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Abstract

Yes it is. We rigorously demonstrate the equivalence of any stock flow
consistent model to a directed acyclic graph using condensation graphs.
The equivalence between stock flow models and directed acyclic graphs
is useful both for visualising large-scale macroeconomic models of this
type and for inferring causality within these models. We developed a
new package to build and simulate any stock flow consistent model and
generate the corresponding directed acyclic graphs, and we provide an
example of this package using a well known model from the literature.

Keywords: Stock flow consistent models, directed graphs, macroeconomic
modeling.
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1 Introduction

An open problem in the emerging stock flow consistent macroeconomic liter-
ature concerns how best to represent these models graphically and causally.
The goal of this paper is to solve both the representational problem and
the specification of causal structure problem using directed acyclic graphs.
We prove that for any stock flow consistent models there is a correspond-
ing directed acyclic graph. Using a newly developed software package, we
show this correspondence in action. Our approach simplifies the process of
making any stock flow consistent model, as well as visualising and inferring
causality once the model has been built.

Every stock flow consistent (SFC) macroeconomic model is built to
mimic the flow of funds data for an individual economy (Godley and Lavoie,
2007). Sectoral interlinkages are explicitly modelled to ensure consistency
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of stock and flows, so that every quantity comes from somewhere, and goes
somewhere (Caverzasi and Godin, 2015). These models often feature preci-
sion regarding time, several financial assets and rates of return, budget con-
straints and adding up constraints (Tobin, 1982). At the representational
level, stocks and flows are tracked using balance sheet and transaction matri-
ces. Several hundred behavioural and identity equations build and balance
the model. These models are unwieldy as a result. Once the model is de-
fined, it can be calibrated or estimated1 in order to determine the parameter
values. The model is then numerically simulated and eventually shocked in
order to compute out-of sample values for the endogenous variables (Godley,
1999).2 For models estimated from real-world data, it is generally possible
to compute confidence intervals around the predicted values of the model
using exogenous innovation terms Dos Santos and Zezza (2008).3 However,
even for models developed purely for the purpose of simulation, causal iden-
tification can be di�cult.

An example may aid intuition. Typically SFC models use linear con-
sumption functions to understand the household sectors consumption de-
cisions from current income and past wealth. In this linear consumption
function, causality runs from right to left, so, when disposable income in-
creases, consumption increases. But why should this be? At times it must
be the case that increases in consumption cause increases in disposable in-
come as people work more to a↵ord to consume. There is no justification
within the model for such a causal choice, other than an appeal to conven-
tion and the literature. Using directed acyclic graphs, it is possible to infer
the most likely causal structure, especially for behavioural equations which
are not as straightforward as consumption functions.

Directed acyclic graphs (DAGs) were developed by Pearl (2000), Morgan
and Winship (2007), Lauritzen (2001) and others to capture the insight that
in an interacting system, the expression of one variable can cause an e↵ect
in other variables. This e↵ect is generally unknown when the behaviour
of the system is observed as a whole. In controlled experimental environ-
ments variables can of course be isolated and their causality inferred, but

1Estimation is the process of discovering constant parameters using econometric meth-
ods such as Ordinary Least Squares (OLS), maximum likelihood, bayesian techniques etc.
Calibration, on the other hand, consists in finding a value for each parameter, in each
period, such that the model replicates the data set.

2This process is similar to the more well-known Dynamic Stochastic General Equilib-
rium class of models, see (Heer and Maussner, 2009, chapter 1) for an introduction.

3These exogenous innovation terms will not be included in our formal description of
the models
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in macroeconomic models such isolation is rarely possible. The aim of most
directed acyclic graph modelling is to reverse engineer causality by inferring
variable interactions from observations of the entire system. In economics
Bessler et al. (2003) and Hoover (2001) have papers applying the directed
graph concept to economic issues.

In this paper we make three contributions to the literature. First, we
show that every stock flow consistent model has a corresponding directed
acyclic graph. Second, we demonstrate how to infer causality directly from
the graphical representation of the model. Third, we have developed soft-
ware to simulate any stock flow consistent model and show its directed
acyclic graph.

The rest of the paper is organized as follows. The equivalence between
any stock flow consistent model and its DAG is derived in Section 2, while an
example is given in Section 3 of the BMW model, developed by Godley and
Lavoie (2007). Finally, we conclude and give directions for future research.

2 Marrying DAGs to SFC Models

Definition A stock flow consistent model is a macroeconomic model based
on both the balance sheet of an economy and a transaction flow matrix
T which describes the monetary transactions (current account or capital
account) between all sectors of that economy. The model variables X =
(X1, X2, . . . , Xn) (ex. (C,G, I, . . . )) are the non-zero entries of T and the
relationships between the variables are described by the system of equations
X = f(X) i.e.

X =

0

BBB@

X1

X2
...

Xn

1

CCCA
=

0

BBB@

f1(X)
f2(X)

...
f3(X)

1

CCCA
= f(X). (1)

These equations ensure consistency of stocks and flows over time.

A SFC model can be converted to a directed graph in the following
manner. From the set of equations of the SFC we define the Jacobian as
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This Jacobian gives us a medium to infer causality in the model through
the mathematical operation of di↵erentiation. A variable Xi is directly
dependent – or caused by – another variable Xj if and only if

@Xi

@Xj
6= 0. (3)

Since Xi is fully determined by the equation Xi = fi(X), then Eq. (3) is
equivalent to the condition that @fi/@Xj 6= 0. Thus Xj causes an e↵ect

in Xi if and only if Jij , the (i, j)th entry of J, is non-zero. These causal
dependancies are encoded as a binary matrix A that depends on the SFC
model through J by

Aij =

(
1 if Jji 6= 0,

0 if Jji = 0.
(4)

This causality will be the foundation of the DAG, but before continuing
with the derivation we introduce and formally define the necessary graph
theoretical concepts while directing the reader to Newman (2010) for an
accessible overview of basic graph theory.

Definition A directed graph G = (V,E) is a set of nodes V = {v1, v2, ..., vn}
along with a set of directed edges E = {e1, e2, ..., en} that link the nodes.
Each edge ei is of the form ei = (vi1 , vi2) indicating that there is a link from
node vi1 to node vi2 .

A useful representation of a directed network is the adjacency matrix.
This is a binary matrix A whose elements Aij satisfy

Aij =

(
1 if the is a link between vi and vj ,

0 otherwise.
(5)

The adjacency matrix is a great mathematical tool used to calculate a range
of properties about the network. One such property, which is important in
our setting, is the existence of cycles.

Definition In a directed network, a cycle is a closed loop of edges where
the direction of each edge points the same way around the loop. A directed
network that has no cycles is called a directed acyclic graph, or DAG.

To find out if a network is acyclic it is su�cient to examine the eigenvalues
of the adjacency matrix. If all of the eigenvalues of the adjacency matrix
are equal to zero then the network is acyclic. Otherwise cycles exist, each
of which can be mapped to a strongly connected component.
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Figure 1: Schematic of the proof of Lemma 1. In the condensation graph,
the strongly connected components S1 (white) and S2 (black) are replaced
by metanodes. If these two metanodes form a cycle, then the nodes in S1

and S2 are linked be directed paths in both directions, which contradicts
the maximal property of stronlgy connected components.

Definition A strongly connected component (SCC) in a directed network
G = (V,E) is a maximal subset VS 2 V of nodes such that every pair of nodes
in VS are connected by directed paths in both directions. Maximal here
means that no additional nodes in V can be included in VS without breaking
its property of being strongly connected. Every node in the network belongs
to one and only one strongly connected component, and strongly connected
components of only one node may exist. The set S = {S1, S2, . . . , Sm} of
strongly connected components ofG forms a partition of G and this partition
is unique.

In a strongly connected component of more than one node, every node is
part of a cycle. This is intuitive, as to be part of the SCC there must be a
directed path between the node itself and every other node in the SCC in
both directions. An implication of this is that the set of nodes forming any
cycle is a subset of exactly one strongly connected component.

Lemma 1 Let G = (V,E) be a directed graph and S = {S1, S2, . . . , Sm} be

the set of m strongly connected components of G. The condensation graph
GC of G is the graph whose strongly connected componenents are contracted

into single nodes called metanodes.4 Then the condensation graph is a DAG.

4E�cient algorithms which identify the strongly connected components exist such as
Trajan’s algorithm Tarjan (1972) or Kosaraju’s algorithm Hopcroft (1983).
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Proof We aim to show that there are no cycles in GC in which case it is
a DAG. This will be proved by contradiction. A schematic of the proof is
given in Fig. 1.

Assume that there exists a cycle in GC . Then by definition, there is
a directed path between at least two vertices in GC in both directions.
Because the nodes in GC are the strongly connected components in G, this
implies that there is directed path in both directions between at least two
strongly connected components of G. However this cannot be the case. The
strongly connected components of G are maximal implying that for every
node outside the SCC there is not a directed path in both directions to the
SCC. Thus two strongly connected components cannot be linked by paths
in both directions, and so we arrive at a contradiction.

The construction of a DAG from the SFC model now follows from the
graph theoretical concepts introduced here. Recall that the behaviour of the
variables in the SFC is governed by the system of equations X = f(X) with
Jacobian J = @f/@X. The dependencies between variables in the system
was encoded in the matrix A which is related to J through Eq. (4). We now
construct a directed graph G from the SFC as the graph whose adjacency
matrix is A. The condensation graph of this directed graph is taken and
by Lemma 1 this is a DAG. Since there is only one unique partitioning of a
graph into its strongly connected components then the DAG is unique.

The implementation of the DAG construction is performed in R and
is available in a package from GitHub. This package takes the system of
equations in the SFC model and returns various outputs. These include the
initial directed graph, the strongly connected components which contain all
of the cycles and the unique DAG where the cycles have been replaced by
metanodes. In the next section we illustrate an example of the conversion of
a SFC into its DAG. We explain why this is important and show the insights
into the model that this can a↵ord.

3 Applications

3.1 The BMW Model

In this section, we give an illustrative example of how to construct a graph-
ical representation of a stock flow consistent model. As our example we use
the bank-money world (BMW ) model introduced in (Godley and Lavoie,
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2007, chapter 7). This is a model of a closed economy where there are three
sectors – households, production firms and banks. The sectors are linked
through both the balance sheet and the transactions-flow matrix. The full
details of the model can be found in of Godley and Lavoie (2007); meanwhile
the variables and equations that govern their evolution are summarized in
Table 1.

For each of the equations given in Table 1, a change in the value of a
variable on the right hand side of the equation will cause a corresponding
change in the value of the variable in the left hand side of the equation. The
Jacobian matrix, which calculates the partial derivative of each variable with
respect to each other variable, quantifies this. If we assign to each variable
a row and column i then the Jacobian matrix satisfies

Jij =
@Xi

@Xj
. (6)

where Xi and Xj are the variables corresponding to row i and column j
respectively. For example in the case of the supplied wage bill WBs, which
satisfies the equation WBs = W ⇥Ns, we have

@WBs

@Xj
=

8
><

>:

Ns if Xj = W,

W if Xj = Ns,

0 otherwise.

(7)

Thus the only two non-zero elements of rows corresponding to WBs are in
the rows corresponding to W and Ns. With this in mind, the full Jacobian
matrix for the BMW model is given by

J =

0

BBBBBBBB@

AF Cd Cs . . . YD

AF 0 0 0 . . . 0

Cd 0 0 0 . . . ↵1

Cs 0 1 0 . . . 0
...

...
...

...
. . .

...

YD 0 0 0 . . . 0

1

CCCCCCCCA

. (8)

The Jacobian is a square, asymmetric matrix. It is sparse because the
equation for each variable generally depend on a small number of the other
variables. The Jacobian is used to obtain the adjacency matrix of the di-
rected graph though Eq. (4), i.e., by taking the transpose of the Jacobian
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and replacing the non-zero terms with ones:

A =

0

BBBBBBBB@

AF Cd Cs . . . YD

AF 0 0 0 . . . 0

Cd 0 0 1 . . . 0

Cs 0 0 0 . . . 0
...

...
...

...
. . .

...

YD 0 1 0 . . . 0

1

CCCCCCCCA

. (9)

Thus from the system of equations of the stock-flow consistent model – as
given in Table 1 – we have constructed a directed graph which is represented
by the adjacency matrix A. This directed graph is shown in Fig. 2a. The
graph is plotted in a hierarchical manner. It shows in a binary manner how
each system variable causes a changes in the value of other system variables.

To illustrate this, consider the amortization funds AF. At the start of
a time period AF is equal to a fraction � of the stock of capital from the
previous time period, K�1. Through the directed graph it can be observed
that these amortization funds a↵ect its two children nodes, the demanded
loans Ld and the demanded wage bill WBd. The two branches which emerge
from AF di↵er in an important way. One branch is a chain: Ld a↵ects Ls

which subsequently a↵ects Ms before the chain stops. Along this chain the
value of any two variables are independent once the value of the intermediary
nodes are known. For example the bank deposits Ms are independent of AF
once the value of Ls is known.

On the other hand, the second branch emerging from AF through WBd

becomes part of a loop in which we cannot infer such independencies between
nodes. WBd a↵ects its child node W which a↵ects WBs and this e↵ect
passes through the loop before eventually returning and causing an e↵ect in
WBd itself. Thus, the value of intermediary nodes between two nodes does
not rule the two nodes independent as the e↵ect of the second node will
pass through the loop to eventually cause a change in the first node. Even
though the causal e↵ect of WBd on WBs is fully explained by WBs’s parent
node W , WBd and Ws are not independent even if we know the value of W
because Ws will subsequently lead to a feedback e↵ect in Wb.

The nodes in the closed loop collectively form a strongly connected com-
ponent. This is illustrated in the directed graph of Fig. 2a by shading each
of these nodes. The strongly connected component can be replaced by a
metanode to form a DAG – this is shown in Fig. 2b. From the DAG we can

8



Cs Is

Ns

LsY

WBd

AF

Ld

Y D

Mh

Ms

WBS

Nd

W

Cd

K

DAKT

Id

(a) BMW directed graph
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Figure 2: Directed graph (a) and DAG (b) representations of the BMW

model. Nodes corresponds to the variables of the model while directed
links represent the causal dependancies between variables. White nodes do
not belong to any loops while grey nodes are part of a strongly connected
component.

infer direct causality because the graph is acyclic, i.e., there are no loops.
The funds flowing through a node depend directly on its parent nodes, nodes
that have links directed to that node. Once we know the value of the parent
nodes, the value of a node is independent of all nodes further up the hier-
archy from the parent nodes. Similarly, the funds flowing through a node
cause changes in the nodes to which it points, its children nodes. However,
given the value of its children nodes, the value of nodes further down the
hierarchy from its children nodes are independent of the node. The directed
graph and DAG give not only a visual representation of the flow of funds
through the system but also the causal mechanisms that exist within the
system.

4 Conclusion

The objective of this paper was to rigorously show that for every stock flow
consistent (SFC) macroeconomic model there is a corresponding directed
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acyclic graph (DAG) which is unique.
We construct the DAG of any stock flow consistent model in the following

manner. Firstly, we use Jacobian methods on the system of equations of the
stock flow consistent model to form a directed graph. This directed graph is
then decomposed into its corresponding condensation graph by replacing the
strongly connected components with single metanodes (Fig. 1). Since every
cycle in the directed graph is contained in exactly one strongly connected
component, the condensation graph is acyclic and so we have formed a DAG.

We illustrate the theory with an example, the BMW model developed
by Godley and Lavoie (2007), and provide details of a computational tool
that gives the directed acyclic graphical representation of any stock flow
consistent model. We have used this package to generate the DAGs of almost
every model within Godley and Lavoie (2007) and these are available online.5

This formal linkage of two rather disparate fields is important. The
DAG makes it much easier to visualise large macroeconomic models. This
is useful not only for analysis but also for e�ciently solving the model com-
putationally. The topological ordering of the system (Fig. 2) – especially
the isolation of cycles – can lead to great improvements in computational
speed, which decreases as the model increases in size.

This linkage is important as directed acyclic graphs allow us to use
well understood techniques for system-wide causal discovery (Pearl, 2000).
Graph-theoretic search methods have not, typically, been used for time series
data, the data type we normally use in macroeconomic models.

Our further work will concentrate on recovering directed acyclic graphs
from empirical stock flow consistent models to aid in model selection and to
generate a topological ordering within the model structures.
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Endogenous Variables Equations
AF Amortization funds AF = �K�1

Cd Consumption goods demand Cd = ↵0 + ↵1YD+ ↵2Mh�1

Cs Consumption goods supply Cs = Cd

DA Depreciation Allowance DA = �K�1

K Stock of capital K = K�1 + Id �DA

KT Target stock of capital KT = Y�1

Ld Demand for bank loans Ld = Ld�1 + Id � AF

Ls Supply of bank loans Ls = Ld

Id Demand for investment goods Id = �(KT �K�1) +DA

Is Supply of investment goods Is = Id
Mh Bank deposits held by households Mh = Mh�1 + YD� Cd

Ms Supply of bank deposits Ms = Ms�1 + Ls � Ls�1

Nd Demand for labour Nd = Y/pr
Ns Supply of labour Ns = Nd

W Wage rate W =WBd/Nd

WBd Wage bill – demand WBd = Y � r̄Ld�1 �AF
WBs Wage bill – supply WBs = NsW
Y National Income (GDP) Y = Cs + Is
YD Disposable income YD =WBs + r̄Mh�1

Exogenous Variables and parameters
↵0 Exogenous component in consumption
↵1 Propensity to consume out of income
↵2 Propensity to consume out of wealth
� Depreciation rate
� Speed of adjustment of capital to its target value
 Capital-output ratio
pr Labour productivity
r̄ Exogenously set rate of interest on bank loans

Table 1: Variables, equations and parameters of the BMW model.
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