processing capability that uses this general functionality. In

particular, 3D averaging filters and gradient local image operators, a rudimentary

watershed segmentation implementation, and ray casting are provided. These are

described in more detail in the case studies in chapter 5, where they are used to

test the DFrame performance, and to inform on improvements to the DFrame

design itself, the associated models and indeed the imaging toolkit infrastructure

design. Many other useful 3D image processing algorithms amenable to

parallelisation can be found in the literature (e.g. (Nikolaidis, Pitas 2001».

4.6 DFrame Graphical User Interface

A GUI client is implemented in QT4 (Dalheimer 1999) to allow users to visually

construct a task graph that defines a task specification (see Figure 4.16). The

main components of the GUI are the Task Graph View, and an associated Tasks

View and Task Properties editor.The GUI links to the DFrame library and thus has

access to information about the available model and module plugin libraries. The

GUI requests information on the functions that each module supports, and makes

this available in the Tasks View, for composition such that users can drag and

drop tasks onto the graphical surface of the Task Graph View, and add links to

define the dependencies. Selecting a Task deposited on the Task Graph View will

display its parameters in the Properties Editor, which essentially describes the

specification for a single task in the task graph. The parameters that govern the

.100

running of that task can then be further edited.

In the Task Graph View, directed edges can be added that link tasks together to

define the dependencies in a directed acyclic graph as required for the particular

application. The ultimate purpose of the GUI is to build up an xml file that stores

the task specification of each node of the graph that is to be run in parallel, and

also stores the links between the nodes of the graph, that define the dependencies

between tasks. These xml files can then be stored to disk, and reloaded and

reused . Moreover, these graphs can be sent to the DFrame server, where they are

loaded as workflows to be run.

When authoring a graph of task specifications describing a processing pipeline,

there is no need to connect to a DFrame server (so a server does not have to be

running), but a user must of course connect to a running DFrame server in order to

run the task graph. A separate facility is provided such that the user is in control of

when to connect to a server (also depicted in Figure 4.16). Once connected ,

graphs can be run repeatedly, and when finished, the user can then choose to

disconnect from the server. Closing the client will also disconnect it from the

server.

101

File Edit View •
Use,. connect

run
I disconnect Properti., Editor 00

Property Value

I .. task
mode l library mwmodels
model master_worker
module fllters
nonBlocking true
filte rs .fllter averaging Filter
fi lte rs.ave ragi ... 9

Tukt (plugl"l) 00

Modules

.. imageTkModule

~~~~,, 1 
l....------.---__ J 

rayTrace 
.. rayTracerModule 

Figure 4.16: The DFrame Graphical User Interface 



At the GUllevel, image processing users are shielded from the complexity of 

parallelism and can concentrate on composing and tuning tasks as required for a 

particular application. Additional functionality is also provided such that a user can 

view the output image after running a task specification when appropriate. 

Figure 4. 17: The GUI 3D Image Viewer 

Figure 4.17 shows a snapshot of the 3D image viewer. Also shown is the view 

menu, that allows control of all the views. Using this menu , the Task View (view

>functions) and Task Properties editor (view->properties) can be shown or hidden 

along with the modal input and output viewers. The view menu is shown as greyed 

out in the snapshot, as a modal 3D image viewer has been selected and rendered 

(view->showlnput) . This rudimentary viewer allows for cycling through each slice 

of a 3D image to examine image transformations across tasks. The current 

prototype only supports a 3D image viewer, but the plan is to augment the design 

such that viewers can be supplied that match input and output formats , which may 

be text or graphs as well as images. The view menu also has a showGL sub

menu. This adds functionality to the GUI to be able to navigate around an input 

image, in wire frame mode, with the resultant orientation parameters can then be 

added to appropriate tasks . This functionality formed the inception of the GUI 

design , originally implemented in QT3 and described in more detail in appendix A. 

102 



Aspects of this functionality are being ported to the current QT4 implementation, to 

be leveraged in tasks such as the ray tracing functionality, to provide a graphical 

way to navigate around 3D images and then ray trace from the chosen orientation. 

As well as being able to construct task graphs, the GUI supports the full CRUD 

functionality, such that specification graphs can be created, opened (read), 

updated and deleted. This is essential functionality, that allows the persistence of 

complex task specification graphs. Figure 4.18 shows the File Menu, that can be 

used to create a new (unsaved) task specification, open and existing specification, 

save, save as, and close options. The open, save and save as sub-menus open 

platform specific file navigation dialogs for selecting and saving task graphs. 

• dframeUI IImI. Edit View Runtime 
8 p O new IUsers/tonym/QtProjects/dframeUl/segmentationS~ 

open 
save Runtime 
saveAs 
close 

Figure 4. J 8: The CUI File Menu 

Figure 4.19 shows the simple Edit menu, that integrates with the Task Graph View 

selection capability. Tasks are dragged and dropped onto the graph view, and 

then any two tasks can be selected, and the add Edge menu will then connect the 

two tasks with a dependency edge. The direction of this edge follows the order of 

selection, with the first selected task being the source, and the second selected 

task being the destination (dependent task). The deleteSelected is used to delete 

edges and tasks. If a task is deleted that has edges connected to it, the edges are 

also deleted. The changes become permanent when the File->save menu (there is 

no undo/redo functionality built into the current GUI prototype). 

103 



dframeUI File 

de leteSelected 

Figure 4.19: The GU1 Edit Menu 

As well as the Task Graph View's prime purpose to aid pipeline composition , 

another tab is also incorporated that is intended to support the viewing of a 

connected server DFrame's runtime behaviour. This will display timing and 

diagnostic information , on the running of a task specification, such as the timings 

of each task, the models used, processor distribution and task partitioning. This is 

still being designed and developed, and currently server DFrame instances dump 

this information to a file . The impetus for delivering such information to the GUI 

would again be to enhance productivity, and ease of use, to improve image 

analysis experience, and confidence in the system (although the system would in 

many respects be automatically optimising performance, feedback is still important 

to judge its success). 

4.7 Summary 

This chapter has presented the motivation and purpose of the DFrame, introduced 

its core concepts, given an overview of its fundamental design and gone on to 

consider its component building blocks in more detail. In evolving the design, 

significant effort has been made to separate out and express the various 

components of a parallel computation , such that by using the framework the effort 

in developing real world parallelised applications is much reduced. Nevertheless, 

the complexity of the DFrame design and implementation is still substantial , and in 

this respect is itself evidence that using such a framework is worthwhile. In 

particular, the effort in developing a generic parallel processing framework that can 

be reused , and that can itself be further developed in isolation to the applications 

that use it is an attractive alternative to 'going it alone' on each application. The 

cost of developing the framework being amortised over the many applications it 

will support, where each task graph can be considered an application. The 

104 



separation allows the DFrame to be independently improved for instance to 

incorporate more advanced performance monitoring and the plugln nature of the 

design encourages further extensions and adaptations. 

The framework provides for the creation of a task graph that describes the 

required coarse grained functionality. At a more fine grained level, each node in 

the task graph is a task specification that encompasses the information to 

orchestrate the parallel running of an algorithm. This includes the model or models 

that are appropriate to running the algorithm, together with any algorithm specific 

parameters and contextual task graph information. Upon loading a task graph, the 

DFrame constructs a corresponding static workflow, and will automatically 

generate further dynamic sub-workflows if splitter tasks are implicitly or explicitly 

defined within the task graph, via a novel task graph splitting arrangement. This 

mechanism demonstrates the flexibility of the DFrame design in that it leverages 

the plugin model architecture and can thus be embellished, and other schemes 

retrospectively plugged in. The implemented splitter provides a core novelty in 

distributing groups of processes, and dynamically adjusting the number of 

processes in each group (currently by task size). Leveraging MPl's advanced 

features to isolate processor groups to collectively work on different tasks 

simplifies the communication amongst processes participating in the parallel 

processing of each task. A workflow SUb-component is provided that manages the 

building and manipulation of workflows, and workflow messaging infrastructure is 

also provided to allow sub-workflows to be transferred to nodes across the 

distributed system. 

A prime focus of the DFrame design is its emphasis on separation, extensibility, 

adaptability and reuse. This allows functionality to be added to the systeDl in an 

incremental manner as requirements unfold, and the separation allows for 

maintainability as component parts can be worked on and improved in isolation. 

The functionality can be augmented with the ability to swap out models to trial 

other approaches, or to adapt and dynamically optimise model selection and 

model parameters based on contextual knowledge of the task graph (adapting to a 

task execution pla.n). Model decisions can be based on a tasks input size and/or 

other characteristics, such as whether a task's partitioning is static or dynamic, 

structured or unstructured, and whether each part has a regular or irregular load. 

Application code can interface to standard model interfaces, and this is 

105 



encouraged by the framework, but not mandated, as bespoke models can also 

themselves be plugged into the framework, exposing specific interfaces if needed. 

The normal expected usage is to endeavour to make application code unaware of 

any parallelisation (when this is possible and practical), and to provide adapter 

infrastructure that bridges into the DFrame interfaces. This is the route taken with 

the basic 3D imaging infrastructure already provided in the prototype. 

The 3D imaging infrastructure includes 3D image 10 to and from disk storage, and 

image averaging filters and a Sobel edge detection operator. A watershed 

segmentation operator is implemented, and also a more straightforward 

experimental thresholding and histogram segmentation functionality is 

implemented. As well, a parallelised ray tracing module is implemented that 

incorporates server side direct volume ray tracing of 3D images, that outputs 20 

views. A camera design is built in, to enable orientation of the ray tracing. Of more 

fundamental importance, 3D image partitioning functionality is included, with 

ancillary partitioning strategies, partitioners and complementary recomposition 

implementations, that also support ghost cells. The evolving development of this 

functionality has guided the DFrame to a more generic design. 

That the DFrame encourages the organisation of a parallel application into 

component tasks, and separates out the parallel aspects also allows for the 

capture of diagnostics information. To this end, a timing and timing context 

component is provisioned by the DFrame, and used by the DFrame itself to time 

each task run, and passed to models for use in timing model functionality. The 

timings are gathered onto the root process and saved to a separate file for 

inspection and analysis. Currently, the analysis is post run, but the goal is to 

leverage this information to dynamically update runtime parameters to optimise 

performance (pOSSibly used to adjust properties of the task graph). 

106 



Chapter 5 DFrame Component Evaluations· 

5.1 Introduction 

The motivation for the architectural design of the DFrame, and its core concepts 

have been outlined. As well, the prototype implementation has beed described. 

Before embarking on an integrated case study that draws out the full power of the 

DFrame, it is first necessary to do some limbering up evaluations to provide a 

degree of confidence in the approach. The intent of this chapter is to prove that the 

various components of the DFrame are working as expected, and to produce 

preliminary results at the task level, that can be examined and assessed to 

ascertain the viability of the DFrame design in meeting its core aims to improve 

performance, to provide flexibility and reuse in the parallel processing layer and 

the application layer, and as important to provide a runtime system that is 

adaptable, such that it is choosing suitable models to run and partitioning 

strategies based on initial parameters and also on dynamic system behaviour 

(performance feedback). As each task in an application is itself parallelised, there 

is considerable complexity at the individual task level, and so it also adds clarity to 

evaluate the DFrame performance at the (parallelised) task level first. 

This chapter presents the results of applying the distributed framework to four 

discrete practical image processing algorithms (tasks): distributed averaging filters, 

a 3D Sobel local image operator, 3D image segmentation, and visualization using 

direct volume ray tracing. In the first evaluation, preliminary tests are conducted to 

confirm the correct operation of the DFrame using a master worker model to test 

simple 2D and 3D averaging operators. In the second evaluation, a master worker 

model is used to run a Sobel operator across a 3D image. This highlights the 

overhead of partitioning, distributing, gathering and recomposing data. When. 
" 

appropriate, this can be amortized by distributing the data, computing multiple 

operators and then gathering the results. The third evaluation looks at the mesh 

model approach, using a segmentation algorithm as the compute load. In the forth 

evaluation, whole images are loaded by each node and the master-worker model 

used to distribute camera information in a ray tracing test. The tests use custom 

benchmarking on non standard 3D test images from cell data research, to align 

with the intended prime use of the framework. 

107 



5.2 Cluster Hardware Configuration 

A simple schematic of the HPC cluster architecture at Kingston University is 

shown in Figure 5.1. Users can connect to the HPC cluster via the cluster's 

gateway node, either from the Kingston University Network, or from the internet 

using ssh (the 'secure shell' protocol) . 

Kingston University Network 

HPC Cluster Network .......................................................................... . 

-------------
Compute Nodes 

, 

Storage Nodes 

Figure 5. J: Schematic of the HPC Cluster architecture at Kingston University 

Typically, programs are uploaded to the gateway node and compiled there. A 

module system allows users to also arrange for the loading of any required 

ancillary libraries. A TORQUE distributed resource manager based on the original 

PBS software allows users to submit jobs and monitors the available compute 

resources (the number of CPU's and memory) . The resource manager integrates 

with a MOAB workload manager based on the open source MAUl cluster 

scheduler, that determines where and when jobs can run (Adaptive Computing 

2015). From the gateway node, compiled programs are submitted to MOAB/PBS 

for scheduling and execution. This is normally accomplished by submitting a PBS 

script, that contains information on resource requirements such as the required 

number of processors and the expected time duration alongside information on the 

108 



program to run and any required dependencies. An example PBS script is shown 

in Figure 5.2 below. This requests 4 nodes with 1 processor per node (i.e. 

requests 4 processors), stipulates an expected runtime of 10 minutes, names the 

job, and loads the required openmpi module. The last line requests mpiexec to be 

run, passing the program as an argument. 

#!lbin/sh 
#PBS -I nodes=4:ppn=1 ,walitime=O: 1 0:00 
#PBS -N dframe 
#PBS-V 
. $MODULESHOME/initlbash 
module load openmpi-1.4.2_shared 
cd $PBS_O_WORKDIR 
export LD_LlBRARY _PATH= <required paths> 

Ishares/hpc/openMPII1.4.2/BUILD/bin/mpiexec .Idframe 

Figure 5.2: Simple Example PBS Script 

An overview of the nodes in the current HPC cluster at Kingston University is 

shown in Table 5.1. In summary, there are 29 nodes, with 488 cores in total (and 

with a total memory of 2113.5 GB). The node interconnect uses Gigabit Ethernet. 

The case stUdies for this project used up to 64 processors. 

Num. Node Type Model sockets/ cpu's/ Memory MB 

Nodes machine socket (/machine) 

16 ProLiant Quad-Core AMD Opteron(tm) Processor 2 4 32768 
-

BL465c G5 2384 

2 ProLiant Six-Core AMD Opteron(tm) Processor 2 6 65536 .. ,. 
BL465c G6 2435 

2 ProLiant AMD Opteron(tm) Processor 6172 2 12 65536 

BL465c G7 
'. 

9 ProLiant AMD Opteron(tm) Processor 6380 2 16 147456 

BL465c Gen8 

Table 5.1: Kingston University cluster node core and memory details 

109 



5.3 Averaging Image Operators applied to 3D Bio-Celilmages 

This first evaluation presents preliminary results of running two simple parallelised 

averaging operators on the DFrame. The tests provide custom benchmarking on a 

non standard 3D test image (696x520x21 pixels; 16-bit; 14MB) from cell data 

research, to align with the intended prime use of the framework. The 3D bio-cell 

images used in tests in this chapter and the next are made available courtesy of 

previous research efforts that Kingston University has conducted in partnership 

with Cancer Research UK (Hagglund, Hoppe et al. 2009), the images being 

captured using light microscopy techniques on fluoresced cells. In the first test, 

one image is partitioned into image slices, and a 20 averaging filter applied to 

each image slice. The aim of this test is to establish that the core functionality is 

working as expected, as well as starting to gain insight into performance. This 

includes checking that the imaging 10 read and write for 3D image stacks is 

functional and the partitioning of the image into slices and the recomposition of the 

slices into a resultant 3D image is correct. The tests also confirm that the DFrame 

core workflow and message dispatching behaviour is functioning as designed, 

distributing the task specifications to each instance, and ensuring that each 

DFrame instance loads a master-worker model and application code according to 

the specification, and completes correctly. The functionality to capture, collect and 

record timings is also exercised and checked. In the second test, the aims are 

similar, but with a further objective to process more images, as the processor 

count increases, to simulate increasing the workload, commensurate with the 

increase in the number of available processors. 

5.3.1 20 Averaging Filter Applied to a 3D Bio-Celilmage 

This evaluation applies a 20 averaging filter to slices of one 3D image, with 

distribution of the image slices. The DFrame is configured in 'batch' mode, to read 

a specification workflow from a file. The workflow contains only one task in the 

task specification used for this test. The designated root DFrame reads the 

specification graph, and distributes the one task to each participating DFrame 

instance. Each instance reads the task specification, and loads a master-worker 

model. By default, the model running on the root DFrame instance takes on the 

master role and other instance models assume a worker role. The master loads 

the 3D test image from disk, and interfaces with the application module to retrieve 

,110 



and distribute one partitioned image slice to each worker process via the DFrame 

dispatcher. Each worker then processes the received image slice' and loads and 

runs application code according to the task specification. In the master-worker 

model used for this test, if only one process is used, the master does all the work. 

Otherwise, when more than one process is defined, the master only distributes the 

work and collects the results, and does not process an image slice itself. In this 

test a 9x9 kernel filter is applied to each image slice, resulting in an updated image 

slice that the worker then returns to the master. The master interfaces with 

application module composers to recompose the slices into a resultant 3D image 

and stores to disk. The test image contained 21 image slices, and so the optimal 

partition configurations in Table 5.2 were tested. 

Number of Processor Master Number of Workers Tasks per Worker 

Cores 

4 1 3 7 

8 1 7 3 

22 1 21 1 

Table 5.2: Partitioning informationfor the Averagingjilter tests 

5.3.2 3D Averaging Filter Applied to Multiple 3D Bio-Cellimages 

This evaluation applies a 3D averaging filter to many 3D images, with distribution 

of image paths using the master-worker model, to test the degree of speedup 

attainable in a high content throughput scenario. Again, the~DFrame is configured 

in batch mode, with the specification workflow containing only one task .. 

specification, set to load a master-worker model. However, the specified 

application code is different, with the master module code implemented to 

distribute file paths of a collection of 3D images, one to each worker process. As 

the number of workers is increased, the number of images processed is also 

increased so that each worker executes a read-process-write workflow on one 3D 

image (c.f. tests that process the same image on an increasing nu.mber of 

processors). Each worker processes all voxels of a distinct 3D image using a 

111 

I 

( 

( 

r 

r 
I 

I 
I 
I 
I 
I 



3x3x3 averaging filter, with all images being the same size (test image: 

696x520x21 pixels; 16-bit; 14MB). Ideally, as processors are added, the total time 

to execute should remain constant, as each additional processor will process it's 

own distinct image. However, in practise some impact on performance is 

expected, due to 10 contention as the load on the storage system rises (system 

dependent), and also increased interprocessor communication as the processor 

count is increased. Since each worker processes only one image in this test, the 

total time recorded to execute the program will be 'worst case', with the total time 

reflecting the 'slowest' worker's read-process-write workflow. It is also worst case 

in the sense that each worker will attempt to read it's image at about the same 

time, and because processing is the same for all workers, the writes will also be at 

around the same time, with some increased variability. Further dframe timing 

metrics were inserted to capture some of this variability of processing across the 

processors, recording startup time and each worker's time to read, process and 

write it's image. 

Note that when testing one process, one task is arranged to be run locally by the 

master, which thus acts as it's own worker. To calculate speed up, the serial time it 

would take to process n images, is divided by the tested parallel time to process n 

images (on n+1 processors). 

5.3.3 Master Worker Model Performance Results 

a) Applying a 2D averaging filter to slices of one 3D bio-cell image, with 

distribution of the image slices 

One process, the master, reads a 3D input image and writes the output 3D image 

(as would be the case on a single machine). Additional overhead is incurred in 

distributing the specification, and the subsequent distribution of the image slices to 

workers and collection of the resultant image slices. However, the resulting 

performance improvements are very encouraging. In Figure 5.3 the execution time 

decreases from around 30 seconds for one processor core, down to 2 seconds for 

22 processor cores. Figure 5.4 shows the corresponding speed up is above 15, 

for 22 processor cores (including the master) . 

.. 112 



---C/) 

"'0 
c:: 
o 
o 
Q) 

!:!!
Q) 

E 
i= 

o 
('I') 

LO 
C\I 

o 
C\I 

Averaging Filter Total Time 

\~ 
~~-------------

5 10 15 20 

Number of processor cores 

Figure 5.3: Time with each worker processing one image slice of a 3D image 

a. 0 
~ ..

"'0 
Q) 
Q) 
a. 

CI) 

LO 

5 

Averaging Filter Speedup 

10 15 20 

Number of processor cores 

Figure 5.4: Speedup with each worker processing one image slice of a 3D image 

113 



Subsequently a 'scatter-gather' master worker model variant was applied to this 

test case, in which all processors engage in MPI scatter and gather collective 

operations to distribute image slices and return results . In this model variant the 

master also does work processing an image slice. Broadly similar results were 

observed, using one less processor in each test as the master also acted as a 

worker (so results are not included). The 'scatter-gather' variant of the model 

works well if the computational effort on each processor is identical, as each 

process receives work and returns results as a collective operation across all 

processes, and thus take advantage of efficient collective scatter-gather 

implementations. 

b) Tests on applying a 3D averaging filter to many 3D bio-cell images, with 

distribution of image paths: 

The performance graphs in Figure 5.5 and Figure 5.6 show the timing and 

speedup mapped to the n+1 processor cores used (n = the number of images). 

Averaging Filter Time 

LO 
C\J 

0 
C\J 

U) 
'0 
C LO 
0 T"" 
() 

~------.------
Q) 
en - 0 
Q) T"" ----E 
i= 

LO 

0 

0 10 20 30 40 50 60 

Number of processor cores 

Figure 5.5: Time with each worker processing one 3D image. 

(i. e. load increasing as processor core count increases) 

114 



Averaging Filter Speedup 

l!) 
C\I 

0 
C\I 

a. 
:::J LO "0 
Q) T""" 

Q) 
a. en 0 

T""" 

/ LO 

0 

0 10 20 30 40 50 60 

Number of processor cores 

Figure 5.6: Speedup with each worker processing one 3D image 

Whilst not attaining the ideal, the performance recorded in these preliminary 

results is again very encouraging, showing considerable speed up in this 'worst 

case' test. As anticipated, the execute time does increase with increased 

processor core counts, being in part attributed to increased 10 contention as more 

images are read and written concurrently, although some increased variability in 

the time to process an image once loaded was also observed. More interestingly 

though, these factors accounted for less than half the observed overhead . 

To investigate further, the MPE analysis tool [23] was linked in . Perhaps . 

unsurprisingly, the analysis revealed that initialising MPI accounted for an 

increasing fraction of the total overhead as processor counts increased. Since this 

initialisation is a 'one off, it will be amortised when it is arranged for each worker to 

process more than one image, and an improved speedup should be expected. 

As interesting, the analysis also revealed that significant time was spent at barriers 

inserted into the program. Some barriers were inserted to allow reasoning of 

program flow and are otherwise redundant and will be removed to improve 

speedup. However, it is still an area of continued investigation as to why 

processes can remain at a barrier for a significant period after all processes have 

115 



arrived at the barrier (using openmpi 1.4.2). Else wise, the internode master

worker communication is comparatively very small and did not significantly impact 

performance. 

5.3.4 Discussions 

This preliminary evaluation had two aims. Firstly, to establish that the DFrame 

core behaviour was working as designed. This encompasses the receipt of a task 

specification from a client, the operation of the workflow component, the resolution 

of models and application module code, and the cooperative execution of the 

models loaded on each DFrame instance, to progress and complete a parallel 

computation. The second aim was to provide early feedback that performance 

gains were attainable using the DFrame to apply image operators to a partitioned 

image and to multiple whole images. These being legitimate goals for the project, 

and a precursor to the subsequent more involved evaluations in this chapter. 

Overall, the results are very positive on both accounts, confirming the core 

functionality in the DFrame design. Also, as mentioned in the results, in the first 

'image slices' test, a 'scatter-gather' master worker model variant was also plugged 

in that illuminated an orthogonal success in the ease with which one model can be 

swapped for another, by simply updating a line in the specification. From a 

performance perspective, the results confirm that the DFrame design is 

successfully applying parallel processing to deliver results in much reduced 

timescales, on simple but nevertheless real world image processing applications . 

. 
In the first test that partitions and distributes image slices, the amount of work is 

held constant (the one image being processed), while the number of workers is 

increased. There is of course a limit to how fine grained the image can be 

partitioned, as the communication overhead increases commensurately, inhibiting 

and eventually negatively impacting performance. The 'image slices' speed up 

graph is not linear in part due to this effect. Another observation is that the master 

is serially distributing tasks to workers, so the last worker to receive a task will be 

some time after the first worker, effectively extending the apparent time to execute 

a task. Also, each worker may take a slightly different time to execute a task, and 

the worker that takes the longest time to execute may be reflected in the results (if 

this is not by chance obscured by the order of distribution). 

The second test increases the workload as more processors become available. It 

.116 



was anticipated that the speed up would be more linear in this case, as each 

processor continues to do the same amount of work. Although the results are 

encouraging, this expectation was not fully realised, with the time increasing as 

more processors were added with an equal amount of extra work. One factor was 

the increased startup cost of MPI and this is not an undue worry as the DFrame is 

designed to start up once and then to continue substantial batch or interactive 

processing in one session. Another observation was that the DFrame processing 

was stalling longer than expected in MPI barrier calls. This is an ongoing 

investigation, but it is admitted that some of the barriers are inserted for tests and 

early reasoning of the program flow, and will be removed. In this test, each worker 

is reading its own 3D image from disk, and there is the possibility that as the 

number of workers reading from disk increases, contention will increase impacting 

performance. 

The tests provided useful feedback on the operation of the DFrame design, the 

master-worker models and the integration of application code (in strong scaling 

and weak scaling scenarios). The mechanism for packing, sending, unpacking and 

receiving work and results did not itself manifest in a huge extra cost, an aspect of 

initial concern. Even so, it is expected that now a rudimentary implementation is in 

place, effort can also concentrate on tuning areas that are identified as 

performance bottlenecks. However, further investigations in this regard is left to 

the more detailed evaluations that now follow. 

5.4 Sobel 3D Image Operator 

5.4.1 Background 

Many image operators are local, such that computations on- each pixel or voxel 

.. only require data from its neighbours to compute an updated value for that h 

-
location. Such operators are ideal candidates for parallelisation. In this evaluation, 

a master-worker model configuration is again used to apply a Sobel operator to a 

larger 3D image. The Sobel operator is an edge detector that determines the 

approximate gradient of an image. An image is convolved with kernel filters that 

approximate the local derivatives of image intensities in each dimension, to 

produce an output image that accentuates regions of high spacial frequency (i.e. 

edges). A good description on edge detectors can be found in (Klette 2014) 

117 



alongside a general discussion on local image operators, and points out that the 

Sobel filter was first published in (Sobel 1970). Commonly used for 20 image edge 

detection, the Sobel operator can equally well be applied to 3D images. The Sobel 

operator was chosen for this evaluation, as the output is useful for subsequent 

processing such as segmentation which is considered in the third evaluation. It 

should be recognised, that the contents and size of the kernel is adjustable so that 

many local operators can use the same approach (and plug into the same 

algorithms). 

5.4.2 Sobel Operator Parameters 

The kernel filters of the 3D Sobel operator used in this evaluation are tabulated in 

Figure 5.7 below, these being extrapolated from (Wikipedia 2015) . 

'x' dimension 

1 0 -1 2 0 -2 1 0 -1 

2 0 -2 4 0 -4 2 0 -2 

1 0 -1 2 0 -2 1 0 -1 

y'dimension 

-1 -2 -1 -2 -4 -2 -1 -2 -1 

0 0 0 0 0 0 0 
~ 

0 0 

1 2 1 2 4 2 1 2 1 

'z'dimension 

1 2 1 0 0 0 -1 -2 -1 

2 4 2 0 0 0 -2 -4 -2 

1 2 1 0 0 0 -1 -2 -1 

118 



Figure 5.7: Kernel filters for a 3D Sobel operator 

The computation convolves the kernel filters with each voxel of the 3D input 

image, to produce a 3D gradient output image. The operator can be viewed as a 

smaller 3D image whose centre is positioned at each voxel of the input image and 

the masked voxels of the original image are then convolved with the kernel voxels 

at the same point, to produce the output at the centre location. 

5.4.3 Image Partitioning Strategy 

To arrange for parallel execution, the input 3D image is partitioned into sub

images that are distributed to each participating process. As the convolution of the 

Sobel operator at a voxel requires access to that voxels neighbours, each 

partitioned sub-image must include boundary or 'ghost cell' information for 

boundary computations of the sub-image. The 'shape' of the sub-image will affect 

the amount of extra boundary information that needs to be communicated 

alongside each core sub-image, and this overhead should be taken into account. 

Although a cube has an optimally minimum surface area, a partitioning strategy 

may require some latitude, taking other information into account, such as the 

number of available processes, the shape of the 3D image and the task size. 

In this evaluation, a coarse grained partitioning strategy is chosen such that the 

input 3D image is partitioned into a number of sub-images equal to the number of 

available processors. The assumption is that the partitioning will be minimised, 

and the communication optimised with the fewest number of tasks being 

communicated (one to each processor). Another side effect of this choice is that 

the analysis is also simplified, and thus clearer to review. The master process 

does not participate in the processing of sub-images, so the partitioning must align 

with the number of workers (i.e. one less than the number of processors). That this 

test chooses a partitioning that exactly aligns with the number of workers"as' 

ramifications for the number of processors to use. For instance, if 12 processors 

were made available, then 11 would be available to participate as workers, and 

this (prime) number of workers will only allow partitioning across one dimension, 

into 11 strip images, which is likely to result in less optimally shaped sub-images 

when ghost cells are required. Although the partitioning strategy is implemented to 

look for a better partitioning even if that means using fewer proce~sors (e.g. 1 0 

processors), the test is conducted with numbers of processors that can be 

119 



partitioned according to the number of workers. The choice of the number of 

processors to use is complicated further when the number required exceeds that 

available on a single node (32 on the cluster used), as the required number of 

processors is specified as the number of nodes and the number of processors per 

node (two parameters rather than one). Thus, only certain configurations are 

available when the number of processors required is greater than the maximum 

number of processor per node. In summary, the processor count and configuration 

was adjusted in order to map more reasonable sub-image shapes to each 

processor and Table 5.3 tabulates the number of processors used and the 

corresponding image block sizes for the test image (688x512xI44, 16 bit, 97MB). 

Number of Processor Total Number of Sub-image Number of 

nodes cores per processor workers Block size Blocks 

node cores 

1 1 1 1 688:512:144 1 

1 4 4 3 230:512:144 3 

1 9 9 8 172:256: 144 8 

1 13 13 12 230:128:144 12 

1 16 16 15 138: 171: 144 15 

1 25 25 24 172:171:72 24 -
1 31 31 30 138:171:72 30 

3 17 51 50 138:103:72 50 

3 19 57 56 99:128:72 56 

Table 5.3: Partitioning information/or the Sobel operator tests. 

3D image size: 688x512x144, 16 bit, 97MB 

The partitioning strategy is defined by an entry in the task specification, or is 

automatically determined if not explicitly specified. By passing a 3D image along 

.120 



with the number of available processors as parameters to a partitioning strategy 

implementation, the sub-image block sizes are calculated . Specifying ghost cell 

information to a partitioner along with this block size information will configure the 

partitioner to return appropriately sized sub-images for distribution to the workers. 

The partitioning strategy implementation can be swapped out to provide different 

behaviour, and this will be useful in further investigations such as the effect of 

more fine grained tasks (smaller sub-images). When only one processor is used, 

of course there is no partitioning , and the master runs the computation locally. 

5.4.4 3D Cell Image Results 

The following figures show the same slice through the test 3D cell image before 

and after the Sobel operator is applied. 

121 

Figure 5.8: Input image x-y slice a/labelled sarcoma cells. 

3D image size: 688x512x144, 16 bit, 97MB 



Figure 5.9: Sobel op erator output image x-y slice detecting nuclei of labelled sarcoma cells 

Figure 5.8 shows an x-y slice of the input image of labelled sarcoma cells and in 

Figure 5.9 an x-y slice of the output image shows the successful application of the 

Sobel gradient operator as indicated by the now clearly discernible cell nuclei 

edges. 

The graphs in Figure 5.10 , Figure 5.11 and Figure 5.12 plot the execution time, 

speed up and efficiency respectively, when running the Sobel operator on the test 

image using a varying number of processor cores . As the graphs show, although 

useful speedup is observed , the parallel execution falls some way short of the 

ideal. Indeed , above 16 processor cores , the speedup begins to plateau and at 

higher processor core counts starts to drops slightly, with a corresponding decline 

in the efficiency. Note that even in the more ideal case, the efficiency will not attain 

100%, as the master is not participating in the processing of the image, so for 4 

processor cores only 3 are participating and the efficiency is approaching 75% 

rather than 100%. This effect should of course diminish as the number of 

processor cores used increases. 

122 



Sobel Operator Time 

0 
(!) 

0 \ Ll) 

Vi 
0 
'<t 

"tl 
C 
0 
(,) 

0 Q) 

.e (') 

Q) 

E 
F 0 

C\J 

0 ,.... 

0 

0 10 20 30 40 50 

Number of processor cores 

Figure 5.10: Sobel operator processing time 

Sobel Filter SpeedUp 

o ,.... 

Ll) 

o 

o 10 20 30 40 50 

Number of processor cores 

Figure 5.11: Sobel operator speedup when applied 10 a 3D image 

3D image size: 688x512x144, 16 bit, 97MB 

123 



Sobel Operator Efficiency 

0 
0 

\ 
,.... 

0 co 

~ ;g- o 
~ (0 

>-u 
c:: 
Q) 

'(3 
0 :E "" w 

0 
N ----
0 

o 10 20 30 40 50 

Number of processor cores 

Figure 5.12: Sobel operator efficiency 

The tail off in performance warranted further investigation, and so the DFrame was 

recompiled with the MPE profiling tool linked in to collect more information, and to 

visualize the distributed processing behaviour in more detail using Jumpshot (Zaki, 

Lusk et al. 1999). In Figure 5.13, it became immediately apparent that the 

distribution and collection of the sub-images is having a significant impact. In 

particular, serial 'Iaddering' of the distribution and collection is observed (top 

image) . 

124 



• Preview_Arrow ~ 
_message ~ ~ 
r:::J Preview_Sta te ~ ~ 
. CLOG_BUffe r_Wflte2 dlsk ~ ~ 

r:::J MPI_Barrie r ~ ~ 

MP LBcast ~ ~ 

~~ 

~~ 

~~ 

~~ 

~~ 

~~ 

~~ 

~ 

~~ 

~~ 

~~ 

~~ 

~~ 

( Deselect I 

Figure 5. J 3: Sobel operator timings using J 6 processor cores (MPE/Jumpshot) 

This staircase effect is expected when the master process serially distributes data 

to workers, and in cases where it becomes a significant overhead non-blocking 

communication is normally introduced to try to mask it, such that communication is 

undertaken while the master processes more work (the DFrame now supports non 

blocking sends, so this is being incorporated into the model) . However, the lower 

'zoomed in' image in Figure 5.13 adds further insight to the performance 

degradation. Indeed it appears that the serial sending of sub-images is not the 

main culprit. Using 16 processors, the time to pack, send, receive and unpack a 

partitioned sub-image is only around 15ms whereas there is an interval of over 

150ms between each send from the master to the worker! This is the time that the 

master spends creating each of the 16 sub-images prior to packing and sending 

125 



them (i.e. the time in between posting sends). As the processor count increases, 

further inspection via the MPE tool confirms that although it takes less time to 

create each sub-image there are correspondingly more of them such that the 

recorded total partitioning time is similar and the effect becomes more . 

pronounced, as the time to execute the work reduces. For 31 processors. the sub

images are smaller, creating each accounts for 80-90ms which equates to around 

as much as 2.8 seconds! Recomposition of each returned output sub-image is 

observed as similarly expensive. 

5.4.5 Discussion 

Apart from implementing the practically useful 3D Sobel operator, a core driver for 

this first evaluation was to illuminate the overhead associated with using a master 

worker model to parallelise local operators applied to a 3D image. In particular. the 

cost of partitioning. sending, receiving and reconstructing sub-images with ghost 

cells prior to applying the local operator, and the subsequent gathering and 

recomposing of the result. It was expected that the packing, sending and receiving 

of the sub-images would be the dominant impact but these timings are actually 

quite encouraging. The much more significant impact appears to be the cost of 

using higher level structures to access and partition the 3D image into sub-images 

and the initialization of the sub-images with the appropriate data prior to sending, 

and the reconstruction of the image from the gathered sub-images upon 

completion of the distributed computation. Although there is evidence that non

blocking sends could be usefully employed in the model laye~, the results reveal 

that priority should be given to investigating the application domain code that 

partitions and recomposes the 3D image, as the observed costs far exceed those 

anticipated. It is suspected that this is due to the creation and use of higher level 

pointer structures designed to allow access to and setting of image voxels via 

dimension index (e.g. x, y. z). rather than the extra boundary data added to the 

sub-images. This suggests that more innovative 3D image partitioning is required. 

A next step will be to arrange for a virtual sub-image design that provides a 

window into the whole image rather than copying out a section to a separate sub

image. Sub-image descriptors would then define a striding in the whole image that 

can be used to pack the sub-image data directly into an MPI buffer, thus removing 

the intermediate copy and population of a separate sub-image prior to such 

packing. A similar arrangement could also leverage MPI's derived data types 

.126 



feature. This more innovative virtual sub-image design is expected to be much 

more performant. The need for a separate sub-image would still be required on the 

worker side, but the partitioning and recomposing of the 3D image would avoid the 

extra burden of creating and populating separate sub-images for this purpose, and 

this has been identified as a bottleneck on the master process. 

Another point to mention is that the set up for this evaluation has the 3D image 

partitioned into a number of sub-images that matches the number of worker 

processes, so as to reduce the number of tasks to one per processor. This means 

that an optimum sub-image shape cannot usually be obtained, and although this is 

likely to be of less impact, there is more research to be done to establish if more 

fine grained but optimally shaped sub-images would be better (or no worse given 

the required increased communication). The partitioning strategy used attempts to 

optimise the block size as much as possible, and in so doing can choose to use 

less than the available number of processors. However, for this evaluation only 

processor counts that result in all processes being used are considered, which is 

somewhat artificial but makes the tests across different processor counts more 

consistent and comparable. Even so, with this imposed constraint the partitioning 

strategy cannot achieve an optimum block size and must settle for a good 

compromise. This is relevant here because each sub-image includes ghost cells. 

Even though there is no data exchange in this evaluation, boundary information 

from neighbouring sub-images is still required. 

Although the results are immediately useful in identifying specific performance 

black spots where further optimisations can be sort, they also encourage 

consideration of other approaches. Once all practical optimizations have been 

introduced, there will still be some minimum overhead associated with p~rtitioning, 

distributing, gathering and recomposing the 3D image. The'computation 

associated with the 3D Sobel operator is non-trivial, so even with the one operator, 

increased performance should be achievable once further application code 

optimisations are introduced (i.e. parallelisation is still worthwhile). One obvious 

observation is that the impact of this overhead will depend on the size of the 

computation. Spe~ifically, if the computation time is significantly greater than the 

parallelisation overhead, the speedup will be commensurately better. One way to 

achieve this in the DFrame is to arrange for multiple operations to be performed on 

the deployed sub-images, prior to the gathering and recomposing stage, to 

127 



amortize the overhead across many image processing tasks. This is a practical 

solution for image processing applications which often apply a pipeline of multiple 

operators to an image. However, the master worker is not as well suited to this 

arrangement. Although a master worker model could introduce data location 

information that helped in this respect, this would add complexity to an otherwise 

simple and well understood model (the OFrame does have a scatter-gather variant 

of the master-worker that could be used to investigate this further). If sub-images 

are to remain deployed across many image operators, then there must be a way 

for them to update their boundary data after each operator. This requires the 

exchange of data amongst neighbours and is more suited to a mesh model that 

arranges the sub-images in a topological manner such that a sub-image is 

(virtually at least) adjacent to its neighbour sub-images. The next evaluation on 

image segmentation employs a mesh model to distribute sub-images across the 

available processors, together with infrastructure code that arranges for the 

exchange of data amongst neighbours. The performance of the exchange of data 

being a core interest. 

When appropriate, another way to amortize the overhead of distributing and 

gathering data is to arrange for each node to load the whole image, and then pass 

only operation parameters (instructions) to each node rather than image data. In 

this case a master worker model is still very effective. This is the core technique 

used in the final evaluation, as it is well suited to a ray tracing application which 

requires repeated camera updates only, and produces a much smaller 20 image, 

which can be effectively gathered without too much impact or] performance. 

Lastly, instead of distributing sub-images, the MPI-2 parallel 10 functionality could 

be used such that each worker reads its sub-image from the whole image on disk 

(Gropp, Lusk et al. 1999b). Although disk access is much slower, it would be worth 

investigating the relative merit of this approach. As a 3D image is stored on disk as 

a single array of bytes, some work would be required to devise a strategy to read 

non-contiguous sections of the image to assemble each sub-image, and this would 

be non-trivial and of course add to the access time. It would then be possible to 

compare the direct sub-image reads from disk against one process reading the 

whole image, and partitioning and distributing to all worker processes. In the ideal 

case, the expectation is that direct sub-image reads would become relatively more 

attractive as processor counts increased, but in practice this would be heavily 

128 



influenced and constrained by the storage architecture. 

5.5 3D Image Segmentation 

5.5.1 Background 

After preprocessing an image, a common next (automation) stage is to extract 

relevant features that are then used in subsequent analysis and classification. For 

example, in cell biology core features would include the size and shape of a cell, 

and in order to calculate such features, the image must be segmented to identify 

and isolate each cell. The aim of segmentation is to partition an image into disjoint 

sets of pixels or voxels such that each set has members whose properties adhere 

to some similarity or homogeneity function (such as intensity, colour, proximity 

etc.) and that differ from neighbouring sets. Segmentation approaches can be 

broadly categorised into edge based methods that detect contours or 

discontinuities, and region based methods that detect similarities including 

thresholding, and various region growing, clustering, splitting and merging 

operations (Sonka, Hlavac et al. 2008). These segmentation methods can also be 

usefully categorized as local or global (Morris 2004) according to whether 

processing is amongst neighbours or involves the entire image, an aspect of 

particular interest to parallel processing. The accuracy of the segmentation stage 

will impact all subsequent analysis. 

5.5.2 3D Image Watershed Segmentation 

This evaluation focuses on the watershed segmentation, a popular region growing 

variant expected to provide good results for the class of problem under . 

examination, namely the segmentation of cells in a 3D image. Watershed 

. segmentation has its origins in the fields of mathematical morphology and 

topography (Serra 1982), where a 20 grey scale image is conceptualized'as a 

topological relief. Rainfall or immersion techniques are applied to resolve distinct 

catchment basins (8eucher, Meyer 1993). In the immersion approach, the idea is 

to apply a flooding process to an image starting at image intensity local minir:na, 

and then to fill up the separate catchment basins defined by these minima. Where 

catchment basins meet, watersheds are built that delineate each catchment basin. 

In.the rainfall approach it is the path that a drop of water would take when incident 

129 

r 

1 



at a particular location, to reach a minimum that determines which catchment 

basin that location belongs to. Although the topological analogy may not be as 

appropriate for the 3D images, the techniques are just as valid. 

The parallelisation of the watershed transform is non trivial, due to the global 

nature of the process. Indeed, fast serial implementations using a global ordered 

queue have proved difficult to parallelise, as the partitioning of the queue across 

processes induces dependencies that limit parallel execution. Parallelisation is 

also particularly problematic for images that contain plateaus of constant intensity 

within an image. Without plateaus, topographical distance can be considered, but 

when plateaus are present in an image, processing must include the determination 

of geodesic influence zones (Bieniek, Burkhardt et al. 1997). A common approach 

is to calculate the geodesic influence zones using a breadth first search, but when 

plateaus straddle partitions, ensuring that wave fronts generated by a breadth first 

search are synchronous inhibits any parallelism (but is necessary to cater for 

process indeterminism). In (N. Moga, Cramariuc et al. 1998), a good review of 

various watershed parallelisation endeavours and issues is presented, along with 

proposed rainfall and immersion algorithms that exploit local properties that 

increase data locality to improve parallel execution. The key aspect to successful 

parallelisation of these algorithms is to preprocess the image to remove the 

plateaus (except the minima), this being accomplished by computing a 'lower 

complete' image. 

This evaluation concentrates on the immersion technique to establish image 

watersheds. Vincent and Soille introducing a notably fast imprementation of the 

immersion variant (Vincent, Soille 1991), and the test algorithms incorporate this 

approach together with preprocessing and post processing to accommodate 

parallelisation. A gradient image is used as an input to the segmentation stage, 

generated by applying a Sobel operator to a 3D input image (see previous 

evaluation). Although the watershed transform is very popular, it does have one 

significant disadvantage in that it can over-segment images (particularly noisy 

images). Various approaches have been proposed to eliminate this, one 

successful method being to use markers that identify the catchment basins instead 

of automatic identification based on local image minima, but this shifts the problem 

to identifying the markers (Moga, Gabbouj 1998). Other approaches include 

generating mosaic images or hierarchical representations from an over-segmented 

130 



image and again applying a watershed, and introducing more advanced 

techniques such as the 'p' algorithm (Beucher, Marcotegui 2009).' Here the focus is 

in parallelisation, so this evaluation does not fully investigate all these approaches, 

save for some experimentation with 'filling in' segments smaller than some 

parameterised size, to examine whether this would adjust the 'resolution' of the 

segments (segment size). The anticipation is that other strategies could eventually 

be plugged into the algorithms to aid segmentation. 

5.5.3 Image Partitioning Strategy and the Mesh Model 

A parallel regular Mesh Model is used to control the parallelism, such that a 3D 

image is partitioned into sub-images in a block mesh topology suitable for the 

number of available processors, and the tests repeated using varying numbers of 

processors. Each sub-image includes a 1 pixel wide surrounding ghost data (also 

referred to as 'halo' data). One process loads the 3D image, partitioning and 

distributing 3D sub-images to each other process according to the topology, and 

keeping one sub-image for itself. The immersion watershed segment algorithm is 

then applied locally to each sub-image. Prior to recomposition, an exchange of 

ghost cells is performed, this being just for test purposes in this evaluation, but 

with the goal being to test the functionality and performance of redistributing 

boundary information for subsequent processing prior to recomposition. A 

recomposition phase then gathers the data and recomposes into a resultant 3D, 

image on one process for inspection, storage or further processing. 

The test image is the same as that used in the previous evaluation (688x512x144, 

16 bit, 97MB) and the partitioning strategy is the same in that one process is 

loading and serially distributing the sub-images to each process sequentially. 

Indeed, when using a mesh model, the partitioning strategy must partition the 

image onto a regular mesh topology so that the number of sub-images aligns with 

the number of processors available. Although the processor topology can be set 

explicitly, the default is to let the partitioning strategy automatically determine the 

optimum sub-image block-size for the available number of processors, and to use 

that to also extraqt the corresponding required topology. The default is used in this 

evaluation. The mesh model then sets up this topology across the processors 

(under the covers the MPI topology features are being used), and distributes the 

sub-images according to their position in the topology. 

131 



Once all the processes are initialised with the topology, and have received their 

respective sub-images, the segmentation computation is performed on each sub

image. After this, an exchange data step is undertaken such that all the sub

images exchange boundary data with the appropriate neighbours. For this 

evaluation, this ends the processing and the watershed information is gathered 

and reconstructed for inspection. The core interest being to get the initial 

segmentation algorithm to run, and in particular to test the mesh model's exchange 

data design and implementation is functioning and performant. Work is ongoing to 

embellish the segmentation algorithm itself to reduce the over-segmentation, and 

propagate the watershed information across sub-images, but is not pursued 

further here. 

Table 5.4 presents the partitioning strategy for the mesh model, showing the 

image partitioning for each tested processor core count. Note that for up to 16 

processor cores, the partitioning strategy chooses to only partition in two 

dimensions, with the third dimension not split up (144 pixels). This is deemed to be 

the best compromise to get near to an optimum sub-image shape. Note that the 

mesh model was not run with only one processor core, and the time it would take 

to execute with one processor core was inferred from the average execute only 

figures obtained when running on 4 processor cores . 

. 132 



Number of Processor Total Number of Sub-image Number of 

nodes cores per processor workers Block size Blocks 

node cores 

1 4 4 4 344:256: 144 4 

1 8 8 8 172:256:144 8 

1 12 12 12 230:128:144 12 

1 16 16 16 172:128:144 16 

1 24 24 24 172:171:72 24 

1 32 32 32 172:128:72 32 

2 24 48 48 115:128:72 48 

2 32 64 64 86:128:72 64 

Table 5.4: Partitioning information for the Segmentation tests. 

3D image size: 688x512x144, 16 bit, 97MB 

5.5.4 Mesh Model Performance Results 

Figure 5.14 and Figure 5.15 show a slice through the gradient input 3D image and 

a corresponding slice through the output 3D image after applying an immersion 

watershed segmentation. The output image is actually rendering the wat~rshed 

lines as this is more illuminating, although the segment labt;llling is the more useful 

or pertinent information for analysis (but not so easy to depict). An immediate 

observation is the over-segmentation of the output. As discussed in the .. 

introduction to this evaluation, this is no surprise for watershed segmentations of 

noisy, high resolution images, and pre-processing and further post processing 

techniques are usually applied to improve the segmentation prior to feature 

extraction and analysis. The over-segmented output is sufficient for the purposes 

of this rudimentary evaluation, that is initially focusing on the mesh model 

p~rallelisation and data exchange aspects. 

133 



134 

Figure 5.14: Segmentation input image slice (Sobel operator output image x-y slice 

detecting nuclei oflabelled sarcoma cells) 

Figure 5.15: Segmentation output image slice of labelled sarcoma cells 



The performance plots shown in Figure 5.16, Figure 5.28 and Figure 5.18 present 

the execution time, speedup and efficiency results. The plots show the total 

combined time to partition, distribute, execute, exchange data, gather and 

recompose an image. The impact of generating and distributing the sub-images 

and gathering and recomposing the results is apparent. Although the speedup is 

encouraging, the burden of paralielising is significant. 

Segmentation Time using MeshModel 

0 
10 

0 \ 
"<t 

U) 
"C 0 
C M 
0 
0 
OJ 
~ 
OJ 0 
E C\J 
i= 

0 ,... 

0 

10 20 - 30 40 50 60 

Number of processor cores 

Figure 5. J 6: Processing time of a 3D watershed segmentation operator 

135 



a. 
~ 

" Q) 

[ 
en 

~ 
~ 
>-u 
r::: 
Q) 
·0 
:i': 
W 

. 136 

It) 
C\I 

It) 

o 

It) 

o 

0 
0 

0 co 

0 
CD 

0 
'<t 

0 
C\I 

0 

Segmentation SpeedUp using MeshModel 

----------

10 20 30 40 50 60 

Number of processor cores 

Figure 5.1 7: Speedup of a 3D watershed segmentation operator 

Segmentation Efficiency using MeshModel 

---------
10 20 30 40 50 60 

Number of processor cores 

Figure 5.18: Efficiency of a 3D watershed segmentation operator 



As the exchange data aspect of this evaluation is of central interest, an extra 

'stacked' plot (Figure 5.19) is provided to shine more light on the proportion of time 

taken to partition and distribute the sub-images, execute the work, exchange data 

and gather and recompose the results. The increasing impact of the distribute and 

gather time is clearly evident, but the time to exchange data is so relatively small 

that it is not clearly discernible on the stacked plot (which is very encouraging) . For 

this reason, an extra plot is included to more clearly show the behaviour of the 

exchange data timings as the processor count is increased (Figure 5.20). 

en 
"tl 
C 
0 
U 
Q) 

.!!!.-
Q) 

E 
i= 

137 

o 
LO 

0 
'It 

0 
M 

0 
(\j 

o .-

o 

Segmentation Stacked Timings 

--- ---------------- ------- -----

• Exchange Data 
Gather Data 

• Distribute Data 

• Execute Task 

4 8 12 16 24 32 48 64 

Number of processor cores 

Figure 5.19: Segmentation stacked processor timings 



(i) 
"C 
c: 
0 
0 
Q) 

~ 
'E 
Q) 

E 
F 

o 
IX) 

0 
CD 

0 
v 

0 
C\J 

o 

10 

Segmentation Exchange Data Timings 

/ 

20 30 40 50 60 

Number of processor cores 

Figure 5.20: Exchange data timings of a 3D watershed segmentation operator 

The exchange data plot is interesting, as it appears counterintuitive. The more 

logical expectation would be that the exchange data total time would reduce, as 

the amount of boundary data to exchange reduced due to the smaller sub-image 

block size used as the processor count increased. Instead, a variable but rising 

trend is observed . This is partly accounted for because for up to 16 processors, 

the image is only partitioned across two dimensions (see Table 5.4 in the method 

section above) , removing the need to exchange data in the third dimension. 

To investigate further, and in particularly as the DFrame timings indicated an 

increasing burden due to the partitioning , distributing , gathering and recomposing 

the sub-images, it was deemed worthwhile to recompile with MPE linked in again , 

to capture and inspect the MPI profiled timings. The results confirm that similar to 

the Sobel evaluation , the distribution cost is significant and a zoom view again 

indicates the dominant cost of partitioning the 3D image. The larger compute time 

is clearly evident, explaining the improved speedup and efficiency, relative to the 

timings in Sobel operator evaluation. 

The exchange data figures are so small as to not be discernible in the 

MPE/Jumpshot full view (top left of Figure 5.21) . However, zooming in to 

investigate (not shown), it was found that there is significant variability in 

138 



1, 

processors joining the MPI_Cart_shift collective operation. Although a barrier was 

inserted prior to the collective, and all processors leave the barrier together, some 

joined the MPI_Cart_shift call immediately while others lagged (for 16 processors, 

by up to 1.76ms). 

" 

..,.~ . ~-:::a:~--'" _. -~~- ~~ - ~ -

8 0 0 
Name ' ,T 

• Preview_Arrow ~ ~ 

I_message ~ ~ 
.DI Preview_State ~ ~ 

DI MPI_Barrier ~ ~ 

DI MPI_Bcast ~ ~ 
I.DjMPI_carureate ~ ~ 
.DI MPI Cart rank ~ ~ 

I.DIMPI~Cart~s h ift ~ ~ 
J:JI MPI_Comm_d up ~ ~ 

~~ 

~~ 

~~ 

~~ 

~~ 

~~ 

~~ 

~~ 

~~ 

~ 

~~ 

~~ 

~~ 

~~ 

Figure 5.21 : Segmentation timings using 16 processor cores (MP EIJumpshot) 

5.5.5 Discussion 

This evaluation is centred on using a mesh model and 'halo' exchange to 

parallelise a watershed segmentation algorithm. As the previous evaluation has 

highlighted, using a mesh model is an attractive strategy to amortize the cost of 

139 



parallelisation when multiple operators can be applied to the partitioned data, prior 

to gathering the results. This is a good fit for image processing in general and for 

common segmentation approaches, which can entail multiple operations within the 

segmentation stage itself, and often sit within a pipeline of pre-processing stages 

such as 3D averaging filters and a 3D gradient operator, and post-processing 

analysis stages. 

The presented results appear more positive than those in the first evaluation, and 

this is primarily because the segmentation algorithm is even more compute 

intensive than applying a Sobel operator, so that the execution time on each 

processor is still a significant proportion of the total time even across 64 

processors. However, as the same partitioning and distribution strategy has been 

used, the same observations apply to this evaluation, as witnessed in the 

MPE/Jumpshot detailed view (bottom left of Figure 5.21). In particular, priority 

should be given to optimising the high level image structures, while retaining the 

intent to provide abstraction, clarity and productivity at the application layer. One 

further point is that when parallelising the segmentation algorithm, in addition to 

exchanging the data, further processing must be done to merge boundary 

information and relabel so that a global labelling is achieved, and this may involve 

multiple iterations (not included in this evaluation, but acknowledged as would 

further impact performance). This extra work is not usually required in a sequential 

algorithm. One notable issue evident during the evaluation was that due to the 

over-segmentation, the number of labels required was large, and potentially more 

than could be represented in a 'short' numeric type in a sequential implementation, 

although this could be alleviated with pre-processing to smooth out the image (a 

short data type is preferred, to.reduce memory footprint and communication data 

size). Additionally, the representation of a watershed image th~t comprises 

intensity, distance and label information on each voxel inflates the memory 

requirements. These latter points also being good arguments for parallelising the 

segmentation of 3D images to reduce memory usage. 

The success of the mesh model to process multiple imaging operators hinges on 

the performance of the 'halo' exchange: the local exchange of ghost or halo data 

amongst neighbours between each operator. Here, the results are impressive, 

showing that the halo exchange adds little to the overall execution time. In the 

exchange data design, non-blocking sends are introduced as each process must 

140 



communicate with as many as 6 neighbours, and so the cost of creating the 

boundary sub-images to exchange with each neighbour can be overlapped with 

communication to other neighbours, to optimise performance. Some variability in 

the MPI_Cart_shift collective operation is evident. This could be due to some 

anomaly in the mpi implementation, or it could of course be an architecture issue, 

or some usage issue pertinent to the evaluation (all of which would have to be 

considered in further investigations). OpenMPI 1.4.2 is used in the case studies, 

and version 1.8 is now available. One of the huge benefits of open source 

software is that the extensive use and development cycles incrementally improve 

the software, and this area may have received attention. So an upgrade should be 

considered as part of further tests. Notwithstanding this, the results prove that the 

mesh model and halo exchange combination are a performant parallel ising 

strategy when appropriate. The ghost cell pattern can as well be used in 

investigating the most efficient implementation of the initial distribution of ghost 

partitions, where sub-images are collectively distributed and ghost cell information 

is subsequently exchanged prior to the start of a computation phase, rather than 

sub-images that include ghost cells being initially distributed. 

The partitioning of the 3D image leads to the requirement to exchange boundary 

information prior to further operators. Also, where an algorithm has a global 

element, further iterations may be required to align all the sub-images, to complete 

the current operator (also requiring neighbour data exchange). This highlights the 

well known notion that parallelising algorithms that operate on local regions is 

more successful than parallel ising global operators, and efforts to devise these 

should take precedence (such as the way neural networks work with local 

operators). Alternatively, strategies such as increasing the depth of the ghost cell 

region to exceed the expected size of cells could be consid,ered. Other more 

innovative partitioning strategies could be sort, that partition the image in more 

novel ways, as sub-image data that overlapped more fully, or partitioned into sub

images that span the whole image but at some lower resolution and shifted phase. 

The partitioning strategy influences the distribution strategy, and a modification to 

the current distribution strategy is planned, to enlist the help of multiple processors 

to distribute the data, such that all processes in the x-dimension receive sub

images, and these then distribute to pr~cesses in the y-dimension, and then all 

processes in the x-y-dimension distribute to the z-dimension. This' will then be 

compared with the one processor partitioning and distributing all the sub-images to 

141 



all processors serially. An optimum strategy may also include the use of mpi's 

parallel 10 functionality, as mentioned in the previous evaluation. 

As well as the many alternatives and combinations that can be used to parallelise 

computation, different segmentation approaches can be used, some of which may 

be a better fit with parallel processing. For instance, finding the image minima in 

one step and then segmenting using the watershed or other region growing 

techniques based on only these minima. The segmentation may form intermediate 

representations such as a lower complete image and then a mosaic image that is 

then piped to further segmentation algorithms. Indeed, splitting up the process can 

give more flexibility and allow experimentation at various stages. Although the 

output from the segmentation evaluation depicts a watershed output image, in 

reality the output would be cell features such as volumetric size and shape, that 

are then piped into an analysis stage. The output of the analysis stage would then 

identify unusual cells for further scrutiny. This then would provide information that 

can be used in a visualization stage, to zero in on the interesting artefacts 

uncovered (see next evaluation). 

One final point is that in a high content screening application, many images will be 

processed and in this scenario it would be sufficient to process one image per 

processor and completely avoid the overhead associated with partitioning and 

reconstructing images (but note that the memory implications would have to be 

assessed). 

5.6 Visualization Ray TraCing 

5.6.1 Background 

Visualisation is the process of translating a dataset into a form suitable for viewing, 

and this evaluation focuses specifically on the visualization of 3D image datasets. 

Once cells have been segmented, and prominent characteristics extracted, 

analysis may identify unusual cells for further automated analysis or manual 

operator inspection and review. As well, the ability to interactively visualize 3D 

images while adjusting the parameters of any component of an imaging pipeline 

provides direct feedback of the effects of such changes, helping to tune a pipeline 

for a particular purpose and check that the system is producing the intended 

output. Indeed, visualization can be applied to any appropriate pipeline stage to 

. 142 



check the output, aid tuning and provide reassurance that each stage is operating 

as expected. Although the mechanics of 3D visualisation is somewhat more 

involved than for 2D images, the extra degree of freedom adds scope for a much 

more immersive experience. Using a camera metaphor, a user can 'fly' through the 

3D image space, adjusting orientation and zoom, to inspect the whole image, or 

any artefact within the image at close range, from any angle. This introductory 

section examines polygonal rendering and volume rendering of 3D images, with 

the evaluation then using the DFrame to apply 'direct volume' cluster rendering to 

visualize 3D cell images. 

Mainstream graphics processing units (GPU's) primarily support fast, hardware 

accelerated parallel rendering of multi-polygon representations of 3D objects 

within a 3D image, with OpenGL (OpenGL Architecture Review Board, Shreiner 

2004) being the de-facto powerful standard programming API for rendering such 

primitives, including model-view transformations, projection transformations, 

lighting calculations, clipping and hidden surface removal. In artificial 3D images, 

objects can be directly specified as polygons. However, for raw 3D images, a 

conversion must be made to extract polygonal surfaces from the image, suitable 

for the GPU's graphics processing pipeline, one well known example being the 

'marching cubes' technique that extracts surfaces of equal intensity as polygonal 

representations (Lorensen, Cline 1987). The number of polygons generated to 

represent an iso-surface can be very large. Alternatively, where GPU's are not 

available (e.g. thin client) or the data is too vast, 'volume rendering' can be 

arranged on a server cluster. In this approach, polygons are still the primitives, but 

the processing of an image is arranged across a server cluster, with nodes in the 

cluster then processing a subset of the primitives or image space. A corn positing 

step assembles the resultant 2D image for display (Molnar~ Cox et al. 2008). 

Volume rendering of scenes of polygonal objects is also a seasoned technique 

used for shading realism (Appel 1968). 

Direct volume rendering (ray casting) is an image order volume rendering 

technique to directly render 3D images without the need to convert to a polygonal 

representation (L~voy 1990). Rays are propagated through the image and the 

resultant intensities to be rendered are calculated directly, according to a ray 

function. Although computationally intense and requiring recalculation whenever 

the viewing position is changed, the technique is appealing for its ability to produce 

143 



realistic shading, and is arguably more suitable for biomedical datasets as polygon 

triangulation may remove some important detail. An additional attraction is the 

flexibility of the ray function used, which can be adapted to provide effects that are 

difficult to achieve with a polygonal approach (Hege, Hollerer et al. 1993). Ray 

tracing does not align as well with a GPU's vector processing pipeline, but is suited 

to server side (cluster) rendering and as such is an ideal candidate for parallel 

processing using the distributed framework. For a server rendering example, see 

"Parallel rendering on the IBM Blue Gene/P" (Peterka, Yu et al. 2008). To test the 

DFrame, this evaluation uses a simple threshold based ray function. It is 

anticipated that the ray trace library will also eventually provide a variation where 

instead of detecting iso-surfaces, intensity samples will be taken at regular 

intervals as the ray penetrates the volume, and these values accumulated 

according to some ray function to compose the final 20 image (Razdan , Patel et 

al. 2001). 

5.6.2 Ray Tracing Module Tests 

One common requirement is to inspect specific areas (e.g. cells) in an input 

image, possibly with some preprocessing, guided by information in the output of a 

processing pipeline. As such, the method here uses raw images to test 3D direct 

volume rendering using the DFrame. A smaller image is first used as a preliminary 

functional test, to establish that the software is working and producing expected 

output, and that the camera implementation is operating correctly to navigate 

through the image. In short, the DFrame is initialised across? number of 

processors, and the root process distributes a specification that instructs each 

instance that a master-worker model is to be set up. The specification also informs 

each instance to load the Ray Tracing Module, to plug into the master-worker 

model, and contains initialisation parameters for the camera. Each worker then 

loads the entire 3D image. The DFrame continues on to run the master-worker 

model, the master then partitioning and sending an equal number of rays to each 

worker, according to the camera's configured parameters, which dictates the 

number of rows and columns of pixels in the output image. It is the ray trace 

module software that determines the partitioning, and for these tests a column 

strip partitioning of the output image was used to generate ray information for each 

worker. 

144 



Far Plane 

3D Image 

Ray 

Near Plane 
(Partitioned Viewport) 

Camera 
view angle Camera posit ion 

and orientation 

Figure 5.22: Camera orientation and ray trace schematic 

Figure 5.22 shows a schematic of the camera and ray trace mechanism. The 

camera follows a common design allowing the user to specify its location and 

orientation, together with a calTlera view angle, near plane and far plane distances 

(Hill 2001) , (Astle, Hawkins 2004) . The viewport is set to the near plane, and it is 

this 20 viewport that is partitioned into sub-images, as shown in the figure. 

Workers are then sent an instruction message that specifies the start row and 

column , and the width and height of the sub-image (i.e. output partition) that they 

should work on. Each worker then uses the partition and camera information to 

drive the image application ray tracing implementation for all pixels in the viewport 

20 sub-image and returns the result to the master. The master composes all the 

sub-images to form the complete output 20 image represented by the viewport. 

The ray tracing method is to first form a bounding box around the 3D image, and 

transform that to a generic cube for efficient ray intersection tests. Then, for each 

ray to be traced (and according to the orientation of the camera) , an initial check is 

made to see if the ray intersects the bounding box. If the ray misses the image's 

bounding box the processing of that ray is complete. Otherwise, the ray is stepped 

into the image volume using a variant of "A fast Voxel Algorithm for Ray Tracing" 

145 



(Amanatides, Woo 1987), until a set threshold is detected or the ray passes out of 

the volume again. 

--1----- Y-Z plane 

/ 
X-Y plane 

Figure 5.23: Ray Trace detail through 3D image p lanes 

In Figure 5.23 the ray trace stepping is shown on a small sub-volume of the 3D 

image. A ray is passed through the volume, and at point 1 intersects the X-Z 

plane. In detail , all three planes are checked to evaluate which one the ray hits 

next, as it propagates through the image (on each step) . These planes are the 

image slices in each dimension, and a ray will pass through (:>ne image slice after 

another for planes it is not running parallel to . The intensity at the point is then 

interpolated from the 4 known intensities that surround the point on that plane. 

Assuming the intensity is below the threshold , the stepping continues, and at point 

2 the ray intersects the Y-Z plane. The intensity is similarly interpolated at this 

point from the known surrounding points on this plane. Again assuming the 

intensity is below the threshold , the stepping continues until point 3 on the X-V 

plane is intersected and the intensity similarly interpolated from surrounding points 

on this plane. Now assume that the intensity at point 3 is above the threshold , then 

a further interpolation between the intensities at point 2 and point 3 is calculated to 

determine the actual point at which the intensity matches the threshold (on the line 

between point 2 and point 3) . Once this point is found , a further calculation is 

made to establish the normal at this point, and the intensity value to be rendered is 

146 



computed using the dot product of the normal and lighting vector. The lighting 

vector is fixed to be behind the camera for this evaluation . 

5.6.3 Parallelised Ray Tracing Results 

Figure 5.24 and Figure 5.25 present the initial results of ray tracing through a 

smaller 3D image (696 x 520 x 21). In Figure 5.24, the specification configures the 

camera at the front of the image, at such a position and camera angle as to 

contain the whole image within the field of view. In Figure 5.25, the camera 

parameters are adjusted to zoom into an area of interest in the image. It can be 

seen that the ray tracing is traversing the image and calculating the normals at 

incident points at the set threshold, and setting the intensity such that the 3D 

nature of the image is observed (shading) . The camera orientation provides the 

information on the camera location, the direction it is pointing, and a vector 

determining the camera position on the view axis, commonly referred to as the 'up' 

vector. 

147 

Figure 5.24: Ray trace full view of sarcoma cells J 4MB 3D Image 

image = 696x520x2 J, J 6 bit, threshold = 850, cam ViewA ngle = 50. ° 
camNear = 500.0, cam Far = 1000.0, cam Width = 696, camHeight =. 520 

cam Orientation = 348,260,600,348,260,0, 0, 1,0 



Figure 5.25: Ray trace zoom view of a single sarcoma cell 14MB 3D Image 

image = 696x520x2 1, 16 bit, threshold = 850, cam ViewAngle = 40.0 

cam Near = 500.0, camFar = 1000.0, camWidth = 696, camHeight = 520 

camOrienlation = 80, 100,320,80, 100,0,0, 1,0 

Having established the correct working of the ray tracing implementation, a larger 

image was used to actually test the performance of the DFrame. A similar 

procedure was undertaken to set up the DFrame, distribute specifications and 

work, and collect the results . Alongside this, the DFrame configuration was 

modified to switch on the gathering of timings from each DFrame instance. 

148 



149 

Figure 5.26: Ray trace full view of multiple sarcoma cells. 97MB 3D Image 

image = 688x5 12x 144, 16 bit, threshold = 850, cam ViewAngle = 50.0 

camNear = 500.0, camFar = 1000.0, cam Width = 688, cam Height = 512 

cam Orientation = 344,256,600,344,256,0,0, 1,0 

Figure 5.27: flay trace zoom view o/multiple sarcoma cells. 971\lfB 3D Image 

image = 688x512x l44, 16 bit, threshold = 500, cam ViewAngle = 25.0 

camNear = 500.0, cam Far = 1000.0, camWidth = 688, cam Height = 512 

camOrienfation = 80,110,200,80, 110,0,0,1,0 



The performance results presented below are for the ray tracing specification that 

generated the output shown in Figure 5.26. Equally sized column oriented strips of 

rays were sent to each participating worker, the rays traced and results returned to 

the master, and saved as a 20 pgm image. The presented timings exclude the 

loading of the 3D image onto each node and the saving of the output (after 

composition), the rationale being that the loading and saving would also be borne 

by a sequential run. More importantly, the intention is to have the images loaded 

once, and then be able to navigate around the 3D image by sending updated 

camera information to each worker for an immersive long running real time 

interactive experience with data already loaded across the cluster (until the user 

decides to end the session) and the presented timings give a good indication of 

the performance in this regard. The timings do include the recomposition of the 20 

output image. 

In Figure 5.28, Figure 5.29 and Figure 5.30, the execution time, speedup and 

efficiency graphs are plotted. The results are very encouraging, and not 

unexpected, as the workers operate independently on a subset of rays for the 

output image. The time to perform a trace of a particular ray will depend on a 

number of factors: whether the ray intersects with the image's bounding box, and if 

so the depth that has to be traversed through the image until the threshold is 

encountered, or the ray completely traverses through the 3D image. This will vary 

for each ray, giving a diverse work load. This appears to be reflected in the results, 

such that a very good linear speedup is seen, but that falls short of the theoretical 

optimum speedup, with the efficiency dipping to 60% for 64 processors. The time 

to completely render an image will be influenced by the worker that takes the 

longest to process the rays assigned to it. 

.. 150 



(i) 
"0 
C (t) 
o 
u 
Q) 
en -Q) 

E 
i= 

a. 
:::I 
"0 
Q) 
Q) 
a. 

00 

151 

C\I 

0 
q-

0 
C') 

0 
C\I 

0 ..... 
LC) 

Ray Trace Time using MasterWorker 

~ 
"--------------

10 20 30 40 50 60 

Number of processor cores 

Figure 5.28: Ray trace execution time 

Ray Trace SpeedUp using MasterWorker 

10 20 30 40 50 60 

Number of processor cores 

Figure 5.29: Ray trace speedup 



Ray Trace Efficiency using MasterWorker 

0 
0 
~ 

0 co 
-----/ -~ 0 - 0 

>- to 
0 
c: 
Q) 

0 'u 
:i= ~ 

w 
0 
N 

0 

10 20 30 40 50 60 

Number of processor cores 

Figure 5.30: Ray trace efficiency 

Is the speedup sufficient to provide real time interaction? Figure 5.28 plots the 

decreasing execution time to ray trace the 3D image as the processor core counts 

are increased. Using 64 processor cores the time to trace the full image is 0.3 

seconds, or over 3 frames per second . This is an acceptable starting point into real 

time interaction , that is considered further in the following discussion. 

5.6.4 Discussion 

The goal of this evaluation was to develop a 3D image direct volume rendered 

visualization capability, and to integrate it into the DFrame to leverage cluster 

parallel resources to speed up the compute intensive algorithm to provide a real 

time interactive experience. Another core aspect was to test the extent to which 

the domain specific algorithm could be kept separate from the parallelisation 

framework. The separation has proved successful , as each ray trace can be 

represented as an independent task and the framework only has to determine how 

to distribute the ray processing to workers , which is accomplished outside the 

application code and transparent to it. The results also conclude that the 

performance improvements are commensurate with expectations. The irregular 

work load, in that each ray trace may take a different time to complete is 

152 



illuminated in the results, suggesting that other optimisations could be attempted 

to optimise performance further. 

Using 64 processor cores, the visualization experience is entering the realm of a 

real time capability (>3 frames per second), and the plotted speedup results 

suggest that with, further increases in the processor core count, further 

performance improvements can be expected. Although this is acceptable for a 

'visualization only' session on an image, another goal is to be able to adjust 

parameters of the various algorithms that compose a particular image pipeline and 

to render and view the results of such adjustments. In such a scenario, the time to 

reprocess the pipeline as well as to processing and rendering the results would 

add to the total processing time, and motivate further optimizations at the 

visualization level (of course, the pipeline only needs to be updated from the node 

where the parameter was adjusted). One simple idea often employed is to 

introduce a 'level of detail' parameter, which in this context would mean that only a 

subset of the rays are traces, with each ray contributing to a small block of pixels 

in the resultant less detailed 2D image (block size controlling the level of detail). 

The facility to do this has been added to the algorithm, to be propagated to the UI 

for user control and it is envisaged to semi-automate this such that more detail can 

'flow in' as processing time allows. Another facility is to only show a wire frame of 

the image's bounding box, and to allow the user to position the camera according 

to the wire frame, prior to switching on.the compute intensive ray tracing. This has 

been tested on an early QT 3 implementation, and is being ported to the current 

QT 4 UI. Essentially, openGL is used to render a wire frame bounding box of the 

image within the view port, and as such determine the camera parameters, which 

are then used in the parallelised ray tracing step. 

What other improvements can be made? A prime' intention, now the core 
, 

apparatus is in place, is to inject other ray tracing strategies into the ray tracing 

algorithm, and it would even be interesting to investigate the generation of 

secondary rays for processing across the cluster. The anticipation is that even 

more realistic effects will be attained as other novel ray tracing strategies are 

introduced. There is also more to investigate in regard to the impact of updates to 

the partitioning strategy and the related load balancing to further improve 

performance. This ray tracing evaluation uses a simple column strip partitioning 

strategy. It is assumed that a row strip strategy would be similar and for the type of 

153 



images tested (and the tested camera orientation), and a more general block or 

block cyclic strategy might prove more effective. More relevant will be situations 

where the 3D image does not fill the view port, so that some rays completely miss 

the image's bounding box. A worker that has many of these would finish early and 

remain idle while other more loaded workers complete their tasks. Such 

imbalances could be alleviated by applying a two stage process where the first 

stage workers only identify rays that intersect with the image, and then in a second 

stage workers retrieve rays to trace through the image (the implemented ray trace 

algorithm already checks if a ray hits the image's bounding box, prior to 

propagating through it if there is an intersection, so this could be separated out). 

As well, rays that traverse an image may terminate early having satisfied some ray 

function, and these could then request further work. Currently, the algorithm is 

arranged so that workers process a predetermined contiguous sub-image of the 

output image, and these sub-images are recomposed. A more fine grained 

approach can be taken by simply reducing the size of the sub-images, and this 

would be expected to alleviate some of the imbalance (Le. adjust the block size). A 

more general approach would allow each worker to grab arbitrary rays, but in this 

case the gathering strategy would also have to be adapted. In any case 

performance tests would need to be conducted to establish whether the trade off 

between an improved load balancing through more fine grained tasks and the 

extra communication involved would be justified by improved processing times. 

That the results would vary from image to image suggests that further research 

would also be helpful to establish characteristics of an image that hinted at what 

might be an optimum strategy (and that might even change as the camera 

parameters are changed). 

The master-worker model is well suited to the irregular load expected in ray tracing 

a 3D image. The DFrame also supports a mesh model, aimed at more regular 

processing operations across an image, and primarily used where exchange of 

data amongst neighbours would be required. If a processing pipeline has already 

partitioned an image as 3D sub-images in a mesh topology, it would be interesting 

to test if ray tracing could be arranged across such a structure. Each sub-image 

could receive camera information, compute rays that hit it, and a compositing step 

could then be used to determine the final result through a collective gather 

compositing operation. Although this doesn't seem like it would be as performant 

as the master-worker approach, it may nevertheless provide further insight and be 

.154 



a useful addition to the 3D image processing tool bag. A likely show stopper being 

that under close zoom, one process could be doing much of the work. But this 

then brings into question whether there should be a max zoom - as a view that is 

mostly interpolated could be misleading. On the other hand, workers would not 

have to load an entire image, and in some circumstances this would be attractive, 

such as when visualization is targeted at a session where the image under 

scrutiny is being updated often through image processing pipeline parameter 

modifications. Communication is a common bound to parallel processing, and its 

minimization is core to performance. Choices include moving processing to nodes 

containing data subsets, moving data to processing nodes, or some hybrid 

scheme dependent on the application (Nebel 1998). It would be worth further 

investigation to determine whether ray tracing would benefit from a hybrid 

approach. 

5.7 Summary 

The aims in this chapter were manifold. A prime intention being to put the DFrame 

through its paces, at the individual task level. In doing this, the flexible plug in 

model and module architecture could be established as functional and performant. 

Functional in that the DFrame was receiving and broadcasting the task 

specification for an individual task and loading and running models suitable for the 

particular task, that then ran the specified application code, partitioning executing 

and composing data as appropriate. Performant in that speed up was observed, 

and related to this, testing that the capture and gathering of the distributed metrics 

was functional and reporting the overall timings and timings of key steps in the 

running of each task. The DFrame was configured to gather the timings i!1 a csv 

format for analysis. Another aim was to evaluate 'the integration of 3D image 
, 

processing algorithms into the DFrame. In this respect, the application of the ~ 

DFrame to a specific domain provided insight into the integration requirements, in 

terms of which models would be most appropriate, and also the ramifications of 

the partitioning strategies. These insights would then feed back into further 

refinement of the design at the DFrame and model integration points and at the 

model to application interfaces. As anticipated, the partitioning has proved to be of 

central importance to the successful execution of a task in terms 'Of performance. 

Alongside this, the various models that encapsulate the partitioning and 

associated runtime logic also influence the outcome. A master worker model was 

155 



initially evaluated, and subsequently a mesh model was introduced as the need to 

exchange neighbour data became apparent. This was at first expected to be only 

useful when the exchange of data was necessary during the progression of a 

specific algorithm (e.g. the watershed segmentation example), but it became 

apparent from these evaluations that the gathering and redistribution of data on 

each task would be a performance impediment that could be also avoided using 

this mechanism. The success of the exchange data evaluation suggested that 

partitioning strategies should be assessed not only at the individual task level, but 

also in the broader context of a pipeline that the task forms a part of. In this way, 

the optimum partitioning strategy (and model) may be evaluated using broader 

criteria than the individual task. This insight is further examined in the next 

chapter. 

At the individual task level, the results are very encouraging, showing respectable 

speedup in all the tests. The ray tracing evaluation was particularly successful. Of 

course, the DFrame is motivated by a purpose, and that is the parallelisation of 

image processing applications. In this respect, a number of useful algorithms have 

been implemented for these evaluations, that are added to an expanding toolkit 

that the application programmer can utilise to construct bespoke applications. The 

averaging filter and Sobel operator utilities are straightforward implementations, 

with the watershed segmentation being more complex, and requiring further 

experimentation in its own right. The design and implementation of the ray tracing 

is also a formidable exercise including a server side camera model, that 

application programmers can reuse. The design is such that n:1y tracing functions 

can be adapted, offering interesting research scope in this area at parallelised 

speeds. Visualization of 3D biomedical images through direct vO.lume ray tracing is 

a core goal of the project, being an important and novel feature for in depth real 

time assessment of intermediate snapshots as well as pipeline final outputs, 

particularly in HCS applications. 

The discussions sections provide detail on each specific evaluation, assessing the 

performance and also providing useful insight into the further development of the 

DFrame architecture. Points that are now being designed and implemented. 

Overall, the evaluations support the DFrame approach, that models expressing 

specific parallel patterns and running over an SPMD model can provide significant 

speed up in the image processing domain (and this is likely to generalise). 

156 



Chapter 6 A DFrame Application to Analyse Multiple 

Sequenced 3D Bio-Cell Images to Detect Sarcoma Cell 

Invasion Signatures 

6.1 Introduction 

Chapter 5 centred on evaluating the DFrame at the component (model) level, with 

the evaluations conducted in the context of 3D cell biology imaging. The 

evaluations included parallelised components to de-noise 3D images, and to apply 

edge detection and region based cell segmentation techniques. A parallelised 

visualization capability was also evaluated. The objectives were twofold, firstly to 

demonstrate the design of the DFrame at the component level, and secondly to 

provide a 3D imaging capability to filter, detect and segment cells in 3D cell 

biology images, together with bridging infrastructure to link into the DFrame. These 

components forming a useful initial collection of functionality in a basic toolkit for 

the construction of practical parallelised 3D imaging applications. The evaluated 

components can be brought together to form the basis of an application that 

segments 3D cell images, with the expectation that other components would be 

developed and plugged in to provide further analysis of the segmented cells, and 

so enable the identification of morphological characteristics of the cells. 

This chapter now goes on to present a fully integrated case study that clearly 

demonstrates the DFrame capability in terms of flexibility and adaptability at both 

the component level and the task graph level. To this end, an integrated pipeline of 

tasks comprised of 3D image operators is evaluated. Rather than composing the 

previously evaluated components to provide an application that will segment and 

visualise 3D cell images (which hopefully is self evident), this case study focuses 

on a slightly different imaging pipeline that looks not at the segmentation and 

analys!s of the features of individual cells in one 3D image, but on the temporal 

study of cell migration over multiple 3D images. The application simultaneously 

analyses multiple temporally sequenced 3D bio-cell images in dynamically created 
., 

and concurrently executing distributed pipelines. This is an important further 

assessment, as it focuses on the operation of the DFrame in executing multiple 

tasks whose individual characteristics impact the overall execution strategy. In this 

sense, the system is being tested not only at the task level, and the adaptability at 

157 



that level, but also is adapting to the wider requirements of the constructed 

pipeline. Indeed, the most efficient execution strategy of a single task taken in 

isolation may not be the most efficient when taken in the context of other tasks in 

the pipeline. The requirements of one task may necessitate a certain partitioning 

strategy, or require a model more suited to a particular strategy, and it may be 

more performant for other tasks to align with this strategy, rather than choose their 

standalone optimum strategy, as that may then require recomposition and 

gathering steps that could be avoided. So one objective of the DFrame is to select 

the best performing models suitable for a task, but to also adapt that decision 

according to the context in which a task is running, to for instance include 

consideration of the partitioning strategy of the models to optimise the computation 

across multiple distributed tasks in a pipeline. Another prime objective at the task 

graph level is to automatically adapt resource allocation according to the 

characteristics of tasks and also through metrics captured during the running of 

workflows associated with the task graphs. 

6.2 Motivation and research background to 3D image capture 

In the UK at least a third of the population develops cancer (UK). Formation of 

secondary tumours through a process known as metastases, is the most 

dangerous complication and is thought to involve cell growth, detachment, 

migration, adhesion and invasion. The process of metastasis begins when tumour 

cells detach from the primary tumour and enter the blood stream. Those cells must 

then survive in the circulation system and attach to blood vessel walls (vascular 

endothelium) and eventually migrate through the vessel wall (transmigration) in 

order to invade new tissue (Liotta 1992). The ability of cells to m.ove (motility) is 

considered a requirement for the migration of cancer cells to reach the blood 

circulation system as part of the metastatic cascade (Meyer, Hart 1998). This has 

lead to efforts t,o segment cell images to extract and identify principal features 

which can be linked to having an impact on cancer cell motility (Loo, L. F. 

Altschuler, S. J. 2007). The morphology and behaviour of cancer cells can be 

linked to their invasion potential, and the bio-imaging group at Kingston University 

has recently developed an invasion assay procedure to quantify cell invasion 

potential under shear stress (Hagglund, Hoppe et al. 2009). This motivates further 

research to establish other morphometric parameters and behaviour that could be 

linked to the ability of cancer cells to invade, and related research into cell motility 

158 



itself that would help identify new spatio-temporal parameters, whi<?h have not be 

considered in the past. Such endeavours requires the screening of many multi

dimensional images, with a multitude of varied and complex algorithms being 

applied to each image. It is also of benefit to increase the experimental throughput 

to improve the statistical significance of analysis results. The use of automated 

analysis is highly desirable in these circumstances, together with the application of 

parallel processing in order to avoid bottlenecks in the analysis and be able to 

conduct these efforts in reasonable timescales. This being a prime motivator of 

this project. 

The 3D image sequences used in this case study were acquired as part of 

experiments to investigate the effect of shear flow on the adhesion and 

transmigration of invasive inbred rat sarcoma cells through a confluent monolayer 

of rat brain endothelial cells RBE4 (Hagglund, Hoppe et al. 2009), the images 

used in this case study being made available courtesy of the research 

collaboration between Kingston University and Cancer Research UK. In this case 

study, further analysis is undertaken to detect the invasion signature of the 

sarcoma cells, and so investigate the temporal changes to a cell's distribution 

signal in the invaded dimension, the z-distribution in this case. Figure 6.1 depicts a 

simple schematic of the salient details of the experimental setup of the above cited 

research, to provide context for the 3D image sequences used in this case study. 

Of note is the custom cell chamber design, comprising a MatTek culture dish with 

a novel flow chamber insert and the image capture arrangement. The experiment 

captured flow and no-flow (control) images, and this case study presents the 

results of the invasion signature analysis using the no-flow sequences, the aim 

being both to determine the efficacy of this image analysis technique, an~ as 

prominent, to test the OFrame in a more complex real world application. Of note 
" 

for this research is that the staining of the sarcoma cells is predominantly punctate 

with some diffusion, which argues for the use of an edge detecting mechanism 

within the image processing pipeline, to more effectively detect a cell's invasive 

signature. It is the tracking of the labelled sarcoma cells that this case study is 

analysing. 

A Nikon TE2000 inverted microscope (63x 1.4 NA) fitted with a scientific cooled 

CCO camera (Cascade-II, Photometrics) and a motorized stage (MS2000, ASI) 

was used to record the image sequences, acquiring both red and green 

159 



fluorescence images. The system automatically acquired a Z-stack of 101 slices at 

0.2 IJm intervals using a piezoelectric drive in the motorized stage, images being 

captured at 15 minute intervals. 

MatTek dish 

Flow chamber -+--+- ..J 
insert ~~~~~~::;~:U 

--- Glass 

Wide field Microscopy 
with ccd camera 
acquisition 

Sarcoma cells 

Endothelial cell 
monolayer 

:---,~~----------------------------------------
~ Collagen 

.... 

...... . ..... . 
", .. ' . .. .. . ' " ........ .. . . . ...... . 

Figure 6.1: Schematic of invasion assay apparatus 

6.3 DFrame Pipeline Design 

As described, the case study centres on the quantification of invasion signatures 

of sarcoma cells across a temporal sequence of 3D cell images. An important 

objective in its own right, this endeavour is also appropriate to demonstrate the 

DFrame capability when parallelised operators are composed into an imaging 

pipeline, and when multiple pipelines are operating in parallel to process a 

collection of 3D images simultaneously. The simple imaging pipeline used in the 

case study is shown in Figure 6.2 where a 3D image is passed through a number 

of successive operators. A 3D averaging filter is applied, a common first step to 

reduce image noise. Then a 3D Sobel filter is applied to produce a 3D gradient 

image. Finally, a stage involving segmentation using simple thresholding, and the 

application of a histogram operator is applied to the pre-processed 3D gradient 

image. The histogram is calculated across one dimension (the z dimension), to 

allow rudimentary detection of a cell's position in that dimension. 

160 



,---------------------------------------------------', 

3D Averaging 
Filter 

Mesh model sub tasks 

DFrame Workflow : 

3D Sobel 

Mesh model sub tasks Mesh model sub tasks 

I 
I 
I 
I 

Figure 6.2: Simple 3D imaging pipeline to detect cell position 

As per the DFrame design , each image operator task can be arranged to run 

according to an appropriate parallel processing pattern, implemented in a suitable 

model. The extent of parallel processing at the task level is broadly controlled by 

the DFrame, through the number of processes it assigns to a task. A model will 

then utilise the processes available to it, according to the pattern it implements. 

In a pipeline application , individual tasks are no longer executing in isolation (as 

was the case in the component evaluations in chapter 5) but are now connected 

such that the output of one task can be the input of a subsequent task. Now the 

context in which a task is executing becomes important, and this can affect the 

most suitable model a task should employ. 1n particular, if the output of the 

distributed partitions of one task can be directly used in the next task, then it will 

likely be 1TI0re efficient to keep the partitions distributed , and avoid a gather and 

redistribution stage between tasks. This can easily be arranged if a mesh model is 

now chosen instead of a master worker model. For 3D images, a regular mesh 

model is suitable for many operators, and can be reused across operators that are 

processing the same 3D image. If the mesh model is retained in memory, the 

topology and partitioning need only be calculated and set up once.· This means 

that the overhead in setting up a model across participating processes at the task 

161 



level can be amortized across multiple tasks, with a global gather and 

redistribution stage in between tasks also being replaced with a much more 

efficient local neighbour exchange. 

The efficiency gains that can be achieved within one pipeline is one part of this 

case study. Another part is concerned with running multiple pipelines in parallel to 

process a collection of time lapsed 3D images concurrently. This further 

demonstrates the power of the DFrame in the splitting and management of 

multiple pipelines of sub-workflows of tasks, and the allocation of processes to 

each. In Figure 6.3 the imaging pipeline is inserted as a sub-workflow of a larger 

workflow that incorporates an explicit DFTaskSplitter. The splitter task itself is 

configured to invoke a DFrame splitter model, that loads code from a specified 

application module. In this case study, the application code retrieves parametric 

information that is the location paths to a store of 3D images, and task 

specifications are then generated for each image, and passed to the splitter. The 

incorporation of an explicit splitter allows for the automatic generation of multiple 

sub-workflows according to the number of images to be processed, and the 

number of available processes, since a DFrame splitter works with an associated 

DFrame context, such that it is aware of how many processor cores have been 

made available to it (aligning with the DFrame model design). Also, the splitter 

works with plugged in application code, that furnishes it with the information on the 

number of tasks. Application code can also supply characteristics of the tasks, 

such as the size or expected computation complexity, that can be used by a 

splitter to determine how to split resources. Size is the basic s.upported static 

characteristic that will be used if supplied, in the implemented prototype splitter . 

. 162 



( -------------------------------------------~ 

, DFrame Sub-workflow , , , , , 
: 3D Sobel 3D Image ' 
: Filter Segmentation : 
\ , 

(-------------------------------------------~ 
: DFrame Sub-workflow : , , 

3D Sobel 3D Image 
, 

Filter Segmentation : 

- - ---- -------------------------------------, 

------------------------------------------~ 
------------ -------------------------------~ , ------------------------------------------T~ 

II I II I 
III III 
III II I 

III Other similar " : 
III " 
,: : DFrame Sub-workflows :: : 
''iJ-_-_-_-_-~_-_-_-_-_-~_-~_-_-_-_-_-_-_-_-_-_-~_-_-_-_-_-_-_-~_-~~~_-_-~~_-_-..:') : 

, -------------------------------------------~ 

Figure 6.3: Multiple 3D imaging pipelines operating in parallel 

In the scenario of multiple running pipelines, each pipeline specification can be 

distinct and be applied to the same image or to different images, or the pipelines 

can be similar, and be applied to different images. In this case study, the focus is 

on applying multiple similar pipelines to a collection of distinct images, so that 

each input image will have a unique location and name combination. The 

management of multiple generated pipelines reveals a multitude of further issues 

that the DFrame design must address. One important aspect is the tracking and 

management of information that flows through each pipeline. Where a dynamic 

splitter is used, that is generating multiple pipelines, some means must be made 

available to propagate task and image meta-information for subsequent tasks to 

use. For instance, if image outputs are required , these will have to have unique 

names, and these may be either explicitly specified , or can be generated from 

input information , which requires parameter passing through a pipeline. In general , 

labellin·g of intermediate and final results will be necessary to facilitate eventual 

aggregation and storing , and this must be carried through a pipeline, such that the 

outputs to multiple pipelines running in parallel , but operating on related data can 

retain an ordering to allow correct composition of the results of each pipeline 

output. This is achieved through a model context, which is propagated through 

each pipeline of tasks, and indeed can carry information used in merge processes 

163 



in the case of more complex task graphs. It is recognised that some form of 

explicit merge task will be required in more complex cases, but in the current case 

the objective is to absorb aggregation into contextual composers. 

The case study also demonstrates the impetus for the more generic DFrame 

design in terms of the partitioner and composer interfaces, by incorporating a 

histogram composition analysis stage that uses a custom composer to gather 

histogram information across 3D image slices. That composition results will not be 

limited to 3D Images implies the DFrame must be able to accept more generic 

composers that can apply custom aggregations to data and this is infused into the 

design. The algorithms necessary for a specific aggregation then being embedded 

in the composers that a task supplies to the model, maximising the flexibility and 

adaptability of the system. The case study uses custom composers to capture and 

aggregate 3D image data that will form multiple histograms of cell locations within 

images, and this data is then brought together for inspection, to determine the 

motility of cells within the time ordered set of images. 

6.4 Cell Segmentation and the Histogram Design 

The 3D image averaging filters and sobel operator have already been discussed 

and evaluated in Chapter 5. The segmentation strategy and invasion distribution 

signal method used in this case study are further described here prior to 

presenting results. The core objective is to detect invasion signatures amongst 

multiple cells across a sequence of time lapsed 3D images, with the assumption 

(prior knowledge) that cell movement is predominantly along one dimension, being 

a 3D image's z-dimension in this case study. A rudimentary technique for 

segmenting and detecting such movement is to use a 2D image mask, that 

broadly identifies the cell locations in the x-y plane. Each cell is identified within 

the mask by an area marked out using a distinct grey scale value for that cell. This 

2D mask is then applied to each x-y image slice in the 3D image to produce output 

counts for each z:-index, for each cell. Figure 6.4 shows a schematic of the basic 

arrangement. In this schematic, the 2D mask identifies the locations of 3 cells. As 

the mask is applied to each x-y image slice, the counts for each cell are collected. 

This results in 3 histograms being generated, one for each cell, that provides 

information of the distribution of each cell across the z-dimension within the one 

image. From this information, the location of each cell within the z-dimension can 

164 



be determined. 

A core prerequisite is that a suitable threshold must be applied, in order to 

separate each cell in the image from the image background . There are various 

manual , semi-automatic and automatic techniques for determining a suitable 

threshold (Sonka, Hlavac et al. 2008), and for this study an adaptive percentage of 

the image intensity range was identified by applying multiple passes with manually 

set thresholds across sample images from the image sequences, and used to then 

automatically calculate percentage thresholds for all 3D images in each image 

sequence, using each image's intensity range. ImageJ's plot profile feature was 

also used to assess the distribution of image sections across sample cells to gain 

further confidence in the chosen threshold values. 

165 

Cells Mask 3D multi -cell image Endothel ial cell 

.... .... 

~-................ .... .... 
: 1 \ .... 
I I , . 
' - ' 

......... 

z-index 

..g,. Invasion depth (z- index) --

Histogram data 

I I I I I I I I 
..g,. 

Histograms 

Px Cell 2 

• z-index 

Figure 6.4: Mask applied to a 3D multi-cell image to generate z

dimension histograms 

z-index 

] 



Although the thresholding could be incorporated into a separate thresholding 

image operator, for this case study, one operator is used to both calculate a 

threshold, and to scan the 3D image x-y slices with the mask and to use the 

threshold to determine the extent of each cell's presence in each x-y slice, and 

collect these counts. As further research expands in this area, the flexibility of a 

separate thresholding operator would likely prove more worthwhile, especially the 

development of a module to automatically select a threshold . 

The described z-distribution segmentation-histogram approach is a simple 

thresholding technique even for a 3D image, when one mask is applied to whole 

image slices across the image. However, the technique becomes somewhat more 

involved when a 3D image is partitioned. Figure 6.5 shows a schematic where the 

3D image is partitioned across the x-y plane, with the mask being likewise 

partitioned to align . 

Partitioned Cells Mask Partitioned 3D multi-cell image 
Endothelial cell 

a~1 ~~~~~~~~ 
b~1 ~~~~~~~~ 
c~1 ~~~~~~~~~ 
d~1 ~~~~~~~~~ 

Cell 1 r::z 
z-index 

0,",'"',,',,',, .. , .. ~ moo,'.y" ,a ......... ................ '..... .......... ........ ......... ..... ...... .... 
I """.)..--.c).--.;::::-_-,').--,).--.;::':?-_-,- -:J-_-,';}_ .... 
I I:D ..... :., .......... .......... ......... ........ ........ .......... .... ............. 

I ,..-tf'~--II ""l-;::S,::.S,:':.--..,_ ...... --..,_'.."-.-'.."-.- -1"-.-'.."-.-'..~, 
~I e I I 1)1 I I I I I 

Sarcoma cells ~'-L --___ .l ___ L_J..-: : :: :: 
: I I _ ... l---~--.L-_l... : : I : : 

,,.--1- : : : : ... j ...... , : :: 
1",.." I (Cetl 2: I : : :): I : : 
I ~ .. I ~... _~_ ... I I I .......... I I I 

I .... ~~ - -- I i--i---t ...... :: : : 
: I ~~¢ :: F : : F : : F: : F : : ~ :: ~ : : r -: ~ : : ~ : : 

~
: : I d.---t--+--~-,: : : I : : 
I III r lI..ell:3: : ') : : I : : 

Z Ie I, ' .... l ___ ~--+--~--- I : : I : : ........', I: ::::: :: ......... J'd I I I I I I I I I I 

X ............. : ! ! i i !! !! 
~ ...... ___ , ___ , ___ , ___ I ___ L __ L __ C _L __ L __ ' 

Invasion depth.(z-index)

Local histogram data 
I I I I I I I 

I I I 

I I I 
~ 

Global histogram data 

I I I I I I I I 
~ 

Histograms 

h Cell 2 

.. D: Cell 3 

z-index 

Figure 6.5: Mask applied to a partitioned 3D multi-cell image 10 

generate z-dimension histograms 

166 

z-index 



When the image is partitioned and distributed across multiple processes, the 

histogram data must be collected locally, and then gathered and recomposed into 

the corresponding global histogram. Indeed, if the 3D image is partitioned across 

the x-y plane, then the operator design has to take this into account, and must also 

partition the mask, such that the appropriate part of the mask is applied to each 

partitioned sub-image. For partitioned 3D images, there is more book-keeping to 

be done, to ensure that local histogram data is aggregated into the global 

histogram data in the correct position . This ancillary work is built into the histogram 

operator (in DFrame terminology this is the 'module' code) , which supplies a 

bespoke composer that knows how to aggregate the local data, and also a 

histogram data message adhering to the DFrame message design is implemented 

to facilitates the transport of local histogram data to the process composing the 

global histogram, al igning with the mesh model and the DFrame infrastructure 

design. 

As the previous section outlined , the DFrame workflow is constructed to process 

multiple pipelines simultaneously, with each pipeline operating on a single 3D 

image. As such , the final output of each pipeline is a csv (comma separated value) 

formatted file containing histogram data for each cell in each time sequence. To 

visually inspect cell movement, the histogram data is then brought together such 

that the histogram data for each cell in each time sequence is rendered on the 

same graph. Thus if there were three images in the time sequence, and three cells 

are being studied , then the output graphs would be similar to the examples shown 

in Figure 6.6. In this idealised example, the movement of cells is easily discernible, 

as the histogram distributions move along the z-index in time. 

Histograms 
-- image at time t1 
-- image at t ime t2 
-- image at time t3 

tC ~ounts Cell. 

v~ .. 
z-index z-index z-index 

Figure 6.6: Visualization of cell movement through the z-dimension for three cells 

167 



Of course, in real experiments the outputs may not be so obliging. Some cells may 

not move or move somewhat sideways, and their shape can change. Also, signal 

attenuation across an image sequence adds distortion to the result that may 

necessitate further processing to compensate. However, this rudimentary 

histogram technique can be regarded as a useful part of the cell imaging toolkit. 

The threshold calculation takes into account signal attenuation to some extent, but 

only on a global level. Instead of adjusting or compensating the histogram outputs 

further, the histogram operator used in this case study also calculates the mid 

point of each histogram, and this can be rendered on the resulting graphs to give 

an indication of the weighted central location of each cell. So the output from each 

pipeline consists of two csv files, one containing the detailed histogram data, and 

one containing the mid point z-index and count for each cell in each sequence. 

6.5 Cell Invasion Signature Detailed Results 

In this section, results are presented for the invasion signature of cells moving in 

the z dimension, in four 3D image sequences. Each sequence is comprised of 

seven 16 bit grey scale 3D images of size: x=696, y=520, z=101. An 8 bit image 

mask is manually created for each image sequence, with areas marked according 

to the average x-y areas occupied by the cells across each image sequence. A 

task graph is composed for each image sequence according to the above pipeline 

description, that includes a DFrame task splitter, 3D image averaging and Sobel 

operators and the thresholding and histogram segmentation analysis task. 

For each 3D image sequence, a representative input image x:y slice and a 

corresponding annotated mask image are shown, followed by the histogram 

outputs for each tracked cell in each sequence. Each graph also shows the mid

point of each histogram, as further computed and recorded to a separate csv file 

by the histogram composer after histogram data aggregation. A" the graphs have 

been scripted and plotted using the 'R' language for statistical computing and 

graphics (Kne" 2013), composing data from across the pipeline outputs. 

The cell z-distribution histogram graphs highlight differences in cell invasion 

behaviour, with clear evidence of invasion shift for some cells while others exhibit 

little significant sustained shift. Most of the graphs are very illuminating and 

demonstrate the utility of the approach. For instance, in sequence 1, cells 73, 135, 

164, 182,205 and 234 provide reasonable information on cell invasion signatures, 

168 



with the histograms all having acceptable signals. Interestingly, the results for cell 

43 shows an unexpected reduced signal for the first three images in the sequence 

and on further investigation this is determined as due to poor registration of the 

image mask for this cell in these images, due to lateral movement of the cell. Cell 

108 results also show some unusual variability, this time at the end of the 

sequence, with the reducing signal strength to some extent impacting the reliability 

of the thresholding. In sequence 2, the histograms for cells 76, and 136 show good 

invasion shift behaviour. The result for cell 187 prompts further scrutiny, and on 

closer inspection, it is determined from the image slice and mask images that the 

registration of cell 187 to the mask could be improved. As well, the signal for time 

step 1 (t1) for this cell is very low, and inspecting the relevant image, it appears 

that this cell was likely still floating at the start of the sequence, before settling 

down and so was not at this time fully within the z-acquisition capture range of the 

microscope. In sequence 3, histograms for cells 44,64,79,80, 105 and 151 all 

provide reasonable results across all the images except the last image 7, where 

the attenuation of the signal is quite pronounced. The results for cells 177 and 211 

appear less reliable, and again it is observed that the registration of the masks for 

these cells are sub-optimal. Also, cells 136 and 246 exhibit low signal at the start 

as well as the end of the sequence, in the case of cell 136 this is explained by 

poor mask registration across the initial images in the sequence, and for cell 246 it 

appears that the cell doesn't land within the acquisition range until later in the 

sequence. In sequence 4, the results again show some variable, with the 

histograms for cells 136, 163, 188 and 230 showing reasonable invasion 

signatures. Cell 58 shows marked signal attenuation affecting results at the end of 

the sequence, and on closer inspection, the mask for cell 101 is seen to actually 

straddles two cells, contributing to the skewed histogram results in this case. 

In summary, these tests both support the utility of the method and also highlight its 

limitations (as anticipated). The histograms can reveal information on the 

registr~tion of the cell mask across an image sequence, with a low signal across 

all images suggesting that the registration be reviewed, or the signal to threshold 

be reviewed or indeed the signal itself. However, there are limits to the 

interpretation as when one cell moves out from a mask and another moves in, the 

results may 'still seem adequate. So there are caveats to the utility; and the ' 

technique should be used with its limitations born in mind. In particular, mask 

registration errors and lateral movement of the cells can adversely affect the 

169 



results, and this is apparent on detailed image inspection across some of the 

image cell sequences. The temporal signal attenuation across each image 

sequence is also an added variable that must be taken into account and indeed 

confirmed that the signal for each cell is adequate across a sequence. This makes 

the task of determining an optimum threshold more involved as it has to be 

dynamically established accounting for the signal degradation (as mentioned, a 

simple signal percentage is employed in these tests). Nevertheless, the technique 

is simple and fast, and while rudimentary, it can provide quick and useful direct 

insight into cell behaviour, and also identify those cells that might usefully be 

further investigated. 

170 



6.5.1 Sequence 1 Invasion Signatures 

171 

Figure 6. 7: 3D Image x-y slice/i-om the firsl image of sequence J 

image = 696x520x 101, 16 bit, 70MB, image slice = 101101 

Figure 6.8: 2D x-y maskfor sequence J 

(the annotated numbers are grey scales Ihal also ident(fY each cell being ti-acked) 



Image Sequence 1 Cell 43 

t1 
0 t2 0 
II) 

t3 
t4 
t5 

.!!l 0 
t6 0 c 0 

:J t7 8 

:5 
II) 

o 

o 20 40 60 80 100 

Depth (z-dimension) 

Image Sequence 1 Cell 73 

:5 
II) 
C\I 

t1 
:5 t2 
0 t3 C\I 

t4 
0 ·t5 0 

(/) 
II) 

t6 i: 
:J t7 8 0 

0 
0 

:5 
II) 

0 

0 20 40 60 80 100 

Depth (z-dimension) 

Figure 6. 9: Sequence J: Cell invasion plots for Cell 43 and Cell 73 

172 



en 
'E 
~ 
0 
0 

0 
0 
IX) 

0 
0 
CO 

0 
0 
V 

0 
0 
C\I 

o 

g 
o v 

o 
o o 
CO) 

en 
§ § 
8 C\I 

g 
o 

o 

173 

o 20 

o 20 

Image Sequence 1 Cell 108 

40 60 

Depth (z-dimension) 

Image Sequence 1 Cell 135 

40 60 

Depth (z-dimension) 

t1 
t2 
t3 
t4 
t5 
t6 
t7 

80 

t1 
t2 
t3 
t4 
t5 
t6 
t7 

80 

Figure 6.10: Sequence 1: Cell invasion plots for Cell 108 and Cell 135 

100 

100 



0 
0 
0 

0 
0 
CO 

E 
0 
0 
(0 

::J 

8 
0 
0 
"<t-

o 
0 
N 

0 

§ 
C') 

§ 
N 

8 
o 

o 

174 

Image Sequence 1 Cell 164 

0 20 40 60 

Depth (z-dimension) 

Image Sequence 1 Cell 182 

o 20 40 60 

Depth (z-dimension) 

t1 
t2 
t3 
t4 
t5 
t6 
t7 

80 

t1 
t2 
t3 
t4 
t5 
t6 
t7 

80 

Figure 6.11: Sequence 1: Cell invasion plots for Cell 164 and Cell 182 

100 

100 



0 
0 
It) 
C\I 

0 
0 
0 
C\I 

en 0 
'E 0 
:::l 

It) 

0 
0 

0 
0 
0 

0 
0 
It) 

0 

0 
0 
0 co 

8 
0 
It) 

8 
0 v 

.1!1 0 c: 0 :::l 
0 0 
0 C') 

§ 
C\I 

0 
0 
0 

ci 

175 

Image Sequence 1 Cell 205 

0 20 40 60 

Depth (z-dimension) 

Image Sequence 1 Cell 234 

0 20 40 60 

Depth (z-dimension) 

t1 
t2 
t3 
t4 
t5 
t6 
t7 

80 

t1 
t2 
t3 
t4 
t5 
t6 
t7 

80 

Figure 6. J 2: Sequence J: Cell invasion plots for Cell 205 and Cell 234 

100 

100 



6.5.2 Sequence 2 Invasion Signatures 

176 

Figure 6.13: 3D 1mage x-y slice ii-om the iirsl image of sequence 2 

image = 696x520x 101, 16 bit, 70MB, image slice = 101101 

Figure 6.14: 2D x-y maskfor sequence 2 

(the annotated numbers are grey scales that also ident(fy each cell being tracked) 



en 
E 
::J 
0 
0 

.$ 
c:: 
::J 
0 
0 

177 

0 
0 
0 
(Xl 

0 
0 
0 co 

0 
0 
0 
"<t 

0 
0 
0 
C\I 

0 

o o 
o 
C') 

0 
0 
0 
C\I 

0 

8 

0 
0 
ll) 

0 

-..,.. 

0 20 

0 20 

Image Sequence 2 Cell 76 

40 60 

Depth (z-dimension) 

Image Sequence 2 Cell 136 

40 60 

Depth (z-dimension) 

t1 
t2 
t3 
t4 

80 

t1 
t2 
t3 
t4 
t5 
t6 
t7 

80 

Figure 6.15: Sequence 2: Cell invasion plots for Cell 76 and Cell 136 

100 

100 



Image Sequence 2 Cell 187 

0 
0 t1 LO 
C\I 

t2 
0 t3 0 
0 t4 C\I 

t5 

E 
0 

t6 0 
LO 

::J .... t7 
8 

0 
0 
0 

8 
LO 

0 

0 20 40 60 80 100 

Depth (z-dimension) 

Figure 6.16: Sequence 2: Cell invasion plots for Cell 187 

178 



6.5.3 Sequence 3 Invasion Signatures 

179 

Figure 6. 1 7: 3D lmage x-y slice from the first image of sequence 3 

image = 696x520x 101, 16 bit, 70MB, image slice = 101101 

Figure 6. l8: 2D x-y mask for sequence 3 

(the annotated numbers are grey scales that also ident{/Y each cell being tracked) 



0 
0 
LO 
C\I 

0 
0 
0 
C\I 

0 
0 
LO 

.!!l 
c: 
::J 

8 0 
0 
0 

0 
0 
LO 

0 

o 

180 

Image Sequence 3 Cell 44 

0 20 40 60 

Depth (z-dimension) 

Image Sequence 3 Cell 64 

o 20 40 60 

Depth (z-dimension) 

t1 
t2 
t3 
t4 
t5 
t6 
t7 

80 

t1 
t2 
t3 
t4 
t5 
\6 
t7 

80 

Figure 6.19: Sequence 3: Cell invasion plots for Cell 44 and Cell 64 

100 

100 



Image Sequence 3 Cell 79 

0 
0 
0 
C") 

0 t1 
0 

t2 L!) 
C\J 

t3 
0 t4 0 
0 
C\J t5 

en 
0 t6 E 0 

::J L!) t7 0 
0 

0 
0 
0 

0 
0 
L!) 

0 

0 20 40 60 80 100 

Depth (z-dimension) 

Image Sequence 3 Cell 80 

0 
0 
L!) 

t1 C\J 

0 
t2 

0 t3 0 
C\J t4 

0 t5 
en 0 

t6 E L!) 

::J t7 8 
0 
0 
0 

0 
0 
L!) 

0 

0 20 40 60 80 100 

Depth (z-dimension) 

Figure 6.20: Sequence 3: Cell invasion plots for Cell 79 and Cell 80 

181 



Image Sequence 3 Cell 105 

0 t1 0 
LO 
N t2 

8 t3 
t4 N 
t5 

.!!l 0 t6 0 
c: LO t7 :l 

8 
8 
0 
0 
LO 

0 

0 20 40 60 80 100 

Depth (z-dimension) 

Image Sequence 3 Cell 116 

8 
LO 
N 

8 
t1 

0 t2 
N t3 
0 t4 
0 - .t5 LO 

(/) t6 C 
:l - t7 0 0 0 8 

0 
0 
LO 

0 

0 20 40 60 80 100 

Depth (z-dimension) 

Figure 6.2 J: Sequence 3: Cell invasion plots for Cell J 05 and Cell J J 6 

182 



Image Sequence 3 Cell 136 

0 t1 
0 
0 t2 N 

t3 
0 t4 
0 

t5 Ll') 

~ t6 
:::I t7 0 0 u 0 

0 

0 
0 
Ll') 

0 

0 20 40 60 80 100 

Depth (z-dimension) 

Image Sequence 3 Cell 151 

0 
0 
Ll') 
N 

0 
t1 

0 t2 0 
N t3 

0 t4 
0 t5 Ll') 

$ t6 c: 
:::I t7 0 0 u 0 

0 

0 
0 
Ll') 

0 

0 20 40 60 80 100 

Depth (z-dimension) 

Figure 6.22: Sequence 3: Cell invasion plots/or Cell 136 and Cell 151 

183 



184 

o 
o 
It) 

o 
o 
o 

o 
o 
It) 

o 

g 
It) 

g 
It) 

o 

o 20 

o 20 

Image Sequence 3 Cell 177 

40 60 

Depth (z-dimension) 

Image Sequence 3 Cell 211 

40 60 

Depth (z-dimension) 

t1 
t2 
t3 
t4 
t5 
t6 
t7 

80 

t1 
t2 
t3 
t4 
·t5 
t6 
t7 

80 

Figure 6.23: Sequence 3: Cell invasion plots/or CellI77 and Cell 211 

100 

100 



Image Sequence 3 Cell 246 

0 
0 
0 

t1 
0 t2 0 co t3 

t4 
0 t5 en 0 

E co 
:::l t6 
0 
() t7 0 

0 
~ 

0 
0 
C\I 

0 

0 20 40 60 80 100 

Depth (z-dimension) 

Figure 6.24: Sequence 3: Cell invasion plots for Cell 246 

185 



6.5.4 Sequence 4 Invasion Signatures 

186 

Figure 6.25: 3D lmage x-y slice/i'om the/irsl image o.fsequence 4 

image = 696x520x 101, 16 bil, 70MB, image slice = 101101 

Figure 6. 26: 2D x-y mask/or sequence 4 

(the annotaled numbers are grey scales Ihal also idenlffjl each cell being tracked) 



Image Sequence 4 Cell 58 

0 t1 
0 t2 0 
.;t 

t3 
0 t4 
0 t5 0 
C') 

t6 E 
::J t7 
0 0 
u 0 

0 
C\J 

0 
0 
0 

0 

0 20 40 60 80 100 

Depth (z-dimension) 

Image Sequence 4 Cell 101 

0 
0 
0 
CD 

t1 
0 t2 0 
0 
It) t3 
0 t4 
0 
0 t5 .;t 

E 0 
t6 

0 t7 ::J 0 0 C') u 

0 
0 
0 
C\J 

0 
0 
0 

0 

. 0 20 40 60 80 100 

Depth (z-dimension) 

Figure 6.2 7: Sequence 4: Cell invasion plots/or Cell 58 and Cell 101 

187 



Image Sequence 4 Cell 136 

0 t1 0 
0 
"<t t2 

t3 
0 t4 0 
0 t5 C") 

.l!l t6 
c: t7 ::J 0 
0 0 
0 0 

N 

0 
0 
0 

0 

0 20 40 60 80 100 

Depth (z-dimension) 

Image Sequence 4 Cell 163 

0 
0 
0 
(0 

0 t1 
0 t2 0 
ll) 

t3 
0 t4 0 
0 t5 "<t 

rJl 0 t6 
'E 0 - t7 ::J 0 
0 C") 
0 

0 
0 
0 
N 

§ 

0 

0 20 40 60 80 100 

Depth (z-dimension) 

Figure 6.28: Sequence 4: Cell invasion plots for Cell 136 and Cell 163 

188 



Image Sequence 4 Cell 188 

0 t1 0 
0 
Ll) t2 
0 t3 
0 t4 0 v t5 

!a 0 t6 0 c: 0 t7 ::l cry 
0 
u 

0 
0 
0 
C\J 

0 
0 
0 

0 

0 20 40 60 80 100 

Depth (z-dimension) 

Image Sequence 4 Cell 230 

0 
0 
0 t1 Ll) 

t2 
0 t3 0 
0 v t4 
0 t5 

!a 
0 t6 0 

c: cry 
t7 ::l 

8 0 
0 
0 
C\J 

0 
0 
0 .-

0 

0 20 40 60 80 100 

Depth (z-dimension) 

Figure 6.29: Sequence 4: Cell invasion plots for Celli88 and Cell 230 

189 



6.6 Cell Invasion Signature Mid-Point Summary Plots 

In this section, the midpoints of each cell invasion for each sequence are collected 

and plotted, to provide a primitive and compact representation of each cell's 

behaviour. The caveats highlighted in the preceding section equally apply here, 

and the results must be reviewed with those in mind. However, the technique can 

prove useful as an initial indicator of the cell behaviour, and also quickly throw light 

on any experimental anomalies. This method can be useful in highlighting those 

cells that appear to have a more pronounced invasive behaviour and possibly 

indicate that further scrutiny should be paid to these cells in the analysis. 

In Figure 6.30, cell 73 of sequence 1 stands out as having a consistent movement 

in the z- direction, and would be an interesting candidate for further study. A few of 

the other cells show some movement, while cell 108 appears to be the odd one 

out, moving in a direction opposite to that anticipated, and would similarly prompt 

further investigation to confirm the unusual behaviour, or to reveal some 

shortcoming in the captured data. In Figure 6.31 cell 76 shows movement, while 

cell 136, movement is less noticeable. The plot for cell 187 flags up some odd 

behaviour, with an initial movement in an unexpected direction. On inspecting the 

details (see Figure 6.16 above), it is found that the signal for time sequence 1 (t1) 

is so low that the data is not reliable, and legitimately accounts for the anomaly, 

this suggests that further investigations be done on the validity of the data 

captured for that time step for cell 187, although the subsequent time steps for this 

cell show a consistent movement profile. In Figure 6.33 eleven cells are analysed, 

and processing this number of cells in one sequence does argue for automation. 

The results are variable, with a few of the cells (e.g. 136 and 177) recording time 

steps where the z-index being at zero. A quick review of the data for such cells 

reveals that the recorded data is zero and hence the mid-points are clamped to 

zero, indicating some review is needed for these cells. Nevertheless, the majority 

of signatures are more informative of cell invasion behaviour, quickly allowing the 

discovery of which cells are more invasive under the tested time span. This 

particular plot also suggests an upper limit on the number of cells that can 

reasonably be placed on the same graph, and in this case a next step might be to 

split the information across multiple plots to reduce the information per plot to a 

manageable size. Figure 6.33 present very clear and informative data on cell 

invasion signatures for image sequence 4. 

190 



en a. 
Q) -en 
Q) 

E 
:;:::; 

en a. 
Q) -en 
Q) 

E 
:;:::; 

191 

..-

C\I 

C") 

v 

LO 

co 

I"-

..-

C\I 

C") 

v 

LO 

co 

I"-

Sequence 1 : Cell Invasion Signature mid-points 

10 20 30 

Depth (z-dimension) 

40 

cells 

43 
73 
108 
135 
164 
182 
205 
234 

Sequence 1 : Cell Invasion Signature mid-points (zeroed at t1) 

-15 -10 -5 0 5 

Depth (z-dimension) 

10 

cells 

43 
73 
108 
135 
164 
182 
205 
234 . 

15 

Figure 6.30: Sequence 1: Cell invasion signature mid-point plots 

Top graph: absolute depth in z-dimension, Bottom graph: depth relative to tl =0 



en c. 
0> 
+-' en 
0> 
E 

.+=' 

en c. 
0> 
+-' en 
0> 
E 

:0:: 

192 

T""" 

C\I 

CO) 

v 

lO 

CD 

r--

T""" 

C\I 

CO) 

v 

LO 

CD 

r--

Sequence 2: Cell Invasion Signature mid-points 

cells 

76 
136 
187 

10 20 30 40 50 

Depth (z-dimension) 

Sequence 2: Cell Invasion Signature mid-points (zeroed at t1) 

-20 -10 o 

Depth (z-dimension) 

10 

cells 

76 
136 
187 

Figure 6.31 : Sequence 2: Cell invasion signature mid-point plots 

Top graph: absolute depth in z-dimension, Bottom graph: depth relative to tl =0 



I/) 
a. 
Q) -I/) 
Q) 

E . .;:::: 

I/) 
a. 
Q) -I/) 
Q) 

E . .;:::: 

193 

,... 

C\J 

('I) 

"<t 

LO 

to 

I"-

,... 

C\J 

('I) 

"<t 

LO 

co 

I"-

0 

Sequence 3: Cell Invasion Signature mid-points 

10 20 30 

Depth (z-dimension) 

40 

cells 

44 
64 
79 
80 
105 
116 
136 
151 
177 
211 
246 

50 

Sequence 3: Cell Invasion Signature mid-points (zeroed at t1) 

-20 o 20 

Depth (z-dimension) 

40 

cells 

44 
64 
79 
80 
105 
116 
136 
151 
177 
211 
246 

Figure 6.32: Sequence 3: Cell invasion signature mid-point plots 

Top graph: absolute depth in z-dimension, Bottom graph: depth relative to t1 =0 



C/) 
Co 
Q) 
+-' 
C/) 

Q) 

E 
+=' 

C/) 
c. 
Q) 
+-' 
C/) 

Q) 

E 
+=' 

194 

..... 

C\I 

C') 

.;:t-

LO 

co 

I"-

..... 

C\I 

('t) 

v 

LO 

co 

l"-

Sequence 4: Cell Invasion Signature mid-points 

58 
101 
136 
163 
188 
230 

20 30 40 50 60 

Depth (z-dimension) 

Sequence 4: Cell Invasion Signature mid-points (zeroed at t1) 

n 

-10 0 10 20 

Depth (z-dimension) 

30 

cells 

58 
101 
136 
163 
188 
230 

40 

Figure 6.33: Sequence 4: Cell invasion signature mid-point plots 

Top graph: absolute depth in z-dimension, Bottom graph: depth relative to t1 =0 



6.7 DFrame Pipeline Performance 

As the DFrame pipeline performance is similar for each image sequence, this 

section presents the performance figures obtained during the running of image 

sequence 1 with various processor core counts. This is central to the case study, 

as the performance of the DFrame at varying processor core counts demonstrates 

the utility of the framework at the task graph level where multiple pipelines are 

being run concurrently, and when sufficient processor cores are available, that 

tasks in each pipeline will then utilise the available processes to further harness 

parallelism at the model/task level, which in this case study is data parallelism 

through partitioning of the 3D image. 

Each image sequence contained seven 3D images, and so the processor core 

counts were arranged to be multiples of seven, as shown in table Table 6.1. 

Number of Images Number of Processor cores per 3D Topology 

Processor cores Split Group created 

7 1 nla 1:1:1 

7 7 1 1:1:1 

7 14 2 2:1 :1 , 

7 28 4 2:2:1 

7 56 8 4:2:1 

Table 6.1: Processor core counts and process groups for the case study te.st 

The figures for the top row, with one processor core were extrapolated from the 

figures for 7, processors, with the splitter timing removed. For seven processor 

cores, seven pipelines were split, but the system does not arrange for any further 

data parallelism, so the models in each pipeline run the tasks locally (Le. no scope 

for further parallelism through data distribution). In tests with 14,28, and 56 .. 

processors, each split pipeline has available multiple processor cores and so each 

split process group can arrange for partitioning of its image and distribution to 

leverage (data) parallelism at the model level. The 'Processor cores per split 

195 



group' column tabulates the number of processor cores available to each group, 

and these counts are suitable for data parallelism using a regular mesh model. As 

such a mesh model is chosen, and each pipeline caches a mesh model across the 

sequence of task runs, such that image results remain distributed across the runs 

to amortise the cost of distribution and gathering as per the design intent. Because 

the images in each sequence are the same size, each pipeline is determined as 

having the same amount of work, and the number of processor cores split out for 

each group is the same, but this need not be the case in general as a varying size 

characteristic can be explicitly determined and supplied by application code (and 

in diagnostics mode, is being incorporated such that this can be implicitly 

determined by the DFrame). The table's last column shows the cartesian topology 

that was automatically calculated and applied, the behaviour being from a plugged 

in partitioning strategy loaded as part of the task partitioning mechanism. 

The following plots in Figure 6.34, Figure 6.35 and Figure 6.36 show the total 

execution time, the speedup and efficiency of the pipeline runs with different 

processor core counts. Although the DFrame timing diagnostics captures the 

results for each process in the run, the graphs only show the total timings for 

processor core O. This is sufficient for presenting the total run times as the total 

time captured is the time for all split processor groups (sub-pipelines) to run to 

completion, and for the DFrame to return to a quiescent state (or the program exits 

in batch mode, as used in this study). As such, it is noted that the presented 

timings record the last sub-pipeline to complete. 

As per the component tests, the DFrame still has barriers inserted at each task 

boundary, and at other locations, to aid comprehension, and this is expected to 

negatively impact the timings to some extent. Nevertheless, the results are very 

encouraging, reducing the time to execute from over 500 seconds to around 21 

seconds using 56 processor cores. This is a significant contribution, allowing the 

running, inspection, adjustment and further running of such pipelines in very much 

reduced timescales. 

196 



Image Sequence 1 Pipeline Total Time 

0 

\ 
0 
Ll) 

0 
0 
v 

en 
"C 0 c: 0 0 C') 
0 
Q) 

~ 
Q) 0 
E 0 
F C\J 

0 
0 

0 

0 10 20 30 40 50 60 

Number of processor cores 

Figure 6.34: Image Sequence i: DFrame pipeline total time 

Image Sequence 1 SpeedUp 

0 
C') 

Ll) 
C\J 

0 
C\J 

C. 
:l 

"C Ll) 
Q) 
Q) 
c. 
II) 

0 

Ll) / 
0 

0 10 20 30 40 50 

Number of processor cores 

Figure 6.35: Image Sequence i : DFrame pipeline speedup 

197 



Image Sequence 1 Efficiency 

0 
0 ,.... 

0 
ex> 

;g- O 
~ CD 
>-
U 
c:: 
Q) 

'0 0 :i: '<t 
LU 

0 
C\I 

0 

o 10 20 30 40 50 60 

Number of processor cores 

Figure 6. 36: Image Sequence 1: DFrame p ipeline efficiency 

6.8 Discussion 

This case study more fully demonstrates the DFrame design by running a task 

graph composed of a number of parallelised 3D imaging tasks. The task graph 

also explicitly specifies the dynamic generation of sub graphs ·(pipelines) through a 

DFrame task splitter, and so exercises the hierarchical control of parallel 

resources through the creation of multiple process groups. The DFrame 

performance results evidence the utility of the framework in delivering significantly 

reduced timescales to run such applications. Although performance is a prime 

goal , other aspects of the study are important, including the ease of use and 

reuse, adaptability and extensibility of the DFrame. The flexibility of the DFrame in 

terms of ease of use and reuse is most obvious to the domain user working at the 

task and task graph level , where the GUI provides assistance in constructing the 

task graph that forms a specific application workflow. Here the user is presented 

with the available functionality, and can build bespoke task graphs and configure 

parallelised task parameters according to the application requirements. This is 

198 



how the case study task graph is authored. The full power of the DFrame then 

being leveraged in the running of this task graph. 

The opportunity for extensibility and adaptability permeates through the design of 

the dframe. Extensibility is primarily accommodated through the DFrame's plugin 

architecture whereby new parallelising models and application modules can be 

added to extend the framework, as described in Chapter 4. In the case study a 

plugged in MeshModel is loaded to parallelise individual tasks and an 

ImageTkModule links this model to application code. Although the splitter is 

closely integrated with the DFrame, it too is loaded as a model extension, using 

the model plugin design and the success of this approach is observed in the ease 

to which it has been applied, and highlights that the arrangement could be easily 

adapted to research other variant or novel distribution approaches. 

Adaptability is infused into the DFrame's design. Task parameters can be adjusted 

prior to running a task graph, and behaviour can also be adapted at runtime. The 

ability to select and change the model that a task uses and the runtime 

apportioning of groups of processors to branches of task graphs according to task 

characteristics are two prime examples. As well, the partitioning and recomposition 

of task data is also adaptable, through the plugin of variant partitioning and 

recomposition strategies. The case study encompasses all these features, 

particularly adapting through automatic process splitting and automatic image 
, 

partitioning. 

Model selection is simple when tasks are run separately, and various suitable 

models can be swapped in to determine the performance of each. However, when 

tasks are arranged in a pipeline, selecting models while accounting for the pipeline 

context can improve the overall performance. In the case study, this is the' case 

and the model selection is a mesh model. This is because the output of the 

averaging task is designated as the input of the Sobel task, and by leveraging a 

mesh model, the model setup can be reused, and the results of the averaging step 

can remain distributed for the Sobel step. The model performs a neighbour 

exchange of data rather than gathering and redistributing the data. A built in 

mechanism allows the DFrame to cache the model such that the same model is 

used across the tasks. This arrangement also extends to the analysis and 

histogram task, where the output from the Sobel operator remains distributed, as 

its input. 

199 



The splitter functionality managing the apportioning of resources to sub-pipelines 

has proved to be very effective, accomplishing its objectives including the 

management of the split process groups through associated Of Context objects. By 

turning on DFrame logging, this feature can be tracked as processing continues, 

with each logged message containing a unique context name, comprising the 

hierarchy of processes above and including the current context. Logging is used in 

the case study to track progress and to confirm the functioning of the splitting 

mechanism. That all the sub-pipelines are of the same size, working on similar 

sized images has resulted in the splitting of process groups containing equal 

numbers of processes, and this is observed in the results (and also observed 

through the logging). This aspect of the runtime has proved as effective as the 

individual parallelism of each task, the implementation successfully employing the 

very powerful and generic MP,-Comm_split functionality for this purpose. 

The task execution, partitioner and composer interfaces demonstrate the generic 

nature of the design, and have allowed for the loading of novel application module 

code that implements the interfaces. A 3D image partitioner was loaded that 

supported the automatic calculation of partitioning strategies, according to the 

shape of the 3D image (Le. the size of each of its dimensions), and the number of 

processes available. From this a topology was calculated that the mesh model 

then used to set up a corresponding topology across the processes and used to 

distribute the partitioned sub-images accordingly. This has proved very effective, 

and also brings out the design in that the partitioning strategies can easily be 

changed to trial novel approaches and augment automation and adaptation in new 

ways. For completeness, a manual topology can also be mandated by adding an 

appropriate property to a task's specification, which should then ~e aligned across 

a pipeline in order to avoid gathering and redistribution of data, when it is 

appropriate to leverage that advantage. The final composer aggregated histogram 

data and persis,ted results to the file system for subsequent examination and 

rendering as compound cell invasion plots for each cell. In this case, the 

transformed image was not required to be recomposed (except for inspection 

during trial runs, but not in the presented results), supporting the argument for the 

more generic design. 

Another goal of the case study, is that in conducting a full end to end test on a 

complex and dynamic task graph, it would be possible to discern where the design 

200 



could be further developed. One simple improvement will be to arrange for the 

loading of data in a separate task. This would allow the data to be loaded once, 

and then used in multiple distributed runs of a task graph or subset thereof, for 

diagnostics purposes, including assessing timing effects of certain parameter 

changes, or when ~ssessing the use of different models or partitioners. The 

DFrame design already allows this to be simply expressed as another task. This 

will improve the runtime flexibility of the system, aiding the development of iterative 

routines that multiply exercise subsequent tasks to provide feedback to automate 

further the tuning capability. This adjustment would also simplify the timing of the 

retrieval of resources, and obviate the need for multiple retrievals on multiple runs. 

In the case study each pipeline sub-workflow saves its own output files directly. 

This arrangement is in preference to the amalgamation of all the results onto one 

root process or to a parent in the context hierarchy, as there will be some variation 

in the end times of each pipeline, and this could be a positive effective on disk 

writes to some storage systems. Indeed, if the simultaneous running pipelines 

were to write to the same file, then race conditions would have to be considered 

such that data from each process did not corrupt data from other processes. The 

MPI parallel 10 feature could be useful in this respect, but is possibly excessive 

and restrictive in the current case. However, it is within the design of the DFrame 

to be able to arrange a merged parent task that can amalgamate and write out all 

the data concurrently, and this will be a 'Useful strategy, if the data is to undergo 

further automatic analysis. For example the 3D image cell histograms may not be 

the output, but some metric derived from them. In this case, instead of using 

parallel 10, the dframe would control the phased collection of data onto one 

process, and that process would then write out the results, or deliver to the client. 

This is indeed how the timing metrics are collected and recorded. 

Another useful feature brought out by the case study is that an improvement could 

be made to more flexibly dictate when data should remain distributed and when it 

should be collected, with particular emphasis on the ability to do both. For 

example, the histogram data could be gathered, and the image data kept 

distributed or vice versa. This could also be useful in order to view intermediate 

outputs, and this would require both to gather data and leave it dis~ributed, and 

this is being incorporated into the design. Related to this is more flexibility in a 

model's control of data placement. The mesh model supports a neighbour 

201 



exchange of data and a mechanism to support the global exchange of data should 

also be available to models, suggesting that this aspect be further separated out 

as an independent feature. This was illuminated in the analysis task, where it may 

be useful to globally broadcast calculated thresholds, while keeping image data 

local. Although in this case a separate thresholding task would make sense, the 

capability for specifications to define or for module implementations to instigate 

global broadcasts of parameters in models (even the mesh model), would be of 

use, as some parallelised algorithms will undoubtedly require this. This can of 

course already be done in a bespoke manner in any model, but the idea is to 

investigate supporting generic and reusable distribution patterns other than 

neighbour exchange. 

Finally, the actual analysis of data in the case study has provided useful insight 

into the effectiveness and limitations of the approach. Looking at the fit of the 

mask to images in a sequence, it appears that in some cases there is significant 

cell movement in the x-y plane (e.g. see image sequence 3), and here it may be 

worthwhile and even necessary, to create masks for each image or automate 

some method of reregistering a mask in the lateral plane, or define some criteria 

for determining other cell characteristics such as a cell's centre. The case study 

does highlight that the selection of the mask area is sensitive to which image and 

image slice it is extracted from, and whether it is broad enough to cater for a cell's 

anticipated lateral movement in the x-y plane. Also, the exercise highlights that the 

technique is more practical when cells in an image sequence are distinct and do 

not overlap. The upshot of this is that more analysis is required, and further 

experimentation and this is the strength of the DFrame in that a framework now 

exists, that can be used to more quickly expand functionality, an~ that the prime 

objective of speeding up the analysis makes this much more practical. 

6.9 Summary 

Chapter 5 evaluated the DFrame at the component level, and this chapter has 

then gone on to demonstrate the power of the DFrame in concurrently processing 

multiple streams of 3D images in a time lapsed cell invasion case study that 

pumps each image through a pipeline of preprocessing and analysis operators. 

The build time power is observed through the plugin of model and module 

functionality, and the composition of a complex task graph. The runtime functional 

202 



~-~-------------- --------

operation of the DFrame is then observed, with features such as models being 

selected and then loaded in a distributed fashion, workflows being created from 

the task graphs, processor resources being split according to the workflow 

requirements and available resources. The generic partitioning and composition 

design is seen in action, and the automatic calculation of partitioning requirements 

and associated topologies is demonstrated. 

Significant contributions of the DFrame have been highlighted through its use in a 

more complex application (see section 6.8). These include demonstration of the 

utility of the extensible design, allowing plugin and reuse of components within the 

parallel processing and the application domains. Adaptability at runtime is 

evidenced in multiple functions such as model selection, partitioning strategies and 

in dynamic processor group allocations. The generic execution, partitioner and 

composer interface design have also allowed the DFrame to be used more broadly 

as in the histogram analysis. Myriad other features have been brought to bare 

such as GUI drag and drop specification authoring and distributed runtime control, 

configuration, and diagnostics capabilities. The power of the DFrame is observed 

not only in the performance gains that it can give, but also in the provision of a 

framework that is particularly flexible and easily extended, simplifying and so 

encouraging the harnessing of parallel resources. 

The successes and ongoing improvements into automated adaptability will 
, 

continue to provide further power, with the DFrame's extensible design aiding this. 

Planned next is a consolidation phase, with more experiments with models and 

investigations into the generic exposure of global as well as local exchange at the 

model level, and keeping some data distributed while collecting or redistributing 

other data. Delivering DFrame performance information and application results to 

the GUI is also part of this plan. The UI design is being progressed to allow 

viewers to be plugged in for supported types. Currently, a 3D image viewer is -. 

inserted for use with the 3D image task inputs and output, but the goal is to make 

more generic, to support other formats such as the csv (comma separated value) 

dataset format. 

203 



Chapter 7 Conclusions and Future Research 

7.1 Introduction 

The project started with a requirement to apply multiple complex feature 

extraction, analysis and visualisation algorithms to large numbers of high 

resolution 3D bio-images in High Content Screening applications. It was 

immediately apparent that parallel processing would be essential, to obtain results 

in reasonable timescales, and allow alterations and reruns and visualisations in 

batch and interactive sessions. It was proposed that a new and novel high level 

extensible and adaptable framework would be useful, implementing much of the 

core parallel processing infrastructure and that aligned well with the parallelisation 

requirements of typical 3D image processing algorithms. 

This initiated research to distil concepts and design an appropriate distributed 

framework (referred to as the 'DFrame') running on top of MPI, and to implement 

core imaging functionality pertinent to parallel ising 3D image processing operators, 

using the framework. An assessment of typical image processing usage led to the 

view that both task and data parallelism would be useful, with task parallelism at 

the broader level to specify task pipelines and graphs of operators, and data 

parallelism at the finer level to parallelise individual operators (tasks), that would 

include decomposition and recomposition of the 3D images. Extensible support for 

this was to be accounted for in the design of the distributed framework. 

Accomplishments of the project include a detailed conceptual design of the 

framework and a fully functional prototype, along with bridging infrastructure to 

core 3D image processing capabilities that includes de-noise filters, edge 

detection and region based cell segmentation operators and a p"arallelised server 

side direct volume rendered visualization capability. Results of the evaluations of 

these components are presented. Furthermore, a fully integrated case study has 

been undertaken that uses the DFrame in a real world setting, to investigate cell 

invasion signatures in multiple streams of time lapsed 3D cell biology images. The 

case study demonstrates the success of the DFrame in its largely transparent 

application to the target domain and shows how interesting and novel imaging 

techniques can leverage the framework to achieve faster time to results and 

insight on complex issues of much interest to research in this field. 

204 



7.2 Principle Findings 

The DFrame design has elevated extensibility and adaptability to prime objectives, 

alongside performance, clarity and reuse through a modular design.The parallel 

infrastructure and pluggable models implementing parallel patterns of execution 

are separated out from application code, so that proficient parallel programmers 

can concentrate on developing parallel ising patterns, whilst domain experts are 

largely shielded from this aspect and can concentrate on developing domain 

applications. This separation of concerns has been demonstrated to be of great 

benefit when improving the system, where effort to improve the DFrame and 

models can be shared across all associated application code, and the modular 

design encourages its use across many image processing applications requiring 

parallel processing capabilities. The experience of implementing the complex 

application partitioning, and arranging master worker and mesh model parallel 

execution does argue strongly for a framework. The hours of scrutiny of complex 

timing interactions to determine performance bottlenecks is a difficult and time 

consuming task, that can be helped with framework feedback. Although the 

models on first inspection appear to be conceptually straightforward, there is much 

reasoning to be done, so a framework is arguably essential. 

A further level of complexity is in arranging for the execution of a graph of tasks, 

and the apportioning of process~s to ta~ks and task pipelines running in parallel, 

and the management of such workflows. The workflow component has proved its 

worth in this regard, as a core part of the framework managing the runtime 

execution order of tasks according to a defined task graph. The modular design 

was shown to admit the relatively straightforward introduction of a novel powerful 

hierarchical splitting mechanism that operates in concert with the DFrame-and the 

workflow component to dynamically manag~ resource allocation. This would 

simply not be productive (or even feasible) to do in each custom application. The 

complementary GUI successfully facilitated both the task graph construction from 

available c'omponents and the runtime management to set and interactively update 

task parameters and then to immediately rerun the application to provide" 

interactive feedback on the effects of any intermediate task parameter 

adjustments. One of the difficulties in reusing code is simply in findi,ng what is 

available, and this is addressed in the DFrame by exposing functiOnS made 

available by the plugged in components in the GUI. 

205 



A generalise partitioning design has been incorporated that abstracts application 

neutral partitioning and composition API's that the DFrame models can use, and 

that applications implement, so that applications remain largely transparent to 

models and vice versa. This provides further insight into the separation of 

concerns, fuelling interesting research in this area. 

Of principle interest in undertaking this work is the use of parallel processing to 

reduce the running time of pipelines of complex and varied 3D image operators, 

and the performance of the framework in this regard is of course crucial. A 

framework that meets goals of extensibility, adaptability and reuse, but falls short 

in this area would be of little value. Component evaluations and a case study have 

successfully demonstrated the framework's utility in enabling the harnessing of 

parallel processing resources to run such pipelines in much reduced timescales, 

and this is expanded upon in the following section. 

7.3 Critical Evaluations and Limitations 

The initial evaluations demonstrate the DFrame model and module design at the 

component level, and prove the specific utility in the image processing domain, in 

the reuse of parallelising models and the generic interfacing to 3D image specific 

partitioning and composition. The success of parallelising simple imaging 

operators, and the more elaborate segmentation and visualization 

implementations are testament to the frameworks parallelised model design at the 

component level. The direct volume ray tracing performance results are 

particularly encouraging, holding the prospect of real time visualization, using the 

GUI to provide interactive updates to the camera orientation and zoom and 

present immediate feedback. This method is very versatile, and further research 

could include other partitioning strategies, the incorporation of variant ray tracing 

algorithms and could even be adapted as an alternative segmentation approach. 

The case study bears out the utility of the framework where components are 

brought together to compose a complex image processing application that focuses 

on a real world biomedical area of research, namely the investigation of invasion 

signatures of cancer cells across a number of sequences of time lapsed 3D 

images. This proof of concept required the set up of a pipeline of image operators, 

applying compute intensive processing to each image, and recording the results. A 

further complication was the generic nature of the partitioning and composition 

206 



stages, which not only involved the partitioning of 3D images, but also the 

composition of resultant analysis data. This was successfully accomplished due to 

the generic design of the partitioning and composition interfaces. The full power of 

the framework is demonstrated, including the adaptable splitting of process groups 

across multiple pip~lines of image streams, appropriate model selection that 

where possible can take account of image partitioning to avoid unnecessary 

recompositions and repartitioning, and the integration of automated partitioning 

strategies. The flexibility and extensibility of the pluggable model and module 

design becomes more evident in this study. 

Performance analysis can help illuminate the characteristics and bounds of system 

storage 10, interprocess communication, memory hierarchies and processors, and 

their interrelation and effect on the performance of the problem being solved, and 

must be considered in concert with the 'shape' of the problem being solved. 

Instrumentation within the DFrame is made available across models and modules, 

to aid performance analysis. At present this is still rudimentary, but does collect 

sufficient information to establish core metrics such as execution time and speed 

up, and being part of the framework, continued improvements will benefit all 

applications. It is planned that this information will be returned to a client for 

immediate feedback, but more importantly can be used to automatically adjust 

operation parameters based on reported timings. The higher level abstractions can 

impose a trade off with performance, but the presented preliminary results are very 

positive. 

The assessment of results guides and drives improvements to algorithms to 

maximise performance (and can even highlight which hardware components can 

be improved). Analysis of the tests has revealed where parallel pattern model and 

image processing module implementations qan be improved, for example in 

synchronisation and intercommunications, removing barriers and using topology 

routines, and that it might be worth further research into using parallell<? 

(supported by MPI-2) and perhaps dedicating a subset of processors to storage 10 

and then to use internode communication to transfer data about the network. This 

must be balanced against increased program complexity. 

Overall, the component evaluations and case study results are all quite 

encouraging, and the feedback has already targeted areas for further 

improvement, both in the imaging domain code, and the distributed framework. 

207 



Using the framework has also brought into relief the suitability of particular 

patterns for different algorithms and applications, further demonstrating that a 

framework not only allows reuse, but provides guidance and flexibility on available 

parallel patterns of computation. The project illuminates areas for further research 

in the parallel processing arena and in parallel ising image processing applications, 

that without this initial extensive endeavour might seem too daunting and so deter 

interest. More often in research, the goal is very specific, and the construction of 

bespoke parallel processing may be secondary and divert much effort from the 

core interest. The DFrame can alleviate such concerns and encourage and aid 

rapid experimentation by facilitating parallel execution. 

7.4 Future research 

Although intended as a proof of concept prototype, the presented DFrame is a 

functional piece of software able to demonstrate flexible, extensible and adaptable 

parallelised processing. However, the enterprise is an extensive one, ranging 

across both the parallel processing discipline and the parallelisation of 3D image 

processing applications and there is scope to improve and extend in both 

domains. Below are some areas that are already targeted for more input. 

The performance timings are generated by the DFrame but they are still somewhat 

rudimentary and incomplete, and could be improved, while attempting to maintain 

a balance between the DFrame diagnostics and the leveraging of external tools 

that are already available (e.g. MPE/Jumpshot). Some improvement in the already 

supplied models using the DFrame timing infrastructure is als6 planned. The 

DFrame outputs timing data to a file in cvs format and can be configured to also 

output summary runtime data, and this should be augmented to be piped to the UI 

for immediate inspection. It is still rather time consuming to run a test, and have a 

post operation to plot the data, and the intention is to have this feedback 

immediately rendered as a graph in a Ul'runtime' view (a facility is already 

included in the GUI to view output 3D images). 

The evaluations suggest that the performance might be improved by adjusting the 

3D image partitioning design to reduce the copying of data to sub-images, by 

experimenting with a windowing design instead, such that data is packed directly 

from the whole image to communication buffers, to reduce copy (and memory) 

overhead. In the current implementation, MPl's packing functionality is used 

208 



exclusively to pack and transport messages, and it would also be an interesting 

avenue of further investigation to incorporate MPI's datatype feature and 

determine whether such usage could improve productivity and performance. 

It is intended to apply this framework to a much larger scale cancer cell invasion 

study, targeting many gene modifications and this will entail the development and 

parallelisation of many more plugins implementing 3D imaging techniques that are 

beyond the scope of this project. Here, a form of 'smart processing' could be 

introduced that automatically identified regions of interest, marking and queuing 

them for further processing. It would also be of great utility to apply the framework 

to other interesting and topical compute intensive applications, such as research 

on how differential proliferation rates orient cell growth (Mao, Tournier et al. 2013). 

Reuse is a corner stone of productive quality software development (Sametinger 

1997). It plays a fundamental role in object oriented methodologies and is very 

prominent in the design of the DFrame, encouraging a modular approach where 

applications are built from reusable components. As well as avoiding the 

duplication of effort, reusable components become more 'battle hardened' through 

use in many different applications, and the investment to develop and rigorously 

test a reusable component can be amortized across all applications that use it. At 

a high level, the DFrame reuse is 'compositional', in that available models and 

application code can be reused to compose novel applications and there is room 
, 

for further study in this fertile area. For instance, another more specific and higher 

level of reuse is the 'generative' approach, where components (or applications) are 

generated from high level descriptors, and although less generic, it might be useful 

to consider the merits of such an approach perhaps sitting atop the DFrame. 

The high performance computing community is largely populated by experienced 

practitioners in the field of parallel processing, with particular skills in performa~t 

low level technologies such as MPI and openMP. One of the motivating aims of 

the DFrameis to shield users from the complexities of low level parallelization, and 

so bring the power of MPI to a wider audience, outside the high performance 

community. Indeed, the adopted client server architecture opens up the 

opportunity to integrate the DFrame as a service in a contemporary system 

employing a service oriented architecture (see section 3.7). In the same vein, ' 

cloud computing is becoming an increasingly popular way to harness scalable 

remote resources (e.g. map reduce for Big Data analytics), and it would be an 

209 



interesting further pursuit to establish the expected suitability of the DFrame in 

these settings. 

7.5 Summary 

This research has shown that para"el resources available over distributed memory 

architectures can be successfully applied to 3D imaging HCS applications through 

the use of an extensible and adaptable framework build atop MPI, and leveraging 

its point to point and collective operations as we" as its more advanced topology 

and process management features. Task para"elism is employed in the 

processing of a pipeline (graph) of 3D image operators, and task and data 

para"elism can be further applied to para"elise each image operator. Core benefits 

of the framework include its modular design, separating the para"el processing 

infrastructure from domain code and allowing for extensibility, adaptability and 

reuse. As we", the provision of a system that can provide interactive feedback to 

application parameter adjustments should prove very helpful in many research 

domains associated with 3D imaging. The consideration of para"elising image 

processing operators (individua"y and grouped as a pipeline of operators) should 

provide a fertile area for interesting future research. As this project demonstrates, 

some algorithm designs map better to para"el resources, and with the computer 

landscape trending to be ubiquitously para"el, the search for such algorithms and 

approaches that can take advantage of this is becoming a more important area of 

research. 

210 



Appendix 

A.1. Scientific Visualization 

Preliminary project effort concentrated on visualization techniques applied to 3D 

imaging datasets, including the decision on what technology to adopt for a 

prototype graphical user interface (GUI). Although the initial focus is on the server 

side parallelisation of direct volume rendering visualization techniques, the GUI 

should also be able to arrange the pipelined rendering of generated polygons, 

such as the surfaces of discovered image artefacts or to render the bounding box 

of an image or image artefacts as a wire frame. To this end, the GUI technology 

should allow support for openGL (OpenGL Architecture Review Board, Shreiner 

2004). However, openGL itself does not specify how to interact with a windowing 

system. Some experimentation was conducted on using the X window system, on 

using the GLUT openGL utility toolkit (openGL 2008), and on using aT3 from 

Trolltech (Dalheimer 1999). GLUT is more useful in allowing easy and quick 

access to learning openGL, and the X window system is extensively used in the 

unix world. In the end, aT was chosen as the most attractive option to quickly 

develop a prototype GUI. aT implements a aGLWidget that provides the support 

framework to easily leverage openGL functionality in applications. It is merely 

necessary to extend this class and add functionality as required. aT also offers a 

designer tool that helps create GUl's visually, speeding up the design process. As 

well, aT uses a signals and slots mechanism that makes it particularly 

straightforward to hook up the various GUI components. The latest version of aT 

is version 4, but the version initially used in the project and illustrated in this 
-, 

appendix was 3.3, as it was already installed on the default Suse Linux distribution 

used at Kingston University (Suse Linux 10.1). As is noted in Chapter 4, the UI.!s 

now reimplemented in aT 4. Excellent introductions to computer graphics using 

openGL canbe found in (HiIl2001),(AngeI2001a) and (Angel 2001b). 

A.1.1 Preliminary pipeline prototyping 

Prior to adapting to a server side distributed design, and to gain insight into the 

distributed pipeline architecture, a simple pipeline framework was first developed.' 

The objectives being to provide some order and management to the application 

layer in the initial GUI prototype design, to help manage the complexity as 

211 



research and development progressed, and more importantly to extract salient 

factors to be included or accounted for in the envisaged distributed design. 

Artefacts of this generic pipeline architecture would eventually port across to the 

development of the distributed framework. The base object is a 'system 

component' which can be assigned inputs and outputs and can be extended to 

meet particular component implementations needs. The inputs and outputs of 

system components can be connected to form a pipeline through which a data 

context is passed (each system component contributing some specific processing 

to the data). In the context of visualization, subclasses can be source components 

that provide image datasets, filter and analysis components, and rendering 

components. The generic pipeline architecture has no link to the visualization code 

proper, as this is provided by specific sub classes. An interesting consideration 

that emerged was whether to have a push or pull type pipeline. The distributed 

framework is intended to provide both features, in that events that propagate back 

from downstream components can initiate a refresh of the data upstream (pull), 

and if data upstream is changed in some way (say a parameter change) this will 

also cause a refresh of the pipeline (push). The VTK also uses a pipeline 

architecture that enables flexible construction of visualization applications 

(Schroeder, Martin et al. 2004a, Schroeder, Martin et al. 2004b) and much insight 

was gained from studying this approach. Another source of inspiration in this 

regard was the now open sourced IBM software package openDX (IBM 2007), 

designed for the advanced visualization of scientific and engineering data. 

Alongside this work, much of the preliminary and experimental. work to implement 

3D volume structures was undertaken. The concomitant required supporting 10 

functionality was also implemented, which entailed porting the core ImageJ 'tiff 

encoder and decoder functionality to C++ and adapting the design to directly 

support the required 3D volume data structures. 

A.1.2 Iso-surface visualization prototype 

One particularly useful visualization technique is the extraction of iso-surfaces 

from a 3D image dataset. Rather than using a variant of the 'marching cubes' 

algorithm, a more direct thresholding approach was researched, undertaken as a 

preliminary investigatory exercise associated with the required ray tracing facility 

and to aid the GUI prototyping. The initial prototype GUI was implemented using 

212 



--------~-.-----------

C++ and QT3, and incorporating openGL is shown in Figure A.1. The rendering 

was set up with openGL lighting disabled and z buffering enabled. A synthetic 3D 

image of a sphere was generated to provide an initial source image. The algorithm 

proceeds by traversing the image dataset to detect and identify all those points on 

or above some spe~ified threshold. All identified points are then clamped to the 

threshold. Normals are then calculated (via the calculated gradients at a point) for 

all points on the surface, points within a surface being ignored as they are 

subsequently removed. A smoothing algorithm is then applied to these surface 

normals only, to smooth with adjacent normals. The amount of smoothing can be 

adjusted via the GUt. Finally, the extracted surface data and normals are 

compacted and propagated to code that renders the points. 

The calculation of the normals is necessary in order to be able to calculate the 

'shading' when rendering a particular point. The light source was assumed to be 

fixed at the point of the camera, and the shade for each point calculated by the dot 

product of the direction of light incident at a point, and the surface normal at that 

point. In order to cope with this requirement, a camera object was developed that 

tracked the camera's position and orientation (and subsequently adapted for the 

ray tracing functionality). This also enabled easy implementation of pitch, yaw and 

roll of the camera for dynamically viewing the results. Design ideas and skeleton 

code for implementing the camera were extracted and developed from (Hill 2001) 

which also provides a comprehensive introduction to computer graphics. Note that 

by arranging to move the camera rather than the object(s), object normals only 

need to be calculated once. A capability was added so that the camera angle of 

vision could be adjusted. At very small angles, the resultant visualization rendered 

discrete points as expected. To provide a smooth rendering, cubes were then 

constructed and rendered for each point, each cubes dimension being equal to the 

spacing of the points in the dataset. 

Another sphere source was also implemented in which the normals were 

calculated rather than determined via gradients and smoothing, to compare 

against the above implementation. With sufficient smoothing cycles (-20) the 

above implementation approaches the calculated image. Figure A.1 and Figure 

A.2 show the.resultant rendering of the test sphere dataset with diff~rent amounts 

of smoothing applied to the normals .. Although this design has proved successful 

in the case of a simple sphere source, further experimentation will be needed, to 

213 



determine how well this technique translates to arbitrary iso-surfaces. 

214 

file gdit tielp 

Camera-----, 

mode I rotate I"' ] 
x 80 
y 80 
z 80 

[ reset 1 

view angle ~ 2 .5 @ 
smoothing [2 f$j 

[10 f$j 

Figure A. J: Rendering of a sphere with 2 smoothing cycles applied to the normals 

file gdit tielp 

Camera-----

mode I rotate I"' ] 
x ·80 
y 80 
z 80 

[ reset 1 

~~ ... view angle Ir;Zj C!J 

smoothing [ 20 f$j 
[10 f$j 

Figure A.2: Rendering of a sphere with 20 smoothing cycles applied to the normals 



A.1.2 Ray tracing visualization first prototype 

To provide a first use case for the distributed framework, a direct volume ray 

tracing visualization capability was designed and implemented. Direct volume 

rendering traditionally works on the basis of ray tracing without the need to convert 

to a polygonal representation. The ray tracing algorithms incorporate the design of 

the 'camera' navigation mechanism so that the ray direction could be oriented in 

the appropriate direction relative to a 3D volume, and other various parameters 

exposed to allow control of the size of the view port, the view angle, near and far 

planes (i.e. to compute the openGL model view and projection matrices). The ray 

tracing algorithm was also designed to allow the distribution of blocks of rays, so 

as to align with the proposed DFrame design. 

The GUI was updated to include the selection of volume render modes. As well, 

wire frame rendering of the image boundary can be selected. The volume modes 

are 'none', 'surface' and 'raycast'. Enabling the wire frame rendering, and selecting 

the 'none' volume rendering mode allows the camera orientation to be set without 

incurring the processing costs of the ray tracing or iso-surface processing. The 

'surface' mode switches in the iso-surface rendering described in the previous 

section (Figure A.3), while the 'raycast' mode switches in the introduced direct 

volume ray tracing functionality (Figure A.4). It is apparent that the ray tracing 

approach is more successful than the current implementation of the iso-surface 
, . 

algorithm in determining and rendering the outline of general objects. However, 

the underlying iso-surface detection approach should still be useful in delineating 

objects from the background, and it is likely that the crude normal calculations are 

affecting the rendered output, and future effort will look at a more exact 

interpolation (that is already integrated into the ray tracing approach). The ray 

tracing algorithm has subsequently been parallelised to use the distributed 
, 

framework. In this early prototype GUI, the camera implementation is tied into .. 

openGL, an~ this functionality has subsequently been adapted to an independent 

design and implementation suitable for the distributed framework. 

215 



2 16 

l • J [ 1 
c:.::JCJ 
[ . )[ J 
L re5~ 

230 r.j 
[2 J:§:j 
[10 W 
[ 1 © 

volum~ ----. 

() none 

~ surface 

rayeast 

Figure A.3: Prototype CUI visualizing iso-sw1ace of 3D cell biology 

. ---
file ~dlt tlelp 

" ~'w. . _ 0 x 

[ • J I . J 
c:::::= JCJ 
L · J[ ] 
L re .. t ~ 

230 ffi 
[i ~ 
~O M 
I _iilll 

volume ----. 

o none 

r surface 

• raycast 

Figure A. 4: Prototype GUI visualizing ray tracing of 3D cell biology 



Glossary 

API 

See Application Programming Interface 

Application Programming Interface 

The collection of functions, (or methods in object oriented programming 

languages) that expose a software entities external behaviour. Entity 

examples include software programs and services and software libraries. 

Less often, software entities also expose state, and the API definition is 

usually loosened to include this. 

Bandwidth 

In the context of communications between compute entities, bandwidth 

refers to the capacity of the interconnecting channels, usually expressed in 

terms of the number of bits of information that can be transferred per 

second. 

Beowulf Cluster 

A heterogeneous collections of networked off the shelf computers, used as 

an economic alternative t~ a bespoke supercomputer design to provide for 

distributed computing. 

Biomedical imaging 

A broad term describing the development and use of various technologies 

for the acquisition and representation of 20 and 3D images of the internal 

anatomy of living organisms. Well known examples include Magnetic 

Resonance Imaging (MRI), Functional MRI (fMRI), Computed Tomography 

(CT), Positron Emission Tomography (PET, light microscopy and electron 

mtcroscopy. The term is usually implicitly understood to extend to the 

analysis of the captured images for purposes such as health assessment 

and research. 

Cache Aggregation 

As the number of available processors is increased, the total processor 

217 



cache memory also increases. For some problems, this can result in 

increased performance being observed, due to lower cache misses when 

data fits into the increased cache memory, as accessing cache memory is 

usually much faster than main memory. This obscures the true performance 

of the memory system. 

Concurrency 

When assessing whether a program is amenable to parallel processing, a 

first step is to identify those sections of the program that could run at the 

same time. The identified concurrency provides a good indicator of the 

programs suitability in this respect. This is quite distinct from the actual 

mapping of the identified sections to independent processors, which of 

course depends on their availability. Indeed, threaded programs that 

express concurrency may not run any faster if parallel resources are not 

available. In this case an operating system usually employs a time slicing 

mechanism to ensure fair sharing of the limited resources. 

Distributed Computing 

This term is generally used to describe applications that create tasks to be 

executed at different locations and at different times, using different 

resources. Whereas the emphasis for parallel processing is on 

performance, here it is more about robustness using remote resources, with 

priority given to fault tolerance, availability, quality of service and security. 

Parallel processing can also be incorporated into a distributed computing 

system. 

Distributed Processing 

See parallel processing. This term is used interchangeably with parallel 

processing in this thesis. However, it is admitted that the term somewhat 

overlaps with 'distributed computing', so 'parallel processing' is generally the 

preferred term. 

Flynn's Taxonomy 

218 

A simple classification of computer architectures (Flynn 1972), according to 

the number of instruction streams and data streams supported. It defines 

the following four classes: 



Single Instruction Single Data (SIMD). A typical single processor machine. 

Single Instruction Multiple Data (SIMD). Vector processors are exemplars of 

this class. 

Multiple Instruction Single Data (MISD). These primarily include pipeline 

architectures applying multiple instructions to the same data. 

Multiple Instruction Multiple Data (MIMD). Refer to the most flexible task 

parallel systems. 

Generic programming 

Programming where types can be used as parameters. C++ allows types to 

be used as parameters to specialize template classes and functions. 

High Content Screening 

ILP 

The large scale screening of multiple cell images from specific biological 

organisms under study. Important objectives being to investigate cell 

characteristics (e.g. morphology, physiology and motility) and behaviour. 

For example, aggregate characteristics and behaviour can be determined 

across a cell population, and time lapsed behaviour of individual cells can 

be studied. 

See Instruction Level Parallelism 

Instruction Level Parallelism 

ILP encompasses hardware and software techniques to exploit 

opportunities for parallelism found in programs at the instruction level. 
, 

Prominent examples of ILP include the rearrangement of instruction 

execution order to expose parallelism, concurrent speculative execution 

(branch prediction). Also see 'pipelining' and 'superscalar execution'. 

Latency 

219 

The time it takes to initiate communication between compute entities. 

, Whereas bandwidth defines the volume of information that can be 

transferred per second, latency is a measure of the initial delay before a 

recipient starts to receive data once it has been transmitted. 



Message Passing Interface 

MISD 

MIMD 

MPI 

A communication protocol specification applicable to parallel processing 

across systems using a distributed memory architecture, rather than those 

using common shared memory. Compute entities in these system interact 

by passing messages to one another rather than through the update of 

shared memory, and MPI specifies an open and portable interface for this 

purpose. 

See Flynn's Taxonomy. 

See Flynn's Taxonomy. 

See Message Passing Interface 

Parallel Processing 

When multiple processing elements are available, and sections of a 

program can be run concurrently, then those sections can be mapped to the 

available processors and actually physically run at the same time. The 

fundamental advantage being the running of such a program in much 

reduced timescales. Parallel processing is generally about bringing 

resources to bear on a particular task at a particular time (c.f. Distributed 

Computing) 

Pipelining 

A limited form of parallelism induced by the staging of operations in 

programs suited to this arrangement. In a fully utilized mUlti-stage pipeline, 

each stage is performing the same operation, but on different data. For 

example, a ten stage pipeline can process ten data streams concurrently. 

Successful pipelining requires that the stages complete in similar time 

periods, or pipeline 'bottlenecks' can impact performance. Pipelining is also 

an important technique at the instruction level (see ILP). 

Service Oriented Architecture 

220 



A software architecture pattern in which individual components expose their 

functionality as services to other components via some agreed 

communication protocol. A service may use multiple other services to 

provide its function. This architecture is specifically suited to distributed 

computing environments. 

Single Program Multiple Data 

SISD 

SIMD 

SPMD 

A parallel processing model where a single program runs on all participating 

processes. Although these processes collectively cooperate to execute the 

program, at any instance in time each process can run a different section of 

the program and operate on different data. 

See Flynn's Taxonomy. 

See Flynn's Taxonomy. 

See Single Program Multiple Data 

Strong scaling 

A measure of the scalability of a program, in circumstances where the data 

size remains fixed with increasing processor count. This is a common 

situation for problems that run for a long time (cpu bound), and increasing 

the number of processors will spread the cpu load and reduce the total 

running time. Efficiency usually drops off wi,th increased processor counts 

as communication overhead typically increases as the processor count 

increases. 

Super linear speed up 

221 

This describes a performance speed up due to memory aggregation or 

cache aggregation. As more resources are made available to a problem,' 

memory is often increased commensurately (e.g. when adding another 

machine to a cluster). If the increased resources removes the need for data 

to be 'spilt' to disk for some problem, the associated 10 costs can be 



eliminated, resulting in an observed performance boost. The same effect is 

observed if a problem can fit in increased cache memory (see cache 

aggregation). 

Superscalar execution 

A ILP technique applicable to processors having multiple internal execution 

units. When a program's data dependencies allow (Le. parallelism exists), 

multiple instructions can be arranged to execute during the same clock 

cycle. 

Synchronization 

An umbrella term spanning various techniques for controlling access to 

resources (e.g. thread locking mechanisms) or to control the progress of 

processes relative to each other (e.g. through a 'barrier' construct). In 

message passing systems, synchronization is implicitly set up between the 

message sender and message receiver(s). 

Weak scaling 

222 

A measure of the scalability of a program, in circumstances where the 

processor count is increased proportionally with increasing problem size. 

This situation can be encountered in memory bound problems, when it is 

necessary to split a larger problem across a larger number of processors, 

so as to fit into memory caches. 



References 

ADAPTIVE COMPUTING, 2015-last update, Documentation Index [Homepage of 
Adaptive Computing], [Online]. Available: http://docs.adaptivecomputing.com2015]. 

AIDA, K., NATSUME, W. and FUTAKATA, Y., 2003. Distributed computing with 
hierarchical master-worker paradigm for parallel branch and bound algorithm, Cluster 
Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEEIACM International 
Symposium on, May 2003, pp. 156-163. 

ALDINUCCI, M., ANARDU, L., DANELUTTO, M., TORQUATI, M. and 
KILPATRICK, P., 2012. Parallel patterns + Macro Data Flow for multi-core programming, 
Proc. of IntI. Euromicro PDP 2012: Parallel Distributed and network-based Processing, 
feb 2012, IEEE, pp. 27-36. 

ALDINUCCI, M., DANELUTTO, M., KILPATRICK, P. and TORQUATI, M., 2012. 
FastFlow: high-level and efficient streaming on multi-core. In: S. PLLANA and F. 
XHAF A, eds, Programming Multi-core and Many-core Computing Systems. Wiley,. 

ALEXANDER, c., ISHIKAWA, S. and SILVERSTEIN, M., 1977. A Pattern Language: 
Towns, Buildings, Construction (Center for Environmental Structure Series). Later printing 
edn. Oxford University Press. 

AL-GHARAIBEH, 1., JEFFERY, C. and OIKONOMOU, K.N., 2012. An hybrid model 
for very high level threads, Proceedings of the 2012 International Workshop on 
Programming Models and Applications for Multicores and Manycores 2012, ACM, pp. 
55-63. 

AMANATIDES, J. and WOO, A., 1987. A fast voxel traversal algorithm for ray tracing, 
Eurographics '87, aug 1987, pp. 3-10,. 

AMDAHL, G.M., 1967. Validity of the single processor approach to achieving large scale 
computing capabilities, Proceedings of the April 18-20, 1967, springjoint computer 
conference 1967, ACM, pp. 483-485. 

ANGEL, E., 2001a. Interactive Computer Graphics: A Top-Down Approach With 
OPENGL primer package-2nd Edition. Upper Saddle River, NJ, USA: Prentice-Hall, Inc. 

ANGEL, E., 2001b. Open GL Primer. Boston, MA, USA: Addison-Wesley Longman 
Publishing Co., Inc. 

APPEL, A., 1968. Some techniques for shading machine renderings of solids. AFIPS 1968 
Spring Joit2t Computer Conference, ,pp. 37-45. 

ARVIND and IANNUCCI, R.A., 1983. A Critique of Multiprocessing Von Neumann 
. Style, Proceedings of the 10th Annual International Symposium on Computer Architecture 

1983, ACM, pp. 426-436. 

ASANOVIC, K:, BODIK, R., CATANZARO, B.C., GEBIS, J.J., HUSBANDS, P., 
KEUTZER, K., PATTERSON, D.A., PLISHKER, W.L., SHALF, 1., WILLIAMS, S.W. 
and YELICK, K.A., 2006. The Landscape of Parallel Computing Research: A View from 
Berkeley. EECS Department, University of California, Berkeley. 

223 



ASANOVIC, K., BODIK, R., DEMMEL, J., KEAVENY, T., KEUTZER, K., 
KUBIATOWICZ, J.D., LEE, E.A., MORGAN, N., NECULA, G., PATTERSON, D.A., 
SEN, K., WA WRZYNEK, J., WESSEL, D. and YELICK, K.A., 2008. The Parallel 
Computing Laboratory at U C. Berkeley: A Research Agenda Based on the Berkeley View. 
EECS Department, University of California, Berkeley. 

ASTLE, D. and HAWKINS, K., 2004. Beginning OpenGL Game Programming. Premier 
Press. 

BACCI, B., DANELUTTO, M., ORLANDO, S., PELAGATTI, S. and V ANNESCHI, M., 
1995. P3L: A Structured High level programming language and its structured support. 
Concurrency Practice and Experience, 7(3), pp. 225-255. 

BACKUS, J., 1978. Can programming be liberated from the von Neumann style?: a 
functional style and its algebra of programs. Commun.ACM, 21(8), pp. 613-641. 

BAL, H.E., KAASHOEK, M.F. and TANENBAUM, A.S., 1992. Orca: a language for 
parallel programming of distributed systems. Software Engineering, IEEE Transactions 
on, 18(3), pp. 190-205. 

BAL, H.E., STEINER, J.G. and TANENBAUM, A.S., 1989. Programming languages for 
distributed computing systems. ACM Comput.Surv., 21(3), pp. 261-322. 

BEUCHER, S. and MEYER, F., 1993. The Morphological Approach to Segmentation: The 
Watershed Transformation. In: E.R. DOUGHERTY, ed, Mathematical morphology in 
image processing. New York: Marcel Dekker, pp. 433-481. 

BEUCHER, S. and MARCOTEGUI, B., 2009. P algorithm, a dramatic enhancement of 
the waterfall transformation. MINES ParisTech: Centre de Morphologie Mathematique. 

BIENIEK, A., BURKHARDT, H., FREIBURG, A., MARSCHNER, H., SCHREIBER, G., 
I, T.!. and NOLLE, M., 1997. A Parallel Watershed Algorithm, In Proc. 10th 
Scandinavian Conference on Image Analysis (SCIA '971997, pp. 237-244. 

BISHOP, C.M., 2006. Pattern Recognition and Machine Learning (Information Science 
and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc.~ 

BLANCHETTE, J. and SUMMERFIELD, M., 2008. C++ Gui Programming with Qt 4, 
Second Edition. Second edn. Upper Saddle River, NJ, USA: Prentice Hall Press. 

BLUMOFE, R.D., JOERG, C.F., KUSZMAUL, B.C., LEISERSON, C.E., RANDALL, 
K.H. and ZHOU, Y., 1995. Cilk: An Efficient Multithreaded Runtime System, 
Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of 
Parallel Programming (PPoPP),juI1995, pp. 207-216. 

BONACHEA, D., 2002. GASNet Specification, VI.I. Berkeley, CA, USA: University of 
California at Berkeley. 

BROWN, K.J., SUJEETH, A.K., LEE, H.J., ROMPF, T., CHAFI, H., ODERSKY, M. and 
OLUKOTUN, K., 2011. A Heterogeneous Parallel Framework for Domain-Specific 
Languages, Proceedings of the 2011 International Conference on Parallel Architectures 
and Compilation Techniques 2011, IEEE Computer Society, pp. 89-100. 

CAHON, S., MELAB, N. and TALBI, E.-., 2004. ParadisEO: A Framework for the 

224 



Reusable Design of Parallel and Distributed Metaheuristics. Journal of Heuristics, 10(3), 
pp. 357-380. . 

CARPENTER, A.E., JONES, T.R, LAMPRECHT, M.R, CLARKE, C., KANG, I.H., 
FRlMAN, 0., GUERTIN, D.A., CHANG, 1H., LINDQUIST, RA., MOFFAT, 1, 
GOLLAND, P. and SABATINI, D.M., 2006. CellProfiler: image analysis software for 
identifying and quantifying cell phenotypes. Genome biology, 7(10), pp. R100. 

CATANZARO, B. and KEUTZER, K., 2010. Parallel computing with patterns and 
frameworks.XRDS, 17(1),. 

CATANZARO, B., KAMIL, S.A., LEE, Y., ASANOVIC, K., DEMMEL, J., KEUTZER, 
K., SHALF, 1, YELICK, K.A. and FOX, A., 2010. SEJITS: Getting Productivity and 
Performance With Selective Embedded JIT Specialization. EECS Department, University 
of California, Berkeley. 

CHAMBERLAIN, B., CHOI, S., HILDEBRANDT, T., LITVINOV, V. and TITUS, G., , 
The Chapel Parallel Programming Language. Chapel Overview. Available: 
http://chapel.cray.com [Aug/16, 2012]. 

CHAMBERLAIN, B.L., CALLAHAN, D. and ZIMA, H.P., 2007. Parallel 
Programmability and the Chapel Language. Int.J.High Perform.Comput.Appl., 21(3), pp. 
291-312. 

CHAMBERLAIN, B.L., CHOI, S., LEWIS, E.C., LIN, C., SNYDER, L. and 
WEATHERSBY, W.D., 2000. ZPL: A Machine Independent Programming Language for 
Parallel Computers. IEEE Trans.Softw.Eng., 26(3), pp. 197-211. 

CHARLES, P., GROTHOFF, C., SARASWAT, V., DONAWA, C., KIELSTRA, A., 
EBCIOGLU, K., VON PRAUN, C. and SARKAR, V., 2005. XIO: an object-oriented 
approach to non-uniform cluster computing. SIGPLAN Not., 40(10), pp. 519-538. 

CHEN, L.T. and BAIRAGI, D., 2010. Developing Parallel Programs --A Discussion of 
Popular Models. World Headquarters 500 Oracle Parkway Redwood Shores, CA 94065 
U.S.A.: Oracle Corporation. 

COLE, M., 1991. Algorithmic skeletons: structured management of parallel computation. 
Cambridge, MA, USA: MIT Press. 

CRA Y INC., , Chapel Language Specification [Homepage of Cray Inc. Seatle, W A], 
[Online]. Available: http://chapel.cray.com [Aug/16, 2012]. , 

CUTTING, D., 03/19/2012-last update, Welcome to Apache™ HadoopTM!. Available: 
http://hadoop.apache.org/ [06/14, . 

DALHEIMER, M.K., 1999. Programming with Qt. Cambridge: O'Reilly. 

DAREMA, F., 2011. SPMD Computational Model. In: D. PADUA, ed, Encyclopedia of 
. Parallel Computing. Springer US, pp. 1933-1943. .. 

DEAN,l and GHEMAWAT, S., 2008. MapReduce: simplified data processing on large 
clusters. Commun.ACM, 51(1), pp. 107-113. 

DEELMAN, E., SINGH, G., SU, M., BLYTHE, J., GIL, Y., KESSELMAN, C., MEHTA, 

225 



G., VAHI, K., BERRIMAN, G.B., GOOD, l, LAITY, A., JACOB, lC. and KATZ, D.S., 
2005. Pegasus: A framework for mapping complex scientific workflows onto distributed 
systems. Sci.Program., 13(3), pp. 219-237. 

DIAZ, J., MUNOZ-CARO, C. and NINO, A., 2012. A Survey of Parallel Programming 
Models and Tools in the Multi and Many-Core Era. IEEE Transactions on Parallel and 
Distributed Systems, 23, pp. 1369-1386. 

DINAN, l, BALAJI, P., LUSK, E., SADAYAPPAN, P. and THAKUR, R, 2010. Hybrid 
parallel programming with MPI and unified parallel C, Proceedings of the 7th ACM 
international conference on Computingfrontiers 2010, ACM, pp. 177-186. 

DONGARRA, l, GRAYBILL, R, HARROD, W., LUCAS, R, LUSK, E., LUSZCZEK, 
P., MCMAHON, l, SNA VEL Y, A., VETTER, J., YELICK, K., ALAM, S., CAMPBELL, 
R., CARRINGTON, L., CHEN, T., KHALILI, 0., MEREDITH, land TIKIR, M., 2008. 
DARPA's \HPCS\ Program: History, Models, Tools, Languages. In: MARVIN V. 
ZELKOWITZ, ed, Advances in COMPUTERS High Performance Computing. Elsevier, pp. 
1. 

DOXSEY, C., 2012. An introduction to programming in Go. CreateSpace Independent 
Publishing Platform. 

EBBERS, M., DE SOUZA, RG., LIMA, M.C., MCCULLAGH, P. and NOBLES, M., 
2013. Implementing IBM InfoSphere BigInsights on IBM System x. 2nd edn. Vervante. 

FARBER, R, 2011. CUDA Applocation design and development. 1 edn. Morgan 
Kaufmann. 

FIELDING, RT., 2000. Architectural Styles and the Design of Network-based Software 
Architectures, University of California, Irvine. 

FLEISCH, B. and POPEK, G., 1989. Mirage: A Coherent Distributed Shared Memory 
Design. SIGOPS Oper.Syst.Rev., 23(5), pp. 211-223. 

FL YNN, M., J, 1972. Some computer organizations and their effectiveness. IEEE 
Transactions on Computers, C(21), pp. 948-960. 

FOWLER, M., 2006-last update, GUI Architectures - Model View Controller [Homepage 
of Thoughtworks, inc], [Online ]. Available: . 
http://martinfowler .com! eaaDev /uiArchs.html#ModeIViewController20 15]. 

FOWLER, M., 2004-last update, Inversion of Control Containers and the Dependency 
Injection pattern [Homepage of Thoughtworks, inc], [Online]. Available: 
http://www.martinfowler.com!artic1es/injection.htmI20 15]. 

FREY, l, TANNENBAUM, T., LIVNY, M., FOSTER, I. and TUECKE, S., 2002. 
Condor-G: A Computation Management Agent for Multi-Institutional Grids. Cluster 
Computing, 5(3), pp. 237-246. 

GAGNE, C., PARIZEAU, M. and DUBREUIL, M., 2003. Distributed Beagle: An 
Environment for Parallel and Distributed Evolutionary Computations, Proceedings of the 
17 th Annual International Symposium on High Performance Computing Systems and 
Applications (HPCS 2003. 

226 



--------~--------

GAMMA, E., HELM, R, JOHNSON, Rand VLISSIDES, J., 1995. Design patterns: 
elements of reusable object-oriented software. Boston, MA, USA: Addison:Wesley 
Longman Publishing Co., Inc. 

GAREY, M.R and JOHNSON, D.S., 1997. Computers and intractability: A guide to the 
theory of NP-complete ness. San Fransisco: W. H. Freeman and Company. 

GASTER, B., HOWES, L., KAELI, D.R, MISTRY, P. and SCHAA, D., 2013. 
Heterogeneous Computing with OpenCL: Revised OpenCL 1.2 Edition. 2 edn. San 
Francisco, CA, USA: Morgan Kaufmann Publishers Inc. 

GEIST, A., BEGUELIN, A., DONGARRA, J., JIANG, W., MANCHEK, R. and 
SUNDERAM, V., 1994. PVM: Parallel virtual machine: a users' guide and tutorialfor 
networked parallel computing. Cambridge, MA, EUA: MIT Press. 

GONZALEZ-VELEZ, H. and LEYTON, M., 2010. A survey of algorithmic skeleton 
frameworks: high-level structured parallel programming enablers. Software: Practice and 
Experience, 40(12), pp. 1135-1160. 

GOSLING, J., JOY, B., STEELE, G., BRACHA, G. and BUCKLEY, A., The Java 
language specification. Java SE 7 edn. 

GOUX, J., KULKARNI, S., YODER, M. and LINDEROTH, l, 2000. An Enabling 
Framework for Master-Worker Applications on the Computational Grid, Proceedings of 
the 9th IEEE International Symposium on High Performance Distributed Computing 2000, 
IEEE Computer Society, pp. 43. 

GOUX, J., LINDEROTH, J., YODER, M., LINDEROTH, lG.\.J. and YODER, D.M., 
2000. Metacomputing and the Master-Worker Paradigm, Pre print MCSIANL-P792-0200, 
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne 
2000. 

GRAMA, A.Y., GUPTA, A. and KUMAR, V., 1993. Isoefficiency: Measuring the 
Scalability of Parallel Algorithms and Architectures. IEEE Parallel Distrib. Technol., 1(3), 
pp. 12-21. 

GREGOR, D. and LUMSDAINE, A., 2005. The parallel bgl: A generic library for 
distributed graph computations, In Parallel Object-Oriented Scientific Computing 
(POOSC 2005. 

GROPP, W., LUSK, E. and SKJELLUM, A., 1999a. Using MPI (2nd ed): portable 
parallel programming with the message-passing i';terface. Cambridge, MA, USA: MIT .. 
Press. 

GROPP, W., LUSK, E. and THAKUR, R, 1999b. Using MPI-2.: Advanced Features of the 
Message-Passing Interface. Cambridge, MA, USA: MIT Press. 

~ ~ GSCHWIND, M., 2006. Chip multiprocessing and the cell broadband engine, CF '06: 
Proceedings of the 3rd conference on Computingfrontiers 2006, ACM, pp. 1-8. 

GU, M., 1996. Principles of three-dimensional imaging in confocal microscopes. 
Singapore; River Edge, NJ: World Scientific. 

GUSTAFSON, lL., 1988. Reevaluating Amdahl's law. Communications of the ACM, 

227 



31(5), pp. 532-533. 

HAGGLUND, S., HOPPE, A., AUBYN, D., CA V ANNA, T., JORDAN, P. and ZICHA, 
D., 2009. Novel shear flow assay provides evidence for non-linear modulation of cancer 
invasion. Frontiers in bioscience (Landmark edition), 14, pp. 3085-3093. 

HALLER, P. and ODERSKY, M., 2007. Actors that unify threads and events, Proceedings 
of the 9th international conference on Coordination models and languages 2007, Springer
Verlag,pp.171-190. 

HEATHER KREGER IBM and JEFF ESTEF AN NASA/JET PROPULSION 
LABORATORY, 2009-last update, Navigating the SOA Open Standards Landscape 
Around Architecture [Homepage of Object Management Group], [Online]. Available: 
https:llwww2.opengroup.org/ogsys/catalog/w096. 

HEGE, H.C., HOLLERER, T. and STALLING, D., 1993. Volume Rendering 
Mathematical Models and Algorithmic Aspects. TR 93-7. Berlin, Germany: Konrad-Zuse
Zentrum fUr Informationstechnik Berlin (ZIB). 

HENDERSON, R, 1995. Job scheduling under the Portable Batch System. 949, pp. 279-
294. 

HEWITT, C., BISHOP, P. and STEIGER, R, 1973. A universal modular ACTOR 
formalism for artificial intelligence, Proceedings of the 3rd international joint conference 
on Artificial intelligence 1973, Morgan Kaufmann Publishers Inc, pp. 235-245. 

HILL, F.SJ., ed, 2001. Computer Graphics using open GL. 2nd edn. Upper Saddle River, 
NJ 07458: Prentice Hall. 

HOARE, C.A.R, 1985. Communicating sequential processes. Upper Saddle River, NJ, 
USA: Prentice-Hall, Inc. 

HOARE, C.A.R, 1978. Communicating sequential processes. Communications of the 
ACM, 21(8), pp. 666-677. 

HURSON, A.R and KA VI, K.M., 2008. Dataflow Computers: Their History and Future. 
Wiley Encyclopedia of Computer Science and Engineering. 

IBM, R., October 14, 2007, 2007-last update, OpenDx [Homepage ofOpenDx.org & IBM 
Research], [Online]. Available: http://www.opendx.org/index2.php [May, 2008]. 

IBM, R, 2014" Parallel Environment Runtime Edition Version 2 Release 1. MPI 
Programming Guide. 

JIN, G., LI, Z. and CHEN, F., 2001. A theoretical foundation for program transformations 
to reduce cache thrashing due to true data sharing. Theoretical Computer Science, 255( 1-
2), pp. 449. 

JOERG, C.F., 1996. The Cilk Systemfor Parallel Multithreaded Computing, Department 
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology. 

JOHANSEN, M.F., 2009. Domain Specific Languages versus Frameworks, UNIVERSITY 
OF OSLO Department of Informatics. 

228 



JOHNSON, R, HOELLER, J., DONALD, K., SAMPALEANU, c., HARROP, R, 
RISBERG, T., ARENDSEN, A., DAVISON, D., KOPYLENKO, D., POLLACK, M., 
TEMPLIER, T;, VERY AET, E., TUNG, P., HALE, B., COLYER, A., LEWIS, J., LEAU, 
C., FISHER, M., BRANNEN, S., LADDAD, R, POUTSMA, A., BEAMS, C., 
ABEDRABBO, T., CLEMENT, A., SYER, D., GIERKE, 0., STOY ANCHEV, R. and 
WEBB, P., 20 13-last update, Spring Framework Reference Documentation [Homepage of 
Spring Framework], [Online]. Available: 
http://docs.spring.io/autorepo/docs/spring/3.2.x/spring-framework
referencelhtmllindex.html20 15]. 

JOHNSON, RE., 1997. Frameworks = (components + patterns). Commun.ACM, 40(10), 
pp.39-42. 

JOSEY, A., 5th October 2011, 2011-last update, POSIX 1003.1 FAQ [Homepage of 
Austin Group], [Online]. Available: 
http://www.opengroup.org/austin/papers/posix_faq.html [Aug/22, 2012]. 

KARP, A.H. and FLATT, H.P., 1990. Measuring Parallel Processor Performance. 
Commun.ACM, 33(5), pp. 539-543. 

KEKEC, B., 2010. EFFECTS OF PARALLEL PROGRAMMING DESIGN PATTERNS ON 
THE PERFORMANCE OF MULTI-CORE PROCESSOR BASED REAL TIME 
EMBEDDED SYSTEMS, THE GRADUATE SCHOOL OF NATURAL AND APPLIED 
SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY. 

KERNIGHAN, B.W., 1988. The C Programming Language. 2nd edn. Prentice Hall 
Professional Technical Reference. 

KEUTZER, K. and MATTSON, T." A Pattern Language for Parallel Programming 
ver2.0. Available: http://parlab.eecs. berkeley .edulwiki/patterns/patterns. 

KJOLSTAD, F.B. and SNIR, M., 2010. Ghost,Cell Pattern, Proceedings o/the 2010 
Workshop on Parallel Programming Patterns 2010, ACM, pp. 4:1-4:9. 

KLETTE, R, 2014. Concise Computer Vision An Introduction into Theory and 
Algorithms. London: Springer London. 

KNELL, R.J., 2013. Introductory R: A Beginner's Guide to Data Visualisation and 
Analysis using R. 

KUHN, R, ANTONSSON, B., MALA WSKI, K., ~ORDWALL, P. and VARGA, E., , 
AKKA. Available: http://akka.io [Aug 30, 2014]. 

KUMAR, V., GRAMA, A., GUPTA, A. and KARPIS, G., Introduction to Parallel 
Computing. 2 .edn. Harlow: Pearson Addison Wesley .. 

LARA, R, MAURI, F .A., TAYLOR, H., DERUA, R, SHIA, A., GRAY. C., NICOLS, A., 
SHINER, RJ., SCHOFIELD, E., BATES, P.A., WAELKENS, E., DALLMAN, M., 
LAMB, 1., ZICHA, D., DOWNWARD, 1., SECKL, M.J. and PARDO, O.E., 2011. An 
siRNA screen identifies RSKI asa key modulator oflung cancer metastasis. Oncogene, 
30(32), pp. 3513~3521. 

LAUER, H.C. and NEEDHAM, RM., 1979. On the duality of operating system structures. 
SIGOPS Oper. Syst. Rev., 13(2), pp. 3-19. 

229 



LEA, D., 2000a. A Java Fork/Join Framework, Proceedings of the ACM 2000 Conference 
on Java Grande 2000a, ACM, pp. 36-43. 

LEA, D., 2000b. Concurrent programming in Java: design principles and patterns. 2nd 
edn. Reading, Mass. ; Harlow: Addison-Wesley. 

LEE, B. and HURSON, A.R., 1993. Issues in dataflow computing. ADV.IN COMPUT, 37, 
pp. 285-333. 

LEE, E.A., 2006. The Problem with Threads. Computer, 39(5), pp. 33-42. 

LEOPOLD, C., 2001. Parallel and Distributed Computing: A Survey of Models, 
Paradigms and Approaches. New York, NY, USA: John Wiley \& Sons, Inc. 

LEVOY, M., 1990. Efficient ray tracing of volume data. ACMTrans.Graph., 9(3), pp. 
245-261. 

LI, K. and HUDAK, P., 1989a. Memory Coherence in Shared Virtual Memory Systems. 
ACMTrans.Comput.Syst., 7(4), pp. 321-359. 

LI, K. and HUDAK, P., 1989b. Memory Coherence in Shared Virtual Memory Systems. 
ACM Trans.Comput.Syst., 7(4), pp. 321-359. 

LIANG, T.-., LI, H.-. and CHIU, J.-., 2012. Enabling mixed OpenMP/MPI Programming 
on hybrid CPU/GPU computing architecture. ,pp. 2369-2377. 

LIOTTA, L.A., 1992. Cancer cell invasion and metastasis. Sci Am, 266, pp. 54-59, 62-63. 

LOO, L.H.W. and L. F. ALTSCHULER, S. l, 2007. Image-based multivariate profiling of 
drug responses from single cells. NATURE METHODS, VOL 4(NUMBER 5), pp. 445-
453. 

LORENSEN, W.E. and CLINE, H.E., 1987. Marching cubes: A high resolution 3D surface 
construction algorithm. SIGGRAPH Comput.Graph., 21(4), pp. 163-169. 

MAASSEN, J., 2001. Efficient Java RMI for Parallel Programming. {fCM 
Trans.Program.Lang.Syst., 23(6), pp. 747-775. 

MACDONALD, S., 2002. From Patterns to Frameworks to Parallel Programs, University 
of Alberta. 

MACDONALD, S., ANVIK, J., BROMLING, S., SCHAEFFER, l, SZAFRON, D. and 
TAN, K., 2002. From patterns to frameworks to parallel programs. Parallel Comput., 
28(12), pp. 1663-l683. 

MALEWICZ, G., AU STERN, M.H., BIK, A.lC., DEHNERT, lC., HORN, I., LEISER, 
N. and CZAJKOWSKI, G., 2010. Pregel: A System for Large-scale Graph Processing, 
Proceedings of the 2010 ACM SIGMOD International Conference on Management of 
Data 2010, ACM, pp. 135-146. 

MAO, Y., TOURNIER, A.L., HOPPE, A., KESTER, L., THOMPSON, B.l and TAPON, 
N., 2013. Differential proliferation rates generate patterns of mechanical tension that orient 
tissue growth. The EMBO journal, 32(21), pp. 2790-2803. 

230 



-------~~------~ 

MATTSON, T., SANDERS, B. and MASSINGILL, B., 2004. Patterns for parallel 
programming. First edn. Addison-Wesley Professional. . 

MATTSSON, M. and BOSCH, J., 1997. Framework composition: problems, causes and 
solutions, Technology of Object-Oriented Languages and Systems, 1997. TOOLS 23. 
Proceedings 1997, pp. 203-214. 

MAY, D., 1983. OCCAM. SIGPLAN Not., 18(4), pp. 69-79. 

MCKEE, S.A., 2004. Reflections on the memory wall, CF '04: Proceedings o/the 1st 
conference on Computingfrontiers 2004, ACM, pp. 162. 

MEYER, T. and HART, 1.R., 1998. Mechanisms of tumour metastasis. Eur J Cancer, 34, 
pp.214-221. 

MILNER, R., 1982. A Calculus of Communicating Systems. Secaucus, NJ, USA: Springer
Verlag New York, Inc. 

MILNER, R., 1999. Communicating and Mobile Systems: The I&Pgr;-calculus. New 
York, NY, USA: Cambridge University Press. 

MILNER, R., 1995. Communication and concurrency. Hertfordshire, UK, UK: Prentice 
Hall International (UK) Ltd. 

MOGA, A.N. and GABBOUJ, M., 1998. Parallel Marker-based Image Segmentation with 
Watershed Transformation. J.Parallel Distrib.Comput., 51(1), pp. 27-45. 

MOLNAR, S., COX, M., ELLSWORTH, D. and FUCHS, H., 2008. A sorting 
classification of parallel rendering, SIGGRAPH Asia '08: ACM SIGGRAPH ASIA 2008 
courses 2008, ACM, pp. 1-11. 

MORRIS, T., 2004. Computer Vision and Image Processing. Palgrave Macmillan Limited. 

N. MOGA, A., CRAMARIUC, B. and GABBOUJ, M., 1998. Parallel watershed 
transformation algorithms for image segmentation. Parallel Computing, 24(14), pp. 1981-
2001. 

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH, 2015" Parallel Computing 
Concepts. 

NEBEL, lC., 1998. A New Parallel Algorithm Provided by a Computation Time Model. 
Eurographics Workshop on Parallel Graphics and Visualisation, Eurographics Workshop 
on Parallel Graphics and Visualisation, 24-25 September 1998 1998. .. 

NEUMANN, lV., 2000. The Computer and the Brain. 2nd edn. New Haven, CT, USA: 
Yale University Press. 

NICOLESCU, C. and JONKER, P., 2002. A data and task parallel image processing 
environment. Parallel Comput., 28(7-8), pp. 945-965. 

NIKOLAIDIS, N. and PITAS, 1., 2001. 3-D Image Processing Algorithms. New York, 
NY, USA: John Wiley & Sons, Inc. 

NISHTALA, R., ZHENG, Y., HARGROVE, P.H. and YELICK, K.A., 2011. Tuning 

231 



collective communication for Partitioned Global Address Space programming models. 
Parallel Computing, 37(9), pp. 576-591. 

NITZBERG, B. and LO, V., 1991. Distributed Shared Memory: A Survey ofIssues and 
Algorithms. Computer, 24(8), pp. 52-60. 

ODERSKY, M., SPOON, L. and VENNERS, B., 2010. Programming in Scala. 2 edn. 
Artima. 

OPEN GROUP (READING, E., 2013. Base Specifications, Issue 7. The Open Group. 

OPENGL, 2008, 2008-last update, GLUT - The OpenGL Utility Toolkit [Homepage of 
opengl.org], [Online ]. Available: http://www.opengl.org/resources/libraries/glutl [01/15, 
2008]. 

OPENGL ARCHITECTURE REVIEW BOARD and SHREINER, D., 2004. OpenGL 
Reference Manual: The Official Reference Document to OpenGL, Version 1.4.4 edn. 
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. 

OPENMP, A.R.B., 2011. OpenMP Application Program Interface. Version 3.1. 

PEREZ, lM.M. and PASCAU, J., 2013. Image Processing with ImageJ 1 edn. 
Birmingham, UK: Packt Publishing. 

PETERKA, T., YU, H., ROSS, R. and MA, K., 2008. Parallel Volume Rendering on the 
IBM Blue Gene/P. ,pp. 73-80. 

QUINN, M.l, 2003. Parallel Programming in C with MPI and OpenMP. McGraw-Hill 
Education Group. 

RAZDAN, A., PATEL, K., FARIN, G., E. and CAPCO, D.G., 2001. Volume 
visualization of multicolor laser confocal microscope data. Computers and Graphics, 
25(3), pp. 371-382. 

REINDERS, l, 2007. Intel threading building blocks. First edn. Sebastopol, CA, USA: 
O'Reilly \& Associates, Inc. 

SAMETINGER, l, 1997. Software Engineering with Reusable Components. New York, 
NY, USA: Springer-Verlag New York, Inc. 

SAMUEL H. FULLER, LYNETTE 1. MILLETT, E., COMMITTEE ON SUSTAINING 
GROWTH IN COMPUTING PERFORMANCE and NATIONAL RESEARCH 
COUNCIL, 2011. The Future of Computing Performance: Game Over or Next Level? The 
National Academies Press. 

SCHLING, B., 2011. The Boost C++ Libraries. XML Press. 

SCHROEDER, W., MARTIN, K., AVILA, L., BARRE, S., BLUE, R., GEVECI, B., 
HENDERSON, A., HOFFMAN, W., KING, B. and LAW, C., 2004a. The VTK User's 
Guide, Version 4.4. {Kitware Inc.}. 

SCHROEDER, W., MARTIN, K. and LORENSEN, B., 2004b. The Visualization Toolkit, 
Third Edition. An Object Oriented Approach to 3D Graphics 
. Third Edition edn. USA: {Kitware Inc.}. 

232 



SEINSTRA, F.J., KOELMA, D. and GEUSEBROEK, J.M., 2002. A software architecture 
for user transparent parallel image processing. Parallel Comput., 28(7-8), pp. 967-993. 

SERRA, J.P., 1982. Image analysis and mathematical morphology. Academic Press. 

SHI, Y., 1996. Reevaluating Amdahl's Law and Gustafson's Law. Temple University. 

SIEWERT, S., 21112/2009, , Using Intel® Streaming SIMD Extensions and Intel® 
Integrated Performance Primitives to Accelerate Algorithms. 

SINGH, A, SCHAEFFER, J. and GREEN, M., 1991. A Template-Based Approach to the 
Generation of Distributed Applications Using a Network of Workstations. IEEE 
Trans. Parallel Distrib.Sysi, 2(1), pp. 52-67. 

SIU, S., SIMONE, M.D., GOSWAMI, D. and SINGH, A., 1996. Design Patterns for 
Parallel Programming, HAMID R. ARABNIA, ed. In: Proceedings of the International 
Conference on Parallel and Distributed Processing Techniques and Applications, PDPTA 
1996, August 9-11, 1996, Sunnyvale, California, USA 1996, CSREA Press, pp. 230-240. 

SOBEL, I.E., 1970. Camera Models and Machine Perception, Stanford University. 

SONKA, M., HLAVAC, V. and BOYLE, R., 2008. Image Processing, Analysis, and 
Machine Vision. Third Edition edn. United States of America: Thomson-Engineering. 

STROUSTRUP, B., 2000. The C++ Programming Language. Boston, MA, USA: 
Addison-Wesley Longman Publishing Co., Inc. 

SU, B., CATANZARO, B., LAI, C.(., GONINA, E., CHONG, J., KEUTZER, K., 
MURPHY, M., MOSKEWICZ, M., ANDERSON, M. and SUNDARAM, N., 2009-last 
update, The Parallel Computing Laboratory, Berkeley, University of California [Homepage 
of The regents ofthe University of California], [Online]. Available: 
http://parlab.eecs. berkeley .edulresearchlpallas [20104, . 

TAGLIASACCHI, A, BEST, MJ., DICKIE, R., FEDOROVA, A, COUTURE-BElL, A 
and BROWNSWORD, A, Cascade: A Parallel Programming Frameworkfor Video 
Game Engines. 

TANENBAUM, AS. and STEEN, M.V., 2006. Distributed Systems: Principles and 
Paradigms. 2nd edn. Upper Saddle River, NJ, USA: Prentice-Hall, Inc. 

TERBOVEN, C., SCHMIDL, D., CRAMER, T. and MEl', D., 2012. Task-Parallel 
Programming on NUMA Architectures. 7484, pp. 638-649. 

THAIN, D., TANNENBAUM, T. and LIVNY, M., 2005. Distributed Computing in 
Practice: The Condor Experience: Research Articles. Concurr.Comput.: Pract.Exper., 
17(2-4), pp, 323-356 . 

. UK, c.R., 23/04/2013,26/07/2012" Lifetime Risk of Cancer [Homepage ·ofCancer 
Research UK], [Online]. Available: http://www.cancerresearchuk.org/cancer-. 
info/cancerstats/incidence/risklstatistics-on-the-risk-of-developing-cancer#Lifetime. 

VALIANT, L.G., 1990. A bridging model for parallel computation. Commun.ACM, 33(8), 
pp. 103-111. . 

233 



VINCENT, L. and SOILLE, P., 1991. Watersheds in digital spaces: an efficient algorithm 
based on immersion simulations. Pattern Analysis and Machine Intelligence, IEEE 
Transactions on, 13(6), pp. 583-598. 

WALL, D. W., 1991. Limits of instruction-level parallelism, ASP LOS-IV: Proceedings of 
the fourth international conference on Architectural support for programming languages 
and operating systems 1991, ACM, pp. 176-188. 

WEILAND, M., 2007,. Chapel, Fortress and Xl 0 : novellanguagesfor HPC. UoE HPCx 
Ltd. 

WELCH, P.H., 2012, 2012-last update, OccamPiReference [Homepage of Computing 
Laboratory, University of Kent at Canterbury, CT2 7NF], [Online]. Available: 
https:llwww.cs.kent.ac. ukiresearch/groups/plas/wiki/OccamPiReference [Aug/30, 2014]. 

WIKIPEDIA, 2015, 2015-last update, Sobel Operator [Homepage ofWikipedia], [Online]. 
Available: https:llen.wikipedia.org/wiki/Sobel_operator [May, 2014]. 

YELICK, K., HILFINGER, P., GRAHAM, S., BONACHEA, D., SU, J., KAMIL, A., 
DATTA, K., COLELLA, P. and WEN, T., 2007. Parallel Languages and Compilers: 
Perspective From the Titanium Experience. Int.J.High Perform.Comput.Appl., 21(3), pp. 
266-290. 

ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M.J., SHENKER, S. and STOICA, I., 
2010. Spark: Cluster Computing with Working Sets, Proceedings of the 2Nd USENIX 
Conference on Hot Topics in Cloud Computing 2010, USENIX Association, pp. 10-10. 

ZAKI, 0., LUSK, E., GROPP, W. and SWIDER, D., 1999. Toward Scalable Performance 
Visualization with Jumpshot. High Performance Computing Applications, 13(2), pp. 277-
288. 

ZULLIGHOVEN, H., 2004. Object-Oriented Construction Handbook,' Developing 
Application-Oriented Software with the Tools & Materials Approach. Morgan Kaufmann. 

234 



IMAGING SERVICES NORTH 
Boston Spa, Wetherby 
West Yorkshire, lS23 7BQ 
www.bl.uk 

ORIGINAL COpy TIGHTLY. 

BOUND 


