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Abstract 

The overall objective under consideration is the design of a system capable of automatic 

inference about events occurring in the scene under surveillance. Using established video 

processing techniques, low level inferences are relatively straightforward to establish as they 

only determine activities of some description. The challenge is to design a system that is 

capable of higher-level inference, that can be used to notify stakeholders about events having 

semantic importance. It is argued that re-identification of the entities present in the scene 

(such as vehicles and pedestrians) is an important intermediate objective, to support many of 

the types of higher level inference required. 

The input video can be processed in a number of ways to obtain estimates of the attributes of 

the objects and events in the scene. These attributes can then be analysed, or 'fused', to enable 

this high-level inference. One particular challenge is the management of the uncertainties, 

which are associated with the estimates, and hence with the overall inferences. Another 

challenge is obtaining accurate estimates of prior probabilities, which can have a significant 

impact on the final inferences. 

This thesis makes the following contributions. Firstly, a review of the nature of the uncertain­

ties present in a visual surveillance system and quantification of the uncertainties associated 

with current techniques. 

Secondly, an investigation into the benefits of using a new high resolution dataset for the 

problem of pedestrian re-identification under various scenarios including occlusion. This is 

done by combining state-of-art techniques with low level fusion techniques. 

Thirdly, a multi-class classification approach to solve the classification of vehicle manufacture 

logos. The approach uses the Fisher Discriminative classifier and decision fusion techniques 

to identify and classify logos into its correct categories. 

Fourthly, two probabilistic fusion frameworks were developed, using Bayesian and Evidential 

Dempster-Shafer methodologies, respectively, to allow inferences about multiple objectives 

and to reduce the uncertainty by combining multiple infomration sources. 

Fifthly, an evaluation framework was developed, based on the Kelly Betting Strategy, to 

effectively accommodate the additional information offered by the Dempster-Shafer approach, 

hence allowing comparisons with the single probabilistic output provided by a Bayesian 

analysis. 
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Chapter 1 

Thesis Introduction 

1.1 Introduction 

With the aim of reducing crime and increasing public safety, millions of closed-circuit tele­

vision (CCTV) cameras have been installed in streets throughout the world. The United 

Kingdom is one of the greatest proponents, with an estimated 5.9 million cameras in 2013. 

This is an increase of 4 million since 2011. A large proportion of the CCTV cameras were in­

stalled in the capital city of London. Norris and Armstrong (1999) claimed that a person could 

be observed from 300 different cameras every day in London. This number will continually 

increase, whilst cameras are being installed in public transport, in business and even on drones. 

The large volume of data collected by these distributed CCTV networks have proven their 

effectiveness in a range of recent high profile investigations, such as identifying and tracking 

the Boston Bombing Terrorist and prosecuting the rioters after the London Riots. Although 

CCTV networks also assist law enforcement agencies to detect live crimes on a daily basis, 

the effectiveness is limited by the ability of the CCTV operator. Donald (2010) stated that 

the concentration level of capable operators, dealing with high activity videos is around 90 
-

minutes. In low activity and static environments, the concentration level drops to about 20 

minutes. The operation is further limited by the number of different cameras that an operator 

can monitor simultaneously to effectively detect events of interest. This means that the 

development of video analysis techniques for the detection of predefined events is necessary. 

This has led the Analytic Software to become the fastest growing component of a video 
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surveillance system, as addressed in the Global Video Surveillance Market Report (Network, 

2011). 

The Market Report also showed that the use of surveillance systems is expected to divert from 

traditional surveillance application to other function such as Retail. One major consideration 

for commercial users is the cost because the largest contributor of cost in a video surveillance 

system is the camera. Therefore to lower the investment, many users choose to use lower 

resolution and intensity cameras, such as the recent Pan-Tilt-Zoom cameras deployed at the 

Shanghai Airport. With the improvement of technology in the clarity of images, the cost of 

high resolution cameras will reduce and their popularity will increase. However, the benefits 

of higher resolution data have not been fully explored in the video analysis research domain 

due to the slow uptake of this new technology and the lack of availability of high resolution 

datasets. 

In the, available datasets, almost all of the data are captured using traditional intensity­

based cameras. These cameras are highly sensitive to variations in illumination. Although 

sophisticated techniques are employed to mitigate these effects, the issue cannot be entirely 

removed. Illumination is, therefore, one of the major sources of uncertainty in the outcome of 

many video analytical systems. In general all analytical systems will have their limitations 

and will have been optimised to solve a particular aspect of uncertainty associated with either 

the data or technique used. 

1.1.1 Definition of Uncertainty 

With reference to the information theory introduced by Shannon and Weaver (1949), uncer­

tainty is the number of alternative outcomes to an event and is measured by the probability of 

an outcome occurring. If there is only one possible outcome and the probability of occurring 

is 1, there is no uncertainty. As information can only be gained when there is uncertainty, an 

event and the outcome that occurs with the lowest probability will convey more information. 

Therefore the information gained is indirectly measured as the amount of reduction of uncer­

tainty. The amount of uncertainty is measured by Shannon Entropy, and maximised when all 
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alternative outputs have equal probability. 

The above discussion was conducted in detail by Singh (2013). Singh stated that uncertainty 

could be understood as a form of information deficiency or reflecting information reductions, 

which was supported by Smets (1983). The manifestations of information deficiency are 

summarised as the followings: 

• Incomplete Information: Refers to a result when some of the information is missing, 

therefore the information has an unknown degree of confidence but an upper limit of 

confidence is known (Florea et aL, 2007). 

• Imprecise Information: The information that could be used to describe a number of 

different instances, instead of just referring to one particular instance (Florea et aL, 

2007). 

• Fragmentary Information: Refers to information that is not continuous and is only 

available under certain instances, time or conditions (Krell et aL, 2013). 

• Vague Information: Refers to information that is ill-defined, therefore it could be 

interpreted subjectively from one observer to the other. 

• Contradictory Information: The result when information from different sources, mea-

suring the same environment, reports opposite result (Dong and Naumann, 2009). 

In the context of this thesis, the uncertainty will refer to the inaccuracy in the estimated 

outcomes that may be produced by the information deficiency, as outlined above. In theory 

the inaccuracy can be measured in terms of Shannon Entropy. In practice there may be 

scenarios in which this measurement is difficult to obtain as it requires a detailed statistical 

modeL For example, changes of illumination, as the intensity varies during the time of day, 

could produce fragmented information. 

1.2 Thesis Motivation 

The motivation for this project is, therefore, to devise a framework that would reduce the level 

of uncertainty to improve the accuracy of the outcome, by combining different video ana-
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lytic approaches. To complete it, the adoption of infonnation fusion techniques is investigated. 

A video analytical system is nonnally developed and optimised for a particular objective. The 

framework should be able to combine the results from these different analytical systems to 

infer a single objective and extend this inference to other related objectives. 

1.3 Thesis Aims 

In this thesis an investigation will be conducted on the feasibility of constructing an infor­

mation fusion framework to reduce uncertainty and investigate the possibility of inferencing 

a range different objectives from one single framework. The investigation will be aided by 

the use of high resolution data to explore and utilise the benefits it brings to tackle a range of 

surveillance objectives. 

1.4 Thesis Objectives 

The following items are the main objectives of the thesis: 

• To conduct a comprehensive review of infonnation fusion techniques that are currently 

available ,identifying suitable candidates to be adopted within this thesis. 

• To examine the suitability of publicly available datasets to aid the investigations con­

ducted within this thesis. 

• To identify and understand the nature of uncertainty involved within a video surveillance 

system and associated uncertainty with the current analysis techniques to resolve 

surveillance objectives under investigation. 

• To investigate the use of high resolution data to reduce uncertainty when solving 

traditional surveillance objectives under various challenging environments. 

• To combine state-of-the-art video analysis techniques with information fusion tech­

niques to solve challenging surveillance tasks. 
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• To design, construct and theoretically evaluate suitable fusion frameworks for the 

reduction of uncertainty and the inference of multiple surveillance objectives. 

• To construct and theoretically assess an evaluation framework which would allow an 

effective and direct comparison between the developed fusion frameworks. 

1.5 Thesis Outline 

The following chapter will give an overview for the application of information fusion in 

visual surveillance domain and the approaches to tackle two traditional security objectives. 

It includes a comprehensive introduction of the Information Fusion Model and the popular 

techniques used to reduce uncertainty in the outcome. This will be followed by an analysis of 

the evaluation metrics to measure the uncertainty removed by the different techniques. 

Chapter 3 presents results from an experiment designed to measure the accuracy at which 

human beings can be re-identified using a colour feature vectors only. The experiments further 

investigates the advantages of a high resolution dataset by using a state-of-the-art classifier to 

examine the performance with respect to the level of occlusion, the training regime, specificity 

of the domain and the resolution of the observations. A method is proposed to reduce the 

adverse impact of occlusions when present and to increase the beneficial impact of higher 

resolution data, when available. 

In Chapter 4 the types of objective that a video surveillance system can deal with are evalu­

ated. This will aid the design of an experimental test-bed for capturing the required data for 

the investigation of this project. The chapter also outlines and evaluates the techniques for 

reducing the redundant information with the captured data. This is done to lower the cost 

and requirement to store a large amount of data. The technique was combined with tracking 

algorithms to produce demonstration videos , which were published in two TV programs. 

Following the creation of the experimental data in Chapter 5, an examination of the types 

of uncertainties within the visual surveillance context is given. The nature and quantity of 

uncertainty associated with the various video surveillance techniques are then reviewed and 
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examined. Using the data acquired from the test bed, Chapter 6 shows a method for local ising 

and recognising vehicle manufacturer logos in both the front and rear views. The features 

are constructed from local histograms of gradients in both conventional and hierarchical 

arrangements. The dimensionality of these vectors are reduced by an unsupervised Princi­

ple Component Analysis and by a subsequently supervised method based on Local Fisher 

Discriminant Analysis. It also includes an introduction of a suitable metric for multi-class 

classification, combining the result with fusion techniques. The challenge of logo detection 

and localisation are finally conducted in this chapter. 

Chapter 7 presents the application of fusion methods for a developed visual surveillance 

scenario. Two statistical parametric fusion methods, Bayesian Networks and the Dempster 

Shafer method, are developed and a theoretical investigation is conducted. This chapter also 

presents the development of a metric for a direct comparison of the benefits between the two 

methods. This metric provides a method to quantify the extra information produced by using 

the Dempster-Shafer method with comparison to a Bayesian Fusion approach. In the final 

chapter the main contributions and achievements of this thesis are discussed. The conclusion 

and future direction of research then follows. 
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Chapter 2 

Review 

2.1 Introduction 

This chapter reviews the models and techniques of Information Fusion. The review bridges 

the terminologies in the Fusion research community with the researches that are conducted in 

the image processing community, specifically for Visual Surveillance. As the review shows, 

there are various techniques used to achieve video surveillance objectives and for fusion 

research to conduct fusion objectives. There does not seem to be a formal link between the 

two objectives, therefore, a review of the techniques used in Information theory, to decrease 

the effect of uncertainty and current applications in the video surveillance context, should be 

conducted. 

As a key benefit of information fusion is to decrease the overall extent of uncertainty, the 

chapter first outlines the definition of information fusion and discusses the application of 

fusion models for a video analytic system. It also gives a description of the extensively used 

fusion techniques and their applications in visual surveillance. 

2.2 Information Fusion Overview 

The human eye is a powerful tool that allows the human brain to assess situations quickly. 

However the human eye has limitations which influence the judgement of situations, such as 

low visibility. In these situations, the human brain relies on the information from the other 
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senses (hearing, touching, smelling and tasting) to support the judgement. The brain fuses all 

of the available information from all of the sources to improve the certainty of the judgement. 

By obtaining information from multiple sources, the amount of uncertainty generated from 

one single source is reduced. The field of study that tries to simulate this process is called 

Information Fusion (IF) 1, this is a branch of Information Theory. 

Since the Information Fusion's first use in military application, there has been an abundant 

variation of its definition depending on the specific activity or a given field of application. 

Bostrom et al. (2007) reviewed and discussed the strengths and weaknesses of IF's definition. 

The authors concluded a generalised definition of information fusion as: 

"Information fusion is the study of efficient methods for automatically or semi­

automatically transforming informationfrom different sources and different points 

in time into a representation that provides effective support for human or auto-

mated decision making. " 

The above generalised definition could be applied to all the various terms, including data 

fusion, sensor fusion, image fusion, decision fusion and classifier fusion. The benefits of IF 

can be summarised with the type of information by combining the ideas of Hall and Llinas 

(1997) with Durrant-Whyte (1988) as the following: 

• Complementary information: can improve the spatial and temporal coverage. The 

information provided by a single source can only provide a fragment of the global 

space. By combining complimentary information from independent sources measuring 

different aspects of the same space, a better construction of the global space can be 

achieved, for instances, the information from two cameras measuring the same target 

from different viewpoints. 

• Redundant Information: when fusing information provided by different sources (or same 

sources over time) to measure an aspect of the same space, the redundant information 

can reduce the overall uncertainty and enhance accuracy. Multiple sources providing 

1 As Hall and Llinas (1997) stated that sensor and data fusion are sometimes equivalent to Information Fusion. 
However in some situations, as demonstrated later, the term "data fusion" is also used for the fusion of raw data 
from the sensors. The fusion of raw data from a sensor is considered to be a special case of Information Fusion. 
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redundant information can also serve to increase reliability in case of source failure 

(Blum et aI., 2005), such as the overlapping section of multi-camera network 

• Cooperative Information: increases the performance robustness by fusing information 

from multi-spectral or multi-modal sensors, such as the combination of audio and video. 

2.3 Information Fusion Models 

2.3.1 Introduction 

As mentioned above, Information Fusion was first adopted in military applications. Therefore, 

the most common and most popular conceptualisation of information fusion was proposed by 

White (1987) at the Joint Directors of Laboratories (JDL) and the American Department of 

Defence. White's fusion process includes an associated database with five processing levels, 

and an information bus that connects between the five levels. The proposed fusion system 

was divided into four increasing abstraction levels; object, situation, impact and process 

refinement. These terminologies were tailored toward the military application, and were, 

therefore, very restrictive. To alleviate these restrictions and to resolve limitations such as 

uncertainty, extensions on the JDL model have been proposed by Llinas et al. (2004), by 

Steinberg et al. (1999), and by Blasch and Plano (2002) who added an additional user interface 

model on top of the JDL model. 

Dasarathy (1997) developed another popular fusion model that was employed from the engi­

neering prospective. Unlike the JDL model, Dasarathy focused on the difference between the 

input and output results, independent of the fusion process. The data flow of the Dasarathy 

model was characterised by input and output as well as the functional process, therefore the 

abstraction levels were specified as whether an input or output. A simplified fusion abstraction 

level was given by Luo and Kay (1992), where the authors divided fusion into three levels: 

low, medium and high, depending on the output of fusion process. Based on these previous 

models, many authors have tried to generalise the fusion process based on mathematical 

notions, such as Goodman (1997) using random sets, and more recently Kokar et al. (2004) 

using category theory. 
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Based on the analysis of the above fusion models, information fusion, when adopted into the 

image processing domain can be generalised into two distinctive abstract fusion level: Low 

Level and High Level. 

2.3.2 Low Level Fusion 

Traditionally the Low Level fusion is the process to fuse raw data from multiple physical 

sensors. Characterised by Data level fusion as shown in Figure 2.1. It involves the fusion 

of raw data from different sensors, such as radar, to measure the same object before any 

processing is conducted. The fused information can provide data of higher accuracy by 

lowering the signal-to-noise ratio of individual sensors. However, its main drawback is that 

the data from the different sensors must be commensurate and it can be properly associated. 

Data 

Level 

Fusion 

(DL) 

Figure 2.1: Illustration of Data Level Fusion, where raw data from the multiple physical 
sensor are combined to lower errors within the measured signal 

In a visual domain, the raw input to any visual system is the image. The fusion of raw data 

is known as Image or Pixel-Level Fusion. A definition of Image Fusion is given by Blum 

et al. (2005) as ,a procedure for generating a fused image, in which, each pixel is determined 

by a set of pixels in each source image. The purpose is to generate a single image that 

contains a more accurate description of the scene than any individual source. Traditionally the 

application of image fusion is to produce images that could assist the human visual system 

to make better judgement such as medical diagnosis (Constantinos et aI., 2001) and defect 

inspection (Leon and Kammel, 2003). Recently there has been a move to use of image 
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fusion for achieving results with a higher level of information such as highlighting landscape 

changes, as proposed by Dong et al. (2009). As the paper by Pohl and Van Genderen (1998) 

illustrates, there is a number of researchers which concentrate on fusion at the image level. 

As the authors states, the main advantage of image level fusion is to increase the clarity of 

the original input image in order to allow it to be processed more efficiently by humans. 

However these advantages can also be propagated down the image processing pipeline to 

assist the fusion process at a higher level, although the advantages are very difficult to measure. 

In the field of video analytics, low level fusion can also refer to the fusion of raw pixels, as 

described above, as well as the fusion of the features related to the image. In feature level 

fusing, as illustrated in Figure 2.2, each information source provides some observational raw 

data, where some distinguishable feature vector is extracted. The features from the sources 

are concatenated together to form a single feature vector that is used as the input to an analysis 

unit in order to achieve the target objective. Fusion of the features allows for the utilisation 

of the correlation between them and the combined feature only requires one training phase 

(Snoek et aI., 2005). Some drawbacks are that the features to be fused must be of a common 

format and that it cannot deal with fragmented information (Das et aI., 2008), as features from 

different sources may not be available at the same instance in time. 

FE 

FE Feature .. 
Level 

FE 
Fusion 

FE (FL) 

FE 

FE .. 
FE == Feat:ure 

Ext:ract:lon 
Unit: 

Cane.tan.ted 
F.-tur •• 

Figure 2.2: Illustration of Feature Level Fusion, where different descriptors of the same 
image are fused together to create a new high dimensional feature 
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In the visual domain, the features that can be extracted may be summarised as 2: 

1. Visual Feature: These features can be extracted from the whole image, patches within 

the image or from segmented blobs. The features may include histograms of a colour 

spaces, texture features and shape information. 

2. Text Features: These features can be extracted through optical character recognition or 

automated license plate recognition processes. 

3. Motion Features: These can be represented in the form of kinetic energy, motion 

direction, magnitude histograms, optical flow and motion patterns in a specific direction. 

4. Metadata :Features that are associated with the captured information such as a time­

stamped, global positions of the information sources, which are used to supplement the 

above features in a fusion system. 

The features listed above have been fused in a range of visual surveillance scenarios, two 

examples are: 

1. Face recognition. Ekenel and Stiefelhagen (2005) fused the wavelets of sub-bands of 

the same image. It improves the classification performance as information resulting 

from the sub-bands that attain individually high correct recognition rates, is fused. Tan 

and Triggs (201 0) illustrated that combining two of the most successful local face 

representations, Gabor wavelets and Local Binary Patterns (LBP), gives considerably 

better performance than either alone. 

2. Human Tracking. Foresti and Snidaro (2002) fused information from both optical and 

infra-red source with the trajectory information to achieve the tracking tasks under 

challenging conditions. Wang et al. (2003) fused motion, colour and texture cues at 

the feature level to perform human facial tracking and vehicular tracking in a range of 

environments 

Like image fusion, feature fusion is generally considered a way to provide extra dimensions 

of information to generate more accurate outcomes by higher level process. However the 

2The use of an audio as a feature has been omitted from the list as it is not always available with a visual 
surveillance scenario. But the following section would show the combination of audio and visual features used 
by a different researcher 
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term "feature fusion" has not been well documented within the literature, even though many 

researchers have endorsed the concatenation of various features, such as Dikmen et ai. (2011) 

who concatenated colour histograms in the HSV and RGB colour space. 

2.3.2.1 Example: Fusing of Histograms 

There are various features that can be used for the pedestrian re-identification challenge. One 

of the most popular features is the use of colour, in particular colour histograms, which this 

review will concentrate on. 

The seminal work by Swain and Ballard (1990) demonstrated colour indexing for retrieval; 

histograms were compared by using an 'intersection' operator that is similar to the L1 norm 3. 

The histogram is a non-parametric, quantised representation of the accumulated values. One 

alternative is the parametric family of representations, e.g. second order statistics (Metternich 

et aI., 2010), possibly with mixture estimation (Tuzel et aI., 2006). Another alternative is to 

find and represent multiple salient points in the observation, e.g. using SIFT features (Sivic 

and Zisserman, 2003). 

Park et ai. (2006) extended the histogram-based representation by dividing the region of 

interest into horizontal partitions to form histograms concatenated into a fused feature vector. 

Each partition can be considered a raw data sensor, from which, features are extracted before 

it is fused through the concatenation process. This is a special case of a more general set of 

robust computer vision methods, in which, overlapping regions are used to achieve spatial 

selections with spatially tolerant accumulators, as presented by Dalal and Triggs (2005). 

Gray et aI. (2007) introduced colour histograms based on three predefined regions of a human 

body: one fifth for the top, two fifths for the middle and two fifths for the bottom. The 

division, as outlined by Gray et al. , presumes a creation of a better descriptor by segregating 

more noisy background pixels in the head region. The two largest regions would occupy a 

larger region of the divided images therefore less noisy background pixels. The combined 

histograms for all three regions are used as the descriptor for the whole image. An improved 

3 L1 norm minimise the sum of the absolute differences between the target value and the estimated values 
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descriptor is proposed by Alahi et al. (2010), using a grid collection of region descriptors. 

Each grid segments the objects into a different number of sub-rectangles of equal sizes. 

Various methods have been proposed to generalise this approach. First, Gray and Tao (2008) 

used a boosting technique to optimise a set of histogram features from a large combinatorial 

space. Zheng et al. (2011) constructed histograms for each of over twenty types of features 

for six horizontal stripes across the bounding box. Finally, Dikmen et al. (2011) applied an 

array of histogram responses, extracted from overlapping regions, to form the fused feature. 

More details on the the Dikmen et al. approach will be given in Chapter 3. 

Due to the considerable increase in the dimensions of the fused features, there is generally a 

limit to the number of features to be fused, around about 3, as it would require an increase in 

the processing of requirements . To reduce the processing power, the fused features would 

generally require its dimensions to be reduced before the analysis is done, to increase the 

rate of convergence. However, the dimensional reduction, in some instances, will reduce 

useful information. the loss can be reduced by using a higher level processing system, such as 

Decision level Fusion. 

2.3.3 Decision Level Fusion 

Decision level fusion, as illustrated in 2.3, is the highest level of abstraction. Each extracted 

feature is first analysed by a processing unit to acquire a decision on its identity. A decision 

analysis unit makes a final decision on the hypothesis by fusing each individual decision 

based on the provided feature or features. Decision level fusion avoids a majority of the 

shortcomings in the feature fusion, such as the requirement that different features needs 

to be in a common format. However the analysis unit's decisions usually have the same 

representation, such as probability of a hypothesis. Decision level fusion allows the fusion of 

unlimited features and offers a level of flexibility as the most suitable analysis procedure for 

each feature can be chosen. Although there is more freedom offered by fusion at the decision 

level, the main drawbacks are that the training of the processing units for each feature would 

increase the overall processing time of the fusion system. 
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Figure 2.3: Illustration of Decision Level Fusion, where decisions calculate the different 
video analysis units, based on different raw features, are fused to acquire a final decision 

As the information provided by the decision level would require the least amount of human 

processing power for situation assessment, it has been widely adopted across different fields of 

research. A review of the techniques used is broken down, and the adoption in the surveillance 

domain is analysed in Section 2.4. 

2.3.4 Hybrid Fusion Model 

Each increase in the fusion abstraction level decreases the amount of human processing 

required for situational assessment. This has focused the research community on the decision 

level, although each level has its own benefits. To utilise these benefits such as the correlation 

of the feature at the feature level, some researchers have used a hybrid model that fused 

together different levels of fusion abstractions. An example offered by Wu et al. (2004) is the 

fusion of the multiple independent features as one input modality and then fusing multiple 

classifier results at the decision level. Other uses of the hybrid model in the video domain can 

also be found in event detection (Xu and Chua, 2006), and pedestrian tracking (Snidaro et aI., 

2004). 
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Figure 2.4: Illustration of Hybrid Level Fusion, where different benefits at all abstracts level 
could be combined to create a more accurate fusion framework. 

2.4 Decision Fusion Techniques 

2.4.1 Introduction 

Unlike other research fields where sensor information fusion have been used extensively, such 

as fault diagnostics (Basir and Yuan, 2007), computer intrusion detection (Giacinto et aI., 

2003) and a range of military applications (Hall and Llinas, 1997), the IF is a relatively new 

technique for automated video surveillance with comparatively few publications. Although 

various classifications of information fusion methods and techniques have been proposed by 

various researchers (Castanedo, 2013; Pohl and Van Genderen, 1998; Khaleghi et aI., 2013; 

Nakamura et aI., 2007; Bloch, 1994) based on a range of criteria such as the type of data, 

purpose of the techniques, parameters, and mathematical foundation. The categorisation of 

the fusion techniques in the surveillance vision field has not been conducted. 

At the heart of many video analytic applications is a classifier, fusing different results from 

various classifiers using a broad range of information sources. This can be used to increase 
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the accuracy of the final classification results as outlined by Ruta and Gabrys (2000). The 

choice of the methods used to fuse the classifiers may depend on the output of each of the 

classifiers. Xu et al. (1992) distinguished three types of classifier output: 

• Abstract Level - The classifier would only output one unique label. At this level there is 

no information about the certainty of the guessed labels, nor are any alternative labels 

suggested. 

• Rank Level - The classifier outputs a ranked list of all possible labels. The highest label 

is the first choice and the alternatives rank in order of plausibility of the correct label. 

• Measurement Level - The classifier attributes each label a measurement value to rep­

resent the supporting probability for the hypothesis. The input vector submitted for 

classification comes from each of the classes. 

Based on the three categories of classifier outputs, the review of the fusion techniques can be 

broken down into two main sections: 

1. Logical Reasoning: Mainly uses the classifier outputs from the Abstract and Rank 

Level. 

2. Evidential Reasoning: Uses outputs from the measurement level. 

The mathematical foundation of the methods described in the following section will be 

covered in the relevant chapters. Therefore, the review will give an overview of how these 

methods are currently being used in the vision community. 

2.4.2 Logical Reasoning Techniques 

These techniques relate to logical methods that assist with the decision making process. The 

simplest method is the majority vote. The identity that receives the largest number of votes 

from the individual processing units is selected as the consensus decision. Oliveira et al. 

(2010) presented a pedestrian detection system by employing multiple classifiers of different 

extracted features. The authors fused class labels from both Support Vector Machines (SVM) 

and a Multilayer Perceptions classifier using two features; Histogram of Oriented Gradients 

(HOG) and local receptive fields. The output scores of all of the classifiers were fused to 

17 



CHAPTER 2. REVIEW 

obtain a majority decision regarding the identity of the object. 

The majority voting process is used when no prior information is known, therefore, all classi­

fiers are assumed to have equal accuracy. However if some prior knowledge is known such 

as changes in lighting condition due to time of day, some classifiers would have increased 

reliability over others. In these situations, it is more suitable to assign a higher confidence 

to the more competent processing units in the decision making process. These methods are 

called Weighted Majority Voting. The weights assigned to the classifiers are normalised to 1. 

There are various normalisation methods that can be adopted, as outlined by Han et al. (2006). 

The most important aspect of using weighted majority voting is to determine and adjust the 

weights to achieve the optimal accomplishment of the decision. The weighted voting process 

was adopted by Foresti and Snidaro (2002) for the tracking problem. The authors fused the 

position of the blob from multiple information sensors at a certain time. Each sensor has a 

corresponding weight according to the reliability factors, and the point that best represents 

the object's position is given by the weighted majority voting process. 

These techniques require the results of the classifiers to be of a common format, for example, 

if all of the classifiers were to investigate "Is a probe vehicle probe image the same as a 

target vehicle?". Under the condition, the voting process can be used to acquire a more 

accurate result. However if the used classifier outputs attributes of the vehicle such as the 

colour or shape, these attributes alone, employed to determine the similarity of two vehicles, 

would be difficult when the voting techniques is used. In this case, the evidential reasoning 

technique can be adopted because it is able to accept these different types of attributes to build 

a likelihood model to determine the outcome. 

2.4.3 Evidential Reasoning 

Evidential reasoning methods are based on the knowledge of the perceived situation. Evidence, 

thus, refers to the transition from one likely true proposition to another. The truth is believed 

to result from the previous one, as stated by Nakamura et al. (2007). Classic evidence methods 

are based on subjective probabilities. Two very popular concepts have been chosen by the 
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wider research community: Beyesian and Dempster Shafer. 

2.4.3.1 Bayesian Inference 

Information fusion based on Bayesian Inference offers a formalism to combine evidences 

according to rules of probability theory. Uncertainty is represented in terms of posterior con­

ditional probabilities describing the belief of a hypothesis It can assume values in the interval 

[0,1], where 0 is the lack of belief and 1 is absolute belief. The posterior probability density 

function is produced by using Bayes rule, and relies on the prior belief of the hypothesis and 

the probabilistic likelihood function that describes the probability of the hypothesis given an 

observation, (Castanedo, 20l3). Bayesian inference allows a range of prior knowledge about 

the likelihood of the hypothesis utilised in the inference. It also allows for the probability of 

the hypothesis being true to be computed incrementally. As the posterior probability from 

one likelihood function can be used as the new prior probability, it can be used to update the 

posterior probability of hypotheses. 

Applications of the Bayesian inference in a surveillance domain include the following: Atrey 

et al. (2006) adopted a Bayesian inference fusion approach to fuse audio features and video 

features to detect pre-defined events, and Stolkin et al. (2012) applied a Bayesian method to 

the tracking problem by combining images from a thermal imaging camera and conventional 

colour cameras. The Bayesian approach is able to adjust the relevance of the cameras in the 

tracking decision process. The tracking of vehicles by fusing different features using a camera 

network for monitoring the highway was presented by Huang and Russell (1998). The authors 

computed the probability of any two objects being the same, given a stream of the features of 

the observation such as timestamps, mean colour, and forward velocity. 

An extension of the Bayesian inference, popular in the research community, is Bayesian 

Network. It is a probabilistic graphical model that represents a set of random variables and 

their conditional dependencies via a directed acyclic graph. The nodes within a Bayesian 

network represent the random variables or observation from different information sources 

and the edges represent the conditional dependencies. Dynamic Bayesian network (DBN) 
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models are an attractive modelling choice when fusing information from mUltiple sources, 

as they combine an intuitive graphical representation with efficient algorithms for inference 

and learning (Choudhury et aI., 2002). Choudhury et ai. proposed an application of the 

Bayesian Network to combine different speech and visual cues for the classification of speaker 

interaction. Toyama and Horvitz (2000) performed head tracking by fusing different trackers 

of colour and motion features. The authors also made use of the random variables in a Bayesian 

network to serve as context sensitive indicators of the reliability of the different trackers. 

Town (2007) also utilised the Bayesian networks to model the probabilistic dependencies and 

reliabilities of different sources of information. In Town's work, integrating visual information 

from video cameras with ultrasonic sensor data at the decision level allowed for the tracking 

of people within an office environment. 

2.4.3.2 Dempster-Shafer 

Hall and Llinas (1997) illustrated that Bayesian inference has two major shortcomings: firstly 

it requires a well-defined, prior and conditional probabilities of the hypothesis. Secondly the 

hypothesis needs to be mutually exclusive, to solve these limitations in probabilistic methods, 

a number of alternative techniques have been proposed. One of the popular technique is based 

on evidence, called as the Dempster-Shafer Theory (DST). 

The Dempster-Shafer Theory is based on the mathematical theory introduced by Dempster 

(1967) and mathematically formalised by Shafer (1976) toward a general theory of reason­

ing based on evidence. It became a popular method because it could be considered as a 

generalisation of the Bayesian Inference that deals with probability mass functions. Unlike 

Bayesian inference, DST does not require a well assignment of the prior probability; instead 

the probability is assigned, only when the supporting information is available. DST also 

relaxes on Bayesian's restriction on mutually exclusive hypothesis so that it is able to assign 

evidence to the union of hypothesis. 

As the heart of DST, a hypothesis in a set of all possible, mutually exclusive hypotheses is 

characterised by a belief and a plausibility that represents the lower and the upper bounds, 
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respectively, of the hypotheses being true. The interval bounded by the belief and plausibility 

values defines the true belief in the hypothesis. 

Some applications of DST in the video surveillance domain include: Maguire and Desai 

(2012) explored DST's ability to allow each source to contribute information with different 

levels of detail, to fuse a wide range of sensors to the problem of intrusion detection. Ma 

et al. (2013) built a fusion framework based on DST to increase the event detection rate 

when event detectors have conflicting decisions. Morbee et al. (2010) used DST to fuse 

ground occupancies computed from a set of cameras so that the occupancy detection results 

outperformed probabilistic methods. Zhao et al. (2007) applied DST to the vehicle detection 

problem by fusing signals from a video sensor and the magnetic sensor. Li et al. (2013) 

reported human tracking that explored the spatio-temporal visual information and used DST 

to fuse different classifiers to perform better tracking. 

2.4.3.3 Fuzzy Set Theory 

Fuzzy set theory is an alternative reasoning scheme for the fusion of uncertain information. It 

was first introduced by Zadeh (1965) and is an extension ofthe Set Theory. In contrast to Set 

Theory where the membership of elements in a set is assessed in a binary value according to 

the bivalent conditions, Fuzzy set theory introduces the novel notion of partial set membership, 

which enables imprecise reasoning. 

Similar to Bayesian theory where prior knowledge of probability distributions is required, 

fuzzy sets theory requires prior membership functions for different fuzzy sets. Therefore, 

fuzzy set theory deals in gradual membership functions of an element in the interval [0,1], 

where the higher the membership function is, the more an element will belong to the set. 

Fuzzy data can then be combined using fuzzy rules to produced fuzzy fusion outputs. Fuzzy 

fusion rules are classed into three main categories: 

• Conjunctive - are considered appropriate when fusing data provided by equally reliable 

and homogeneous sources. 

• Disjunctive - are deployed when at least one of the sources is deemed reliable, though 

which one is not known, or when fusing highly conflictual data. 
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• Adaptive - are used as a comprise between the two above therefore these can be applied 

in both cases. 

As concluded by Khaleghi et al. (2013), in contrast to the Bayesian and Dempster theories, 

which are well suited to modelling the uncertainty of membership of a target in a well-defined 

class of objects. Fuzzy sets theory, however, is well suited to modelling the fuzzy membership 

of a target in an ill-defined class. As such it is often integrated with both the Bayesian 

and Dempster-Shafer fusion algorithms rather than being used independently in challenges 

relating to uncertainty reduction. 

2.4.4 Uncertainty Evaluation Metric 

The aim of a performance evaluation metric is to establish the advantages and disadvantages 

of a technique based on a set of measures or metrics. These metrics can also be used to 

effectively compare and evaluate the outcomes of different techniques operating to the same 

objective. As Khaleghi et aI. (2013) suggests, the results from Information Fusion Systems 

are typically a mapping of different techniques into different real values or partial orders for 

ranking. 

In these goal-orientated challenges, a range of methods can be used to evaluate the merits of 

a fusion framework. Some applications used in the video surveillance domain, to evaluate 

the performance of object identification, are the Precision and Recall, Receiver Operating 

Characteristics (ROC) and Cumulative Match Curve (CMC). These measure the performance 

of tracking analysis metrics such as mean distance from track, detection rate, and false posi­

tive rate (Town, 2007). For event detection, a multi-metric evaluation procedure including 

certainty, accuracy and timeliness has been proposed by Hossain et al. (2011). 

However, as the goal of many fusion systems is to reduce uncertainty, a metric to evaluate 

the uncertainty reduction is needed. With the logical reasoning techniques, the uncertainty 

reduction is normally carried out by the improvement of accuracy using the metrics men­

tioned above. The evidential reasoning techniques can adopt a similar measurement strategy, 

however since there is probability associated with the outputs, information theory should be 
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used, such as Shannon's Entropy that is a measure of uncertainty, as highlighted in Chapter 

1. However Shannon's Entropy can't be applied to the Dempster-Shafer model as no prior 

information is available; therefore, the reduction of uncertainty, before fusion, is unknown. 

The review of the evaluations suggested a need to develop standardised measurements of 

uncertainty reduction that can be applied to different evidential reasoning techniques, to 

provide an effective comparison between the techniques under investigation. 

2.5 Summary 

This section reviewed some of the techniques that have been used in the vision community 

to fuse information from different sources for achieving better results. The choice of the 

techniques depends on the information provided and the availability of key information. 

As mentioned in Section 2.4.2,. when the information provided by a range of sensors is 

common, a logical reasoning technique can be used. If the information is not common but 

with some supporting evidence, the evidence reasoning techniques can be adopted to combine 

these types of information. In the different evidential reasoning techniques, the Bayesian 

inference would require some types of prior information about the outcome hypothesis. When 

prior information is unavailable, the Dempster-Shafer technique might be more beneficial. 

The section also highlighted the use of the Fuzzy set theory; however it is often used in com­

bination with Bayesian and Dempster-Shafer theory to solve challenges involving uncertainty. 

As such the research will concentrate on Bayesian and Dempster-Shafer fusion frameworks. 

This section also highlighted that the fusion approaches mainly concentrated on the fusion of 

multiple physical sensors and the fusion of different information provided by the same sensor 

are limited. With the vehicle re-identification problem, Sumalee et al. (2012) tried to combine 

different physical sensors with vehicle features such as colour, shape and size derived from 

video image data using different image processing techniques. These features are fused by 

using an evidential reasoning fusion framework, in order to provide a probabilistic measure for 

the re-identification decision. Similarly, Kumar et al. (2010) applied Fuzzy Logic modelling 
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to produce a 'belief mass' for each of the sensors, and addressed the pedestrian tracking issue 

in varied illumination conditions. ' 

Recently, Torabi et al. (2012) improved Kumar's idea by applying fusion techniques to track 

multiple people walking in close proximity. In their work, data from colour-based and ther­

mal sensors were fused to achieve the task of tracking peoples in both indoor and outdoor 

environments in varied lighting conditions. 

For the identification of vehicle types in surveillance data, Sun et al. (2004) used an 'inductive 

loop signatures' system, built with some specialised equipment and reported an accuracy 

of 90% on a three-category problem. Sumalee et al. (2012) employed similar ideas and 

applied them to the problem of vehicle re-identification within video. The authors also 

introduced other vehicle features such as colour, shape and size, which were derived from 

video image data using different image processing techniques. These features were fused 

by using a probabilistic fusion technique in order to provide a probabilistic measure for the 

re-identification decision. They claimed that the overall re-identification accuracy was about 

54%, which represents the current state-of-the-art technique. This highlights the need to 

design and implement a fusion system that can handle multiple features from a single physical 

sensor. 

As illustrated throughout this review, the motivation for most researchers to use information 

fusion techniques is to increase the accuracy by utilising its uncertainty reduction capabilities. 

The performance of the fusion system has been compared to standard non-fusion techniques, 

which use standard goal-oriented metrics. There are, however, limited means of uncertainty 

reduction measurement and comparison. The available metrics are inadequate when compar­

ing some fusion methods, especially between different evidence-based approaches. This leads 

to a need for the development of an evaluation framework that would effectively measure and 

compare uncertainty reduction. 
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Chapter 3 

Person Re-identification 

3.1 Introduction 

Pedestrian re-identification is an important component of visual surveillance analysis in 

public space. The ability to assign a single correct identifier to multiple observations of 

an individual, improves the semantic coherence of the analysis. This, in turn, is useful to 

construct descriptions of behaviour and to facilitate the retrieval of data relevant to a given 

individual. 

The difficulty of the problem is partly determined by the extent of time and space, over which, 

these "multiple observations" are recorded. At one extreme is part of the pedestrian's tracking 

problem within a single view; this is particularly important in more crowded or occluded 

scenes. Similarity of appearance is used (Breitenstein et aI., 2009) alongside spatio-temporal 

measurements to estimate trajectories of individual person. In these cases, the appearance and 

pose of a person being observed are relatively similar. The problem is more difficult when 

using observations from mUltiple cameras and with discontinuous trajectories, not only pose, 

viewpoint and illumination vary, but the number of possible alternative candidates is most 

likely increased. In the extreme case, re-identifying a pedestrian at some arbitrary location 

and future point in time is indeed a challenging problem. Some aspects of the pedestrian's 

appearance such as clothing and hair may have changed, and the less changeable aspects such 

as face and gait are more difficult to analyse (assuming that the pedestrian is not actively co­

operating with the analysis and that the environment is relatively uncontrolled). Furthermore, 
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re-identifying people "in the wild" will require robust processing of partial and incomplete 

observations due to crowds and clutter. 

Dikmen et al. (2011) methodology is regarded as the current benchmark method for pedestrian 

re-identification, since it provides the best performance when evaluating an unseen a subset 

of the VIPeR dataset. This chapter will examine how the current state-of-the-art techniques 

performance can be retained and improved under varying experimental conditions. The two 

principle sources of variations are the resolution of the images in dataset and the presence of 

occlusions in the probe and target observations. 

3.2 The V-47 dataset 

In this investigation a new higher resolution dataset is going to be used. One motivation for 

the proposed dataset is to block a gap within the publicly available datasets which is of a 

lower resolution Other benefits of the dataset is that it includes occlusion that blocks part of 

the body, this is useful to solving re-identification problems in crowded environments where 

only parts of the person could be observed. 

The V-47 dataset comprises videos of 47 pedestrian walking in and out of a room through 

a pre-defined indoor route, observed by two progressive scan high resolution cameras. The 

scene had both artificial and natural lighting, which varies throughout the duration of the 

filming activity. There are 4 video sequences for each pedestrian (two cameras, two directions), 

with each sequence around 30 seconds. For each of the participants, 4 images were extracted 

to one for each view and some examples of the images are illustrated in Figure 3.1. 
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(a) Camera A - In (b) Camera A - Out 

(c )Camera B - In (d) Camera B - Out 

Figure 3.1: Example Images of Participants Viewed from Both Cameras, both coming in and 
going out of the room. All the data used will be captured at a relatively similar distance away 

from the camera. 

3.2.1 Variable Image Resolution 

In the V-47 dataset, the height of each pedestrian (in image scan-lines) varies from 140 to 480. 

The method outlined in Section 3.3.2 was designed and tested on a vertical resolution so that 

each pedestrian was 128 lines tall. Higher resolution input can always be down sampled as 

necessary to fit the expected input size, but this will discard higher spatial frequency signals 

that may aid the discrimination task. Operating directly on the original resolution signal gives 

the opportunity to preserve this information. The operation to accumulate RGB (or HSV) 

values from overlapping patches into histograms can be generalised to accept input of any 

size, by scaling the size of these input patches accordingly. However, the aggregation of pixel 

values into histograms also discards information, as mentioned in Section 5.3.1. Nevertheless, 

it is hypothesised that by using smaller scale patches, this effect is mitigated and better use is 

made of the higher resolution input. 
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3.2.2 Fusion of Multiple Colour Histograms 

As mentioned in Section 2.3.2.1, in order to create a feature vector, the input image is divided 

into overlapping patches, as shown in Figure 3.2. Each patch can be considered as a bounding 

box of set width and height, from which, a histogram for that patch is created. As section 

2.3.2.1 highlights, each patch can also be considered to be a sensor from which features are 

extracted before being concatenated to form a new feature. Dikmen et al. (2011) combined the 

idea of patches, outlined by Gray and Tao (2008), with the idea of multiple features in a single 

patch, as offered by Zheng et al. (2011), to better aid the discrimination task. To investigate 

the benefits of thi s additional fused information, for each patch an 8 bin histogram is created 

for both the RGB and HSV spaces. These histograms are then concatenated together to form 

each patch's feature vector. 

3.3 Methodology 

3.3.1 Overview 

An overview of the method used for the investigation is illustrated in Figure 3.2. 

! I I II I I I I 

{J 
1II1I1 III 

¢ ¢e~ Low Resolutron 
High OcclusIon 

Figure 3.2: Overview of the Techniques Used. The fused feature vector for each patch 
(black/grey boxes) would be concatenated together to create an image vector. The image 
vector's dimensions will be reduced, via peA, before the learning metrics are applied. 

3.3.2 Large Margin Nearest Neighbour Classifier with Rejection 

This section makes a brief description of the usage of the Large Margin Nearest Neighbour 

classifier with Rejection (LMNN-R), as introduced by Dikmen et al. (2011), to learn a metric 
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suitable for pedestrian re-identification. This is the current state-of-the-art approach for person 

re-identification on the benchmark VIPeR (Gray et aI., 2007) dataset and it is an enhance­

ment of the Largest Margin Nearest Neighbour techniques offered by Weinberger et aI. (2006). 

To increase the performance, the fused feature vector is reduced to a smaller metric learning 

space by applying a Principle Components Analysis (PCA) (Jolliffe, 2005), thus giving an 

input vector i! c Rd . 

The objective is to learn a linear transformation L : Rd ---+ Rd, where Rd is the real number 

that minimises a distance between each low dimensional training point and its K nearest 

similarly-labelled neighbours. This is done while also maximising the distance between 

all differently labelled points, and while maintaining a constant minimum margin between 

differently labelled points. As a consequence, a similarity measure of the pairwise feature 

vectors would follow the weighted squared distance: 

(3.1) 

which can be reformulated to the equivalent Mahalanobis metric: 

D(it, xj) = (it - xjf M(it - xj) (3.2) 

where M is a symmetric positive-semidefinite matrix, so it can be factorised into real-valued 

matrices L as M = LT L. 

The objective function over the distance metrics parametrised by equation 3.1 or equation 3.2 

has two competing terms: E(M) = El(M) + E2(M). The first term penalises large distances 

between each point i and its neighbours j according to Euclidean norm: 

El(M) = L D(it,xj) (3.3) 
i,j""i 

where the j - i denotes that Xj is one of the K similarly labelled nearest neighbours of Xi. 

while the second term penalises small distances between each point and all other differently 
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labelled ones: 

t2(M) = ~(1 -bi,k) [1 + N
1
K ( L D(~, it)) -D(xt, xt)] (3.4) 

~,k m,l .... m + 

Here, bi,k is an indicator variable which is 1 if and only if Xi and Xk belong to the same class, 

and 0 otherwise. The Xk for which bi,k = 0 are so called "impostors" for Xi. The closest 

impostors of a training point Xi are forced to be at least a certain specified distance, called 

the margin, away from the considered point Xk. This distance is computed using the average 

distance between all K nearest neighbour pairs (m, l) in the training set The expression 

[zl+ = max(z, 0), in equation 3.4 denotes the standard hinge loss, which is a loss function 

used for training of maximum margin classifier (Rosasco et al., 2004). This optimisation 

process can be solved as an instance of a positive semi-definite program when distance D is 

given by the equation 3.2. 

3.4 Generalising Over Occlusions 

CCTV observations of pedestrians are often partly occluded due to crowded environments 

and obstacles. It is important for re-identification methods, such as LMNN-R, to perform 

robustly in these cases. However, all pedestrians of the VIPeR dataset are fully visible. To 

investigate the re-identification performance in the presence of occlusions, a set of partially 

occluded pedestrians was synthesised from the VIPeR dataset, and an occluded subset of the 

V-47 dataset was also used. 

The VIPeR dataset was produced by overlaying another randomly selected pedestrian (from 

the same dataset) on top of the target pedestrian, using a feathered elliptical mask similar to 

that described by Weinhaus (2013). The overlaid placement was varied stochastically, with a 

mean occlusion level of 50%, to simulate typical observations taken from crowded scenes. 

In the V-47 dataset, the nature of the scene resulted in a specific subset of the pedestrian 

observations included real occlusions from approximately the waist down, and these instances 

formed the V 47 partially occluded dataset. A few examples of occluded images are depicted 

in Figure 3.3. Such occluded images can be directly fed into training/testing procedure of 
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LMNN-R classifier as described in Figure 3.2. 

(a) Synthesised from VIPeR dataset 

(b) Real occluded images from V-47 dataset 

Figure 3.3: Examples of occluded observations, where the occlusions have all been limited to 
the lower half of body only. 

Firstly, an experimental process is designed to investigate whether a classifier trained on 

occluded examples will improve the performance when applied on an occluded test set com-

pared with a classifier that is trained only on non-occluded data. However the performance of 

occlusion trained classifier may deteriorate (compared with the benchmark) when tested on 

the original (un-occluded) test set. To balance these opposing factors, a second experiment 

process using a mixed test set of (for example) 50% each of occluded and non-occluded data 

is conducted. 

Two strategies for constructing a classifier to work on this mixed dataset are considered. These 

are: 

1. A single hybrid classifier, trained with a mixed training set. 
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2. A joint system with two classifiers, one trained on occluded and another trained on 

non-occluded data. This strategy will need an additional component to detect if either 

probe or target observation is occluded. Even though it is currently unavailable, its 

performance can be estimated by simulating: 

(a) Upper Bound - simulating a perfect occlusion detector. 

(b) Lower Bound - simulating a random occlusion detector. 

This will provide a preliminary indication of relative performance between these strate­

gies. 

3.5 Experimental Results 

A common evaluation framework, as presented by Gray et al. (2007) and Dikmen et al. 

(2011), is to offer a single 'probe' image together with a 'target' set that exactly contains one 

observation of the probe which may be captured at a different instance in time. The output 

is a ranked list of elements of the target set which can be aggregated over a test set into a 

Cumulative Match Characteristic (CMC) curve. The normalised area under this curve is a 

straightforward and intuitive performance indicator. Under the following experiments, these 

values would be expressed in the legend where possible. 

The results of five different experiments are presented here to investigate the effects of 

occlusion, change in resolution, any dependency on pose, similarity of the training set to the 

test set and the effect of feature fusing. Where possible, reference is made to the benchmark 

experiment provided by Dikmen et al. (2011). In all experiments, the pedestrians in the test 

sets were never included in the training sets. To generate statistically significant results, a cross 

validation procedure is used. The data is randomly divided into training and testing datasets 

before a result is acquired. The random split is accomplished by repeating the iteration of a 

random number generator. The generator's range is limited by the total number of pedestrians 

and the number of iterations is guided by the number of training samples required. The final 

result is the average over 10 iterations of the random split process. Another configuration 

constant in the experiments is the retention of the first 60 principle components. 
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3.5.1 Occluded and Non-Occluded data 

As discussed in Section 3.4, this experiment process measures the re-identification perfor­

mance on occluded observations. The first step is to measure the performance on datasets, 

with and without occlusions. The classifiers in Table 3.1 are trained only on one type of data, 

and the normalised area under CMC (%) is reported in each case. 

Table 3.1: Comparison of performance employing data with & without occlusions, where C 
denotes Occlusion data 

notation Training set Test set Performance 
TrTe no occlusions no occlusions 95 % benchmark result 

TrTeC no occlusions with occlusions 80% 
TrCTe with occlusions no occlusions 74% --

TrCTeC with occlusions with occlusions 87% 

From the results in Table 3.1, it is clear that the underlined results with occluded data pose a 

more challenging problem. The classifiers achieved their best performance when the testing 

and training data contained the same non-mismatched data. When classifiers use the mis­

matched data for training or testing, the best performance is achieved by classifiers that are 

trained on non-occluded data. 

Taking the problems of achieving the best possible performance, with occluded and un-

occluded data into consideration, three results are presented: the hybrid classifier strategy, 

the upper bound joint strategy (perfect detector) and the lower bound joint strategy (50/50 

detector), as described in section 3.4. The upper bound simulates a perfect detection between 

occluded and un-occluded input, while the lower bound simulates a randomly generate detec­

tion results, roughly 50%, between the two cases. In addition the hybrid classifier was trained 

with data that was half of each type. 

To allow comparison of the experiments for each iteration, the same test data was used and it 

contained a random mixture of occluded and non-occluded data, roughly 50/50. 
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Table 3.2: Comparison of performance between the employment of various strategies to 
re-identify data containing both occluded and un-occluded data 

Strategy 1: hybrid classifier 83 % benchmark result 

Strategy 2: joint classifiers (perfect occlusion detection): 91 % 

Strategy 3: joint classifiers (random occlusion detection): 84 % 

The results presented in Table 3.2 reveal that it is worthwhile to pursue a strategy of training 

specific classifiers with occluded and non-occluded observations respectively, rather than 

training a single hybrid classifier with both types of data. 

3.5.2 Higher Resolution Observations 

As the original VIPeR image dimensions is only 128x48 pixels, the feature vector created 

in the benchmark method (Dikmen et aI., 2011) makes use of 38 vertical and 4 horizontal 

overlapping patches, as the best performance was achieved. However the V 4 7 dataset has 

480x264 pixels therefore the performance might be improved by increasing the number of 

vertical and horizontal overlapping patches. For simplicity the results refer to the following: 

• Normal Blocks = 38 vertical and 4 horizontal overlapping patches 

• Small Blocks = 47 vertical and 5 horizontal overlapping patches 

To investigate and clearly identify if an improvement can be made by increasing the number 

of overlapping patches. A bi-cubic interpolation (Keys, 1981) was carried out to create a low 

resolution version of the V-47 dataset, which is the same size as the VIPeR dataset. 

Experiments were conducted to compare the Normal Blocks as used in Dikmen et al. (2011) 

with the Small Block. These alternate schemes were tested on both low and high resolution 

versions of the V-47 datasets, and the results were plotted in Figure 3.4. The numbers in 

the legend describe the normalised percentage area under the CMC curve. The training set 

consisted of 37 individuals with the remaining 10 used in the test set, and all data used in this 

experiment did not contain any occlusions. 
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Low Resolution Test Set 
100 "''''''''''''''''''''''':'''''''''''',',,''''''''',:, """"",.,"'" 

~ ---­;--
/: 

, / 

80 "",,,,,,;,,,,,,,,,"';,,,,,,,,,,;,,,,,,>J/,,, 
: ,; 
:/ 

'" /, 
~ 60 "".""":""",,,')/~,. 
5 I' '" /, 
'E : / R :1 
~ ,/ 
8! 40 """'''T 

I' 
I : 

I ' 
I 

I 

20/- --- No PCA, Small Blocks, 68,44 

- Normal Blocks, Trained with LMNN-R 95,44 

--- Small Blocks, Trained with LMNN-R 95,89 

°1·L---7---7---~---5~--7---7---~--~--~, 

Rank Score 

(a) 

High Resolution Test Set 
100 ............ " .. "~'.:::.~.;,.:::::.,;.; ... :::.:-:' -:--==--:;.-::--:,:-:::--~·-""'-r-=::~~ ",,,,,.0;;, 

I~-­
/ 

, / 

~ 6Of-"""'''''''''''''''''''''' 

c 
.Q 
:= 
c 
~ 
~ 40 
a: 

20 

-No PCA, Normal Blocks, 57.67 

-----No PCA, Small Blocks. 58,89 

- Normal Blocks, Trained wtth LMNN-R. 94,89 

-----Small Blocks, Trained with LMNN-R, 96,89 

5 6 10 

Rank Score 

(b) 

Figure 3.4: CMC Curves For Changes in Feature Vector; (a) Low Resolution V-47 Data (b) 
High Resolution V-47 Data. Both sets of results have shown drastic improvements when the 

feature vector is reduced by PCA 
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Firstly, it is worth noting that the results obtained on the 'raw' feature vectors (57-68 %) 

are significantly inferior to those obtained from the trained classifier (95-97 %) Overall 

comparison of the two blocks suggests that increasing the number of overlapping patches 

would improve the performance. The improvement of performance is more significant when 

using the higher resolution data. 

In addition, when using the higher resolution data, it is important to choose the correct number 

of patches. As each patch will contain more pixels, compared to a lower resolution, there 

is an opportunity for the patch to capture more noisy pixels which can mislead the feature 

vector. This causes the results to deteriorate slightly when the Normal Blocks are used in the 

higher resolution data compared to the lower resolution using the same blocks. 

3.5.3 Dependency on Viewpoint 

Experiments have been conducted to investigate any dependency on the viewpoint of the 

pedestrian. As shown in Figure 3.1, the V47 were captured at both the front view and rear 

view of the pedestrians. This experiment would investigate the matching of the a probe 

set, which contains the view of the pedestrians from one instance in time, to the target 

set which are views of the same pedestrian at a different instance in time from the same 

camera. In this experiment Camera A was used. To control the variations in the results, the 

chosen data are when the pedestrian are within full view of the camera and without occlusions. 

Table 3.3: Area under the CMC curve for different poses: FV = Front View, BV = Back View. 

Pose Variation (Probe Versus Target) 

FV Versus BVor 
FVVersusFV BV Versus BV 

BVVersusFV 

96.56 ± 2.79 99.00 ± 1.26 96.89 ± 1.63 

These experiments use the higher resolution V-47 data, adopting the increased number of 

overlapping patches (small blocks). The performance is listed in Table 3.3, the highest 
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accuracy was achieved when the rear view data was used and all experiments with the front 

view data reached similar results. One explanation for this difference can be attributed to 

colour pattern on the subject's clothing, from the frontal view, as there is a large variability on 

the front of the clothing compared to the more consistent patterns on the back of the clothing. 

3.5.4 Domain Specificity 
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CMC Curve - Domain Specificity 

-+-V-47 Classifer - Trained on other Data, 86.00 
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Rank Score 

Figure 3.5: CMC Curves of Domain Specificity, the results shown here proves that there is a 
degree of exclusivity between the data domains, as the best results is achieved when the 

training and testing data is captured from the same domain. 

This experiment evaluates the performance of three classifiers on 10 unseen pedestrians from 

high resolution V-47 dataset. Since the VIPeR dataset contains pedestrians viewed from 

different angles, in order to make the results comparable the training and testing VIPeR 

dataset will contain both front and rear views as well. The differences between the classifiers 

are: 

1. Viper Classifier - the first classifier was trained on 316 pairs from the lower resolution 

VIPeR dataset. 

2. V47 Classifier on other data - this classifier was trained using 37 pedestrians, observed 

from different camera from those used in the test set. 
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3. V47 Classier same camera - this classifier was trained using 37 pedestrians, observed 

from the same camera views from those used in the test set. 

The results in Figure 3.5 reveals that there is a significant dependence on the type of training 

data: the best results are obtained when the classifier is training data is the captured in the 

same domain as the test data. This suggests that both the VIPeR and V-47 training sets exhibit 

some degree of exclusive properties that are not shared. These exclusive properties are also 

present across different cameras monitoring similar domain. 

3.5.5 Use of Additional Training Samples 

100 

eo 

Comparing Effect on Increase Training Samples 

Single-View Classifier, 
--No PCA = 51.80, PCA = 47.20, 

LMNN-R = 91.31 

Multi-View Classifier, 
--No PCA= 51.80, PCA= 5008. 

LMNN-R = 93.60 

o~------------~~~------------~_ No PCA No LBarnlng PCA No LB,mlng 

Testing Methods 

Figure 3.6: Performance of two classifiers, trained using 37 individuals, where multiple 
instances of the same individuals were supplied; 1) Single View classifier uses 3 instances of 

the one individual. 2) Multi-view classifier using 9 instances of the one individual 

This experiment is designed to investigate whether the cross-camera re-identification perfor­

mance can be improved by injecting more data of the 'target' set into the training sets. This is 

achieved through two strategies: 

1. Single View - since there are 2 cameras to capture a pedestrian coming and leaving the 

environment which is equal to 4 viewpoints of the pedestrian. Therefore the training set 

can be provided with 3 images for each "target" out of the 4 viewpoints. 
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2. Multiple Views - since a video is available, from each of the 3 viewpoints of the "target", 

from above. 3 additional images of the same target from each of the 3 viewpoint can 

be extracted. This is equal to 9 instances of the pedestrian for each 'target' within the 

training set. 

To control the experiment, the viewpoints of pedestrian would vary in the "probe" and only 

1 viewpoint of the pedestrian would be included. To demonstrate the performance, the area 

under the CMC curve is plotted at several stages of the classifier construction: (i) Prior to the 

peA and Training, i.e. the raw feature vector; (ii) after the PCA but prior to training; and (iii) 

After PCA and Training. 

The results in Figure 3.6 shows the improvement of cross-camera re-identification compared 

with results of the V47 classifier trained on other data (86%) as shown in Figure 3.5. How­

ever, the results cannot match that achieved by using data from the same camera (96%), as 

illustrated in Figure 3.5. 

In addition, small improvement in the performance can be achieved by using multiple instances 

from the same viewpoint, which was observed at both prior and after the learning phase. 

Another observation is the small dip in performance after PCA was applied. This is due to 

the number of components being limited to 60 so that some of the variance (discriminative 

feature) with the raw data is removed during the transformation, as outlined in Section 5.2.2.2. 

However, through the learning phase, the decrease in performance was removed. 

3.5.6 Feature Fusion 

The experiment in Section 3.5.2 has already shown that fusing with the increased number 

of patches (sensors) is beneficial to the re-identification challenge. The Figure 3.7 further 

demonstrates that a concatenated feature based on two colour spaces will perform better than 

a single feature does, even when is used with fused patches. 
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Figure 3.7: Comparison of using single colour space features with fused colour spaces, which 
shows additional improvement can be achieved when two independent colour spaces are 

fused, compared to any single feature alone. 

3.6 Summary 

This work has investigated the use of the Large Margin Nearest Neighbour with Rejection 

(LMNN-R) classifier to re-identify pedestrians viewed from different cameras at various 

resolutions and in situations involving partial occlusion. As far as the author knows, this is 

the best-performing method to evaluate on the VIPeR dataset, and the results can be used as 

the benchmark for the V-47 dataset. 

The experimental results described above support the following conclusions. Firstly, for 

potentially occluded observations, the best strategy is to attempt the detection of an occlusion 

and then deploy the appropriate classifier. This achieves better results than training a classifier 

on a mixed occlusion dataset. Secondly, increasing the number of overlapping patches will 

improve results; this improvement is more dominant as higher resolution data are used. In 

addition, the results can be further improved by fusing multiple representations of the subject. 

Thirdly, the best performance is achieved when re-identifying process uses only the rear-view 

40 



CHAPTER 3. PERSON RE-IDENTIFICATION 

of the pedestrian; and when training set is from the same domain as the test set. Finally, the 

challenge of cross-camera re-identification can be improved by supplying the target set with 

multiple instances of the probe, which will lower the cross-camera domain specificity effect. 

The investigation has shown that effects such as the domain specificity, variation of the view­

point and the number of patches used, can all influence the accuracy of the re-identification 

results. This is true even when the datasets are collected in a moderately controlled environ­

ment compared with the data captured in the wild. Even though these effects are undesirable, 

the experiment does show that some improvements can be achieved by adopting feature fusion 

techniques, which demonstrate the possibility of the high fusion techniques in improving the 

results. 
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Chapter 4 

A Video Surveillance Scenario 

4.1 Introduction 

As outlined in Chapter 1, the popularity of the video surveillance system, in public and 

commercial domain, has grown considerably. Although the main applications of these 

systems are for security objectives, opportunities exist to fully utilise the system, for certain 

commercial objectives, in parallel. Therefore in this chapter the security and commercial 

objectives will be discussed and the common denominator to achieving both of these objectives 

in image processing domain will be described. An examination of the available dataset used 

to aid our investigation will be further investigated. Finally, the design and implementation of 

an experiment test bed that incorporates all the identified benefits in the available datasets 

will be introduced in detail. 

4.2 Video Surveillance Objectives 

4.2.1 Security Objectives 

Traditionally, the objectives of the video surveillance system were to capture a relativity small 

localised environment. Its applications were limited to act as a deterrent and the captured 

video was employed as evidence for prosecution. These objectives are currently still the main 

functions of the distributed surveillance network with the added advantage of capturing a 

wider environment and increasing the amount of evidence. As discussed in Chapter 1, these 
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distributed surveillance networks are now treated centrally so that those interesting objectives 

can be detected and analysed whilst they are happening, thus improving the traditional system 

with in-time function. 

However, as highlighted in Chapter 1, with the vast amount of information available in 

time, some events might be missed by the human operator. In order to resolve this issue, 

an automated tool, combining image processing techniques with certain behaviour rules, 

are developed to identify certain predefined security objectives in a distributed surveillance 

network. The techniques of typical predefined security objectives are: 

• Matching - The technique involves the identification of objects of interest in the moni­

tored environment and alerts the relevant security personnel of its presence. 

• Tracking - The technique involves the continuous tracking of an object of interest 

through a network of cameras, which could fix the location where evidence could have 

been located or the crime location. 

• Anomaly Detection - The technique for the identification of uncharacterised user 

behaviour in a controlled environment. This would assist the detection of potential 

crimes to stop them before happening. 

4.2.2 Commercial Objectives 

Meeting the requirements of the security objectives is very challenging because the events 

of interest normally happen very quickly. Comparatively, this will occupy a small amount 

of footage. In these cases, a large amount of redundant information is created, but it nor­

mally contains vast amounts of valuable data that can be utilised to generate statistics of 

the monitored environment. Commercial enterprises often need statistics about monitored 

environments. The statistical data includes: 

• Usage Statistics - In a commercial environment, the number of users using a facility 

can be used for various purposes: 

- Statics to evaluate the successfulness of a business. 
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- Identify times of high usage to adjust staffing levels 

- Identify the availability of resources 

• Tracking - Generating users' travel patterns to help design a more ergonomically 

commercial facility. 

• Area Usage - Tracking users to generate a heat map of facility used to allocate effective 

product and advertising placement. 

• Different Users - Identifying the user groups and the usage patterns of each group to 

help complete anomaly detection in the security context and effective product placement 

in a commercial context. 

4.2.3 Discussion 

The content in this section covers the variety of challenges that a distributed surveillance 

system can solve in both the security and commercial domains. This,therefore, validates the 

trend that a surveillance system is no longer limited to meet security demands. 

The analysis also demonstrates that an objective, such as tracking, is common in both domain. 

That is the reason why almost all video content analysis software will share similar Video 

Content Analysis (VCA) blocks. An example of a general VCA pipeline is illustrated in 

Figure 4.1. 

VIDEO Segmentation 
Classification 

A~eBrance 
& Shape 

Model 

Tracking 

Figure 4.1: Video Analytic Processing Pipeline, an example of a typical processing steps with 
a VCA, where some process is often supported by a supporting model. 
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The sequence of the processing steps is shown by the rectangular blocks. They are the 

common parts within a VCA system. The objective that a particular VCA system attempts to 

realise is defined by an objective model illustrated by the parallelogram in Figure 4.1. The 

model would extract information in the scene and combine it with rules to raise an alarm 

when a pre-defined situation arises or is expected to arise. 

Depending on the model or the application requirements, the processing blocks may be 

supported by data models, as illustrated by the cylinder blocks in Figure 4.1. Generally these 

models are first developed by some training data and can be subsequently updated, over 

time, through learning. The operations and the intermediate results produced by each of the 

processing blocks are: 

• Segmentation: The extraction of salient areas or pixels distinctive from the background 

model. The extracted foreground pixels are further grouped into foreground "blobs", 

each of which is connected set sharing some features in common. The foregrounds are 

then passed to the next processing block. 

• Re-identification and Classification: 

- Re-Identification: Each foreground "blob" would be matched against a set of 

reference "blobs". If a match is found the new "blobs" would be given the 

same object label as that in the reference set. The matching may need to be 

completed from different viewpoint of a single camera as well as the matching 

across a network of cameras. An example of the re-identification techniques were 

illustrated in Chapter 3. The matching result could be used as the input to the 

Tracking process. 

- Classification: Rather than matching the foreground "blob" to one particular object 

within a reference set, classification techniques assigns the extract foreground 

"blobs" to a specific class, within a clearly defined set of classes, such as vehicle, 

person or animal. Alternatively the label assigned could be a subset of labels 

within one specific class, such as one of a set of standard human poses. The output 

is normally the most likely class label. In most cases, the class label is not used 
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for the tracking process, but can be used to identify if a certain class of object is 

available within the scene. An example of classification techniques is illustrated 

in Chapter 6. 

• Tracking: By using the labelled objects, tracking algorithms establish correspondence 

between the same blobs in successive video frames, from either a single camera or from 

multiple cameras and hence obtain a temporal sequence of the blob. 

The pipeline illustrated in Figure 4.1 and the functions described above is generic. The pro­

cessing steps and the processing order may be normally be defined by analytical application 

or the objective model. 

From the analysis of the objectives and the example of the VAC pipeline, the completion of 

objectives would all require an object of interest defined by the "blobs". In both the security 

and commercial context, these objects are either People or Vehicles. Therefore, at the heart 

of applications, the correct Re-Identification or Classification of the foreground "Blobs" is 

necessary in order to obtain the expected objective. 

The above analysis helps the design of an experimental test-bed and examination of the 

currently available datasets, including either People or Vehicles, is conducted in the following 

section. 

4.3 Datasets 

4.3.1 People 

There are several datasets that are targeted at different challenges related to people. For this 

review, all the datasets listed in Table 4.1 relate to the public datasets that have been used in 

the pedestrian re-identification challenge. 

These datasets provide variations of pose, viewpoint, lighting variation and occlusion. As 

mentioned in section 3.2, a common issue with these datasets is their modest resolution of the 

extracted pedestrians with an average 128 of image lines in height. These dataset are captured 
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Table 4.1: Pedestrian Re-identification Datasets 

Name Media Resolution #People #Images Occlusion Location 

VIPeR 
(Gray et aI., 2007) Still 128 by 48 316 632 No Outdoor 

CAVIAR 
(Hamdoun et aI., 2008) Video 384 by 288 nJa nJa Yes Indoor 

ETHZ 
(Ess et aI., 2007) Video 64 by 32 83 4857 No Outdoor 

iLIDS 
(UK-Horne-Office, 2008) Video various 600 600 No Outdoor 

GRID 
(Loy et aI., 2010) Still 100 x 200 250 500 No Indoor 

PRID 
(Hirzer et aI., 2011) Video various 200 400 No Outdoor 

V-47 * 
Chapter 3 Video 576 by 720 47 752 Yes Indoor 

under various conditions such as varied lighting condition, and the challenge with occlusions 

are only tackled in a limited number of datasets. 

It is for these reasons the application of V-47 data, a higher resolution dataset for the pedes­

trian re-identification problem, were introduced in Chapter 3 and have been bench marked. 

Although the dataset is captured indoors, it still contains challenges present in the other 

datasets with extra bonus of natural and artificial occlusion that blocked part of the pedestrian. 

The occlusion is often useful to solve re-identification problems in crowded environments 

where only part of the person could be observed. 

4.3.2 Vehicles 

Unlike pedestrian re-identification, the datasets for vehicles are inadequate. The publicly 

available datasets are summarised below: 

• PETS 2001 (PETS, 2001) and PETS 2000 (PETS, 2000) - The video is of 352x288 

pixels and monitors road users in a car park. The dataset is mainly used for vehicle 

tracking problems. 

• i-LID Parked Vehicle (UK-Horne-Office, 2008) -It films users of a main road and is 

used for the detection of the parked vehicles. 

• ViSOR (Vezzan, 2010) - This video is of 320 x 256 pixels and captures vehicles using a 
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car park. The vehicles are used to tackle loitering problems. 

• Vehicle Silhouettes (Turing-Institute and Siebert, 1987) - The dataset contains images 

of 128x128 pixel for different classes of vehicle, which is used for the classification of 

vehicles. 

• VIRAT (Oh et aI., 2011) - The focus of the dataset is to detect people's behaviours 

within the monitored environment, but part of the dataset can be used for vehicles' car 

park usage. 

Examination of the datasets shows that the vision challenges related to vehicles, focused more 

on tracking; less attention is paid to re-identify the same vehicle in different spatio-temporal 

environments. This challenge is assumed to have been solved by the correct recognition of 

the pattern on the number plate. However as Section 5.3.2 there are still various challenges 

around the correct recognition of the number plates. 

Another limitation of these datasets is that they only capture a limited spatio-temporal 

environment, therefore they can only be used to infer limited amount of queries. 

4.3.3 Discussion 

From the review of the datasets used to tackle surveillance challenges, the below lists restric-

tive factors: 

• Vehicles as the object of interest are partly captured and are often a by-product of 

datasets that focused on people. 

• The resolution of the image is low, it effectively excludes the use of high spatial 

frequency features. 

-
• Datasets are normally produced to tackle particular issues, therefore it is hard to use 

them for tackling other problems. 

• Datasets are captured by snapshots of the monitored environment, therefore it cannot 

show how an object is using the environment as only particular instances of the object 

are included. 
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The above analysis shows that using the current available datasets to tackle both security 

and commercial challenges are difficult. Therefore, it is necessary to design an experimental 

dataset that can mitigate the restrictions listed above. 

Furthermore, an effective dataset also needs to encapsulate many of the challenging variables 

present in the current datasets, such as variation in lighting, environmental variables, and 

occlusions. Therefore the dataset can be used by a wider community to deal with different 

video surveillance challenges. 

4.4 Experimental Test-Bed 

4.4.1 Design 

With the objective outlined in Section 4.3.3, the surveillance scenario illustrated by Figure 4.2 

is proposed. 

Fassett Road 

Exit/Entrance Exit/Entrance 

'i:~ r: 
I 

• 
Sopwith Car Park 

Keys: 

~ 
[2] Camera 

« ---... Direction 

__ Road 

12 IL 
Camera 1 Camera 2 

Sopwith Building 

Figure 4.2: Layout of Sopwith Car Park with Camera Position 

This proposed scenario is ideal for this investigation as the car park is a closed looped system 

whereby a vehicle's entry and exit activities can be fully monitored. To utilise the closed 

49 



CHAPTER 4. A VIDEO SURVEILLANCE SCENARIO 

looped system, the object of interest in this scenario would be vehicles. In some scenes, 

however, vehicles are mixed with peopleand alough the dataset also captures people using the 

carpark, pedestrians who use other exits can't be fully monitored. 

The main function of many car park monitoring systems is to determine if a particular vehicle 

is allowed to use the monitored car park. This is normally achieved by using a controlled 

barrier. It not only needs special hardware and software, but it can also cause traffic problems. 

As the car park in the project is not barrier controlled, the proposed scenario allows the 

investigation the possibility of solving the problem whilst eliminating the shortcomings of the 

barrier system. This capturing plan can also be used to query a range of different objectives: 

• Security 

1. Is this vehicle breaching car park usage polices? 

2. Is the identified vehicle loitering? 

3. Is the identified vehicle using the car park? 

4. Is the usage pattern of a particular vehicle identifiable? 

5. etc ... 

• Commercial 

1. Identifying whether the vehicle is using car park for delivery or parking. 

2. Identifying when the car park is full. 

3. Identifying the time when the car park is in high demand. 

4. Identifying the popularities of certain exit/entry point. 

5. etc ... 

4.4.2 Equipment 

As stated in Section 4.3, the object of interest in the available dataset has a relatively low 

resolution. The low resolution is due to the fact that popular surveillance cameras need to 

capture a large field-of-view, the information from video needs to be transmitted in real-time, 
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to the monitoring stations and that there is a limited data storage facility. Although the cap­

tured images are suitable for humans to process, they are less than ideal for a computer vision 

system to process. As a lot of the edge and colour information is lost, almost all computer 

vision systems rely heavily on these key pieces of information, in order to distinguish objects 

in the image. 

With advancements in the transmission and storage capabilities, higher resolution cameras are 

now being used in some surveillance scenarios. An increase in the resolution and improvement 

in quality of images are key characteristics, brought by the high definition cameras which are 

ideally suited for computer vision systems. However, these benefits are not being utilised by 

the research community, mainly due to the relatively high cost. This project aims to utilise 

these advantages, for this reason the dataset will be captured by using a full high definition 

1080 progressive scan colour video cameras during the car park's operational times over a four 

month period. The data captured through this test bed is going to be used for the investigation 

in Chapter 6. 

The dataset is captured at 25 frames-per-second and the data is first stored in camera's storage. 

To reduce the storage requirement, the raw footage is compressed via H.264 format to limit the 

loss of the quality. During the non-operational times, the data are transferred to other storage 

facilities for off-line processing in order to free up the camera's storage. To consolidate the 

two cameras, they are time synced to a control computer and the meta-data associated with 

the footage are used to meet any time-plexing requirements. 

4.4.3 Redundant Data Reduction 

The captured footage includes a significant quantity of redundant information because the car 

park is not being continuously used during its operational time. The removal of the redundant 

information is inevitable, in order to extract the most useful events regarding vehicles entering 

and exiting the car park. Another benefit of removing the redundant information is the saving 

of storage, considering the fact that 5 minutes of raw footage needs 300 mega-bytes of storage. 
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The automated event extraction algorithm needs the capability to overcome the following 

issues in the raw data: 

1. Lighting Variation - Because the footage is captured from before sunrise to after sunset, 

the algorithm needs to adapt the gradual changes with the lighting condition as well 

as sudden changes, such as those caused by fast moving clouds. The algorithm is also 

required to perform well for a broad spectrum of lighting intensity levels. 

2. Miscellaneous Movements - The algorithm should be robust so that it does not segment 

events caused by other moving objects within the field of view, such as swaying trees 

which is a specific artefact within the monitored data used. 

3. Object Entering and Exiting - The algorithm needs to determine when a new object has 

entered the scene, as well as when the object is leaving the scene. In addition, it should 

not be affected by the permanent shadows in the scene. 

4. Slow Moving Objects - Because there are restrictions in the road, vehicles are often 

moving slowly. The algorithm should be able to identify the difference between a 

vehicle moving slowly and a vehicle entirely stopped in the scene. 

S. Adaptive Background - the car park entrance can sometime be used as a loading 

bay. Therefore the algorithm needs to adapt quickly to classify the parked vehicle as 

temporary background. 

The above list is all of the challenges that need to be overcome by a single algorithm. The 

techniques that are chosen need to perform well under all of these scenarios, rather than the 

best performing one, under a single challenge. 

4.4.3.1 Background Subtraction 

Taking the above analysis into consideration, the most suitable approach should be one that 

can determine changes between frames within a video sequence. The most widely used 

approach is the Background Subtraction (BS). 

Background subtraction is a very active research field where various methods have been 

proposed. They all form a common characteristic where a background reference image is 
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constructed over a number of training frames. Each pixel in the new image is subtracted from 

the corresponding reference pixel and a threshold is applied to determine if the pixel belongs 

to a foreground or a background. 

The difference between the methods is the techniques used to construct and update the 

reference background image. The most commonly used approaches are outlined below: 

• Temporal Filters - In this approach, each pixel value in the reference image is determined 

based on either the maximum, median and minimum values of the corresponding pixels 

within the training frames. Lo and Velastin (2001), suggested using the median value 

of the last few frames to construct and subsequently update the reference image. 

• Gaussian - This approach is based on fitting a Gaussian probability density function to 

each individual pixel of the reference image by using the corresponding pixel values 

in the training images. For each pixel, there will be a mean and a standard deviation. 

Because the rate that the background image is updated is often controlled by a weight, 

it allows variation in the lighting conditions. Wren et al. (1997) proposed a single 

Gaussian. Other researchers developed a single adaptive Gaussian to overcome gradual 

changes in variation in lighting condition. Furthermore, Stauffer and Grimson (1999) 

reported a more sophisticated approach known as a Gaussian Mixture Model (GMM). 

The GMM approach has the ability to model the multiple background objects, thus 

made it possible to detect the background objects that are not permanent and appear at 

a rate faster than that of the background update. 

• Kernel Density Estimation - This approach aims to eliminate the drawbacks caused by 

the limited number of training data that is used to approximate the histograms used 

to create the Gaussian probability density function (PDF). Elgammal et al. (2000) 

modelled the background distribution by using a non-parametric model based on Kernel 

Density Estimation on the buffer of the last n background values. 

• Eigenvalue - The method is not so popular due to the computational cost, thus making it 

inefficient in a real-time application. The method utilises the eigenvalue decompositions. 

Seki et al. (2003) applied the eigenvectors of blocks of the pixels, but Oliver et al. (2000) 
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introduced the decomposition of the whole image to avoid the tiling effect caused by 

the block partitioning in Seki's methods. 

The above approaches all have their advantages and disadvantages, as outlined in the review 

paper of Piccardi (2004). Ideally the detection of the foreground object should be accom-

plished in real-time with a visual surveillance system. Therefore when considering the choice 

of BS method, a balance between accuracy and speed needs to be made. The most suitable 

method is to use the GMM method that was supported by Piccardi's comparison. Furthermore, 

GMM has been shown to be the most versatile and robust across a range of different video 

sequences, as illustrated in the experimental comparison conducted by Benezeth et al. (2008). 

This section only covers a selection of available techniques. Some of the new techniques 

with improved performance have also been suggested by Barnich and Van Droogenbroeck 

(2011). However, the robustness of these new methods on different video sequences has not 

been shown. In addition in a recent experimental comparison conducted by Brutzer et al. 

(2011), the GMM has shown to outperform some of the new state~of-the-art techniques. This 

further justifies the choice of adopting the GMM as the BS approach within this framework. 

Furthermore, the approach described in Stauffer and Grimson (1999) paper makes GMM 

method ideal to solve all requirements listed in 4.4.4. 

GMM Implementation 

This section will outline the mathematical and assumption made for the GMM, based on the 

Stauffer and Grimson's Stauffer and Grimson (1999) paper. The approach models every pixel 

with a mixture of Gaussian and describes the probability of observing a certain pixel value, x, 

at time t 
K 

P(Xt) = LWi,t 1J (Xt, j.li,t, Ei,j) (4.1) 
i=l 

where K is the number of Gaussian distributions and describes an observable objects, it 

can be either a foreground or background. 1J (Xt, j.li,t, Ei,j) is the ith Gaussian probability 

density and is represented by the mean j.li,t. and covariance matrix Ei,j. As the Gaussian's 

multi-variant removes the costly matrix inversion and the three colour channels are assumed 
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to be independent and have the same variance, therefore, simplify the covariance matrix to be 

a diagonal with the form ~i,j = u; I. 

Matching is conducted with each new pixel value Xt, against each of K Gaussian distributions. 

It is defined as: 

(Xt - /li,t) < T 
Ui,t 

(4.2) 

where T is the threshold currently set to be 2.5 standard deviations. The parameters of the 

matched components are updated as follows: 

Wi,t = (1 - a) Wi,t-l + a (4.3) 

ILt = (1 - p) Ilt-l + p.Xt (4.4) 

(4.5) 

where a is a predefined learning rate and p is learning rate defined by a and the closest 

Gaussian distribution. 

For unmatched distributions the U and /l do not get updated and the weight is updated by: 

Wi,t = (1 - a) Wi,t-l (4.6) 

Allowing decay to occur, the least probable distribution (the one with the largest standard 

deviation) is replaced with a distribution of the current value as the mean, a large initial 

variance and a small weight. 

To determine the portion of the mixture model that best represents background process, the K 

distributions are ordered based on a fitness value defined by ~ and only the most reliable B 
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is chosen as the background model: 

(

k=l ) 
B = argminb ~Wk > T (4.7) 

where T is a user defined threshold. 

Connected Components 

The GMM method outputs foreground pixels for each new frame. The labelled foreground 

pixels can be segmented into regions using a connect component algorithm. As it is considered 

to be an object of interest, the size of the labelled components needs to be greater or equal 

than a threshold Tc that is set to be 3000 pixels. 

Once it has been determined to be an object of interest, the total pixel value, centre of 

mass, and bounding box size coordinates are also stored. The main function of the stored 

information is to extract the useful information and remove the redundant information. The 

information could also be used for later processing, such as tracking. 

4.4.4 Discussion 

In the data capturing design introduced above, the data meeting the requirements explained in 

Section 4.3.3 are used as the foundations of this project. One of the key steps is the visual 

surveillance challenges in the extraction of the object of interest from the background images. 

The popular GMM background subtraction techniques is extended to remove some of the 

redundant information with the captured data and to create the extraction database. 

An extension of the background subtraction is to combine it with the Kalman filter to create 

a tracking algorithm. This extension algorithm has been used to create the content of two 

surveillance TV programs using the data captured from the experiment test-bed. 

Although the GMM is a very popular technique, there are some limitations when applied to 

this dataset, these are: 
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1. Low Lighting Intensity - As natural light is the dominant source for the car park so 

when the intensity is low, the algorithm is unable to identify the vehicles. 

2. Shadows - This causes the increase of the number of false-positives, mainly by the 

shadows as pedestrians walk by and through the car park. The shadows from vehicles 

are less of an issue at the BS stage as they are already the dominant feature. 

3. Group Pedestrians - When a large group of people walk in close proximity, the al­

gorithms is unable to separate them out, which will cause a false-positive vehicle 

identification. 

These limitation are the results of using a single algorithm to meet all the challenges listed in 

Section. Due to this requirement a balanced threshold, as shown in Equation 4.2 was chosen 

for the GMM process. However, even with the limitations, the algorithm has successfully 

met our original requirements of removing the redundant information,as a manual audit all of 

the events of interests were captured and the false-positive results were also removed, albeit 

manually. 

4.5 Summary 

This chapter states that the video surveillance network is a valuable tool to achieve a range 

of security purposes, as well as a range of commercial challenges. An examination of the 

available datasets has shown that the datasets are unsuitable for solving challenges in both do­

mains simultaneously. It also inherits a range of limitations which decreases the effectiveness 

of the imaging techniques used to solve the objectives. 

This leads to the design of an experimental test-bed to fully utilise the scenario. The objects 

of interest chosen for investigation are "Vehicles". Although a lower interest of using vehicles 

as the object within the research community exists, due to the lack of available datasets, 

the analysis in Section 4.4.1 claims that vehicles are still an important subject in a range of 

security and commercial objectives. 
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The review of the objectives has also shown tha,t in a video analytic system, the correct 

re-identification and/or classification of the subject is necessary. As Chapter 3 has already 

demonstrated the re-identification challenges have various obstacles which effect the results 

a further examination of the challenges in the classification scenario is explored in 6. As 

the completion of these tasks would require some types of features related to the object of 

interest, Chapter 5 will examine the features that can be extracted from vehicles and the 

associated uncertainties related to each of the features and within the various stages of the 

video surveillance system. 

This chapter also demonstrates the application of segmentation techniques to extract the 

object of interest from the background, which is believed to be the first step in any VAC 

application. Previous discussion also reveals that there are a number of limitations that are 

associated with the techniques and influence the accuracy. This proves that uncertainty exists 

in every processing step and may propagate down the pipeline. Furthermore extending the 

segmentation techniques with Kalman filtering, makes a tracking algorithm which was used 

to produce two demonstration videos that have been viewed to a broad audience and forms 

part of the publications that accompanies this thesis. 
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Chapter 5 

Uncertainty Within Video Surveillance 

Systems 

5.1 Introduction 

Based on the design of the experiment test-bed in Chapter 4, the aim of this chapter is to 

first outline the uncertainties within a complete video analytical system, from converting the 

analogue world to its digital representation to meeting the video analysis objective. 

Chapter 4 also concluded that the successful completion of re-identification and classification 

will depend on the extractable features related with the object of interest. This chapter will 

also examine features related with vehicles and their associated uncertainties when being 

processed. Although the examination concentrates on vehicles, some of the features may 

become useful for the researches related with people. The review taken place in this chapter 

will take a generic view on the approaches, where reference to a specific approach a link to 

the relevant chapters will be given 

5.2 Uncertainty Within Video Surveillance Systems 

This section will first outline uncertainty caused by the hardware that is used by a video 

analytic system to convert the real world to its digital representation. This is followed by an 

exploration into the uncertainty created by the generic activities within the software used to 
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process the captured footage to achieve the VCA objective. 

S.2.1 Data Uncertainty 

Physical 
Noise 
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World 
Scene 
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Imaging 

Sensor 
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Figure 5.1: Image Processing Pipeline, converting the analogue to the digital representation 
creates various artefacts which can contribute to the uncertainty, even before it is processed 

by a VCA. 

Figure 5.1 shows a generic processing pipeline to transform real world scenes into video data 

that can be processed by a video content analysis system. The figure also shows the type of 

noise that would increase the uncertainty of the video data. 

5.2.1.1 Physical Noise 

Physical noise is caused by the defects of the hardware involved with a video camera, such as 

the lens. The camera is similar to the human eye. In the eye there are hundreds of millions of 

light-sensitive cells which is also equipped with the ability to perceive intensity (brightness) 

in a remarkable range of nine orders of magnitude (Sonka et ai., 1999). In contrast, a current 

state-of-the-art surveillance video camera only has a few million photosensitive sensors and 

a range of intensity sensitivity to about 4 orders of magnitude. The amount of information 

available from a VeA system has already decreased greatly compared with the human eye. 

This is a key contributor to some of the defeat in segmentation systems, highlighted in Section 

4.4.4, especially in a low light condition. 

Other sources degrading of the image in a video camera were addressed by Morris (2004). 

These sources include Geometric distortion, refractive index of the lens and the uneven 

sensitivity of the image sensors. As Morris mentioned, although these degrading effects are 
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difficult to measure, most camera manufacturers will combine these effects into the Signal to 

Noise Ratio (SNR). 

5.2.1.2 Sensor Noise 

Some sensor noise will result from the conversion of the analogue signal to its digital 

representation, so the measurement of the physical property will have to include some 

measurement of uncertainty (Taylor, 1997). The measurement of uncertainties in a camera 

is often associated with the electronic sensors used to convert the radiant energy involved 

with an electrical signal of the photosensitive cells. The uncertainties are also quoted by the 

camera manufacturers as the device's SNR. Two main types of noise are: 

1. Salt and Pepper- This randomly introduces pure white or black pixels into the image. 

Although it is minimised when high resolution images are used, it still contributes to 

the overall information imperfection. 

2. White Noise and Gaussian Noise - This arises due to randomness superimposed on the 

signal as being captured or processed. 

5.2.1.3 Quantisation Noise 

Quantisation noise is introduced by the need to compress the video data in order for effective 

transmission and storage, which is a similar process as the neurons linking the eye to the brain. 

The compression of the information would often cause further degradation of the image. 

According to Richardson (2004), video compression is realised by removing the subjective 

redundancies which are elements of the video sequence, removed without significantly 

affecting the viewer's perception of visual quality. However, as Chen et al. (2008) mentioned, 

the measurement of perception depends on the "viewer". When the "viewer" is an image 

processing algorithm, the measure is the sharpness of the decompressed image. Chen et 

al. revealed that decrease in the sharpness is unavoidable, even when a lower compression 

rate is used. The loss of sharpness will affect the edge information, as mentioned in Section 

4.4.2, therefore degrading the quality of information available to any VCA system causing a 

reduction in the overall accuracy of the result. 
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5.2.2 Software Uncertainty 

Here, the software refers to a video processing system such as the pipeline illustrated in Figure 

4.1. Due to the existence of these factors within almost every system, a very specialised 

field known as Soft Computing exits to develop low cost methods to tolerate the uncertainty 

created by these factors. 

Generally there are three main types of factors that may cause uncertainty in video analytic 

software. They are known as Data Model, Training Data and Mathematical assumptions. 

5.2.2.1 Data Model 

As discussed in Section 4.2.3, the majority of the processing blocks in a VCA system require 

the support of some data model. For instance, in a segmentation process, the detection of the 

foreground blobs is supported by background model. A simple model could be a threshold 

value for the difference between frames to define the foreground pixels. A complicated model 

could be the creation and updating of the reference background image, which is subsequently 

subtracted from the subsequent image to acquire the foreground pixels, as addressed in Section 

4.4.4. 

Both of these models will cause a change in the appearance of the blob. If it was incorrectly 

created or updated, the change would contribute to uncertainties, which is propagated down 

the processing pipeline. In a simple model, if the threshold is incorrect, the "blobs" will 

appear either larger or smaller than expected. In a complex model, the frequency at which the 

background model is updated is important to eliminate the effects of changes in illuminations, 

and may influence the detection of the foreground pixels. As the illumination would normally 

create shadows, it changes the appearance of the "blobs". Although various methods tried to 

sort out the issues, as reviewed by Sanin et al. (2012), the entire removal of shadow seems to 

be impossible. 
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5.2.2.2 Training Data 

Another effect of a data model for processing blocks is the training data. Typically, a model is 

created by maximising the performance with respect to the training data. In these situations, 

the over-fitting of the data would occur. As Tetko et al. (1995) stated when over-fitting occurs, 

the model will learn the error of the training data rather than generalising a model to represent 

the environment it expects to evaluate. This increases the uncertainty in the system outcome 

when conducting analysis for previously unseen data. 

Prince (2012) expressed that the benefit of using data with reduced dimensions is that the 

model would require fewer parameters therefore it would be faster to learn and to use for 

inference. However, Bevington and Robinson (1969) stated that due to the reduction of 

dimension some of the information would be lost and the lost information is difficult to 

measure. This is sometimes associated with the errors in the data model. 

5.2.2.3 Mathematical Assumptions 

The development of a video analysis system is driven by a computer of high computational 

power with a relatively low cost. Such a computer would support the computation of a complex 

mathematical program for processing blocks of models and solving difficult problems in a real 

life. The use of mathematical models to define real life scenarios can be extremely difficult 

as described by Kennedy and O'Hagan (2001). To simplify the mathematics calculation and 

complete the process in a reasonable time frame, designers sometimes make some assumptions 

or modify the parameters to achieve the best results. As a consequence, the accuracy of the 

results would be affected when data violating these pre-defined parameters is used. 

5.3 Vehicle Features Uncertainties 

This section will also examine features related to vehicles and their associated uncertainties 

when being processed. The examination will mainly cover the feature usage when identifying 

vehicles, however, some of the features may be more predominantly used in researching 

challenges containing people. 
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5.3.1 Colour 

Colour is one of the most important factors in any computer vision challenge because it 

contains a lot of edge information that is useful in segmenting the foreground and background 

pixels for recognising the object of interest. 

Once the object of interest has been extracted, colour is also valuable to describe both people, 

as shown in 3, and vehicles. The simplest form of colour description is a grey scale image, 

which is a measure of intensity with a range from total black to white. As mentioned in 

Section 5.2.1.1, the human eye senses intensity in nine orders of magnitude. In order to 

digitally encapsulate it, each pixel would require 4 bytes and a typical high definition image 

would require 8 megabytes of storage, which is impractical within a surveillance environment 

for both transmission and storage. To improve the storage requirement, a compromise is made 

and the typical intensity level is reduced to 1 byte (0-255). The compromise means that a 

large proportion of intensity information, normally required in low light situations, may be 

lost. Meanwhile, it may increase the level of uncertainty in visual challenges under low light 

situation, as described in Chapter 4. 

Grey scale image only uses one colour channel to get better description. The multiple channel 

descriptors are used to create a colour space. The most popular colour space commonly used 

is the Red, Green and Blue (RGB) colour space, as the same colour space is used by the 

human eye. With 1 byte for each colour channel, there are 16777216 possible combinations 

of colours, which give far better description ranges than grey scale alone without demands of 

large storage. 

To create the description of an object, an image is converted to create histograms representing 

the number of pixels that have the same intensity level in each colour space. This will create a 

sparse histogram where every possible colour is represented. This will become uninformative, 

as most of the colours will never occur and those that do occur will mainly occur once or twice. 

This sparse histogram will be difficult to use in a reasonable way and would require large 

processing power. A potential solution is to divide the histograms into smaller discrete bins. 

64 



CHAPTER 5. UNCERTAINTY WITHIN VIDEO SURVEILLANCE SYSTEMS 

Each represents a range of possible values. There are some uncertainties, possibly created by 

the bins, depending on the size of the bin. For instance, if the range is too big, the key colour 

characteristics are merged together. If the range is too small, the problem of sparse histograms 

would resurface. Another technique that could be employed here is the use of a knowledge­

based histogram binning process, similar to that used by Gray et ai. (2007). Here, the object 

of interest is broken into known regions based on the knowledge that certain areas will have 

more variation than other, different sizes of bins can be chosen. Although this approach can 

create a better descriptor, therefore lowering the uncertainty, it still requires the correct size of 

bins to be chosen otherwise the histogram issues above would still exist. Although the uncer­

tainty created is not ideal, it is outweighed by the advantages created by the colour histograms. 

Another contributor of uncertainties when using RGB colour space is the variation of colour 

observations with respect to changes in various environmental conditions. One possible 

solution is to use the Hue-Saturation-Value (HSV) space, as HSV is more tolerant (Sumalee 

et aI., 2012) to such change. All of the colour spaces, including the other popular colour 

space, have their own merits and could be transformed to the RGB space with ease. Although 

there are different tolerance levels to the variations, the continuous nature of the colour spaces 

makes the comparison of two objects very difficult, as it is unlikely that the same object 

would have the exact same measurement due to the uncertainty of the measurement results. 

To reduce the uncertainty produced by the continuous characteristics, some researchers quan­

tised the colour spaces to produce discrete subsets of colour known as colour codebooks. 

Similar to the histogram, the uncertainty in the codebook arises from the range of colours used. 

Within the surveillance context, colour is extensively used for the re-identification of people, 

as demonstrated in Chapter 3. Chapter 3 has also shown the accuracy level is effected by 

various aspect of the data that a single colour feature cannot resolve. 

Compared to people, the re-identification of vehicles based on colour is less extensively 

researched. Possible reasons are: 

1. Colour alone could not re-identify the vehicle as many vehicles share the same colour. 
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Hence it is not a distinctive characteristic. 

2. An appropriate colour model is not straightforward to determine because sometimes 

a single value is useful, in other situations, colour can be described by several colour 

channels. 

3. The overall colour of a vehicle is difficult to summarise as windows and wheels have 

large contrasting colour schemes compared to the body. Psyllos et al. (2011a) suggested 

a solution. They collected a RGB histogram for a range of patches on the vehicle and 

chose the peak of each of the colour channels as the components to represent the overall 

colour. 

Considering the challenges related to colour and using colour for re-identification vehicles, the 

measurements from two "vehicle colour sensors" could be used to produce an estimate of the 

probability whether these two observations refer to the same vehicle, or the two observations 

refer to two vehicles with the same colour model. In this scenario where colour may have a 

high variance, techniques such as Fuzzy logic can be used to create the similarity probability 

measurement required for the input into the high level fusion system. 

5.3.2 Automated Number Plate Recognition (ANPR) 

Although a vehicle's number plate (NP) is its most discriminating feature, there are a number 

of issues with the correct recognition of these number plates. One of the major issues is the 

non-uniform standard across the world. Even in the United Kingdom, there are different 

alternatives depending on where vehicle is registered, as stated by Rhead et al. (2012). 

Although ANPR has been widely used for law enforcement, a range of general issues still 

require better solutions, such as: 

• Poor Resolution - These issues can be due to the low resolution cameras, when the plate 

location is far away from the camera. 

• Blurring - Caused by the motion of vehicle being faster than the frame rate of the 

camera, thus creating motion blur. 

• Lighting - Number plates, within the UK, have a retro-reflectivity coating that was 

introduced to improve the visibility of unlit vehicles parked on roads. However it can 
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affect the captured image if the light intensity is high therefore the reflected cause of 

the images to be blurred. 

Due to these problems, many of ANPR systems require specialised equipment and may work 

better, only when the vehicles in question are travelling at a relatively lower speed. However, 

even when this equipment is used, there are specific struggles associated with the ANPR 

procedures. An ANPR procedure involves two main problems: 

1. NP Localisation - The ANPR procedure relies heavily on correctly locating the bound­

ing box that contains the possible NP. Generally, it is quite accurate. The uncertainty 

potentially introduced is that multiple areas can be classified as NP, such as stickers con­

taining letters. These uncertainties can be reduced by enforcing government regulations 

to eliminate false-positive areas. 

2. NP Recognition - It relies on the Optical Character Recognition (OCR) techniques to 

recognise the number on the plate. 

Compared to using OCR techniques for handwriting, the level of uncertainty in recognition 

of NP has been assumed to be very small because the NP needs to conform to government 

standards. However, the uncertainty is increased due to the decreasing clarity as the issues 

mentioned above, as well as the introduction of foreign bodies such as screws and mud on the 

NP, as addressed by Rhead et al. (2012). 

The above highlights many factors that may affect the accuracy of recognising a NP. These 

challenges have been categorised into plate variation and environmental variations by Du 

et al. (2013). The authors outlined that the accuracy rates of the current state-of-the art 

techniques are typically between 90 - 97%, depending on plate formation. The majority of 

the techniques described are designed for vehicles that are almost stationary, and the rate of 

accuracy decreases when moving-image (video) data is used. 

Some uncertainties are also found when comparing the outcomes of the ANPR that is dis­

played by strings. A popular metric of string comparison is the Hamming Distance metric 

(Hamming, 1950), which outputs the number's position at which the corresponding string are 
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different. A major shortfall of this metric is that the strings need to be of the same size because 

a real NP string may have variable length. Even in the UK, the NP length varies between 

2-7 letters long. To resolve this shortfall, fuzzy string searching methods adopted for DNA 

comparisons can be employed. One popular metric is the Damerau - Levenshtein distance 

(Damerau, 1964; Levenshtein, 1966). It measures the number of editing operations needed 

to make the strings identical by taking 4 different editing operations; insertion, substitution, 

deletion and transposition. Since all editing operations, by default, are assigned the same 

weight, some comparisons may result in identical scores. For example to compare the score 

of ABC, the following strings will score the same AB (one insertion), ABCD (one deletion). 

Thus a degree of uncertainty still exists in the measured metric. 

Other challenges resulting in the uncertainty, when using the NP alone to fix a particular 

vehicle, are the partial blockage of the NP and circumvention techniques to change or remove 

the NP. In these circumstances the challenge of using one object feature to re-identify the 

object is difficult. This further illustrates the need to fuse multiple features to reduce the 

uncertainty in re-identification results. 

5.3.3 Vehicle Manufacturer's Logo 

A vehicle manufacturer' logo is another distinctive feature related to the vehicle that can assist 

with the vehicle re-identification process. Unlike the NP, a logo can't be modified as easily, it 

is therefore ideal as a secondary feature. 

The importance of correctly identifying a manufacturer logo is not restricted to the security 

context. Detection of the logo is also important in identifying counterfeit products, as 

illustrated by Lei et al. (2012). In addition, it can also be used to track on-screen time 

of sponsor logos of a sporting event. For a visual system, the contour of the logo is very 

importantin its idendification; ideally it should be unique so that it can be easily classified. as 

shown in Figure 5.2. 
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Figure 5.2: Example of Typical Brands, showing the contours of the logos which are typically 
used to identify the brand. 

The distinctive contour means that the shapes can be easily categorised by the edge information 

alone. However the logos used by some vehicle manufacturers have very similar contours, as 

illustrated in Figure 5.3. 

Figure 5.3: Similar Vehicle Brands, where contours that very similar but can be distinguished 
by the detailed patterns within the logo 

To distinguish the logos illustrated in Figure 5.3, the information contained in the contour 

should be compared. If images shown in Figure 5.3 are used, the level of uncertainty is lower 

as the edge information inside the contour can be distinguished easily. However, the quality of 

the logo image captured by the surveillance system would significantly reduce the capability 

of edge detection system for identifying all the information inside the contour. Major causes 

for the reduction are: 

• Size - Compared with the vehicle, a logo only occupies a very small percentage of the 

vehicle's area. The size will also vary depending distance between the camera and the 

vehicle . 

• Orientation - Depending on the view point a logo's edges would appear to be merged, 

so as to loss some of the distinguishable edge information. 
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The challenges above are not restricted to classify similar contoured logos. They also 

contribute to the uncertainty when classifying unique contoured logos. Another challenge 

that results in the uncertainty is the number of variants of a vehicle's logo that is currently in 

circulation as demonstrated in Figure 5.4. 

VAUXHALL VAUXHALL 

Figure 5.4: The various incarnations of the Vauxhall logos which are still actively being used 
on UK roads 

Future uncertainty is also introduced by the classification approach. Two popular techniques 

are suggested below: 

1. One-against-all classifier - Each manufacturer's logo needs its own classifier, n manu-

facturers require n classifiers. Therefore, for a given logo there will be n estimates. For 

similar logos, as illustrated in Figure 5.3, the difference between the estimates might 

be very small, therefore, certainty of the results is reduced. The current best result is 

Psyllos et al. (2010) and works with averaging 91 % overall classification success for 10 

categories. However it has some bias in the data used, such as capturing the data close 

up. 

2. Multi-class Classification - There is a limited exploration of using this technique for 

vehicle classification, partly due to the subtle difference between some of manufacture 

logos and it is made difficult by the low resolution image. However benefits exist 

in the use of a single multi-class classifier rather than multiple classifiers, such as 

the reduction in the number of classifiers that should be trained. A state-of-the-art 

classification technique is employed for manufacturer's logo classification, in Chapter 

6. 

Apart from the challenges discussed above, the correct classification of the vehicle's logo 

is heavily dependent on the correct location of key reference points on the vehicle. In the 
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majority of techniques, the key reference is the location of the NP, and alternatively, the 

location of the headlight or tail lights are also used. Therefore, the amount of uncertainty 

introduced by the decency on the correct location of these key features should be controlled. 

5.3.4 Vehicle Body Type 

Classifying the vehicle 's body shape into distinctive categories gives a characteristic that 

is unable to be modified. Examples of the silhouette of popular vehicles are represented in 

Figure 5.5. 

Car Van SUV 

Figure 5.5: Vehicle Silhouette Example, extracted from the side view of the vehicle showing 
distinctive characteristics of the car, van and SUV categories 

The key differentiators between the categories are the shapes made by the silhouette. The ex­

traction of the silhouette requires the extraction of the foreground pixels from the background. 

However the extraction imperfections, such as shadows, as identified in Chapter 4, is a major 

source to the uncertainty of the classification result, as shown in the Van and SUV contours in 

Figure 5.5. 
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Figure 5.6: Vehicle 3D silhouette models used for the classification of vehicle types, by 
projecting it into a 2 dimensional image, as suggested by Koller et al. (1992). 

71 



CHAPTER 5. UNCERTAINTY WITHIN VIDEO SURVEILLANCE SYSTEMS 

The silhouettes displayed in Figure 5.5 are only present when viewed from the side, however, 

the position of the majority of surveillance cameras is of a top-down view of the vehicle. In 

a 2 dimensional scene, the vehicle will appear to be flat. A possible solution is to project a 

3 dimensional silhouette, as those illustrated in Figure 5.6. Koller et al. (1992) suggested 

a predefined model of the image to see if the vehicle fits or not. Alternatively, Buch et al. 

reported the projection of the 2D view into a 3D representative before fitting the model. Both 

of these solutions offered a degree of freedom in the viewing angle, but as Buch stated, due to 

the line detection techniques used to fit the model, there are still limitations to the viewing 

angle. 

In addition, both of the solutions require the vehicle to be within a certain distance from the 

camera, as the predefined model is produced, based on the expected size of the vehicle in an 

area of the scene. Because there is little variability in the size of the model, the uncertainty 

in the classification results will increase if the vehicle is not in the predefined area in the 

scene. Kanwal et al. (2013) conducted a review of the state-of-the-art techniques used for 

the classification of the body shapes. It concentrated on the various software for vehicle 

classification techniques with accuracies between 82% - 95%. A source of the uncertainty 

is the subtle difference between the vehicle classes, as demonstrated in Figure 5.5. When 

comparing SUV and Van categories, it leads to some incorrect classifications. 

Some researchers believed that direct comparisons between approaches are an inappropriate 

definition of the vehicle, as body shapes are different between each of the methods. The lack 

of cohesion is mainly due to the different variations in the subcategories of the "car" category, 

as shown in Figure 5.6 there are three different definitions of cars. Although a large variation 

in category is ideally used as key characteristic in the re-identification process, a large number 

of categories dilute the effectiveness of the classification technique. This is due to the subtle 

difference between the classes causing higher rates of misclassification and increases to the 

level of uncertainty. 
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5.3.5 Vehicle Trajectory 

A vehicle's trajectory is not a characteristic commonly used for the re-identification of vehicle. 

However, it is a measure that could record the driver's usage pattern in driving a given vehicle 

to judge if a vehicle is being driven by a different driver. From a psychological viewpoint, 

a driving pattern could be used as a key identifier for the driver of a given vehicle. If the 

driver is a repetitive user of the car park, the route and driving pattern stays quite consistent, 

especially in a condition that has limited variability, i.e. only have two alternative routes. 

Therefore, these features can be used as part of the re-identification problem for answering 

queries such as "is the vehicle driven by someone else?". The trajectory information relies 

heavily on the tracking information that is usually obtained through the tracking algorithms 

dealing with the video data. There are two main classes of tracking algorithms. They are: 

1. Data Association - Kalman Filter (Kalman, 1960) proposed the famous approach known 

as data association. His target tracking process consists of a recursive process where at 

each frame of the object's location was predicted by using a motion model and then was 

updated based on the latest observation. The appearance of the target model would be 

compared with all the records in order to find the closest model that matches in target. 

2. Data Driven - Comaniciu et al. (2000) reported the popular mean-shift approach. The 

mean-shift algorithm does not first segment objects but rather uses information, only 

retrieved from the data itself to build the target model. The mean-shift method tracks a 

given target by searching for its model in every image of the sequence. 

Both of the tracking models perform equally effectively when tracking a single target in 

an uncluttered environment. However, when the environment is complicated and multiple 

targets are in close proximity, the uncertainty associated with the tracked target increases. The 

reasons may due to those listed below: 

• Limited ability to effectively distinguish multiple targets in dense space. 

• Occlusions caused by an unexpected change to the expected model by changes of the 

appearance of the target, which may be caused by: 

- Split - A set of pixels are defined as background, when a tracked target passes 

through these pixels, they split the target. 
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- Merge - If two or more targets move close proximity to each other, they could be 

merged together. 

The trajectories can be mapped within an x-y coordinate map, the similarity between two 

or more trajectories can be the closeness of each of the points on the trajectory. In the 

experimental bed, the number of alternative routes is limited. Therefore, a lot of users will run 

similar trajectories so that it can be used as an effective discriminator for the re-identification 

process. It can also be used as secondary feature to help achieve other security or commercial 

objectives. 

There are situations where there is a road block, this will alter the effectiveness of this feature 

in cases where the drivers are forced to drive in alternative patterns so that a lot of uncertainty 

arises when using this feature to identify the driver under these circumstances. 

5.3.6 Spatio-Temporal Information 

Like trajectory, Spatio-temporal information can also be used to infer the behaviour of the . 

drivers. Two cues inherited with the experimental test-bed are the time of the observation and 

the gate that the vehicle enters (or exits). Both of the cues are associated with the automaticity 

of human behaviour. In addition if there is a short time scale between entering and exiting a 

vehicle, this may demonstrate other behaviour patterns, such as cars driving away because a 

car park is full or the car is used for delivery. 

Both of these cues will have negligible measurement noise as there are multiple cameras 

involved. However, a very low level of uncertainty may be introduced if the internal clocks 

are out of sync. 

5.4 Summary 

This chapter discusses the factors that may influence the uncertainties, from both the hardware 

and software, in a complete video analytic system. Some of the uncertainties are unavoidable 

such as the intensity restriction of the camera, and some are introduced by the process to 
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improve the performance of the system such as mathematical assumption. The level of 

uncertainty would increase as the information is propagated down the system pipeline, thus 

decreasing the level of accuracy of the outcome of the system. Current research regarding 

the measurement (Taylor, 2009; Lira, 2002), quantification (Kennedy and O'Hagan, 2001; 

Matthies, 2007) and propagation (Ku, 1969; Lee and Chen, 2009) of uncertainty are active 

research areas for a variety of research fields. 

The chapter also carries out a discussion for the type of uncertainties associated with fea­

tures involved with vehicle. Although some of the challenges have already achieved a very 

high level of accuracy, uncertainty associated with the result still exists, due to a range of 

limitations and variations. The discussion reveals that under these limitations, the use of 

additional features can help to lower the uncertainty, for example, when there is a misreading 

of the number plate, the vehicle manufacturer's logo can be used as verification to the vehicle 

identification. 

These findings conclude that fusion techniques have merits in combining different features for· 

improving the accuracy of a range of different challenges. They also show that the majority of 

the video analytic challenges would require either re-identification or classification, therefore 

it is necessary to have a deeper study for these techniques. 
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Chapter 6 

Vehicle Logo Categorisation 

6.1 Introduction 

As stated in Chapter 4, the correct identification of vehicles is important in a wide range of 

surveillance situations. Currently, the completion of this task relies predominantly on the 

correct identification of the characters on the vehicle's number plate (NP). As Section 5.3.2 

indicated, however, there are many challenges in correctly reading the NP A secondary key 

attribute of the cars is needed to identify the vehicle in these situations. One possible solution 

is the recognition and classification of a vehicle's manufacturer logo, as these are fixed in the 

front and rear of the vehicle, similar to the NP' In addition, although there are variations of 

the same manufacturer's logo, as shown in Figure 5.4in Section 5.3.3, these can't be easily 

altered once they are installed. 

Recent research has relied on the texture information of the vehicle's grille to find a coarse 

Region of Interest (RoI) where the logo could be finely located, as the majority of manufac­

turers like to install their logo at the centre of the vehicle's grille. Some manufacturers will, 

however, also place their logos on top of the bonnet, where grille information becomes less 

relevant. This is even more apparent when attempting to locate the logo on the rear view of 

the vehicles, where the grille information is unavailable. This increases the difficulty of the 

research. To break the limitation, the investigation will devise a new process to locate the 

logos from both the front and rear views. 
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The data used for this challenge has been captured by using the apparatus in our experimental 

test-bed, as demonstrated in Section 4.4. The data will, therefore, simulate vehicles in a 

real-world situation, where the logos are of varying sizes and viewed from both the front and 

rear, under varying lighting and environmental conditions. Using the novel logo localisation 

approach, the classified logo regions are read by the Fisher Discriminative multi-class classifier 

to determine the most likely category. In this project, the vehicle logo categorisation process 

is divided into two stages: Logo Localisation and Logo Classification. 

6.2 Related Work 

This section will first evaluate the current research activities that have been undertaken to 

tackle both the NP localisation and NP classification challenges, followed by an examination 

of the multi-classification techniques that have been implemented within a wider research 

area. 

6.2.1 Localisation 

The localisation of the logo, in a view of the vehicle, is an essential first step for the achieve­

ment of its accurate classification. The majority of localisation research relies heavily on 

some prior knowledge such as the position of the number plate (NP). Once the position of 

the NP is located, researchers can define a Region of Interest (RoI) relative to it. A number 

of authors (Li and Li, 2009; Liu and Li, 2011; Yang et aI., 2012) have assumed that the RoI 

for the vehicle logo is a patch above the NP with a size relative to the extracted NP. Other 

researchers (Dlagnekov and Belongie, 2005; Lee, 2006; Psyllos et aI., 2011b; Petrovic and 

Cootes, 2004; Psyllos et aI., 2010; Wang et aI., 2007) defined the RoI as an area on the front 

of the car specified relative to the size and location of the NP, incorporating the NP and 

other dominant features such as grille and head lights. Furthermore, instead of one reference 

point, Lu et ai. (2010) adopted three reference points to define a RoI containing the vehi­

cle logo and the grille. Their three reference points are the NP, and the left and right headlights. 

From a large RoI, Lee (2006) extracted a smaller area of interest that incorporates the texture 
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information of the grille and logo. The texture information of the grille was also employed 

by the other authors (Li and Li, 2009; Liu and Li, 2011; Lu et aI., 2010; Yang et aI., 2012) 

which was combined with edge information obtained from different edge detectors and filters. 

The authors reduced the size of the RoI to incorporate the logo alone. Wang et al. (2007) 

suggested the use of the peaks in the edges' vertical direction projection as the initial location, 

to start a symmetry search in order to locate the logo. Psyllos et ai. (2011 b) and Psyllos et al. 

(2010) stated a completely different method known as the Phase Congruency Feature Map 

and its derivatives to divide the RoI into smaller areas such as left/right light, grille and logo. 

An attempt to remove the dependency on the NP is described by Sam and Tian (2012), who 

utilised the Modest Adaboost (Freund and Schapire, 1995) algorithm to search for vehicle 

logos, represented by extended Haar-like features. However, the gradually sliding window 

used in the search makes the method sensitive to the complicated background, thereby limiting 

its application. The Zhang and Zhou (2012) method applied the frontal images ofthe vehicles 

and adopted a bilateral symmetry detection based on a set of Size-Invariant Feature Transform 

(SIFT) features (Lowe, 1999). Although this method has claimed a localisation accuracy of 

98.91 %, its reliance on the grille information makes the method unsuitable for rear-view logo 

localisation. 

6.2.2 Vehicle Logo Classification 

Previous research on the categorisation of a vehicle manufacturer's logo is inadequate, even 

though it is an attribute which is useful in a vehicle identification system. Early work by 

Dlagnekov and Belongie (2005) used SIFT features to re-identify a vehicle from the whole 

rear-view of the vehicle, not just the logo. This approach attained 89.5% re-identification 

rate of total 38 test samples. Psyllos et al. (2011b, 2010) elaborated Dlagnekov and Belongie 

(2005) work of proposing a SIFT-based enhanced matching scheme, which only concentrated 

on the logo. The scheme boosted the categorisation accuracy higher than the standard SIFT­

based feature-matching method developed by Dlagnekov and Belongie (2005). Wang et al. 

(2007) presented a method for logo categorisation that exploited a template matching and a 

histogram of orientation gradients (HOG) of the logo. The methods proposed by Wang et al. 
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(2007), Psyllos et ai. (2010) and Psyllos et ai. (2011 b) faced the issue of reduced robustness 

under variation of the environmental conditions, such as lighting levels. An improved solution 

was recommended by Burkhard et ai. (2011). The solution relied on the Fourier shape descrip­

tors, introduced by Zhang et ai. (2001), who characterised shapes based on their curvature as 

they are not sensitive to distortion due to changes in environmental lighting effects. However, 

this method is highly dependent on the logo segmentation, as it requires the logo to be the 

dominant element in the Rol. Recently, Sam and Tian (2012) applied the invariance property 

of Radial Tchebichef moments (Mukundan, 2005) to recognise high resolution segmented 

vehicle logos. They achieved a recognition rate of 92% with aid of a manually extracted logo 

Rol. Their test sets contained 200 images of 10 different categories. 

Although there has previously been limited focus on the recognition and classification of 

vehicle logos, some research based on a RoI from a frontal, or rear view of the vehicle to 

identify the vehicle model has been done. Lee (2006) advised a set of 16 texture descriptors 

of the RoI taken from the front view of the vehicle as the input to a 3-layer back propagation 

multi-layer perceptron neural network. This method was used to classify vehicles into 24 

different models and achieved a recognition rate of 94%. Petrovic and Cootes (2004) recom­

mended the RoI from the front of the vehicle in an approach based on HOG and launched 

a similarity measure between a test and target, i.e. dot product and euclidean distance, to 

determine the vehicle model. Petrovic and Cootes reported an identification rate of over 93% 

on parked cars. Their dataset contained 77 models. Zhang and Zhou (2012) proposed the use 

of a Rotation Forest Ensemble method, as introduced by Rodriguez et ai. (2006), for vehicle 

classification. Zhang's method relied on the features from a Fast Discrete Curvelet Transform 

(Candes et aI., 2006) and the Pyramid Histograms of Orientated Gradients (pHOG) (Bosch 

et aI., 2007) of the RoI from the top view of the vehicle, with a success rate of 96.5% on a 

21 model dataset. Similar to the approach of Dlagnekov and Belongie (2005), Bhanu and 

Kafai (2012) tried to classify vehicles using the rear view of the vehicle, with the vehicle 

being categorised into classes of vehicle type, such as vans, cars or trucks, rather than make 

or model, with a success rate of 95.7% for a four class dataset. 
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Iqbal et al. (2010) conducted a comparison of the techniques used previously for vehicle 

model classification, for both environmentally controlled and uncontrolled datasets. They 

noted that techniques such as SIFf are sufficient in controlled environments, where there is 

little variation of illumination, viewing angle and scale. Their research also concluded that 

for make or model recognition, the RoI from rear-view images performed better than the RoI 

of the frontal view due to fewer variations caused by the grille. 

6.2.3 Metric Learning for Classification 

Classification methods can be broadly categorised into feature-based and learning-based 

methods. Feature-based methods rely on the discriminative ability of the feature alone, while 

learning-based methods, such as that used in Chapter 3, estimate a discriminative model by 

analysing the training data, representative of the collected data. 

SVMs (Joachims, 1999), Boosting (Freund and Schapire, 1997) and Neural networks (Bishop, 

1996) have successfully been employed to learn two class classifiers in various vision related 

problems such as Pedestrian detection and Face recognition. Multi-class classification has 

been addressed successfully in learning methods by different authors (Weinberger and Saul, 

2009), (Xing et aI., 2003), (Ying et aI., 2009) that mainly focused on metric learning that 

requires a Mahalanobis distance metric to be estimated in the feature space. The feature space 

is often non-linear in nature and needs a transformed feature space, in which, the Euclidean 

distance between data samples maintains the neighbourhood characteristics of data. 

Metric learning has been considered as a data association problem when multiple classes 

are involved. The Mahalanobis metric is consistent with a positive semi-definite matrix, and 

the general set of such "metric matrices" - all of which are positive semi-definite, and can 

be considered to be the interior and surface of a cone with the apex at the origin. Other 

methods such as Local Distance Metric (Liu and Rong, 2006), LMNN (Weinberger and 

Saul, 2009) and that of Xing et aI. (2003) estimated this metric by modelling the solution 

as an optimization problem where strategies like gradient descent approaches are employed. 

However, scalability with increasing feature dimensions tends to be problematic with such 

80 



CHAPTER 6. VEHICLE LOGO CATEGORISATION 

approaches due to the computationally expensive, time consuming iterative steps involved. A 

few recent methods such as that proposed by et al. Kastinger et al. (2012) have modelled the 

solution for estimating the metric in eigenspaces. The solution in these cases can be easily 

programmed with aid of solving a formulated eigenvalue problem. The Local Fisher (LF) 

method (Pedagadi et aI., 2013) showed an approach to produce better discrimination amongst 

sub space methods by using relatively simple features. 

6.3 Vehicle Logo Categorisation System Design 

This section is structured as follows: The strategy employed to extract the RoI and the relevant 

features are first described followed by an overview of the system processing pipeline. An 

overview of the Local Fisher Discrimination techniques used for the classification will then be 

given. The section concludes with the description of the decision fusion model that is going 

to be deployed in the classification stage. 

6.3.1 Feature Extraction 

As discussed in Section 6.2.1, the most common placement of a manufacturer's logo on the 

frontal and rear views is at a position with some distance above the NP. Therefore, to extract 

the RoI, the Automated Number Plate Recognition (ANPR) module is employed to accurately 

detect the position of the NP. The relationship between the coordinates of the corners of the 

NP and the logo's RoI is shown in Figure 6.1, and is expressed in the below set of Equations 

6.1. 
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(r , r ) --r-ii--r-
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Figure 6.1: Logo RoI Extraction Referring to Equation 6.1 , PI and P2 are the respective 
bottom-left and bottom-right coordinates of the located NP. rl and r 2 are the respective 

top-left and bottom-right coordinates of the located RoI. Rx and Ry denote the width and 
height of the RoI with 128 and 152 pixels respectively. The current Rx and Ry values are set 
to allow the capture of the logo in our dataset at varying distances from the camera, and the 

values can be varied depending on the need. 

(6.1) 

where .!:2rl.!:k = P2x+plx r = p r = p + R . 2 2' Ix Ix, Iy Iy Y 

Once a logo' s RoI is extracted, the region is sub-divided into patches. The patches are 

converted into two types of feature vector, based on the Histogram of Orientated Gradient 

(HOG). The first stage of the operation is to convert the RGB patch to HSV space, followed 

by the application of a Sobel edge detector on the grey level image in the V space. The two 

different HOG feature vectors are finally extracted as follows: 

1. MUltiple Overlapping Patches u - By adopting the feature fusion strategy stated in 

Chapter 3 and illustrated in Figure 6.2. Each patch is divided into smaller overlapping 

bounding boxes of 16 horizontal and 32 vertical pixels. For each overlapping bounding 

box the pixels' orientations in the box are picked up to form an 8-bin edge histogram. 

All of the histograms are concatenated together to build the feature vector u 
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Figure 6.2: Feature extraction for u, uses the overlapping patches strategy, which acts as 
different sensors to create a fused feature by concatenating all of the patches together. 

2. Pyramid-HOG (pHOG) (Bosch et aI., 2007), v - Instead of overlapping bounding boxes, 

the edge image is divided into grids, an 8-bin edge histogram is created for each grid 

and concatenated together. 3 different levels of grids are used as illustrated in Figure 6.3. 

The histograms for each grid levels are finally combined together to form the feature 

vector v 

Levell Level 2 Level 3 

Figure 6.3: An example of pHOG and the grid arrangement of the three different levels. The 
three levels are concatenated together to create the fused vector v 

The different types of edge information are useful for estimating a reliable embedding space 

in the subsequent stages. Instead of doing the dimensionality reduction after combining the 

two feature vectors, as explained in Chapter 3, the reduction is done prior to fusing together u 

and u, which will be stated in the following section. 

6.3.2 System Processing Overview 

As mentioned in 6.3.1, once a logo's RoI is extracted, the region is sub-divided into patches. 

Each patch size is 128 by 64 pixels, and the first patch is at the top left of the RoI and 

successive patches are created by moving down with an interval of 5 pixels. The patch width 

is currently set as the whole width of the RoI to allow the logo to be located at various angles 

of the viewpoint, i.e. the logo does not have to be located at the horizontal centre of the patch, 

as shown in Figure 6.4. 
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~ 
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Figure 6.4: Overview of the proposed system. The logo patches are first extracted from all of 
the overlapping patches. Using the logo patches, the class decision is made. 

As illustrated in Figure 6.4, the extracted patches are firstly classified into two categories in 

the localisation stage, logos (l) and background (b). A logo patch is defined as a patch that 

contains at least 50% of the logo in the vertical direction, and all other patches are defined as 

background patches. Only the logo patches are used in the logo classification process. 

6.3.3 Local Fisher Discrimination 

Local Fisher (LF) (Pedagadi et aI., 2013) explores the idea of projecting feature data into 

two successive sub-spaces. The first sub-space is estimated by employing the dimensionality 

reduction technique of Principal Components Analysis (PCA)(Jolliffe, 2005) and the second 

subspace by the application of a supervised dimensionality reduction method of Local Fisher 

Discriminant Analysis (LFDA) (Masashi, 2006) on the PCA projected feature data. A brief 

review of the LF is presented below. 

A low dimensional embedding space is obtained from the high dimensional feature space by 

firstly estimating a PCA transformation separately, for each of the two input feature vector 

types u and v. Principal Component Analysis enables the dimensionality of the data to be 
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reduced, while also preserving a high proportion of variation in the input signal (Jolliffe, 

2005). For an input vector Ui, the data projected into the low dimensional manifold, estimated 

by peA is written as u~ = DuUi, where Du is the embedding transformation matrix corre­

sponding to the eigenvectors derived from peA. Similarly, ~ = Dvv!. 

It has been experimentally demonstrated in LF (Pedagadi et aI., 2013) that separate estimation 

and use of Dv and Du retain information more effectively. The overall output Xi from the first 

stage is the concatenation of the two sets of separate peA projected histograms to create a 

fused vector: Xi = {u~lva. 

LF combines the neighbourhood preserving property of Locality Preserving Projection (LNP) 

(Xiaofei, 2004) with the traditional Fisher Discriminant Analysis (FDA) (Fisher, 1936). It is 

very common for a multi-class dataset to be multi-modal in nature, i.e. to show a significant 

variation in class samples. LF captures this multi-modality in classes by constructing an 

affinity matrix A that estimates the neighbouringcharacteristics of the dataset. A local scaling 

method (Zelnik-Manor and Perona, 2004) is used for the estimation of A by choosing the n-th 

nearest neighbour and assigning individual scaling factors for samples from the same class. 

The width between class SW and class SB of scatter matrices in traditional FDA is weighted 

with the affinity matrix A so that the far apart in-class samples do not contribute to the 

estimation. 

- ! ~ A~· (x· - x·) (x· - x·)t 2 L....J t,J t J t J 
i,j=l 

(6.2) 

lL:n 
b ) t - A .. (x· - x· (x· - x·) 2 . . t,J t J t J 

t,J=l 

(6.3) 
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where 

A~· 
~,J 

ifYi = Yj = C 
(6.4) 

A~ . 
~,J 

ifYi = Yj = C 
(6.5) 

Here, nc is the number of samples in class C and n is the total number of samples. The 

transformation matrix TtJda is defined as: 

TtJda = argmaxtr( (TtSWT) -1 TtSBT) (6.6) 

where T E ]Rd X ]Rm. Similar to FDA (Fisher, 1936), the estimation of TtJda is achieved 

by representing the above as a generalised eigenvalue problem, SB<p = ASW <p, here {<Pi} 

and {Ai} are the eigenvectors and eigenvalues of this system. The final projection into the 

embedding space characterised by LFDA can be written as: 

(6.7) 

The similarity measure between any two observations i and j is given by the Euclidean 

distance between the LFDA transformed vectors of each observation 

(6.8) 

6.3.4 Logo Localisation Using LF 

To localise the logo patches, the training set of logo (l) and background (b) patches is used, 

as defined in section 6.3.1, where ground-truth has been manually selected. At this section, 

the vehicle class label is not used any more. The training data is used to estimate the matrix 

7l}da that transforms the feature vectors {Xi} to their representation in the embedded space 

{ Zi}' Let {zn and {zH to be the sets of nl and nb training vectors in the embedded space for 

logo and background patches, respectively. A new test vector z* is classified as either logo or 
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background on a k-nearest neighbour basis: 

{

logo 
z* c 

background 
(6.9) 

otherwise 

where 

(6.10) 

Using a LF-based binary classifier on the ensemble of patches within a RoI, the patches 

categorised as a 'logo' are classified into one of the N manufacturer logos, which are input 

into a voting process to provide a final estimate for this vehicle. This will be described in the 

next section. 

6.3.5 Logo Classification Using LF 

Here, a fusion reasoning technique based on Voting, as introduced in Section 2.4.2, is used. 

For a given RoI, n patches are categorised as 'logo'. If n > 0, a LF-based multi-class 

classifier is adopted in an analogous manner to assign a predicated class Yi to each logo patch, 

where Yi E {I, ... ,N}, where there are N categories corresponding to the different vehicle 

manufacturers. Otherwise, if n = 0, no suitable patches are available and the classification 

cannot proceed. The overall manufacturer class assigned to the RoI, Yma:x is the class that the 

largest number of individual logo patches belongs, as follows: 

(6.11) 

5 (",tIl ~ {~ if a = f3 
(6.12) 

Otherwise 

If the voting process does not result in an outright winner, a second weighted voting procedure 

is adopted. For each logo patch, there is a logo confidence measure represented by the value 

of dl • For all the equal top ranking classes, from the first vote, their corresponding patch dl 

values are summed together with the class that has lowest cumulative value to become the 
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overall winner. 

6.4 Logo Dataset 

As mentioned before, the data involved was captured in our experimental test-bed. The 

footage captured vehicles entering and exiting the car park at different velocities, trajectories 

and under varying environmental conditions such as lighting. The footage was first segmented 

by the process described in Section 4.4.3.1 to extract the objects of interest, and then processed 

by existing ANPR software to acquire the NP coordinates for the vehicles in this study. 

(b) 

Figure 6.5: Examples of Vehicle Logo Patches. a) Logos' Frontal View, and, b) Logos' 
Rear-View. Showing that the current logos are of various sizes and its location is no longer 

limited to being in the front of the vehicle and within the grille 

As Section 5.3.3 outlined, one issue with the manufacturer's logo is that some have quite 

similar outlines. In order to effectively test the classification, the following five commonly 

used classes of manufactures were selected for the experimentation. They are: Nissan, BMW, 

Mercedes (Mere), Audi, and Peugeot (PG). Examples of the logos are given in Figure 6.5, 

the figure illustrates that most of the outlines are different. To test the discriminative abilities 

between similar outlines, the Mercedes and BMW are included. Both of these badges have 

a circular silhouette with different insides. Figure 6.5 also demonstrates the dataset will 

contains logo from both the front and the rear of the vehicle, and these have been captured 

from various angles, which will add an additional layer of complexity. 

For each manufacturer's class, 30 training samples and 20 testing images were chosen. The 
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training data is excluded from the testing data in order to test the true performance of the 

system. Manual ground-truth locates the vertical centre of the logo in the image in order to 

define the logo patches. 

For each image, the logo's RoI was located by the NP position, and subdivided into patches, 

which results in 18 patches per RoI. Therefore, there were 2700 training and 1800 testing 

samples. The combined feature vector for each sample, before dimensional reduction, is 2248 

components. 

6.5 Experimental Results 

6.5.1 Logo Localisation Analysis 

Ground Truth 

Logo Background 

13 Logo 86% 14% ..... 
u ..... 
"0 

J: Background 9% 91% 

Table 6.1: Confusion Matrix of Logo and Background Patch Classification Results 

The accuracy of the vehicle logo localisation was validated against manually labelled, ground 

truth data. The results in Table 6.1 show that the method involved in this project was able to 

achieve 86% accuracy for classifying logo patches and 91 % for correct background patches. If 

only unsupervised PCA is used, the results decrease to 80% for logo and 83% for background 

patches. 

The 86% correct logo classification actually means that 97% of all testing samples would have 

at least one correctly predicted logo patch that could be forwarded to the logo manufacturer 

classification stage. 
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Ground Truth 
Nissan BMW Merc Audi PG 

Nissan 80% 5% 0% 0% 15% 
'0 

BMW 0% 100% 0% 0% 0% B 
u ..... Merc 5% 21% 69% 5% 0% '0 

J: Audi 0% 0% 0% 100% 0% 
PG 0% 5% 0% 5% 90% 

Table 6.2: Confusion Matrix for Logo Classification Results Using Badge Patch. The results 
shows an 85.56% classification rate based on 5 vehicle logo classes 

6.5.2 Logo Classification 

The system was trained using only the ground truth logo patches and the trained model was 

tested by previously unseen classified logo patches from the local localisation stage. Table 

6.2 shows the confusion matrix of the logo classification results using the correctly classified 

logo patches only (lpo). The main diagonal shows the percentage of correctly classified 

manufacturer class. When all of the predicted logo patches (pIp) are used, including the 

background patches incorrectly classed as logo patches, the overall classification rate of 

85.56% is obtained, as shown in Table 6.3. The value of 85.56% indicates the performance of 

the system in a real life environment. 

Table 6.2 illustrates the challenges when there is a variation of the level of confusion when 

classifying badges with similar shapes. The Mercedes classification result demonstrates a 

high level of confusion, however, the BMW badge results have zero confusion. A possible ex­

planation might be due to the BMW badges having a constant filled centre, irrespective of the 

vehicle colour. With very limited variation, compared to the case of Mercedes badge, where 

the colour to fill the centre differs depending on its location or the colour of the vehicle, the 

effect will result in different variations in its representation as the edge detection techniques 

are used to extract the features. 

The addition of the Local-Fisher learned metric to the PCA feature space, significantly im­

proves the performance of the system, as demonstrated in Table 6.3, comparing with the 

principal components of the original feature vector. 
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Type 
HOG pHOG HOG + pHOG 

Ipo pIp Ipo pIp Ipo pIp 
PCA 70.40% 69.70% 68.04% 68.04% 70.41% 69.70% 

PCA+LF 87.62% 85.67% 80.11% 79.80% 87.62% 85.67% 

Table 6.3: Logo Classification Success Rate With Different Features 

Table 6.3 also shows that identical performance is achieved between HOG only and the 

combination of both HOG and pHOG. To further validate this finding, an additional cross-

validation experiment is done, the results are shown in Figure 6.6. 

Cross Validation Results between HoG and Combined Features 
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Figure 6.6: Cross-validation experiment, where 40 training and 10 testing samples for each 
class is chosen which is repeated for 5 iterations. For this experiment, only the groud truth 

logo patch is used. This removes the uncertainty that may be introduced by the Logo 
Localisation stage. 

Figure 6.6 shows 5 iterations of a cross validation experiment. The results demonstrate that 

no extra advantage is gained when a combined feature is used, compared to RGB and HSV 

features in Chapter 3, where the feature vectors is created from two separate representations 

of the input. The HOG and pHOG gather the same feature representation which is output 

from the Sobel edge detection. The difference between the HOG and pHOG is actually how 

the data is gathered into their respective histograms. This experiment illustrates that the 

granularity of the patched HoG process means that all the key information that pHOG would 

have captured has already been acquired, therefore no extra advantage is gained when HOG 

and pHOG are combined. 
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6.6 Summary 

This chapter has presented a novel vehicle logo localisation and classification process, with 

aid of features composed of local histograms of gradients and the use of Local Fisher Discrim­

ination Analysis, to obtain a more effective learning metric. The proposed method relieves the 

reliance of needing to locate dominant features, such as the grille, in order to localise the logo. 

Thus, the approach can be applied to locate vehicle logos on both the front and rear of a vehicle. 

The results achieved by the process are not directly comparable to those from recently pub­

lished techniques, as those only concentrate on locating the logo on the front of the vehicle 

and the data used are captured in controlled environments, such as in the studies of Wang 

et al. (2007) and Psyllos et al. (2010). As such, the results achieved in this project provide 

a benchmark for techniques of logo recognition on medium-view CCTV data in a video 

surveillance environment. 

Although Chapter 3 has shown the advantages of concatenating similar representations of 

the features to improve the performance, experiment results in this chapter have confirmed 

that the choice of features is important. If two representations of the same feature space, i.e. 

Sobel edge detected image, then the two features might not contribute enough independent 

information. As a result of this, no extra advantages could be gained. However, the method 

developed in this project has revealed that decision fusion techniques can be used to assist 

with video surveillance challenges. 
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Chapter 7 

Fusion Models and Evaluation 

Framework 

7.1 Introduction 

As stated in Chapter 1, there are many challenges within Automated Video Surveillance 

system. There are two main problems that any system needs to overcome. The first is the 

uncertainty that exists throughout a particular automated video surveillance system's pipeline, 

as demonstrated in Chapter 5. The second is the identification of a suitable method to fuse the 

information from different sources in order to conduct various types of objectives, rather than 

a single objective, as outlined in Chapter 4. 

Information Fusion is the technique that can be used to overcome these problems. It can 

result in more accurate inference than a single sensor does (Hall and McMullen, 2004). The 

inferences made with these techniques range from simple estimates of the identity of certain 

entities to complex inferences about current or future relationships between multiple entities 

and the events involved. 

As the types of information in this chapter are incommensurate, the data must be fused at a 

decision level (Hall and Llinas, 1997). Decision-level fusion, as outlined in Section 2.3.3, 

consists of merging information at a higher level of abstraction and combining the results from 

multiple algorithms to yield a final 'fused' decision (Dong et aI., 2009). The data is therefore 
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processed separately by multiple algorithms, e.g. to identify and classify observed entities 

and events, based on their different features. The resulting information is combined with a 

chosen set of decision rules to obtain an overall inference. Due to the uncertainties created at 

every step of the processing pipeline, the result could be expressed in a probabilistic form. 

Two well-known types of decision rules, which allow the fusion of probabilistic outcomes, 

are Bayesian inference and the Dempster-Shafer (DS) theory. These can both be applied to 

the designed fusion scenario to combine multiple cues extracted from surveillance videos. 

The two main outcomes of this chapter are, firstly, a theoretical investigation on the appropri­

ate formulation of these two fusion models for the target scenario. Secondly, as suggested in 

Section 2.4.4, it seems that any previous proposals could not conduct a general performance 

evaluation for these two fusion methods. Thus, this chapter will create a generic evaluation 

framework to evaluate Bayesian estimates and be extended to accommodate the DS methodol­

ogy. 

The remainder of the chapter is organised as follows. In Section 7.2 and 7.3, a detailed 

design with Bayesian and Dempster-Shafer theory is given, including a theoretical evaluation. 

In Section 7.4 the generalised evaluation framework is introduced. Some experiments are 

conducted in Section 7.5 and the discussion will be presented in Section 7.6. 

7.2 Statistical Parametric Fusion Methods: Bayesian Infer­

ence 

7.2.1 Bayesian Theory 

In Bayes' theorem Bayes et al. (1984), it is assumed that hi is a hypothesis about a state, 

taking values in the set of hypotheses H = hi, ... hn' exactly one of them is 'true', and the 

remainder 'false'. The prior probabilities, P(hi)' i = 1, ... , n constitute the prior probability 
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mass function of the hypotheses hi: 

n 

o S; P(hi ) S; 1 and L P(hi ) = 1 (7.1) 
i=l 

Normally, the hypothesis with the highest prior probability will be assumed as the 'true' 

one. However, a more accurate estimation of the state can be made by incorporating some 

relevant 'posterior' evidence x. It is assumed that the hi are distributed according to the 

class-conditional probability distribution function P(xlhi ) (Jensen, 1996). Therefore, given 

the prior probability and the class conditional probability, the posterior probability can be 

calculated by Bayes' formula: 

(7.2) 

The denominator is the 'evidence factor' that normalises the posterior probabilities so that 

they will sum to one. 

The Bayes formula has gained popularity as a fusion method because it provides a direct and 

easily applicable means for combining the prior information with the current observation. 

7.2.2 Graph Theory - Bayesian Network 

To create complex Bayesian systems, Jensen (1996) introduced the ideal of combining 

Bayesian theory with Graph Theory to produce the notion of Bayesian Networks. According 

to Druzdzel and Van Der Gaag (1995), there are two distinctive parts to a Bayesian Network: 

Qualitative and Quantitative. 

7.2.2.1 Bayesian Network: Qualitative Analysis 

The qualitative part is defined by the structure of the Network, which is represented by a set of 

random variables and their conditional dependencies via a directed acyclic graph, as modelled 

in Figure 7.1. 
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Figure 7.1: Example of Bayesian Network Formulation For Getting a Job, where the root 
node of the query under investigation and child nodes are the evidence in support of the query. 

A Bayesian Network is created by different nodes and linked by edges. The edges represent 

the relationship between the nodes. There are three types of nodes: 

1. Root nodes, representing the queries that the system has been constructed to answer. 

Edges are only directed away from root nodes. 

2. Child nodes, representing the evidence, such as one extracted from surveillance sensors 

that may provide information about the queries. Child nodes only have edges directed 

towards them. 

3. Parent nodes are the Root nodes of sub-networks in a complex network. Therefore, a 

parent node is a child node of a Root node and it is the Root node of child nodes in the 

sub-network. As such, it will have edges directed to and from it. 

7.2.2.2 Bayesian Network: Quantitative Analysis 

The quantitative part comprises the values of the variables of the child nodes and is recorded 

into the Conditional Probability Matrix (CPM). An example of a sensor's CPM is given in 

Section 7.2.3.1, where each column represents the class-conditional probability distribution 

function for the hypothesis. 

These conditional probabilities could be generated by domain experts and/or data obtained 

directly from observations made about the environment. Furthermore, these can be updated 

over time to improve the accuracy of the model. 
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7.2.2.3 Design Assumptions 

The evidence, represented by the child nodes, is included in the Conditional Probability Matrix 

to calculate the joint probability of the network. However, Equation 7.2 needs to be adapted 

for the calculation of joint evidence, as the class-conditional probability distribution function 

for a joint set of evidence P(Xl' ... Xclhi) ,in general, does not have an analytic solution. It is 

impossible to numerically evaluate this for all instances of the evidence due to the extensive 

number of combinations. 

To resolve these issues, it is assumed that the child nodes are conditionally independent. 

A child node is assumed conditionally independent if the knowledge of a child node does 

not change the belief of any other child nodes in the network. In addition, child nodes are 

conditionally independent if the state of the root node is known. 

This assumption allows the child nodes' co-occurrences to be calculated as a simple multipli­

cation. Equation 7.3 is now transformed into: 

(7.3) 

In addition, the inference of multiple sensors can be calculated sequentially, as discussed by 

Lewicki (2007), whereby the posterior probability provided by one sensor can be used as a 

prior probability for the following sensor's calculations. 

7.2.3 Bayesian Network: Surveillance Scenario Design 

In this section, the theoretical adaptation of Bayesian Network for the Surveillance Scenario 

under investigation will be conducted. The section firstly outlines a simple framework to show 

the uncertainty r~duction capabilities of the Bayesian Network (BN) in the experiment. The 

framework design will be followed by the experiment's results. The framework will be further 

improved to show how it can be adopted with sensors for the investigation of a particular 

surveillance scenario. Finally the framework will be further modified to demonstrate its ability 

of inferences for different scenarios. 
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7.2.3.1 Uncertainty Reduction -Simple Framework 

In this section, the vehicle-identification problem is used to aid the evaluation of uncertainty 

reduction. The Bayesian Network for this scenario is illustrated in Figure 7.2. 

Figure 7.2: Simplified Bayesian Network Inference: "Was This Vehicle Present Before?". 
The root query is supported by two sensors as the evidence 

In the simple network shown in Figure 7.2, the root query is: whether a particular 'probe' 

vehicle is present in a 'target' set. The prior probability of the root is given in Table 7.1. 

P(Vp) P(Vp) 

Seen Before 0.1 0.9 

Table 7.1: Prior Probability of the Root Node of Figure 7.2 

The network is informed by two sensors, Sensor A (SA) and Sensor B (SB). For each mem­

ber of the 'target' set ~, (i = 1,2, 3 ... n, where n total members), each sensor provides an 

independent measurement, and outputs a positive identification ('Yes') if the 'probe' vehicle 

matches the target and a negative identification ('No') otherwise. Therefore, for each sensor, 

n independent measurements are obtained. In the case of a perfect sensor, when the vehicle 

was present, there should be exactly one 'Yes', and when the vehicle was not present, then all 

measurements should be 'No'. 

However, when the sensors are imperfect, the Conditional Probability Matrix (CPM) of each 

sensor can be used in conjunction with Prior probability to calculate the outcome. The CPM 

probabilities can be estimated by the sensors' performance on test datasets by using known 
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probe and target sets, as described in Section 7.2.2.2. The CPM of near-perfect sensors are 

given in Table 7.2 and 7.3. 

Sensor A P(SAIVp) P(SAIVp) 

Yes (SAl) 0.999 0.001 

No (SA2) 0.001 0.999 

Table 7.2: Sensor A CPM, 
illustrating a sensor error rate of 

0.1% 

Sensor B P(SBIVp) P(SBIVp) 

Yes (SBl ) 0.999 0.001 

No (SB2) 0.001 0.999 

Table 7.3: Sensor B CPM, illustrating a 
sensor error rate of 0.1 % 

The imperfections in the sensors will result in a varying number of positive ('Yes') identifica-

tion, represented by Z (where Z = O ..... n). The discrete probability of obtaining any specific 

value of Z from the n independent tests can be simulated by a Binomial Distribution using 

the information provided by the CPM tables. The binomial mass function determines whether 

the target vehicle is "not present" in the target set and is given by Equation 7.4. 

(7.4) 

where Z is the variable representing the number of positive responses from the N = n + 1 

total number of possible outcomes, and P(SlIVp) could be either P(SAlIVp) or P(SBdVp) 

depending on the sensor under investigation. The binomial mass function of getting Z positive 

identifications when it "is present" is given by Equation 7.5. 

B(Vp)(Z) = P(SI IVp)B(Vp) (Z -1, N -1, P(SlIVp)) + P(S2 I Vp)B(Vp)(Z, N -1, P(SdVp)) 

(7.5) 

This equation takes into consideration that in the Vp scenario where one positive identification 

must exists within the n independent tests. An example of two distributions for one sensor 

and n = 10 is given by Figure 7.3. 
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Figure 7.3: Binomial Distribution of Equation 7.4and 7.5 for n = 10; (a) P(SlIVp) = 0.01; 
(b) P(SllVp) = 0.1; (c) P(SlIVp) = 0.3 

As the error increases, the difference between the distribution becomes very smalL As 

illustrated in the case of Z = 2 as the error rate is 30%, the probability for the two outcomes 

is almost equal ( 50%) 

Figure 7.3 illustrates the changes in the discrete distribution with changes in the error rate 
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of the sensor. In this simulation, it is the difference between two discrete distributions that 

provides the information required for the Bayesian Network calculations. The Bayes equations 

are represented by Equation 7.6 and 7.7. 

Z _ P(Vp)P(ZIVp) 
P(VpI ) - P(Vp)P(ZlVp) +P(Vp))P(ZlVp) (7.6) 

P (- Z ) _ P(Vp))P(ZIVp) 
Vpl ) - P(Vp)P(ZlVp) + P(Vp))P(ZlVp) 

(7.7) 

where Z represents the discrete probability of getting Z a positive indication from the sensor. 

7.2.3.2 Uncertainty Reduction - Experiment 

To simulate a real-life scenario, the discrete distribution for the sensors will concentrate on 

the application of target set of 300, n = 300. A portion of the distribution is illustrated in 

Figure 7.4. 

To measure the amount of information uncertainty, Shannon Entropy (Shannon and Weaver, 

1949) is employed. Based on Shannon's equation, the prior entropy is calculated by Equation 

7.8: 

m 

Hpriar = - LPi loglO(Pi) = -P(Vp) lOglO(P(Vp)) - P(Vp) log(P(Vp)) (7.8) 
i 

where Pi is the probability of the hypothesis i, and m is the total number of possible hypothe­

ses in this case of m = 2. Based on the information provided in Table 7.1 and Equation 7.8, 

the prior uncertainty in the network is 0.148. 

To evaluate the reduction in the entropy, the amount of Shannon information obtained with 

the evidence will be determined by Equation 7.9. 

n 

Hposteriar = - L P (VpIP(Z)) loglO (P (VpI(Z))) + P (VpIP(Z)) loglO (p (VpIP(Z))) 
z=o 

(7.9) 

Based on the information provided in Section 7.2.3.1 and the Entropy calculation above, the 
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Figure 7.4: Binomial Distribution ofn = 300 where (a) P(SliVp) = 0.01; (b) 
P(SliVp) = 0.1. In the n = 300 even at 10% error rate, the difference between two 

outcomes is very small, and larger values of Z would be required before the difference 
becomes useful. 

effect of varying the prior probability listed in Table 7.1 and the sensor information listed in 

Table 7.2 and 7.3 are illustrated in the figures below. The figures demonstrated the variation in 

uncertainty by plotting the variation of Shannon entropy through the use of the line graph. The 

graphs also shows percentage reduction in the amount of uncertainty with varying numbers of 

sensor information, as the prior information changes through the use of the bar chart. 

Figure 7.5 illustrates the effect of varying the prior probability, as listed in Table 7.1. It demon­

strated that when additional information is provided, the amount of uncertainty (entropy) is 

reduced. The amount of uncertainty reduction of two sensors is considerably more than that 

of one single sensor. 
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Figure 7.5: Variation of Entropy with Changes of the Prior Probability - The largest reduction 
of Shannon entropy between three scenarios can be observed when the Prior probability is at 

Maximum Entropy 

When the Prior probability of the vehicle "was present" is low (0.1) but the sensor has the 

opposite belief, the amount of reduction is lower than one, when the sensor and prior have the 

same belief. As the prior probability moves toward the same belief as the sensors, the amount 

of entropy also reduces at a faster rate. The steeper decrease in the uncertainty is more visible 

when the two sensors are applied. 

When the Prior probability is at maximum entropy, the effect of varying the sensor's error in 

the CPM Tables 7.2 and 7.3 is demonstrated in Figure 7.6. 
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Figure 7.6: Variation of Entropy with Change of the Sensor's Accuracy - Even the sensor 
with accuracy of 90%, the amount of reduced entropy is still less than 1 % 
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Figure 7.6 shows that when P(SI"V;) is 50%, no information is provided. When the accuracy 

of the sensors improve, some uncertainty will be reduced. However the amount of reduced 

uncertainty is minimal, less than 1 %, even when sensors have an accuracy of 90%. The 

amount of uncertainty will be reduced more significantly as accuracy of the sensors improves 

to 99.99% as shown in Figure 7.7. 
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Figure 7.7: Variation of Entropy with Higher Accuracy Rates - The system can remove 
almost 100% of the uncertainty, only when two sensors with error rates are close to 0.01 %. 

In this scenario, there is an increased difficulty when inferencing compound events. Because 

the individual sensor errors accumulate as the number of positive identifications increase, the 

study aims to distinguish the very small differences between the probability distributions of 

the different outcomes. Therefore, the sensors in this scenario require a very small error rate 

as stated in Figure 7.7. 

7.2.3.3 Adopting Actual Sensors 

The previous section shows the variation of uncertainty with changes in the prior probability 

and the benefits of multiple sources. This experiment aims to demonstrate the improvement 

in accuracy, by combining sensors, which is widely employed for identifying a vehicle, when 

tackliug the problem of vehicle re-identification, as outlined in Section 5.3. 

All of the features outlined in Section 5.3 can be extracted from the vehicles within our test 

bed. Therefore, within a practical application, the input to the fusion framework outlined in 
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this section would be the output from each of the feature sensors, similar to those demonstrated 

in Chapter 6. 

Within this theoretical investigation, the design of Bayesian Network for the problem of 

vehicle re-identification, could be conceptualised by Figure 7.8. 

Figure 7.8: Simple Bayesian Network for the integration of MuItiple Visual Surveillance 
Cues using different feature sensors as those outlined in Section 5.3. 

For a given "probe" and "target", each sensor can give out the following information: 

• License Plate - The number of character differences between the ANPR output of the 

probe against the target's NP string. 

• Colour - Could be the RGB difference between the two vehicles measured by a distance 

metric, such as Euclidean. 

• Logo Manufacturer Class - As addressed in Chapter 6, the output of the classifier for a 

probe image could be a confidence measure for each of the manufacturer. By knowing 

the target's logo class, the corresponding confidence measure of the target's class can 

be used as a metric. 

• Vehicle Shape - Similar to the Logo manufacturer Class, the metric can be the corre-

sponding confidence measure of the target vehicle shape class. 

• Gate - Will output a binary argument to show if the target and probes are both used at 

the same gate or not. 
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According to Section 7.2.2.2, each child node will require a conditional probability matrix 

(CPM), which is used in the calculation of posterior probability. An example of a conditional 

probability matrix for each child node is given in the Tables below. 

License Plate P(LIv;.) P(LIv;.) 

o Mistakes (Ll) 0.6 0.0 

1 Mistakes (~) 0.2 0.2 

2 Mistakes (L3) 0.1 0.3 

> 2 Mistakes (L4) 0.1 0.5 

Table 7.4: License Plate's Conditional 
Probability Matrix 

Vehicle Logo P(BIv;.) P(BIv;.) 

>90%(B l) 0.4 0.1 

>75% (B2) 0.2 0.4 

>50%(B3) 0.3 0.4 

<50% (B4) 0.1 0.1 

Table 7.6: Vehicle Manufacture 
Logo's Conditional Probability 

Matrix 

Gate 

Same (Gl) 

Different (G2) 

Colour (Dist) P(CIv;.) P(CIv;.) 

< 10 (Cl) 0.4 0.1 

< 20 (C2) 0.3 0.2 

< 30 (C3) 0.2 0.3 

> 30 (C3) 0.1 0.4 

Table 7.5: Colour Difference's 
Conditional Probability Matrix 

Body Shape P(SIv;.) P(SIv;.) 

>90% (Sl) 0.3 0.2 

>75% (S2) 0.3 0.3 

>50% (S3) 0.2 0.3 

<50% (S4) 0.2 0.2 

Table 7.7: Car Body Shape's Conditional 
Probability Matrix 

P(GIv;.) P(GIv;.) 

0.78 0.5 

0.22 0.5 

Table 7.8: Gate's Conditional Probability Matrix 

Experiments can be performed if the following results were acquired from each of the sensors: 

1. Prior Probability: P(v;.) = 0.5 and P(v;.) 

2. There is 1 mistake (~) 

3. The colour difference is < 10 (Cl) 
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4. Probabilities of same logo is > 75% Other (B2) 

5. Probability ofthe same vehicle body shape> 90% (Sl); 

6. The target vehicle uses different gates (G2); 

Based on the information above, the manual calculation is conducted in Appendix A, the 

probabilities distribution tables for each sensor, the posterior probability of same vehicle, 

P(VIL2' G1 , B2, 8 1 , G2) = 0.823 and for 'not same vehicle' P(VIL2' G1, B2, 8I, G2) = 

0.176. 

Even though the probability of the two vehicles being the same have improved when compared 

to the prior. There is a relatively small decrease in the entropy from 0.301 before fusion 

to 0.202 after fusion. This reveals that although entropy is a great measure of uncertainty, 

in some circumstances, the measure of performance should be further assessed by other 

appropriate strategy, such as when comparing fusion methods with non-fusion methods. 

7.2.3.4 Expanding Inference Model 

Figure 7.9 is developed with the base of the network depicted in Figure 7.8 to infer extra 

query of "Is the car park is full?". 

Figure 7.9: Simple Bayesian Network for integration of Multiple Visual Surveillance Cues. 

This investigation assumes that visibility of the whole parking spaces is not available. The 

simplest measure for this inference is to count the number of cars in and out of the car 
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park during a period, guided by a maximum number of possible spaces with the following 

conditions: 

1. All spaces are available 

2. No overnight stays - Therefore, at the start of counting there is zero usage 

3. Assuming all vehicles entering the car park are with the sole purpose of parking 

In this project the entrance and exit are also used by delivery vehicles, and the number of 

possible parking places may be reduced without prior notice. In these situations, the fusing of 

information such as the time of observation and vehicle shape can help to infer this objective. 

Because: 

1. An indicator of "the car park is full" might be if the vehicle only spends a short time 

(ts) in the car park before exiting. 

2. An indicator of a vehicle for delivery might be based on the vehicle shape and the time 

(td) spent in the car park, where the td time will be longer than ts but smaller than 

average length of parking time. 

7.2.4 Discussion 

The framework is devised, jointly using Bayes and the extension to the Bayesian Network, 

by the introduction of graph theory. In order to adapt the Bayesian network for this test, a 

theoretical evaluation of Bayesian Network for reducing uncertainty was conducted. 

The results of the experiment show that the model is capable of reducing uncertainty and 

the increase in the number of sensors would enhance the capability of reducing uncertainty. 

It also reveals that the prior probability plays major role in the effectiveness of the system 

at reducing uncertainty because the choice of the prior probability is important. The prior 

probability also relies on the accuracy of the sensors for reducing the system uncertainty. 

The experimental process also shows how the network can improve the accuracy, as applied 

to the re-identification problem, by different vehicle sensors. The re-identification network 
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is further expanded to deduce other queries, thus demonstrating that the BN framework is 

very adaptable and is a suitable model for inferring a range of queries, meeting the aims as 

outlined in Section 7.1. 

7.3 Statistic Parametric Fusion Methods: Dempster Shafer 

7.3.1 Introduction 

The discussion in Section 7.2.4 reveals the importance of both the prior probability and the 

sensor's conditional probabilities in the Bayesian model. An alternative model that eliminates 

the need for both of the probabilities in BN, but maintains the use of the subjective probability, 

is proposed below based on the Dempster Shafer Theory (DST). 

7.3.2 Dempster-Shafer Theory 

The Dempster-Shafer (OS) theory was introduced by Dempster (Dempster, 1967) and further 

developed by Shafer (Shafer, 1976). In the DS Theory, let e = (h, .. , On be a collection of 

mutually exclusive and exhaustive set of hypotheses to a given query, containing n elementary 

hypothesis, known as the frame of discernment. This is the same as the set of the hypothesis 

as outlined in Section 7.2.1. 

There is also a set of general propositions developed with Boolean combinations, as the 

number of general propositions equates to (2n - 1). All possible states of the propositions are 

represented by Power Set (2$), which contains all subsets ofthe elementary hypothesis and 

the empty set. An example is given by the Equation 7.10. 

e = {01,02,03} 
(7.10) 

2$ = {0, 01, O2, 03, {01, 02}, {01, 03}, {02, 03}, {01, O2, 03}} 

A Basic Belief Assignment (bba) is a function of e that assigns a mass of belief to each 

subset A of the power set 2 $, satisfying Equation 7.11. 

109 



CHAPTER 7. FUSION MODELS AND EVALUATION FRAMEWORK 

a ::; m(A) ::; 1 

m(0) = a (7.11) 

The basic belief mass m( A) represents a measure of the belief that is assigned to the subset 

A ~ e, given the available evidence, and that cannot be committed to any strict subset of A. 

All of the assigned probabilities sum to unity, and there is no belief in the empty set (0). An 

illustration of the power set and the power set mass are given by Figure 7.10. 

(a) (b) 

Figure 7.10: Illustration of Power Set of Equation 7.10. (a) Power Set Representation, (b) 
Power Set Mass representation, showing all combinations of the Boolean combination in a 3 

hypothesis scenario 

To combine the different sources of information, a combination rule (the most widely used) 

is proposed by Dempster. The successful application of the Dempster's combination rule 

assumes that the different bba are independent pieces of evidence, and uses the orthogonal 

sum to combine the mUltiple belief structures. For two bba ml and m2, the combination rule 

is as follows: 
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E ml(Ai)m2(Bj) 

[ml EfJ m2] (0) = AinBj=1J l-K 

(7.12) 

Dempster's rule of combination is both commutative and associative (Yager et aI., 2008): 

these two properties mean that evidence could be combined (EfJ) iteratively by the Equation 

7.12 and in any order of pair-wise methods, as depicted by Equation 7.13. 

(7.13) 

Bayesian theory operates on the frame of discernment and offers a probability estimate of 

the hypothesis, the D-S approach operates on the power set and computes for each A with 

an evidential interval as described in Figure 7.11. The evidential interval is created by the 

probability mass functions and guided by two values of an uncertainty measure; firstly, the 

lower bound Belief measure, Bel(A) = L m{B) represents the exact support for A, 
A~B~0 

and secondly, the higher bound Plausibility measure Pl(A) = L m(B) represents the 
AnB~0 

possible support for A. 

I o 

EVIDENTiAl 
INTERVAl 

r-------~------~, 

BellA) PIIA) 

~ 
BASED ON 

SUPPORTING 

" EVIDENCE 

-v----~ 
PAlUSIBlE • EITHER SUPPORTED 

BY EVIDENCE OR UNKNOWN 

BASED ON 
REFUTING 
EVIDENCE 

Figure 7.11: Evidential Interval and Uncertainty, showing the evidence interval which is 
bound by the lower bound Belief and the upper bound Support 
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For each hypothesis () E e, there are two measures of probability, rather than the single mea­

sure, provided by Bayesian analysis. The reduction is the evidential interval after combining 

sensors are used as a measure of uncertainty reduction in the DST model, when compared to 

the original sensor's evidential intervals. 

7.3.3 Dempster-Shafer Surveillance Experiment 

For the Surveillance scenario under investigation, this project adapts the Dempster-Shafer 

theory outlined in the previous section. The first DST model shows the design of the DST to 

reduce uncertainty under a case with two sensors. This is similar to the Bayesian experiment 

in Section 7.2.3.1. The second DST model illustrates an alternative design of the DS model 

with actual sensors, similar to the Bayesian design in Section 7.2.3.3. 

7.3.3.1 Dempster-Shafer Modell 

The first formulation of DS model is illustrated by Figure 7.12. Unlike Section 7.2.3.1, in 

this case there is no prior probability. This is only true with the combination of the sensor 

information is used to calculate the probability of the hypothesis. 

Figure 7.12: DS Inference: Has the Vehicle Been Present Before. 

In this case, there are two possible hypotheses in their frames of discernment, and along with 

their corresponding power sets, they are illustrated in Equation 7.14. 
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(7.14) 

Ie Sensors' Agreement 

In this case, given a probe vehicle and a target set, the sensors would output a probability that 

the probe vehicle exists in the target set. Therefore, the probability of the hypothesis Oy, will 

be assigned to the m( Oy). Since the sum of the power set mass is 1, the remaining mass is 

assigned to m( {Oy, On}) rather than m(On). An example is illustrated in Equation 7.15. 

(7.15) 

With the combination Equation 7.12, the mass after fusion and the corresponding belief and 

plausibility functions for each hypothesis are shown in Equation 7.19. 

0.98 1 
(7.16) 

o 0.02 

0.02 1 

The results demonstrate that there is near total belief in proposition Oy being 'true' and near 

total belief proposition On being 'false'. In both cases, the evidential interval is minimal, 

compared with one before fusion. Therefore, after gaining information from the two sensors, 

the uncertainty in the hypothesis has been decreased. 

Assuming the cases are independent, the reduction of uncertainty is also significant when the 

two sensors are unable to determine the results before fusion, as depicted in Equation 7.17. 
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Bel (Oi) Pl(Oi) 
(7.17) 

m12(2 8 ) = [0.75,0,0.25] and 
0.75 1 

0 0.25 

0.25 1 

II. Sensors' Disagreement 

In this case, given a probe vehicle and a target set, each sensor still outputs a probability that 

the probe vehicle exists in the target set. The sensors will, however, output two different 

results, as displayed in Equation 7.18. 

(7.18) 

With the Dempster combination rule, the results are reflected in Equation 

0.82 1 
(7.19) 

o 0.18 

0.18 1 

When two sensors disagree, although the uncertainty reduction is small, the benefits of sensor 

fusion still exists, due to the small additional information provided in the hypothesis {Oy, On}. 

7.3.3.2 Dempster-Shafer Model 2 

The model in Section 7.3.3.1 can be extended to identify the corresponding probe vehicle in a 

target set with the classification results output from the sensor illustrated in Figure 7.13. 

Given a vehicle target set, where the relevant features have been identified, as illustrated in 
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Figure 7.13: DS Inference: Identifying the Same Vehicle using the feature sensors, as 
outlined in Section 5.3 

Table 7.9, for a given probe vehicle, each of the sensors could supply a probability for each of 

the possible categories of the feature. This is illustrated in sensor state tables below. 

Vehicle ID Colour Badge Shape 

Xl Blue BMW Car 

X2 Red Audi Van 

X3 Red VW Car 

Table 7.9: Target Vehicle Knowledge Base 

Colour Categories 

Red Blue Green 

60% 80% 30% 

Table 7.10: Colour Category Probability 
Table. 

Logo Categories 

Audi BWM VW 

40% 60% 70% 

Table 7.11: Vehicle Logo Category 
Probability Table 

Shape Categories 

Van Car Bus 

67% 40% 8% 

Table 7.12: Vehicle Shape Category Probability Table 

With the information provided by the sensors, the probability of the probe vehicle (xp) 

being the same for each member in the target set can be calculated. For example, the mass 

assignment of the sensors for the vehicle Xl is: 
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• Colour Sensor - Given the XI'S colour with the 'red' and the probably of xp with 'red', 

the mass assignment for the sensor is mc = {0.8, 0, 0.2} 

• Vehicle Logo Sensor - Given the XI'S logo with 'BMW' and the probably of xp with 

'BMW', the mass assignment for the sensor is mB = {0.6, 0, 0.4} 

• Vehicle Shape Sensor - Given the XI'S shape with 'Car' and the probably of xp with 

'BMW', the mass assignment for the sensor is ms = {0.4, 0, 0.6} 

With the information provided in the above list, the result of mc EEl mB EEl ms is given in 

Equation 7.20. 

0.952 1 
(7.20) 

o 0.048 

0.048 1 

The above process is repeated for every member in the target set. In order to make a decision 

for the member with the closest similarity of the probe, only the the masses of 0Y' its corre­

sponding Bel(Oy) and Pl(Oy) are taken for comparison. The results for every member in the 

target set are illustrated in Table 7.13. 

Vehicle ID mCtDBtDS(Oy) Bel(Oy) Pl(Oy) Evidential Interval 

Xl 0.952 0.952 1 0.048 

X2 0.9215 0.9215 1 0.0785 

X3 0.9280 0.9280 1 0.0720 

Table 7.13: Target Vehicle Knowledge Base 

Based on the results in Table 7.13, the decision of the most likely member of the target set 

would be determined by one of the following rules: 

1. max(Beli(Oy)) - The outcome with the maximum belief function is chosen. 
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2. max ( Pli (By)) - The outcome with the maximum plausibility function is chosen. 

3. Rational Rule - The outcome with the max(Beli(By)) function and lowest evidential 

interval. As the evidence interval reflects the degree of uncertainty of the hypothesis, 

the shorter the length of the interval, the more certain the hypothesis is. 

In this case, all hypotheses have the same plausibility, so the most suitable rules selected 

would involve belief function. The most likely hypothesis would be the vehicle with ID Xl. 

7.3.4 Discussion 

As mentioned above, the techniques of the Dempster Shafer Theory for uncertainty reduction 

do not need any prior probability. The DST method is selected for a case, able to fuse sensor 

outputs from the video surveillance scenario under investigation. 

The theoretical deduction shows that uncertainty reduction can be achieved with information 

from multiple sources, even in situations when sensor results contradict. The measurement of 

uncertainty reduction in the DST model is conducted by measuring the Evidential Interval 

of the hypothesis. In addition, when DST is applied for a 'goal-oriented' environment, the 

'true' hypothesis is chosen, based on its corresponding belief and plausibility, as expressed in 

Section 7.3.3.2. 

In some situations, the model illustrated in Section 7.3.3.2 may be unable to find an out­

right winner because the evidential intervals could be very similar, such as the difference 

IX2 - x31 = 0.0065 in Table 7.13. Therefore, the robustness of the sensor's output could dra­

matically reduce the effectiveness of the DST fusion model, similar to the effect of Conditional 

Probability Matrix in the Bayesian model. 

7.4 A Generalised Evaluation Approach 

7.4.1 Introduction 

Although the two decision models in Section 7.2 and 7.3 are all based on the subjective 

probability and appear to be different, DST is sometimes considered as a generalisation of the 

Bayesian inference, as outlined in previous section. 
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To state the generalisation, a modification to the cases in Section 7.3.3 is made. Instead 

of assigning the remaining sensor mass (1 - m(Oy)) to the hypothesis ml({Oy, On}), the 

hypothesis On is assigned. When the two sensors are combined, as shown in Equation 7.21, 

they would have a total disbelief in the hypothesis {Oy, On}. 

Bel(Oi) Pl(Oi) 
(7.21) 

m12(2 8 ) = [0.97,0.03,0] and 
0.97 0.97 

0.03 0.03 

0 1 

In the case illustrated by Equation 7.21, all masses have been assigned to hypothesis in the 

frame of discernment (8). The DST model has been generalised into a special case of the 

Bayesian model. 

Although the two models have a very close link, the DST model would still offer two additional 

uncertainty measures compared a single one in the Bayesian model. This restricts the effective 

evaluation of the uncertainty reduction capabilities of the two models. Due to this restriction, 

a generalised evaluation framework to accommodate the extra information offered by the DST 

is developed. 

7.4.2 Kelly Betting Strategy 

For a discrete set of outputs, Bayesian models can be evaluated by a Kelly Betting Criterion 

(Kelly, 1956). T~s consists of placing a nominal "stake" on each possible output in proportion 

of the odds estimated by the available observations. The pay-off can be defined by the prior 

(fair) odds. The doubling rate is proportional to mean information gain; the average amount 

of information provided by the observations can be inferred from the outcome of the betting 

strategy. 
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In section 7.2.3.1, it was discussed how the information provided by the posterior estimates 

are used to reduce the overall uncertainty for the state. The effectiveness (or accuracy) of any 

given Bayesian model can be evaluated by measuring the reduction of uncertainty relative to 

a prior model. This is equivalent to measuring the side information that the measurements 

provide for the system. These probabilistic measurements can be combined in many different 

ways, assuming independence or some model of co-dependency, for example, of parametric or 

explicit models. In all cases, however, the Bayesian model outputs an overall probability, per 

hypothesis, and the accuracy of any given model can be evaluated by measuring the expected 

log probability or entropy of the correct hypothesis. 

H(X) - (-logp(x)) 

-1 n 
~ - L: logp(xi) 

n i=l 

(7.22) 

The information gain is proportional to the mean doubling rate W: 

W - log (p(~)) 
- ( -logp(x)) (7.23) 

-1 n 
~ -L:logp(xi) 

n i=l 

It is not straightforward to apply this Bayesian information-theoretic evaluation method to 

a DS model. That type of model contains two scalar quantities for each hypothesis; the 

belief and the plausibility contribute the reduction in uncertainty. Neither of these quantities 

directly relate to a Bayesian probability, so it is not clear how to apply the various information­

theoretic results noted above. Nevertheless, the below describes a context where the log 

optimal doubling rate can be used to evaluate additional meaning expressed by the belief and 

plausibility provided by the DS model. 

The important characteristic distinguishing the {belief, plausibility} pair from the {proba­

bility} singleton is that the former pair can be encoded by their difference, as an expression 

about the uncertainty of the estimate. If in a certain case the DS model provides a pair {0.05, 
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0.95}, it will be questioned how this can be distinguished from the pair {0.45, 0.55}, and can 

be evaluated against a Bayesian predicated estimate of 0.5. 

It is proposed that the contribution of these extra indications provided by DS can be quantified 

by an appropriate generalization of Equation. 7.23. This represents the standard Bayesian 

evaluation with the expectation of the log posterior over a sample set, when the contribution 

of each element in the sample set is implicitly scaled to one. 

The proposed generalization to accommodate the extra indication output of DS is to assign a 

weight Ui to each sample, subject to the constraint that (Ui) = 1. Thus, the evaluation metric 

is written as: 

_ -1 n 

W = - 2: Uilogp(xi) 
n i=l 

(7.24) 

If these weights are given random values, e.g. uniformly in the interval between 0 and 2, it 

can be shown that the measurements obtained from Equation. 7.24 are unchanged from those 

obtained from Equation. 7.23. However, doing so will set these weights up to be interpreted as 

a 'degree of confidence in the estimate'. For those samples considered as the model estimated 

as 'more accurate', the intention is to assign a larger scaling weight for those estimates with a 

greater degree of uncertainty.The intention is also to assign a smaller weight, thus fulfilling 

the overall constraint on the weights that their expectation is unity. This creates an opportunity 

to define an evaluation protocol used for both Bayesian and DS. 

7.5 Experiments 

7.5.1 Toy Example 

The proposed evaluation procedure is applied to a toy example for an estimated model of 

a two-horse race with information provided by two sources including measurement of the 

Horses' attributes and measurement of the Jockeys' attributes. The evaluation metric is the 
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mean percentage winnings (or losses) per race, following a Kelly Betting strategy using 

the estimated model. This has a direct relation with the informative capacity of the model. 

Fundamentally, this percentage will depend on the relationship between three probabilistic 

models. The first model is the real (actual) probabilities that determine the outcome ofthe race. 

The second determines the bookmakers' odds, which will be used to calculate the pay-off 

after the outcome of each race. The third is the estimating model representing a subjective 

understanding of the likely outcome of each race with the two sources. 

7.5.2 Kelly Betting with DS-Dependent Stake 

The capability of the estimated model can be measured by treating it with a Kelly betting 

strategy, named as the log optimal strategy. The stake for each outcome is placed in proportion 

to the model prediction (estimated probability). Conventionally, the sum of these bets (Le. the 

total stake) for each race can be fixed at an arbitrary quantity; the total stake for each race can 

be fixed at an arbitrary value, e.g. 1, and the accumulated winnings are logged. However, to 

accommodate the extra information provided by DS, this total stake is varied depending on 

the interval between the plausibility and support. Over the evaluation sample, the expected 

(mean) stake is constrained to be equal to the stake for the simple evaluation. 

As a starting point, let all three models be identical. The expected outcome of both the 

fixed-stake and DS-dependent strategies is to "break-even", both with standard Kelly betting 

(fixed stake size) and the generalised Kelly strategy, where the total stake of each race is 

allowed to vary. 

The above outcome is observed for any joint distribution between sources, i.e. for both 

correlated and anti-correlated distributions of Horse and Jockey measurements. However, 

the DS analysis does treat these two cases differently; divergent estimates between the two 

sources will result in a larger "unknown state", this states equates to the {ey , en} in Equation 

7.14, rather than the case that they are in agreement. 
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7.5.3 Perturbation of the Prior Estimate 

In the perturbation of the prior estimate, the prior information provided to the real model and 

bookmakers' model is the same, but the prior information from the sensors to the estimated 

model is perturbed from the real model, in order to simulate some imperfection in the avail­

able information. The perturbation takes the form of a percentage change to the estimated 

'difference between means' that forms the model for generating each sensor measurement. 

The sign of the change is also generated randomly with equal probability. 

Since the real odds and the bookmakers' odds are still identical, Kelly betting, using the 

estimated model, will always result in losses. However, more successful fusion strategies will 

reduce these losses, and the extent of the reduction can be used to evaluate the efficiency of 

the fusion strategy by using this generalised Kelly betting process, in which, a variable total 

stake is allowed for each case. 

The DS fusion strategy provides a rationale for varying the total stake: when there is a 

large "unknown state", the total stake can be reduced; and conversely when there is a small 

"unknown state", a comparatively large total stake can be used. This strategy is repeated 

over 15,000 samples, at each level of estimated model perturbation, to compare the mean 

percentage loss from the DS strategy against the default (fixed total stake) alternative. 
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Figure 7.14: Effect on Variation of the Amount of Perturbation, which shows 33% reductions 
in the amount of loss when a variable stake strategy is employed. 

The results of this simulation are plotted in Figure 7.14. It shows a clear advantage from the 

use of the DS fusion strategy. It is clear that approximately one-third of the adverse effects 

of the model perturbation are removed as a consequence of using DS outputs to determine 

the stake size. One explanation for this effect is that cases which source estimates from 

disagreement are more likely to have been significantly affected by the perturbation, so the 

consequential reduction in the total stake reduces the effect of more substantial inaccuracy in 

probability. 

7.5.4 Application to Surveillance Fusion 

The above methods can be adapted to simulate the information fusion process demanded for 

visual surveillance scenarios. One of the key capabilities is the re-identification of vehicles 

from a pair of vehicle observations, as outlined in Section 7.3.3.2 and 7.2.3.3. The above 

methodology can be used to evaluate the benefit of the fusion method that exploits the OS 

outputs, using probabilistic sensor measurements of a vehicle's type, make, colour and number 
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plate. In this scenario it would be expected to maximize winnings, rather than minimize losses. 

In other words, the bookies' odds would be the prior probability of correctly re-identifying 

the vehicles (without any sensor measurements) and the estimate would be expected to be 

significantly more certain. 

It is worth emphasising that the utility of the proposed evaluation methodology is that it 

allows fusion methods to output a measure of the confidence in a particular estimate. Then, 

the confidence is used to weight the importance of this estimate in the overall evaluation 

of the method accuracy. An overall constraint on the mean weight is imposed to enforce 

'like-with-like' comparisons, and prevent acceptance from the trivial zero-weight solution. 

The DS approach does provide a measure of confidence via the support and plausibility so 

that it can be used to generate a weighting. 

It is important to examine the significance and utility of the proposal in context of the evalua­

tion in automated video analytic systems. A frequent criticism of these systems is whether 

they are unable to indicate the point that they are 'not sure'. Hence, this proposal fits well 

into that context. By requiring that a system also outputs a weight to calculate the evaluation, 

the indication of certainty is incorporated and, in a straightforward manner, consistent with 

standard information-theoretic evaluation of 'side-information'. Furthermore, the proposed 

strategy is identical to the standard information-theoretic evaluation, in the limiting cases, in 

that, each weight is constant and equal. 

Nevertheless, there are still several tasks outstanding. Since there are various ways that the 

DS output could be transformed into a single weight, it is not yet clear which of these would 

be the most appropriate. One specific aspect is the mechanism to enforce a fixed mean weight 

over the test set ensemble. Another task is a more comprehensive evaluation over the range of 

possible perturbations to verify whether the proposed approach works in this range. It may be 

possible to obtain some theoretical results for this general case as well. 
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7.6 Summary 

Under this investigation, two statistical parametric fusion models using mUltiple vehicle 

features, are used to improve estimate precision in achieving visual surveillance objectives. 

The models have shown extendibility to infer a range of queries by fusing a range of incom­

mensurate visual features of the vehicle rather than a singular one, which is restrictive and 

suboptimal in the final result. 

An evaluation metric, based on the Kelly betting strategy for the direct comparison of Bayesian 

and Dempster Shafer models, is produced. This metric accommodates the extra information 

provided by the DS model.It was shown that by using a simple example of 3 broad conditions, 

the DS model provides an improvement in the mean log winnings. This is a fundamental infor­

mation metric of the standard Bayesian evaluation and is proportional to the side-information 

provided by the observation. It also described how this simple example can be adapted for the 

surveillance scenario. Furthermore, it is also able to be applied for the general case of fusion 

problems under investigation. 
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Chapter 8 

Conclusions 

8.1 Introduction 

With the principle aim of demising a feasible framework that could reduce the uncertainty 

within a video analytic system in mind, this thesis has made the following knowledge contri­

butions: 

• Demonstrated the benefits of using new higher resolution datasets for the problem of 

pedestrian re-identification under various scenarios including occlusion. 

• Devised an approach, using the Fisher Discriminative classifier and decision fusion 

techniques, to identify and classify logos. The approach relieves the reliance of needing 

to locate dominant features, thus allowing it to classify vehicle logos on both the front 

and rear of a vehicle. 

• Theoretically investigated the feasibility of two fusion frameworks, based on the proba­

bilistic Bayesian and Evidential Dempster-Shafer techniques, to get the inference of 

multiple objectives and to reduce uncertainty by combining multiple techniques. 

• Theoretically evaluated the developed evaluation framework based on the Kelly Betting 

. Strategy to effectively accommodate the additional information offered by the Dempster­

Shafer ,allowing it to be compared with the single probabilistic output from a Bayesian 

framework. 
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To support the above contribution, an in-depth analysis of the aims of video analytic systems 

was conducted which enabled the creation of the experimental test bed. The data and support­

ing redundancy reduction systems were used to create two videos used during international 

TV programmes. An understanding of the types of uncertainty and where it might reside 

within our experimental test-bed was also investigated. These findings help the creation of the 

fusion frameworks. 

The following section will summarise the findings within each chapter of this thesis, where an 

appropriate comparison to literature is given, along with a future direction of research follow­

ing the discoveries. As surveillance video contains personal data, some ethical considerations 

should follow. The chapter concludes by analysing the limitations in the proposed methods, 

with details of future work that should be carried out. 

8.2 Summary 

As mentioned above, the main aim of this thesis is to investigate the feasibility of devising a 

framework that could reduce the uncertainty of a video analytic system, so as to improve the 

accuracy of the outcome of video surveillance challenges, aided by various video analytic 

approaches. A suitable candidate to locate the target is the Information Fusion technique. 

The literature review conducted in Chapter 2 demonstrated that, though they are limited 

compared to other research fields, fusion techniques have been adopted in various video and 

image analytics. Reviews of the Information Fusion models allowed the categorisation of the 

techniques into two main sections: 

1. Low Level - In video analytics, the inputs are the descriptions of the object. The 

descriptor can be thought of as a sensor that outputs an object's feature. Therefore, in 

low level fusion, a number of an object's features are combined into a single feature 

that is used as the input to the system. 

2. High Level - Combined decisions become the outputs from a video analytic system to 

achieve a more accurate result. There are a range of techniques available: 

(a) Reasoning - Exemplified by a range of voting techniques. Generally, those 
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techniques require the output to be of the same format, in order to conduct the 

decision making process. e.g. A decision whether the hypothesis is true or not, 

and whether the hypothesis with the most votes is the winner or not. 

(b) Evidence - These techniques work with the subjective probability of the outcome 

to reduce the uncertainty of the outcome. Unlike reasoning techniques, the 

outcome is not necessarily in the same format, but the output must be with a 

format that can be interpreted by the fusion model. 

Compared to some of the Information Fusion review papers, the techniques reviewed in 

Chapter 2 are only a snippet of what it is widely available. This is because the use of infor­

mation fusion techniques have mainly concentrated on physical sensors, rather the different 

information that can be extracted from a single physical sensor. Therefore, the research 

conducted in this thesis would be a useful illustration of the links between information fusion 

techniques and traditional video surveillance techniques. This link is intended to allow a 

number of researchers to adopt these techniques in the future to increase its popularity within 

the video analytics field. 

In Chapter 3 an investigation was conducted on the advantageous use of high resolution 

images, to improve accuracy in pedestrian re-identification challenges. As the literature on 

the use of higher resolution data to tackle video surveillance challenges was very limited, 

their direct benefits were never explored. By combining the current state-of-the-art techniques 

for varying resolutions of the input data in Chapter 3, a direct comparison of the benefits were 

explored. The results illustrated that using higher resolution images and smaller overlapping 

patches enables the capturing of finer details of images and is beneficial to improving accuracy. 

In addition, the accuracy can also be improved, depending on the viewpoints and whether a 

fused feature vector is involved. 

As occlusion is also a common factor in many pedestrian re-identification datasets. Chapter 3 

also explored the challenges surrounding the treatment of occlusions. In a lot of literature, the 

occlusions are treated as a source of uncertainty which contribute to the effectiveness of their 

proposed systems and the best treatment for occlusion data is not explicitly explored. Through 
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the simulation of various scenarios in Chapter 3, it was concluded that the best treatment for 

occlusion was to deploy a system which can detect its existence within the dataset before 

deploying the most appropriate classifier. 

To support the aim of developing an extendible model that allows inferences of a range of 

surveillance objectives, a suitable dataset needs to be selected. In Chapter 4 a discussion on 

the different video surveillance objectives and an examination of publicly available video 

surveillance datasets were conducted. The discussion concludes that the video surveillance 

challenges mainly concentrate on two different objects of interest: People and Vehicles. The 

currently available datasets are mainly used to solve particular surveillance challenges, as they 

only capture snippets of the monitored environments. Based on the discussions, the proposed 

dataset is designed for the use of high definition cameras, which has increased in popularity 

for newer CCTV networks. 

To extract key information within the captured data and to reduce the redundant data, a simple 

background subtraction technique was used in Chapter 4. The implemented techniques were 

successful during offline processing, as false-positives can be removed manually. If the same 

techniques were applied to online processing, however, this may cause issues. The volume 

of these false-positive rates also increases when the lighting intensity decreases. The con­

ducted experiments have re-confirmed the issues related to implemented techniques, as those 

demonstrated in the literature. For the purpose of this thesis, the technique was combined 

with simple tracking algorithms to create some demonstration videos, which were used in two 

international video programs to demonstrates how pedestrian tracking can be performed. 

As the main aim is to reduce the uncertainty within the video surveillance systems, an analysis 

of the factors that contribute to the uncertainty in a video surveillance analytic system was 

conducted in Chapter 5. The chapter illustrated that uncertainties are introduced as soon as 

physical signals are converted to the digital signals by the video cameras. These uncertainties 

are propagated through the video analytic pipeline, and the characteristics of each of the 

processing blocks will introduce their own uncertainties. Chapter 5 also included a detailed 
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discussion of the uncertainties in video analytic systems, with different features related to 

vehicles. The analysis conducted in Chapter 5 shows that there is a variety of uncertainty in 

the video analytic pipeline that effects the accuracy of the system, therefore, an uncertainty 

reduction model should be developed. The review process also pointed to the fact that within 

the video analytic research community, the evaluation process is very goal oriented. Therefore, 

when comparing techniques, the results might be subjectively dependant on the evaluation 

techniques used. As such, an objective evaluation metric, based on a measure of uncertainty 

reduction, might allow a more systematic approach to evaluate and compare different methods. 

The uses of higher resolution data and feature fusion are further explored in Chapter 6, when 

they are combined with high level reasoning techniques to develop a new technique for the 

localisation and classification of vehicle manufacturer logos. The techniques assessed which 

patches in a Region of Interest are likely to be the logo patches. Only the logo patches are 

passed to a multi-class classifier to group the logo into its respective category. As there 

might be multiple logo patches, the determination is conducted with a voting technique, 

and a subsequent weighted voting process is also implemented when an outright winner 

cannot be found. A multi-class classifier, rather than a one-against-all classifier, is used in or­

der to avoid the need of training different classifiers for different logo manufacturer categories. 

Although the developed system still requires a reference point to validate the search co­

ordinates of the logo, it eliminates the need of a dominant feature, such as the grille. Compared 

to the other proposed techniques, this allows a degree of freedom in the localisation of badges 

that are not located on the grille. In addition, it allows the classification of logos from both 

the front and rear of the vehicle. The illustrated process would also allow future researchers, 

a standard processing pipeline to effectively evaluate different classification techniques. 

Chapter 6 also demonstrated that the choice of features involved is important in the fusion 

process. If two representations of the same feature space are used, the two features might 

not contribute enough independent information. As a result, no extra advantages could be 

gained. However, it is believed that feature fusion would still improve the accuracy of analytic 
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systems when the correct features are selected, as demonstrated in Chapter 3. 

Based on the investigation conducted in the previous chapters, the output from different 

visual analytical systems can be a probability in relation to the accuracy of the results. A 

fusion framework, based on probability or evidence is developed in Chapter 7. The literature 

review in Chapter 2 has suggested that evidential reasoning techniques have been adopted, in 

some challenges, to fuse visual sensors with other physical sensors. The fusion of different 

descriptors from the same physical visual sensor, however, has not fully been investigated. 

For this reason, the fusion framework in Chapter 7 adapted two popular evidential reasoning 

techniques from other research communities, for the challenge of uncertainty reduction in 

video analytics, using a single physical sensor. 

The developed decision fusion framework is based on Bayesian and Dempster-Shafer The­

ories, where the DST removes some restrictions on the need for prior probability in the 

Bayesian scenario. Through a range of theoretical modelling and experiments, both theories 

have shown their ability to reduce the uncertainty with aid from a range of information sources, 

even when different independent sensors disagree. It is difficult, however, to evaluate which 

model is more efficient at reducing uncertainty because each hypothesis Bayesian outputs a 

singular probability measure and DST outputs an additional uncertainty measure in the form 

of belief and plausibility for each hypothesis. 

Although DST can be generalised to a special case of the Bayesian model, the standard 

uncertainty metrics could not accommodate the extra uncertainty measure offered by DST. 

Thus, it becomes necessary to develop an evaluation strategy that could accommodate the 

extra information, based on the Kelly Betting system. A simple experiment for evaluating 

DST and the Bayesian model shows that, under certain conditions, the DST model is more 

efficient at reducing uncertainty than the Bayesian model. In addition, it is believed that the 

developed evaluation model can be extended to evaluate other fusion models. 
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As mentioned before, the proposed decision fusion methods were adopted from other research 

domains and have been adapted to accommodate the information that might be supplied from 

a traditional video surveillance system. The framework proposed will offer an alternative 

solution to the help future researchers in the video surveillance domain. The framework 

can also be used to construct new video surveillance systems, as they have exhibited the 

capabilities of extending models to incorporate inferencing in a range of different queries. 

8.2.1 Ethical Considerations 

Due to the nature of the monitored environment, a range of personal information is gathered, 

such as the Number Plate of a car and daily behaviours of vehicle owners. For a successful 

proceeding of this project, a range of ethical implications were evaluated and presented to the 

Kingston University Ethical Committee for approval. 

A range of controls were also constructed to protect the privacy of the personal information 

and the data integrity. These controls include: 

1. Notices that advised users of the car park that they are under monitoring, and informing 

them that, if they wanted, they can be removed from the captured data. 

2. Secure storage of the captured footage in separate network data storage facilities that 

are put into a secure room, where only authorised individuals can access to the data and 

the room. 

3. Any publication of any personal data, such as license plates number, will either be 

blocked or prior consent is acquired. 

8.3 Future Work 

There is significant potential for improving and extending the strategies proposed in this thesis. 

In this section, the limitations within each of the chapters are explored and the future research 

direction is outlined. 
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In order to investigate the effectiveness of the higher resolution data and occlusion, as pro­

posed in Chapter 3, some of the data was synthetically created, therefore, future work might 

be needed to validate the findings using non-modified data. The investigation only looked at 

one re-identification technique, consequently, a comparison between different techniques is 

required to identify the best re-identification method in evaluating the use of high resolution 

information. The chapter also highlighted issues related to the domain specificity and that 

the effort needed to identify a globally effective training set, capable of avoiding these issues, 

should be investigated. The incorporation of occlusion detection systems is needed to effec­

tively choose the most suitable model for the re-identification process. 

As stated in Chapter 4 the proposed background subtraction techniques have various limi­

tations, as a result, this component within the overall proposed process pipeline can only 

be used for offline processing. Although BS is an active research area, the researchers are 

often restricted in improving the performance to one or two limited areas. For this reason, 

future research should investigate a framework that combines the various techniques to tackle 

all challenges as a whole. To assist in this investigation, the data created in this chapter 

could be used, as their meta-data is available and can assist in the manual partitioning and 

categorisation of the data into various categories, such as illumination and weather. This 

partitioned data can also help to test the effectiveness of any proposed surveillance system 

under various known conditions. 

To improve the system performance for the vehicle manufacturer classification, it is important 

to investigate the application of additional features which provide uncorrelated indications 

of a logo's identity. As the current size of the Region of Interest has been predefined to 

accommodate the expected range of scales, the method is tolerant to changes in scale, limiting 

its effectiveness to a mid-range view of the vehicle. This means that a further improvement 

could be to scale the ROI by the license plate size. However making the proposed method 

scale invariant will require a calibration of the camera and its measured space, thus restricting 

the flexibility of the approach. 
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The Local Fisher classification methods, proposed in Chapter 6 are computationally expensive 

when searching for the optimal subspace to conduct the classification, thus restricting its use 

for real-time applications. However, if an optimal space can be found to satisfy the various 

changes in the monitored environment, then this method can be adopted. The experiments 

conducted use a relatively small test and training sample, a great quantity of testing data would 

be necessary for further evaluating the potential for learning. In addition, the experiments 

only used 5 categorises, therefore the potential classification techniques need to be further 

explored. To test the effectiveness of the system under various environmental conditions, a 

partitioned dataset could be used. 

The features used in Chapter 6 also failed to demonstrate the advantage of feature fusions, as 

the features chosen represented the same feature space. In order to build on this, a different 

edge detector such as those mentioned in Maini and Aggarwal (2009) can be used to represent 

the HOG or pHOG vectors. Alternatively, instead of fusing the feature, a classification result 

using each of the features can be applied as the input to a probabilistic fusion model, such 

as those created in Chapter 7. The developed decision fusion model and the theoretical 

investigation in Chapter 7 have both demonstrated that they are significantly promising in 

reducing uncertainty for a range of visual surveillance objectives. The investigation has 

only been theoretical, therefore further investigation, which combines actual results from 

different analytic systems, would be needed. At the moment, the DST model has indicated 

potential for reducing uncertainty for particular challenges. This needs to be further developed 

in scalability, in order to infer a range of different queries similar to those that have been 

developed for the Bayesian model. 

Currently only the Dempster combination rules have been used. As Sentz and Ferson (2002) 

stated that there is a range of different combination rules available, an investigation on deter­

mining the most useful rule for the framework for this study would also be helpful. 

Although the evaluation framework has been analysed theoretically and have shown the 

ability to create an environment for evaluating the DST and Bayesian, further investigation 
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on the evaluation of other techniques is still needed to examine the robustness of the fusion 

frameworks. 
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Appendix A 

Section 7.2.3.3 Bayesian Network 

Calculations 

A.I Problem Information 

Figure A.I: Simple Bayesian Network for integration of multiple visual surveillance cues. 

For a given single "probe" and a single "target", each sensor can give out the following 

information: 

• License Plate - the number of character differences between the ANPR output of the 

probe against the target's LP string. 

• Colour - could be the RGB difference between the two vehicles measured with a 

distance metric, such as Euclidean. 

• Logo Manufactures Class - as discussed in Chapter 6, the output of the classifier of a 

probe image could be a confident measure for each of the manufactures. By knowing 
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the target's logo class, the corresponding confident measure of the target's class can be 

used as a metric . 

• Vehicle Shape - the metric can be the corresponding confident measure of the target's 

vehicle class . 

• Gate - will output a binary argument to show if the target and probe's both are used at 

the same gate or not. 

License Plate P(LIVr) P(LIVr) 

o Mistakes (LI) 0.6 0.0 

1 Mistakes (Lz) 0.2 0.2 

2 Mistakes (L3) 0.1 0.3 

> 2 Mistakes (L4) 0.1 0.5 

Table AI: License Plate CPM 

Vehicle Logo P(BIVr) P(BIVr) 

>90%(B I) 0.4 0.1 

>75% (B2) 0.2 0.4 

>50%(B3) 0.3 0.4 

<50% (B4) 0.1 0.1 

Table A3: Vehicle Manufacture 
LogoCPM 

Gate 

Same (GI) 

Different (G2) 

Colour (Dist) P(CIVr) P(CIVr) 

< 10 (CI) 0.4 0.1 

< 20 (C2) 0.3 0.2 

< 30 (C3) 0.2 0.3 

> 30 (C3) 0.1 0.4 

Table A2: Colour Difference CPM 

Body Shape P(SIVr) P(SIVr) 

>90% (SI) 0.3 0.2 

>75% (S2) 0.3 0.3 

>50% (S3) 0.2 0.3 

<50% (S4) 0.2 0.2 

Table A.4: Car Body Shape CPM 

P(GIVr) P(GIVr) 

0.78 0.5 

0.22 0.5 

Table A5: Gate CPM 

Experiments can be performed if the following results were acquired from each of the sensors: 

1. Prior Probability: P(Vr) = 0.5 and P(Vr) 
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2. There is 1 mistake (~) 

3. The colour difference is < 10 (C1) 

4. Probabilities of same logo is > 75% Other (Bz) 

5. Probability ofthe same vehicle body shape> 90% (Sl); 

6. The target vehicle used different gates (Gz); 

A.2 Calculating Probability of Same 

Since the P(L2IVr) = P(L2IVr) no additional information was provided to change the prior 

belief's, as shown in Equation equ:app:SAME. 

P(V,IL ) = P(L2IVr)P(Vr) 
r 2 P(L2 ) 

P(L2IVr)P(Vr) 
-~~~~~~~~~~ 

P(L2IVr)P(Vr) + P(L2IVr)P(Vr) 
(AI) 

_ 0.2 * 0.5 = 0.5 
0.2 * 0.5 + 0.2 * 0.5 

(A2) 

(A3) 

(A4) 
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(A5) 

A.3 Calculating Probability of Different 

Since the P(L2IVr) = P(L2IVr) no additional infonnation was provided to change the prior 

belief's, as shown in Equation A6. 

P(V.IL ) = P(L2IVr)PCVr) 
r 2 P(L2 ) 

P(L2IVr)P(Vr) 
- -----'----'----'----'----'-:==---==-

P(L2IVr)P(Vr) + P(L2IVr)P(Vr) 
(A6) 

_ 0.2 * 0.5 = 0.5 
0.2 * 0.5 + 0.2 * 0.5 

P(V.IL C) - P(C1IVr)P(VrIL2) 
r 2, 1 - P(C1IVr)(1 - P(VrIL2)) + P(C1IVr)P(VrIL2) 

_ 0.1 * 0.5 = 0.2 
0.4 * (1 - 0.5) + 0.1 * 0.5 

(A7) 

(A8) 

(A9) 
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CA.W) 
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Abstract 

This paper presents results of experiments designed 
to measure the accuracy with which people can be re­
identified using multiple visual surveillance observations. 
Two public data sets are used: VIPeR and a new public 
data set, V-47. The re-identification method is a Large Mar­
gin Nearest Neighbour classifier using feature vectors con­
structed from overlapping block histograms. The experi­
ments investigate the performance with respect to the level 
of occlusion, the training regime. specificity of the domain 
and the resolution of the observations. A method is pro­
posed that reduces the adverse impact of occlusions, when 
present; and increases the beneficial impact of higher reso­
lution data, when available. 

1. Introduction 

Pedestrian re-identification is an important component of 
visual surveill ance analysis in public spaces. The ability to 
assign a single correct identifier to multiple observations of 
an individual improves the semantic coherence of the anal­
ysis. This, in tum, is useful to construct descriptions of 
behaviour, and to facilitate the retrieval of data relevant to a 
given individual. 

The difi1culty of the problem is partly detelmined by the 
extent of time and space over which these 'multiple obser­
vations' are recorded. At one extreme, it is part of the pedes­
trian tracking problem; this is particularly important in more 
crowded or occluded scenes. Similarity of appearance is 
used [3] alongside spatio-temporal measurements to esti­
mate their trajectories. In these cases, the appearance and 
pose of the observations are relatively similar. The problem 
is more difficult using observations from multiple cameras 
and discontinuous trajectories: not only pose, viewpoint and 
illumination vary, but the number of possible candidates is 
most likely increased. In the extreme case, re-identifying 
a pedestrian at some arbitrary location and future point in 
time is indeed a challenging problem: some aspects of the 
appearance such as clothing and hair may have changed, 

Figure I . The proposed method extracts histograms from overlap­
ping letterbox-shape regions and uses their principal components 
to train a Large Margin Nearest Neighbour classifier. This paper 
contributes enhancements to the technique, which improves per­
formance for occluded (right) and higher resolution (left) observa­
tions. It is demonstrated on the VIPeR and the (new) V-47 public 
datasets. 

and the less changeable aspects such as face and gait are 
more difi1cult to analyse (assuming the pedestrian is not ac­
tively co-operating and that the environment is relatively 
uncontrolled). Furthermore, re-identifying people ' in the 
wild' will require robust processing of partial and incom­
plete observations, due to crowds and clutter. 

An increasingly common place formulation of the prob­
lem [7, 5] presents a single 'probe' image, together with a 
'target' set containing exactly one additional observation of 
the probe. The output is a ranked list of elements of the tar­
get set, which can be aggregated over a test set into a cumu­
lative match characteristic (CMC) curve. The normalised 
area under this curve is a straightforward and intuitive per­
formance measure. 

The work presented in this paper ('this work') validates 
and extends recent work [5] that applies the Large Margin 
Nearest Neighbour classifier to this problem. That method 
currently provides the best published ('benchmark') per­
formance on the VIPeR dataset and problem formulation . 
This work examines how this impressive performance can 
be retained and improved under varying experimental con-



Table I. Pedestrian Re-identification Datasets 
Name media resolution #people #images pose occlusion 
VIPeR Still 128 by 48 
CAVIAR Video 384 by 288 
ETHZl Video 64 by 32 
ETHZ2 Video 64 by 32 
ETHZ3 Video 64 by 32 
MCTS Still 128 by 64 
V-47 Video 576 by 720 

ditions. 
The two principle variations are the resolution of the 

dataset and the presence of occlusions in the probe and tar­
get observations. The experiments show that an alternative 
construction of the feature vector leads to improved per­
formance on higher resolution data, yet retaining the same 
performance of the benchmark experiments. Similarly, ex­
periments show that by using a training set that includes 
occluded pedestrians, performance in these conditions can 
also be improved. Two secondary investigations are the de­
pendence on pose; and on the size and specificity of the 
training set. To accompany this paper a new public dataset 
is presented along with all the source code for the bench­
mark and additional experiments. 

This paper is organized as follows. In the following 
sections the previous approaches and available available 
datasets are described. The Large Margin Nearest Neigh­
bour classifier is described in some detail since it is used 
in the subsequent sections and experiments. In section 5 
the adaptation of this approach is described, to accommo­
date observations with part-occlusion and to exploit higher 
resolution, when available. 

2. Previous Work 

There are many categories of person re-identification 
methods, this paper will concentrate on the use of colour 
histogram as a tool for generating descriptions. The sem­
inal work [14] demonstrated colour indexing for retrieval; 
histograms were compared using an 'intersection' opera­
tor that is similar to the L1 norm. The histogram is a 
non-parametric, quanti sed representation of the accumu­
lated values. One alternative is the parameteric family of 
representations of e.g. second order statistics [10], possibly 
with mixture estimation [15]. Another alternative is to find 
and represent multiple salient points in the observation, e.g. 
using SIFT features [13]. 

Park et al. [12] extend the histogram-based representa­
tion by dividing the region of interest into horizontal parti­
tions, to form histograms which are then concatenated to­
gether into the feature vector. This is a special case of 
a more general set of robust computer vision methods in 
which overlapping regions are used to achieve spatial se-

316 
? 

83 
35 
28 
119 
47 

632 various No 
? various Yes 

4857 various No 
1936 various No 
1762 various No 
476 various Yes 
752 various Yes 

lectively with spatially tolerant accumulators, e.g. HOG for 
pedestrian detection [4]. 

Gray et al. [7] introduced colour histograms based on 
three predefined regions: top one fifth; middle and bottom 
each two-fifths. The combined histograms for all three re­
gions are used as the descriptor for the whole image. An 
improved descriptor is proposed by Alahi et al. [I], us­
ing a grid collection of region descriptors. Each grid seg­
ments the objects into a different number of sub-rectangles 
of equal sizes. 

Various methods have been proposed to generalise this 
approach, typically evaluating on the VIPeR dataset (see 
section 3.) First, Gray and Tao [8] use a boosting tech­
nique to optimise a set of histogram features from a large 
combinatorial space. Zheng et al. [17] construct histograms 
for each of over twenty types of feature, for six horizontal 
stripes across the bounding box. Finally, Dikmen et al. [5] 
extends the Large Margin Nearest Neighbour classifier [16] 
and applies on an array of histogram responses extracted 
from overlapping regions. This is regarded as the current 
benchmark method since it provides the best performance 
when evaluated on an unseen VIPeR subset. 

3. Datasets for Re-identification 

There are several public datasets appropriate for this 
problem, such as VIPeR [7], CAVIAR [9], and ETHZ sets 
[6]. Also, the i-LIDS Multiple Camera Tracking Dataset 
[11] is intended to evaluate systems that would use pedes­
trian re-identification components. 

These datasets provide variations in pose, viewpoint, 
lighting variation and occlusion. One issue with these 
datasets is their modest common resolution: pedestrians are 
128 image lines in height. This effectively excludes the use 
of high spatial frequency features since they are not rep­
resented with sufficient resolution. One motivation for the 
proposed dataset is to introduce a higher resolution dataset 
for the pedestrian re-identification problem. The dataset 
also includes occlusion that blocks part of the body, this 
is useful to solving re-identification problems in crowded 
environments where only parts of the person could be ob­
served. 



3.1. The V-47 dataset 

The V-47 dataset comprises video of 47 participants 
walking in both directions through an indoor route, ob­
served by two progressive scan DV cameras. The scene had 
both artificial and natural lighting, which varied thought the 
duration of the activity. There are 4 video sequences for 
each participant (two cameras, two directions). Four still 
images are extracted for each view. More information is 
available at the dataset website [2] 

4. Re-identification method using LMNN-R 

In this section, we briefly describe the use [S] of the 
Large Margin Nearest Neighbour classifier with Rejection 
(LMNN-R) to learn a metric suitable for pedestrian re­
identification. This is the state-of-the-art approach for per­
son re-identification on the benchmark VIPeR dataset. 

First, images are vectorized using 8-bin histograms for 
each channel of ROB and HSV colour space. These his­
tograms are extracted from 8x24 rectangular regions, which 
in turn are densely collected from a regular grid with 4 pixel 
spacing in vertical and 12 pixel spacing in horizontal direc­
tion. This step size is equal to half the width and length 
of the rectangles resulting in an overlapping representation. 
A feature vector x is obtained by concatenation of all his­
tograms. Finally, a PCA is applied to obtain a smaller space 
for the metric learning. 

The objective is to learn a linear transformation L : 
~d --+ ~d that minimises a distance between each training 
low dimensional point and its K nearest similarly labelled 
neighbours, while maximizing the distance between all dif­
ferently labelled points according to a constant margin. As 
a consequence, a pairwise similarity of feature vectors is 
measured by following weighted squared distance: 

(1) 

which can be reformulated to the equivalent Mahalanobis 
metric: 

D( -::t ~) - (~ -+)TM(-+ =+ X,, xJ - x, - Xj Xi - Xj) (2) 

assuming that M is a symmetric positive-semidefinite ma­
trix, so it can be factorised into real-valued matrices as 
M = LT L. The objective function over the distance met­
rics parameterised by eq. 1 or eq. 2 has two competing 
terms: f(M) = fl(M) + f2(M). The first term penalizes 
large distances between each point i and its neighbours j 
according to Euclidean norm: 

fl(M) = 2: D(xt, xj) (3) 
i,j 

while the second term penalizes small distances between 
each point and all other differently labeled ones: 

f2(M) = (4) 

2:(1 - Oi,k)[1 + N
1
K 2: D(x;;t, xt)) - D(xt, x1)1+ 

't,k m,L 

. Here, Oi,k is an indicator variable which is 1 if and only 
If Xi and Xj belong to the same class, 0 otherwise. The Xk 

for which Oi,k = 0 are so called impostors for Xi. The clos­
est impostors of a training point are forced to be at least a 
certain distance away from the considered point Xi. This 
distance is computed by the average distance of all K near­
est neighbour pairs (m, l) in the training set and it is only 
marginally affected by its own K nearest neighbours. The 
expression [zl+ = max(z,O) denotes the standard hinge 
loss. This optimisation process can be be solved as an in­
stance of semi-definite program when distance D is given 
by non-quadratic equation 2. 

5. Generalising over occlusions and scales 

5.1. Observations with Part Occlusions 

CCTV observations of pedestrians are often partly oc­
cluded due to crowded environments and obstacles: it is 
important for re-identification methods, e.g. LMNN-R, to 
perform robustly in these cases. However, all members of 
the VIPeR dataset are fully visible. To investigate the re­
identification performance in the presence of occlusions, a 
set of occluded pedestrians was synthesised from the VIPeR 
dataset, and an occluded subset of the V-47 dataset was also 
used. The former dataset was synthesised by overlaying an­
other randomly selected pedestrian (from the same dataset) 
on top of the target pedestrian, using a feathered ellipti­
cal mask. The placement was varied stochastically, with 
a mean occlusion level of SO%, to simulate typical obser­
vations taken from crowded scenes. In the V-47 dataset, 
the layout of the scene entailed that a specific subset of the 
pedestrian observations included real occlusions, from ap­
proximately the waist down, and so these formed the second 
occluded dataset to work with. A few examples of occluded 
images are depicted in Figure S.l. Such occluded images 
can then be directly fed into training/testing procedure of 
LMNN-R classifier as described in section 4. 

First, an experiment can be designed to investigate if a 
classifier trained on occluded examples will improve the 
performance, as measured on an occluded test set. However 
the performance of that classifier may deteriorate (com­
pared with the benchmark) when tested on the original (un­
occluded) test set. To balance these opposing factors one 
must then construct a second experiment using a mixed 
test set of (for example) SO% each of occluded and non­
occluded data. 

'l\vo strategies for constructing a classifier to work on 
this mixed dataset are considered. First, a single hybrid 



Table 2. Comparison of Performance with & without occlusions 

notation Training set Test set Performance 
TrTe 

TrTeC 
TrCTe 

TrCTeC 

no occlusions no occlusions 95 % benchnwrk result 
no occlusions with occlusions 80 % 

with occlusions no occlusions 74 % 
with occlusions with occlusions 87 % 

Table 3. Comparison of Performance on mixed test set 

Strategy I: hybrid classifier 83% benchmark result 
Strategy 2: joint classifiers (perfect occlusion detection) : 91 % 
Strategy 2: joint classifiers (random occlusion detection): 84 % 

classifier, trained with a mixed trammg sct. Second, a 
joint system with two classifiers, traincd on occluded / non­
occluded data respectively. For each test input, the former 
classifier is uscd only if an occlusion is detectcd in either 
probe or target observation. The second strategy requires an 
additional component to detect if either probe or target ob­
servation is occluded. Even so, an upper (and lower) bound 
can be estimated for its performance on the mixed dataset, 
by using simulating a perfect (and random) occlusion de­
tector. This will provide a preliminary indication of relative 
performance between these strategies. 
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Figure 2. Examples of occluded observations: (a) synthesised from 
VIPeR dataset and (b) real from V-47 dataset. 

5.2. Variable Resolution 

In the V-47 dataset, the pedestrian height (in image scan­
lines) varies from 140 to 480. The method outlined in Sec­
tion 4 was designed and tested on a vertical resolution of 
128 lines. Higher resolution input can always be down sam­
pled as necessary to fit this expected input size but this will 
discard higher spatial frequency signals which may con­
tribute to the discrimination task. Operating directly on the 
original resolution signal gives the opportunity to preserve 
this information. The operation to accumulate ROB (or 
HSV) values from overlapping boxes into histograms can 

generalised to accept input of any size, by scaling the size 
of these input boxes accordingly. This aggregation of pixel 
values into histograms also discards information. However, 
it is hypothesised that by including smaller scale boxes, this 
effect is mitigated and better use is made of the higher res­
olution input. 

6. Experimental Results 

Four different experiments are presented, investigating 
the effects of occlusion, change in resolution, any depen­
dency on pose, and the similarity of training set to test set. 
Where possible reference is made to the benchmark exper­
iment provided in [5]. In all experiments, the subjects used 
in the test sets were never included in training sets. Random 
splits between training and testing were used to generate 
enough results to be statistically significant. 

6.1. On occluded & non-occluded data 

As discussed in Section 5.1, this experiment measures 
the re-identification performance on occluded observa­
tions. The first step is to measure the performance on 
data sets with/without occlusions, using classifiers trained 
with/without occlusions. From analysis of the benchmark 
results [5], the following configuration is adopted: original 
ROB+HSY image space, retaining first 60 principal com­
ponents, averaged over 10 random splits. 

The following classifiers were trained and evaluated, in 
each case reporting the Normalised Area Under CMC (%): 

From the results in Table 2 it is clear that the occluded 
test set (with results underlined) is a more challenging prob­
lem, and that better performance is achieved by a classifier 
that is trained on occluded data. However it is equally clear 
that this classifier performs worst of all (74 %) on the unoc­
cluded data. 

We now turn to the problem of how to achieve best possi­
ble performance on mixed (occluded and unoccluded) data. 
Three results are presented: the hybrid strategy, the joint 
strategy (upper bound) and the joint strategy (lower bound). 
Recall that the upper bound simulates a perfect decision 



between occluded and unoccluded input, while the lower 
bound simulates a random decision. 

The results presented in Table 3 suggest that it is worth­
while to pursue a strategy of training specific classifiers for 
occluded and non-occluded observations, rather than use a 
single classifier, trained on both types of data. 

6.2. Higher Resolution Observations 

The feature vector defined in the benchmark method [5] 
uses 38 vertical and 4 horizontal overlapping bins to gener­
ate the block histograms, as the original VIPeR image di­
mensions are 128x48. In comparison to the VIPeR set, the 
V-47 dataset has a higher resolution, which may improve 
performance. To investigate this, bi-cubic interpolation was 
used to render the extracted images to a common highest 
denominator of resolution (480x264). Also, a low resolu­
tion (l28x48) version of the V-47 dataset was produced to 
allow direct comparison with the VIPeR dataset. 

Experiments were conducted to compare the normal 
block size [5] with the smaller block size proposed in Sec­
tion 5.2. These alternate schemes were tested on both low 
and high resolution test sets, and plotted in Figure 6.2.The 
numbers in the legend describe the normalised percentage 
area under the CMC curve. The training set consisted of 37 
individuals, with the remaining 10 used in the test. This was 
repeated ten times with random splits. 

Firstly it is worth noting that the results obtained on the 
'raw' feature vectors (57-68 %) are significantly inferior to 
those obtained from the trained classifier (95-97 %) Com­
parison of the two block sizes suggests that the smaller 
block size produces better results: for the high resolution 
data, approximately two-fifths of the error is removed by 
using it. In addition, for the training process, the high res­
olution data using the smaller block size also converges 
quicker. 
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Figure 3. CMC Curves For Changes in Feature Vector; (a) Low 
Resolution V-47 Data (b) High Resolution V-47 Data 

6.3. Dependency on Pose 

Experiments were conducted to investigate any depen­
dency on the pose of the subjects in the probe and target 
sets. These experiments use the higher resolution V-47 data, 
adopting the increased vertical feature vectors; the perfor­
mance is listed in Table 6.3. Similar results were achieved 
when at least one (target or probe) set of images in the train­
ing uses a front pose image. Increased accuracy rate is ob­
served when only the back pose images are used. The ex­
planation for this difference is that the colour pattern in the 
front of the subjects' clothing has more variance (less con­
sistency) compared to the back of the clothing. 

Pose Variation (Target V s Probe) 
FPVsFP I BPVsBP I FPVsBPorBPVsFP 

96.56 ± 2.79 I 99.00 ± 1.26 I 96.89 ± 1.63 

Table 4. Area under the CMC curve for different poses: FP = Front 
Pose, BP = Back Pose. 

6.4. Domain Specificity 

This experiment evaluates the performance of three clas­
sifiers on 10 unseen pairs of high resolution (V-47) obser­
vations. The first classifier was trained on 316 pairs from 
the VIPeR dataset. The second classifier was trained on 
333 pairs taken from 37 individuals, observed from differ­
ent camera views from those used in the test set. The final 
classifier has was trained on 333 pairs taken from 37 indi­
viduals, observed from the same camera views from those 
used in the test set. The process is repeated over ten ran­
dom splits to generate sufficient results, which are plotted 
in Figure 4. 

There is a significant dependence on the type of training 
data: the best results are obtained when a similar view is 
used to provide training data for the classifier. This suggests 
that both the VIPeR and V-47 training sets exhibit some de­
gree of exclusive properties that are not shared. 



Figure 4. CMC Curves Domain Specificity 

6.5. Use of Additional Training Samples 

This experiment is designed to investigate whether a 
given performance can be improved by adding more obser­
vations of the same individuals used to construct the test set. 
For example, if 3 observations of each individual are avail­
able in 2 cameras, then there are 9 possible intra-camera 
pairs that could be used for training. The area under the 
CMC curve is plotted at several stages of the classifier con­
struction: Prior to the PCA step, i.e. the raw feature vector; 
after the PCA but prior to training; and the final classifier 
result. The results are plotted in Figure 5. As in the pre­
vious experiments, there is a 37110 training/test split, mn­
domly repeated 10 times. The results suggest that a small 
improvement in the performance can be obtained by using 
the additional training samples. The difference is clear prior 
to training: the PCA subspace obtained by using more sam­
ples appears to be a more effective spaee in which to cate­
gorise previously unseen pairs of observations. This small 
improvement is carried through the training stage, where it 
then represents a significant reduction in the error rate. 
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Figure 5. Performance of two classifiers, trained on 37 individuals, 
at several stages of the classifier construction. One was trained on 
37 pairs of observations, while the other was trained on 333 pairs 
of observations. 

7. Conclusion 

This work has investigated the use of the Large Mar­
gin Nearest Neighbour classifier to re-identify pedestrians 

viewed from different cameras and at various resolutions 
and levels of occlusion. As far as the authors know this 
is the best-performing method, as evaluated on the VIPeR 
dataset. The experiments described in this work allow the 
following conclusions to be drawn. Firstly, for potentially 
occluded observations, the best strategy is to attempt the 
detection of an occlusion and then deploy the appropriate 
classifier. This achieves better results than training a classi­
fier on a mix of occluded and non-occluded data. Second, 
the use of a smaller block size (than the benchmark) al­
lows improved results when higher resolution data is avail­
able. Furthermore, best performance is obtained from the 
rear view of both probe and target; and (more significantly) 
when training data is from the same domain as the test set. 

Future work wiIl concentrate on the identification of a 
globally effective training set, the incorporation of occlu­
sion information into the re-identification process, and the 
investigation of further methods to make better use of high 
resolution information. 
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Abstract 

This paper presents a method for localising and recognising ve­
hicle manufacturer logos in both the front and rear views. The 
method assumes that the vehicle registration plate is visible and 
an estimate of its location is available. Features are constructed 
out of local histograms of gradients, in both conventional and 
hierarchical arrangements. The dimensionality of these vectors 
is then reduced using unsupervised PCA and, subsequently a 
supervised method based on Local Fisher Discriminant Anal­
ysis. This then provides a suitable metric for logo detection, 
localisation and multi-class classification. On a test set of data 
captured from a medium range CCTV camera, with five dif­
ferent manufacturers' logos, the proposed method provided a 
correct logo localisation rate of 97 % and a correct logo classi­
fication rate of 87.6%. 

1 Introduction 

The correct identification of vehicles is important in a range of 
surveillance situations. Currently, the completion of this task 
relies predominantly on the correct identification of the charac­
ters on the vehicle licence plate (LP). However, the fact that the 
LP can be obscured, altered or replaced means that secondary 
key attributes of the car are needed to identify the vehicle in 
these situations. This has given rise to the need for an accurate 
recognition and classification of a vehicle's manufacturer logo, 
as these cannot be easily altered. 

Resent research has relied on the texture information of 
the vehicle's grille to find a coarse Region of Interest (RoI) in 
which the logo could then be finely located, as traditionally the 
logo is located in the middle of the vehicle's grille. However, 
with modem vehicle designs the logo could be placed on top 
of the bonnet, where grille information becomes less relevant. 
This is even more apparent when locating the logo on vehicles 
viewed from the rear, where the grille information is unavail­
able. This has given motivation for this paper, to break the tra­
ditional research path in this field of using only front views of 
the vehicles captured in controlled environmental conditions. 

In this paper, we will introduce a challenging dataset, that 
simulates vehicles in a real-world situation, where the logos 
are of varying sizes, viewed from both the front and rear, and 
in varying lighting and environmental conditions. We propose 
a novel way to localise the logo's region of interest and then 
utilise this localised region to classify the observed logos into 

different categories using a Fisher Discriminative multi-class 
classifier. The vehicle logo recognition process can be divided 
up into two stages: Logo Localisation and Logo Classification. 

The rest of paper is organised as follows: Section 2 
presents a review of the previous work that has been conducted 
in this field. Section 3 introduces the logo localisation and 
classification methods. In section 4, some experimental results 
are present and discussed. Our conclusion and proposal for fu­
ture work are given in section 5. 

2 Related Work 

2.1 Vehicle Logo Localisation 

The localisation of the logo, within the view of the vehicle, 
is an essential step before its accurate classification can be 
achieved. The majority of localisation research relies heavily 
on some prior knowledge such as the position of the licence 
plate (LP). Once the position of the LP is located, researchers 
then define a Region of Interest (RoI) relative to it. The au­
thors of [14, 15, 28] assumed the RoI for the vehicle logo to 
be a patch above the LP, of a size relative to the size of the ex­
tracted LP. The researchers in [5, 13, 21, 20, 22, 25] defined 
the RoI as an area of the front of the car relative to the size and 
location of the LP, incorporating the LP, grille, lights, etc. The 
approach used by Lu et al. [17] adopts three reference points 
to define a RoI containing the vehicle logo and the grille. Their 
three reference points are the LP, and the left and right head­
lights. 

From a large RoI, Lee [13] extracted a smaller area of in­
terest which incorporates the grille and logo by using texture 
information. The texture information of the grille is also used 
by the authors of [14, 15, 17, 28] and, combined with edge 
information obtained using different detectors and filters, the 
authors were able to reduce the size of the RoI to incorporate 
the logo only. In Wang et al. [25], the authors used the peaks 
in the edges' vertical direction projection as the initial location 
to start a symmetry search in order to locate the logo. A com­
pletely different method was adopted by Psyllos et al. [21,22], 
who used the Phase Congruency Feature Map and its deriva­
tives to divide the RoI into smaller areas, such as left/right light, 
grille and logo. 

An attempt to remove the dependency on the LP is de­
scribed by Sam and Tian [23], who utilised the Modest Ad­
aboost algorithm for searching for vehicle logos, represented 
by extended Haar-like feature. However, the gradually sliding 
window used in the search makes the method sensitive to the 



usually complicated background, thereby limiting its applica­
tion. Zhang and Zhou's [31] method uses the frontal images 
of the vehicle and adopts a bilateral symmetry detection based 
on a set of SIFT features. Although this method has reported 
a localisation accuracy of 98.91 %, its reliance on the grille in­
formation makes the method unsuitable rear-view logo locali­
sation. 

2.2 Vehicle Logo Classification 

Previous research into the the recognition of a vehicle's man­
ufacturer logo is limited, even though this is an attribute that 
could be used in vehicle identification systems. Early work by 
Dlagnekov et al. [5] uses SIFT features to recognise the ve­
hicle's manufacturer using images of the whole rear-view of 
the vehicle, not just the logo, attaining 89.5% recognition rate. 
Psyllos et al. [21,22] elaborated on the work ofDlagnekov et 
al. [5] by proposing a SIFT-based enhanced matching scheme, 
which concentrated on the logo only. The scheme boosted 
the recognition accuracy compared to the standard SIFT- based 
feature-matching method. Wang et al. [25] presented a method 
for logo recognition using template matching and an edge ori­
entation histogram of the logo. The methods proposed by Wang 
et al. [25] and Psyllos et al. [21,22] all face the issue of re­
duced robustness with variation of the environmental condi­
tions, such as lighting. A solution was proposed by Burkhard 
et al. [3], whose method uses Fourier descriptors as they are 
not as sensitive to distortion due to environmental lighting ef­
fects. However, this method is highly dependent on the logo 
segmentation as it requires the logo to be the dominant ele­
ment in the image. Recently, Sam and Tian [23] applied the 
invariance property of radial Tchebichef moments to recognise 
high resolution segmented vehicle logos, achieving a recogni­
tion rate of 92% on their own dataset. 

Although there has previously been limited focus on the 
recognition and classification of vehicle logos, some research 
based on a RoI within a frontal or rear view of the vehicle which 
includes the logo has been conducted. Lee [13] used a set of 16 
texture descriptors of the RoI taken from the front view of the 
vehicle as the input to a 3-layer back propagation multi-layer 
perception neural network. This method was used to classify 
vehicles into 24 different classes and achieved a recognition 
rate of 94%. Petrovic and Cootes [20] also used the RoI from 
the front of the vehicle in an approach based on edge oriented 
gradients and a match refinement algorithm for vehicle model 
recognition. Petrovic and Cootes reported a recognition rate of 
over 93% on parked cars containing 77 classes. Zhang et al. 
[31] proposed the use of a Rotation Forest Ensemble method 
for vehicle classification. Their classification method uses the 
features from a Fast Discrete Curvelet Transform and the Pyra­
mid Histograms of Orientated Gradients (pHoG) of the RoI 
from the top view of the vehicle. Similar to the approach of 
Dlagnekov et al. [5], Bhanu and Kafai [1] tried to classify ve­
hicles using the rear view of the vehicle, the vehicle being cat­
egorised into classes of vehicle type, such as van, car or truck 
etc., rather than make or model. 

Iqbal et al. [9] conducted a comparison of previous tech-

niques used for vehicle model classification using both environ­
mentally controlled and uncontrolled datasets. They noted that 
techniques such as SIFT are sufficient in controlled environ­
ments, where there is little variation of illumination, viewing 
angle and scale. Their research also concluded that for make or 
model recognition, the RoI from rear-view images performed 
better than the RoI of the frontal view. 

2.3 Metric Learning for Classification 

Classification methods can be broadly categorized into feature­
based and learning-based methods. Feature-based methods 
rely on the discriminative ability of the feature alone, while 
learning-based methods estimate a discriminative model by an­
alyzing the training data which is representative of the collected 
data. 

SVMs[lO], Boosting[7] and Neural networks[2] have been 
successfully applied for learning two class classifiers in var­
ious vision related problems e.g.: Pedestrian detection, Face 
detection etc.. Multi-class classification has been addressed 
successfully in learning methods [26], [27], [29] that mainly 
focused on metric learning which requires a Mahalanobis dis­
tance metric to be estimated in the feature space. The feature 
space is often non-linear in nature and thus requires a trans­
formed feature space in which the Euclidean distance between 
data samples maintains the neighbourhood characteristics of 
data. Metric learning has been considered as a data associa­
tion problem when multiple classes are involved. The Maha­
lanobis metric is consistent with a positive semi-definite ma­
trix, and the general set of such metric matrices all of which 
are positive semi-definite, can be considered to be the interior 
and surface of a cone with apex at the origin. Other meth­
ods such as LDM[16], LMNN[26] and that of Xing et al. [27] 
estimate this metric by modelling the solution as an optimiza­
tion problem where strategies like gradient descent approaches 
are employed. However, scalability with increasing feature di­
mensions tends to be problematic with such approaches due 
to computationally expensive and time consuming iterative 
steps involved. A few very recent methods, KISS-ME[12], 
LF[19] have modelled the solution for estimating the metric 
in eigenspaces. The solution in these cases can be easily com­
puted by solving a formulated eigenvalue problem. Recently, 
Local Fisher LF [19] was shown to produce better discrimi­
nation amongst sub space methods by using relatively simple 
features. The proposed method employs LF's ability to include 
two different feature types to maintain dual representation of 
data in feature space in order to learn a discriminative transfor­
mation space. 

3 Vehicle Logo Localisation and Detection 

3.1 Feature Extraction 

The region of interest of most common logos in both the frontal 
and rear views, is at a position some distance above the LP. 
Therefore, to extract the RoI the position of the LP, which can 
be detected very accurately using Automated Number Plate 



--

Recognition (ANPR) modules, is used. The relationship be­
tween the coordinates and the logo's RoI is shown in Figure I, 
and is expressed in equation I . 

(1) 

Figure 1: Logo RoI Extraction 

Referring to equation I Pi and P 2 are the respective top-left and 
bottom-right coordinates of the located LP fl and f 2 are the respec­
tive top-left and bottom-right coordinates of the located RoI. R x and 
Ry denote the width and height of the RoI which 128 and 152 pixels 
respectively. 

Once a logo's RoI is extracted, the region is sub-divided 
into patches. Each patch size is 128 by 64 pixels, and the first 
patch is at the top left of the RoI and successive patches are 
created by moving down 5 pixels each time. The patches were 
classed into two categories, logos (l) and background (b). A 
logo patch is defined as a patch that contains a least 50% of the 
logo and all other patches are defined as background patches. 

The patches are then converted to feature vectors which 
consist of two edge histogram vectors, U and v. u is an con­
catenation of multiple overlapping bounding boxes each with a 
normalised 8 bin Histogram of Orientated Gradient (HoG), as 
described in Wang et al. [24] . v is a three level 8 bin Pyramid­
HoG as described in Chen et al. [4]. The use of different types 
of edge information is useful for estimating a reliable embed­
ding space in the subsequent stages. It is common for the de­
scriptor vectors u and v to be high dimensional and also the 
accumulation of descriptors from a dense grid is likely to intro­
duce noise. 

3.2 Local Fisher Discrimination 

Local Fisher (LF) [19] explores the idea of projecting feature 
data into two successive sub-spaces. The first sub-space is es­
timated by employing the dimensionality reduction technique 
Principal Components Analysis (PCA)[II] and the second sub 
space by the application of a supervised dimensionality reduc­
tion method Local Fisher Discriminant Analysis (LFDA)[ 18] 
on the PCA projected feature data. A brief review of LF is 
presented here. 

A low dimensional embedding space is obtained from the 
high dimensional feature space by first estimating a PCA trans­
formation separately for each of the two input feature vector 
types, u and v. 

Principal Component Analysis enables the dimensionality 
of the data to be reduced, while also preserving a high propor­
tion of variation in the input signal [11] . For an input vector 
Ui, the data projected into the low dimensional manifold esti­
mated by PCA is written u~ = Du U i, where Du is the embed­
ding transformation matrix corresponding to the eigenvectors 
derived from PCA. Similarly, v~ = Dvvj. It is experimentally 
demonstrated in LF [19] that separate estimation and use of Dv 
and Du retains information more effectively. The overall out­
put Xi from the first stage is the concatenation of the two sets 
of separately PCA projected histogram vectors: X i = {u; Iv;} . 

LF combines the neighbourhood preserving property of 
Locality Preserving Projection (LLP) [8] with the traditional 
Fisher Discriminant Analysis (FDA)[6]. It is very common for 
a multi-class dataset to be multi-modal in nature, i.e to show 
a significant variation within class samples. LF captures this 
multi-modality within classes by constructing an affinity ma­
trix A which estimates the neighbourhood characteristics of the 
dataset. A local scaling method [30] is used for the estimation 
of A, by choosing the n-th nearest neighbor and assigning in­
dividual scaling factors for samples from the same class. 

The width in class, SW, and between class, SB, scatter ma­
trices in traditional FDA [6] are weighted with the affinity ma­
trix A such that the far apart in-class samples do not contribute 
to the estimation. 

n 
SW ~ LAw . (x - x ·) (x · - x ·)t (2) 2 t ,) t ) t ) 

i,j= l 

n 
SB 1 L b t (3) - A . (x ·- x ·)(x·- x ·) 2 t,) t ) t ) 

i ,j=l 

where 

A W { A i,j/n c if Yi = Yj = C (4) t ,) 0 if Yi i= Yj 

Ab . { A .. (l _l ) if Yi = Yj = C 1. ,J 11. nc (5) t,) l if Yi i= Yj n 

Here, nc is the number of samples in class C and n is the 
total number of samples. The transformation matrix Tlfda can 
then be defined as 

Tlfda = arg max tr ( (Tt SW Trl Tt SBT ) (6) 

where T E IRd X IRffi. Similar to FDA[6], the estimation of 
Tlfda is achieved by representing the above as a generalized 

eigenvalue problem, SB<.p = ASw <.p, where {<.pd and {Ad 
are the eigenvectors and eigenvalues of this system. The final 
projection into the embedding space characterized by LFDA 
can be written as 

(7) 

The similarity measure between any two observations i and j is 
then given by the Euclidean distance between the LFDA trans­
formed vectors of each observation 

(8) 



3.3 Logo Localisation Using LF 

To localise the logo patches, the training set of logo (l) and 
background (b) patches is used, as defined in section 3.1. At 
this stage the vehicle class label is not used. The training data 
is used to estimate the matrix T/rda that transforms the feature 

vectors (Xi) to their representation in the embedded space, Zi. 

Let {zn and {zn be the sets of n(l) and n(b) training vec­
tors in the embedded space for logo and background patches, 
respectively. A previously unseen test vector, z', will be clas­
sified as either logo or background using a k-nearest neighbour 
basis: 

z* 

where 

{
logo 
background 

if dt < db 
otherwise (9) 

the gateway of a closed loop car park, at 30 fps . The footage 
captured vehicles entering and exiting the car park at different 
velocities, trajectories and under varying environmental condi­
tions, such as lighting. The footage were segmented to extract 
the objects of interest, which was then processed to acquire the 
LP coordinates for the vehicles in this study. 

_, 11 - - . ---- • 

(b) 

Figure 2: Examples of Vehicle Logo Patches. a) Logo Frontal 
dt,b = ll)-in b (IZi - z*l) 

Zi <({ z i },{zi}) 
(10) View, and, b) Logo Rear-View 

U sing the above method on the ensemble of patches within 
an RoI, each of these patches categorised as a 'logo' is then 
classified into one of the N manufacturer logos, which are then 
input into a voting process to provide a final estimate for this 
vehicle. This is described in the next section. 

3.4 Logo Classification Using LF 

Hence, for a given RoI, n patches are categorised as 'logo'. If 
n > 0, a LF-based multi-class classifier is used in an analogous 
manner to assign a predicated class Yi to each logo patch, where 
Yi E {I , ... , N}, where there are N categories corresponding 
to the different vehicle manufacturers. (Otherwise, if n = 0, 
no suitable patches are available and the classification cannot 
proceed.) The overall manufacturer class assigned to the RoI, 
Ymax, is the class to which the largest number of individual logo 
patches belongs, as follows: 

Ymax = max (~b (Yi,j)) 
15, j 5, N 8 

b(o:,{3) { ~ if 0: = (3 
Otherwise 

(11 ) 

(12) 

If the voting process does not result in an outright winner, then 
a second voting procedure is adopted. For each logo patch there 
is a logo confidence measure which is represented by the value 
of dt . For all the equal top ranking classes, from the first vote, 
their corresponding patches ' dt values are summed together, 
with the class which has lowest cumulative value becoming the 
overall winner. 

4 Experimental Results and Analysis 

4.1 Dataset 

The data used was captured for a period of three month using 
full 1080p High Definition colour video camera, positioned at 

Five common classes of vehicles, namely: Nissan, BMW, 
Mercedes (Merc), Audi, and Peugeot (PG) (example of the lo­
gos are given in Figure 2) were selected for experimentation. 
For each class, we choose 30 training images and 20 testing 
images. The training data is excluded from the testing data in 
order to test the true performance ofthe system. For each image 
the logo's RoI was located by using the LP position, then the 
RoI was subdivided into patches, which results in 18 patches 
per RoI. Therefore there were 2700 training and 1800 testing 
samples. The combined feature vector for each sample, before 
dimensional reduction, is 2248 components. 

4.2 Logo Localisation Analysis 

Ground Truth 
Logo Background 

"2 ... Logo 86% 14% 
u 
:a Background 9% 91% Q) .... 
0.. 

Table I: Confusion Matrix of Logo and Background Patch 
Classification Results 

The accuracy of the vehicle logo localisation was validated 
against manually labelled ground truth data. The results in Ta­
ble 1 shows our method was able to achieve 86% accuracy 
for classifying logo patches and 91 % for correct background 
patches. If only unsupervised PCA is used then the results de­
crease to 80% for logo and 83% background patches. 

The 86% correct logo classification actually means that 
97% of all testing RoIs would have at least one correctly pre­
dicted logo patch which could be forwarded to the logo manu­
facturer classification stage. 



Ground Truth 
Nissan BMW Merc Audi PG 

Nissan 80% 5% 0% 0% 15% 
"0 
2 BMW 0% 100% 0% 0% 0% 
u 

Merc 5% 21% 69% 5% 0% :.a 
£ Audi 0% 0% 0% 100% 0% 

PG 0% 5% 0% 5% 90% 

Table 2: Confusion Matrix for Logo Classification Results 
Using Badge Patch 

4.3 Logo Classification 

The system was trained using only the ground truth logo 
patches, the trained model was tested using previously unseen 
classified logo patches. Table 2 shows the confusion matrix of 
the logo classification results using the correctly classified logo 
patches only (lpo). The main diagonal shows the percentage 
of correctly classified manufacturer class. When all of the pre­
dicted logo patches (pip) are used, including the background 
patches that have been incorrectly classed as logo patches, the 
overall classification rate of 85.56% is obtained, as shown in 
Table 3. This 85.56% value illustrates the performance of the 
system in a real life environment. 

Table 3 further demonstrates that the use of the Local­
Fisher learned metric significantly improves the performance 
of the system, compared to using only the principal compo-
nents of the original feature vector. . 

Table 3 also shows that HoG is superior to pHoG in this 
case, However the identical performance of just using HoG and 
the combination of both HoG and pHoG is caused by the inter­
dependence of two sets of features. In this situation pHoG is 
not contributing enough information to improve performance 
when using the combined features. 

Type 
HoG pHoG HoG+pHoG 

lpo pIp lpo pIp lpo pIp 

PCA 70.4% 69.7% 68.04% 68.04% 70.41% 69.7% 

PCA+LF 87.62% 85.67% 80.11% 79.8% 87.62% 85.67% 

Table 3: Logo Classification Success Rate Using Different 
Features 

5 Conclusion 

This paper has presented a novel vehicle logo localisation 
and recognition process, using features composed of local his­
tograms of gradients and Local Fisher Discrimination Analysis 

. to obtain a more effective metric. The proposed method has 
been demonstrated on a data set that exhibits characteristics of 
the logo recognition problem in a real world scenario where 
there is no heavy reliance on the vehicle's viewpoint. Thus the 
method could be applied to both frontal and rear vehicle views. 
The results achieved by the process are not directly comparable 

to those from recently published techniques as these only con­
centrate on the frontal views of the vehicle, and the data used 
are captured in controlled environments, such as in the studies 
of Wang et al. [25] and Psyllos et al. [22]. As such, our results 
provide a benchmark for techniques for logo recognition on 
medium-view CCTV data in a video surveillance environment. 

This research forms part of an overall project which aims 
to fuse together multiple features, such as colour, logo, shape 
etc., in order to maximise the certainty with which vehicle 
re-identification can be achieved, by combining relatively un­
correlated sources of information. To improve the system 
performance, one area that could be investigated is the use 
of additional features that provide uncorrelated indications of 
logo identify. In addition, currently the size of the RoIs have 
been predefined to accommodate the expected range of scales. 
Therefore the method is tolerant to changes in scale. A further 
improvement could be to scale the image by the license plate 
size, therefore making the method scale invariant. To further 
test the potential for learning, a greater quantity of testing data 
would be required, as to date the size of the training dataset is 
relatively modest (one hundred and fifty example). 
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Abstract-This paper presents the application of fusion meth­
ods to a visual surveillance scenario. The range of relevant 
features for re-identifying vehicles is discussed, along with the 
methods for fusing probabilistic estimates derived from these 
estimates. In particular, two statistical parametric fusion methods 
are considered: Bayesian Networks and the Dempster Shafer 
approach. The main contribution of this paper is the development 
of a metric to allow direct comparison of the benefits of the 
two methods. This is achieved by generalising the Kelly betting 
strategy to accommodate a variable total stake for each sample, 
subject to a fixed expected (mean) stake. This metric provides 
a method to quantify the extra information provided by the 
Dempster-Shafer method, in comparison to a Bayesian Fusion 
approach. 
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I. INTRODUCTION 

In recent years, the amount of surveillance video data has 
substantially increased, and this trend appears set to continue. 
Norris and Armstrong [1] estimate that in a typical urban area, 
a person could be observed from as many as 300 cameras 
each day. With such a significant quantity of surveillance data, 
some tasks are impractical to accomplish with purely manual 
analysis. This implies a need for processing systems which 
are capable of analysing video data in an automatic or semi­
automatic way. 

There are many challenges in Automated Video Surveil­
lance (AVS); two main problems that any system needs to 
overcome are, firstly, the uncertainty associated with the mea­
surement of the object, which is due to the large variability of 
factors such as illumination, pose, and in-class variations of 
shape. The second problem is the identification of a suitable 
method to fuse the information from different sources, in 
order to extract various types of inferences, depending on the 
situation or the user needs. 

Multisensor Information Fusion (MIF) is the study of 
techniques to overcome the latter problem, to achieve more 
accurate inference, than could be achieved by the use of a 
single sensor alone [2]. The inferences that can be made, using 
these techniques, range from simple estimates the identity of 
a certain entity, through to complex inferences about current 
or future relationships between multiple entities and the events 
with which they are involved. 

As the types of information in this report are noncom­
mensurate, the data must be fused at a decision level [3]. 
Decision-level fusion consists of merging information at a 
higher level of abstraction, combining the results from multiple 
algorithms to yield a final 'fused' decision [4]. The data is 
therefore processed separately by multiple algorithms, e.g. 
to identify and classify observed entities and events, based 
on their different features. The resulting information is then 
combined, applying a chosen set of decision rules to obtain 
an overall inference. Due to the uncertain nature of the input 
data, the inference is often expressed in a probabilistic form. 
Two well-known types of decision rules are Bayesian inference 
and the Dempster-Shafer (DS) theory, and these could both be 
applied to a specific fusion scenario, e.g. combining multiple 
cues extracted from surveillance video. 

To the best of the authors' knowledge, there are no previous 
proposals for how to conduct a performance evaluation for 
these two fusion methods. One reason for this absence is that 
the two methods express their results in different forms: while 
a Bayesian analysis uses probabilities alone, DS encompasses 
the additional concepts of belief and plausibility. A neutral 
basis must be established to compare the two. Thus, this 
paper investigates how the standard theory for evaluation of 
Bayesian estimates can be extended to accommodate the DS 
methodology, which is arguably a generalization of Bayesian 
analysis. 

The remainder of the paper is organised as follows. In 
Section II a review of literature dealing with information fusion 
within the video surveillance domain is conducted. Section 
III introduces a surveillance scenario and the uncertainties 
in the extractable features from this scenario. In Section IV, 
an introduction to Bayesian and Dempster-Shafer theory is 
given and in Section V the generalised evaluation framework 
is introduced. Some experiments are conducted in Section VI 
with the conclusion presented and further works proposed in 
Section VII. 

II. LITERATURE REVIEW 

Unlike other research fields where MIF have been used 
extensively, such as fault diagnostics [5], computer intrusion 
detection [6] and a range of military applications [3], MIF is 
a relatively new techniques for automated video surveillance, 
with comparatively few publications. 



Snidaro et al [7] weighted the confidence measure from 
different sensors monitoring same scene to produce more 
accurate pedestrian tracking results. Similarly, Kumar et al 
[8] applied Fuzzy Logic modelling to produce a 'belief mass' 
for each of the sensors, to address the pedestrian tracking 
issue in varied illumination conditions. Recently, Torabi et 
al. [9] advanced Kumar's idea by applying fusion techniques 
to track multiple people walking in close proximity. In 
this work, data from colour-based and thermal sensors 
are fused to achieve the task of tracking peoples in both 
indoor and outdoor environments in varied lighting conditions. 

For identification of types of vehicles in surveillance data, 
Sun et al [lO] used 'inductive loop signatures' system that 
was build with some specialised equipment and reported an 
accuracy of 90%, on a three-category problem, .Sumalee et 
al. [11] applied similar ideas and applied it to the problem 
of vehicle re-identification within video. The author also 
introduced other vehicle features such as colour, shape and 
size that are derived from video image data using different 
image processing techniques. These features are then fused 
together using a probabilistic fusion technique to provide 
a probabilistic measure for the re-identification decision. 
The overall re-identification accuracy was about 54%, which 
represents the current state-of-the-art. 

III. PROBLEM INTRODUCTION 

The paper reports on aspects of an investigation using 
a surveillance test bed with high-definition CCTV cameras, 
monitoring vehicles entering and exiting a car park over 
an extended period of time. The investigation concerns the 
feasibility of automatic inference methods that require the 
fusion of multiple features, and also fusion of data from 
multiple segments of video, possibly from different cameras. 
Examples of this type of inference task are the following: 

1) 'Has this vehicle been here before?' 
2) 'Is the car park full?' 

To make inferences such as these, a key capability is the ca­
pacity to re-identify a vehicle, possibly from the reverse angle. 
There will often be some degree of uncertainty associated with 
the estimation of identities of any observations. One aspect of 
the investigation is to quantify and minimise the extent of this 
uncertainty, in both the input and output of the fusion process. 
The following subsections review the relevant forms of input 
data, and then in section IV methods to fuse these uncertainties 
are introduced. 

A. License Plate 

A vehicle's license plates are its most discriminating 
features, however automatic recognition of the characters is 
a challenging task even when specialised equipment is used. 
There are many factors that affect the accuracy, which can be 
categorised into plate variation and environmental variations 
as outlined by Du et al [12]. In this review paper, they also 
outline the accuracy rates for the current state of the art 
techniques, which are typically between 90 - 97% depending 
on plate format. The majority of the technique described 

are designed for vehicles that are almost stationary, and the 
accuracy rate decreases when moving-image (video) data is 
used. 

Uncertainties are also introduced when comparing two 
vehicle license plates. A popular method that is used when 
comparing two strings is the Hamming Distance [13], however 
this requires the strings to be of the same size, while real and 
estimated license plate strings can have variable lengths, so 
a more sophisticated metric is required. Alternatively, fuzzy 
string searching methods which have been adopted for DNA 
comparisons can be used. A popular metric is the Damerau -
Levenshtein distance [14], which measures the number of edit 
operations needed to make the strings identical by allowing 4 
different edit operations; insertion, substitution, deletion and 
transposition. Since all edit operations are assign the same 
weight, true-negative results could score identically with true 
positives results, thus a degree of uncertainty still exists in the 
measured metric. 

B. Vehicle Manufacturer's Logo 

Vehicle logo classification is a type of shape classification 
and the logo class can be used as feature to assist with the 
vehicle recognition problem. Typically, a reference point is 
required, such as position of the license plate, to find and 
extract the logo region and estimate the category. Another 
challenge is the uncontrolled environment: the size and 
orientation of the logo can vary. These factors contribute to 
the uncertainty associated with the results. 

Some additional uncertainty is also introduced by the 
classification approach. Two techniques have been previously 
proposed: multi-class classification or one-against-all binary 
classification. The challenge with multi-class classification, as 
the number of possible logo categories increase, is the training 
or the definition of a space where clusters for the different 
categories are sufficiently far apart. Thus, the correct match 
would be the cluster with shortest distance between the query 
sample and the correct cluster. However due to the similarity 
between the different logos this is not always possible. The 
current best result for classify 5 different logo classes is 
achieved by Wang et al [15], namely about 84% success 
for 5 different categories. The challenge with one-against-all 
binary classifier is the requirement of having for n classifiers 
for the n categories, therefore for a given logo there will be 
multiple estimates that need to be resolved. For similar logos 
the estimate the certainty score associated with the output 
from the multiple classier might be very similar. The current 
best results using one-against-all methods were achieved 
by Psyllos et al. [16] averaging 91% overall classification 
success for lO categories, but this bias for front views only in 
controlled lighting conditions. 

C. Vehicle Colour 

Colour is an important cue in the surveillance context, 
for example for the re-identification of pedestrians. The re­
identification of vehicles, based on colour, is less extensively 
researched, for perhaps three reasons. First, colour alone 



could not re-identify the vehicle as many many vehicles 
share the same colour. Second, its perceptibility degrades 
significantly in deteriorated lighting conditions. Finally, an 
appropriate colour model is not straightforward to define: 
sometimes a single value is useful, but in other situation 
colour can be described using several colour channels. The 
overall colour of a vehicle is difficult to summarise as 
windows and wheels have large contrasting colour schemes 
compared to the body. One possible solution is suggested 
by Psyllos et al [17], where the authors collected a RGB 
histogram for a range of patches on the vehicle and chose the 
peak of each of the components to represent the overall colour. 

The variation of colour observations wuth respect to 
changes in environmental conditions can be mitigated to some 
extent by using the HSV space, as this is more tolerant [11] to 
such change. Considering these challenges, the measurements 
from two 'vehicle colour sensors' could be used to produce 
an estimate of the probability that these two observations 
refer to the same vehicle, or that the two observations refer 
to vehicles having the same colour model (which excludes 
the problem of estimating prior probabilities of the various 
colour models). 

D. Vehicle Shape Classification 

Vehicle shape classification has commanded significant 
attention from researchers, as reported by Kanwal et al [18], 
the review concentrated on the various software based vehicle 
classification techniques, which have classification accuracies 
between 82% - 95%. The authors concluded that the best 
classifier was a hybrid system based on a Dynamic Bayesian 
Network classifier, however, direct comparison is between 
approaches is inappropriate as definition of the vehicle classes 
are different between the methods reviewed. These results 
demonstrate that some uncertainty is a consequence of the lack 
of a global definition of the vehicle shapes or classes. 

Like many shape recognition problems, vehicle shape clas­
sification is restricted in several ways. The two main restric­
tions are shadowing and viewing angle. Shadows can have 
the effect of increasing the apparent size of the vehicle, and 
effective shadow removal is necessary. For most techniques, 
the vehicle orientation (in relation to the camera) is critical 
for the shape to be classified correctly. 

E. Spatio-temporal Information 

Spatio-temporal information can be used to estimate the 
probability that two observations refer to the same vehicle. 
Three such cues are: the time of the observation, the gate 
the vehicle used to enter (or exit), and the characteristics 
of the trajectory associated with each driver, which may be 
distinguishable over repeated observations. The first two cues 
will have negligible measurement noise; the third is a more 
complex measurement process .. 

IV. STATISTICAL PARAMETRIC FUSION METHODS 

In this section we will cover the formulation of the statis­
tical parametric fusion methods that is under investigation. 

Fig. 1. Simple Bayesian Network for integration of multiple visual surveil­
lance cues. 

A. Bayesian Models 

Bayes rule [19] lies at the heart of many data fusion 
methods. Using Bayes' theorem, we assume hi is a hypothesis 
about a state, taking values in the set of hypotheses H = 
hI, ... hn, exactly one of which is 'true', and the remainder 
being 'false'. The prior probabilities, P(hi)' i = 1, ... , n 
constitute the prior probability mass function of the hypotheses 
hi: 

n 

0::; P(hi ) ::; 1 and LP(hi) = 1 (1) 
i=I 

Often, the hypothesis with the highest prior probability 
will tum out to be the 'true' one. However, a more accurate 
estimation of the state can be made by incorporating some 
relevant 'posterior' evidence, x. It is assumed that the hi 
are distributed according to the class-conditional probability 
distribution function P(xlhi ) [20]. Therefore, given the prior 
probability and the class conditional probability, the posterior 
probability could be calculated using the Bayes' formula: 

(2) 

The denominator is the "evidence factor", which nor­
malises the posterior probabilities so they will sum to one. 

An extension of Bayesian inference is the Bayesian Net­
work [20], which is a probabilistic graphical model that 
represents a set of random variables and their conditional de­
pendencies via a directed acyclic graph, as modelled in Figure 
2. Each leaf node represents the evidence from each of the 
features supporting the querying root node, and the root node 
represents the query of which the system tries to establish the 
truth. Each leaf node will have a conditional probability matrix 
which is associated to the relationship linking the evidence 
to the root node. These conditional probabilities could be 
generated using data obtained directly from observations made 
about the environment. Furthermore, these can be updated over 
time to improve the accuracy of the model. 

Equation 2 needs to be adopted to allow the calculation of 
joint evidence, as the class-conditional probability distribution 
function for a joint set of evidence, P(XI, ... Xclhi) in general 
does no have an analytic solution and it may not be possible 
to numerically evaluate it for all instances of the evidence. 
To overcome these issues, the assumption is made that the 



leaf nodes are conditionally independent, therefore their co­
occurrences can be calculated as a simple multiplication. 
Equation 2 is now transformed into: 

(3) 

B. Evaluation of Bayesian Models 

For a discrete set of outputs, Bayesian models can be 
evaluated using a Kelly [21] betting criterion. This consists of 
placing a nominal "stake" on each possible output, in pr~por­
tion to the odds estimated, using the available observations. 
The pay-off can be defined using the prior (fair) odds. The 
doubling rate is proportional to mean information gain: the 
average amount of information provided by the observations 
can be infered from the outcome of the betting strategy. 

C. Dempster Shafer (DS) Models 

The Dempster-Shafer theory was introduced by Dempster 
[22] and further developed by Shafer [23]. Like Bayesian 
probability theory, DS also deals with subjective probability. 
Therefore, DS could be seen as an extension of Bayesian 
approach to probability, as the latter does not explicitly model 
a lack of knowledge (or 'ignorance'). 

Let B = hI, .. , hn be a collection of mutually exclusive 
set of hypotheses to a given query, called the frame of 
discernment. A basic belief assignment (bba) is a function of 
B from 28 -+ [0,1] that assigns a mass of belief to each 
subset A of the frame of discernment B, satisfying 

m(0) = a and 2: (4) 
AS;; 8 

The basic belief mass meA) represents a measure of 
the belief that is assigned to the subset A ~ B, given the 
available evidence, and that cannot be committed to any strict 
subset of A. All the assigned probability sums to unity and 
there is no belief in the empty set (0). 

There are two additional facets associated with each bba, 
which are all functions of 28 -+ [0, 1]; firstly, the Belief 
measure, Bel(A) = EBCA m(B), which represent the 
exact support for A and secondly, the Plausibility measure, 
PleA) = EAnB 0 m(B), represents the possible support for 
A. [Bel(A).PI(:4)] constitute the the interval of support to A 
and forms the lower and upper bounds of the probability to 
which A is supported. 

To combine the different sources of information, Demp­
ster's combination rule is used. The successful application 
of this rule assumes that the different bba are independent 

. pieces of evidence and uses the orthogonal sum to combine 
the multiple belief structures. For two bba ml and m2, the 
combination rule is as follows: 

(5) 

where: 

K = 2: ml(Ak )m2(Bm ) (6) 
A k nB",,e0 

Demspter's rule of combination is both commutative and 
associative [24]: these two properties mean that evidence could 
be combined (EB) iteratively using the Equation 5 and in any 
order in pair-wise way. 

(7) 

D. Evaluation of DS Models 

There is no single universally agreed procedure for the 
evaluation of a DS model. Where DS is applied within a 'goal­
oriented' environment, the 'true' hypothesis is chosen based 
on its corresponding belief and plausibility. One method is to 
choose the hypothesis with the highest belief and plausibility. 
Alternatively the choice can be made by selecting the highest 
belief and the lowest interval of e.g. (plausibility - belief). 
However, these are all heuristics that do not appear to accom­
modate all the features of the DS representation. Furthermore, 
when the number of hypotheses is limited (~ 2) then it may be 
difficult to find a outright winner, when using these methods. 

V. A GENERALISED EVALUATION ApPROACH 

In section JV-B it was discussed how the information 
provided by the posterior estimates acted to reduce the overall 
uncertainty about the state: the effectiveness (or accuracy) of 
any given Bayesian model can be evaluated by measuril1:g 
the reduction in uncertainty relative to prior model. This IS 

equivalent to measuring the side information that the mea­
surements provide about the system. These probabilistic mea­
surements can be combined in many different ways, assuming 
independence or some model of co-dependency, for example 
using parametric or explicit models. In all cases, however, the 
Bayesian model outputs an overaIl probability per hypothesis, 
and the accuracy of any given model can be evaluated by 
measuring the expected log probability or entropy of the 
correct hypothesis. 

H(X) (-logp(x)) 
1 n 

~ =- 2: logp(xi) 
n i=l 

(8) 

(9) 

The information gain is proportional to the mean doubling rate, 
W: 

W log \p(~)) (10) 

(-logp(x)) (11) 
1 n 

(12) ~ =- 2: 10gp(xi) 
n i=l 



It is not straightforward to apply this Bayesian, 
information-theoretic evaluation method to a DS model. That 
type of model contains two scalar quantities for each hy­
pothesis: the belief and the plausibility. Neither of these 
quantities directly relate to a Bayesian probability, and so it 
is not clear how to apply the various information-theoretic 
results noted above. Nevertheless, the sections below describe 
a context where the log optimal doubling rate can be used to 
evaluate additional meaning that is expressed by the belief and 
plausibility, provided by the DS model. 

The important characteristic that distinguishes the {belief, 
plausibility} pair, from the {probability} singleton, is that the 
former pair can encode, using their difference, an expression 
about the uncertainty of the estimate. Thus, if in a certain case 
the DS model provides a pair {0.05, 0.95}, how can this be 
distinguished from the pair {OA5, 0.55}, and can either of 
these be evaluated against a Bayesian predicated estimate of 
0.5? 

It is proposed that the contribution of these extra indica­
tions, provided by DS, can be quantified using an appropri­
ate generalization of Eqn. 10. That equation represents the 
standard Bayesian evaluation, using the expectation of the log 
posterior over a sample set. There, the contribution of each 
element in the sample set is implicity scaled to one. 

The proposed generalization, to accommodate the extra 
indication output of DS, is to assign a weight O'i to each 
sample, subject to the constraint that (O'i) = 1. Thus the 
evaluation metric is then written as this: 

(13) 

If these weights are given random values, e.g. uniformly 
in the interval between 0 and 2, then it can be shown that 
the measurements obtained from Eqn. 13 are unchanged from 
those obtained from Equ. 10. However, allowing these weight 
to be interpreted as a 'degree of confidence in the estimate'. 
For those samples about which the model estimate may be 
considered 'more accurate', the intention is to assign a larger 
scaling weight, and for those estimates about which there is 
a greater degree of uncertainty, the intention is to assign a 
smaller weight, thus fulfilling the overall constraint on the 
weights that their expectation is unity. 

This creates the opportunity to define an evaluation proto­
col that can be used for both Bayesian and DS. 

VI. EXPERIMENTS 

A. Toy Example 

The proposed evaluation procedure is applied to a toy 
example: an estimated model for a two-horse race with infor­
mation provided by two sources: measurement of the Horses' 
attributes, and measurement of the Jockeys' attributes. In this 
scenario, the evaluation metric is mean percentage winnings 
(or losses) per race, following a Kelly Betting strategy, using 
the estimated model. This has a direct relation to the informa­
tive capacity of the model. Fundamentally, this percentage will 
depend on the relationship between three probabilistic models. 
The first model is the real (actual) probabilities that determine 

the outcome of the race. The second model determines the 
bookmakers' odds, which is used to calculate the pay-off after 
the outcome of each race. The third model is the estimated 
model, that represents a subjective understanding of likely 
outcome of each race, using the two sources. 

B. Kelly Betting with DS-dependent stake 

The usefulness of the estimated model can be measured 
by using it in a Kelly betting strategy, which is the log 
optimal strategy: the stake for each outcome is placed in 
proportion to the model prediction (estimated probability) for 
it. Conventionally, for each race, the sum of these bets (i.e. the 
total stake) can be fixed at an arbitrary quantity; the total stake 
for each race can be fixed at an arbitrary value, e.g. 1, and the 
log of the winnings accumulated. However, to accommodate 
the extra information provided by DS, this total stake is 
varied depending on the interval between the plausibility and 
support. Over the evaluation sample, the expected (mean) stake 
is constrained to be equal to the stake used for the simple 
evaluation. 

As a starting point, let all three models be identical: in 
this scenario, the expected outcome of both the fixed-stake 
and DS-dependent strategies is to 'break-even', both with 
standard Kelly betting (fixed stake size) and the generalised 
Kelly strategy, where the total stake each race is allowed to 
vary. 

The above outcome is observed for any joint distribution 
between sources, i.e. for both correlated and anti-correlated 
distributions of 'Horse' and 'Jockey' measurements. However, 
the DS analysis does treat these two cases differently: divergent 
estimates between the two sources will result in a larger 
'unknown state' than the case in which they are in agreement. 

C. Perturbing the Prior Estimate 

In this experiment the prior information provided to the real 
and bookmakers' model is the same, but the prior information 
from the sensors to the estimated model is perturbed from 
the real model, to simulate some imperfection in the available 
information. The perturbation takes the form of a percentage 
change to the estimated 'difference between means' that forms 
the model for generating each sensor measurement. The sign of 
the change is also generated randomly with equal probability. 

Since the real and bookmakers' odds are still identical, 
Kelly betting using the estimated model will always result in 
losses; however, more succesful fusion strategies will reduce 
these losses, and the extent of the reduction can be used 
to evaluate the efficiacy of the fusion strategy, using this 
generalised Kelly betting process, in which a variable total 
stake is allowed for each case. 

The DS fusion strategy provides a rationale for varying 
the total stake: when there is a large 'unknown state', the total 
stake can be reduced, and conversely when there is a small 
unknown state, a comparatively large total stake can be used. 
This strategy is repeated over 15,000 samples, at each level of 
estimated model perturbation, to compare the mean percentage 
loss from the DS strategy against the default (fixed total stake) 
alternative. 
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The results of this simulation are plotted in Figure 2: this 
shows a clear advantage from the use of the DS fusion strategy, 
in that approximately one-third of the adverse effect of the 
model perturbation is removed, as a consequence of using DS 
outputs to determine the stake size. One explanation for this 
effect is that cases in which source estimates were disagree­
ment are more likely to have been significantly effected by 
the perturbation, and so the consequential reduction in total 
stake reduced the effect of that more substantial inaccuracy in 
probability. 

D. Application to Surveillance Fusion 

The above scenario can be adapted to simulate the infor­
mation fusion process that is required for visual surveillance 
scenarios, as outlined in Section III. For example, one of the 
key capabilities is the re-identification of vehicles, from a pairs 
of observation pair of vehicle. The above methodology can be 
used to evaluate the benefit of using the fusion method that 
exploits the DS outputs, using probabilistic sensor measure­
ments of e.g. vehicle type, make, colour and license plate. In 
this scenario we would be expecting to maximize winnings, 
rather than minimize losses. In other words, the bookies odds 
would be the prior probability of correctly re-identifying the 
vehicles (without any sensor measurements) and the estimate 
would be expected to be significantly more certain. 

It is worth emphasising that the utility of the proposed 
evaluation methodology is that it allows fusion methods to 
output a measure of the confidence in a particular estimate, and 
this confidence is then used to weight the importance of this 
estimate in the overall evaluation of the method accuracy. An 
overall constraint on the mean weight is imposed, to enforce 
like-with-like comparisons, and prevent acceptance of the the 
trivial zero-weight solution. The DS approach does provide a 
measure of confidence, via the support and plausibility, and so 
this can be used to generate a weighting. 

It is important to examine the significance and utility of 
the proposal in the context of evaluation of automated video 
analytics systems. A frequent criticism of these systems is 
that they are unable to indicate when they are 'not sure'. 
Hence, this proposal fits well into that context: by requiring 
that a system also output a weight that is used to calculate the 

evaluation, the indication of certainty is incorporated, and in a 
straightforward manner, consistent with standard information­
theoretic evaluation of 'side-information' . Furthermore the 
proposed strategy is identical to the standard information­
theoretic evaluation, in the limiting case of when each weight 
is constant and equal. 

Nevertheless, there are still several tasks that remain to be 
completed. There are various ways in which the DS output 
could be transformed into a single weight, and it is not yet 
clear which would be the most appropriate. One specific 
aspect requiring attention is the mechanism 10 enforce a fixed 
mean weight, over the test set ensemble. Another task is a 
more comprehensive evaluation over the range of possible 
perturbations, to verify that the proposed approach works in 
this range. It may be possible to obtain some theoretical results 
for this general case, too. 

VII. CONCLUSION 

This paper has examined the features, and methods for 
fusing them, that can be used for vehicle re-identification. 
This task is one of the fundamental building blocks that allows 
inferences about other, more complex and extended, queries to 
be attempted. Instead of using any single visual feature of the 
vehicle, which is restrictive and suboptimal in the final result, 
the aim is to use a statistical parametric fusion of multiple 
vehicle features to provide a more precise estimate. The main 
contribution of this paper is the development of an evaluation 
metric, based on the Kelly betting strategy to allow the 
direct comparison of Bayesian and Dempster Shafer methods 
for fusion. The metric accommodates the extra information 
provided by the DS model, by allowing a variation in the 
per-outcome stake, subject to a constraint on the expected 
overall stake. This accommodates fusion methods that provide 
an indication of the uncertainty of the fused estimate, such as 
the Dempster Shafer approach. It was shown, using a simple 
example, that under certain (broad) conditions the DS model 
provided an improvement in the mean log winnings, which 
are a fundamental information metric of the standard Bayesian 
evaluation, being proportional to the side-information provided 
by the observation. We also described how this simple example 
can be adapted to the surveillance scenario. Furthermore, it 
seems capable of being applied to the general case of fusion 
problems. 

This paper has introduced the idea of adapting information 
fusion methods to the domain of video analytical and has 
outlined the potential benefits. Further work is required to fully 
integrate all of the features into the two fusion framework 
defined in this paper. Once the fundamental block of re­
identifying the vehicle has been formalised, the framework 
would be extended to allow inferences of higher value surveil­
lance information. 
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