Surveillance Video Data Fusion

Kingston
University

London

Author: Simi Wang

Director of Studies: Dr. James Orwell
Supervision team: Dr.Gordon Hunter, Prof. Tim Ellis

This Thesis is being submitted in partial fulfilment of the requirements of
Kingston University for the Degree of

Doctor of Philosophy (Ph.D.)
February 2016

Digital Imaging Research Centre
Faculty of Science, Engineering & Computing
Kingston University
Penrhyn Road, Kingston-Upon-Thames
KT1 2EE, London, U.K.

Collaborating partner:
BAe Systems and EPSRC Sponsorship Number: EP/HS501266/1.



Declaration

This report is submitted as requirement for the Ph.D. Degree in ’Surveillance Video Data
Fusion’ in the School of Computing and Information Systems, Faculty of Science, Engineering
and Computing at Kingston University. It is substantially the result of my own work except
where explicitly indicated in the text.

No portion of the work referred to in this report has been submitted in support of an application
for another degree or qualification of this or any other UK or foreign examination board,

university or other institute of learning.

The thesis work was conducted from October 2010 to December 2015 under the supervision
of Dr. James Orwell in the Digital Imaging Research Centre (DIRC) of Kingston University
in London.

Kingston-upon-Thames, London, United Kingdom.



Copyright Statement

1. The author of this thesis (including any appendices and/or schedules to this thesis) owns
any copyright and rights in it (the “Copyright”) and he has given to Kingston University
certain rights to use such Copyright for any administrative, promotional, educational
and/or teaching purposes.

2. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,
may be made only in accordance with the Copyright, Designs and Patents Act 1988
(as amended) and regulations issued under it or, where appropriate, in accordance with
licensing agreements which the University has from time to time. This page must form
part of any such copies made.

3. The ownership of certain Copyright, patents, designs, trade marks and other intellectual
property (the “Intellectual Property”) and any reproductions of copyright works, for
example graphs and tables (“Reproductions”), which may be described in this thesis,
may not be owned by the author and may be owned by third parties. Such Intellectual
Property and Reproductions cannot and must not be made available for use without
the prior written permission of the owner(s) of the relevant Intellectual Property and/or
Reproductions.

4. The report may be freely copied and distributed provided the source is explicitly ac-
knowledged and copies are not made or distributed for profit or commercial advantage,
and that copies bear this notice and the full citation on the first page. To copy other-
wise, to republish, to post on servers or to redistribute to lists, requires prior specific
permission.

5. Further information on the conditions under which disclosure, publication, exploitation
and commercialisation of this thesis, the Copyright and any Intellectual Property and/or
Reproductions described in it may take place is available in the University IP Policy,
in any relevant Thesis restriction declarations deposited in the University Library, The

University Library’s regulations and in The University’s policy on presentation of
Theses.

ii



Abstract

The overall objective under consideration is the design of a system capable of automatic
inference about events occurring in the scene under surveillance. Using established video
processing techniques, low level inferences are relatively straightforward to establish as they
only determine activities of some description. The challenge is to design a system that is
capable of higher-level inference, that can be used to notify stakeholders about events having
semantic importance. It is argued that re-identification of the entities present in the scene
(such as vehicles and pedestrians) is an important intermediate objective, to support many of
the types of higher level inference required.

The input video can be processed in a number of ways to obtain estimates of the attributes of
the objects and events in the scene. These attributes can then be analysed, or 'fused’, to enable
this high-level inference. One particular challenge is the management of the uncertainties,
which are associated with the estimates, and hence with the overall inferences. Another
challenge is obtaining accurate estimates of prior probabilities, which can have a significant
impact on the final inferences.

This thesis makes the following contributions. Firstly, a review of the nature of the uncertain-
ties present in a visual surveillance system and quantification of the uncertainties associated
with current techniques.

Secondly, an investigation into the benefits of using a new high resolution dataset for the
problem of pedestrian re-identification under various scenarios including occlusion. This is
done by combining state-of-art techniques with low level fusion techniques.

Thirdly, a multi-class classification approach to solve the classification of vehicle manufacture
logos. The approach uses the Fisher Discriminative classifier and decision fusion techniques
to identify and classify logos into its correct categories.

Fourthly, two probabilistic fusion frameworks were developed, using Bayesian and Evidential
Dempster-Shafer methodologies, respectively, to allow inferences about multiple objectives
and to reduce the uncertainty by combining multiple infomration sources.

Fifthly, an evaluation framework was developed, based on the Kelly Betting Strategy, to
effectively accommodate the additional information offered by the Dempster-Shafer approach,

hence allowing comparisons with the single probabilistic output provided by a Bayesian
analysis.
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Chapter 1

Thesis Introduction

1.1 Introduction

With the aim of reducing crime and increasing public safety, millions of closed-circuit tele-
vision (CCTV) cameras have been installed in streets throughout the world. The United
Kingdom is one of the greatest proponents, with an estimated 5.9 million cameras in 2013.
This is an increase of 4 million since 2011. A large proportion of the CCTV cameras were in-
 stalled in the capital city of London. Norris and Armstrong (1999) claimed that a person c‘ould
be observed from 300 different cameras every day in London. This number will continually

increase, whilst cameras are being installed in public transport, in business and even on drones.

The large volume of data collected by these distributed CCTV networks have proven their
effectiveness in a range of recent high profile investigations, such as identifying and tracking
the Boston Bombing Terrorist and prosecuting the rioters after the London Riots. Although
CCTV networks also assist law enforcement agencies to detect live crimes on a daily basis,
the effectiveness is limited by the ability of the CCTV operator. Donald (2010) stated that
the concentration level of capable operators, dealing with high activity videos is around 90
minutes. In low activity and static environments, the concentration level drops to about 20
minutes. The operation is further limited by the number of different cameras that an operator
can monitor simultaneously to effectively detect events of interest. This means that the
development of video analysis techniques for the detection of predefined events is necessary.

This has led the Analytic Software to become the fastest growing component of a video
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surveillance system, as addressed in the Global Video Surveillance Market Report (Network,

2011).

The Market Report also showed that the use of surveillance systems is expected to divert from
traditional surveillance application to other function such as Retail. One major consideration
for commercial users is the cost because the largest contributor of cost in a video surveillance
system is the camera. Therefore to lower the investment, many users choose to use lower
resolution and intensity cameras, such as the recent Pan-Tilt-Zoom cameras deployed at the
Shanghai Airport. With the improvement of technology in the clarity of images, the cost of
high resolution cameras will reduce and their popularity will increase. However, the benefits
of higher resolution data have not been fully explored in the video analysis research domain
due to the slow uptake of this new technology and the lack of availability of high resolution

datasets.

In the, available datasets, almost all of the data are captured using traditional intensity-
based cameras. These cameras are highly sensitive to variations in illumination. Although
sophisticated techniques are employed to mitigate these effects, the issue cannot be entirely
removed. Illumination is, therefore, one of the major sources of uncertainty in the outcome of
many video analytical systems. In general all analytical systems will have their limitations
and will have been optimised to solve a particular aspect of uncertainty associated with either

the data or technique used.

1.1.1 Definition of Uncertainty

With reference to the information theory introduced by Shannon and Weaver (1949), uncer-
tainty is the number of alternative outcomes to an event and is measured by the probability of
an outcome occurring. If there is only one possible outcome and the probability of occurring
is 1, there is no uncertainty. As information can only be gained when there is uncertainty, an
event and the outcome that occurs with the lowest probability will convey more information.
Therefore the information gained is indirectly measured as the amount of reduction of uncer-

tainty. The amount of uncertainty is measured by Shannon Entropy, and maximised when all



CHAPTER 1. THESIS INTRODUCTION

alternative outputs have equal probability.

The above discussion was conducted in detail by Singh (2013). Singh stated that uncertainty
could be understood as a form of information deficiency or reflecting information reductions,
which was supported by Smets (1983). The manifestations of information deficiency are

summarised as the followings:

e Incomplete Information: Refers to a result when some of the information is missing,
therefore the information has an unknown degree of confidence but an upper limit of

confidence is known (Florea et al., 2007).

e Imprecise Information: The information that could be used to describe a number of
different instances, instead of just referring to one particular instance (Florea et al.,

2007).

e Fragmentary Information: Refers to information that is not continuous and is only

available under certain instances, time or conditions (Krell et al., 2013).

e Vague Information: Refers to information that is ill-defined, therefore it could be

interpreted subjectively from one observer to the other.

¢ Contradictory Information: The result when information from different sources, mea-

suring the same environment, reports opposite result (Dong and Naumann, 2009).

In the context of this thesis, the uncertainty will refer to the inaccuracy ih the estimated
outcomes that may be produced by the information deficiency, as outlined above. In theory
the inaccuracy can be measured in terms of Shannon Entropy. In practice there may be
scenarios in which this measurement is difficult to obtain as it requires a detailed statistical
model. For example, changes of illumination, as the intensity varies during the time of day,

could produce fragmented information.

1.2 Thesis Motivation

The motivation for this project is, therefore, to devise a framework that would reduce the level

of uncertainty to improve the accuracy of the outcome, by combining different video ana-
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lytic approaches. To complete it, the adoption of information fusion techniques is investigated.

A video analytical system is normally developed and optimised for a particular objective. The
framework should be able to combine the results from these different analytical systems to

infer a single objective and extend this inference to other related objectives.

1.3 Thesis Aims

In this thesis an investigation will be conducted on the feasibility of constructing an infor-
mation fusion framework to reduce uncertainty and investigate the possibility of inferencing
a range different objectives from one single framework. The investigation will be aided by
the use of high resolution data to explore and utilise the benefits it brings to tackle a range of

surveillance objectives.

1.4 Thesis Objectives

The following items are the main objectives of the thesis:

¢ To conduct a comprehensive review of information fusion techniques that are currently

available ,identifying suitable candidates to be adopted within this thesis.

¢ To examine the suitability of publicly available datasets to aid the investigations con-

ducted within this thesis.

¢ To identify and understand the nature of uncertainty involved within a video surveillance
system and associated uncertainty with the current analysis techniques to resolve

surveillance objectives under investigation.

e To investigate the use of high resolution data to reduce uncertainty when solving

traditional surveillance objectives under various challenging environments.

e To combine state-of-the-art video analysis techniques with information fusion tech-

niques to solve challenging surveillance tasks.
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e To design, construct and theoretically evaluate suitable fusion frameworks for the

reduction of uncertainty and the inference of multiple surveillance objectives.

¢ To construct and theoretically assess an evaluation framework which would allow an

effective and direct comparison between the developed fusion frameworks.

1.5 Thesis OQutline

The following chapter will give an overview for the application of information fusion in
visual surveillance domain and the approaches to tackle two traditional security objectives.
It includes a comprehensive introduction of the Information Fusion Model and the popular
techniques used to reduce uncertainty in the outcome. This will be followed by an analysis of

the evaluation metrics to measure the uncertainty removed by the different techniques.

Chapter 3 presents results from an experiment designed to measure the accuracy at which
human beings can be re-identified using a colour feature vectors only. The experiments further
- investigates the advantages of a high resolution dataset by using a state-of-the-art classifier to
examine the performance with respect to the level of occlusion, the training regime, specificity
of the domain and the resolution of the observations. A method is proposed to reduce the
adverse impact of occlusions when present and to increase the beneficial impact of higher

resolution data, when available.

In Chapter 4 the types of objective that a video surveillance system can deal with are evalu-
ated. This will aid the design of an experimental test-bed for capturing the required data for
the investigation of this project. The chapter also outlines and evaluates the techniques for
reducing the redundant information with the captured data. This is done to lower the cost
and requirement to store a large amount of data. The technique was combined with tracking
algorithms to produce demonstration videos , which were published in two TV programs.
Following the creation of the experimental data in Chapter 5, an examination of the types
of uncertainties within the visual surveillance context is given. The nature and quantity of

uncertainty associated with the various video surveillance techniques are then reviewed and
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examined. Using the data acquired from the test bed, Chapter 6 shows a method for localising
and recognising vehicle manufacturer logos in both the front and rear views. The features
are constructed from local histograms of gradients in both conventional and hierarchical
arrangements. The dimensionality of these vectors are reduced by an unsupervised Princi-
ple Component Analysis and by a subsequently supervised method based on Local Fisher
Discriminant Analysis. It also includes an introduction of a suitable metric for multi-class
classification, combining the result with fusion techniques. The challenge of logo detection

and localisation are finally conducted in this chapter.

Chapter 7 presents the application of fusion methods for a developed visual surveillance
scenario. Two statistical parametric fusion methods, Bayesian Networks and the Dempster
Shafer method, are developed and a theoretical investigation is conducted. This chapter also
presents the development of a metric for a direct comparison of the benefits between the two
methods. This metric provides a method to quantify the extra information produced by using
the Dempster-Shafer method with éomparison to a Bayesian Fusion approach. In the final
chapter the main contributions and achievements of this thesis are discussed. The conclusion

and future direction of research then follows.



Chapter 2

Review

2.1 Introduction

This chapter reviews the models and techniques of Information Fusion. The review bridges
the terminologies in the Fusion research community with the researches that are conducted in
the image processing community, specifically for Visual Surveillance. As the review shows,
there are various techniques used to achieve video surveillance objectives and for fusion
| research to conduct fusion objectives. There does not seem to be a formal link between the
two objectives, therefore, a review of the techniques used in Information theory, to decrease
the effect of uncertainty and current applications in the video surveillance context, should be

conducted.

As a key benefit of information fusion is to decrease the overall extent of uncertainty, the
chapter first outlines the definition of information fusion and discusses the application of
fusion models for a video analytic system. It also gives a description of the extensively used

fusion techniques and their applications in visual surveillance.

2.2 Information Fusion Overview

The human eye is a powerful tool that allows the human brain to assess situations quickly.

However the human eye has limitations which influence the judgement of situations, such as

low visibility. In these situations, the human brain relies on the information from the other
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senses (hearing, touching, smelling and tasting) to support the judgement. The brain fuses all
of the available information from all of the sources to improve the certainty of the judgement.
By obtaining information from multiple sources, the amount of uncertainty generated from
one single source is reduced. The field of study that tries to simulate this process is called

Information Fusion (IF) !, this is a branch of Information Theory.

Since the Information Fusion’s first use in military application, there has been an abundant
variation of its definition depending on the specific activity or a given field of application.
Bostrom et al. (2007) reviewed and discussed the strengths and weaknesses of IF’s definition.

The authors concluded a generalised definition of information fusion as:

“Information fusion is the study of efficient methods for automatically or semi-
automatically transforming information from different sources and different points
in time into a representation that provides effective support for human or auto-

mated decision making."

The above generalised definition could be applied to all the various terms, including data
fusion, sensor fusion, image fusion, decision fusion and classifier fusion. The benefits of IF
can be summarised with the type of information by combining the ideas of Hall and Llinas

(1997) with Durrant-Whyte (1988) as the following:

e Complementary information: can improve the spatial and temporal coverage. The
information provided by a single source can only provide a fragment of the global
space. By combining complimentary information from independent sources measuring
different aspects of the same space, a better construction of the global space can be
achieved, for instances, the information from two cameras measuring the same target

from different viewpoints.

e Redundant Information: when fusing information provided by different sources (or same
sources over time) to measure an aspect of the same space, the redundant information

can reduce the overall uncertainty and enhance accuracy. Multiple sources providing

1 As Hall and Llinas (1997) stated that sensor and data fusion are sometimes equivalent to Information Fusion.
However in some situations, as demonstrated later, the term data fusion” is also used for the fusion of raw data
from the sensors. The fusion of raw data from a sensor is considered to be a special case of Information Fusion.
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redundant information can also serve to increase reliability in case of source failure

(Blum et al., 2005), such as the overlapping section of multi-camera network

e Cooperative Information: increases the performance robustness by fusing information

from multi-spectral or multi-modal sensors, such as the combination of audio and video.

2.3 Information Fusion Models

2.3.1 Introduction

As mentioned above, Information Fusion was first adopted in military applications. Therefore,
the most common and most popular conceptualisation of information fusion was proposed by
White (1987) at the Joint Directors of Laboratories (JDL) and the American Department of
Defence. White’s fusion process includes an associated database with five processing levels,
and an information bus that connects between the five levels. The proposed fusion system
was divided into four increasing abstraction levels; object, situation, impact and process
refinement. These terminologies were tailored toward the military application, and were,
therefore, very restrictive. To aileviate these restrictions and to resolve limitations such as
uncertainty, extensions on the JDL modei have been proposed by Llinas et al. (2004), by
Steinberg et al. (1999), and by Blasch and Plano (2002) who added an additional user interface
model on top of the JDL model.

Dasarathy (1997) developed another popular fusion model that was employed from the engi-
neering prospective. Unlike the JDL model, Dasarathy focused on the difference between the
input and output results, independent of the fusion process. The data flow of the Dasarathy
model was characterised by input and output as well as the functional process, therefore the
abstraction leve}s were specified as whether an input or output. A simplified fusion abstraction
level was given by Luo and Kay (1992), where the authors divided fusion into three levels:
low, medium and high, depending on the output of fusion process. Based on these previous
models, many authors have tried to generalise the fusion process based on mathematical
notions, such as Goodman (1997) using random sets, and more recently Kokar et al. (2004)

using category theory.
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Based on the analysis of the above fusion models, information fusion, when adopted into the
image processing domain can be generalised into two distinctive abstract fusion level: Low

Level and High Level.

2.3.2 Low Level Fusion

Traditionally the Low Level fusion is the process to fuse raw data from multiple physical
sensors. Characterised by Data level fusion as shown in Figure 2.1. It involves the fusion
of raw data from different sensors, such as radar, to measure the same object before any
processing is conducted. The fused information can provide data of higher acc‘uracy by
lowering the signal-to-noise ratio of individual sensors. However, its main drawback is that

the data from the different sensors must be commensurate and it can be properly associated.

Source Data
Level Fused
Raw
Fusion Data
(DL)

-9

Figure 2.1: Illustration of Data Level Fusion, where raw data from the multiple physical
sensor are combined to lower errors within the measured signal

In a visual domain, the raw input to any visual system is the image. The fusion of raw data
is known as Image or Pixel-Level Fusion. A definition of Image Fusion is given by Blum
et al. (2005) as a procedure for generating a fused image, in which, each pixel is determined
by a set of pixels in each source image. The purpose is to generate a single image that
contains a more accurate description of the scene than any individual source. Traditionally the
application of image fusion is to produce images that could assist the human visual system
to make better judgement such as medical diagnosis (Constantinos et al., 2001) and defect

inspection (Leon and Kammel, 2003). Recently there has been a move to use of image

10
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fusion for achieving results with a higher level of information such as highlighting landscape
changes, as proposed by Dong et al. (2009). As the paper by Pohl and Van Genderen (1998)
illustrates, there is a number of researchers which concentrate on fusion at the image level.
As the authors states, the main advantage of image level fusion is to increase the clarity of
the original input image in order to allow it to be processed more efficiently by humans.
However these advantages can also be propagated down the image processing pipeline to

assist the fusion process at a higher level, although the advantages are very difficult to measure.

In the field of video analytics, low level fusion can also refer to the fusion of raw pixels, as
described above, as well as the fusion of the features related to the image. In feature level
fusing, as illustrated in Figure 2.2, each information source provides some observational raw
data, where some distinguishable feature vector is extracted. The features from the sources
are concatenated together to form a single feature vector that is used as the input to an analysis
unit in order to achieve the target objective. Fusion of the features allows for the utilisation
of the correlation between them and the combined feature only requires one training phase
(Snoek et al., 2005). Some drawbacks are that the features to be fused must be of a common
format and that it cannot deal with fragmented information (Das et al., 2008), as features from

different sources may not be available at the same instance in time.

FE [—

Source FE Feature

Level
Cancatenated
FE Features
Fuslion

FE

FE -

oYY
1

FE = Feature
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Figure 2.2: Illustration of Feature Level Fusion, where different descriptors of the same
image are fused together to create a new high dimensional feature

11
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In the visual domain, the features that can be extracted may be summarised as 2:

1. Visual Feature: These features can be extracted from the whole image, patches within
the image or from segmented blobs. The features may include histograms of a colour

spaces, texture features and shape information.

2. Text Features: These features can be extracted through optical character recognition or

automated license plate recognition processes.

3. Motion Features: These can be represented in the form of kinetic energy, motion

direction, magnitude histograms, optical flow and motion patterns in a specific direction.

4. Metadata :Features that are associated with the captured information such as a time-
stamped, global positions of the information sources, which are used to supplement the

above features in a fusion system.

The features listed above have been fused in a range of visual surveillance scenarios, two

examples are:

1. Face recognition. Ekenel and Stiefelhagen (2005) fused the wavelets of sub-bands of
the same image. It improves the classification performance as information resulting
from the sub-bands that attain individually high correct recognition rates, is fused. Tan
and Triggs (2010) illustrated that combining two of the most successful local face
representations, Gabor wavelets and Local Binary Patterns (LBP), gives considerably

better performance than either alone.

2. Human Tracking. Foresti and Snidaro (2002) fused information from both optical and
infra-red source with the trajectory information to achieve the tracking tasks under
challenging conditions. Wang et al. (2003) fused motion, colour and texture cues at
the feature level to perform human facial tracking and vehicular tracking in a range of

environments

Like image fusion, feature fusion is generally considered a way to provide extra dimensions

of information to generate more accurate outcomes by higher level process. However the

2The use of an audio as a feature has been omitted from the list as it is not always available with a visual
surveillance scenario. But the following section would show the combination of audio and visual features used
by a different researcher

12
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term “feature fusion” has not been well documented within the literature, even though many
researchers have endorsed the concatenation of various features, such as Dikmen et al. (2011)

who concatenated colour histograms in the HSV and RGB colour space.

2.3.2.1 Example: Fusing of Histograms

There are various features that can be used for the pedestrian re-identification challenge. One
of the most popular features is the use of colour, in particular colour histograms, which this

review will concentrate on.

The seminal work by Swain and Ballard (1990) demonstrated colour indexing for retrieval;
histograms were compared by using an ‘intersection’ operator that is similar to the L; norm 3.
The histogram is a non-parametric, quantised representation of the accumulated values. One
alternative is the parametric family of representations, e.g. second order statistics (Metternich
et al., 2010), possibly with mixture estimation (Tuzel et al., 2006). Another alternative is to

find and represent multiple salient points in the observation, e.g. using SIFT features (Sivic

and Zisserman, 2003).

Park et al. (2006) extended the histogram-based representation by dividing the region of
interest into horizontal partitions to form histograms concatenated into a fused feature vector.
Each partition can be considered a raw data sensor, from which, features are extracfed before
it is fused through the concatenation process. This is a special case of a more general set of
robust computer vision methods, in which, overlapping regions are used to achieve spatial

selections with spatially tolerant accumulators, as presented by Dalal and Triggs (2005).

Gray et al. (2007) introduced colour histograms based on three predefined regions of a human
body: one fifth for the top, two fifths for the middle and two fifths for the bottom. The
division, as outlined by Gray et al. , presumes a creation of a better descriptor by segregating
more noisy background pixels in the head region. The two largest regions would occupy a
larger region of the divided images therefore less noisy background pixels. The combined

histograms for all three regions are used as the descriptor for the whole image. An improved

3L; norm minimise the sum of the absolute differences between the target value and the estimated values

13



CHAPTER 2. REVIEW

descriptor is proposed by Alahi et al. (2010), using a grid collection of region descriptors.

Each grid segments the objects into a different number of sub-rectangles of equal sizes.

Various methods have been proposed to generalise this approach. First, Gray and Tao (2008)
used a boosting technique to optimise a set of histogram features from a large combinatorial
space. Zheng et al. (2011) constructed histograms for each of over twenty types of features
for six horizontal stripes across the bounding box. Finally, Dikmen et al. (2011) applied an
array of histogram responses, extracted from overlapping regions, to form the fused feature.

More details on the the Dikmen et al. approach will be given in Chapter 3.

Due to the considerable increase in the dimensions of the fused features, there is generally a
limit to the number of features to be fused, around about 3, as it would require an increase in
the processing of requirements . To reduce the processing power, the fused features would
generally require its dimensions to be reduced before the analysis is done, to increase the
rate of convergence. However, the dimensional reduction, in some instances, will reduce
useful information. the loss can be reduced by using a higher level processing system, such as

Decision level Fusion.

2.3.3 Decision Level Fusion

Decision level fusion, as illustrated in 2.3, is the highest level of abstraction. Each extracted
feature is first analysed by a processing unit to acquire a decision on its identity. A decision
analysis unit makes a final decision on the hypothesis by fusing each individual decision
based on the provided feature or features. Decision level fusion avoids a majority of the
shortcomings in the feature fusion, such as the requirement that different features needs
to be in a common format. However the analysis unit’s decisions usually have the same
representation, such as probability of a hypothesis. Decision level fusion allows the fusion of
unlimited features and offers a level of flexibility as the most suitable analysis procedure for
each feature can be chosen. Although there is more freedom offered by fusion at the decision
level, the main drawbacks are that the training of the processing units for each feature would

increase the overall processing time of the fusion system.

14
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Figure 2.3: Illustration of Decision Level Fusion, where decisions calculate the different
video analysis units, based on different raw features, are fused to acquire a final decision

As the information provided by the decision level would require the least amount of human
processing power for situation assessment, it has been widely adopted across different fields of
research. A review of the techniques used is broken down, and the adoption in the surveillance

domain is analysed in Section 2.4.

2.3.4 Hybrid Fusion Model

Each increase in the fusion abstraction level decreases the amount of human processing
required for situational assessment. This has focused the research community on the decision
level, although each level has its own benefits. To utilise these benefits such as the correlation
of the feature at the feature level, some researchers have used a hybrid model that fused
together different levels of fusion abstractions. An example offered by Wu et al. (2004) is the
fusion of the multiple independent features as one input modality and then fusing multiple
classifier results at the decision level. Other uses of the hybrid model in the video domain can
also be found in event detection (Xu and Chua, 2006), and pedestrian tracking (Snidaro et al.,
2004). |

15
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Figure 2.4: Ilustration of Hybrid Level Fusion, where different benefits at all abstracts level

could be combined to create a more accurate fusion framework,

2.4 Decision Fusion Techniques

2.4.1 Introduction

Unlike other research fields where sensor information fusion have been used extensively, such

as fault diagnostics (Basir and Yuan, 2007), computer intrusion detection (Giacinto et al.,

2003) and a range of military applications (Hall and Llinas, 1997), the IF is a relatively new

technique for automated video surveillance with comparatively few publications. Although

various classifications of information fusion methods and techniques have been proposed by

various researchers (Castanedo, 2013; Pohl and Van Genderen, 1998; Khaleghi et al., 2013;

Nakamura et al., 2007; Bloch, 1994) based on a range of criteria such as the type of data,

purpose of the techniques, parameters, and mathematical foundation. The categorisation of

the fusion techniques in the surveillance vision field has not been conducted.

At the heart of many video analytic applications is a classifier, fusing different results from

various classifiers using a broad range of information sources. This can be used to increase

16
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the accuracy of the final classification results as outlined by Ruta and Gabrys (2000).The
choice of the methods used to fuse the classifiers may depend on the output of each of the

classifiers. Xu et al. (1992) distinguished three types of classifier output:

e Abstract Level - The classifier would only output one unique label. At this level there is
no information about the certainty of the guessed labels, nor are any alternative labels

suggested.

e Rank Level - The classifier outputs a ranked list of all possible labels. The highest label

is the first choice and the alternatives rank in order of plausibility of the correct label.

e Measurement Level - The classifier attributes each label a measurement value to rep-
resent the supporting probability for the hypothesis. The input vector submitted for

classification comes from each of the classes.

Based on the three categories of classifier outputs, the review of the fusion techniques can be

broken down into two main sections:

1. Logical Reasoning: Mainly uses the classifier outputs from the Abstract and Rank

Level.
2. Evidential Reasoning: Uses outputs from the measurement level.

The mathematical foundation of the methods described in the following section will be
covered in the relevant chapters. Therefore, the review will give an overview of how these

methods are currently being used in the vision community.

2.4.2 Logical Reasoning Techniques

These techniques relate to logical methods that assist with the decision making process. The
simplest method is the majority vote. The identity that receives the largest number of votes
from the individual processing units is selected as the consensus decision. Oliveira et al.
(2010) presented a pedestrian detection system by employing multiple classifiers of different
extracted features. The authors fused class labels from both Support Vector Machines (SVM)
and a Multilayer Perceptions classifier using two features; Histogram of Oriented Gradients

(HOG) and local receptive fields. The output scores of all of the classifiers were fuséd to

17
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obtain a majority decision regarding the identity of the object.

The majority voting process is used when no prior information is known, therefore, all classi-
fiers are assumed to have equal accuracy. However if some prior knowledge is known such
as changes in lighting condition due to time of day, some classifiers would have increased
reliability over others. In these situations, it is more suitable to assign a higher confidence
to the more competent processing units in the decision making process. These methods are
called Weighted Majority Voting. The weights assigned to the classifiers are normalised to 1.
There are various normalisation methods that can be adopted, as outlined by Han et al. (2006).
The most important aspect of using weighted majority voting is to determine and adjust the
weights to achieve the optimal accomplishment of the decision. The weighted voting process
was adopted by Foresti and Snidaro (2002) for the tracking problem. The authors fused the
position of the blob from multiple information sensors at a certain time. Each sensor has a
corresponding weight according to the reliability factors, and the point that best represents

the object’s position is given by the weighted majority voting process.

These techniques require the results of the classifiers to be of a common format, for example,
if all of the classifiers were to investigate "Is a probe vehicle probe image the same as a
target vehicle?". Under the condition, the voting process can be used to acquire a more
accurate result. However if the used classifier outputs attributes of the vehicle such as the
colour or shape, these attributes alone , employed to determine the similarity of two vehicles,
would be difficult when the voting techniques is used. In this case, the evidential reasoning
technique can be adopted because it is able to accept these different types of attributes to build

a likelihood model to determine the outcome.

2.4.3 Evidential Reasoning

Evidential reasoning methods are based on the knowledge of the perceived situation. Evidence,
thus, refers to the transition from one likely true proposition to another. The truth is believed
to result from the previous one, as stated by Nakamura et al. (2007). Classic evidence methods

are based on subjective probabilities. Two very popular concepts have been chosen by the
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wider research community: Beyesian and Dempster Shafer.

2.4.3.1 Bayesian Inference

Information fusion based on Bayesian Inference offers a formalism to combine evidences
according to rules of probability theory. Uncertainty is represented in terms of posterior con-
ditional probabilities describing the belief of a hypothesis It can assume values in the interval
[0, 1], where 0 is the lack of belief and 1 is absolute belief. The posterior probability density
function is produced by using Bayes rule, and relies on the prior belief of the hypothesis and
the probabilistic likelihood function that describes the probability of the hypothesis given an
observation, (Castanedo, 2013). Bayesian inference allows a range of prior knowledge about
the likelihood of the hypothesis utilised in the inference. It also allows for the probability of
the hypothesis being true to be computed incrementally. As the posterior probability from
one likelihood function can be used as the new prior probability, it can be used to update the

posterior probability of hypotheses.

Applications of the Bayesian inference in a surveillance domain include the following: Atrey
et al. (2006) adopted a Bayesian inference fusion approach to fuse audio features and video
features to detect pre-defined events, and Stolkin et al. (2012) applied a Bayesian method to
the tracking problem by combining images from a thermal imaging camera and conventional
colour cameras, The Bayesian approach is able to adjust the relevance of the cameras in the
tracking decision process. The tracking of vehicles by fusing different feafures using a camera
network for monitoring the highway was presented by Huang and Russell (1998). The authors
computed the probability of any two objects being the same, given a stream of the features of

the observation such as timestamps, mean colour, and forward velocity.

An extension of the Bayesian inference, popular in the research community, is Bayesian
Network. It is a probabilistic graphical model that represents a set of random variables and
their conditional dependencies via a directed acyclic graph. The nodes within a Bayesian
network represent the random variables or observation from different information sources

and the edges represent the conditional dependencies. Dynamic Bayesian network (DBN)
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models are an attractive modelling choice when fusing information from multiple sources,
as they combine an intuitive graphical representation with efficient algorithms for inference
and learning (Choudhury et al., 2002). Choudhury et al. proposed an application of the
Bayesian Network to combine different speech and visual cues for the classification of speaker
interaction. Toyama and Horvitz (2000) performed head tracking by fusing different trackers
of colour and motion features. The authors also made use of the random variables in a Bayesian
network to serve as context sensitive indicators of the reliability of the different trackers.
Town (2007) also utilised the Bayesian networks to model the probabilistic dependencies and
reliabilities of different sources of information. In Town’s work, integrating visual information
from video cameras with ultrasonic sensor data at the decision level allowed for the tracking

of people within an office environment.

2.4.3.2 Dempster-Shafer

Hall and Llinas (1997) illustrated that Bayesian inference has two major shortcomings: firstly
it requires a well-defined, prior and conditional probabilities of the hypothesis. Secondly the
hypothesis needs to be mutually exclusive, to solve these limitations in probabilistic methods,
a number of alternative techniques have been proposed. One of the popular technique is based

on evidence, called as the Dempster-Shafer Theory (DST).

The Dempster-Shafer Theory is based on the mathematical theory introduced by D’empster
(1967) and mathematically formalised by Shafer (1976) toward a general theory of reason-
ing based on evidence. It became a popular method because it could be considered as a
generalisation of the Bayesian Inference that deals with probability mass functions. Unlike
Bayesian inference, DST does not require a well assignment of the prior probability; instead
the probability is assigned, only when the supporting information is available. DST also
relaxes on Bayesian’s restriction on mutually exclusive hypothesis so that it is able to assign

evidence to the union of hypothesis.

As the heart of DST, a hypothesis in a set of all possible, mutually exclusive hypotheses is

characterised by a belief and a plausibility that represents the lower and the upper bounds,
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respectively, of the hypotheses being true. The interval bounded by the belief and plausibility
values defines the true belief in the hypothesis.

Some applications of DST in the video surveillance domain include: Maguire and Desai
(2012) explored DST’s ability to allow each source to contribute information with different
levels of detalil, to fuse a wide range of sensors to the problem of intrusion detection. Ma
et al. (2013) built a fusion framework based on DST to increase the event detection rate
when event detectors have conflicting decisions. Morbee et al. (2010) used DST to fuse
ground occupancies computed from a set of cameras so that the occupancy detection results
outperformed probabilistic methods. Zhao et al. (2007) applied DST to the vehicle detection
problem by fusing signals from a video sensor and the magnetic sensor. Li et al. (2013)
reported human tracking that explored the spatio-temporal visual information and used DST

to fuse different classifiers to perform better tracking.

2.4.3.3 Fuzzy Set Theory

Fuzzy set theory is an alternative reasoning scheme for the fusion of uncertain information. It
was first introduced by Zadeh (1965) and is an extension of the Set Theory. In contrast to Set
Theory where the membership of elements in a set is assessed in a binary value according to
the bivalent conditions, Fuzzy set theory introduces the novel notion of partial set membership,

which enables imprecise reasoning.

Similar to Bayesian theory where prior knowledge of probability distributions is required,
fuzzy sets theory requires prior membership functions for different fuzzy sets. Therefore,
fuzzy set theory deals in gradual membership functions of an element in the interval [0, 1],
where the higher the membership function is, the more an element will belong to the set.
Fuzzy data can then be combined using fuzzy rules to produced fuzzy fusion outputs. Fuzzy

fusion rules are classed into three main categories:

e Conjunctive - are considered appropriate when fusing data provided by equally reliable

and homogeneous sources.

¢ Disjunctive - are deployed when at least one of the sources is deemed reliable, though

which one is not known, or when fusing highly conflictual data.
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e Adaptive - are used as a comprise between the two above therefore these can be applied

in both cases.

As concluded by Khaleghi et al. (2013), in contrast to the Bayesian and Dempster theories,
which are well suited to modelling the uncertainty of membership of a target in a well-defined
class of objects. Fuzzy sets theory, however, is well suited to modelling the fuzzy membership
of a target in an ill-defined class. As such it is often integrated with both the Bayesian
and Dempster-Shafer fusion algorithms rather than being used independently in challenges

relating to uncertainty reduction.

2.4.4 Uncertainty Evaluation Metric

The aim of a performance evaluation metric is to establish the advantages and disadvantages
of a technique based on a set of measures or metrics. These metrics can also be used to
effectively compare and evaluate the outcomes of different techniques operating to the same
objective. As Khaleghi et al. (2013) suggests, the results from Information Fusion Systems
are typically a mapping of different techniques into different real values or partial orders for

ranking.

In these goal-orientated challenges, a range of methods can be used to evaluate the merits of
a fusion framework. Some applications used in the video surveillance domain, to evaluate
the performance of object identification, are the Precision and Recall, Receiver Operating
Characteristics (ROC) and Cumulative Match Curve (CMC). These measure the performance
of tracking analysis metrics such as mean distance from track, detection rate, and false posi-
tive rate (Town, 2007). For event detection, a multi-metric evaluation procedure including

certainty, accuracy and timeliness has been proposed by Hossain et al. (2011).

However, as the éoal of many fusion systems is to reduce uncertainty, a metric to evaluate
the uncertainty reduction is needed. With the logical reasoning techniques, the uncertainty
reduction is normally carried out by the improvement of accuracy using the metrics men-
tioned above. The evidential reasoning techniques can adopt a similar measurement strategy,

however since there is probability associated with the outputs, information theory should be
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used, such as Shannon’s Entropy that is a measure of uncertainty, as highlighted in Chapter
1. However Shannon’s Entropy can’t be applied to the Dempster-Shafer model as no prior

information is available; therefore, the reduction of uncertainty, before fusion, is unknown.

The review of the evaluations suggested a need to develop standardised measurements of
uncertainty reduction that can be applied to different evidential reasoning techniques, to

provide an effective comparison between the techniques under investigation.

2.5 Summary

This section reviewed some of the techniques that have been used in the vision community
to fuse information from different sources for achieving better results. The choice of the

techniques depends on the information provided and the availability of key information.

As mentioned in Section 2.4.2, when the information provided by a range of sensors is
common, a logical reasoning technique can be used. If the information is not common but
with some supporting evidence, the evidence reasoning techniques can be adopted to combine
these types of information. In the different evidential reasoning techniques, the Bayesian
inference would require some types of prior information about the outcome hypothesis. When
prior information is unavailable, the Dempster-Shafer technique might be more beneficial.
The section also highlighted the use of the Fuzzy set theory; however it is often used in com-
bination with Bayesian and Dempster-Shafer theory to solve challenges involving uncertainty.

As such the research will concentrate on Bayesian and Dempster-Shafer fusion frameworks.

This section also highlighted that the fusion approaches mainly concentrated on the fusion of
multiple physical sensors and the fusion of different information provided by the same sensor
are limited. With ;he vehicle re-identification problem, Sumalee et al. (2012) tried to combine
different physical sensors with vehicle features such as colour, shape and size derived from
video image data using different image processing techniques. These features are fused by
using an evidential reasoning fusion framework, in order to provide a probabilistic measure for

the re-identification decision. Similarly, Kumar et al. (2010) applied Fuzzy Logic modelling
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to produce a ‘belief mass’ for each of the sensors, and addressed the pedestrian tracking issue

in varied illumination conditions. -

Recently, Torabi et al. (2012) improved Kumar’s idea by applying fusion techniques to track
multiple people walking in close proximity. In their work, data from colour-based and ther-
mal sensors were fused to achieve the task of tracking peoples in both indoor and outdoor

environments in varied lighting conditions.

For the identification of vehicle types in surveillance data, Sun et al. (2004) used an ‘inductive
loop signatures’ system, built with some specialised equipment and reported an accuracy
of 90% on a three-category problem. Sumalee et al. (2012) employed similar ideas and
applied them to the problem of vehicle re-identification within video. The authors also
introduced other vehicle features such as colour, shape and size, which were derived from
video image data using different image processing techniques. These features were fused
by using a probabilistic fusion technique in order to provide a probabilistic measure for the
re-identification decision. They claimed that the overall re-identification accuracy was about
54%, which represents the current state-of-the-art technique. This highlights the need to
design and implement a fusion system that can handle multiple features from a single physical

Sensor.

As illustrated throughout this review, the motivation for most researchers to use information
fusion techniques is to increase the accuracy by utilising its uncertainty reduction capabilities.
The performance of the fusion system has been compared to standard non-fusion techniques,
which use standard goal-oriented metrics. There are, however, limited means of uncertainty
reduction measurement and comparison. The available metrics are inadequate when compar-
ing some fusion methods, especially between different evidence-based approaches. This leads
to a need for the development of an evaluation framework that would effectively measure and

compare uncertainty reduction.
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Chapter 3

Person Re-identification

3.1 Introduction

Pedestrian re-identification is an important component of visual surveillance analysis in
public space. The ability to assign a single correct identifier to multiple observations of
an individual, improves the semantic coherence of the analysis. This, in turn, is useful to
construct descriptions of behaviour and to facilitate the retrieval of data relevant to a given

individual.

The difficulty of the problem is partly determined by the extent of time and space, over which,
these "multiple observations” are recorded. At one extreme is part of the pedestrian’s tracking
problem within a single view; this is particularly important in more crowded or occluded
scenes. Similarity of appearance is used (Breitenstein et al., 2009) alongside spatio-temporal
measurements to estimate trajectories of individual person. In these cases, the appearance and
pose of a person being observed are relatively similar. The problem is more difficult when
using observations from multiple cameras and with discontinuous trajectories, not only pose,
viewpoint and illumination vary, but the number of possible alternative candidates is most
likely increased. in the extreme case, re-identifying a pedestrian at some arbitrary location
and future point in time is indeed a challenging problem. Some aspects of the pedestrian’s
appearance such as clothing and hair may have changed, and the less changeable aspects such
as face and gait are more difficult to analyse (assuming that the pedestrian is not actively co-

operating with the analysis and that the environment is relatively uncontrolled). Furthermore,
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re-identifying people ”in the wild” will require robust processing of partial and incomplete

observations due to crowds and clutter.

Dikmen et al. (2011) methodology is regarded as the current benchmark method for pedestrian
re-identification, since it provides the best performance when evaluating an unseen a subset
of the VIPeR dataset. This chapter will examine how the current state-of-the-art techniques
performance can be retained and improved under varying experimental conditions. The two
principle sources of variations are the resolution of the images in dataset and the presence of

occlusions in the probe and target observations.

3.2 The V-47 dataset

In this investigation a new higher resolution dataset is going to be used. One motivation for
the proposed dataset is to block a gap within the publicly available datasets which is of a
lower resolution Other benefits of the dataset is that it includes occlusion that blocks part of
the body, this is useful to solving re-identification problems in crowded environments where

only parts of the person could be observed.

The V-47 dataset comprises videos of 47 pedestrian walking in and out of a room through
a pre-defined indoor route, observed by two progressive scan high resolution cameras. The
scene had both artificial and natural lighting, which varies throughout the duration of the
filming activity. There are 4 video sequences for each pedestrian (two cameras, two directions),
with each sequence around 30 seconds. For each of the participants, 4 images were extracted

to one for each view and some examples of the images are illustrated in Figure 3.1.
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(b) Camera A - Out

(c)Camera B - In (d) Camera B - Out

Figure 3.1: Example Images of Participants Viewed from Both Cameras, both coming in and
going out of the room. All the data used will be captured at a relatively similar distance away
from the camera.

3.2.1 Variable Image Resolution

In the V-47 dataset, the height of each pedestrian (in image scan-lines) varies from 140 to 480.
The method outlined in Section 3.3.2 was designed and tested on a vertical resolution so that
each pedestrian was 128 lines tall. Higher resolution input can always be down sampled as
necessary to fit the expected input size, but this will discard higher spatial frequency signals
that may aid the discrimination task. Operating directly on the original resolution signal gives
the opportunity to preserve this information. The operation to accumulate RGB (or HSV)
values from overlapping patches into histograms can be generalised to accept input of any
size, by scaling the size of these input patches accordingly. However, the aggregation of pixel
values into histograms also discards information, as mentioned in Section 5.3.1. Nevertheless,
it is hypothesised that by using smaller scale patches, this effect is mitigated and better use is

made of the higher resolution input.
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3.2.2 Fusion of Multiple Colour Histograms

As mentioned in Section 2.3.2.1, in order to create a feature vector, the input image is divided
into overlapping patches, as shown in Figure 3.2. Each patch can be considered as a bounding
box of set width and height, from which, a histogram for that patch is created. As section
2.3.2.1 highlights, each patch can also be considered to be a sensor from which features are
extracted before being concatenated to form a new feature. Dikmen et al. (2011) combined the
idea of patches, outlined by Gray and Tao (2008), with the idea of multiple features in a single
patch, as offered by Zheng et al. (2011), to better aid the discrimination task. To investigate
the benefits of this additional fused information, for each patch an 8 bin histogram is created
for both the RGB and HSV spaces. These histograms are then concatenated together to form

each patch’s feature vector.

3.3 Methodology

3.3.1 Overview
An overview of the method used for the investigation is illustrated in Figure 3.2.
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Figure 3.2: Overview of the Techniques Used. The fused feature vector for each patch
(black/grey boxes) would be concatenated together to create an image vector. The image
vector’s dimensions will be reduced, via PCA, before the learning metrics are applied.

3.3.2 Large Margin Nearest Neighbour Classifier with Rejection

This section makes a brief description of the usage of the Large Margin Nearest Neighbour

classifier with Rejection (LMNN-R), as introduced by Dikmen et al. (2011), to learn a metric
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suitable for pedestrian re-identification. This is the current state-of-the-art approach for person
re-identification on the benchmark VIPeR (Gray et al., 2007) dataset and it is an enhance-

ment of the Largest Margin Nearest Neighbour techniques offered by Weinberger et al. (2006).

To increase the performance, the fused feature vector is reduced to a smaller metric learning
space by applying a Principle Components Analysis (PCA) (Jolliffe, 2005), thus giving an

input vector T ¢ R¢ .

The objective is to learn a linear transformation L : ¢ — R, where R is the real number
that minimises a distance between each low dimensional training point and its X nearest
similarly-labelled neighbours. This is done while also maximising the distance between
all differently labelled points, and while maintaining a constant minimum margin between
differently labelled points. As a consequence, a similarity measure of the pairwise feature

vectors would follow the weighted squared distance:
D(z,z;) = | (3! - T G.1)
which can be reformulated to the equivalent Mahalanobis metric:
D(®,7) = (& - 2) M - )) 62

where M is a symmetric positive-semidefinite matrix, so it can be factorised into real-valued

matrices L as M = LTL.

The objective function over the distance metrics parametrised by equation 3.1 or equation 3.2
has two competing terms: (M) = €1(M) + e(M). The first term penalises large distances

between each point ¢ and its neighbours j according to Euclidean norm:
a(M)= Y D(z},1)) (3.3)
1,J~1
where the j ~» ¢ denotes that x; is one of the K similarly labelled nearest neighbours of z;.

while the second term penalises small distances between each point and all other differently
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labelled ones;

ik

1+——( > D(@m, xl)) m,az] (34

m,l~»m

Here, 0, is an indicator variable which is 1 if and only if z; and z; belong to the same class,
and O otherwise. The xj, for which 4, = 0 are so called "impostors" for z;. The closest
impostors of a training point z; are forced to be at least a certain specified distance, called
the margin, away from the considered point z. This distance is computed using the average
distance between all K nearest neighbour pairs (m, ) in the training set The expression
[2]+ = max(z,0), in equation 3.4 denotes the standard hinge loss, which is a loss function
used for training of maximum margin classifier (Rosasco et al., 2004). This optimisation
process can be solved as an instance of a positive semi-definite program when distance D is

given by the equation 3.2.

3.4 Generalising Over Occlusions

CCTV observations of pedestrians are often partly occluded due to crowded environments
and obstacles. It is important for re-identification methods, such as LMNN-R, to perform
robustly in these cases. However, all pedestrians of the VIPeR dataset are fully visible. To
investigate the re-identification performance in the presence of occlusions, a set of partially
occluded pedestrians was synthesised from the VIPeR dataset, and an occluded subset of the

V-47 dataset was also used.

The VIPeR dataset was produced by overlaying another randomly selected pedestrian (from
the same dataset) on top of the target pedestrian, using a feathered elliptical mask similar to
that described by Weinhaus (2013). The overlaid placement was varied stochastically, with a
mean occlusion level of 50%, to simulate typical observations taken from crowded scenes.
In the V-47 dataset, the nature of the scene resulted in a specific subset of the pedestrian
observations included real occlusions from approximately the waist down, and these instances
formed the V47 partially occluded dataset. A few examples of occluded images are depicted

in Figure 3.3. Such occluded images can be directly fed into training/testing procedure of
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LMNN-R classifier as described in Figure 3.2.

(b) Real occluded images from V-47 dataset

Figure 3.3: Examples of occluded observations, where the occlusions have all been limited to
the lower half of body only.

Firstly, an experimental process is designed to investigate whether a classifier trained on
occluded examples will improve the performance when applied on an occluded test set com-
pared with a classifier that is trained only on non-occluded data. However the performance of
occlusion trained classifier may deteriorate (compared with the benchmark) when tested on
the original (un-occluded) test set. To balance these opposing factors, a second experiment
process using a mixed test set of (for example) 50% each of occluded and non-occluded data

is conducted.
Two strategies for constructing a classifier to work on this mixed dataset are considered. These
are:

1. A single hybrid classifier, trained with a mixed training set.
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2. A joint system with two classifiers, one trained on occluded and another trained on
non-occluded data. This strategy will need an additional component to detect if either
probe or target observation is occluded. Even though it is currently unavailable, its

performance can be estimated by simulating:

(a) Upper Bound - simulating a perfect occlusion detector.

(b) Lower Bound - simulating a random occlusion detector.

This will provide a preliminary indication of relative performance between these strate-

gies.

3.5 Experimental Results

A common evaluation framework, as presented by Gray et al. (2007) and Dikmen et al.
(2011), is to offer a single ‘probe’ image together with a ‘target’ set that exactly contains one
observation of the probe which may be captured at a different instance in time. The output
is a ranked list of elements of the target set which can be aggregated over a test set into a
Cumulative Match Characteristic (CMC) curve. The normalised area under this curve is a
straightforward and intuitive performance indicator. Under the following experiments, these

values would be expressed in the legend where possible.

The results of five different experiments are presented here to investigate the effects of
occlusion, change in resolution, any dependency on pose, similarity of the training set to the
test set and the effect of feature fusing. Where possible, reference is made to the benchmark
experiment provided by Dikmen et al. (2011). In all experiments, the pedestrians in the test
sets were never included in the training sets. To generate statistically significant results, a cross
validation procedure is used. The data is randomly divided into training and testing datasets
before a result is acquired. The random split is accomplished by repeating the iteration of a
random number generator. The generator’s range is limited by the total number of pedestrians
and the number of iterations is guided by the number of training samples required. The final
result is the average over 10 iterations of the random split process. Another configuration

constant in the experiments is the retention of the first 60 principle components.
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3.5.1 Occluded and Non-Occluded data

As discussed in Section 3.4, this experiment process measures the re-identification perfor-
mance on occluded observations. The first step is to measure the performance on datasets,
with and without occlusions. The classifiers in Table 3.1 are trained only on one type of data,

and the normalised area under CMC (%) is reported in each case.

Table 3.1: Comparison of performance employing data with & without occlusions, where C
denotes Occlusion data

notation  Training set Test set Performance
TrTe no occlusions  no occlusions 95 % benchmark result
TrTeC  noocclusions  with occlusions 80 %
TrCTe with occlusions no occlusions 74 %
TrCTeC with occlusions with occlusions 87 %

From the results in Table 3.1, it is clear that the underlined results with occluded data pose a
more challenging problem. The classifiers achieved their best performance when the testing
and training data contained the same non-mismatched data. When classifiers use the mis-
matched data for training or testing, the best performance is achieved by classifiers that are

trained on non-occluded data.

Taking the problems of achieving the best possible performance, with occluded and un-
occluded data into consideration, three results are presented: the hybrid classifier strategy,
the upper bound joint strategy (perfect detector) and the lower bound joint strategy (50/50
detector), as described in section 3.4. The upper bound simulates a perfect detection between
occluded and un-occluded input, while the lower bound simulates a randomly generate detec-
tion results, roughly 50%, between the two cases. In addition the hybrid classifier was trained

with data that was half of each type.

To allow comparison of the experiments for each iteration, the same test data was used and it

contained a random mixture of occluded and non-occluded data, roughly 50/50.
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Table 3.2: Comparison of performance between the employment of various strategies to
re-identify data containing both occluded and un-occluded data

Strategy 1: hybrid classifier 83 % benchmark result

Strategy 2: joint classifiers (perfect occlusion detection): 91 %

Strategy 3: joint classifiers (random occlusion detection): 84 %

The results presented in Table 3.2 reveal that it is worthwhile to pursue a strategy of training
specific classifiers with occluded and non-occluded observations respectively, rather than

training a single hybrid classifier with both types of data.

3.5.2 Higher Resolution Observations

As the original VIPeR image dimensions is only 128x48 pixels, the feature vector created
in the benchmark method (Dikmen et al., 2011) makes use of 38 vertical and 4 horizontal
overlapping patches, as the best performance was achieved. However the V47 dataset has
480x264 pixels therefore the performance might be improved by increasing the number of

vertical and horizontal overlapping patches. For simplicity the results refer to the following:
e Normal Blocks = 38 vertical and 4 horizontal overlapping patches
o Small Blocks = 47 vertical and 5 horizontal overlapping patches

To investigate and clearly identify if an improvement can be made by increasing the number
of overlapping patches. A bi-cubic interpolation (Keys, 1981) was carried out to create a low

resolution version of the V-47 dataset, which is the same size as the VIPeR dataset.

Experiments were conducted to compare the Normal Blocks as used in Dikmen et al. (2011)
with the Small Block. These alternate schemes were tested on both low and high resolution
versions of the V-47 datasets, and the results were plotted in Figure 3.4. The numbers in
the legend describe the normalised percentage area under the CMC curve. The training set
consisted of 37 individuals with the remaining 10 used in the test set, and all data used in this

experiment did not contain any occlusions.
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Low Resolution Test Set
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Figure 3.4: CMC Curves For Changes in Feature Vector; (a) Low Resolution V-47 Data (b)
High Resolution V-47 Data. Both sets of results have shown drastic improvements when the
feature vector is reduced by PCA
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Firstly, it is worth noting that the results obtained on the ‘raw’ feature vectors (57-68 %)
are significantly inferior to those obtained from the trained classifier (95-97 %) Overall
comparison of the two blocks suggests that increasing the number of overlapping patches
would improve the performance. The improvement of performance is more significant when

using the higher resolution data.

In addition, when using the higher resolution data, it is important to choose the correct number
of patches. As each patch will contain more pixels, compared to a lower resolution, there
is an opportunity for the patch to capture more noisy pixels which can mislead the feature
vector. This causes the results to deteriorate slightly when the Normal Blocks are used in the

higher resolution data compared to the lower resolution using the same blocks.

3.5.3 Dependency on Viewpoint

Experiments have been conducted to investigate any dependency on the viewpoint of the
pedestrian. As shown in Figure 3.1, the V47 were captured at both the front view and rear
view of the pedestrians. This experiment would investigate the matching of the a probe
set, which contains the view of the pedestrians from one instance in time, to the target
set which are views of the same pedestrian at a different instance in time from the same
camera. In this experiment Camera A was used. To control the variations in the results, the

chosen data are when the pedestrian are within full view of the camera and without occlusions.

Table 3.3: Area under the CMC curve for different poses: FV = Front View, BV = Back View.

Pose Variation (Probe Versus Target)

FV Versus BV or
FV Versus FV | BV Versus BV
. BV Versus FV

96.56 £ 2.79 | 99.00 £ 1.26 96.89 £+ 1.63

These experiments use the higher resolution V-47 data, adopting the increased number of

overlapping patches (small blocks). The performance is listed in Table 3.3, the highest
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accuracy was achieved when the rear view data was used and all experiments with the front
view data reached similar results.- One explanation for this difference can be attributed to
colour pattern on the subject’s clothing, from the frontal view, as there is a large‘ variability on

the front of the clothing compared to the more consistent patterns on the back of the clothing.

3.5.4 Domain Specificity

CMC Curve - Domain Specificity

L T St AL Uy T 0 e

Recognition Rate

P VA {—+—Viper Classifer, 81.00
: —o—V-47 Classifer - Trained on Other Data, 86.00
| =~ V-47 Classfier - Trained & Tested, 95.90
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Figure 3.5: CMC Curves of Domain Specificity, the results shown here proves that there is a
degree of exclusivity between the data domains, as the best results is achieved when the
training and testing data is captured from the same domain.

This experiment evaluates the performance of three classifiers on 10 unseen pedestrians from
high resolution V-47 dataset. Since the VIPeR dataset contains pedestfians viewed from
different angles, in order to make the results comparable the training and testing VIPeR
dataset will contain both front and rear views as well. The differences between the classifiers

arc: B

1. Viper Classifier - the first classifier was trained on 316 pairs from the lower resolution

VIPeR dataset.

2. V47 Classifier on other data - this classifier was trained using 37 pedestrians, observed

from different camera from those used in the test set.
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3. V47 Classier same camera - this classifier was trained using 37 pedestrians, observed

from the same camera views from those used in the test set.

The results in Figure 3.5 reveals that there is a significant dependence on the type of training
data: the best results are obtained when the classifier is training data is the captured in the
same domain as the test data. This suggests that both the VIPeR and V-47 training sets exhibit
some degree of exclusive properties that are not shared. These exclusive properties are also

present across different cameras monitoring similar domain.

3.5.5 Use of Additional Training Samples

Comparing Effect on Increase Training Samples
A fovogernsrvsenes s , ..................................................... .....

Area Under the
CMC Curve

Single-View Classifier,
—+ No PCA = 51.80, PCA = 47.20,
LMNN-R = 31.31

2 Multi-View Classifier,

——— No PCA = 51.80, PCA = 50.08,

LMNN-R = 93.60
ol—i. i
No PCA No Learning PCA No Learning LMNN-R
Testing Methods

Figure 3.6: Performance of two classifiers, trained using 37 individuals, where multiple
instances of the same individuals were supplied; 1) Single View classifier uses 3 instances of
the one individual. 2) Multi-view classifier using 9 instances of the one individual

This experiment is designed to investigate whether the cross-camera re-identification perfor-
mance can be improved by injecting more data of the ’target’ set into the training sets. This is

achieved through two strategies:

1. Single View - since there are 2 cameras to capture a pedestrian coming and leaving the
environment which is equal to 4 viewpoints of the pedestrian. Therefore the training set

can be provided with 3 images for each "target" out of the 4 viewpoints.
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2. Multiple Views - since a video is available, from each of the 3 viewpoints of the "target”,
from above. 3 additional images of the same target from each of the 3 viewpoint can
be extracted. This is equal to 9 instances of the pedestrian for each ’target’ within the

training set.

To control the experiment, the viewpoints of pedestrian would vary in the "probe" and only
1 viewpoint of the pedestrian would be included. To demonstrate the performance, the area
under the CMC curve is plotted at several stages of the classifier construction: (i) Prior to the
PCA and Training, i.e. the raw feature vector; (ii) after the PCA but prior to training; and (iii)

After PCA and Training.

The results in Figure 3.6 shows the improvement of cross-camera re-identification compared
with results of the V47 classifier trained on other data (86%) as shown in Figure 3.5. How-
ever, the results cannot match that achieved by using data from the same camera (96%), as

illustrated in Figure 3.5.

In addition, small improvement in the performance can be achieved by using multiple instances
from the same viewpoint, which was observed at both prior and after the learning phase.
Another observation is the small dip in performance after PCA was applied. This is due to
the number of components being limited to 60 so that some of the variance (discriminative
feature) with the raw data is removed during the transformation, as outlined in Section 5.2.2.2.

However, through the learning phase, the decrease in performance was removed.

3.5.6 Feature Fusion

The experiment in Section 3.5.2 has already shown that fusing with the increased number
of patches (sensors) is beneficial to the re-identification challenge. The Figure 3.7 further
demonstrates that a concatenated feature based on two colour spaces will perform better than

a single feature does, even when is used with fused patches.
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CMC Curve - Fused Features
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Figure 3.7: Comparison of using single colour space features with fused colour spaces, which
shows additional improvement can be achieved when two independent colour spaces are
fused, compared to any single feature alone.

3.6 Summary

This work has investigated the use of the Large Margin Nearest Neighbour with Rejection
(LMNN-R) classifier to re-identify pedestrians viewed from different cameras at various
resolutions and in situations involving partial occlusion. As far as the author knows, this is
the best-performing method to evaluate on the VIPeR dataset, and the results cah be used as

the benchmark for the V-47 dataset.

The experimental results described above support the following conclusions. Firstly, for
potentially occluded observations, the best strategy is to attempt the detection of an occlusion
and then deploy the appropriate classifier. This achieves better results than training a classifier
on a mixed occlusion dataset. Secondly, increasing the number of overlapping patches will
improve results; this improvement is more dominant as higher resolution data are used. In
addition, the results can be further improved by fusing multiple representations of the subject.

Thirdly, the best performance is achieved when re-identifying process uses only the rear-view
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of the pedestrian; and when training set is from the same domain as the test set. Finally, the
challenge of cross-camera re-identification can be improved by supplying the target set with

multiple instances of the probe, which will lower the cross-camera domain specificity effect.

The investigation has shown that effects such as the domain specificity, variation of the view-
point and the number of patches used, can all influence the accuracy of the re-identification
results. This is true even when the datasets are collected in a moderately controlled environ-
ment compared with the data captured in the wild. Even though these effects are undesirable,
the experiment does show that some improvements can be achieved by adopting feature fusion
techniques, which demonstrate the possibility of the high fusion techniques in improving the

results.

41



Chapter 4

A Video Surveillance Scenario

4.1 Introduction

As outlined in Chapter 1, the popularity of the video surveillance system, in public and
commercial domain, has grown considerably. Although the main applications of these
systems are for security objectives, opportunities exist to fully utilise the system, for certain
commercial objectives, in parallel. Therefore in this chapter the security and commercial
objectives will be discussed and the common denominator to achieving both of these objectives’
in image processing domain will be described. An examination of the available dataset used
to aid our investigation will be further investigated. Finally, the design and implementation of
an experiment test bed that incorporates all the identified benefits in the available datasets

will be introduced in detail.

4.2 Video Surveillance Objectives

4.2.1 Security Objectives

Traditionally, the objectives of the video surveillance system were to capture a relativity small
localised environment. Its applications were limited to act as a deterrent and the captured
video was employed as evidence for prosecution. These objectives are currently still the main
functions of the distributed surveillance network with the added advantage of capturing a

wider environment and increasing the amount of evidence. As discussed in Chapter 1, these
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distributed surveillance networks are now treated centrally so that those interesting objectives
can be detected and analysed whilst they are happening, thus improving the traditional system

with in-time function.

However, as highlighted in Chapter 1, with the vast amount of information available in
time, some events might be missed by the human operator. In order to resolve this issue,
an automated tool, combining image processing techniques with certain behaviour rules,
are developed to identify certain predefined security objectives in a distributed surveillance

network. The techniques of typical predefined security objectives are:

e Matching - The technique involves the identification of objects of interest in the moni-

tored environment and alerts the relevant security personnel of its presence.

e Tracking - The technique involves the continuous tracking of an object of interest
through a network of cameras, which could fix the location where evidence could have

been located or the crime location.

e Anomaly Detection - The technique for the identification of uncharacterised user
behaviour in a controlled environment. This would assist the detection of potential

crimes to stop them before happening.

4.2.2 Commercial Objectives

Meeting the requirements of the security objectives is very challenging because the events
of interest normally happen very quickly. Comparatively, this will occupy a small amount
of footage. In these cases, a large amount of redundant information is created, but it nor-
mally contains vast amounts of valuable data that can be utilised to generate statistics of
the monitored environment. Commercial enterprises often need statistics about monitored

environments. The statistical data includes:

o Usage Statistics - In a commercial environment, the number of users using a facility

can be used for various purposes:

— Statics to evaluate the successfulness of a business.
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~ Identify times of high usage to adjust staffing levels

— Identify the availability of resources

e Tracking - Generating users’ travel patterns to help design a more ergonomically

commercial facility.

e Area Usage - Tracking users to generate a heat map of facility used to allocate effective

product and advertising placement.

e Different Users - Identifying the user groups and the usage patterns of each group to
help complete anomaly detection in the security context and effective product placement

in a commercial context.

4.2.3 Discussion

The content in this section covers the variety of challenges that a distributed surveillance
system can solve in both the security and commercial domains. This,therefore, validates the

trend that a surveillance system is no longer limited to meet security demands.

The analysis also demonstrates that an objective, such as tracking, is common in both domain.
That is the reason why almost all video content analysis software will share similar Video

Content Analysis (VCA) blocks. An example of a general VCA pipeline is illustrated in

Foreground L absllediClassified Tracked Objective
“Blobs" Objectss Objects Reports

Classification
(o] e
Segmentation or Tracking ta‘:::

Re- Identification

Figure 4.1.

VIDEO

Figure 4.1: Video Analytic Processing Pipeline, an example of a typical processing steps with
a VCA, where some process is often supported by a supporting model.
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The sequence of the processing steps is shown by the rectangular blocks. They are the
common parts within a VCA system. The objective that a particular VCA system attempts to
realise is defined by an objective model illustrated by the parallelogram in Figure 4.1. The
model would extract information in the scene and combine it with rules to raise an alarm

when a pre-defined situation arises or is expected to arise.

Depending on the model or the application requirements, the processing blocks may be
supported by data models, as illustrated by the cylinder blocks in Figure 4.1. Generally these
models are first developed by some training data and can be subsequently updated, over
time, through learning. The operations and the intermediate results produced by each of the

processing blocks are:

e Segmentation: The extraction of salient areas or pixels distinctive from the background
model. The extracted foreground pixels are further grouped into foreground "blobs",
each of which is connected set sharing some features in common. The foregrounds are

then passed to the next processing block.
e Re-identification and Classification:

— Re-Identification: Each foreground "blob" would be matched against a set of
reference "blobs". If a match is found the new "blobs" would be given the
same object label as that in the reference set. The matching may need to be
completed from different viewpoint of a single camera as well as the matching
across a network of cameras. An example of the re-identification techniques were
illustrated in Chapter 3. The matching result could be used as the input to the

Tracking process.

— Classification: Rather than matching the foreground "blob" to one particular object
within a reference set, classification techniques assigns the extract foreground
"blobs" to a specific class, within a clearly defined set of classes, such as vehicle,
person or animal. Alternatively the label assigned could be a subset of labels
within one specific class, such as one of a set of standard human poses. The output

is normally the most likely class label. In most cases, the class label is not used
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for the tracking process, but can be used to identify if a certain class of object is
available within the scene. An example of classification techniques is illustrated

in Chapter 6.

e Tracking: By using the labelled objects, tracking algorithms establish correspondence
between the same blobs in successive video frames, from either a single camera or from

multiple cameras and hence obtain a temporal sequence of the blob.

The pipeline illustrated in Figure 4.1 and the functions described above is generic. The pro-
cessing steps and the processing order may be normally be defined by analytical application

or the objective model.

From the analysis of the objectives and the example of the VAC pipeline, the completion of
objectives would all require an object of interest defined by the "blobs". In both the security
and commercial context, these objects are either People or Vehicles. Therefore, at the heart
of applications, the correct Re-Identification or Classification of the foreground "Blobs" is

necessary in order to obtain the expected objective.

The above analysis helps the design of an experimental test-bed and examination of the
currently available datasets, including either People or Vehicles, is conducted in the following

section.

4.3 Datasets

4.3.1 People

There are several datasets that are targeted at different challenges related to people. For this
review, all the datasets listed in Table 4.1 relate to the public datasets that have been used in

the pedestrian re-identification challenge.

These datasets provide variations of pose, viewpoint, lighting variation and occlusion. As
mentioned in section 3.2, a common issue with these datasets is their modest resolution of the

extracted pedestrians with an average 128 of image lines in height. These dataset are captured
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Table 4.1: Pedestrian Re-identification Datasets

Name Media Resolution #People #Images Occlusion Location
VIPeR
(Gray et al., 2007) Still 128 by 48 316 632 No Outdoor
CAVIAR
(Hamdoun et al., 2008)  Video 384 by 288 n/a n/a Yes Indoor
ETHZ
(Ess et al., 2007) Video 64 by 32 83 4857 No Outdoor
iLIDS
(UK-Home-Office, 2008) Video various 600 600 No Outdoor
GRID
(Loy et al., 2010) Still 100 x 200 250 500 No Indoor
PRID
(Hirzer et al., 2011) Video various 200 400 No Outdoor
V-47*
Chapter 3 Video 576 by 720 47 752 Yes Indoor

under various conditions such as varied lighting condition, and the challenge with occlusions

are only tackled in a limited number of datasets.

It is for these reasons the application of V-47 data, a higher resolution dataset for the pedes-
trian re-identification problem, were introduced in Chapter 3 and have been bench marked.
Although the dataset is captured indoors, it still contains challenges present in the other
datasets with extra bonus of natural and artificial occlusion that blocked part of the pedestrian.
The occlusion is often useful to solve re-identification problems in crowded environments

where only part of the person could be observed.

4.3.2 Vehicles

Unlike pedestrian re-identification, the datasets for vehicles are inadequate. The publicly

available datasets are summarised below:

e PETS 2001 (PETS, 2001) and PETS 2000 (PETS, 2000) - The video is of 352x288
pixels and monitors road users in a car park. The dataset is mainly used for vehicle

tracking prbblems.

o i-LID Parked Vehicle (UK-Home-Office, 2008) - It films users of a main road and is

used for the detection of the parked vehicles.

e ViSOR (Vezzan, 2010) - This video is of 320 x 256 pixels and captures vehicles using a
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car park. The vehicles are used to tackle loitering problems.

e Vehicle Silhouettes (Turing-Institute and Siebert, 1987) - The dataset contains images
of 128x128 pixel for different classes of vehicle, which is used for the classification of

vehicles.

e VIRAT (Oh et al., 2011) - The focus of the dataset is to detect people’s behaviours
within the monitored environment, but part of the dataset can be used for vehicles’ car

park usage.

Examination of the datasets shows that the vision challenges related to vehicles, focused more
on tracking; less attention is paid to re-identify the same vehicle in different spatio-temporal
environments. This challenge is assumed to have been solved by the correct recognition of
the pattern on the number plate. However as Section 5.3.2 there are still various challenges

around the correct recognition of the number plates.

Another limitation of these datasets is that they only capture a limited spatio-temporal

environment, therefore they can only be used to infer limited amount of queries.

4.3.3 Discussion

From the review of the datasets used to tackle surveillance challenges, the below lists restric-

tive factors:

e Vehicles as the object of interest are partly captured and are often a by-product of

datasets that focused on people.

e The resolution of the image is low, it effectively excludes the use of high spatial

frequency features.

e Datasets are normally produced to tackle particular issues, therefore it is hard to use

them for tackling other problems.

e Datasets are captured by snapshots of the monitored environment, therefore it cannot
show how an object is using the environment as only particular instances of the object

are included.
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The above analysis shows that using the current available datasets to tackle both security
and commercial challenges are difficult. Therefore, it is necessary to design an experimental

dataset that can mitigate the restrictions listed above.

Furthermore, an effective dataset also needs to encapsulate many of the challenging variables
present in the current datasets, such as variation in lighting, environmental variables, and
occlusions. Therefore the dataset can be used by a wider community to deal with different

video surveillance challenges.

4.4 Experimental Test-Bed

4.4.1 Design

With the objective outlined in Section 4.3.3, the surveillance scenario illustrated by Figure 4.2
is proposed.
Fassett Road
Exit/Entrance Exit/Entrance

N

Sopwith Car Park |

A
4

= Direction

= - Road
I

Camera 1 Camera 2
’ Sopwith Building

Figure 4.2: Layout of Sopwith Car Park with Camera Position

This proposed scenario is ideal for this investigation as the car park is a closed looped system

whereby a vehicle’s entry and exit activities can be fully monitored. To utilise the closed

49



CHAPTER 4. A VIDEO SURVEILLANCE SCENARIO

looped system, the object of interest in this scenario would be vehicles. In some scenes,
however, vehicles are mixed with peopleand alough the dataset also captures people using the

carpark, pedestrians who use other exits can’t be fully monitored.

The main function of many car park monitoring systems is to determine if a particular vehicle
is allowed to use the monitored car park. This is normally achieved by using a controlled
barrier. It not only needs special hardware and software, but it can also cause traffic problems.
As the car park in the project is not barrier controlled, the proposed scenario allows the
investigation the possibility of solving the problem whilst eliminating the shortcomings of the

barrier system. This capturing plan can also be used to query a range of different objectives:
e Security

1. Is this vehicle breaching car park usage polices?

[

. Is the identified vehicle loitering?

w

. Is the identified vehicle using the car park?
4. Is the usage pattern of a particular vehicle identifiable?

5. etc...
e Commercial

1. Identifying whether the vehicle is using car park for delivery or parking.

2. Identifying when the car park is full.

w

. Identifying the time when the car park is in high demand.

S

. Identifying the popularities of certain exit/entry point.

5. etc...

4.4.2 Equipment

As stated in Section 4.3, the object of interest in the available dataset has a relatively low
resolution. The low resolution is due to the fact that popular surveillance cameras need to

capture a large field-of-view, the information from video needs to be transmitted in real-time,
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to the monitoring stations and that there is a limited data storage facility. Although the cap-
tured images are suitable for humans to process, they are less than ideal for a computer vision
system to process. As a lot of the edge and colour information is lost, almost all computer
vision systems rely heavily on these key pieces of information, in order to distinguish objects

in the image.

With advancements in the transmission and storage capabilities, higher resolution cameras are
now being used in some surveillance scenarios. An increase in the resolution and improvement
in quality of images are key characteristics, brought by the high definition cameras which are
ideally suited for computer vision systems. However, these benefits are not being utilised by
the research community, mainly due to the relatively high cost. This project aims to utilise
these advantages, for this reason the dataset will be captured by using a full high definition
1080 progressive scan colour video cameras during the car park’s operational times over a four
month period. The data captured through this test bed is going to be used for the investigation

in Chapter 6.

The dataset is captured at 25 frames-per-second and the data is first stored in camera’s storage.
To reduce the storage requirement, the raw footage is compressed via H.264 format to limit the
loss of the quality. During the non-operational times, the data are transferred to other storage
facilities for off-line processing in order to free up the camera’s storage. To consolidate the
two cameras, they are time synced to a control computer and the meta-data associated with

the footage are used to meet any time-plexing requirements.

4.4.3 Redundant Data Reduction

The captured footage includes a significant quantity of redundant information because the car
park is not being continuously used during its operational time. The removal of the redundant
information is inevitable, in order to extract the most useful events regarding vehicles entering
and exiting the car park. Another benefit of removing the redundant information is the saving

of storage, considering the fact that 5 minutes of raw footage needs 300 mega-bytes of storage.
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The automated event extraction algorithm needs the capability to overcome the following

issues in the raw data:

1. Lighting Variation - Because the footage is captured from before sunrise to after sunset,
the algorithm needs to adapt the gradual changes with the lighting condition as well
as sudden changes, such as those caused by fast moving clouds. The algorithm is also

required to perform well for a broad spectrum of lighting intensity levels.

2. Miscellaneous Movements - The algorithm should be robust so that it does not segment
events caused by other moving objects within the field of view, such as swaying trees

which is a specific artefact within the monitored data used.

3. Object Entering and Exiting - The algorithm needs to determine when a new object has
entered the scene, as well as when the object is leaving the scene. In addition, it should

not be affected by the permanent shadows in the scene.

4. Slow Moving Objects - Because there are restrictions in the road, vehicles are often
moving slowly. The algorithm should be able to identify the difference between a

vehicle moving slowly and a vehicle entirely stopped in the scene.

5. Adaptive Background - the car park entrance can sometime be used as a loading
bay. Therefore the algorithm needs to adapt quickly to classify the parked vehicle as

temporary background.

The above list is all of the challenges that need to be overcome by a single algorithm. The
techniques that are chosen need to perform well under all of these scenarios, rather than the

best performing one, under a single challenge.

4.4.3.1 Background Subtraction

Taking the above analysis into consideration, the most suitable approach should be one that
can determine changes between frames within a video sequence. The most widely used

approach is the Background Subtraction (BS).

Background subtraction is a very active research field where various methods have been

proposed. They all form a common characteristic where a background reference image is
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constructed over a number of training frames. Each pixel in the new image is subtracted from
the corresponding reference pixel and a threshold is applied to determine if the pixel belongs

to a foreground or a background.

The difference between the methods is the techniques used to construct and update the

reference background image. The most commonly used approaches are outlined below:

e Temporal Filters - In this approach, each pixel value in the reference image is determined
based on either the maximum, median and minimum values of the corresponding pixels
within the training frames. Lo and Velastin (2001), suggested using the median value

of the last few frames to construct and subsequently update the reference image.

e Gaussian - This approach is based on fitting a Gaussian probability density function to
each individual pixel of the reference image by using the corresponding pixel values
in the training images. For each pixel, there will be a mean and a standard deviation.
Because the rate that the background image is updated is often controlled by a weight,
it allows variation in the lighting conditions. Wren et al. (1997) proposed a single
Gaussian. Other researchers developed a single adaptive Gaussian to overcome gradual
changes in variation in lighting condition. Furthermore, Stauffer and Grimson (1999)
reported a more sophisticated approach known as a Gaussian Mixture Model (GMM).
The GMM approach has the ability to model the multiple background objects, thus
made it possible to detect the background objects that are not permanent and appear at

a rate faster than that of the background update.

e Kernel Density Estimation - This approach aims to eliminate the drawbacks caused by
the limited number of training data that is used to approximate the histograms used
to create the Gaussian probability density function (PDF). Elgammal et al. (2000)
modelled the background distribution by using a non-parametric model based on Kernel

Density Estimation on the buffer of the last n background values.

e Eigenvalue - The method is not so popular due to the computational cost, thus making it
inefficient in a real-time application. The method utilises the eigenvalue decompositions.

Seki et al. (2003) applied the eigenvectors of blocks of the pixels, but Oliver et al. (2000)
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introduced the decomposition of the whole image to avoid the tiling effect caused by

the block partitioning in Seki’s methods.

The above approaches all have their advantages and disadvantages, as outlined in the review
paper of Piccardi (2004). Ideally the detection of the foreground object should be accom-
plished in real-time with a visual surveillance system. Therefore when considering the choice
of BS method, a balance between accuracy and speed needs to be made. The most suitable
method is to use the GMM method that was supported by Piccardi’s comparison. Furthermore,
GMM has been shown to be the most versatile and robust across a range of different video

sequences, as illustrated in the experimental comparison conducted by Benezeth et al. (2008).

This section only covers a selection of available techniques. Some of the new techniques
with improved performance have also been suggested by Barnich and Van Droogenbroeck
(2011). However, the robustness of these new methods on different video sequences has not
been shown. In addition in a recent experimental comparison conducted by Brutzer et al.
(2011), the GMM has shown to outperform some of the new state-of-the-art techniques. This
further justifies the choice of adopting the GMM as the BS approach within this framework.
Furthermore, the approach described in Stauffer and Grimson (1999) paper makes GMM

method ideal to solve all requirements listed in 4.4.4.
GMM Implementation

This section will outline the mathematical and assumption made for the GMM, based on the
Stauffer and Grimson’s Stauffer and Grimson (1999) paper. The approach models every pixel
with a mixture of Gaussian and describes the probability of observing a certain pixel value, z,

at time ¢

K
P(z;) = sz',t (Tt it Ez’,j) 4.1)

=1
where K is the number of Gaussian distributions and describes an observable objects, it
can be either a foreground or background. 7 (z:, pis, Xi ;) is the i** Gaussian probability
density and is represented by the mean p;;, and covariance matrix X; ;. As the Gaussian’s

multi-variant removes the costly matrix inversion and the three colour channels are assumed
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to be independent and have the same variance, therefore, simplify the covariance matrix to be

a diagonal with the form ¥; ; = o21.

Matching is conducted with each new pixel value z;, against each of K Gaussian distributions.

It is defined as:

(@ —pie) g 4.2)

Oit
where T is the threshold currently set to be 2.5 standard deviations. The parameters of the

matched components are updated as follows:

wig=(1—-0o)wis1 + o 4.3)
pe=(1- P)bltt-1 +p.2¢ 44
of=1—p)oiy+p.(zs— )" (T — 1) | 4.5)

where « is a predefined learning rate and p is learning rate defined by « and the closest

Gaussian distribution.

For unmatched distributions the o and p do not get updated and the weight is updated by:
wi,t = (1 — a) wi,t_l (46)

Allowing decay to occur, the least probable distribution (the one with the largest standard
deviation) is replaced with a distribution of the current value as the mean, a large initial
variance and a small weight.

To determine the portion of the mixture model that best represents background process, the K

distributions are ordered based on a fitness value defined by ~“ and only the most reliable B

Ot
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is chosen as the background model:

k=1
B = argming (Z W > 7') 4.7
5

where 7 is a user defined threshold.
Connected Components

The GMM method outputs foreground pixels for each new frame. The labelled foreground
pixels can be segmented into regions using a connect component algorithm. As it is considered
to be an object of interest, the size of the labelled components needs to be greater or equal

than a threshold 7, that is set to be 3000 pixels.

Once it has been determined to be an object of interest, the total pixel value, centre of
mass, and bounding box size coordinates are also stored. The main function of the stored
information is to extract the useful information and remove the redundant information. The

information could also be used for later processing, such as tracking.

4.4.4 Discussion

In the data capturing design introduced above, the data meeting the requirements expiained in
Section 4.3.3 are used as the foundations of this project. One of the key steps is the visual
surveillance challenges in the extraction of the object of interest from the background images.
The popular GMM background subtraction techniques is extended to remove some of the

redundant information with the captured data and to create the extraction database.

An extension of the background subtraction is to combine it with the Kalman filter to create
a tracking algorithm. This extension algorithm has been used to create the content of two

surveillance TV programs using the data captured from the experiment test-bed.

Although the GMM is a very popular technique, there are some limitations when applied to

this dataset, these are:
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1. Low Lighting Intensity - As natural light is the dominant source for the car park so

when the intensity is low, the algorithm is unable to identify the vehicles.

2. Shadows - This causes the increase of the number of false-positives, mainly by the
shadows as pedestrians walk by and through the car park. The shadows from vehicles

are less of an issue at the BS stage as they are already the dominant feature.

3. Group Pedestrians - When a large group of people walk in close proximity, the al-
gorithms is unable to separate them out, which will cause a false-positive vehicle

identification.

These limitation are the results of using a single algorithm to meet all the challenges listed in
Section . Due to this requirement a balanced threshold, as shown in Equation 4.2 was chosen
for the GMM process. However, even with the limitations, the algorithm has successfully
met our original requirements of removing the redundant information,as a manual audit all of
the events of interests were captured and the false-positive results were also removed, albeit

manually.

4.5 Summary

This chapter states that the video surveillance network is a valuable tool to achieve a range
of security purposes, as well as a range of commercial challenges. An examinatidn of the
available datasets has shown that the datasets are unsuitable for solving challengés in both do-
mains simultaneously. It also inherits a range of limitations which decreases the effectiveness

of the imaging techniques used to solve the objectives.

This leads to the design of an experimental test-bed to fully utilise the scenario. The objects
of interest chosen for investigation are "Vehicles". Although a lower interest of using vehicles
as the object within the research community exists, due to the lack of available datasets,
the analysis in Section 4.4.1 claims that vehicles are still an important subject in a range of

security and commercial objectives.
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The review of the objectives has also shown tha,t in a video analytic system, the correct
re-identification and/or classification of the subject is necessary. As Chapter 3 has already
demonstrated the re-identification challenges have various obstacles which effect the results
a further examination of the challenges in the classification scenario is explored in 6. As
the completion of these tasks would require some types of features related to the object of
interest, Chapter 5 will examine the features that can be extracted from vehicles and the
associated uncertainties related to each of the features and within the various stages of the

video surveillance system.

This chapter also demonstrates the application of segmentation techniques to extract the
object of interest from the background, which is believed to be the first step in any VAC
application. Previous discussion also reveals that there are a number of limitations that are
associated with the techniques and influence the accuracy. This proves that uncertainty exists
in every processing step and may propagate down the pipeline. Furthermore extending the
segmentation techniques with Kalman filtering, makes a tracking algorithm which was used
to produce two demonstration videos that have been viewed to a broad audience and forms

part of the publications that accompanies this thesis.
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Chapter 5

Uncertainty Within Video Surveillance

Systems

5.1 Introduction

Based on the design of the experiment test-bed in Chapter 4, the aim of this chapter is to
first outline the uncertainties within a complete video analytical system, from converting the

analogue world to its digital representation to meeting the video analysis objective.

Chapter 4 also concluded that the successful completion of re-identification and classification
will depend on the extractable features related with the object of interest. This chapter will
also examine features related with vehicles and their associated uncertainties when being
processed. Although the examination concentrates on vehicles, some of the features may
become useful for the researches related with people. The review taken place in this chapter
will take a generic view on the approaches, where reference to a specific approach a link to

the relevant chapters will be given

5.2 Uncertainty Within Video Surveillance Systems

This section will first outline uncertainty caused by the hardware that is used by a video
analytic system to convert the real world to its digital representation. This is followed by an

exploration into the uncertainty created by the generic activities within the software used to
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process the captured footage to achieve the VCA objective.

5.2.1 Data Uncertainty

Physical Sensor Quantisation
Noise Noise Noise

Real g S Transmisson
World ysica gl Compressed and
| : atl — —_—
Scene Imaging — Image > Image Storage

Figure 5.1: Image Processing Pipeline, converting the analogue to the digital representation
creates various artefacts which can contribute to the uncertainty, even before it is processed
by a VCA.

Figure 5.1 shows a generic processing pipeline to transform real world scenes into video data
that can be processed by a video content analysis system. The figure also shows the type of

noise that would increase the uncertainty of the video data.

5.2.1.1 Physical Noise

Physical noise is caused by the defects of the hardware involved with a video camera, such as
the lens. The camera is similar to the human eye. In the eye there are hundreds of millions of
light-sensitive cells which is also equipped with the ability to perceive intensity (brightness)
in a remarkable range of nine orders of magnitude (Sonka et al., 1999). In contrast, a current
state-of-the-art surveillance video camera only has a few million photosensitive sensors and
a range of intensity sensitivity to about 4 orders of magnitude. The amount of information
available from a VCA system has already decreased greatly compared with the human eye.
This is a key contributor to some of the defeat in segmentation systems, highlighted in Section

4.4.4, especially in a low light condition.

Other sources degrading of the image in a video camera were addressed by Morris (2004).
These sources include Geometric distortion, refractive index of the lens and the uneven

sensitivity of the image sensors. As Morris mentioned, although these degrading effects are
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difficult to measure, most camera manufacturers will combine these effects into the Signal to

Noise Ratio (SNR).

5.2.1.2 Sensor Noise

Some sensor noise will result from the conversion of the analogue signal to its digital
representation, so the measurement of the physical property will have to include some
measurement of uncertainty (Taylor, 1997). The measurement of uncertainties in a camera
is often associated with the electronic sensors used to convert the radiant energy involved
with an electrical signal of the photosensitive cells. The uncertainties are also quoted by the

camera manufacturers as the device’s SNR. Two main types of noise are:

1. Salt and Pepper- This randomly introduces pure white or black pixels into the image.
Although it is minimised when high resolution images are used, it still contributes to

the overall information imperfection.

2. White Noise and Gaussian Noise - This arises due to randomness superimposed on the

signal as being captured or processed.

5.2.1.3 Quantisation Noise

Quantisation noise is introduced by the need to compress the video data in order for effective

transmission and storage, which is a similar process as the neurons linking the eye to the brain.

The compression of the information would often cause further degradation of the image.
According to Richardson (2004), video compression is realised by removing the subjective
redundancies which are elements of the video sequence, removed without significantly
affecting the viewer’s perception of visual quality. However, as Chen et al. (2008) mentioned,
the measurement of perception depends on the "viewer". When the "viewer" is an image
processing algorithm, the measure is the sharpness of the decompressed image. Chen et
al. revealed that decrease in the sharpness is unavoidable, even when a lower compression
rate is used. The loss of sharpness will affect the edge information, as mentioned in Section
4.4.2, therefore degrading the quality of information available to any VCA system causing a

reduction in the overall accuracy of the result.
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5.2.2 Software Uncertainty

Here, the software refers to a video processing system such as the pipeline illustrated in Figure
4.1. Due to the existence of these factors within almost every system, a very specialised
field known as Soft Computing exits to develop low cost methods to tolerate the uncertainty

created by these factors.

Generally there are three main types of factors that may cause uncertainty in video analytic

software. They are known as Data Model, Training Data and Mathematical assumptions.

5.2.2.1 Data Model

As discussed in Section 4.2.3, the majority of the processing blocks in a VCA system require
the support of some data model. For instance, in a segmentation process, the detection of the
foreground blobs is supported by background model. A simple model could be a threshold
value for the difference between frames to define the foreground pixels. A complicated model
could be the creation and updating of the reference background image, which is subsequently
subtracted from the subsequent image to acquire the foreground pixels, as addressed in Section

444.

Both of these models will cause a change in the appearance of the blob. If it was incorrectly
created or updated, the change would contribute to uncertainties, which is propagated down
the processing pipeline. In a simple model, if the threshold is incorrect, the "blobs" will
appear either larger or smaller than expected. In a complex model, the frequency at which the
background model is updated is important to eliminate the effects of changes in illuminations,
and may influence the detection of the foreground pixels. As the illumination would normally
create shadows, it changes the appearance of the ”blobs”. Although various methods tried to
sort out the issues, as reviewed by Sanin et al. (2012), the entire removal of shadow seems to

be imbossible.
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5.2.2.2 Training Data

Another effect of a data model for processing blocks is the training data. Typically, a model is
created by maximising the performance with respect to the training data. In these situations,
the over-fitting of the data would occur. As Tetko et al. (1995) stated when over-fitting occurs,
the model will learn the error of the training data rather than generalising a model to represent
the environment it expects to evaluate. This increases the uncertainty in the system outcome

when conducting analysis for previously unseen data.

Prince (2012) expressed that the benefit of using data with reduced dimensions is that the
model would require fewer parameters therefore it would be faster to learn and to use for
inference. However, Bevington and Robinson (1969) stated that due to the reduction of
dimension some of the information would be lost and the lost information is difficult to

measure. This is sometimes associated with the errors in the data model.

5.2.2.3 Mathematical Assumptions

The development of a video analysis system is driven by a computer of high computationalﬂ
power with a relatively low cost. Such a computer would support the computation of a complex
mathematical program for processing blocks of models and solving difficult problems in a real
life. The use of mathematical models to define real life scenarios can be extremely difficult
as described by Kennedy and O’Hagan (2001). To simplify the mathematics calculation and
complete the process in a reasonable time frame, designers sometimes make some assumptions
or modify the parameters to achieve the best results. As a consequence, the accuracy of the

results would be affected when data violating these pre-defined parameters is used.

5.3 Vehicle Features Uncertainties

This section will also examine features related to vehicles and their associated uncertainties
when being processed. The examination will mainly cover the feature usage when identifying
vehicles, however, some of the features may be more predominantly used in researching

challenges containing people.
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5.3.1 Colour

Colour is one of the most important factors in any computer vision challenge because it
contains a lot of edge information that is useful in segmenting the foreground and background

pixels for recognising the object of interest.

Once the object of interest has been extracted, colour is also valuable to describe both people,
as shown in 3, and vehicles. The simplest form of colour description is a grey scale image,
which is a measure of intensity with a range from total black to white. As mentioned in
Section 5.2.1.1, the human eye senses intensity in nine orders of magnitude. In order to
digitally encapsulate it, each pixel would require 4 bytes and a typical high definition image
would require 8 megabytes of storage, which is impractical within a surveillance environment
for both transmission and storage. To improve the storage requirement, a compromise is made
and the typical intensity level is reduced to 1 byte (0-255). The compromise means that a
large proportion of intensity information, normally required in low light situations, may be
lost. Meanwhile, it may increase the level of uncertainty in visual challenges under low light

situation, as described in Chapter 4.

Grey scale image only uses one colour channel to get better description. The multiple channel
descriptors are used to create a colour space. The most popular colour space commonly used
is the Red, Green and Blue (RGB) colour space, as the same colour space is used by the
human eye. With 1 byte for each colour channel, there are 16777216 possible combinations
of colours, which give far better description ranges than grey scale alone without demands of

large storage.

To create the description of an object, an image is converted to create histograms representing
the number of pixels that have the same intensity level in each colour space. This will create a
sparse‘ histogram where every possible colour is represented. This will become uninformative,
as most of the colours will never occur and those that do occur will mainly occur once or twice.
This sparse histogram will be difficult to use in a reasonable way and would require large

processing power. A potential solution is to divide the histograms into smaller discrete bins.
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Each represents a range of possible values. There are some uncertainties, possibly created by
the bins, depending on the size of the bin. For instance, if the range is too big, the key colour
characteristics are merged together. If the range is too small, the problem of sparse histograms
would resurface. Another technique that could be employed here is the use of a knowledge-
based histogram binning process, similar to that used by Gray et al. (2007). Here, the object
of interest is broken into known regions based on the knowledge that certain areas will have
more variation than other, different sizes of bins can be chosen. Although this approach can
create a better descriptor, therefore lowering the uncertainty, it still requires the correct size of
bins to be chosen otherwise the histogram issues above would still exist. Although the uncer-

tainty created is not ideal, it is outweighed by the advantages created by the colour histograms.

Another contributor of uncertainties when using RGB colour space is the variation of colour
observations with respect to changes in various environmental conditions. One possible
solution is to use the Hue-Saturation-Value (HSV) space, as HSV is more tolerant (Sumalee
et al., 2012) to such change. All of the colour spaces, including the other popular colour
space, have their own merits and could be transformed to the RGB space with ease. Although
there are different tolerance levels to the variations, the continuous nature of the colour spaces
makes the comparison of two objects very difficult, as it is unlikely that the same object
would have the exact same measurement due to the uncertainty of the measurement results.
To reduce the uncertainty produced by the continuous characteristics, some researchérs quan-
tised the colour spaces to produce discrete subsets of colour known as colour codebooks.

Similar to the histogram, the uncertainty in the codebook arises from the range of colours used.

Within the surveillance context, colour is extensively used for the re-identification of people,
as demonstrated in Chapter 3. Chapter 3 has also shown the accuracy level is effected by

various aspect of the data that a single colour feature cannot resolve.

Compared to people, the re-identification of vehicles based on colour is less extensively

researched. Possible reasons are:

1. Colour alone could not re-identify the vehicle as many vehicles share the same colour.
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Hence it is not a distinctive characteristic.

2. An appropriate colour model is not straightforward to determine because sometimes
a single value is useful, in other situations, colour can be described by several colour

channels.

3. The overall colour of a vehicle is difficult to summarise as windows and wheels have
large contrasting colour schemes compared to the body. Psyllos et al. (2011a) suggested
a solution. They collected a RGB histogram for a range of patches on the vehicle and
chose the peak of each of the colour channels as the components to represent the overall

colour.

Considering the challenges related to colour and using colour for re-identification vehicles, the
measurements from two vehicle colour sensors” could be used to produce an estimate of the
probability whether these two observations refer to the same vehicle, or the two observations
refer to two vehicles with the same colour model. In this scenario where colour may have a
high variance, techniques such as Fuzzy logic can be used to create the similarity probability

measurement required for the input into the high level fusion system.

5.3.2 Automated Number Plate Recognition (ANPR)

Although a vehicle’s number plate (NP) is its most discriminating feature, there are a number
of issues with the correct recognition of these number plates. One of the major issues is the
non-uniform standard across the world. Even in the United Kingdom, there are different
alternatives depending on where vehicle is registered, as stated by Rhead et al. (2012).
Although ANPR has been widely used for law enforcement, a range of general issues still

require better solutions, such as:
e Poor Resolution - These issues can be due to the low resolution cameras, when the plate

location is far away from the camera.

e Blurring - Caused by the motion of vehicle being faster than the frame rate of the

camera, thus creating motion blur.

e Lighting - Number plates, within the UK, have a retro-reflectivity coating that was

introduced to improve the visibility of unlit vehicles parked on roads. However it can
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affect the captured image if the light intensity is high therefore the reflected cause of

the images to be blurred.

Due to these problems, many of ANPR systems require specialised equipment and may work
better, only when the vehicles in question are travelling at a relatively lower speed. However,
even when this equipment is used, there are specific struggles associated with the ANPR

procedures. An ANPR procedure involves two main problems:

1. NP Localisation - The ANPR procedure relies heavily on correctly locating the bound-
ing box that contains the possible NP. Generally, it is quite accurate. The uncertainty
potentially introduced is that multiple areas can be classified as NP, such as stickers con-
taining letters. These uncertainties can be reduced by enforcing government regulations

to eliminate false-positive areas.

2. NP Recognition - It relies on the Optical Character Recognition (OCR) techniques to

recognise the number on the plate.

Compared to using OCR techniques for handwriting, the level of uncertainty in recognition
of NP has been assumed to be very small because the NP needs to conform to government
standards. However, the uncertainty is increased due to the decreasing clarity as the issues
mentioned above, as well as the introduction of foreign bodies such as screws and mud on the

NP, as addressed by Rhead et al. (2012).

The above highlights many factors that may affect the accuracy of recognising a NP. These
challenges have been categorised into plate variation and environmental variations by Du
et al. (2013). The authors outlined that the accuracy rates of the current state-of-the art
techniques are typically between 90 - 97%, depending on plate formation. The majority of
the techniques described are designed for vehicles that are almost stationary, and the rate of

accuracy decreases when moving-image (video) data is used.

Some uncertainties are also found when comparing the outcomes of the ANPR that is dis-
played by strings. A popular metric of string comparison is the Hamming Distance metric

(Hamming, 1950), which outputs the number’s position at which the corresponding string are
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different. A major shortfall of this metric is that the strings need to be of the same size because
a real NP string may have variable length. Even in the UK, the NP length varies between
2-7 letters long. To resolve this shortfall, fuzzy string searching methods adopted for DNA
comparisons can be employed. One popular metric is the Damerau - Levenshtein distance
(Damerau, 1964; Levenshtein, 1966). It measures the number of editing operations needed
to make the strings identical by taking 4 different editing operations; insertion, substitution,
deletion and transposition. Since all editing operations, by default, are assigned the same
weight, some comparisons may result in identical scores. For example to compare the score
of ABC, the following strings will score the same AB (one insertion), ABCD (one deletion).

Thus a degree of uncertainty still exists in the measured metric.

Other challenges resulting in the uncertainty, when using the NP alone to fix a particular
vehicle, are the partial blockage of the NP and circumvention techniques to change or remove
the NP. In these circumstances the challenge of using one object feature to re-identify the
object is difficult. This further illustrates the need to fuse multiple features to reduce the

uncertainty in re-identification results.

5.3.3 Vehicle Manufacturer’s Logo

A vehicle manufacturer’ logo is another distinctive feature related to the vehicle that can assist
with the vehicle re-identification process. Unlike the NP, a logo can’t be modified as easily, it

is therefore ideal as a secondary feature.

The importance of correctly identifying a manufacturer logo is not restricted to the security
context. Detection of the logo is also important in identifying counterfeit products, as
illustrated by Lei et al. (2012). In addition, it can also be used to track on-screen time
of sponsor logos of a sporting event. For a visual system, the contour of the logo is very
importélntin its idendification; ideally it should be unique so that it can be easily classified. as

shown in Figure 5.2.
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Figure 5.2: Example of Typical Brands, showing the contours of the logos which are typically
used to identify the brand.

The distinctive contour means that the shapes can be easily categorised by the edge information
alone. However the logos used by some vehicle manufacturers have very similar contours, as

illustrated in Figure 5.3.
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Figure 5.3: Similar Vehicle Brands, where contours that very similar but can be distinguished
by the detailed patterns within the logo

To distinguish the logos illustrated in Figure 5.3, the information contained in the contour
should be compared. If images shown in Figure 5.3 are used, the level of uncertainty is lower
as the edge information inside the contour can be distinguished easily. However, thé quality of
the logo image captured by the surveillance system would significantly reduce the capability
of edge detection system for identifying all the information inside the contour. Major causes

for the reduction are:

e Size - Compared with the vehicle, a logo only occupies a very small percentage of the
vehicle’s area. The size will also vary depending distance between the camera and the

vehicle.

e Orientation - Depending on the view point a logo’s edges would appear to be merged,

s0 as to loss some of the distinguishable edge information.
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The challenges above are not restricted to classify similar contoured logos. They also
contribute to the uncertainty when classifying unique contoured logos. Another challenge
that results in the uncertainty is the number of variants of a vehicle’s logo that is currently in

circulation as demonstrated in Figure 5.4.

VAUXHALL VAUXHALL

Figure 5.4: The various incarnations of the Vauxhall logos which are still actively being used
on UK roads

Future uncertainty is also introduced by the classification approach. Two popular techniques

are suggested below:

1. One-against-all classifier - Each manufacturer’s logo needs its own classifier, n manu-
facturers require n classifiers. Therefore, for a given logo there will be n estimates. For
similar logos, as illustrated in Figure 5.3, the difference between the estimates might
be very small, therefore, certainty of the results is reduced. The current best result is
Psyllos et al. (2010) and works with averaging 91% overall classification success for 10

categories. However it has some bias in the data used, such as capturing the data close
up.

2. Multi-class Classification - There is a limited exploration of using this technique for
vehicle classification, partly due to the subtle difference between some of manufacture
logos and it is made difficult by the low resolution image. However benefits exist
in the use of a single multi-class classifier rather than multiple classifiers, such as
the reduction in the number of classifiers that should be trained. A state-of-the-art
classification technique is employed for manufacturer’s logo classification, in Chapter

6.

Apart from the challenges discussed above, the correct classification of the vehicle’s logo

is heavily dependent on the correct location of key reference points on the vehicle. In the
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majority of techniques, the key reference is the location of the NP, and alternatively, the
location of the headlight or tail lights are also used. Therefore, the amount of uncertainty

introduced by the decency on the correct location of these key features should be controlled.

5.3.4 Vehicle Body Type

Classifying the vehicle’s body shape into distinctive categories gives a characteristic that
is unable to be modified. Examples of the silhouette of popular vehicles are represented in

Figure 5.5.
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Figure 5.5: Vehicle Silhouette Example, extracted from the side view of the vehicle showing
distinctive characteristics of the car, van and SUV categories

The key differentiators between the categories are the shapes made by the silhouette. The ex-
traction of the silhouette requires the extraction of the foreground pixels from the background.
However the extraction imperfections, such as shadows, as identified in Chapter 4, is a major
source to the uncertainty of the classification result, as shown in the Van and SUV contours in

Figure 5.5.
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Figure 5.6: Vehicle 3D silhouette models used for the classification of vehicle types, by
projecting it into a 2 dimensional image, as suggested by Koller et al. (1992).
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The silhouettes displayed in Figure 5.5 are only present when viewed from the side, however,
the position of the majority of surveillance cameras is of a top-down view of the vehicle. In
a 2 dimensional scene, the vehicle will appear to be flat. A possible solution is to project a
3 dimensional silhouette, as those illustrated in Figure 5.6. Koller et al. (1992) suggested
a predefined model of the image to see if the vehicle fits or not. Alternatively, Buch et al.
reported the projection of the 2D view into a 3D representative before fitting the model. Both
of these solutions offered a degree of freedom in the viewing angle, but as Buch stated, due to
the line detection techniques used to fit the model, there are still limitations to the viewing

angle.

In addition, both of the solutions require the vehicle to be within a certain distance from the
camera, as the predefined model is produced, based on the expected size of the vehicle in an
area of the scene. Becaﬁse there is little variability in the size of the model, the uncertainty
in the classification results will increase if the vehicle is not in the predefined area in the
scene. Kanwal et al. (2013) conducted a review of the state-of-the-art techniques used for
the classification of the body shapes. It concentrated on the various software for vehicle
classification techniques with accuracies between 82% — 95%. A source of the uncertainty
is the subtle difference between the vehicle classes, as demonstrated in Figure 5.5. When

comparing SUV and Van categories, it leads to some incorrect classifications.

Some researchers believed that direct comparisons between approaches are an inappropriate
definition of the vehicle, as body shapes are different between each of the methods. The lack
of cohesion is mainly due to the different variations in the subcategories of the "car" category,
as shown in Figure 5.6 there are three different definitions of cars. Although a large variation
in category is ideally used as key characteristic in the re-identification process, a large number
of categories dilute the effectiveness of the classification technique. This is due to the subtle
difference between the classes causing higher rates of misclassification and increases to the

level of uncertainty.
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5.3.5 Vehicle Trajectory

A vehicle’s trajectory is not a charaéteristic commonly used for the re-identification of vehicle.
However, it is a measure that could record the driver’s usage pattern in driving a given vehicle
to judge if a vehicle is being driven by a different driver. From a psychological viewpoint,
a driving pattern could be used as a key identifier for the driver of a given vehicle. If the
driver is a repetitive user of the car park, the route and driving pattern stays quite consistent,
especially in a condition that has limited variability, i.e. only have two alternative routes.
Therefore, these features can be used as part of the re-identification problem for answering
queries such as "is the vehicle driven by someone else?". The trajectory information relies
heavily on the tracking information that is usually obtained through the tracking algorithms

dealing with the video data. There are two main classes of tracking algorithms. They are:

1. Data Association - Kalman Filter (Kalman, 1960) proposed the famous approach known
as data association. His target tracking process consists of a recursive process where at
each frame of the object’s location was predicted by using a motion model and then was
updated based on the latest observation. The appearance of the target model would be

compared with all the records in order to find the closest model that matches in target.

2. Data Driven - Comaniciu et al. (2000) reported the popular mean-shift approach. The
mean-shift algorithm does not first segment objects but rather uses information, only
retrieved from the data itself to build the target model. The mean-shift method tracks a

given target by searching for its model in every image of the sequence.

Both of the tracking models perform equally effectively when tracking a single target in
an uncluttered environment. However, when the environment is complicated and multiple
targets are in close proximity, the uncertainty associated with the tracked target increases. The

reasons may due to those listed below:

¢ Limited ability to effectively distinguish multiple targets in dense space.

e Occlusions caused by an unexpected change to the expected model by changes of the

appearance of the target, which may be caused by:

~ Split - A set of pixels are defined as background, when a tracked target passes

through these pixels, they split the target.
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— Merge - If two or more targets move close proximity to each other, they could be

merged together.

The trajectories can be mapped within an x-y coordinate map, the similarity between two
or more trajectories can be the closeness of each of the points on the trajectory. In the
experimental bed, the number of alternative routes is limited. Therefore, a lot of users will run
similar trajectories so that it can be used as an effective discriminator for the re-identification
process. It can also be used as secondary feature to help achieve other security or commercial

objectives.

There are situations where there is a road block, this will alter the effectiveness of this feature
in cases where the drivers are forced to drive in alternative patterns so that a lot of uncertainty

arises when using this feature to identify the driver under these circumstances.

5.3.6 Spatio-Temporal Information

Like trajectory, Spatio-temporal information can also be used to infer the behaviour of the
drivers. Two cues inherited with the experimental test-bed are the time of the observation and
the gate that the vehicle enters (or exits). Both of the cues are associated with the automaticity
of human behaviour. In addition if there is a short time scale between entering and exiting a
vehicle, this may demonstrate other behaviour patterns, such as cars driving away because a

car park is full or the car is used for delivery.

Both of these cues will have negligible measurement noise as there are multiple cameras
involved. However, a very low level of uncertainty may be introduced if the internal clocks

are out of sync.

5.4 Summary

This chapter discusses the factors that may influence the uncertainties, from both the hardware
and software, in a complete video analytic system. Some of the uncertainties are unavoidable

such as the intensity restriction of the camera, and some are introduced by the process to
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improve the performance of the system such as mathematical assumption. The level of
uncertainty would increase as the information is propagated down the system pipeline, thus
decreasing the level of accuracy of the outcome of the system. Current research regarding
the measurement (Taylor, 2009; Lira, 2002), quantification (Kennedy and O’Hagan, 2001;
Matthies, 2007) and propagation (Ku, 1969; Lee and Chen, 2009) of uncertainty are active

research areas for a variety of research fields.

The chapter also carries out a discussion for the type of uncertainties associated with fea-
tures involved with vehicle. Although some of the challenges have already achieved a very
high level of accuracy, uncertainty associated with the result still exists, due to a range of
limitations and variations. The discussion reveals that under these limitations, the use of
additional features can help to lower the uncertainty, for example, when there is a misreading
of the number plate, the vehicle manufacturer’s logo can be used as verification to the vehicle

identification.

These findings conclude that fusion techniques have merits in combining different features for -
improving the accuracy of a range of different challenges. They also show that the majority of
the video analytic challenges would require either re-identification or classification, therefore

it is necessary to have a deeper study for these techniques.
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Chapter 6

Vehicle Logo Categorisation

6.1 Introduction

As stated in Chapter 4, the correct identification of vehicles is important in a wide range of
surveillance situations. Currently, the completion of this task relies predominantly on the
correct identification of the characters on the vehicle’s number plate (NP). As Section 5.3.2
indicated, however, there are many challenges in correctly reading the NP A secondary key
attribute of the cars is needed to identify the vehicle in these situations. One possible solution’
is the recognition and classification of a vehicle’s manufacturer logo, as these are fixed in the
front and rear of the vehicle, similar to the NP. In addition, although there are variations of
the same manufacturer’s logo, as shown in Figure 5.4in Section 5.3.3, these can’t be easily

altered once they are installed.

Recent research has relied on the texture information of the vehicle’s grille to find a coarse
Region of Interest (Rol) where the logo could be finely located, as the majority of manufac-
turers like to install their logo at the centre of the vehicle’s grille. Some manufacturers will,
however, also place their logos on top of the bonnet, where grille information becomes less
relevant. This is e;'en more apparent when attempting to locate the logo on the rear view of
the vehicles, where the grille information is unavailable. This increases the difficulty of the

research. To break the limitation, the investigation will devise a new process to locate the

logos from both the front and rear views.
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The data used for this challenge has been captured by using the apparatus in our experimental
test-bed, as demonstrated in Section 4.4. The data will, therefore, simulate vehicles in a
real-world situation, where the logos are of varying sizes and viewed from both the front and
rear, under varying lighting and environmental conditions. Using the novel logo localisation
approach, the classified logo regions are read by the Fisher Discriminative multi-class classifier
to determine the most likely category. In this project, the vehicle logo categorisation process

is divided into two stages: Logo Localisation and Logo Classification.

6.2 Related Work

This section will first evaluate the current research activities that have been undertaken to
tackle both the NP localisation and NP classification challenges, followed by an examination
of the multi-classification techniques that have been implemented within a wider research

arca.

6.2.1 Localisation

The localisation of the logo, in a view of the vehicle, is an essential first step for the achieve-
ment of its accurate classification. The majority of localisation research relies heavily on
some prior knowledge such as the position of the number plate (NP). Once the position of
the NP is located, researchers can define a Region of Interest (Rol) relative to it. A number
of authors (Li and Li, 2009; Liu and Li, 2011; Yang et al., 2012) have assumed that the Rol
for the vehicle logo is a patch above the NP with a size relative to the extracted NP. Other
researchers (Dlagnekov and Belongie, 2005; Lee, 2006; Psyllos et al., 2011b; Petrovic and
Cootes, 2004; Psyllos et al., 2010; Wang et al., 2007) defined the Rol as an area on the front
of the car specified relative to the size and location of the NP, incorporating the NP and
other dominant features such as grille and head lights. Furthermore, instead of one reference
point, Lu et al. (2010) adopted three reference points to define a Rol containing the vehi-

cle logo and the grille. Their three reference points are the NP, and the left and right headlights.

From a large Rol, Lee (2006) extracted a smaller area of interest that incorporates the texture
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information of the grille and logo. The texture information of the grille was also employed
by the other authors (Li and Li, 2009; Liu and Li, 2011; Lu et al., 2010; Yang et al., 2012)
which was combined with edge information obtained from different edge detectors and filters.
The authors reduced the size of the Rol to incorporate the logo alone. Wang et al. (2007)
suggested the use of the peaks in the edges’ vertical direction projection as the initial location,
to start a symmetry search in order to locate the logo. Psyllos et al. (2011b) and Psyllos et al.
(2010) stated a completely different method known as the Phase Congruency Feature Map

and its derivatives to divide the Rol into smaller areas such as left/right light, grille and logo.

An attempt to remove the dependency on the NP is described by Sam and Tian (2012), who
utilised the Modest Adaboost (Freund and Schapire, 1995) algorithm to search for vehicle
logos, represented by extended Haar-like features. However, the gradually sliding window
used in the search makes the method sensitive to the complicated background, thereby limiting
its application. The Zhang and Zhou (2012) method applied the frontal images of the vehicles
and adopted a bilateral symmetry detection based on a set of Size-Invariant Feature Transform
(SIFT) features (Lowe, 1999). Although this method has claimed a localisation accuracy of
98.91%), its reliance on the grille information makes the method unsuitable for rear-view logb

localisation.

6.2.2 Vehicle Logo Classification

Previous research on the categorisation of a vehicle manufacturer’s logo is inadequate, even
though it is an attribute which is useful in a vehicle identification system. Early work by
Dlagnekov and Belongie (2005) used SIFT features to re-identify a vehicle from the whole
rear-view of the vehicle, not just the logo. This approach attained 89.5% re-identification
rate of total 38 test samples. Psyllos et al. (2011b, 2010) elaborated Dlagnekov and Belongie
(2005) work of proposing a SIFT-based enhanced matching scheme, which only concentrated
on the logo. The scheme boosted the categorisation accuracy higher than the standard SIFT-
based feature-matching method developed by Dlagnekov and Belongie (2005). Wang et al.
(2007) presented a method for logo categorisation that exploited a template matching and a

histogram of orientation gradients (HOG) of the logo. The methods proposed by Wang et al.
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(2007), Psyllos et al. (2010) and Psyllos et al. (2011b) faced the issue of reduced robustness
under variation of the environmental conditions, such as lighting levels. An improved solution
was recommended by Burkhard et al. (2011). The solution relied on the Fourier shape descrip-
tors, introduced by Zhang et al. (2001), who characterised shapes based on their curvature as
they are not sensitive to distortion due to changes in environmental lighting effects. However,
this method is highly dependent on the logo segmentation, as it requires the logo to be the
dominant element in the Rol. Recently, Sam and Tian (2012) applied the invariance property
of Radial Tchebichef moments (Mukundan, 2005) to recognise high resolution segmented
vehicle logos. They achieved a recognition rate of 92% with aid of a manually extracted logo

Rol. Their test sets contained 200 images of 10 different categories.

Although there has previously been limited focus on the recognition and classification of
vehicle logos, some research based on a Rol from a frontal, or rear view of the vehicle to
identify the vehicle model has been done. Lee (2006) advised a set of 16 texture descriptors
of the Rol taken from the front view of the vehicle as the input to a 3-layer back propagation
multi-layer perceptron neural network. This method was used to classify vehicles into 24
different models and achieved a recognition rate of 94%. Petrovic and Cootes (2004) recom-
mended the Rol from the front of the vehicle in an approach based on HOG and launched
a similarity measure between a test and target, i.e. dot product and euclidean distance, to
determine the vehicle model. Petrovic and Cootes reported an identification rate of over 93%
on parked cars. Their dataset contained 77 models. Zhang and Zhou (2012) proposed the use
of a Rotation Forest Ensemble method, as introduced by Rodriguez et al. (2006), for vehicle
classification. Zhang’s method relied on the features from a Fast Discrete Curvelet Transform
(Candes et al., 2006) and the Pyramid Histograms of Orientated Gradients (pHOG) (Bosch
et al., 2007) of the Rol from the top view of the vehicle, with a success rate of 96.5% on a
21 model datascaf. Similar to the approach of Dlagnekov and Belongie (2005), Bhanu and
Kafai (2012) tried to classify vehicles using the rear view of the vehicle, with the vehicle
being categorised into classes of vehicle type, such as vans, cars or trucks, rather than make

or model, with a success rate of 95.7% for a four class dataset.
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Igbal et al. (2010) conducted a comparison of the techniques used previously for vehicle
model classification, for both environmentally controlled and uncontrolled datasets. They
noted that techniques such as SIFT are sufficient in controlled environments, where there is
little variation of illumination, viewing angle and scale. Their research also concluded that
for make or model recognition, the Rol from rear-view images performed better than the Rol

of the frontal view due to fewer variations caused by the grille.

6.2.3 Maetric Learning for Classification

Classification methods can be broadly categorised into feature-based and learning-based
methods. Feature-based methods rely on the discriminative ability of the feature alone, while
learning-based methods, such as that used in Chapter 3, estimate a discriminative model by

analysing the training data, representative of the collected data.

SVMs (Joachims, 1999), Boosting (Freund and Schapire, 1997) and Neural networks (Bishop,
1996) have successfully been employed to learn two class classifiers in various vision related
problems such as Pedestrian detection and Face recognition. Multi-class classification has
been addressed successfully in learning methods by different authors (Weinberger and Saul,
2009), (Xing et al., 2003), (Ying et al., 2009) that mainly focused on metric learning that
requires a Mahalanobis distance metric to be estimated in the feature space. The feature space
is often non-linear in nature and needs a transformed feature space, in which, the Euclidean

distance between data samples maintains the neighbourhood characteristics of data.

Metric learning has been considered as a data association problem when multiple classes
are involved. The Mahalanobis metric is consistent with a positive semi-definite matrix, and
the general set of such "metric matrices" — all of which are positive semi-definite, and can
be considered to be the interior and surface of a cone with the apex at the origin. Other
methods such as Local Distance Metric (Liu and Rong, 2006), LMNN (Weinberger and
Saul, 2009) and that of Xing et al. (2003) estimated this metric by modelling the solution
as an optimization problem where strategies like gradient descent approaches are employed.

However, scalability with increasing feature dimensions tends to be problematic with such
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approaches due to the computationally expensive, time consuming iterative steps involved. A
few recent methods such as that proposed by et al. Kastinger et al. (2012) have modelled the
solution for estimating the metric in eigenspaces. The solution in these cases can be easily
programmed with aid of solving a formulated eigenvalue problem. The Local Fisher (LF)
method (Pedagadi et al., 2013) showed an approach to produce better discrimination amongst

sub space methods by using relatively simple features.

6.3 Vehicle Logo Categorisation System Design

This section is structured as follows: The strategy employed to extract the Rol and the relevant
features are first described followed by an overview of the system processing pipeline. An
overview of the Local Fisher Discrimination techniques used for the classification will then be
given. The section concludes with the description of the decision fusion model that is going

to be deployed in the classification stage.

6.3.1 Feature Extraction

As discussed in Section 6.2.1, the most common placement of a manufacturer’s logo on the
frontal and rear views is at a position with some distance above the NP. Therefore, to extract
the Rol, the Automated Number Plate Recognition (ANPR) module is employed to accurately
detect the position of the NP. The relationship between the coordinates of the corners of the
NP and the logo’s Rol is shown in Figure 6.1, and is expressed in the below set of Equations

6.1.
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( r2x' r2y)

(p2x 4 pZy)

Figure 6.1: Logo Rol Extraction Referring to Equation 6.1, p; and p are the respective
bottom-left and bottom-right coordinates of the located NP. r, and r, are the respective
top-left and bottom-right coordinates of the located Rol. R, and R, denote the width and
height of the Rol with 128 and 152 pixels respectively. The current 1, and R, values are set
to allow the capture of the logo in our dataset at varying distances from the camera, and the
values can be varied depending on the need.
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Once a logo’s Rol is extracted, the region is sub-divided into patches. The patches are
converted into two types of feature vector, based on the Histogram of Orientated Gradient
(HOG). The first stage of the operation is to convert the RGB patch to HSV space, followed
by the application of a Sobel edge detector on the grey level image in the V space. The two

different HOG feature vectors are finally extracted as follows:

1. Multiple Overlapping Patches u - By adopting the feature fusion strategy stated in
Chapter 3 and illustrated in Figure 6.2. Each patch is divided into smaller overlapping
bounding boxes of 16 horizontal and 32 vertical pixels. For each overlapping bounding
box the pixels’ orientations in the box are picked up to form an 8-bin edge histogram.

All of the histograms are concatenated together to build the feature vector u
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Figure 6.2: Feature extraction for u, uses the overlapping patches strategy, which acts as
different sensors to create a fused feature by concatenating all of the patches together.

2. Pyramid-HOG (pHOG) (Bosch et al., 2007), v - Instead of overlapping bounding boxes,
the edge image is divided into grids, an 8-bin edge histogram is created for each grid
and concatenated together. 3 different levels of grids are used as illustrated in Figure 6.3.

The histograms for each grid levels are finally combined together to form the feature

vector v

Level 1 Level 2 Level 3

Figure 6.3: An example of pHOG and the grid arrangement of the three different levels. The
three levels are concatenated together to create the fused vector v

The different types of edge information are useful for estimating a reliable embedding space
in the subsequent stages. Instead of doing the dimensionality reduction after combining the
two feature vectors, as explained in Chapter 3, the reduction is done prior to fusing together u

and u, which will be stated in the following section.

6.3.2 System Processing Overview

As mentioned in 6.3.1, once a logo’s Rol is extracted, the region is sub-divided into patches.
Each patch size is 128 by 64 pixels, and the first patch is at the top left of the Rol and
successive patches are created by moving down with an interval of 5 pixels. The patch width
is currently set as the whole width of the Rol to allow the logo to be located at various angles
of the viewpoint, i.e. the logo does not have to be located at the horizontal centre of the patch,

as shown in Figure 6.4.
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Figure 6.4: Overview of the proposed system. The logo patches are first extracted from all of
the overlapping patches. Using the logo patches, the class decision is made.

As illustrated in Figure 6.4, the extracted patches are firstly classified into two categories in
the localisation stage, logos (/) and background (b). A logo patch is defined as a patch that
contains at least 50% of the logo in the vertical direction, and all other patches are defined as

background patches. Only the logo patches are used in the logo classification process.

6.3.3 Local Fisher Discrimination

Local Fisher (LF) (Pedagadi et al., 2013) explores the idea of projecting feature data into
two successive sub-spaces. The first sub-space is estimated by employing the dimensionality
reduction technique of Principal Components Analysis (PCA)(Jolliffe, 2005) and the second
subspace by the application of a supervised dimensionality reduction method of Local Fisher
Discriminant Analysis (LFDA) (Masashi, 2006) on the PCA projected feature data. A brief

review of the LF is presented below.
A low dimensional embedding space is obtained from the high dimensional feature space by

firstly estimating a PCA transformation separately, for each of the two input feature vector

types u and v. Principal Component Analysis enables the dimensionality of the data to be
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reduced, while also preserving a high proportion of variation in the input signal (Jolliffe,
2005). For an input vector u;, the data projected into the low dimensional manifold, estimated
by PCA is written as u} = D,u;, where D,, is the embedding transformation matrix corre-

sponding to the eigenvectors derived from PCA. Similarly, v = D,v;.

It has been experimentally demonstrated in LF (Pedagadi et al., 2013) that separate estimation
and use of D, and D, retain information more effectively. The overall output x; from the first
stage is the concatenation of the two sets of separate PCA projected histograms to create a

fused vector: x; = {u;|v;}.

LF combines the neighbourhood preserving property of Locality Preserving Projection (LNP)
(Xiaofei, 2004) with the traditional Fisher Discriminant Analysis (FDA) (Fisher, 1936). It is
very common for a multi-class dataset to be multi-modal in nature, i.e. to show a significant
variation in class samples. LF captures this multi-modality in classes by constructing an
affinity matrix A that estimates the neighbouringcharacteristics of the dataset. A local scaling
method (Zelnik-Manor and Perona, 2004) is used for the estimation of A by choosing the n-th

nearest neighbour and assigning individual scaling factors for samples from the same class.

The width between class S and class S of scatter matrices in traditional FDA is weighted
with the affinity matrix A so that the far apart in-class samples do not contribute to the

estimation.

1 n

SW = 5 'Zl A:‘,)] (X,' — Xj) (Xi — Xj)t (62)
%,7=
1 n

SB = 5 “2;1 Ai.’,j (xi — z;) (x; — x;)° 6.3)

85



CHAPTER 6. VEHICLE LOGO CATEGORISATION

where

{
Ai' n if ;=Y =C

voo= 3/me w=d (6.4)
{ 0 ify; # y;
All—L if i =Y;=C

A, =M (-=) V=Y (6.5)
\ % ify; # y;

Here, n. is the number of samples in class ¢ and 7 is the total number of samples. The

transformation matrix Ty, is defined as:
Tjua = arg max tr( (TtSWT)'1 TtSBT) (6.6)

where T' € R? x R™. Similar to FDA(Fisher, 1936), the estimation of Tyua is achieved
by representing the above as a generalised eigenvalue problem, SZp = ASW ¢, here {p;}
and {);} are the eigenvectors and eigenvalues of this system. The final projection into the

embedding space characterised by LFDA can be written as:
2 = Thux; 6.7

The similarity measure between any two observations ¢ and j is given by the Euclidean

distance between the LFDA transformed vectors of each observation

D(G,5) = |2 — 2| (6.8)

6.3.4 Logo Localisation Using LF

To localise the logo patches, the training set of logo (I) and background (b) patches is used,
as defined in section 6.3.1, where ground-truth has been manually selected. At this section,
the vehicle classyflabel is not used any more. The training data is used to estimate the matrix
T}, that transforms the feature vectors {x;} to their representation in the embedded space
{z;}. Let {z!} and {z!} to be the sets of n; and n, training vectors in the embedded space for

logo and background patches, respectively. A new test vector z* is classified as either logo or
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background on a k-nearest neighbour basis:

logo ifd, <d
VA g : ° (6.9)

background otherwise

where

dip =  min zi — 2" (6.10)
b me({zi},{zs})(l =z

Using a LF-based binary classifier on the ensemble of patches within a Rol, the patches
categorised as a ’logo’ are classified into one of the N manufacturer logos, which are input
into a voting process to provide a final estimate for this vehicle. This will be described in the

next section.

6.3.5 Logo Classification Using LF

Here, a fusion reasoning technique based on Voting, as introduced in Section 2.4.2, is used.
For a given Rol, n patches are categorised as ‘logo’. If n > 0, a LF-based multi-class
classifier is adopted in an analogous manner to assign a predicated class y; to eacﬁ logo patch,
where y; € {1,..., N}, where there are N categories corresponding to the different vehicle
manufacturers. Otherwise, if n = 0, no suitable patches are available and the classification
cannot proceed. The overall manufacturer class assigned to the Rol, ymax is the class that the

largest number of individual logo patches belongs, as follows:

Ymax = 1%%}1(\/ <Z5 (qu)) (6.11)
SIS \i=1
1 ifa=g
6(a, B) = (6.12)
0 Otherwise

If the voting process does not result in an outright winner, a second weighted voting procedure
is adopted. For each logo patch, there is a logo confidence measure represented by the value
of d;. For all the equal top ranking classes, from the first vote, their corresponding patch d

values are summed together with the class that has lowest cumulative value to become the
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overall winner.

6.4 Logo Dataset

As mentioned before, the data involved was captured in our experimental test-bed. The
footage captured vehicles entering and exiting the car park at different velocities, trajectories
and under varying environmental conditions such as lighting. The footage was first segmented
by the process described in Section 4.4.3.1 to extract the objects of interest, and then processed

by existing ANPR software to acquire the NP coordinates for the vehicles in this study.

I_ L

Figure 6.5: Examples of Vehicle Logo Patches. a) Logos’ Frontal View, and, b) Logos’
Rear-View. Showing that the current logos are of various sizes and its location is no longer
limited to being in the front of the vehicle and within the grille

As Section 5.3.3 outlined, one issue with the manufacturer’s logo is that some have quite
similar outlines. In order to effectively test the classification, the following five commonly
used classes of manufactures were selected for the experimentation. They are: Nissan, BMW,
Mercedes (Merc), Audi, and Peugeot (PG). Examples of the logos are given in Figure 6.5,
the figure illustrates that most of the outlines are different. To test the discriminative abilities
between similar outlines, the Mercedes and BMW are included. Both of these badges have
a circular silhouette with different insides. Figure 6.5 also demonstrates the dataset will
contains logo from both the front and the rear of the vehicle, and these have been captured

from various angles,which will add an additional layer of complexity.

For each manufacturer’s class, 30 training samples and 20 testing images were chosen. The
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training data is excluded from the testing data in order to test the true performance of the
system. Manual ground-truth locates the vertical centre of the logo in the image in order to

define the logo patches.

For each image, the logo’s Rol was located by the NP position, and subdivided into patches,
which results in 18 patches per Rol. Therefore, there were 2700 training and 1800 testing
samples. The combined feature vector for each sample, before dimensional reduction, is 2248

components.

6.5 Experimental Results

6.5.1 Logo Localisation Analysis

Ground Truth

Logo | Background

Logo 86% 14%

Predicted

Background | 9% 91%

Table 6.1: Confusion Matrix of Logo and Background Patch Classification Results

The accuracy of the vehicle logo localisation was validated against manually labelled, ground
truth data. The results in Table 6.1 show that the method involved in this project was able to
achieve 86% accuracy for classifying logo patches and 91% for correct background patches. If
only unsupervised PCA is used, the results decrease to 80% for logo and 83% for background

patches.

The 86% correct logo classification actually means that 97% of all testing samples would have

at least one correctly predicted logo patch that could be forwarded to the logo manufacturer

classification stage.
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Ground Truth
Nissan { BMW | Merc | Audi | PG
Nissan | 80% 5% 0 % 0% | 15%
BMW 0% 100% | 0% 0% 0%
Merc 5% 21% | 69% | 5% 0%
Audi 0% 0% 0% | 100% | 0%
PG 0% 5% 0% 5% | 90%

Predicted

Table 6.2: Confusion Matrix for Logo Classification Results Using Badge Patch. The results
shows an 85.56% classification rate based on 5 vehicle logo classes

6.5.2 Logo Classification

The system was trained using only the ground truth logo patches and the trained model was
tested by previously unseen classified logo patches from the local localisation stage. Table
6.2 shows the confusion matrix of the logo classification results using the correctly classified
logo patches only (Ipo). The main diagonal shows the percentage of correctly classified
manufacturer class. When all of the predicted logo patches (plp) are used, including the
background patches incorrectly classed as logo patches, the overall classification rate of
85.56% is obtained, as shown in Table 6.3. The value of 85.56% indicates the performance of

the system in a real life environment.

Table 6.2 illustrates the challenges when there is a variation of the level of confusion when
classifying badges with similar shapes. The Mercedes classification result demonstrates a
high level of confusion, however, the BMW badge results have zero confusion. A possible ex-
planation might be due to the BMW badges having a constant filled centre, irrespective of the
vehicle colour. With very limited variation, compared to the case of Mercedes badge, where
the colour to fill the centre differs depending on its location or the colour of the vehicle, the
effect will result in different variations in its representation as the edge detection techniques

are used to extract the features.
The addition of the Local-Fisher learned metric to the PCA feature space, significantly im-

proves the performance of the system, as demonstrated in Table 6.3, comparing with the

principal components of the original feature vector.
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Type HOG pHOG HOG + pHOG
Ipo plp Ipo plp Ipo plp
PCA 70.40% | 69.70% | 68.04% | 68.04% | 70.41% | 69.70%
PCA+LF | 87.62% | 85.67% | 80.11% | 79.80% | 87.62% | 85.67%

Table 6.3: Logo Classification Success Rate With Different Features

Table 6.3 also shows that identical performance is achieved between HOG only and the
combination of both HOG and pHOG. To further validate this finding, an additional cross-

validation experiment is done, the results are shown in Figure 6.6.

Cross Validation Results between HoG and Combined Features
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Figure 6.6: Cross-validation experiment, where 40 training and 10 testing samples for each
class is chosen which is repeated for 5 iterations. For this experiment, only the groud truth
logo patch is used. This removes the uncertainty that may be introduced by the Logo
Localisation stage.

Figure 6.6 shows 5 iterations of a cross validation experiment. The results demonstrate that
no extra advantage is gained when a combined feature is used, compared to RGB and HSV
features in Chapter 3, where the feature vectors is created from two separate representations
of the input. The HOG and pHOG gather the same feature representation which is output
from the Sobel édge detection. The difference between the HOG and pHOG is actually how
the data is gathered into their respective histograms. This experiment illustrates that the
granularity of the patched HoG process means that all the key information that pHOG would

have captured has already been acquired, therefore no extra advantage is gained when HOG

and pHOG are combined.
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6.6 Summary

This chapter has presented a novél vehicle logo localisation and classification process, with
aid of features composed of local histograms of gradients and the use of Local Fisher Discrim-
ination Analysis, to obtain a more effective learning metric. The proposed method relieves the
reliance of needing to locate dominant features, such as the grille, in order to localise the logo.

Thus, the approach can be applied to locate vehicle logos on both the front and rear of a vehicle.

The results achieved by the process are not directly comparable to those from recently pub-
lished techniques, as those only concentrate on locating the logo on the front of the vehicle
and the data used are captured in controlled environments, such as in the studies of Wang
et al. (2007) and Psyllos et al. (2010). As such, the results achieved in this project provide
a benchmark for techniques of logo recognition on medium-view CCTV data in a video

surveillance environment.

Although Chapter 3 has shown the advantages of concatenating similar representations of
the features to improve the performance, experiment results in this chapter have confirmed
that the choice of features is important. If two representations of the same feature space, i.e.
Sobel edge detected image, then the two features might not contribute enough independent
information. As a result of this, no extra advantages could be gained. However, the method
developed in this project has revealed that decision fusion techniques can be used to assist

with video surveillance challenges.
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Chapter 7

Fusion Models and Evaluation

Framework

7.1 Introduction

As stated in Chapter 1, there are many challenges within Automated Video Surveillance
system. There are two main problems that any system needs to overcome. The first is the
lincertainty that exists throughout a particular automated video surveillance system’s pipeline,
as demonstrated in Chapter 5. The second is the identification of a suitable method to fuse the
information from different sources in order to conduct various types of objectives, rather than

a single objective, as outlined in Chapter 4.

Information Fusion is the technique that can be used to overcome these problems. It can
result in more accurate inference than a single sensor does (Hall and McMullen, 2004). The
inferences made with these techniques range from simple estimates of the identity of certain
entities to complex inferences about current or future relationships between multiple entities
and the events involved.

As the types of information in this chapter are incommensurate, the data must be fused at a
decision level (Hall and Llinas, 1997). Decision-level fusion, as outlined in Section 2.3.3,
consists of merging information at a higher level of abstraction and combining the results from

multiple algorithms to yield a final ‘fused’ decision (Dong et al., 2009). The data is therefore
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processed separately by multiple algorithms, e.g. to identify and classify observed entities
and events, based on their different features. The resulting information is combined with a
chosen set of decision rules to obtain an overall inference. Due to the uncertainties created at
every step of the processing pipeline, the result could be expressed in a probabilistic form.
Two well-known types of decision rules, which allow the fusion of probabilistic outcomes,
are Bayesian inference and the Dempster-Shafer (DS) theory. These can both be applied to

the designed fusion scenario to combine multiple cues extracted from surveillance videos.

The two main outcomes of this chapter are, firstly, a theoretical investigation on the appropri-
ate formulation of these two fusion models for the target scenario. Secondly, as suggested in
Section 2.4 .4, it seems that any previous proposals could not conduct a general performance
evaluation for these two fusion methods. Thus, this chapter will create a generic evaluation

framework to evaluate Bayesian estimates and be extended to accommodate the DS methodol-

ogy.

The remainder of the chapter is organised as follows. In Section 7.2 and 7.3, a detailed
design with Bayesian and Dempster-Shafer theory is given, including a theoretical evaluation.
In Section 7.4 the generalised evaluation framework is introduced. Some experiments are

conducted in Section 7.5 and the discussion will be presented in Section 7.6.

7.2 Statistical Parametric Fusion Methods: Bayesian Infer-
ence

7.2.1 Bayesian Theory

In Bayes’ theorem Bayes et al. (1984), it is assumed that h; is a hypothesis about a state,
taking values in the set of hypotheses H = h;, ...h,, exactly one of them is ‘true’, and the

remainder ‘false’. The prior probabilities, P(h;),¢ = 1, ..., n constitute the prior probability
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mass function of the hypotheses h;:

0 < P(h;) < 1and fjp(hi) =1 (1.1)

i=1

Normally, the hypothesis with the highest prior probability will be assumed as the ‘true’
one. However, a more accurate estimation of the state can be made by incorporating some
relevant ‘posterior’ evidence z. It is assumed that the h; are distributed according to the
class-conditional probability distribution function P(z|h;) (Jensen, 1996). Therefore, given
the prior probability and the class conditional probability, the posterior probability can be

calculated by Bayes’ formula:

P(hi)vP(x|h,-)
(P(h;)P(z|h;))

P(h,l.’L‘) ==

j=1

(7.2)

The denominator is the ‘evidence factor’ that normalises the posterior probabilities so that

they will sum to one.

The Bayes formula has gained popularity as a fusion method because it provides a direct and

easily applicable means for combining the prior information with the current observation.

7.2.2 Graph Theory - Bayesian Network

To create complex Bayesian systems, Jensen (1996) introduced the ideal of combining
Bayesian theory with Graph Theory to produce the notion of Bayesian Networks. According
to Druzdzel and Van Der Gaag (1995), there are two distinctive parts to a Bayesian Network:

Qualitative and Quantitative.

7.2.2.1 Bayesian Network: Qualitative Analysis

The qualitative p;ll‘t is defined by the structure of the Network, which is represented by a set of
random variables and their conditional dependencies via a directed acyclic graph, as modelled

in Figure 7.1.
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Figure 7.1: Example of Bayesian Network Formulation For Getting a Job, where the root
node of the query under investigation and child nodes are the evidence in support of the query.

A Bayesian Network is created by different nodes and linked by edges. The edges represent

the relationship between the nodes. There are three types of nodes:

1. Root nodes, representing the queries that the system has been constructed to answer.

Edges are only directed away from root nodes.

2. Child nodes, representing the evidence, such as one extracted from surveillance sensors
that may provide information about the queries. Child nodes only have edges directed

towards them.

3. Parent nodes are the Root nodes of sub-networks in a complex network. Therefore, a
parent node is a child node of a Root node and it is the Root node of child nodes in the

sub-network. As such, it will have edges directed to and from it.

7.2.2.2 Bayesian Network: Quantitative Analysis

The quantitative part comprises the values of the variables of the child nodes and is recorded
into the Conditional Probability Matrix (CPM). An example of a sensor’s CPM is given in
Section 7.2.3.1, where each column represents the class-conditional probability distribution

function for the hypothesis.
These conditional probabilities could be generated by domain experts and/or data obtained

directly from observations made about the environment. Furthermore, these can be updated

over time to improve the accuracy of the model.
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7.2.2.3 Design Assumptions

The evidence, represented by the child nodes, is included in the Conditional Probability Matrix
to calculate the joint probability of the network. However, Equation 7.2 needs to be adapted
for the calculation of joint evidence, as the class-conditional probability distribution function
for a joint set of evidence P(z1, ...z.|h;) ,in general, does not have an analytic solution. It is
impossible to numerically evaluate this for all instances of the evidence due to the extensive

number of combinations.

To resolve these issues, it is assumed that the child nodes are conditionally independent.
A child node is assumed conditionally independent if the knowledge of a child node does
not change the belief of any other child nodes in the network. In addition, child nodes are

conditionally independent if the state of the root node is known.

This assumption allows the child nodes’ co-occurrences to be calculated as a simple multipli-

cation. Equation 7.3 is now transformed into:

P(hs) T, Pze)hi)
1 (P(hy) TIE=1 P(zk|R;))

In addition, the inference of multiple sensors can be calculated sequentially, as discussed by

P(hzl ﬂi .’Ek) =

(7.3)

Lewicki (2007), whereby the posterior probability provided by one sensor can be used as a

prior probability for the following sensor’s calculations.

7.2.3 Bayesian Network: Surveillance Scenario Design

In this section, the theoretical adaptation of Bayesian Network for the Surveillance Scenario
under investigation will be conducted. The section firstly outlines a simple framework to show
the uncertainty reduction capabilities of the Bayesian Network (BN) in the experiment. The
framework design will be followed by the experiment’s results. The framework will be further
improved to show how it can be adopted with sensors for the investigation of a particular
surveillance scenario. Finally the framework will be further modified to demonstrate its ability

of inferences for different scenarios.
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7.2.3.1 Uncertainty Reduction -Simple Framework

In this section, the vehicle-identification problem is used to aid the evaluation of uncertainty

reduction. The Bayesian Network for this scenario is illustrated in Figure 7.2.

Was Vehicle
Present
Before?

(vp)

Figure 7.2: Simplified Bayesian Network Inference: "Was This Vehicle Present Before?".
The root query is supported by two sensors as the evidence

In the simple network shown in Figure 7.2, the root query is: whether a particular *probe’

vehicle is present in a "target’ set. The prior probability of the root is given in Table 7.1.

P(V,) | P(V,)
Seen Before | 0.1 0.9

Table 7.1: Prior Probability of the Root Node of Figure 7.2

The network is informed by two sensors, Sensor A (SA) and Sensor B (SB). For each mem-
- ber of the ‘target’ set T;, (¢ = 1,2, 3...n, where n total members), each sensor provides an
independent measurement, and outputs a positive identification (‘Yes’) if the ‘probe’ vehicle
matches the target and a negative identification (‘No’) otherwise. Therefore, for each sensor,
n independent measurements are obtained. In the case of a perfect sensor, when the vehicle
was present, there should be exactly one ‘Yes’, and when the vehicle was not present, then all

measurements should be ‘No’.

However, when the sensors are imperfect, the Conditional Probability Matrix (CPM) of each
sensor can be used in conjunction with Prior probability to calculate the outcome. The CPM

probabilities can be estimated by the sensors’ performance on test datasets by using known
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probe and target sets, as described in Section 7.2.2.2. The CPM of near-perfect sensors are

given in Table 7.2 and 7.3.
Sensor A | P(SA[V,) | P(SAIV,) Sensor B | P(SB|V,) | P(SBIV)
Yes (SA;) | 0.999 0.001 Yes (5B | 0999 0.001
No (SA5) 0.001 0.999 No (SB,) 0.001 0.999

Table 7.2: Sensor A CPM,
illustrating a sensor error rate of
0.1%

Table 7.3: Sensor B CPM, illustrating a
sensor error rate of 0.1%

The imperfections in the sensors will result in a varying number of positive (*Yes’) identifica-
tion, represented by Z (where Z = 0.....n). The discrete probability of obtaining any specific
value of Z from the n independent tests can be simulated by a Binomial Distribution using
the information provided by the CPM tables. The binomial mass function determines whether
the target vehicle is "not present” in the target set and is given by Equation 7.4.

B (2.6, PSIT) = (3 | PSaslVef = PGV 00

where Z is the variable representing the number of positive responses from the N = n + 1
total number of possible outcomes, and P(S;|Vp) could be either P(SA;|Vp) or P(SB;|Vp)
depending on the sensor under investigation. The binomial mass function of getting Z positive

identifications when it "is present” is given by Equation 7.5.

B (2) = P(SilVe)Bzp)(Z =1, N =1, P(Si|VR) + P(S:1V;) B (2, N -1, P(S1[V&))

(7.5)
This equation takes into consideration that in the V,, scenario where one positive identification
must exists within the n independent tests. An example of two distributions for one sensor

and n = 10 is given by Figure 7.3.
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Figure 7.3: Binomial Distribution of Equation 7.4and 7.5 for n = 10; (a) P(S:{Vp) = 0.01;

(b) P(51{Vp) = 0.1; (c) P(S1|Vp) =0.3

As the error increases, the difference between the distribution becomes very small. As

illustrated in the case of Z = 2 as the error rate is 30%, the probability for the two outcomes

is almost equal ( 50%)

Figure 7.3 illustrates the changes in the discrete distribution with changes in the error rate
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of the sensor. In this simulation, it is the difference between two discrete distributions that
provides the information required for the Bayesian Network calculations. The Bayes equations

are represented by Equation 7.6 and 7.7.

B P(Vp)P(Z|Vp)
PVlZ2) = P(Vp)P(Z|Vp) + P(Vp))P(Z|Vp) "o
P (VA1) = P(Vp))P(Z|Vp) 1.7

P(Vp)P(Z|Vp) + P(Vp))P(Z|Vp)

where Z represents the discrete probability of getting Z a positive indication from the sensor.

7.2.3.2 Uncertainty Reduction - Experiment

To simulate a real-life scenario, the discrete distribution for the sensors will concentrate on
the application of target set of 300, n = 300. A portion of the distribution is illustrated in
Figure 7.4.

To measure the amount of information uncertainty, Shannon Entropy (Shannon and Weaver,
1949) is employed. Based on Shannon’s equation, the prior entropy is calculated by Equation

7.8:

Hyrior = = 3 p1 1og30(p) = ~P(V;) ogio(P(V;)) ~ P() log(P()  (79)

where p; is the probability of the hypothesis ¢, and m is the total number of possible hypothe-
ses in this case of m = 2. Based on the information provided in Table 7.1 and Equation 7.8,

the prior uncertainty in the network is 0.148.

To evaluate the reduction in the entropy, the amount of Shannon information obtained with

the evidence will be determined by Equation 7.9.

n

Hyosterior = —ZZO P (Vo|P(Z))logy (P (V21(2))) +P(Vp|P(Z)) log;o (P (—VZIP(Z)))
7.9

Based on the information provided in Section 7.2.3.1 and the Entropy calculation above, the
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Figure 7.4: Binomial Distribution of n = 300 where (a) P(S5;|Vp) = 0.01; (b)
P(5:|Vp) = 0.1. In the n = 300 even at 10% error rate, the difference between two
outcomes is very small, and larger values of Z would be required before the difference
becomes useful.

effect of varying the prior probability listed in Table 7.1 and the sensor information listed in
Table 7.2 and 7.3 are illustrated in the figures below. The figures demonstrated the variation in
uncertainty by plotting the variation of Shannon entropy through the use of the line graph. The
graphs also shows percentage reduction in the amount of uncertainty with varying numbers of

sensor information, as the prior information changes through the use of the bar chart.

Figure 7.5 illustrates the effect of varying the prior probability, as listed in Table 7.1. It demon-
strated that when additional information is provided, the amount of uncertainty (entropy) is
reduced. The amount of uncertainty reduction of two sensors is considerably more than that

of one single sensor.
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0.35 T

Figure 7.5: Variation of Entropy with Changes of the Prior Probability - The largest reduction
of Shannon entropy between three scenarios can be observed when the Prior probability is at

When the Prior probability of the vehicle "was present"” is low (0.1) but the sensor has the
opposite belief, the amount of reduction is lower than one, when the sensor and prior have the
same belief. As the prior probability moves toward the same belief as the sensors, the amount

of entropy also reduces at a faster rate. The steeper decrease in the uncertainty is more visible
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when the two sensors are applied.

When the Prior probability is at maximum entropy, the effect of varying the sensor’s error in

the CPM Tables 7.2 and 7.3 is demonstrated in Figure 7.6.
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Figure 7.6: Variation of Entropy with Change of the Sensor’s Accuracy - Even the sensor
with accuracy of 90%, the amount of reduced entropy is still less than 1%
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Figure 7.6 shows that when P(S|V},) is 50%, no information is provided. When the accuracy
of the sensors improve, some uncertainty will be reduced. However the amount of reduced
uncertainty is minimal, less than 1%, even when sensors have an accuracy of 90%. The
amount of uncertainty will be reduced more significantly as accuracy of the sensors improves

t0 99.99% as shown in Figure 7.7.

583883
Percentage of Uncertainity Reudced

88
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e pRar 0.9 0.99 0.999 09999 099999 0.999999 [
-=- 1 Sensor P('Yes'| was Present) By 1 Sensor
——) Sensor El By 2 Sensor

Figure 7.7: Variation of Entropy with Higher Accuracy Rates - The system can remove
almost 100% of the uncertainty, only when two sensors with error rates are close to 0.01%.

In this scenario, there is an increased difficulty when inferencing compound events. Because
the individual sensor errors accumulate as the number of positive identifications increase, the
study aims to distinguish the very small differences between the probability distributions of
the different outcomes. Therefore, the sensors in this scenario require a very small error rate

as stated in Figure 7.7.

7.2.3.3 Adopting Actual Sensors

The previous section shows the variation of uncertainty with changes in the prior probability
and the benefits of multiple sources. This experiment aims to demonstrate the improvement
in accuracy, by combining sensors, which is widely employed for identifying a vehicle, when

tackling the problem of vehicle re-identification, as outlined in Section 5.3.

All of the features outlined in Section 5.3 can be extracted from the vehicles within our test

bed. Therefore, within a practical application, the input to the fusion framework outlined in

104



CHAPTER 7. FUSION MODELS AND EVALUATION FRAMEWORK

this section would be the output from each of the feature sensors, similar to those demonstrated

in Chapter 6.

Within this theoretical investigation, the design of Bayesian Network for the problem of

vehicle re-identification, could be conceptualised by Figure 7.8.

Figure 7.8: Simple Bayesian Network for the integration of Multiple Visual Surveillance
Cues using different feature sensors as those outlined in Section 5.3.

For a given "probe" and "target", each sensor can give out the following information:

e License Plate - The number of character differences between the ANPR output of the

probe against the target’s NP string.

e Colour - Could be the RGB difference between the two vehicles measured by a distance

metric, such as Euclidean.

Logo Manufacturer Class - As addressed in Chapter 6, the output of the classifier for a
probe image could be a confidence measure for each of the manufacturer. By knowing
the target’s logo class, the corresponding confidence measure of the target’s class can

be used as