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ABSTRACT: Following an array of optimization experiments,
two series of electrospun polyvinylpyrrolidone (PVP) fibers
were prepared. One set of fibers contained various loadings of
indomethacin, known to form stable glasses, and the other
griseofulvin (a poor glass former). Drug loadings of up to 33%
w/w were achieved. Electron microscopy data showed the
fibers largely to comprise smooth and uniform cylinders, with
evidence for solvent droplets in some samples. In all cases, the
drug was found to exist in the amorphous physical state in the
fibers on the basis of X-ray diffraction and differential scanning
calorimetry (DSC) measurements. Modulated temperature
DSC showed that the relationship between a formulation’s
glass transition temperature (Tg) and the drug loading follows
the Gordon−Taylor equation, but not the Fox equation. The results of Gordon−Taylor analysis indicated that the drug/polymer
interactions were stronger with indomethacin. The interactions between drug and polymer were explored in more detail using
molecular modeling simulations and again found to be stronger with indomethacin; the presence of significant intermolecular
forces was further confirmed using IR spectroscopy. The amorphous form of both drugs was found to be stable after storage of
the fibers for 8 months in a desiccator (relative humidity <25%). Finally, the functional performance of the fibers was studied; in
all cases, the drug-loaded fibers released their drug cargo very rapidly, offering accelerated dissolution over the pure drug.
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■ INTRODUCTION

The amorphous form is of major interest to pharmaceutical
scientists because of the enhancement in dissolution rate and
bioavailability it can offer over crystalline materials. However,
amorphous materials are always metastable, and will over time
relax to a crystalline state. Understanding and quantifying the
rate and extent of this transformation is key to the development
of robust medicines which perform consistently.1

The electrospinning approach has been widely applied to the
production of amorphous formulations of active pharmaceutical
ingredients (APIs). The technique uses electrical energy to
evaporate solvent from a solution to generate a solid product. It
is attractive in its simplicity and low cost. In a typical
experimental setup, a syringe is filled with a solution of a
polymer and drug in a volatile solvent. A metal dispensing tip
(spinneret) is attached to the syringe, and a pump used to expel
liquid at a controlled rate. A high (kV) voltage is applied
between the spinneret and a metal collector (commonly a flat
plate coated in Al foil). The electrical energy causes the
droplets ejected from the syringe to elongate to form a Taylor
cone, which subsequently emits straight jets of fluid. This
ultimately leads to evaporation of the solvent, and the
formation of a solid product in the form of one-dimensional
polymer fibers with a drug embedded. Importantly, this process

is usually very rapid, occurring on the order of 10−2 s in many
cases.2,3 This leads to the physical state of the components in
the liquid phase being propagated into the solid state: as a
result, solid solutions of a drug in polymer are often produced
because the drug molecules have no time to undergo
crystallization.
There are myriad examples of electropun polymer fibers

being used to render drugs amorphous: for instance,
Illangakoon et al. have recently created amorphous formula-
tions of mebeverine hydrochloride in polyvinylpyrrolidone
(PVP) and Eudragit-based fibers.4 Verreck in an early study in
2003 demonstrated that the poorly soluble itraconozole could
be rendered amorphous in electrospun hydroxypropyl methyl-
cellulose fibers,5 and Yu et al. have demonstrated analogous
results using ibuprofen and PVP.6 Electrospun materials have
been widely explored in pharmaceutical applications, for
instance, to deliver antibiotics.7,8 The interested reader is
directed to a recent review for a more detailed survey of such
systems.9 Although much work has been undertaken to look at
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whether the electrospinning route may be used to enhance the
solubility of poorly soluble APIs, and the role of drug solubility
in the polymer carrier has also been probed,10 as far as the
authors are aware there are no studies where the influence of
the API’s glass-forming ability is investigated. Therefore, in this
paper, the electrospinning of polymer fibers containing two
drugs with very different glass-forming properties was explored.
The drugs selected for study were indomethacin (Tg/Tm =
0.73), which forms very stable glasses,11 and griseofulvin (Tg/
Tm = 0.74), the amorphous form of which relaxes to become
crystalline very rapidly.12 The chemical structure of these APIs
is given in Figure 1.

Griseofulvin is an antifungal agent commonly used to treat
skin conditions, whereas indomethacin is a nonsteroidal anti-
inflammatory drug indicated for the relief of pain and stiffness.
Both are given as oral formulations, and for both APIs,
amorphous formulations could be useful for the rapid treatment
of symptoms. In addition, both have rather bitter tastes, and
their incorporation into a system where taste masking can be
achieved is thus a useful aim. Preparing electrospun fibers of the
APIs offers the potential to create oral fast-dissolving films that
may be administered for instance in a sublingual or buccal
manner.6,13,14

A comprehensive search of the literature revealed no
examples of electrospun griseofulvin systems. In contrast, a
number of authors have previously produced electrospun
indomethacin (IMC) formulations. For instance, Taepaiboon
et al. prepared fibers with IMC embedded in poly(vinyl
alcohol) (PVA), with up to 16.7% w/w drug loaded in the
polymer.15 These authors observed some “bead-on-string”
morphology in their fibers, in which the drug was found to be
in a crystalline state. The fibers were not found to enhance the
dissolution rate of IMC compared to equivalent IMC/PVA
casting films. In other work, Pornsopone and co-workers16

spun IMC-containing fibers using some methacrylate polymers
but did not comment on the physical form of the drug in the
formulation. Tungprapa et al. generated IMC-loaded cellulose
acetate fibers (drug loading: 16.7% w/w) and observed that the
fibers released IMC more rapidly than the analogous casting
films.17 Trout’s team prepared IMC-containing polyvinylpyrro-
lidone (PVP) fibers, in which the drug was observed to be
amorphous and to remain without crystalline character after 6
months’ storage at 40 °C.18 These authors also found it was
possible to prepare PVP/IMC fibers with very high drug
loadings (up to 50% w/w), with the drug being amorphous
even at the highest loadings.19 No functional performance
studies were undertaken, however, and so it is not known how
these fibers might affect the drug release rate and extent. In
other work, Rasekh and co-workers have very recently
deposited electrospun PVP/IMC fibers onto plasters for

wound healing applications.20 Multicomponent systems con-
taining IMC, a polymer, and Fe3O4 nanoparticles have also
recently been prepared and explored with regard to achieving
controlled and targeted drug release under the influence of an
external magnetic field.21

In this work, we selected the FDA-approved generally
regarded as safe (GRAS) polymer polyvinylpyrrolidone (PVP)
and explored the influence of an API’s glass forming ability on
the PVP-API fibers produced by electrospinning. A side-by-side
study was undertaken in which equivalent indomethacin and
griseofulvin fibers were prepared. The influence of a range of
spinning parameters on fiber formation was explored, and the
optimized set of fibers fully characterized in terms of their
physicochemical properties, storage stability, and functional
performance.

■ EXPERIMENTAL SECTION
Materials. Indomethacin (IMC) was supplied by the

Wuhan Yuancheng Gongchuan Technology Co. (Hubei,
China) and griseofulvin (GSF) by Molekula Ltd. (Gillingham,
U.K.). Polyvinylpyrrolidone K60 (PVP; molecular weight ca.
360 000), was purchased from Sigma-Aldrich (Gillingham,
U.K.). N,N-dimethylacetamide (DMAc) was procured from
Sigma-Aldrich, and acetone (HPLC Chromasolv grade) and
methanol (AR grade) were sourced from Fisher Scientific Ltd.
(Loughborough, U.K.). Phosphate buffered saline (PBS, pH =
7.4) powder was obtained from Sigma-Aldrich.

Electrospinning. Solutions for electrospinning (ES) were
prepared by dissolving the required amounts of drug and
polymer in ethanol/DMAc (2:1 v/v), or acetone/DMAc (2:1
v/v). The API was added to 10 mL of solvent in a clear glass
vial and stirred at room temperature (RT) for ca. 1 h until
complete dissolution was achieved. Thereafter, 1000 mg of PVP
was slowly added and the codissolving solutions stirred
overnight at RT. During stirring, glass vials were sealed with
a rubber cap to avoid solvent evaporation. Full details of the
solutions prepared are given in later sections of this manuscript.
For ES, the API/polymer solution was loaded into a 5 mL

plastic syringe to which a stainless steel needle (spinneret) was
attached. A high voltage DC power supply (HCP 35−35 000,
FuG Elektronik, Rosenheim, Germany) was employed to
provide a high voltage between the spinneret (connected to the
positive electrode) and a metal collector plate (connected to
the grounded electrode). The collector was wrapped in
aluminum foil and set at a constant distance from the tip of
the spinneret. Experiments were performed with two different
spinnerets (internal diameter [I.D.] 0.84 or 0.33 mm). For all
experiments, the applied voltage was 12 kV, and the spinneret-
to-collector distance 15 cm. All processes were conducted at
ambient temperature and pressure. Temperature and humidity
were recorded before and after manufacturing: the temperature
ranged between 19 and 22 °C and the relative humidity from
20 to 35%. After manufacturing, samples were wrapped in
aluminum foil and stored in a desiccator for at least 12 h prior
to analysis. Silica gel was used as desiccant, maintaining the
relative humidity inside the desiccator below 25%.

Characterization. Scanning Electron Microscopy. Scan-
ning electron microscopy (SEM) was used to investigate the
morphology of the ES formulations. Samples were cut from the
fiber mats and adhered onto aluminum SEM stubs (TAAB
Laboratories, Reading, U.K.) using carbon-coated double-sided
tape. In order to render them conductive, they were then
sputter coated with gold. Analysis was conducted using a

Figure 1. Chemical structures of (a) indomethacin and (b)
griseofulvin.
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Quanta 200F instrument (FEI, Hillsborough, OR, U.S.A.). The
average fiber diameter was determined by taking more than 50
measurements in SEM images, using the ImageJ software
(National Institutes of Health, Bethesda, MD, U.S.A.).
Differential Scanning Calorimetry. Differential scanning

calorimetry (DSC) experiments were conducted using a Q2000
DSC (TA Instruments, New Castle, DE, U.S.A.). Samples were
heated from 20 to 240 °C at 10 °C min−1 under a 50 mL min−1

flow of N2 gas. Modulated temperature DSC analysis was
conducted on the same instrument from 100 to 190 °C or 90 to
240 °C using a temperature ramp of 3 °C min−1 and a
modulation period of 60 s. Data analysis was carried out using
the TA Universal Analysis software. Amorphous samples of the
pure drugs were prepared for comparison purposes by loading a
DSC pan with the drug and heating it above the API’s melting
point (at 225 °C [GSF] and 165 °C [IMC]) for 3 min, and
then cooling for 5 min on brass.
Thermogravimetric Analysis. Thermogravimetric analysis

(TGA) was undertaken using either a TGA 2950 analyzer or a
Discovery TGA instrument (both manufactured by TA
Instruments). Approximately 1−3 mg of sample was placed
in a Tzero aluminum pan and sealed with a pin-holed lid. After
5 min stabilization at 30 °C, the sample was heated from 30 to
190 or 240 °C at a ramp rate of 10 °C min−1 under a flow of N2
(50 mL min−1). Data analysis was conducted using the TA
Universal Analysis software.
X-ray Diffraction. X-ray diffraction (XRD) patterns were

acquired using a Miniflex 600 diffractometer (Rigaku, Tokyo,
Japan). The instrument produces Cu Kα radiation (1.5418 Å)
at 40 kV and 15 mA, and patterns were recorded in the 2θ
range 4 to 36° at a speed of 5° min−1.
FT-IR Spectroscopy. Infrared spectroscopy was carried out

using a Spectrum 100 FTIR spectrometer (PerkinElmer,
Waltham, MA, U.S.A.) over the range 650−4000 cm−1 with
resolution 1 cm−1.
Molecular Modeling. Molecular mechanics in vacuo

calculations were performed using HyperChem version 8.0.10
(a molecular modeling software package). The structures of
each of the compounds were initially sketched using ChemBio
Draw Ultra 12.0 or Accelrys Draw 4.1. A decameric PVP
species was selected as representative of the polymer. Individual
structures were then imported separately into HyperChem; for
each, all hydrogen atoms were explicitly included and a 3-D trial
structure based on preset bond angles and lengths was
generated. The structures then underwent an initial geometric
minimization with the MM+ force field followed by a full
energetic minimization using the AMBER 3 (Assisted Model
Building and Energy Refinement) force field. For the former,
the nonbonded electrostatic interactions were calculated using
bond dipole interactions whereas for the latter, the distance-
dependent dielectric constant was assigned a scale factor of 1,
and the 1−4 scale factors (representing the nonbonded
interactions between atoms separated by three atoms) were:
electrostatic = 0.5 and van der Waals = 0.5. Both force fields
were computed using a Polak-Ribiere conjugate gradient
method terminating when the root-mean-square gradient
reached 0.001 kcal/(Å mol), and no cut-offs were applied.
The energetic contributions to the total steric energy of the
structures by bond stretching/compressing, bond angle
deformations, torsional strain, van der Waals repulsions,
hydrogen bonding, and electrostatic repulsions were all
considered. Appropriate combinations of the energetically
minimized structures were then merged to create drug−

polymer complexes. These complexes then underwent the same
minimization procedures to determine whether they were
energetically stabilized in relation to the individual components.
This procedure is similar to that previously reported by Dott et
al.22

Molecular attributes (specifically the surface area, volume
and mass) of the energy-minimized structures were determined
using the Quantitative Structure Activity Relationship (QSAR)
option in HyperChem, where the surface area was determined
using a grid method.

Drug Release. Dissolution tests were performed in 250 mL
of phosphate buffered saline (PBS) (pH = 7.4) at 37 °C under
continuous stirring on a magnetic stirrer. A total of 10 mg of
fibers were added to the PBS solution, and at predefined time
points, aliquots of 200 μL were withdrawn and the amount of
drug determined with UV spectroscopy. For comparative
purposes, the dissolution of the pure drug was also explored,
using 2.3 mg of IMC or GSF (comparable with the
intermediate formulations). The cumulative amount of drug
released was calculated using a predefined calibration curve.
The time lapse until complete disintegration of the fiber mat
(assessed by visual inspection) was also recorded. Experiments
were undertaken in triplicate. In all experiments, the maximum
concentration of drug released was below the API solubility
limit in PBS (IMC, 223.0 μg mL−1;23 GSF, 14.2 μg mL−1).24

■ RESULTS
Ethanol/DMAc Solvent System. Ethanol was initially

explored as a solvent because a range of studies have used this
to deliver successful ES processes.6 However, the insolubility of
GSF in ethanol meant that, although IMC materials could be
prepared, no GSF fibers could be generated. The solvent
system was thus changed to a 2:1 v/v mixture of ethanol and
DMAc; this permitted GSF fibers to be prepared, but only with
relatively low loadings of the drug. Details of the fibers
prepared are given in Table 1 and SEM images in Figure 2.
Attempts to elevate the GSF concentration in the fibers above
9.1% w/w were unsuccessful.

In all cases, the fibers can be seen to have smooth, cylindrical
morphologies. There is no evidence of “bead on string”
morphology, nor can any particles be seen in the images.
Possibly counterintuitively, the fibers from the 0.33 mm I.D.
spinneret have slightly larger diameters than those from the
0.84 mm spinneret, although given the large standard
deviations the sizes can be said to be essentially invariant
with spinneret diameter. The GSF fibers are somewhat wider
than the IMC materials, and use of the larger spinneret gives a
more uniform size distribution. XRD and DSC analyses of the

Table 1. API-Loaded Fibers Prepared in 2:1 v/v Ethanol/
DMAca

drug ID
spinneret I.D.

(mm)
fiber diameter

(nm)
diameter uniformity

(% RSD)

IMC I1 0.84 221 ± 44 19.9
I2 0.33 234 ± 88 37.6

GSF G1 0.84 322 ± 77 23.9
G2 0.33 366 ± 253 69.1

aSamples were prepared from 10 mL of a 1% w/v API solution to
which 1000 mg of PVP was added, giving fibers which were 9.1% w/w
API. The flow rate was 1 mL h−1.

Molecular Pharmaceutics Article

dx.doi.org/10.1021/mp500391y | Mol. Pharmaceutics 2014, 11, 4327−43384329



fibers showed the drug to be in an amorphous physical state
(see Supporting Information, Figures S1 and S2).
Acetone/DMAc System. Process Optimization. To

prepare a useful formulation, drug loadings higher than 9%
are often required: for IMC and GSF the standard doses are ca.
50−150 and 500−1000 mg per day depending on the
indication and route of administration. Hence, a different
solvent system from ethanol/DMAc was required. Acetone was
selected to replace ethanol because of the higher solubility of
GSF in the former. Because more uniform fiber diameters were
seen with the 0.84 mm I.D. spinneret, this was employed for
ES, with a flow rate of 1 mL h−1 as used in previous
experiments. A larger spinneret is likely to be particularly
important when working with acetone, which evaporates very
quickly and hence can cause the solidification of material on the
spinneret, resulting in clogging. A larger spinneret should
ameliorate this effect. Details of the formulations prepared are
given in Table 2, and SEM images are in Figure 3.
As before, the fibers have uniform cylindrical morphologies,

and there is no evidence for beading or the formation of API
particles. There is no clear relationship between the drug
loading and the fiber size, although it is clear that as for the
ethanol/DMAc system the GSF fibers are less uniform in size

than the IMC materials. Although this solvent system permitted
a higher GSF loading to be realized, the process was observed
to be rather capricious with frequent needle clogging occurring,
particularly with higher GSF concentrations. The flow rate was
thus increased to 2 mL h−1 in the preparation of the final set of
optimized fibers. Details of these can be found in Table 3. SEM
images are shown in Figure 4.
Fibers could be prepared with higher concentrations of IMC,

but attempts to make 37.5% w/w GSF fibers were unsuccessful,

Figure 2. SEM images of (a) I1, (b) I2, (c) G1, and (d) G2.

Table 2. First Set of Fibers Prepared in 2:1 v/v Acetone/
DMAca

drug I.D.
API contentb

(% w/w)
fiber diameter

(nm)
diameter uniformity

(% RSD)

IMC I3 9.1 389 ± 67 17.2
I4 23.1 472 ± 85 18.0

GSF G3 9.1 466 ± 151 32.4
G4 23.1 268 ± 93 34.7

aSamples were prepared from 10 mL of a 1 or 3% w/v API solution to
which 1000 mg of PVP was added. A spinneret with 0.84 mm I.D. was
used for ES, with a 1 mL h−1 flow rate. bThe drug content in the fibers
calculated from the relative masses of API and polymer.

Molecular Pharmaceutics Article

dx.doi.org/10.1021/mp500391y | Mol. Pharmaceutics 2014, 11, 4327−43384330



as the drug proved not to be sufficiently soluble under these
conditions.
As for the previous sets of fibers, those depicted in Figure 4

have smooth cylindrical surfaces. It is clear from the images that

there appear to be two distinct populations of fibers, with some
very fine fibers being observed. This effect is reflected in the
large % RSDs seen for the size distributions. In some cases,
morphological abnormalities in the form of rounded plates
were also identified by SEM (see Supporting Information
Figure S3); this is ascribed to be a result of the presence of
residual solvent in the fiber mats after spinning. No clear trends
between the drug loading and fiber size or size uniformity can
be elucidated. The presence of residual solvent was confirmed
by thermogravimetric analysis (Supporting Information Figure
S4), in which a mass loss of ca. 11−12.5% is observed below
100 °C (attributed to water and acetone), followed by an
additional 2.5−4.2% between 100 and 170 °C (believed to
correspond to DMAc loss).

Physical Form Characterization. The optimized fiber sets
I5−I9 and G5−G9 were investigated in detail using a range of
solid state techniques. DSC data for selected materials are
included in Figure 5.
The DSC traces clearly show the pure APIs to be crystalline

materials, with distinct melting endotherms at 159 °C (IMC)
and 209 and 218 °C (GSF). The observation of two peaks for
the raw GSF material is a result of the melting of two different
polymorphs, form I at 218 °C and either form II or III at 209
°C (the value observed is intermediate between those reported

Figure 3. SEM images of (a) I3, (b) I4, (c) G3, and (d) G4.

Table 3. Final Optimized Fibers Prepared in 2:1 v/v
Acetone/DMAca

drug I.D.
API contentb

(% w/w)
fiber diameter

(nm)
diameter uniformity

(% RSD)

IMC I5 9.1 425 ± 134 31.4
I6 16.7 510 ± 130 25.6
I7 23.1 472 ± 164 34.9
I8 28.6 631 ± 144 22.8
I9 33.3 529 ± 143 26.9

GSF G5 9.1 387 ± 132 34.4
G6 16.7 564 ± 135 23.9
G7 23.1 502 ± 156 30.9
G8 28.6 523 ± 189 36.1
G9 33.3 403 ± 168 41.5

aSamples were prepared from 10 mL of a 1−5% w/v API solution to
which 1000 mg of PVP was added. A spinneret with 0.84 mm I.D. was
used for ES, with a 2 mL h−1 flow rate. bThe drug content in the fibers
calculated from the relative masses of API and polymer.
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in the literature for forms II and III).25 In contrast, the PVP
starting material is amorphous, exhibiting only a broad
endotherm corresponding to dehydration below 125 °C and
a glass transition temperature (Tg) at around 180 °C. The DSC
traces of all the drug-loaded fibers are typical of those of
amorphous materials, with no indication of melting events and

only sub-100 °C dehydration endotherms being visible. This
suggests that IMC and GSF are present in the amorphous
physical form, regardless of the drug loading in the
formulations. The assignment of the broad endotherm to
dehydration was confirmed for selected samples by thermog-
ravimetric analysis (Supporting Information Figure S4).

Figure 4. SEM images of (a) I5, (b) I7, (c) I9, (d) G5, (e) G7, and (f) G9.
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To investigate further the physical form of the drug in the
fibers, X-ray diffraction (XRD) measurements were undertaken
(Figure 6). Although the raw API powders exhibit numerous
Bragg reflections, typical of crystalline materials, the patterns of
PVP and all the electrospun formulations contain only the
broad “haloes” expected for amorphous formulations. The XRD
data, thus, agree well with the DSC results, confirming the
amorphous physical state of the drug in the fibers.
Drug−Polymer Interactions. The interactions between the

drug and polymer were investigated using both IR spectroscopy
and modulated-temperature DSC. The IR spectra of IMC,
GSF, and selected fibers are depicted in Figure 7.
As expected, the spectra of the fibers are largely composites

of those of the raw materials. The major changes can be seen in
the carboxylate region of the spectrum, where PVP has a
distinct band at 1654 cm−1 and IMC at 1689 and 1712 cm−1. In
the spectra of I5−I9, the PVP and IMC bands have merged,
and only a single broad band centered at 1660 cm−1 (I5) or
1664 cm−1 (I7, I9) is visible. In the spectrum of I9, a shoulder
on this peak at ca. 1720 cm−1 may be discerned. GSF shows a
number of bands in the carboxylate region, with particularly
notable peaks at 1703, 1657, 1613, 1598, and 1582 cm−1. As
was the case for IMC fibers, the GSF bands are merged
together with the PVP CO peak in G5, with a main peak at
1663 cm−1 and shoulders at 1614 and 1589 cm−1. The latter
peaks increase in intensity as the GSF content increases and
move to lower wavenumber (G7, 1613 and 1588 cm−1; G9,
1612 and 1588 cm−1), whereas the major peak at 1663 cm−1 is
shifted to around 1658 cm−1 in G9. The shifts in peak positions

observed in the IMC and GSF fibers may be a result of
interactions (e.g., van der Waals) between the API and PVP
components of the fibers or, alternatively, could be a result of
the crystalline physical form having become amorphous as a
result of fiber formation. The more significant changes
observed in the IR spectrum of the IMC fibers might be
indicative of greater drug/polymer interactions in this case, but
this cannot be confirmed from IR spectroscopy alone.
Modulated temperature DSC (MT-DSC) was employed to

determine the glass transition temperatures (Tg) of the
materials and provide additional insight into the interaction
between the API and polymer. MT-DSC is much more
powerful than standard DSC for accurate Tg determination
because it permits the reversible and nonreversible components
of the heat flow to be deconvoluted.26 If the two components in
a binary mixture undergo ideal mixing, then the composite will
show a single Tg which can be calculated theoretically from the
mass composition of the mixture using the Fox equation27

= +
T

w
T

w
T

1

g
composite

1

g
1

2

g
2

where w1 and w2 are the mass fractions of the two materials in
the mixture. The Gordon−Taylor equation may alternatively be
used

=
+
+T

w Kw
w T Kw T

1

g
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1 2

1 g
1

2 g
2

Figure 5. DSC data for selected electrospun fibers of (a) IMC and (b) GSF. Data were collected during a single heating cycle, with no preheating.

Figure 6. XRD data for selected electrospun fibers of (a) IMC and (b) GSF.
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This additionally includes a constant K. A number of
approaches have been used to calculate the value of K,
including from the Tg of the two components and their
densities,5 from specific heat capacities,27 or empirically.28 MT-
DSC was employed to determine the experimental Tg values for
the drug-loaded nanofibers I5−I9 and G5−G9 within 48 h of
preparation. The results are given in Table 4 (selected raw data
may be found in Supporting Information Figure S5). Both the
Fox and Gordon−Taylor equations were fitted to the data, and
the results are in Figure 8.
In both cases, it can be seen that the Fox equation provides a

poor fit to the observed data, predicting higher values for Tg
than are seen experimentally. The difference is more marked in
the case of GSF. The Gordon−Taylor equation could
satisfactorily be used to fit the experimental data, with K
values of 0.60 ± 0.01 for IMC and 0.51 ± 0.02 for GSF (K was
determined by nonlinear least-squares fitting, and the
uncertainties are those calculated from the fitting process). It
has previously been reported that higher K values are observed
with increased intermolecular interactions,31 and thus, the MT-
DSC data appear to confirm the presence of increased
polymer/API interactions with IMC as indicated in IR
spectroscopy.
Molecular Modeling. To gain more insight into the drug−

polymer interactions in the electrospun fibers, molecular
models of IMC, GSF, PVP, PVP-IMC, and PVP-GSF were
constructed using the HyperChem software. The structures of a
PVP decamer and the APIs were first individually optimized,
and subsequently, appropriate combinations of the energetically

minimized structures were merged to create drug−polymer
complexes. The drug comprises 24.4% (IMC) or 24.1% (GSF)
w/w in these complexes; thus, they are representative of the
middle of the composition range studied experimentally. Figure
9 shows the geometric preferences for the energetically

Figure 7. IR spectra for the raw materials and electrospun fibers of (a) IMC and (b) GSF. The full spectrum is shown on the left, and an
enlargement of the 1800−1500 cm−1 region to the right.

Table 4. Tg Values for Fibers I5−I9 and G5−G9 As
Determined by MT-DSCa

Tg (°C)

drug fiber I.D. fresh sample after 4 months after 8 months

PVP pure PVP 181.58 NM NM
PVP fibers 180.61 NM NM

IMC pure druga 46.05 NM NM
I5 159.51 157.48 157.16
I6 146.86 140.39 141.22
I7 134.44 137.58 134.71
I8 127.85 123.99 124.10
I9 119.79 114.88 116.82

GSF pure druga 91.74 NM NM
G5 163.25 165.41 164.40
G6 155.31 155.75 156.68
G7 147.24 147.38 148.53
G8 141.96 140.54 140.52
G9 137.98 137.99 137.13

aTg values of the pure drugs were obtained from amorphous IMC and
GSF samples prepared by quench cooling. The observed values agree
well with the literature, which records values of 42 °C for IMC,29 and
89 °C for GSF.30 NM = not measured.
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minimized API−polymer complexes. The energetic contribu-
tions to the overall steric energy for both the drug−polymer
complexes and the individual API molecules and PVP decamer
are given in Table 5. Stabilization of the complexes is indicated
by a negative difference (ΔE) between the total steric energy of
the complex and the sum of the total steric energies of the
individual molecules.
The data from Table 5 reveal that the combined steric energy

of PVP and GSF is 142.99 kcal mol−1, whereas the energy of
the optimized complex is 133.03 kcal mol−1. This gives a ΔE of
−9.96 kcal mol−1, clearly demonstrating that there are
interactions between the drug and polymer. For PVP-IMC,
the combined energy of the components is 144.96 kcal mol−1,
whereas that of the optimized geometry complex is 125.99 kcal
mol−1, a ΔE of −18.97 kcal mol−1. The drug/polymer
interactions are therefore much stronger with PVP-IMC than
with PVP-GSF, confirming the results observed in IR
spectroscopy and MT-DSC. QSAR properties were also
determined (see Supporting Information Table S1), and
match the results from the geometry optimization: the surface

area to volume ratio is lower and the density higher for the
PVP-IMC complex than for the PVP-GSF complex.

Stability Studies. It is clear that immediately after
synthesis, the drug is present in the fibers in the amorphous
physical form. However, when formulating amorphous APIs the
issue of relaxation to a crystalline state is a major concern. The
stability of the formulations, thus, was investigated by DSC and
MT-DSC after 4 months’ storage in a desiccator over silica gel.
Representative data sets are given in Supporting Information
Figures S6 and S7, respectively. No melting endotherms were
visible in any of the DSC thermograms. Clear Tg events were
observed in MT-DSC, however. The Tg values after aging are
very similar to those seen with fresh samples (see Table 4). The
K-values calculated using the Gordon−Taylor equation are also
little changed: 0.54 ± 0.03 for IMC and 0.51 ± 0.01 for GSF.
These data demonstrate that both IMC and GSF remain in the
amorphous physical state over a prolonged period of time in
the ES fibers. The lack of crystallization over this time is
consistent with the APIs being present as a solid solution with
interactions between them and the polymer, rather than
forming a solid suspension containing amorphous particles;
crystallization is expected to be much more rapid in the latter
case. It appears that for I9 there are two Tg events after storage;
one at 114.88 °C and one at around 173 °C. The latter value is
close to that determined for pure PVP and may be indicative of
some phase separation occurring. Two Tgs are also visible in the
DSC data for G7 (one at 147.38 °C and the other ca. 185 °C),
which might again be the result of some phase separation.
TGA and MT-DSC data were also obtained after storage for

8 months in a desiccator. The TGA data for selected samples
are presented in Supporting Information Figure S8. It can be
seen that the mass loss profiles are very different from those
recorded for fresh samples, with mass losses below 100 °C
being around 2−5.3% with the IMC-loaded fibers and 3.6−

Figure 8. Tg data for (a) the IMC fibers I5−I9 and (b) the GSF G5−G9 materials. Experimental data are shown as black squares, values calculated
using the Fox equation as a red line, and least-squares fitting of the Gordon−Taylor equation as a blue line.

Figure 9. Optimized geometric arrangements of a PVP decamer with
(a) IMC and (b) GSF. The PVP decamer can be seen at the top of the
images, and the drug molecule at the bottom.

Table 5. Details of the Energetics of the Optimized Geometries in the PVP−Drug Molecular Modelsa

minimized energy contributions (kcal mol−1)

species bond stretching bond angle torsional van der Waals hydrogen bonding total

IMC 0.616 12.78 7.477 3.834 −1.057 × 10−5 24.707
GSF 1.143 16.489 3.665 1.439 0 22.735
PVP 4.337 82.689 46.017 −12.788 0 120.255
PVP-IMC 4.772 94.927 52.04 −25.753 −1.481 × 10−5 125.992
PVP-GSF 5.279 101.954 48.118 −22.321 0 133.030

aThe electrostatic contribution was zero in all cases.
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6.6% for the GSF/PVP materials. Higher drug loadings appear
to result in decreased solvent loss below 100 °C. Mass losses
between 100 and 170 °C are between 0.7 and 1.1% for all
samples, with no clear correlation between this and the drug
loading. MT-DSC data are given in Supporting Information
Figure S9, with the accompanying Tg values in Table 4. It can
be seen that Tg remains essentially unchanged after 8 months’
storage. The Gordon−Taylor equation can again be fitted to
the experimental values, yielding K values of 0.54 ± 0.02 and
0.51 ± 0.01 for IMC and GSF, respectively. These values are
very similar to those determined for fresh fibers and after four
months’ storage. There is some evidence for phase separation
again, with two Tg values visible for I6, I8, and G9 (the second
at 181.97, 182.32, and 180.84 °C, respectively). As previously,
no melting events could be observed by DSC, confirming the
presence of amorphous drug.
Thus, it appears clear from the aging data that, although the

solvent content of the fibers declines with time and some phase
separation is observed after aging, the APIs remain in an
amorphous state even after prolonged periods of storage.
Functional Performance Studies. The pharmaceutical

functionality of the fibers was assessed by monitoring the time
taken for the fiber mat to disintegrate and by dissolution
testing. The data obtained are summarized in Figure 10 and
Table 6.
It is clear from the above data that the fiber mats disintegrate

very quickly, in less than 20 min, with the disintegration time
increasing with drug loading for both APIs. Drug release is
similarly rapid, also being complete within 20 min. As a result

of the very quick dissolution processes, the error bars in the
measurements are large, but the general trends are nevertheless
obvious: an increase in drug loading leads to a slower release
process. The lower drug-loading fibers all exhibit a markedly
increased dissolution rate over the pure drug. The amount of
pure drug used for the control experiments correlates with the
amount in the I7/G7 fibers. Thus, although in percentage
terms, the G9 fibers (which contain the most drug [33.3% w/
w]) are observed to release the drug at approximately the same
rate as pure GSF dissolves and the I9 fibers appear to dissolve
only slightly faster than the pure drug, in concentration terms,
dissolution is accelerated in both cases.
The very rapid release of drug precludes a detailed kinetic

analysis, and for I5, I7, G5, and G7 there is too little data to fit
kinetic models. For I9 and G9, it proved possible to fit the
Korsmeyer−Peppas model (Mt/Minfinity = ktn, where k is a rate
constant, t is the time elapsed, and n is an exponent giving
information on the release mechanism) to the data (Figure 11),

but caution must be taken in drawing detailed conclusions
owing to the small number of data points where the percentage
release was below 60%. The value of the rate constant was
determined to be ca. 0.18 min−1 for I9 and 0.10 min−1 for G9;
these are identical within the error of the experiment,
suggesting that it is the properties of the polymer rather than
the drug which control the release rate. The value of the n
exponent is 0.87 for I9 and 0.86 for G9, indicating that in both
cases anomalous transport (i.e., non-Fickian mass transfer)
governs the release rate (the systems exist as polymer films).32

Figure 10. Drug release data for the formulations (a) I5, I7, and I9 and (b) G5, G7, and G9. Data are from three independent experiments and are
given as mean ± SD.

Table 6. Summary of the Pharmaceutical Characteristics of
the IMC and GSF Fibersa

drug fiber I.D. disintegration time (min) t100 (min)b

IMC pure drug 16.67 ± 2.89
I5 1.7 ± 0.8 1.7 ± 0.6
I7 4.8 ± 1.9 4.3 ± 1.2
I9 11.0 ± 6.0 10.0 ± 5.0

GSF pure drug NR
G5 3.3 ± 1.0 3.3 ± 1.2
G7 8.5 ± 2.2 7.7 ± 4.0
G9 16.7 ± 1.5 18.3 ± 2.8

aData are from three independent experiments and are given as mean
± S.D. bt100 is the time taken for 100% drug release to be obtained. NR
= not reached.

Figure 11. Fits of the Korsmeyer−Peppas model to drug release from
I9 and G9.
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■ DISCUSSION

From the work undertaken in this study, it is clear that the
solvent used for electrospinning of indomethacin (IMC) and
griseofulvin (GSF), the size of needle used for spinning, flow
rate, and the drug loading are all important factors influencing
the results obtained. Generally, it has been observed that a
narrower needle results in a more polydisperse distribution of
fiber sizes and also in increased clogging. When spinning using
the ethanol/DMAc solvent system at 1 mL h−1, higher drug
loadings also result in a broader distribution of fiber diameters,
but in acetone/DMAc, there is no clear trend between drug
loading and uniformity of size.
A number of sets of electrospinning processing parameters

were explored, and in order to obtain usefully high loadings of
the poorly soluble GSF, it was found necessary to use a mixture
of acetone and DMAc as the solvent system. With this system,
clogging was observed to occur with a (relatively slow) flow
rate of 1 mL h−1, and hence, the dispensing rate was increased
to 2 mL h−1; this ameliorated the issue with clogging, but did in
some cases result in evidence being seen for solvent droplet
incorporation in the fiber mat. Using acetone/DMAc and a
flow rate of 2 mL h−1, two series of five different PVP−drug
fibers were produced, one containing GSF and the other IMC.
Upon manufacturing, no evidence for polymer/drug phase
separation was seen with any of the fibers, all of which were
observed to be smooth and cylindrical by electron microscopy,
with no evidence for any secondary particles. In all cases, the
drug existed in the fibers in the amorphous physical form, as
shown using X-ray diffraction and differential scanning
calorimetry. The fibers released the embedded drug very
rapidly, within 20 min, with the fibers offering enhanced
dissolution rates compared to the pure drugs alone. These
findings suggest that the electrospun fibers prepared in this
work may have significant potential for fast-dissolving buccal or
sublingual drug delivery.
FT-IR spectroscopy and modulated temperature DSC (MT-

DSC) were used to probe the interactions between the drug
and the polymer. Some shifts in peak positions were observed
between the crystalline drug and the fiber formulations in IR
spectra, which may be a result of intermolecular forces or of the
changes in the drugs’ physical forms. The MT-DSC showed
that the Tg values of neither set of fibers obeyed the Fox
equation, but both could be modeled using the Gordon−Taylor
model. To the best of our knowledge this is only the second
time that either the Gordon−Taylor or the Fox equation have
been applied to ES fibers.5,33 The APIs in the fibers were found
to remain amorphous after 4 and 8 months of storage.
The deviation from the Fox equation observed with both

APIs may be a result of the nature of the interactions between
the polymer and the drug27 or could mean that rather than
forming a perfect solid solution, the drug is present at least in
part as a solid suspension. The fact that the material remained
amorphous after 4 or 8 months’ of storage suggests that the
former may be the more likely explanation (if drug particles
were present, we would expect crystallization). The Gordon−
Taylor K parameter calculated for the GSF fibers is lower than
that determined for IMC, which is indicative of reduced
interactions between drug and polymer in the GSF
formulations cf. their IMC analogues.31 The construction of a
simple molecular model showed that the optimized geometry
for a PVP-IMC complex has a ΔE of −18.97 kcal mol−1,
whereas PVP-GSF has ΔE = −9.96 kcal mol−1. This, together

with QSAR calculations of a reduced surface area-to-volume
ratio and greater density in the former case, confirms the
greater strength of the PVP-IMC intermolecular forces.
This hypothesis is also supported by the literature. The

formation of bonding interactions between IMC and PVP has
been demonstrated by Xiang and Anderson using molecular
dynamics simulations.34 Vasanthavada et al. prepared drug−
PVP solid dispersions and observed intermolecular interactions
between PVP and indoprofen (a drug with structural
similarities to IMC), but not between GSF and PVP.35 We
can thus safely conclude that there are greater interactions with
PVP in the IMC-loaded fibers.
Our results are in good agreement with the bulk of the

literature,6,16,18−20 in that we observe the formation of
amorphous API dispersions in all the electrospun fibers studied.
This is in contrast to the findings of Taepaiboon et al., who
observed crystalline IMC in their IMC/PVA fibers at 16.7% w/
w.15 The difference is presumably a result of these authors using
water, in which IMC is poorly soluble, as a solvent for their
experiments. The stability of the amorphous physical form
observed here is fully in agreement with the work of Blair et al.,
who observed that IMC in IMC/PVP fibers remained
amorphous after up to 6 months’ storage in a desiccator at
40 °C.18

In this work, no major differences between the behavior of
the GSF and IMC materials were observed. Despite the latter
forming much more stable glasses, both APIs were successfully
converted into the amorphous physical form by electrospinning
even at the highest drug loadings (33.3% w/w) and remained in
this state after storage for 8 months. The drug loadings studied
were limited by the solubility of GSF in the acetone/DMAc
solvent solution, but we did not observe any greater tendency
to crystallinity for the GSF materials. Our findings, thus,
suggest that electrospinning can successfully render even the
poorest glass-formers amorphous and, hence, is a powerful
technique for the production of fast dissolving formulations.

■ CONCLUSIONS
Electrospun fibers of polyvinylpyrrolidone and indomethacin
(IMC) or griseofulvin (GSF) were successfully prepared in this
study. By suitable selection of the processing parameters, it
proved possible to load both drugs in the fibers up to 33.3% w/
w. All the fibers prepared were smooth and cylindrical and
contained the drug in an amorphous physical form, which
remains stable over the 8-month time period. FT-IR spectros-
copy, modulated temperature differential scanning calorimetry,
and molecular modeling showed that there were interactions
between the drug and polymer with both IMC and GSF; these
are much stronger in the IMC case. All the fibers were found to
release the drug very rapidly, demonstrating accelerated
dissolution over the pure drug. This study, thus, indicates
that the electrospinning process is able, by dint of the very rapid
evaporation of solvent that occurs therein, to render even drugs
that form highly unstable glasses into the amorphous form and
retain them in that metastable state for prolonged periods of
time.

■ ASSOCIATED CONTENT
*S Supporting Information
The results of QSAR calculations for the drug/polymer
composites; DSC and XRD data for fibers prepared from
ethanol/DMAc; additional SEM images for fibers generated
from acetone/DMAc; TGA and MT-DSC data recorded both
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immediately after sample preparation and after aging; and DSC
data for aged fibers. This material is available free of charge via
the Internet at http://pubs.acs.org.
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