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Abstract 

Analysis of longitudinal data is a rapidly growing field of statistical analysis, in response 
to the increasing availability of longitudinal data sets in many disciplines. Longitudinal studies 
are becoming more popular as they allow investigation of the same individuals over time, and 
where both within-individual and between-individual differences can be examined. Since the 
study of change over time is necessary in many areas, longitudinal studies and meaningful 
analysis of longitudinal data is essential. The health sector is one such area where longitudinal 
research is playing an increasingly important role. 

The aim of this research is to examine statistical methodologies for the analysis of 
longitudinal medical data, specifically General Practice (GP) records. All General Practices 
(GPs) in England and Wales are now computerized and routinely record detailed patient 
information, hence providing a rich longitudinal dataset. This research investigates new 
techniques and adaptations of existing methodologies to understand and explain patterns of 
change and the natural development and treatment of chronic diseases within routinely collected 
GP data. The data used here, although taken from a raw sample of 129 General Practice records, 
have been subjected to some cleaning and recoding in places, hence it should be considered as 
a secondary data source. Through out the data driven applications presented, different sub­
samples of the original dataset have been used. For the main part the full cleaned sample of 
876951 patients is used where possible. Smaller samples ranging between 472 and 58675 
patients are used depending on the outcome of interest and the availability of valid observations 
for the various applications employed. 

Mainly regression-based techniques, in two broad categories, were used to analyse the 
repeated measurements from each patient in our dataset. Firstly, linear and generalized mixed 
modelling approaches were used, whereas in the second phase of the project, the applications 
of semi-parametric and non-parametric approaches were investigated. The case study of 
particular interest in this research project is the incidence and progression of chronic kidney 
disease (CKD). There is a lack of knowledge and understanding of the natural history of CKD 
and its progression over time. This project aims to address these issues. 

The advanced statistical models used in this research quantify how kidney function, 
assessed using estimated Glomerular Filtration Rate (eGFR), changes with respect to time and 
how other factors, including other related medical conditions (known as co-morbidities of 
CKD), affect kidney function and its change over time. The techniques and approaches used in 
this study are motivated by mixed model designs. The decline of kidney function as time 
progresses for typical CKD patients is observed to be non-linear. The type of nonlinear mixed 
models developed in this project do not assume that the decline of eGFR over time is linear, and 
hence are better able to model the progression of CKD than more traditional linear models. As 
a consequence, the proportion of the total variation in the outcome that can be explained by 
considering the patient level factors is tripled through the use of these non-linear models, 
showing they have much greater explanatory power than previous, simpler statistical models. 
The disease under study is Chronic Kidney Disease (CKD) but the methodologies should also 
be applicable other chronic, progressive diseases. 
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Contribution to knowledge 

This study combines two research aspects and will contribute to both the relevant medical 
and statistical areas of research. In the health sector, detailed longitudinal data on an individual 
patient basis is widely available but analysis of such data up to now has been minimal as 
examination of large and complex longitudinal datasets can be difficult, expensive and time 
consuming (Crinson et aI., 2010). However there is a very great potential for such data to inform 
knowledge, understanding and practice within the Health sector. In addition, there is scope to 
link GP records with other areas of health service and use provisions, such as laboratory tests, 
hospital admissions, etc. to increase understanding of the nature of diseases, and treatment 
procedures. In recent years, National Health Service (NHS) managers in the UK and health 

researchers have recognized the potential benefits of using routinely collected data to improve 

analysis in determining what factors contribute to success in disease diagnosis, treatment and 
management (De Lusignan et al., 2010). 

More generally and across other disciplines, much research has been conducted using cross­
sectional studies and the advent of longitudinal studies is relatively new in statistical research. 

Therefore, methodologies for analysing longitudinal data are not well established. Developing 

new statistical modelling frameworks for application to such data is the originality of this 
research which will enable researchers to interpret such data in a reliable and credible way. The 
development of such a modelling framework for Chronic Kidney Disease (CKD) will enable 
the identification of the association of cause, effect and gradual change between renal function, 
co morbidities and various health indicators. This will allow earlier diagnosis, appropriate and 
timely treatment, of the disease resulting in slowing down the progression of the disease to the 
end stage which will extend the lifetime and health of patients. Successful application of this 

modelling framework will help to increase the efficiency of health organisations. This modelling 

framework could then also be applied to other chronic diseases such as asthma, arthritis, cardiac 

failure, diabetes mellitus types 1 &2, which are the most common types of chronic diseases in 

England and Wales. 
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Chapter 1 - Introduction 

1 Introduction 

This research study focuses on developing and evaluating longitudinal statistical models to 

analyse computerised general practice (GP) records. Nowadays, most General Practices (GPs) 

in the UK use a computerised system in order to keep records of their patients and hence each 

registered patient should have a historical, detailed and complete record of all visits made to 

their GP. This means that there is a vast amount of detailed and reliable information about the 

health of the nation readily available at little or no cost. In this thesis, the research questions are: 

can we use routinely collected GP records to inform research and practice in the medical field 

and, subsequently, how can these be achieved and what are the best methodologies to extract 

meaningful interpretations from the available data? We address these questions by focusing 

specifically on developing understanding of the progression of chronic diseases presented and 

treated in the primary care setting in particular, chronic kidney disease (CKD). 

The popularity of analysing repeated measurements within data has been increasing since 

the mid-1980s due to the development of suitable methodologies designed to enable 

investigations of change observed in an outcome over time, and also the factors affecting this 

change. However, practical applications of repeated measures techniques exhibit several 

challenges, such as requiring the data to meet with strict analytical assumptions, for example 

requiring the response to follow a normal distribution and having equal correlations between 

every pair of successive repeated measurements. Additionally, there are other factors that occur 

outside of the control of the researcher which in turn cause potential problems in such research. 

These problems include patient drop-outs, due to moving home, death or refusal to co-operate, 

that create missing observations within the data. Furthermore, different patients can have 

different number of repeated measurements and repeated measurements might not be taken at 

equal time intervals. These issues restrict the use of available traditional methods for the analysis 

of repeated measurements, such as ANOV A techniques, which have strict assumptions. 

Therefore special statistical techniques have been developed to analyse such repeated measures 

designs. 

The main aim of this research is to evaluate the potential of the application of statistical 

methodologies for the analysis of routinely collected longitudinal health data, specifically 
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General Practice (GP) records. More specifically the research aims to investigate emerging 

techniques or adaptations of existing methodologies to understand and explain patterns of 

change and the influence of key factors on the natural progression of chronic diseases using GP 

data. The research presented here uses regression based techniques including logistic, linear 

mixed modelling, semi-parametric and non-parametric modelling approaches to analyse 

repeated measurements from within GP records of a large sample of patients. 

Our case study for this research is based on statistical modelling of the progression of 

Chronic Kidney Disease (CKD), a disease which is progressive and leads to end stage renal 

failure. In this area of medicine, there is a lack of knowledge of the natural history of CKD and 

on the progression ofCKD over time. Since there are no obvious early symptoms of the disease, 

CKD is most commonly diagnosed when in its later more serious stages. Early diagnosis of 

CKD is currently very rare and it is a clinical area that is recognised as needing further research 

and understanding. 

Data was obtained from all patients registered with 129 GPs throughout England and Wales. 

Since this data is a sample from the population of the UK, the first question that rises relates to 

the validity and reliability of this sample. A comparison of the demographics of this data against 

the UK census data (see chapter 3) confirmed that the data is a good representation of the whole 

population. The next issue was then to look at how we can apply statistical methods to such data 

to analyse multiple individual series of repeated measurements to inform about the progression 

of chronic diseases, and CKD in particular. 

Exisiting CKD literature usually assumes that the nature of the natural decline in eGFR 

(meaning that kidney function gets worse over time) is linear. Preliminary investigations of the 

data used here suggest that this is not the case. Hence a main objective of this work is to identify 

and apply appropriate statistical methodologies which are appropriate to the outcomes available 

(repeated eGFR readings), and allow further understanding of the behaviour of kidney function 

over time for patients with CKD.The statistical techniques used in this thesis are motivated by 

mixed model designs which allow for both within subject and between subject variations to be 

modelled simultaneously. These models are applied to patients' repeated eGFR values 

Longitudinal Analysis of Routinely Collected General Practice Records 
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(measurements based on a continuous scale), where there are unequal number of repeated 

measures per patient, recorded at unequal time intervals. 

When analysis is restricted to only patients with a CKD diagnosis, the distribution of eGFR 

values (i.e. the dependent variable) does not follow a normal distribution. To allow for this 

generalized linear mixed models are applied, transforming the outcome using a gamma 

distribution with log link function, to eliminate the problems that can be created by violation of 

normality assumption. However, using such transformations can also make the interpretation of 

the influence of covariates on the original outcome variable more difficult. Additionally, 

alternative semi-parametric and full Bayesian models, to analyse such designs from a Bayesian 

perspective, are considered. 

The advanced statistical models applied in this thesis are used to help understand the 

behaviour of kidney function over time and how it is affected by other factors such as the co­

existence of other diseases. The work presented in this thesis shows that by developing nonlinear 

mixed models, when the decline of eGFR over time is not assumed to be linear, the total 

variation in the outcome that can be explained by using the patient level factors is tripled. 

Therefore, it is vital to consider this nonlinear aspect of eGFR decline in order to truly 

understand the progression ofCKD. 

Both the theoretical background to the methods and approaches used here are valid means 

of modelling progression of chronic kidney disease and the results of this project indicate that 

these techniques would be applicable to other chronic progressive diseases which are diagnosed, 

treated and managed within the primary care setting. Such applications could provide valuable 

and beneficial information and improve understanding about the natural histories of progressive 

diseases, which would be of great value within the health and primary care sector. 

In summary the aims of this research are investigation of new and emerging statistical 

methods to analyse complex longitudinal data such as GP data, illustration of the potential of 

using statistical methods to extract meaningful interpretations of data and demonstration of the 

use of such models to explain patterns of change and influence of key factors on this change. 

Beside of this, the objectives of this research are identification of the appropriate developing 
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methodologies, application of suitable methods and assessing the models formed by using such 

methods. 

1.1 Thesis outline 

This thesis records the work carried out to achieve the aims and objectives set out above. 

Chapter 2 provides a review of current knowledge ofthe two aspects of this research; the clinical 

condition of CKD, and the ongoing development and growth of longitudinal data analysis from 

a statistical modelling perspective. Each aspect is reviewed in a separate section. 

The clinical section provides details on how the kidney function is working in urinary 

system, how CKD condition is formed, classified and progress, what factors are affecting the 

progression of CKD and how the disease can be treated and manged. The main reason of this 

section is to get current information about CKD, so that the statistical models can be applied 

efficiently. 

The statistical section provides details on broad range of statistical nethodologies, so that 

the suitable new and emerging statistical methods can be identified to analyse complex 

longitudinal data such as GP data. 

In chapter 3, a detailed account of both the dataset used in the research and the process of 

data preparation and exploratory data analysis is given. The process of data preparation includes 

details of an intense data cleaning procedure which shows how the data is prepared so that the 

statistical methodologies can be applied on the data to build a realible statistical model. In 

chapter 3, once the data is prepared for the analysis, exploratory data analysis is carried out on 

the dataset, so that the findings from preliminary basic descriptive statistical analyses, provide 

an initial understanding ofthe content of the dataset. This chapter helps in understanding what 

the data is showing and also provides a validation of the data as a suitable and reliable sample 

of the population before deeper, more sophisticated, analyses are performed. 

Chapter 4 examines the sizes of effects for the covariates believed to be the major 

influencing co-morbidities of CKD based on the literature review carried out in chapter 2. 

Initially, considering the outcome as having the condition of CKD or not, Logistic regression 
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techniques are employed to evaluate the factors influencing the prevalence ofCKD. Then, using 

the outcome as having a rapid decline or not based on the two definitions of rapid decline of 

CKD according to NICE guidelines (these definitions also being stated in chapter 4), Logistic 

regression techniques are used to identify which factors are affecting the progression of CKD. 

In this way, factors affecting the prevalence of CKD and factors affecting the progression of 

CKD can be identified separately. Additionally in chapter 4, the differences on the factors 

affecting the progression of CKD based on two definitions of rapid decline are identified. 

In chapter 5, instead of the various binary outcomes used in the models presented in 

chapter 4, the outcome is now taken as the repeated eGFR measurements over time and 

parametric models are used to assess the progression of CKD. In chapter 5, modem, complex 

and emerging longitudinal models are used instead of classical approaches, so that both within 

and between-subject variations can be investigated simultenously, methodologies can be applied 

on unbalanced and incomplete datasets, allowing modelling of continuous covariates and 

investigation of time-dependent covariates. Initially when the response is assumed to follow a 

Gaussian distribution and the progression ofCKD is assumed to be a linear progression, linear 

mixed models are analysed and developed as advanced approaches, starting with a very simple 

linear mixed model and, from this, building more complex models to increase the quality of 

model fit to the data and to further explain the variation observed in the outcome. Furthermore, 

more complex approaches are used when the response is assumed to follow a non-Gausian 

distribution but still assuming the progressiong ofCKD to be a linear progression. These models 

include linear mixed models using a transformed outcome, generalized linear mixed models, 

linear mixed models using the gamma distribution with log link function and polynomial linear 

mixed models as a first step to take nonlinearity of the progression of CKD over time into 

account. 

In chapter 6, since the progression of CKD is not always linear, to account for nonlinear 

progression ofCKD, nonlinear mixed modelling is performed using generalized additive mixed 

models (GAMM) where, in these types of models, spline functions are used to model the data 

instead of assuming linearity. In this way, more precise models are obtained that explain greater 

proportions (about triple) of the variation in the outcome. In nonlinear mixed models, in addition 
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to various co-morbidities, the effects of age and gender are also considered by changing the 

dependent variable into repeated serum creatinine measurements that are independent of age 

and gender, and hence the standard relationship between eGFR and serum creatinine is used to 

interpret the results obtained from nonlinear models in terms of the original outcome (i.e. 

eGFR). In this way, the effects of age and gender on the progression ofCKD can be identified. 

Furthermore, in order to investigate the progression of CKD from a Bayesian perspective and 

to open up a further research, an experimental work is carried out by using alternative semi­

parametric and full Bayesian models that are presented in chapter 6. 

Finally, the thesis is concluded in chapter 7, where an overview of the main research 

findings of the project is presented and ideas for future research are suggested. 

1.2 Computing Requirements 

Models developed in this thesis are computed using Statistical software Package for Social 

Sciences (SPSS). IBM SPSS Statistics version 21 is a comprehensive system of analysing data. 

Statistics Base package was used as add-on enhancement to the full IBM SPSS Statistics system 

for descriptive statistics for the preliminary data analysis (in chapter 3) and Advanced Statistics 

package was used as add-on enhancement to the full IBM SPSS Statistics system used for the 

regression models of chapter 4 and 5. For the models of chapter 6, three different packages in R 

were used namely; package 'gamm4', package 'mgcv' and package 'R2BayesX'. Generalized 

additive mixed models using mgcv and Ime4 (the pakage 'gamm4') was used to fit generalized 

additive mixed models through a version of mgcv's gamm function, using Ime4 for parameter 

estimation (Wood and Scheipl, 2015). Mixed GAM Computation Vehicle with 

GCV/AICIREML Smoothness Estimation (the pakage 'mgcv') was used in GAMs, GAMMs 

and other generalized ridge regression with multiple smoothing parameter estimation by REML 

(Wood, 2015). Estimate Structured Additive Regression Models with 8ayesXpackages (the 

package 'R2BayesX') which is an R interface to estimate structured additive regression (STAR) 

models with BayesX was used to fit full bayes model (Belitz et al., 2012) (Umlauf et al., 2015). 
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2 Background Information and Literature Review 

2.1 Literature Review on Medical Background 

2.1.1 Kidney Function and Urinary System 

The urinary system comprises the kidneys, the ureters and the bladder. The two kidneys 

are situated underneath the ribs (Figure 2.1). 

Cross section 
of right kidney 

Tubules 
drain urine 
into ducts 

which drain 
into th e 

renal pelvis 

Left kidney 

Urinary 
Tract 

Bladder 

r~-- Prostate 
Urethra ---=r (males only) 

Figure 2.1 : Autonomy of Kidneys and Urinary System 

The main purposes of the kidneys are to remove the waste materials from the blood, and 

excess liquid as urine. Moreover, they excrete the existing drugs in the body, regulate salt, 

potassium and acid substances in the fluid content, and produce vitamin D necessary for 

healthier and stronger bones. Furthermore, they produce hormones, aiding the function of other 

organs, such as the erythropoietin hormone that is used to generate red blood cells and other 

hormones that are important for stabilising blood pressure and calcium metabolism. 

Urea is removed from the body via filtering units called nephrons, consisting of small 

capillaries existing inside a ball of individual nephrons called the glomerulus. Each nephron also 

consists of a minor tube called a renal tubule. Urine is formed when urea mixes with water and 

additional materials which is then delivered into the renal tube via the aid of nephrons. 
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As shown in Figure 2.1, there are two ureters; the thin tubes which transport the 

urine from the kidneys to the bladder. Every 10 to 15 seconds, a small volume of urine is 

drained from the ureters into the bladder. In the case the urine is retained in the ureters, 

kidney infection can be observed. The bladder as an organ with a triangular shape 

positioned in the lower abdomen, stores the urine drained into it through the urethra. The 

bladder of a healthy person can store approximately two cups of urine for two to five hours. 

There are two sphincter muscles located in the opening of the bladder. These muscles 

support the outflow of urine by fitting closely near the opening of the bladder. The bladder 

is innervated, signalling a person when it is the time to drain the urine. 

The urethra as a narrow tube enables urine to be excreted from the body. A normal 

urination process occurs when signals from the bladder are received by the brain, which 

signal to the sphincter muscles to loosen up so that the urine can pass from the urethra. 

Usually, kidneys filter around 200 quarts of fluid in every 24 hours and from those 200 quarts, 

approximately two quarts are emptied as urine and around 198 quarts are restored. The urine 

that is drained from the bladder can be stored in the bladder from I up to 8 hours. 

2.1.2 Chronic Kidney Disease (CKD) 

According to the Kidney Disease Outcomes Quality Initiative (KDOQI), chronic kidney 

disease (CKD) is defined as a gradual and usually permanent loss of kidney function. 

The glomerular filtration rate (GFR) is defined as the total amount offluid filtered by all 

of the glomeruli in a minute. Therefore, the GFR is directly proportional to the number of 

nephrons and to the size ofthe glomeruli. For children and small adults, because there will be 

fewer nephrons and the size of the glomeruli will be smaller compared to larger adults, a typical 

GFR value is expected to be lower (Rowe et al., 1976). In clinical practice, GFR is used to 

determine the efficiency of the kidney function and is usually normalised according to body 

surface area e.g. by dividing the GFR by 1.73 m2 in adults. This constant factor normalises GFR 

to body surface area and is calculated using an equation according to Du Bois and Du Bois 

(1996), which takes into account height and gender only. The reason for this normalisation is to 

take into account the differences of the height of patients. A normal GFR in young adult women 

or men is in the range of 100-120 mLimin (Du Bois and Du Bois, 1916). 
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Since direct measurement of the GFR is not possible, indirect measurement is available 

by using the clearance of various exogenous markers such as inulin (a fructose polysaccharide), 

iothalamate, and ioexhol (Australia and New Zealand Dialysis and Transplant Registry, 2011). 

An exogenous marker that has been accepted as the "gold standard" is inulin. However, the 

indirect measurement of the GFR is not commonly used because it is expensive, inconvenient 

and can be subject to the radioactivity or iodinated differences between these exogenous 

markers. Thus, in the past 35 years, a number of equations have been developed to estimate 

GFR (eGFR). Examples of equations used to evaluate eGFR are shown in Table 2.1, which are 

mostly based on age, gender and ethnicity. The endogenous marker used to evaluate eGFR in 

all of these equations is serum creatinine (SCr). Serum creatinine with a low molecular weight 

(113 Daltons) is produced as a result of a non-enzymatic reaction where creatinine in muscles 

is broken down at a constant rate (Levey et al., 1988). The amount of creatinine resulting from 

this process primarily depends on the person's muscle mass, which in turn depends on body 

weight (Porbes and Bruining, 1976). It is established, for a given specific body weight, males 

normally have more muscle mass than females and additionally, African Americans and Afro­

Caribbean's have more muscle mass compared with Caucasians (Cockcroft and Gault, 1976). 

Age is another important factor that affects the muscle mass, as in adulthood it decreases 

(Gallagher et aI., 1997). From an age of approximately 25, serum creatinine can also be affected 

by dietary intake factors such as meat intake or the use of a protein supplement (Levey et al., 

1988). Since creatinine is filtered by the glomeruli and produced by the tubular cells, total 

creatinine clearance is obtained when the amount of GFR and tubular secretion are combined. 

However, tubular secretion also depends on the kidney function. Therefore, the measurement of 

SCr overestimates GFR. SCr has a negative association with GFR, meaning that when the GFR 

is high, the SCr percentage is low (10-40% volume of blood) and when the GFR is low, the SCr 

percentage is high (50-60% volume of blood) (Baver et aI., 1982). 

2.1.3 Estimation of Glomerular Filtration Rate (GFR) 

There are two ways to estimate GFR; either by calculating the creatinine clearance or by 

estimating the creatinine clearance or eGFR. 
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Creatinine clearance can be calculated by calculating the creatinine level in a 24 hour 

urine specimen. However, this method used to calculate creatinine clearance is not preferred 

since it is burdensome. 

The equations shown in Table 2.1 are estimated GFR or creatinine clearance using serum 

creatinine, age, gender, ethnicity and/or weight. 

Table 2.1: Various equations to estimate GFR 

Name IDMS 

Traceable 

Crockcroft and Gault NO 

formula (1976) (Cr CI) 

Modification of Diet in YES 

Renal Disease (MDRD) 

formula (1999) (eGFR) 

Modification of Diet in NO 
Renal Disease (MDRD) 

formula (1999) (eGFR) 

CKD-EPI formula YES 

(2009) (eGFR) 

White/Other 

Female 

and 

White/Other and Male 

Equation 

(140 - age) x (Wt in kg) x (0.85 if female)/ 
(72 x SCr in mg/dL) 
(Cockcroft and Gault, 1997) 

eGFR = 175 x (0.011312 x SCr)-1.154 x 
age-O.203 x 0.742(if female) x 
1.212(if black) 

(Levey et aI., 2006) 
eGFR = 186 x (0.011312 x SCr)-1.154 x 
age-O.203 x 0.742(if female) x 
1.212(if black) 
(Levey et al., 1999) 

If SCr ~62 Jlmol/L 

(
SCr)-O.329 

eGFR = 144 x 0.7 x (0.993)age 

If SCr > 62 JlmollL 

(
SCr)-1.209 

eGFR = 144 x 0.7 x (0.993)age 

If SCr ~80 Jlmol/L 

(
SCr)-O.411 

eGFR = 141 x 0.9 x (0.993)ag e 

If SCr > 80 JlmollL 
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(
SCr)-1.209 

eGFR = 141 x 0.9 x (0.993)ag e 

Black and Female If SCr ::;62 /lmol/L 

(
SCr)-O.329 

eGFR = 166 x 0.7 x (0.993)ag e 

If SCr > 62 /lmol/L 

(
SCr)-1.209 

eGFR = 166 x 0.7 x (0.993)ag e 

Black and Male If SCr ::;80 /lmollL 

(
SCr)-O.411 

eGFR = 163 x 0.9 x (0.993)ag e 

If SCr > 80 /lmollL 

(
SCr)-1.209 

eGFR = 163 x 0.9 x (0.993)ag e 

(Levey et al., 2009) 

The estimation of creatinine clearance can be achieved by using the original Cockcroft 

and Gault formula (Cockcroft and Gault, 1976). This formula overestimates GFR due to the 

contribution of the tabular secretion and was not normalised based on body surface area. 

The Modification of Diet in Renal Disease (MDRD) formula is an alternative way of 

directly estimating GFR as it has shown to give accurate estimates ofGFR when the eGFR value 

is below 60 mLiminll.73m2
• By using the MDRD formula, GFR was found to be 26% lower in 

women than in men and about 18% lower in Caucasians rather than in African Americans. This 

is because African Americans tend to have higher muscle mass and hence higher serum 

creatinine levels, than Caucasians. Therefore, this ethnicity effect causes African Americans to 

have lower eGFR compared to Caucasians. The MDRD equation being normalised to body 

surface area by including a factor of 1.73m2 on the denominator has an advantage over the 
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Cockcroft and Gault formula. However, GFR was underestimated and hence the accuracy 

decreased when the MDRD equation was used for patients where eGFR values were above 60 

mLiminll. 73m2
• 

More recently, the CKD-EPI formula was developed consisting of eight different sub­

formulas shown in Table 2.1. The choice of sub-formula to apply depends on the gender, 

ethnicity and whether the serum creatinine value is lower or greater than a specified threshold. 

The threshold value used depends on both gender and ethnicity. It has been demonstrated that 

both the MDRD equation as well as the CKD-EPI formula provide very similar estimates of 

GFR when the actual GFR is below 50 mLiminll.73m2
• However, when the actual GFR is above 

50 mLimin/1.73m2, the CKD-EPI formula provides a better estimate ofGFR than the MDRD 

formula. Although a reduction in bias was obtained, estimates ofGFR remained imprecise when 

the CKD-EPI formula was used instead of the MDRD formula. Hitherto, it is unknown whether 

replacing the MDRD formula with the CKD-EPI formula will create any changes in clinical 

detection and management of the CKD and additionally, the CKD-EPI formula has not been 

validated by the Kidney Disease Education Programme to make a recommendation on the 

general application of this equation. Therefore, clinicians are continuing to use the MDRD 

formula instead of the CKD-EPI equation. 

Cells renew and propagate generating Cystatin C (a 13 K Dalton protein) at a constant 

rate. This protein is easily filtered by the glomeruli and is reabsorbed by the tubes to be 

metabolised instead of secreted (Randers and Erlandsen, 1999). Therefore, it is considered as 

an alternative marker ofGFR (endogenous marker). Since the concentration of this protein does 

not depend on age, gender and muscle mass, it is a very good estimator of the GFR for certain 

groups of people (Filler et aI., 2005). However, it is not used in clinical practice because of the 

high cost of its measurement and the un-standardised assays of its measurement (i.e. using a 

different laboratory procedure to obtain the measurement of Cystatin C for each person). 

All of the prediction equations detailed in Table 2.1 assume that the muscle mass is 

estimated using demographic information such as the age, gender and ethnicity of patients. 

However, as the estimation of muscle mass is used by only taking account of demographic 
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factors rather than its precise measure; all the equations will give an imprecise estimate of the 

actual GFR. 

At the time a biomarker is measured, either serum creatinine or Cystatin C, all of the 

prediction equations assume that the kidney function is stable; hence, it is inappropriate to use 

these equations to measure kidney function if there is an acute kidney injury. 

In terms of obesity and underweight conditions, when the patients are at extreme 

conditions, either having a very low body mass index « 18.5 kg/m2) or a very high body mass 

index (>30 kglm2), problems occur in the estimation of GFR using these prediction equations. 

For underweight patients, both the MDRD and the CG formulas have a tendency to overestimate 

GFR. On the other hand, for obese patients, creatinine-based estimations of GFR are likely to 

create problems in the estimation ofGFR (Lamb et aI., 2005). In obese patients, the CG formula 

tends to overestimate clearance and hence overestimates GFR using the actual body weight 

(Froissart et al., 2005). 

In the United Kingdom, serum creatinine is measured in laboratories either using a 

colorimetric (by observing the colour change in the presence of a chemical compound) or an 

enzymatic (by observing enzyme reactions) assay, then an isotope dilution mass spectrometry 

(lDMS) traceable value (that is the value calibrated against National Institute of Standards) is 

calculated and hence GFR is estimated using the MDRD formula (Estimating GFR, 2005) 

(MacKenzie, 2006). However, the interpretation of the results should be carefully examined 

since this formula is not appropriate for use with obese patients and patients under the age of 

18. It has not been validated to be used for patients aged above 75 either, although it can be used 

to provide an indicative result. 

2.1.4 Classification of CKD 

Chronic Kidney Disease defined as either by kidney damage or in the case the GFR 

value drops below 60 is classified as chronic or acute according to whether these structural or 

functional abnQl1Tlalities exist for longer than 90 days. Kidney damage is identified by 

pathological abnormalities (detected by a biopsy) or with the identification of markers of kidney 

damage where the patient needs to receive a kidney transplant (Vassaloti et al., 2007). Markers 

Longitudinal Analysis of Routinely Collected General Practice Records 
13 



Chapter 2 - Literature Review 
of kidney damage are classified into two categories; the urinary abnormalities such as 

proteinuria and/or haematuria and blood abnormalities (renal tabular syndromes); such 

abnormalities are detected by scanning and kidney transplantation. After the existence of CKD 

was determined, CKD was classified into stages according to the National Kidney Foundation­

Kidney Disease Outcome Quality Initiative (NKF-KDOQI) established in 2002, and the same 

classification was adopted in Kidney Disease: Improving Global Outcomes (KDIGO) in 2004 

(KDOQI, 2002) (Levey el ai., 2005). The international staging system of describing Chronic 

Kidney Disease detailed in Table 2.2, is authorised in the UK by the Scottish Intercollegiate 

Guidelines Network (SIGN), the National Institute for Health and Clinical Excellence (NICE) 

and the Joint Specialty Committee on Renal Disease (Scottish Intercollegiate Guidelines 

Network, 2008) (Burden el aI., 2005). 

Table 2.2: International Staging System of Chronic Kidney Disease 

Stage Definition eGFR (mLiminl1.73m2) 

1 Presence of kidney damage, with normal or raised ~ 90 

GFR 
2 Presence of kidney damage, with mildly reduced 60-89 

GFR 

3 Moderately reduced GFR 

4 Severely reduced GFR 

5 End-stage kidney disease 

(KDOQI, 2002). 

30-59 

15-29 

< 15 

As more predictive evidence of CKD became available, an international controversies 

conference on definition, classification, and prognosis in CKD organized by Kidney Disease 

Improving Global Outcomes (KDIGO), 2009 decided to make some modification to the 

classification system established by KDOQI in 2002 (Gansevoort el ai., 2009). The three 

modifications of the CKD classification system suggested and approved. First is the addition of 

the cause of CKD to the stage, if known. Furthermore, stage 3 was subdivided into two parts; 

namely the stage 3A in the case 45~ eGFR~ 59 and the stage 38 in the case 30~ eGFR~ 44 

(mLimin/l.73m2). Finally, the level of albuminuria was added to the stage of CKD based on 

eGFR. Currently, KDIGO has developed new guidelines for CKD, where these modifications 
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are included to the classification in the form of a CGA (cause, eGFR and albuminuria) 

classification (Levey et al., 2011). 

Chronic kidney disease is a broad term which includes different kinds of particular renal 

diseases such as diabetic nephropathy, glomerulonephritis, and hypertensive nephropathy. 

Therefore, each patient diagnosed with CKD exhibits different renal pathologies, as well as 

separate natural histories and prognosis. Hence, such diverse natural history results in a unique 

pattern of decline in eGFR for each type of underlying renal disease (e.g. an adult having 

polycystic kidney disease would be expected to have a linear decline in eGFR). 

2.1.5 Symptoms ofCKD 

In mild to moderate stages (between stages 1 to 3) of CKD, no serious symptoms are 

observed. However, as the disease progresses into later stages (e.g. stage 4), then symptoms like 

tiredness and lower energy levels than normal are observed. As the disease develops (stage 5), 

additional symptoms are observed such as loss of appetite a struggle in clear thinking, an 

observed reduction in weight, muscle cramps, dry and itchy skin, frequent urination, having 

pompousness near the eyes, demanding to hold more fluids possibly resulting in the swelling of 

feet and ankles and a pale complexion as a result of anaemia (UK National Kidney Federation, 

2010). 

2.1.6 Importance of CKD 

Over the past 50 years, improvements in technology and immunology of dialysis and 

transplantation have increased the accessibility of renal replacement therapy (RRT). Hence, the 

management of patients with end stage renal disease (ESRD) has been developed. However, 

when compared to the general population, the quality of life of the patients who receive dialysis 

is significantly poorer (Merkus et al., 1997). Hence, identification of CKD at earlier stages is 

vital as it will reduce the rate of progression to ESRD. 

Organisations in the UK and around the world, such as the Scottish Renal Registry, UK 

Renal Registry, European Renal Registry, Australia and New Zealand Dialysis and Transplant 

Registry and the United States Renal Data System have noted that the incidence and the 
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prevalence of patients who are on kidney dialysis treatment is well-reported. However, the 

incidence and the prevalence of patients having CKD are poorly reported (Scottish Renal 

Registry Report, 2010) (UK Renal Registry, 2010) (ERA EDT A Registry, 2011) (A ustralia and 

New Zealand Dialysis and Transplant Registry. 2011) (US Renal Data System, 2011). Poor 

reporting of incidence and prevalence of patients having CKD might be due to the 

underestimation or the overestimation of cases which occurs for several reasons. An 

overestimation can be a result of a study using a single creatinine measurement to define CKD 

rather than two eGFR estimations taken at least 90 days apart. On the other hand, 

underestimation can be the result of a study using records of a population collected during 

routine clinical care, where it is assumed that any patient who is not involved in routine clinical 

care does not have the disease. 

The first study on the prevalence of CKD in USA was reported in 1999 by the National 

Health and Nutrition Examination Survey (NHANES), which analysed the data collected 

between 1999 and 2004 from adults aged ~20. The study reported the prevalence of CKD in 

stages 1-4 in the USA as l3.1 % (Coresh el aJ., 2007). Subsequently, the AusDiab study 

conducted in 2003 in Australia for adults aged ~25 reported as the prevalence of CKD at stages 

3-5 in Australia being 11.2% (Chadban et aJ., 2003). In 2006, the Health Survey of Nord­

Trondelag County (HUNT II) in Norway found that the prevalence of CKD at stages 1-5 to be 

4.3% and at stages 1-5 to be 10.2% (Hallan et aJ., 2006). The latest information in Europe 

according to the ERA-EDTA Registry Annual Report in 2010, gives the highest incidence rate 

ofCKD in the French speaking part of Belgium (179.8 per million people) followed by Spain, 

the Canary Islands and the Dutch speaking part of Belgium respectively, with the lowest 

incidence rate of74.9 per million people found in Finland. On the other hand, based on the U.S. 

Renal Data System, Annual Data Report, USRDS (2011), the highest incidence of CKD 

worldwide is found in Mexico with 597 cases per million people, followed by USA, Taiwan and 

Japan with rates of371, 347 and 278 per million people respectively. 

In the UK, an older study, namely the NEORICA project, gathered information from 

1998 until 2003 from laboratory databases using primary care computer records. The study 

reported the prevalence of CKD (stages 3 to 5) as 10.6% for females and as 5.8% for males 

based on all adults in the study older than 18 who had a valid creatinine record (Stevens et al., 
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2007). However, since only 30% of adults (aged ~ 18) had valid creatinine records, selection 

bias occurred in this study and the study resulted in a biased outcome in terms of identifying 

CKD patients. In a more recent study carried out by the Health Survey in England (HSE) in 

2009-20 I 0, the prevalence of CKD at stages 1-5 was found as 13% (Roth et af., 2011). Patients 

aged ~ 16 were included in this study and a single sample of blood or urine was used for the 

creatinine measurement. Another study namely the QI CKD was performed in 2010 in the UK 

which reported the prevalence of CKD in the UK as 6.7% when patients aged ~ 18 are taken into 

account. All of these previous studies in England such as the HSE and NEORICA. have 

indicated that about 5-10% of adults (aged ~18) in the UK have moderate to severe CKD (at 

stages 3-5) and that prevalence is higher in females than in males. 

To sum up, prevalence of CKD varies considerably between different countries. In 

general, since CKD is a growing health problem world-wide, prevalence of CKD is expected to 

rise especially in UK and USA. Furthermore, the demographic structure of a particular region 

affects the actual prevalence of CKD, given that the actual prevalence of CKD differs 

extensively based on the age and the gender profile of the population. Therefore, understanding 

the natural history of CKD and the way kidney function declines over time is important. The 

early diagnosis of CKD and suitable treatment and management can prevent the progression of 

renal function into end-stage renal disease (ESRD). 

2.1.7 Progression ofCKD 

There is no single cause of CKD, as there are many factors which can lead to the 

permanent damage of kidneys and development of CKD. In the UK, three out of four cases of 

CKD in adults occur due to diabetes, high blood pressure or naturally ageing kidneys. About 

nine out often people with CKD at stages 3-5 have high blood pressure (UK National Kidney 

Federation, 2010). Therefore individuals with diabetes or high blood pressure have a higher risk 

of developing CKD (de Lusignan et al., 2009). In such cases, a routine blood test is 

recommended at regular intervals in order to monitor kidney function. At stages 1 to 3, where 

the disease is at a mild to a moderate level, CKD does not normally show any symptoms. Due 

to the asymptomatic nature of the disease, CKD is usually undiagnosed at earlier stages (Kr61 

et al., 2008). 
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Renal disease usually results in the patient having a renal replacement therapy (RRT). 

Since it is easy to define patients who require RRT, documentation on the patients taking RRT 

are reported accurately. However, RRT is a treatment and not a clinical stage. Therefore, 

identifying CKD cases by using RRT does not take into account the patients who are not 

receiving RRT and hence cannot be used as a measure of the progression of CKD in patients 

who are not receiving RRT. Moreover, repeated measurements cannot be obtained using RRT 

due to the outcome measure (i.e. eGFR) being dependent on the treatment received in RRT. The 

doubling of the concentration of serum creatinine is the second milestone, used to monitor the 

progression of CKD. The doubling of serum creatinine is associated with a decline in eGFR by 

50%. The third measure that can be used to quantify the progression of CKD is the eGFR slope 

(i.e. the rate of change of eGFR over time). The results obtained from both the eGFR slope and 

the doubling of serum creatinine can be inappropriate in patients having acute kidney injury and 

have to be used with caution (Maudsley and Williams, 1996). The cause of death of CKD 

patients is not directly attributable to the kidney disease. Patients are reported to die from other 

related illness such as cardiovascular diseases. Cardiovascular mortality is found to have strong 

association with renal disease. However, this mortality might be over-exaggerated (Maudsley 

and Williams, 1996). 

2.1.8 Factors Affecting CKD 

According to Amaresan and Geetha, (2008), glomerulonephritis and chronic interstitial 

nephritis were common causes of CKD in developing countries in the past but in recent years, 

the situation has changed due to the increasing incidence of diseases such as diabetes mellitus 

and hypertension which have become the major co-morbidities of CKD. De Lusignan et al. 

(2005) and Bruch et al., (2007) state that cardiovascular diseases and chronic use of Non­

Steroidal Anti-inflammatory Drugs (NSAID) (i.e. aspirin) are common causes of CKD. A 

research carried out in China by Chen et al., (2009) suggested that age, and central obesity 

(excessive abdominal fat), hypertension, diabetes, anaemia, hyperuricaemia and nephrolithiasis 

contribute to the progression of CKD. 

Ageing is a natural process and cannot be adjusted to a specific level, so it has been 

defined as an uncontrollable factor for the progression of CKD (Chen et al., 2009). Ageing 

Longitudinal Analysis of Routinely Collected General Practice Records 
18 



Chapter 2 - Literature Review 
causes renal function deterioration and increases the risk of developing other diseases such as 

diabetes, hypertension and atherosclerotic vascular disease (Graves, 2008). Older people also 

have a higher chance of requiring the administration of nephrotoxic drugs for treatment of 

cancer, infections and coronary artery disease (Graves, 2008) (Glassock and Winearls, 2009). 

Therefore, aging will tend to result in the progression of CKD (Chen et ai., 2009). Barri (2006) 

have reported that micro-albuminuria is a predictor of hypertensive renal disease. Amaresan and 

Geetha, (2008) have reported that glomerular diseases, proteinuria, anaemia, a very high protein 

intake, smoking, obesity, being above the age of 60 and a family history of CKD also increase 

the risk of CKD. CKD has been determined as a disease which coexists with other conditions 

such as dyslipidemia, hypertension, smoking and diabetes having adverse effect on the kidneys. 

These factors are considered to increase the absolute risk of progression of CKD (Tonelli et ai., 

2006). Later of this section will consider the impact of each of these co-morbidities on CKD. 

Cardiovascular Disease (CVD) 

Cardiovascular Disease as a broad term of different heart and blood vessel diseases CVD 

includes three main categories, the coronary heart diseases (CHD), stroke and peripheral arterial 

(vascular) disease (PVD) according to PH25 NICE Guidelines (2010). CHD include various 

heart conditions; such as ischemic heart disease and hypertension. Therefore, the definition for 

the diagnosis of CVD in this study is taken as having either hypertension, IHD or PVD. Since 

stroke is a condition occurring due to the shortage of blood supply in the brain, it is separated 

from the definition of CVD. 

The occurrence of cardiovascular disease in patients having CKD and who require 

kidney dialysis is 20-100 times greater than the incidence of cardiovascular disease in the 

general population. Therefore, a high proportion of such patients die from CVD (Foley et ai., 

1998). 

Hypertension is also known as high blood pressure and it is a condition which occurs 

when the blood pressure in the arteries is constantly higher than normal. It has been 

demonstrated that hypertension increases the risk of cardiovascular disease in the general 

population. When compared to the general population, the age and gender adjusted odds ratios 
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show that in a patient with CKD, hypertension is 2 to I times more common compared to a 

patient without CKD (with the 95% confidence interval being 2.0-2.2) (Stevens el aI., 2007). In 

patients with CKD, hypertension is more common, and the risk of cardiovascular disease is 

higher than in the general population (Kannel, 1996). Furthermore, uncontrolled hypertension 

causes proteinuria and hence faster progression of CKD which in tum will result in a greater 

risk of cardiovascular disease. Therefore, in patients with CKD, the control of hypertension is 

very important. 

Hypertension causes damage to other organs such as the heart, blood vessels, the brain 

and the eyes. This damage may lead to a gradual progression of cardiovascular and renal 

diseases (Gallaghter el aI., 2010). Therefore, hypertension can be seen as an independent risk 

factor for cardiovascular and renal diseases which in tum increase mortality rates (Barri, 2006). 

There are two components in blood pressure measurement, namely the systolic 

measurement, which represents the peak pressure in the arteries, and the diastolic measurement, 

which characterises the minimum pressure in the arteries. Guidelines recommend that patients 

with CKD should maintain their systolic blood pressure (SBP) at 120-139 mmHg, and diastolic 

blood pressure (DBP) below 90 mmHg (National Collaborating Centre for Chronic Conditions, 

2008). In patients with diabetes mellitus, SBP should be kept between 120-129 mmHg while 

DBP should be kept below 80 mmHg (Scottish Intercollegiate Guidelines Network, 2008) 

(National Collaborating Centre for Chronic Conditions, 2008). However, in the case the SBP is 

reduced below 100-110 mmHg, then this might be harmful (Gordon el aI., 2011). 

A patient suffering from hypertension shows high blood pressure in their arteries, 

affecting the glomeruli in their kidneys and leading to glomerular hypertension, which in tum 

damages the kidneys (Brenner el al., 1982). Existence of high blood pressure in glomerular 

capillaries results in a more rapid decline of kidney function (Jafar et al., 2003). Furthermore, 

hypertension is a major factor contributing to development ofESRD. This is particularly notable 

for people of black (African American or Afro-Caribbean) ethnicity, who are six times more 

likely than white people to progress to ESRD from hypertension due to factors such as medical 

care, socioeconomic status, education level, alcohol and drug use and genetic predisposition. 

Therefore, in patients with CKD, blood pressure should be strictly controlled in order to slow 
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down the progression of renal disease. In high risk patients, optimum blood pressure (SBP/DBP) 

should be maintained below 130180 mm Hg. 

Diabetes Mellitus 

Diabetes mellitus, or simply diabetes results from high blood sugar levels (i.e. glucose 

level). There are three main types of diabetes, namely; type I diabetes, type II diabetes and 

gestational diabetes. Type I diabetes occurs as a result of the failure of the pancreas to produce 

sufficient insulin whereas type II diabetes results when the body cannot use the secreted insulin 

properly, which is known as insulin resistance. Gestational diabetes arises in women when the 

blood glucose level is raised during pregnancy. It has already been found that cardiovascular 

disease is a major cause of diabetes mellitus. Therefore, when a patient has diabetes, the patient 

has three times more risk for death due to myocardial infarction, which is also known as a heart 

attack, than the general population (Kannel et at., 1985). Several types of cardiovascular 

diseases often exist in patients with diabetes (especially patients with type 11 diabetes) and 

additionally, the existence of hyper glycaemia (a condition of very high glucose level) results in 

macrovascular disease (disease oflarge blood vessels) since these diseases (Le. hyperglycaemia 

and macrovascular disease) are directly related (Milicevic, 2008). If diabetic nephropathy (with 

albuminuria) is present, this increases the risk of death. Thus, control of blood pressure is very 

important in patients with diabetes in order to reduce the development and progression of 

cardiovascular diseases. Similarly, in patients with diabetes, glycaemic control (control of blood 

sugar level) is very important in order to prevent microvascular complications, as the problems 

occurring due to damage of the small blood vessels (UK Prospective Diabetes Study Group, 

1998). If a patient with diabetes is identified as having renal failure, then kidney transplantation 

is advised to reduce the risk of cardiovascular mortality (Reddy et aZ., 2003). 

Anaemia 

Haemoglobin is the iron-based metalloprotein in red blood cells responsible for oxygen 

transport. A normal haemoglobin concentration for non-pregnant women above 15 years old is 

7.4 mmolll, while the normal concentration for a man above the age of 15 is 8.1 mmolli. 
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Anaemia as an iron deficiency condition caused by a significant haemoglobin level reduction 

such as below the normal value. Erythropoietin (EPO) as the hormone that controls the 

production of red blood cells is excreted from the peritubular cells which are located in the 

peritubular capillaries in the renal cortex. The malfunction of the peritubular cells results in the 

loss of production of the EPO hormone, resulting in anaemia; a condition thus related with CKD. 

Anaemia causes insufficient oxygen supply to the tissues, called hypoxia. Anaemia also 

encourages the formation of excessive connective tissue (fibrosis) (DrUeke el al., 2006; Singh 

et al., 2006; Kraut et al., 2005). 

The reduction of the number ofnephrons and tubular cells in kidneys caused by ageing 

and the decreased renal blood flow and EPO secretion is another cause of anaemia. Hence. 

anaemia is more common in the elderly population (above 60). In elderly people. anaemia 

increases the risk of mortality and other co-morbidities such as CKD. Since the haemoglobin 

concentration is an independent measure of deterioration of the renal function, lowering the 

haemoglobin concentration below 14 gldl will accelerate the development of CKD to ESRD 

specifically in patients with type II diabetes (Lee et al., 2008). 

The impact of anaemia on patients with CKD was demonstrated in several studies (Levin 

et al., 1999; Foley et al., 1996». Anaemia increases the risk of left ventricular hypertrophy 

(L VH) (a condition resulting from the increase in pressure or volume overload in the heart 

capillaries due to the reduction of blood flow) and fibrosis. The association between anaemia 

and L VH is reported in a study that for every 0.5 g/dL decrease in haemoglobin, the risk for the 

patient having LVH increases by 32% (Levin et aI., 1999). Another study performed by Foley 

et al (1996) has shown that there is a strong correlation between anaemia and cardiac 

abnormalities in patients having dialysis therapy. Foley and colleagues (1996) evaluated the risk 

of left ventricular dilation as 46%, the risk of poor left ventricular ejection fraction as 55% and 

the risk of death after the RRT as 14% higher than a healthy patient with a I gldL decrease in 

the patient's haemoglobin concentration (Foley et al., 1996). Therefore, the treatment of 

anaemia is very important in patients with CKD and anaemia. 
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Proteinuria 

According to the current literature, several studies have shown that there is a strong 

correlation between proteinuria (as the presence of protein in the urine) and cardiovascular 

disease (Kannel and Culleton, 2000; Wahi et al., 1997; Tonelli et al., 2006). According to the 

Framingham heart study (Kannel and Culleton, 2000), proteinuria (diagnosed with a dipstick 

test on the general population cohort of Framingham) was shown as an independent risk factor 

of cardiovascular disease and that mortality was due to other causes (Kannel and Culleton, 

2000). Another study carried out by the Multiple Risk Factor Intervention Trial (MRFIT) cohort, 

(including only men under the risk of cardiovascular disease and using the same measurement 

to diagnose proteinuria as in the Framingham study and the MRFIT study) conceded that 

proteinuria is an independent predictor of cardiovascular disease and mortality was due to all 

causes (Wahi et ai., 1997). The study carried out by Tonelli et al., (2006) again using a dipstick 

test to detect proteinuria showed that risk of all-cause mortality due to proteinuria and kidney 

dysfunction increased as the patient deteriorated from CKD stage 3. On the other hand, a study 

conducted in the UK taking account 13,177 community residence (that shares a common value) 

adults aged over 75 concluded that proteinuria diagnosed by dipstick test is an independent risk 

factor for all-cause mortality but not cardiovascular mortality in particular (Roderick, 2009). 

Many studies were performed using detection of albuminuria in the urine to diagnose 

proteinuria (Yudkin et al., 1988; Damsgaard et al., 1990; Perkovic et al., 2008; Hemmelgarn et 

al., 2010). Albuminuria is a specific type of proteinuria, detected by collecting a 24-hour urine 

sample, and measuring the albumin concentration. The Alberta Kidney Disease Network 

evaluated the relationship between albuminuria and cardiovascular disease using extensive 

regional laboratory-collected data where the albuminuria was measured based on the result of 

24-hour urine sample. The study concluded that the albumin/creatinine ratio (ACR) is an 

independent predictor of heart attack (myocardial infraction) and all-cause mortality 

(Hemmelgarn et al., 2010). In the same study, performed by the Alberta Kidney Disease 

Network, the albumin/creatinine ratio was determined using a dipstick test to diagnose 

proteinuria and the same correlation was reported. Several other studies performed using a 24-

hour urine sample to detect albuminuria have concluded the same relationship between ACR 

and cardiovascular disease (Yudkin et al., 1988), which is also verified on the elderly group 
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(age 60-74) (Damsgaard et al., 1990). A meta-analysis including 26 studies on proteinuria and 

coronary disease, concluded that the risk posed to a patient of developing coronary disease is 

1.47 times more if the patient has proteinuria with the 95% Confidence Interval (CI) being 1.23-

1.74 (Perkovic et al., 2008). The same meta-analysis also concluded that there is a significant 

albuminuria dose-dependent effect (Perkovic et al., 2008). Therefore the risk of developing 

coronary disease increases if the patient has macroalbuminuria (occurring in high levels of 

albumin in the urine) rather than microalbuminuria (occuring in low albumin levels in the urine). 

Over the recent years, the relationship between albuminuria and eGFR was taken into 

account by the CKD Prognosis Consortium. The meta-analysis published by CKD Prognosis 

Consortium included 22 studies and over 1.2 million patients with over 100,000 urine ACR 

measurements (Astor et al., 2011). Furthermore, for some patients dipstick measurement was 

also used. This meta-analysis was conducted to evaluate the correlation of albuminuria and 

eGFR on the all-cause and cardiovascular mortality for the general popUlation. The meta­

analysis, reported a linear relationship between albuminuria and the risk of cardiovascular 

disease (Astor et aI., 2011). However, no significant interaction was found between albuminuria 

and eGFR. Another meta-analysis carried out by the CKD Prognosis Consortium on a cohort of 

patients with CKD suggested the same linear relationship between albuminuria and the risk of 

cardiovascular disease. A further study including 1056 patients with type II diabetes and 1375 

non-diabetic patients validated the association between the concentration of total protein in the 

urine and cardiovascular and all-cause mortality. 

Obesity 

Obesity is an independent factor in relation to other co-morbidities that affects the 

progression ofCKD (Rutter, 2011). According to current reports there is a debate about the best 

measure of obesity. Currently, two different types of measurements are used in the clinical 

research namely; the body mass index (BMI) and the waist: hip ratio (WHR). A patient is 

classified as obese if their BMI is greater than 30 or if their WHR is above 0.85 for females or 

0.90 for males. A higher BMI or WHR increases the risk of progression of CKD. Weight loss 
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either by surgical or non-surgical methods improves the control of blood pressure, reduces 

proteinuria and reduces hyper-filtration in the kidneys (Ibrahim el aI., 2006). 

Moreover, obesity increases the risk of development of diabetes, hypertension and 

dyslipidemia (a condition of having abnormal amounts of lipids) which are also associated with 

a higher risk of developing CKD (Navaneethan el al., 2009). However, obesity relates to excess 

body weight, and this increases the risk of CKD independently of blood pressure and the 

existence of type II diabetes (Goncalves et al., 2009). Patients maintaining their weight at 

normal levels or achieving weight loss by non-surgical interventions, will typically decrease 

their BMI and have an improvement in GFR and also maintaining weight at normal levels will 

create no change in their plasma glucose and triacylglycerol levels that will prevent the increase 

in risk of getting diabetes and cardiovascular diseases. Additionally, a decrease in BMI will 

decrease the systolic blood pressure as well as the total cholesterol (Goncalves el al., 2009). 

According to Navaneethan el al., (2009), a decline in BMI also results in a decrease in 

proteinuria. In the case of an extremely obese patient, surgical intervention is used for weight 

loss helping to regulate GFR, and resulting in a decline in systolic blood pressure and 

microalbuminuria. 

Microalbuminuria is reduced as a result of lowering the urinary excretion, which is in 

turn, is reduced by lowering the blood pressure and the blood lipid levels (Navaneethan el al., 

2009). Weight-gain results in an increase in BMI and typically reduced GFR levels while 

increasing in plasma glucose and triacylglycerollevels (Goncalves el al., 2009). 

Low Protein Diet 

The standard protein intake for an adult is considered as 2:0.8 g/kg per day. Moderate to 

severely limited protein intake is restricted to 0.3-0.6 g/kg per day (Garrett, 2007). Fouque el 

al. (2007) have suggested that patients with CKD, a moderate to severely limited protein intake 

tends to postpone the progression ofCKD to ESRD or death (Fouque el al., 2006; Fouque el al .. 

1992; Fouque and Aparicio, 2007; EI Nahas el al .. 1984). 
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Alcohol Consumption 

Alcohol consumption of less than 109 per day is considered as light. an alcohol intake 

between 109 and 30 g per day is classified as moderate alcohol consumption whereas heavy 

alcohol consumption is defined as being in excess of30 g of alcohol per day (White el al .• 2009). 

Heavy alcohol consumption is an indirect risk factor of CKD. due to its increasing risk of 

hypertension and cardiovascular diseases and cerebrovascular diseases such as stroke. 

Comparing light alcohol consumption with moderate to heavy alcohol consumptions, both 

moderate and high alcohol consumptions increase the risk of albuminuria. due to the increase in 

urinary albumin excretion, even after an adjustment for age. gender and baseline kidney 

function. Recent statistics have shown that individuals aged 25 to 44 are current drinkers while 

people above the age of 65 are mostly non-drinkers (White el al .• 2009). 

Nephrology Referral 

In order to determine the impact of a nephrology referral (timing to go to nephrologist), 

the pre and post referral slopes for the GFR dependence on time were calculated. The slope of 

GFR was broadly categorised into two types; the "progressive slope" which indicates 

development of CKD having a GFR slope ~-I and the "non-progressive slope" which was 

determined from GFR slope >-1 (Jones et al., 2006). 

The GFR slope was further sub-categorised as: 

• The disease is progressing fast if the GFR slope ~-5, 

• The disease is progressing slowly if the GFR slope is between -5 and -I, 

• The disease is stable if the GFR slope is between -I and + I, 

• The disease is progressing moderately if the GFR slope is between + I and +5 and 

• The disease is highly non-progressing if the GFR slope is ~ +5 (Jones et al., 2006). 

Jones et al. (2006) suggested that GFR decline slowed significantly after a nephrology 

referral. Using different methods such as Jaffe assay or Enzymatic creatinine assay of measuring 

serum creatinine before and after the referral could be a reason for a reduction of GFR decline 

(Jones et al., 2006). Reduction of blood pressure (BP) was also observed after a nephrology 

referral also suggesting that a good BP control early in the disease process is very important 
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since it can lead to a slower decline in GFR and therefore lower mortality rates (Jones et al., 

2006). 

2.1.9 Treatment ofCKD 

Hypertension is classified as being the most significant factor causing cardiovascular 

diseases such as heart failure. Cardiovascular disease being one of the major risk factors for 

CKD, it is important to treat hypertension to reduce the risk of developing cardiovascular disease 

and hence CKD (Miller et al., 2006). High blood pressure causes the heart of the patient to work 

harder and pump the blood to the whole body and hence damaging the blood vessels including 

the glomeruli. Damaged blood vessels in kidneys lead to the protein to transfer from the blood 

to the urine. Therefore, hypertension has a strong correlation with urine protein loss and lower 

blood pressure targets should be met in order to control hypertension and hence to minimise the 

transfer of protein from the blood to the urine. 

The main risk factor of renal disease progression is the increase in systolic blood pressure 

levels (hypertension), which if it is not controlled, it can lead to microalbuminuria and CKD. 

Angiotensin I-converting enzyme (ACE) inhibitors are prescribed for the treatment of high 

blood pressure (Barri, 2006). ACE inhibitors and angiotensin receptor blockers (ARBs) are the 

two main agents prescribed for the treatment of hypertension (Berger el al .. 2007). Patients 

having hypertension together with other co-morbidities such as heart failure or diabetes, ACEls 

and ARBs also exhibit benefit in treating these co-morbidities conditions (Miller et al., 2006). 

ACE inhibitors are the preferred agents over ARBs which are only prescribed as an alternative 

if ACE inhibitors are not suitable for the patient (Miller et al., 2006). Both ACE inhibitors and 

ARBs treat diabetic nephropathy (progressive kidney disease caused by diabetes). Captopril is 

a kind of ACE inhibitor which is the standard treatment of type I diabetes, whereas there is no 

standard ARB that can be used in the same treatment. On the other hand, irbesartan and losartan 

are the two kinds of ARBs which are standard for the same role, as treatment for type II diabetes 

whereas there is no ACE inhibitor that is accepted (Miller et al., 2006). ACEls are established 

to slow down the development of type I diabetes and in patients with type II diabetes, ACEls 

are prescribed to slow the development of micro-macro albuminuria (Miller et al., 2006) (Berger 

et al., 2007). 
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According to the United Kingdom Prospective Diabetes Study (UKPDS), it was 

demonstrated that, patients with type II diabetes, controlling the blood pressure decreases the 

possibility of developing damage or disease ofa kidney (Miller et al., 2006). However, in order 

to reduce the risk of nephropathy in patients with diabetes, glucose control was also significant 

(Miller el al., 2006). 

Apart from hypertension, high levels of proteinuria (heavy proteinuria) were also an 

important factor which needs to be considered. In patients with chronic nephropathies (kidney 

diseases), heavy proteinuria accelerates progression towards ESRD. Heavy proteinuria can still 

be observed even when ACEls are prescribed as treatment (Ruggenenti et al., 2008). Therefore, 

Ruggenenti et af. (2008) applied a multimodal intervention to achieve optimum urinary protein 

levels. This intervention resulted in a significant decrease in proteinuria. The study also showed 

that proteinuria reduction independently results in a slower rate of decline of GFR and hence 

slows the deterioration of kidney function. In order to normalize proteinuria and to decrease the 

decline of renal function in patients without type II diabetes but with chronic nephropathies, the 

study used a multidrug treatment technique. The response to the treatment depended on each 

patient's underlying condition (Ruggenenti et al., 2008). 

Two studies published in 2006, namely the CREA TE study and the CHOIR study have 

examined the treatment ofanaemia in CKD patients. The CREATE study included patients with 

CKD at stages 3 and 4. The main aim of this study was to distinguish between high and low 

targets of haemoglobin. At the end of the study, a high haemoglobin level was found to be 13.4 

gldL and a low haemoglobin level was found to be 11.5 g/dL. However, no difference was 

observed in the outcome (having a cardiovascular event) of high versus low haemoglobin groups 

(DrUeke et a/., 2006). On the other hand in the CHOIR study, the design of the study was the 

same as the CREATE study but a high haemoglobin level was determined as 13 g/dL and the 

low haemoglobin level was determined as 11.3 g/dL. However. the result of the CHOIR study 

was different from the CREATE study in that it was concluded in the CHOIR study that patients 

having high haemoglobin values also have increased rates of cardiovascular events (Singh et 

af., 2006). Moreover, it has been found that patients in this group have higher incidence of 

hypertension and thus require higher doses ofEPO (i.e. drug containing erythropoietin hormone 

that controls red blood cell production) to prevent undesirable cardiovascular events. 
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Recently, a study examining the effect of darbepoetin (which causes the production of 

erythropoietin hormone) treatment was published. This study included patients with CKD who 

were not under dialysis treatment and who were not diagnosed with anaemia and type II 

diabetes. In this study, darbepoetin was used to target two groups, one with haemoglobin level 

at about 13 g/dL and other with haemoglobin level below 9 g/dL. As a result, the study 

concluded that the control of haemoglobin had not improved the primary end point (which was 

death, myocardial infraction, unstable angina, heart failure, stroke or asymptomatic 

hyperuricaemia) (Pfeffer et a/. , 2009). 

2.1.10 Management of CKD 
The prevalence of CKD is high worldwide, and in the UK in particular. Therefore, the 

management ofCKD is very important (Burden et a/. , 2005). Guidelines have been produced to 

make recommendations for the identification, management and referral in primary care of 

patients with CKD (Burden et al., 2005) (UK Renal Association, 2011). In the UK, CKD is 

usually identified as stage 3, where an eGFR value was recorded alongside with a creatinine 

measurement for each patient. In the UK, the patients diagnosed with CKD at stage 3 are 

normally managed by a general practice team of doctors and nurses. Early identification ofCKD 

was encouraged by the Quality Outcomes Framework (QOF) indicators which were firstly 

introduced in 2006. The QOF of the General Medical Services contract in the UK developed a 

payment system for primary care practices based on the number of chronic illnesses treated. 

QOF has benefitted CKD patients through earlier diagnosis of CKD, creating a registration 

system for the CKD patients in order to ensure that a regular monitoring was performed, 

following-up kidney function, proteinuria and blood pressure regularly for those patients with 

CKD and providing management of blood pressure to achieve specific targets. 

The development of cardiovascular diseases as a result of CKD usually results in death 

(de Lusignan et al., 2009), hence, to decrease mortality, it is very important to diagnose CKD 

at the earlier stages to prevent or slow down the progression of the disease by prescribing a 

suitable treatment. Good control of blood pressure and of glucose level in diabetes, medication 

to lower cholesterol levels, a healthy diet, regular physical activity and keeping weight under 

control are used to prevent cardiovascular disease (UK National Kidney Federation, 2010). 
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Dietary protein restriction is one of the factors which need to be considered to delay the 

progression ofCKD. Protein restriction terminates the increase in glomerular disease and slows 

the progression to end-stage renal disease (Amaresan and Geetha, 2008). Patients typically need 

to start protein restriction at the early stages of CKD when the GFR was around 60 

mLiminll.73m2. If the patient's GFR value is between 25-55 mLimin/l.73m2, then their protein 

intake should restricted to be 0.8 glkg/day. If the GFR figure is less than 25 mLimin/1.73m2, 

then protein intake should be restricted to 0.6 g/kg/day (Amaresan and Geetha, 2008) (Black el 

al .. 2010). 

As proteinuria is important screening analysis which can indicate glomerular disease, 

reduction in proteinuria has to be considered. Reduction in proteinuria delays the progression of 

CKD (Andrews, 2008). Both the REIN study and the MDRD study carried out by Amaresan 

and Geetha (2008) validate this argument. Hypertension in conjunction with CKD increases the 

risk of cardiovascular disease and increases both the mortality (death) and morbidity (having 

the disease) rates. Control of hypertension is achieved by controlling the blood pressure (BP). 

All patients with CKD should maintain a BP lower than 130/80 mmHg, and patients having 

proteinuric renal disease should retain a BP below 120175 mmHg. In 1993, Jafar el al. reported 

that in order to reduce the development ofCKD and protei uri a, ACEls are more successful than 

other anti-hypertensive treatments (Amaresan and Geetha, 2008). Two large prospective 

randomised trials carried out by Amaresan and Geetha (2008) suggested that ARBs are also 

effective in reducing progression of CKD in type II diabetic patients. Coughing as a side effect 

is very rare from prescription of ARBs whereas it is common in patients taking ACEls (about 

40%) (Burden and Tomson, 2005). The prescription of ACEls in combination with trandolapril 

(an ACEI drug used for the treatment of high BP) and ARBs in combination with losartan (an 

ARB drug used for the treatment of high BP), caused greater success in reducing the 

development of CKD and urinary protein excretion than using the individual drugs (ACEls or 

ARBs) (Amaresan and Geetha, 2008) (Black el al .. 2010). 

Stringent glycemic control is achieved by reducing the patient's blood sugar level. The 

target blood sugar level should be less than 100mgldl under fasting conditions and less than 

130mg/dl two hours after eating a meal slowing the progression of CKD in diabetics (Crowe el 

al .. 2008). In patients with CKD, anaemia is caused by the reduction of the erythropoietin during 
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the early stages of the disease. Controlling anaemia is important in CKO because anaemia can 

produce adverse effects, on the heart and vascular system which can lead to death. In order to 

correct anaemia, as well as managing erythropoietin levels, iron supplementation in the diet is 

recommended. Correction of anaemia will improve a patient's quality of life (Amaresan and 

Geetha, 2008; Andrews, 2008). 

Hyperlipidemia (high levels of lipids in the blood) increases the development of CKO 

as well as the cardiovascular morbidity and mortality. The MORO study carried out by 

Amaresan and Geetha (2008) suggested that lower levels of serum high density lipoprotein 

(HOL) cause a rapid decrease in GFR. The same study also suggested that low density 

lipoprotein (LOL) should be kept under 100mg/dl. Therefore. statins are prescribed as a 

treatment to decrease LOL and increase HOL. Statins control hypertension by decreasing 

peripheral arterial resistance. Statins also decrease the acuteness of proteinuria (Amaresan and 

Geetha, 2008). 

Treatment of underlying diseases such as hypertension, anaemia and diabetes. or of 

infections and earlier referral to nephrologists were recommended to avoid the deterioration of 

kidney function. Excessive fluid volume due to obesity causes hyper filtration which in tum 

leads to microalbuminuria and glomerulosclerosis (a condition of hardening of glomerulus in 

kidney). Therefore, treatment of obesity and control of saIt intake, with a suitable nutritional 

diet and regular exercise is recommended to the patient. Smoking causes vascular problems and 

systemic hypertension increasing the risk of development of CKO or causes an increase in 

progression ifalready present. Therefore, patients aiming to control CKO must give up smoking 

entirely (Amaresan and Geetha, 2008; Andrews, 2008; Frankel el aI., 2005). 
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2.2 Literature Review on Statistical Background 

2.2.1 Longitudinal Studies 

Longitudinal data is becoming widely available across many fields of study and from 

varied resources, and shares common characteristics with multivariate data and time series data, 

For example, like with multivariate data the same subject is measured over time at various time 

points, resulting in repeated measurements rather than measuring different features of the same 

individual at a particular time point; and as with time series data measurements are obtained 

from the same subject about a particular feature which are ordered in time. The main difference 

between longitudinal data and time series data is the number of subjects measured and the 

number of repeated measurements obtained from each subject. While large number of subjects 

are measured in longitudinal data with each subject having small number of repeated 

measurements, in time series data, a single subject is measured with large number of repeated 

measurements. (Fitzmaurice et al., 2004). 

Correlated data is generated when the data contains either multivariate observations, 

repeated measurements, time series, clustered data or spatially correlated data. Longitudinal data 

is defined as a special case of such (correlated data) when a series of measurements are taken 

from the same subject over long periods of time (Diggle et al., 1994, Molenberghs and Verbeke, 

2005). Longitudinal data is naturally generated in many fields including medical research, 

epidemiology and public health, biological science, environmental science and the social 

sciences (Fitzmaurice, 2009). The focus ofthis research project is in the usability oflongitudinal 

data within the medical field. The term 'longitudinal' in this instance then, indicates data 

collected over relatively long periods of time and the potential for understanding changes in 

outcomes over time using this data. 

Modern longitudinal studies first emerged in the early 1970s (Hedeker et al., 2006). But 

it only more recently, that large and complex longitudinal studies have started to grow in 

popularity. In the last 20 years there has been a steady increase in the interest and use of 

longitudinal data for research puposes. Researchers have realized the significance of analysis of 

longitudinal data in biomedical and health-care applications, for example, when they are 

interested in understanding the progression of a disease over time and detecting the influence of 
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various factors such as age, gender and presence of other diseases on this progression. Therefore, 

a general aim oflongitudinal data analysis is to examine the change in a response over time and 

also to find factors that impact on this particular change (Fitzmaurice and Molenberghs, 2009). 

This can be achieved by analysing data taken from measuring the same individual repeatedly 

over time (Davis, 2002). In such studies where the behaviour of the subject is investigated over 

time, the relationship between behaviour and time is called diachronic; as opposed to 

'synchronic' where the behaviour of the subject is examined at one particular point of time 

(Ruspini, 2002). An early example of longitudinal study used in medical research was in 1981 

in Italy where diachronic relationships were initiated to observe the effect of a treatment on 

individuals at the end of the study period. 

2.2.2 Types of longitudinal studies 

A single cross-sectional study is where a single observation is observed from each 

subject. The data for cross-sectional studies can be obtained in two ways; either at the micro 

(individual) level or at the macro (population) level (Ruspini, 2002). In cross-sectional studies 

data is observed at a single time point, and hence these studies are easier to set up and cheaper 

to run than longitudinal studies. Cross-sectional studies investigate a wide sample of the 

population at a defined time and allow the researcher to achieve results almost immediately 

(Ruspini, 2002). When a series of repeated cross-sectional studies (also called trend studies) 

are collected by using different samples of subjects, the information about the response is 

observed over a long period of time, resulting a longitudinal study (Ruspini, 2002). Repeated 

cross-sectional studies often obtain the data retrospectively, where the data is collected from 

examination of past events (Diggle et aI., 1994). Therefore the data is available almost 

immediately. Hence, this feature of repeated cross-sectional studies generates an advantage over 

a true longitudinal study that usually requires a long period of time for collection if the event is 

observed prospectively (forward in time). Repeated cross-sectional studies are useful for 

examining changes at the macro level and can be quite straightforward in this respect. The main 

disadvantage is that the measurements are not based on the same subject, which can introduce 

great effects due to between subject variations. 
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In most cases, including the medical area, longitudinal data are created from accurately 

controlled experiments such as clinical trials which are collected prospectively (Diggle et aI., 

1994). Prospective longitudinal studies (also called panel studies) are the preferred type of 

longitudinal study as observations are repeated regularly at fixed time intervals over time using 

the same sample. This approach also reduces the scope for error due to retrospective recollection 

(backwards in time), where there is a danger that the subject will not remember information 

correctly (Diggle el al., 1994). In these studies, information is gathered when subjects are 

present in the study and data is collected through future observations (Ruspini, 2002). These 

studies usually investigate the change at the micro level. 

Panel studies are a type of prospective longitudinal study where the data is collected at 

frequent intervals and is used to determine the stability or fluctuation of opinions and attitudes 

(Ruspini, 2002). Again data is collected by observing the same individuals regularly over fixed 

intervals. From the literature, it can be concluded that the shorter the time interval between 

observations, easier it is to obtain a higher percentage of responses due to the relationship built 

up between individual/household and the surveyor over time (Ruspini, 2002) Panel studies are 

commonly consumer based or household based. 

Rotating panel studies are slightly different in that the sample changes as the population 

changes. The purpose of this type of panel study is to keep the sample up to date. In this way, 

the characteristics of the original sample are updated and this decreases the possible bias that 

can occur in the study due to the characteristics of the sample. Observations are collected from 

individual only once and never again. Therefore, a rotating sample can form a control group as 

the sample is not exposed to possible effects of contributing in the survey. 

Split panel studies are a further development where data is obtained from investigating 

rotating samples together with another set of subjects observed over a long period of time. Both 

rotating and split panels are a combination of panel studies and repeated cross-sectional studies 

(Ruspini, 2002). 

A cohort panel study is designed so that rather than observing data from the same 

individual, the information is collected from a random sample of individuals who are having 

the same life-event within the same time interval, such as British birth cohort studies that include 
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repeated surveys to investigate same group of people from birth through their lives. When the 

same sample is observed over time, a cohort study is effectively a series of panel studies. 

Linked or Administrative panel studies gather data from public administration processes. 

Often in such studies, data from different sources are combined together using unique personal 

identifier. For example, registration data is joined together with census data by using a unique 

identifier and hence, a large dataset is obtained by linking administrative data with census data 

(Ruspini, 2002). 

In retrospective longitudinal studies, observations are gathered retrospectively meaning 

that the data is obtained by considering past events, going backwards in time. Information is 

collected in relation to repeated events at different time points in the past. However. a drawback 

of both repeated cross-sectional and longitudinal studies is that information is collected at 

discrete time points (Ruspini, 2002). Therefore, the time variable in the data set is not the actual 

time and instead it is the observation point where the response is obtained. In cases when the 

response is obtained at unequal intervals, analysing such data sets by using discrete time points 

can produce a bias results. Hence, continuous time points should be created to investigate the 

actual effect of time on the response, specifically if the repeated measurements are obtained at 

unequal time intervals. 

2.2.3 Advantages and Disadvantages of Longitudinal Studies 

Longitudinal studies have many advantages over traditional data collection methods, 

Perhaps the most obvious of these being that in general fewer individual subjects are needed to 

attain similar statistical power (than say cross-sectional studies) (Hedeker et al.. 2006). The 

reason for this, is that in longitudinal studies, more information is achieved from multiple 

measurements on the same subject. Therefore, when there are equal numbers of subjects and the 

same outcome is measured, longitudinal studies can provide better estimators than cross 

sectional studies. 

Further, longitudinal studies are commonly used in analysing changes in a response over 

time by separating the two types of heterogeneity (variation), namely between subject 

differences and within subject differences. This is not possible in cross-sectional designs since 
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only a single measurement is observed from each subject (Diggle et al.. 1996: Hedeker and 

Gibbons, 2006). Additionally, a longitudinal study investigation can also take account of the 

unmeasured subject-specific variability (random variations) in the response. Unmeasured 

subject-specific factors are components such as genetic, environmental, social or behavioural 

factors that cannot be measured but which affect the response variable and should be considered 

in the analysis (Fitzmaurice et al., 2004). Taking these factors into consideration in the analysis 

of longitudinal data, should lead to an estimation of the response with a better accuracy 

compared with that provided by cross-sectional studies (Diggle el aI., 1996). 

For example, in applications to the social sciences. there are three different kinds of 

effects that can influence outcomes in longitudinal data. These are ageing effect. cohort effect 

and period effect. Ageing effect results due to the flowing of time, cohort effect represents 

dependency of the outcome on those subjects born in the same year and period effect is the 

dependency of the outcome on the time interval of the study. When any two effects are known, 

the third can also be determined. An advantage of using longitudinal data in such applications 

is that we can differentiate the ageing effect from cohort effects. again this cannot be achieved 

with cross sectional data (Hedeker et al., 2006). 

In applications to the medical field, an example of the use of longitudinal data is in 

clinical trials where interest lies in drawing conclusions about the effect of different kinds of 

treatments over a particular time period. In clinical trials, groups of subjects are selected to 

participate in different kinds of treatments over a particular time period. In this way, these 

studies supply information about within individual change and allowing the investigator to 

control for individual heterogeneity (Hedeker et aI., 2006) and refer to changes to individuals' 

characteristics over time (Fitzmaurice et al., 2004). 

The advantages of longitudinal data suggest that longitudinal studies appear to be more 

powerful than cross-sectional studies (Diggle et aI., 1996). Additionally, since longitudinal data 

is already clustered as the data is obtained from taking repeated observations from a single 

individual at different times, exact estimates of change can be achieved. This is due to 

observations in clustered data usually displaying a positive correlation over time meaning that 

measurements closer together in time show higher correlation than measurements further apart 
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in time (Fitzmaurice et al., 2004). Longitudinal data is a special case of clustered data where the 

orders of the measurements have a significant effect due to the positive correlation between the 

measurements taken from the same subject (Fitzmaurice et al., 2004). The problems of 

correlation can be overcome by taking account of within individual change using a suitable 

methodology. 

Longitudinal studies also have some disadvantages. The vital assumption of 

independence between observations of the response which underpins most common statistical 

techniques cannot be taken in longitudinal data. The assumption is violated because 

observations taken from the same individual are dependent on each other and cannot be assumed 

to be independent. (Hedeker et al., 2006). 

Furthermore, the measurements taken from the same individual are observed in an 

ordered time sequence and even the time interval between the two measurements does not have 

to be equally spaced, obtaining these measurements repeatedly over time results in the data 

being correlated. Therefore according to Diggle et ai., (1996), if this correlation is disregarded, 

at least three main problems arise including the interpretation of regression parameters in the 

usual way being invalid, estimation of regression parameters being impractical and bias being 

incurred due to inadequate description for missing data. 

The correlation between the repeated measurements is caused by three sources of 

correlation, namely between subject heterogeneity, serial correlation and measurement error 

(Diggle et al., 1996; Fitzmaurice et al., 2004; Molenberghs and Verbeke, 2005). Between­

subject heterogeneity is the variation occurring in the response due to considering different 

subjects. The response obtained from each subject under the same controllable conditions can 

be different due to the unmeasured factors (random factors) mentioned earlier. Serial correlation 

results when the repeated measurements observed from the same individual are dependent on 

the time interval between the two adjacent measurements (Fitzmaurice et ai., 2004). There is a 

negative relationship between the time interval of two adjacent measurements observed from a 

single individual and the correlation between those two measurements. This means that two 

repeated measurements taken from the same individual close together in time have a stronger 

correlation compared to two repeated measurements from the same individual taken further 
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apart in time (Diggle et of., \996). In such cases, this correlation between the repeated 

measurements within an individual results from carryover effect. The carryover effect, which is 

also called as sequence effect, occurs when different measurements of the same response are 

obtained from the same individual at different time points. In this way, the order of the time 

points might have impact on the response achieved at the end of the study. For instance, in 

clinical trials where the individual is exposed to different treatments at various time points, the 

response from one treatment might be conditional on the response from the previous treatments. 

Therefore, dealing with the issue of carryover effect is important and requires the researcher to 

use suitable methodologies to conclude strong statistical inferences (Fitzmaurice et aI., 2004). 

However, analytical methods are not developed well enough in the area of longitudinal studies 

and there is a lack of availability in computer software to deal with longitudinal data (Hedeker 

et 01., 2006). 

In most studies, besides between-subject heterogeneity, within subject differences are 

observed as a result of combination of time-dependent serial correlation and measurement error. 

Since the availability of data is usually limited, the two separate sources of within subject 

variability cannot be analysed separately and therefore this type of variability is considered to 

be a combination of serial correlation and measurement error. In this way, studies can take 

account two different sources of heterogeneity as being within individual differences and 

between individual differences. While the capability of longitudinal studies to allow for within 

subject correlation is an advantage, this correlation violates the usual independence assumption. 

Hence, more sophisticated statistical methods must be used in the analysis of longitudinal data 

sets. A further difficulty in analysing such data increases when the data is unbalanced (Gibbons 

et of., 20 to). Unbalanced data usually arise if the measurement times are not the same for all 

subjects or if an unbalanced structure due to missing observations for some subjects occurs. 

Missing data clearly leads to problems in the analysis of longitudinal data and occurs 

when an individual drops out of the study before the endpoint, this is commonly referred to as 

attrition. Attrition is usually the main reason for missing values (Hedeker el 01.,2006) and can 

be due to many reasons. For example, in clinical trials experiencing a detrimental side effect 

from the applied treatment, death of the patient, gaining full benefit from treatment and believing 

that they will not add any additional benefit to the study, etc. may be causes of attrition. 
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(Goldstein, 2009). Further sources of missing data, referred to as incomplete data occur when 

an observation is not recorded, for instance if an individual misses the planned appointment 

time, which results in having mistimed measurements. In this situation, data will be unbalanced 

over time (Fitzmaurice et aI., 2004). In longitudinal studies, even in data from randomized and 

well-controlled clinical trials, the problem of missing values is still highly relevant. According 

to Fitzmaurice el aI., (2004), having a balanced and complete longitudinal dataset is an 

uncommon case in the health sciences. 

Some relevant examples of approaches to dealing with missing data include completer 

analysis which only takes account of the subjects who have completed the study. However, 

when the completer analysis is used, the size of the subject sample at the end of the study will 

not be the same as it was initially and will also be biased towards survivors (i.e. will ignore 

those who have died). An alternative approach used to mitigate the effects of attrition is called 

Last Observation Carried Forward (LOCF) (Hedeker et al., 2006). At the point of any subject's 

discontinuation, the LOCF approach estimates of the subsequent measurements. However, in 

this way, the LOCF approach introduces some problems. For instance, it assumes that every 

individual subject is same and will have the same influence to the treatment over the study 

period. Furthermore, the study ignores that if the subject had continued in study, the actual 

response of that individual subject might be very different from the response value just being 

carried forward (i.e. constant) from last observation at the point of discontinuation (Hedeker el 

aI., 2006). 

An additional problem commonly occurring in longitudinal studies is the problem of time­

varying covariates. This means that when any individual is measured over time, change may be 

observed in the value of some of the predictors, which are the independent variables, as well as 

in the value of outcome. For instance, a patient's weight and/or blood pressure will tend to vary 

over time. The aim of the study is to estimate the correlation between the predictors and outcome 

variables. However, this dynamic relationship takes place within individuals and therefore may 

differ from individual to individual. This variation adds complexity to the statistical model and 

requires more sophisticated analysis than cross sectional studies (Fitzmaurice et al., 2004). 
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2.2.4 Approaches to analyse longitudinal data 

One of the simple univariate analysis methods that can be used to analyse repeated 

measurements is derived variables analysis (Diggle et al., 1996; Fitzmaurice el a/., 2004; 

Hedeker and Gibbons, 2006). This is a simple analysis that can be effective in certain cases. The 

approach is used to combine repeated measurements into summary measures by techniques such 

as either taking the mean response over time, measuring the linear trend over time, using the 

last observation carried forward method, using the changes in the measurements or by 

evaluating the area under the response curve (Hedeker and Gibbons, 2006). Other traditional 

techniques that are used in the analysis of cross-sectional data, such as Analysis of Variance 

(ANOVA), can be used to analyse the data by measuring the difference between the group 

means or by examining the effect of covariate on the response (Diggle et aI., 1996). The effect 

of covariate on the response is investigated by ANOVA when there are two repeated 

measurements where the difference is taken as an outcome measure (Hedeker and Gibbons, 

2006). On the other hand, derived variable analysis cannot deal with unbalanced or incomplete 

data and cannot model time-varying covariates due to the heteroscedascity (i.e. having different 

amount of information per subject) caused by the structure of the data. 

According to Fitzmaurice et al., (2004), two classical approaches exist to analyse 

Gaussian (Normal) longitudinal data, namely; repeated measures analysis of variance 

(ANOV A) which is also known as univariate or mixed model ANOV A, and multivariate 

repeated measures analysis of variance (MANOVA). 

ANOV A models allow correlation to exist between repeated measurements from the 

same subject. In these models, a random intercept is used. This means that the models allow 

each individual to have different initial values of the dependent variable. However, exclusion of 

random slopes from the model, restricts the model. In this way, the model use a compound 

symmetry covariance structure, which assumes constant variances and covariances over time. 

Therefore, the slope is assumed to be constant for anyone subject. These models do not take 

serial correlation into account, cannot deal with incomplete and unbalanced datasets and cannot 

handle continuous covariates (Hedeker and Gibbons, 2006). Therefore, time has to be included 

in the model as a categorical variable. 

Longitudinal Analysis of Routinely Collected General Practice Records 
40 



Chapter 2 - Literature Review 
MANOYA is an alternative technique which expands the ANOYA method, so that the 

approach can be used on multivariate response data (Fitzmaurice el al., 2004). This approach 

can also be used to analyse longitudinal data and will be more applicable compared to ANOYA 

models because MANOY A allows the modelling of covariance structure in a more adaptable 

manner (Gibbons el af., 20 I 0). For instance, modelling the covariance structure as unstructured 

rather than compound symmetry. However, the major restriction required for this approach is 

that the data have to be complete. Hence, MANOY A is not applicable for use on unbalanced 

data and cannot model continuous covariates (Fitzmaurice el af., 2004). As ANOYA based 

techniques have too many constraints and hence cannot address the main aims of longitudinal 

data analysis, they are not the preferred methods used to analyse such data sets. 

2.2.4.1 Regression Models for Gaussian Data 

Since the simple approaches described above are not really applicable for use in the 

analysis of longitudinal data, more sophisticated regression models have been developed. In 

order for an advanced model to be appropriate to use in real-life practice, it firstly needs to deal 

with incomplete and unbalanced data in a natural way, then the model should also be able to 

model time-varying covariates. Furthermore, the model should consider three sources of 

variation, namely; between subject variation, serial correlation and measurement error to model 

the covariance structure in a flexible manner and, finally, the model should be able to evaluate 

the within individual differences. 

If the underlying distribution of the data is assumed to be Gaussian (Normal), statistical 

models that fulfil the criteria mentioned above and are suitable for the analysis of Gaussian 

longitudinal data include full multivariate models and linear random effect models. These 

models were first studied by Laird and Ware (1982). The differences between these two 

approaches arise when the correlation between the repeated measurements is taken into account. 

The full multivariate models are also known as marginal multivariate models. On the other hand, 

various random effects models are also known as multi-stage random effects models which were 

studied by Laird and Ware (1982) and Diggle el al., (1996), hierarchical linear models which 

were studied by Davidian and Giltinan (1995), subject-specific models which were studied by 
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Molenberghs and Verbeke (2005), linear mixed models studied by Molenberghs and Verbeke 

(2005) or mixed-effects regression models which were investigated by Hedeker and Gibbons 

(2006). 

When a deeper investigation is performed on how the two approaches handle correlation 

between repeated measurements, it can be concluded that full multivariate model and random­

effect model are quite similar. In both models, the response is assumed to follow a multivariate 

normal distribution. In the full multivariate model, the mean response vector and covariance 

matrix are modelled separately by only looking at the relationship between repeated 

measurements within a subject, whereas in the random effect model, covariance is modelled by 

including random terms that can account for subject-specific differences occurring due to 

unmeasured factors. In this way, in a full multivariate model, the response vector is assumed to 

have the same form for all subjects, while in random-effect models, regression coefficients are 

allowed to be subject-specific. Both models can deal with unbalanced and incomplete data. In 

the case when missing values are assumed to be missing completely at random (MCAR) or 

missing at random (MAR), than both models are robust to missing data. Both models allow the 

inclusion of time varying covariates and modelling continuous variables. However, both models 

have certain weaknesses. The drawback of full multivariate model is the computational 

complexity, because analytical evaluation depends on the dimension of the covariance matrix. 

However, when full multivariate models are converted to semi-parametric models, this burden 

of computational complexity can be overcome and hence robust estimations can be produced. 

However, such semi-parametric models are only adequate if the emphasis of the researcher is to 

concentrate on the mean parameters over the sample. Even if the interest is only on the mean 

parameters, using these methods will reduce the precision and can incur a bias for incomplete 

data. Furthermore, when the interest lies in estimation of subject-specific responses, full 

multivariate methods will not be applicable as they cannot decompose the total heterogeneity 

into within subject differences and between-subject differences. On the other hand, random 

effect models do separate the total heterogeneity and quantifies these between-subject 

differences and within subject differences. When random effect models are compared with full 

multivariate models, random effect models usually require fewer parameters and hence are 

computationally more favourable than full multivariate methods. Despite the differences 
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between these two methods, they can often result the same fixed effect parameters since the 

difference between them lies in the covariance matrix formulation and only affects the random 

effect part of the model. 

2.2.4.2 Mixed Models 

When the response is only observed from one measurement (i.e. not repeated over time). 

simple linear models can produce similar results to linear mixed models. This is because in the 

case of one response measurement, there are no multiple observations from the same subject 

available to investigate the correlation between the measurements within a subject. Hence, the 

error term in the model is not divided into two separate random effect and measurement error 

terms, instead the error term only includes the measurement error in both these models in such 

situations. However, when the response contains multiple measurements for each subject, the 

error term is analysed as two separate terms and random effects are added to the linear models 

in order to form linear mixed models. In both linear and linear mixed models, the response is 

assumed to follow a Gaussian (normal) distribution. In linear mixed models, in addition to the 

assumption on the distribution of the response variable, the response is assumed to be linearly 

related to the other covariates, subjects are assumed to be independent, and both random effects 

and random errors are assumed to have mean zero and constant variance. It is also assumed that 

random effects and random errors are uncorrelated. The second main difference between these 

two types of models is that linear mixed models allow the modelling of the hierarchy involved 

in the structure ofthe data. In linear mixed models, because the response will contain multiple 

measurements from each subject, multiple repeated measurements are considered to be nested 

by subject. Hence, a hierarchy is involved when considered as individual measurements at the 

lower level and the subjects at higher level. In certain cases, more than two level structures are 

also possible for instance in social sciences when students are nested in classes and classes are 

nested in schools or in primary health care when measurements are nested in subjects and 

subjects are nested in practices. Therefore, inclusion of the hierarchical structure prevents 

measurements from being independent and hence simple linear models with the independence 

assumption cannot be used to model such datasets. Linear mixed effects models take account of 

this correlation between the measurements by incorporating the random effects into the model. 
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There are two different types of linear mixed effects models namely; random intercept models 

where the random effects vector only has a random intercept and a fixed slope and a random 

intercept and random slope models where both the intercept and slope can vary between 

subjects. Including a random intercept in the model will allow each subject to have different 

initial values, so each subject will have its' own deviation from the group mean. Additionally, 

including a random slope in the model will allow each subject to follow a different linear trend 

over time from the others. In this way, each subject can have its' own deviation from the group 

trend over time. 

In most cases, the individual subjects are not the main interest. Knowing the individual 

deviations from the group mean and group trend over time will help in estimation of the 

heterogeneity between subjects and will affect the evaluation of fixed effects parameters. Fixed 

effects parameters are estimated either by (restricted) maximum likelihood approach or 

Bayesian approaches (Verbeke & Molenberghs, 2000). These models consider the correlation 

between the repeated measurements taken from the same individual in the case of multiple 

response measurements, but different subjects are still assumed to be independent from each 

other. The theory of these models will be explained in chapter 5 together with the application to 

the dataset used in this project. 

2.2.4.3 Regression Models for Non-Gaussian Data 

Full multivariate and random effects models can be extended to analyse non-Gaussian 

longitudinal data, where the response from each subject is not normally distributed but has a 

known distribution which belongs to the exponential family such as the Gamma distribution. 

These extended models are called generalized linear models (GLMs), and they were first studied 

by McCullagh and Nelden (1989). As for longitudinal Gaussian data, there are several sub-types 

of generalized linear models such as marginal models, subject-specific models and conditional 

models. 

Marginal models are the generalisation of full multivariate models which are used in the 

Gaussian case. Therefore, marginal models also model the covariance structure and 

measurement error separately while examining the correlation between repeated measurements 
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for an individual subject. In marginal models, the maximum likelihood approach (maximisation 

of the actual log likelihood function of the data) is used as the parametric approach to model the 

covariance matrix. On the other hand, semi-parametric approaches that rely on specification of 

the first two moments can be used to model the covariance structure and such models include 

generalized estimated equations (GEE) (methods that focus on population-average effects and 

hence cannot be investigated in this study) and pseudo-maximum likelihood method\' (also 

known as quasi-likelihood methods that maximise a function that is related to log likelihood of 

the data). GEE methods were studied by Liang and Zeger (1986) and pseudo-maximum 

likelihood methods were studied by Molenberghs and Verbeke (2005). 

Subject-specific models are the generalized version of random effects models. where the 

correlation between repeated measurements can be modelled in the same way as in the random 

effects models in the Gaussian case. Subject-specific models are called random effects models, 

generalized linear mixed models (GLMMs) or hierarchical models. 

Conditional models were first studied by Diggle et ai., (1996). In conditional models, 

the association between the predictor variables and the response is investigated. how the 

response depends on predictor variables is examined and both the association and the 

dependence are modelled simultaneously in the same equation using the previous responses. As 

well as non-Gaussian data, conditional models can also be applied on Gaussian data. 

Comparison of these three models (conditional models, subject-specific models and 

marginal models) when applied to both Gaussian and non-Gaussian data sets, shows the 

difference in interpretation of fixed effect parameters in both cases (Diggle et ai., 1996). When 

applied to Gaussian data, all three models result the same interpretation of fixed effects 

parameters. However, in non-Gaussian data, the interpretation offixed effect is different in each 

of these three types of models due to use of various different assumptions about the source of 

correlation between the predictor variables and response. In marginal models, fixed effects 

measure population-averaged effects of predictor variables on the mean response (i.e. grand 

mean), while in random effects model, fixed effects measure the effect of the independent 

variables on the mean response per subject (i.e. group mean) but with subject-specific random 

effects. On the other hand, in conditional models, fixed effects measure the effects of the 
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predictor variables on the mean response that is conditional on the previous responses of all 

subjects. Since the interpretation of fixed effects parameters in conditional models are more 

difficult than for marginal and random effects models, marginal and random effects models are 

more widely used in practice than conditional models (Molenberghs and Verbeke. 2005). 

2.2.4.4 The differences between Generalized Linear Mixed Models (GLMMs), 

Generalized Linear Models (GLMs) and Linear Models (LMs) 

Generalized linear models (GLMs) are the extension of simple ordinary linear models 

(LMs) where (in the former), the response variable does not have to follow a Gaussian (normal) 

distribution as is the case in the latter type of model. However, instead ofa Gaussian distribution, 

the response should belong to one of the exponential family of distributions. 

Linear mixed models (LMMs) are the extension of simple linear models where the 

distribution of the response is assumed to follow a Gaussian distribution as in the simple linear 

models. The main difference between LMs and LMMs is that the latter includes random effects 

into the model formulation in addition to former model. 

Generalized linear mixed models (GLMMs) are the extension of generalized linear 

models where the assumption about the distribution of the response variable is same as for 

generalized linear models. The difference between generalized linear models and generalized 

linear mixed models is that in GLMM, random effects are included in the model, as in linear 

mixed effects models (LMMs). Therefore, in GLMMs, similar to LMMs, there are two parts, 

namely; fixed effects and random effects. The error term also has two parts, namely random 

error and measurement error. Random error is included in order to take account of the error due 

to unobservable but significant factors such as genetic factors. Since GLMMs make the same 

assumption as GLMs about the assumption of the response variable, the former models also 

assume that variance of the response can be defined as a function of the mean and assume that 

the response has been transformed by using some link function. In models discussed in this 

section, the relationship between the response and the independent variables is assumed to be 

linear. However, in practice this relationship is not always linear. In such cases where the 

relationship is non-linear, the response is first transformed, so that the association between the 
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mean transformed response and the independent variables become linear. This transformation 

is achieved by using a suitable link function and then GLMMs can be used. Assumptions about 

the random effect and random errors are still kept the same in GLMM as for LMM and subjects 

are still assumed to be independent. GLMMs which are the extensions ofGLMs, can be treated 

as a special case of mixed models, containing random effects in addition to fixed effects. As for 

LMMs, in GLMMs, fixed effects parameters are usually estimated by the maximum likelihood 

approach by integrating over the random effects. If any missing cases are involved in the data, 

these are assumed to be either missing at random or missing completely at random. 

Furthermore, if the research question can only be answered by modelling the original 

data or if the association between the mean transformed response and the independent variables 

is still non-linear after transformation, then marginal and random effects models are no longer 

effective methods for use in the analysis. For this reason, in order to model this non-linear 

relationship, marginal and random effect models are extended and generalized. The extensions 

of random effects models can be more widely used and are called non-linear mixed models. 

These non-linear mixed model were studied by Davidian and Giltinan (1993, 1995, 2003), by 

Vonesh and Chinchili (1997) and by Molenberghs and Verbeke (2005). Several authors have 

identified the effectiveness of such models in health care such as in the pharma kinetic field 

when analysing the rate of clearance of a drug and in the analysis of growth or decay rates. 

2.2.4.5 Generalized Additive Models (GAMs) and Generalized Additive Mixed Models 

(GAMMs) as non-linear mixed models 

Generalized additive models (GAMs) are also another extension of generalized linear 

models. The model assumptions are the same as for generalized linear models, except for the 

linearity assumption being removed. This is the main difference between generalized linear 

models and generalized additive models. The link function which was in the form of linear 

predictor in generalized linear model is replaced by sum of smooth functions of the predictors 

in generalized additive models. These smooth functions of the predictors allow a flexible 

approach to the relationship between the predictor variables and the response. In this way, the 

linearity assumption became a nonparametric version generalized linear models. The smooth 
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functions are evaluated using the same data as for the simpler models. Therefore, in order to 

obtain reliable estimates of parameters, a large number of data points are required by generalized 

additive models, which also increases the intensity in computation of such models. 

In GLMs, a single coefficient is estimated for each independent predictor. However, in 

GAMs, an unspecified, nonparametric function is estimated for each predictor by using a 

combination of smooth functions. Smooth functions estimate the non-linear relationship 

between the predictor and the response by using a large number of data points. As a result, a 

nonparametric function is obtained to describe this relationship. In generalized additive models, 

the fixed effects parameters are modelled using entirely parametric models as in GLMMs; 

whereas when smooth functions are used in some covariates, those covariates are modelled 

using the unspecified, nonparametric function obtained from smooth functions. These 

unspecified, nonparametric functions are associated with the response variable through a link 

function (Hastie and Tibshirani, 2009). According to Wood (2006a), GAMs can be estimated 

by using penalized regression spline methods. In this way, violating the linearity assumption 

and taking account of the non-linear relationship will increase the accuracy of prediction of the 

response. 

Generalized additive mixed models (GAMMs) are the extension of generalized linear 

mixed models (GLMMs). In GAMMs, as in GLMMs, the response variable is allowed to have 

any distribution that belongs to the exponential family. This means that the response can follow 

a non-Gaussian distribution given that this distribution is from the exponential family such as 

gamma distribution. In GAMs, fixed effects are modelled by the parametric component. 

However, the addition of random effect terms to a generalized additive model turns the model 

into a generalized additive mixed model and in GAMMs, the fixed effects are modelled in a 

non-parametric way by using a combination of smooth functions. In GAMMs, the response 

variable is no longer assumed to be linearly dependent on the predictor variables. Another 

advantage of GAMMs is that these models allow a flexible covariance structure for the random 

effects. In this way, these models can be seen as desirable for the analysis of longitudinal 

datasets having a clustered, hierarchical or spatially correlated data structure. In GAMMs, as in 

GAMs, smoothing functions can only be estimated for continuous predictors. 
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Using the frequentist approach, in GAMMs, estimation of non-parametric functions and 

smoothing parameters are carried out using restricted maximum likelihood (REML) approach 

(that uses likelihood function calculated from transformed dataset, so nuisance parameters such 

as mean and variance will not have an effect) if the response follows a Gaussian distribution. 

On the other hand, if the response follow a non-Gaussian distribution, penalized quasi­

likelihood (PQL) (estimates based on pI order Taylor series) or double penalized quasi­

likelihood (DPQL) (involving two different types of estimates; one for random effect and one 

for smoothing parameter) approaches (where in both PQL and DPQL approaches, relationship 

between mean and variance is specified as a function of mean by likelihood function) are used 

in the estimation of the non-parametric functions and smoothing parameters. In terms of link 

functions, an identity link is assumed for Gaussian responses. The reason for choosing REML 

over ML estimation for a Gaussian response is because a ML estimator is usually biased when 

used in the estimation of variance whereas a REML estimator is reliable and asymptotically 

normal even if the response variable does not follow a Gaussian distribution. In most cases 

where the response is non-Gaussian, the likelihood function cannot in practice be obtained by 

using a REML estimator due to the computational burden. Therefore, the likelihood is 

approximated using the Laplace approximation (technique used to approximate the integral) 

and the approximated likelihood is assumed to be the true likelihood. This estimated likelihood 

is called penalized quasi-likelihood (PQL) and in non-Gaussian responses, either penalized 

quasi-likelihood or double penalized quasi-likelihood (DPQL) is used in the process of 

estimating the smoothing spline. 

Figure 2.2 shows the different methodologies explained above (see section 2.2) where 

the highlighted approaches are selected and the data in this research are analysed by using those 

highlighted approaches. The reasons for choosing these approaches are explained in detail in 

chapters five and six. 
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Derived Variable 
Analysis 

ANOVA 

MANOVA 

Full Multivariate 
Model (Marginal 

Multivariate Models) 

Random effects 
models (i.e. LMM) 

Marginal Models (i .e. 
GEE) 

Subject-spcciiic models 

(i.e. GLMM) 

Conditional Models 

Figure 2.2: Selecting different methodologies to analyse longitudinal data. 
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3 Description of Data and Preliminary Analysis 

3.1 Introduction 
There are several stages within the process of analysing any dataset and these are 

particularly important in the investigation of data from real life and routinely collected data such 

as the GP records used here. As the data was not collected specifically with statistical modelling 

(or even basic statistical analyses) in mind, it is prone to many pitfalls such as missing data, 

incomplete records, dropout etc. When the data is cleaned and ready for analysis a 

developmental approach is taken whereby we initially examine the dataset and assess any 

limitations and/ or problems within it which may affect the modelling process. The next stage 

is to build up a gradual understanding of the associations within the dataset, relevant to CKD, 

before proceeding to complex statistical modelling; this is usually achieved via data exploration 

and examination of some basic descriptive statistics which provide an initial understanding of 

the relationships that exist within the data. From this point we can then be confident in 

proceeding to more complex investigations which can broadly fall under the banner of 

inferential statistics which are used to derive deeper, more sophisticated conclusions from the 

data. In this chapter, the process of investigative descriptive statistical analysis of the data is 

presented along with a description of the data used. In subsequent chapters, analyses using 

inferential statistics and the results thereof are reported. 

3.2 Data 

The data used in this thesis was collected from a sample of 129 UK primary care based 

General Practices. The UK primary care setting is a registration-based system were patients 

should be registered with only one general practice. General practices are computerized and use 

electronic patient record (EPR) systems. Quality of the routinely collected data in practices has 

greatly improved since the UK Primary care P4P reward scheme was introduced in 2004. CKD 

measures were added to the P4P scheme in 2006. 

Different practices use various brands of EPR systems, and a common data extraction 

platform, MIQUEST- Morbidity Information Query and Export Syntax was used to combine 

data from different practices. The data used in this thesis was extracted from general practice 
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EPR systems using MIQUEST (Michalakidis et al., 2010) and aggregated using well established 

methods (van Vlymen el al., 2005). After the data was combined from different practices, an 

online dictionary was created to provide details for each variable in the dataset (Clinical 

Informatics, 2010). For inclusion in this dataset, practices had to have been using the same EPR 

system for at least 5 years. The data used in this research comes from the first round of follow­

up data collection for the Quality Improvement in CKD (QICKD) trial study. The first round of 

follow-up data for the QICKD trial study was collected from I June 2008 to 26 February 2009. 

Out of 138 practices interested for the data collection, 4 practices subsequently withdrew from 

the study where 3 of those practices had concern about the capacity of their server to cope with 

running complex MIQUEST queries and its potential impact in clinical services. As well as this, 

2 practices could not be included due to late consent and further 3 practices could not be taken 

in this study due to practices being outside the primary care trust where research and 

development office had not agreed to involve in the study. In total 129 general practices 

participated in the data colletion. Demographic and other pateints details as well as diagnoses 

of selected co-morbidities were identified and labelled prior the aggregation of data from the 

different general practices. Subsequently the MDRD equation was used to evaluate eGFR 

readings and a diagnosis of CKD is recorded where eGFR<60mLlmin/l.73m2 based on two 

readings which are at least 90 days apart. It is this derived dataset that is used for the analyses 

presented in this thesis. 

The availability and importance of routinely collected data is growing as data quality 

awareness and technological progress enable the improved processing of large datasets .. There 

are now several large scale health based databases available within the UK, including the 

Clinical Practice Research Datalink, CPRD, (which includes GPRD (General Practice Research 

Database). These provide a huge array of data and information that can be extracted for medical 

studies. However, accessing the CPRD database can be very costly and hence there was no 

provision for such cost in this research project. The dataset used in this thesis was available free 

of charge but the structure and information derived from it would easily be replicated using 

other General practice resources. Furthermore, the statistical applications applied to this data 

would be equally applicable to data derived from the other availbe sources. One advantage of 
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the data used here is that at the outset it provided much fresher data such as data from 2003/2004-

2008/2009 than could have been obtained by CPRD. 

3.3 Exploratory Data Analysis (EDA) 

Exploratory data analysis (EDA) is carried out by obtaining some descriptive statistics 

from our large and complex GP records data set using mostly graphical representations for 

examination of the data to reveal the underlying structure of the data, explore significant 

variables, and to discover outliers and abnormalities. EDA also allows testing of any underlying 

assumptions made about the data set, leading towards the building of appropriate models and 

aiding decision making in regard to the best parameter settings for the modelling process. 

Variables of interest in this dataset are a combination of continuous and categorical 

variables, and hence a variety of location, dispersion and shape statistics (means, medians, 

modes, standard deviations, skewness and kurtosis) are used for exploration. 

3.4 Data Cleaning and Descriptive Statistics 

The longitudinal data set used in this research is set of 129 practices in England and Wales 

containing 1099262 (about 1.1 million) patients in total. The initial dataset consists of all 

patients who were registered with and have GP records information from those 129 practices. 

All available information about patients including; general information about that patient, 

diseases that they have, prescribed medications, results of relevant blood tests such as serum 

creatinine, and lifestyle factors such as smoking habits were taken. Data relating to these factors 

is available for a period of approximately 10 years from 199811999-2008/2009, although the 

full time period is not available for all patients. However the data is a relaiable sample for the 

period 2003/2004-2008/2009. 

As with any real world dataset, the data must be cleaned and validated before any 

analyses because selecting and cleaning of variables are essential in such huge datasets to ensure 

that the data used for the analysis is as precise and accurate as possible, so that the data can 

represent the general population and the results found from the analysis if the data can be 

interpreted to general population as a whole. 

Longitudinal Analysis of Routinely Collected General Practice Records 
53 



Chapter 3 - Data: Exploratory Data Analysis 

The statistical analysis is based on sample which consists of a group of individuals taken 

from the whole population. Firstly, variables of interest are identified and some preliminary 

descriptive statistics are computed for those in order to validate that the sample dataset was a 

good representation of the whole population of England and Wales. These statistics provide 

detailed information about the sample taken from the population. If the sample reflects the same 

patterns as the population, information obtained from summary statistics should also be 

applicable to use regarding the population as a whole. 

For validation purposes, the first step is to compare the "population pyramids" of the GP 

dataset with 2011 census population of England and Wales in terms ofdemographic trends such 

as age, gender and ethnicity, represented in Figure 3.1 , Figure 3.2 and Figure 3.3 respectively. 

Population Pyramid for Dataset (n=1099262) 
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Figure 3.1: Population Pyramid by age and gender ofGP dataset 
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Population Pyramid for 2011 Census England and Wales 
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Figure 3.2: Population pyramid by age and gender of2011 Census population of England and 

Wales 
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IThis chart excludes White British (80.5 % of population from Census 2011 Data and 63.89 % 

of GP Dataset. 

The dataset extracted from routinely collected GP records used in this study reflects the 

age - gender distribution of the general population as described by the 2011 Census for England 

and Wales quite well. (See Figure 3.1 and Figure 3.2) The UK is one of the few countries in 

Europe where there are no restrictions on collecting ethnicity data for service-monitoring 

reasons, unlike for example, Germany and France. Recording ofethnicity data has recently been 

added to routine coding of GP patient data in primary care. However, while the quality of 

routinely collected primary care data in the UK is generally recognised as being of a high 

quality, recording of ethnicity data at practice level remains ineffective. This is a recognised 

issue in primary care datasets, and there are initiatives to improve recording on a practice level 

for monitoring reasons. In the dataset used here, information about ethnic background is 

recorded for 43.8% of patients. In comparison with the 20 II Census, the overall demographic 

structure of the GP data compares favourably with the known population structure with respect 

to age gender and ethnic group, and thus provides a reliable sample of the UK population from 

which to examine and interpret health indications and trends (See Figures 3.1,3.2 and 3.3). 

Selection of the sub-population with CKD was achieved by flagging all patients with a 

positive CKD diagnosis as described in chapter 2, based on results of a blood test for GFR or of 

a urine test. Other markers for GFR include cystatin c, urea and insulin levels and radio isotopic 

methods. However, analyses of these methods are beyond the scope of this study. While testing 

the actual GFR is expensive, estimation of GFR using serum creatinine levels is inexpensive 

and acceptable. There are two main formulas in the literature that are commonly used to estimate 

GFR, the "Modification in Diet in Renal Disease" (MDRD) formula and "Cockcroft-GauIt" 

(CG) formula. According to several studies, use of the MDRD equation gives less bias and 

greater accuracy in eGFR values compared to the CG formula (See section 2.1.3) 

According to NICE guidelines (NICE Guideline CG73, 2008), a normal kidney function 

has eGFR 90mLlminl1.73m2 or above, hence a positive CKD diagnosis is made when eGFR 

falls below 90mLlmin/1.73m2. Initially 325367 patients had an eGFR less than 
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90ml/min/1.73m2 whereas 58675 patients were found to have eGFR below 60ml/min/1.73m2, 

which correspond to the most common point of CKD diagnosis (i.e stages 3-5). 

In order to select study participants, it is necessary to know CKD diagnosis information 

for each patient. In order to keep the sample size at maximum, CKD diagnosis information is 

created by including both the GP diagnosis information and diagnosis using the most recent 

eGFR value. Some patients have only one of these type of information and some have both in 

their records. When the patients have both kind of information, the most recent information is 

used to determine the diagnosis result. The value used for diagnosis is either an eGFR value 

calculated by GP from serum creatinine (SCr) value using MDRD formula or an eGFR value 

obtained from the routine laboratory analysis for that patient which is calculated by using 

MDRD formula. For the purpose of the study, only the patients that have been diagnosed to 

have CKD at stage 3 to 5 are considered in the analysis. The initial population of the dataset was 

about 1.1 million (exactly 1099262) patients. However, as explained below, data cleaning 

reduced this number to 876951 patients as a study population, and the figure dropped to 30490 

patients after taking only CKD patients at stages 3-5 whose have at least two repeated measures 

of eGFR values during the period of the study. 

As CKD is primarily a disease of adulthood, the sample was restricted to patients over 

the age 18 and since the maximum age for a UK resident to date is 105, an upper age limit of 

105 was adopted. Patients outside of this age range were removed from the sample. Data is 

also cleaned on the main risk factor measures for CKD; for example obesity, measured by body 

mass index (BMI). BMI ranges are validated against national standards, and outliers removed. 

Where possible, missing BMIs are imputed using (cleaned) records of heights and weights. 

Similarly, coding systems used to indicate variables such as ethnicity and smoking are reviewed 

and corrected. Some continuous variables relating to disease status are transformed to 

categorical variables based on the national guidelines such as using systolic and di-systolic 

blood pressure values to generate categories corresponding to hypertension status of the patient. 

These categories can be either nominal or ordinal format based on the particular variable such 

as having an ordinal categorical variable in hypertension status of the patient. 
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For all variables measured on a continuous scale (and retained as such), the following 4 

step cleaning and validating procedure is employed. In some datasets, the units used might not 

be clearly defined and consistently used. Therefore, before starting this procedure, it is essential 

to decide which unit is to be used for that variable, (considering the mean, mode, median, 

maximum and minimum values) is a vital stage to follow. 

1- Finding the reportable range for each variable for the specific unit by using laboratory 

manuals for the equipment measuring those variables in the appropriate test conditions. 

2- Eliminating values outside the reportable range and re-calculate mean, mode and median 

values. For instance, a height of a patient might be recorded as 0.0173 m or as 183 m where it 

is clearly seen that the decimal point is recorded in the wrong place. Therefore such values must 

be eliminated from the study. 

3- Finding outliers by using a Mean±4 standard deviation (SO) criterion. (See range of 

values and units used for particular variables in Table 3.1). 

Table 3.1: Ranges used in final cleaning of data from blood tests where outliers are selected 

according to criteria of Mean±4S0 from Reportable Range values which are taken from 

published laboratory manuals. 

Test Range Used Unit Used 

Serum Creatinine (SCr) 7.2538-155.5980 Ilmol/L 

Haemoglobin (Hb) 7.4972-19.8896 gldL 

Serum Plasma Albumin 28.2309-58.5521 giL 

Serum Triglycerides (TG) NO LOWER LIMIT-4.9817 mmol/L 

Total Cholesterol 0.7559-9.3747 mmol/L 

High Density Lipoprotein NO LOWER LIMIT-3.0837 mmollL 

Cholesterol (HOL-C) 
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Low Density Lipoprotein NO LOWER LIMIT-6.841O mmol/L 

Cholesterol (LDL-C) 

Glycated Haemoglobin (HbA1c) 0.5868-12.8160 % of Total Hb 

Blood Glucose (Fasting) NO LOWER LIMIT-13.5469 mmol/L 

Mean Corpuscular Volume 64.9002-113.1070 

(MCV) 

4- Compare the percentage loss of data between the figures before cleaning and after 

cleaning. 

The final step (step 4) makes sure that only the extreme values are eliminated and the 

amount of data lost is kept minimal. After the cleaning procedure, the distributions of continuous 

variables are re-created and can be observed to be closer to normal distributions. Overall, 

categorical variables are re-c1assified, continuous variables are cleaned and binary variables 

which are used for gender and disease diagnosis stay as before cleaning. 

Summary characteristics (age and gender) of patients in the GP dataset are given in Table 3.2. 

Table 3.2: Gender and age profile of the study population (n=87695 I). 

Gender 

Mean age (years) 

Research GP Records Database (n=87695I ) 

n (% of total) or mean ± SD 

Female 443293 (50.55%) 

Male 433658 (49.45%) 

Total 46.08 ± 18.423 

Female 46.66 ± 19.205 

Male 45.49 ± 17.569 
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Age groups <20 years 27995 (3.19%) 

20-24 years 69860 (7.97%) 

25-29 years 89776 (10.24%) 

30-34 years 94934 (10.83%) 

35-39 years 89662 (10.22%) 

40-44 years 86682 (9.87%) 

45-49 years 81309 (9.27%) 

50-54 years 67311 (7.68%) 

55-59 years 56590 (6.45%) 

60-64 years 56242 (6.41 %) 

65-69 years 42420 (4.84%) 

70-74 years 34422 (3.93%) 

75-79 years 29030 (3.31 %) 

80-84 years 23135 (2.64%) 

85-89 years 16375 (1.87%) 

2:90 11208 (1.28%) 

From Table 3.2, it can be seen that in this dataset, there are about 1.1 % more females 

than males. The overall mean age of the study population is around 46 years and the mean age 

of females are slightly above this average age whereas the mean age of males are slightly below 

this average age. From this, it can be observed that on average females are about 1.17 years 

older than males in this dataset. This is probably mainly due to higher number of females in the 

very old categories (over 80 years). 
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If the dataset is split into three broad categories of people according to age, where the 

categories are classified as young people, mature people and elderly people, then, it can be 

concluded that the highest proportion of the dataset lies in mature people category with 54.4% 

of the study population consisting of people aged between 30 and 59. On the other hand, the 

young people category contains people aged between 18 and 29, representing 21.4% of the 

whole dataset, and the elderly people category contains people aged between 60 and 90 and 

above, with 24.2% of the whole dataset. Thus, by studying Table 3.2, it can be stated that there 

are greater number of mature and elderly people in this dataset compared to the number of young 

people. 

The GP data set was first subdivided into two separate groups, based on whether or not 

each patient has been diagnosed to have CKD at any time either before or during the 10 year 

study period which was between 1998/1999-2008/2009. The prevalence ofCKD is then reported 

in Table 3.3 with respect to gender and age groups. 

Table 3.3: The prevalence of CKD with respect to gender and age groups. 

Gender 

Female 

Male 

Age groups 

<20 

20-24 

25-29 

Total number of subjects Subjects with CKD 

N (% of gender group) 

443293 39619 

(8.94% of females) 

433658 19056 

(4.39% of males) 

N (% of subjects with CKD) 

27995 II (0.02) 

69860 72 (0.12) 

89776 210 (0.36) 
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30-34 94934 472 (0.80) 

35-39 89662 730 (1.24) 

40-44 86682 1271 (2.17) 

45-49 81309 2169 (3.70) 

50-54 67311 2732 (4.66) 

55-59 56590 3306 (5.63) 

60-64 56242 5058 (8.62) 

65-69 42420 5636 (9.61) 

70-74 34422 6719 (11.45) 

75-79 29030 8417 (14.35) 

80-84 23135 8610 (14.67) 

85-89 16375 7570 (12.90) 

2:90 11208 5692 (9.70) 

The prevalence of CKD shows the total number of cases in this study population who 

have been diagnosed to have CKD. When the prevalence ofCKD is compared between genders 

(Table 3.3) and across different age groups (Table 3.3), it can be seen that the prevalence of 

CKD is greater in females (8.94% of females) compared to males (4.39% of males) and results 

in Table 3.3 also confirm that the prevalence ofCKD is greater in the older age groups. 

Longitudinal Analysis of Routinely Collected General Practice Records 
62 



Chapter 3 - Data: Exploratory Data Analysis 

Table 3.4: Ethnicity information of study participants 

Ethnic Groups Research GP Records Database (n=876951) 

Number (% of total) 

White 303462 (34.60) 

Mixed 9562 (1.09) 

Asian! Asian British 63858 (7.28) 

Caribbean/African Black 2622 (0.30) 

Other Black 4659 (0.53) 

Other 10588 (1.21) 

Not Stated 30749 (3.51) 

Ethnicity Not Recorded 451451 (51.48) 

The UK is one of the few countries in Europe where there are no restrictions on 

collecting ethnicity data for service-monitoring reasons, unlike (for example), Germany and 

France. Recording ofethnicity data has recently been added to the routine coding of patient data 

in primary care. However, while the quality of this routinely collected (primary care) data in the 

UK is generally recognised as being of a high quality, recording of ethnicity data at general 

practice level remains ineffective. This is a recognised issue in primary care datasets and there 

are initiatives to improve recording at the practice level for monitoring reasons. As can be seen 

from Table 3.4, in the dataset used here, information about ethnic background is recorded for 

48.52% of total patients and from those patients where the ethnic information is recorded (i.e. 

from those 48.52% of total), in around 9.71% of patients, explicit information of their ethnic 

backgrounds cannot be obtained due to the information recorded being as not stated or other 

ethnic group. In this way, information known about the ethnicity of patients is limited to 43.8% 

of the dataset which makes it more difficult to make inferences based on ethnicity. 
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Table 3.5: Smoking habits of study participants 

Smoking Status Research GP Records Database (n=876951) 

Number (% of total) 

Non-Smoker 

Ex-Smoker 

Smoker 

Smoking Not Recorded 

497120 (56.69) 

129779 (14.79) 

180009 (20.53) 

70043 (7.99) 

In terms of lifestyle factors, smoking habits are taken into consideration and descriptive 

statistics are computed. Results from this analysis are reported in Table 3.5 and it is concluded 

that highest proportion of participants are non-smokers. 

Table 3.6: Number of patients in the dataset with records of specified measurements and the 

corresponding mean measurements. 

Clinical Values 

Records of Systolic Blood Pressure 

Mean Systolic Blood Pressure ± SO 

Records of Body Mass Index 

Mean Body Mass Index ± SO 

Records of Serum Creatinine (SCr) 

Mean SCr± SD 

Research GP Records Database 

(n=876951) 

Number (% of total) or Mean ± SD 

709984 (80.96) 

126.53 ± 16.410 

618303 (70.51) 

34.7151 ± 1621.10847 

212176 (24.19) 

81.1016± 14.89977 
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Records of Haemoglobin (Hb) Value 

Mean Haemoglobin Value ± SD 

Records of Albumin 

Mean Albumin ± SD 

Records of Triglycerides 

Mean Triglycerides ± SD 

Records of Cholesterol 

Mean Cholesterol ± SD 

Records of High Density Lipoprotein (HDL) 

Cholesterol 

Mean HDL± SD 

Records of Low Density Lipoprotein (LDL) 

Cholesterol 

Mean LDL±SD 

Records of Glycated Haemoglobin (HbA I C) 

Mean HbAIC ± SD 

Records of Blood Glucose 

Mean Blood Glucose ± SD 

Records of Mean Corpuscular Volume (MCV) 

MeanMCV±SD 

480274 (54.77) 

13.6993 ± 1.53623 

427116 (48.70) 

43.4398 ± 3.67513 

326954 (37.28) 

1.4020 ± 0.74338 

352124 (40.15) 

5.0606 ± 1.06494 

319268 (36.41 ) 

7.4255 ± 0.41246 

209413 (23.88) 

3.0196 ± 0.94547 

80066 (9.13) 

6.6526 ± 1.40902 

299480 (34.15) 

5.3552 ± 1.32227 

487872 (55.63) 

89.1078 ± 5.68967 

From Table 3.6, it can be seen that 80.96% of the patients had their systolic blood 

pressure recorded and since this covers the majority of the patients, it is reliable to state that an 
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average patient has a systolic blood pressure value of 126.53, which corresponds to a normal 

systolic blood pressure. On the other hand, another conclusion can be made regarding BMI 

values, where 70.51% of the patients have records of their BM) values, and it is shown that an 

average patient is obese (BM) > 30). According to the results displayed in Table 3.6, comparing 

the mean values of blood tests against the normal reference ranges, an average patient is 

expected to have good levels of haemoglobin, serum creatinine, albumin, and triglycerides, 

HDL, LDL and MCV. On the other hand, an average patient is expected to have high values of 

cholesterol (which is defined to be higher than the upper limit of the normal ranges). This might 

be due to usage of certain drugs such as oral corticosteroids, beta blockers, oral contraceptives, 

thiazide diuretics, oral retinoid or phenytoin which can result in an increase in cholesterol level. 

When a patient has high cholesterol levels in the blood, this means that cholesterol can 

accumulate on the walls of blood vessels, leading to narrowing or even blocking of blood vessels 

and resulting in arthrosclerosis, which is hardening of the blood vessels, eventually increasing 

the risk of heart diseases and strokes. 

An average patient in this dataset is also expected to have a blood glucose values greater 

than the upper limit of the normal range. This might indicate that such a patient has diabetes. 

High blood glucose levels can also be result from other diseases such as acromegaly or acute 

stress which can result in trauma, heart attack, and stroke, long-term kidney disease, Cushing's 

syndrome, hyperthyroidism, pancreatic cancer and pancreatitis. Usage of some drugs such as 

corticosteroids, tricyclic antidepressants, diuretics, adrenaline, oral contraceptives and hormone 

replacement therapy [HRT] drugs containing osterogen hormone, lithium, phenytoin (Dilantin) 

and aspirin can also increase blood sugar levels. Excessive food intake shortly before the blood 

test might be another cause of elevated blood glucose level. 

According to Table 3.6, in this dataset, an average patient is expected to have values of 

glycolhemoglobin (HbAlc) higher than the upper limit of the normal reference ranges. This 

might be due to having high glucose levels, insufficient diabetic monitoring or iron deficiency. 

Therefore, high HbA I c levels typically mean that the patient is not in good control of diabetes 

and might consider changing their treatment plan because the patient could have a risk in 

developing eye disease, kidney disease or nerve damage. 
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Table 3.7: Prevalence of CKD and its co-morbidities within the study participants 

Clinical Condition 

Diagnosis of CKD (At Stages 3-5) 

Diagnosis of Diabetes 

Diagnosis of Hypertension 

(stage I, stage 2 and hypertensive crisis) 

Diagnosis of Cardiovascular Diseases 

(CVD) 

Diagnosis of Ischaemic Heart Disease 

(lHD) 

Diagnosis of Peripheral Vascular Disease 

(PVD) 

Diagnosis of Cerebrovascular Disease 

(CEBVD) 

Diagnosis of Heart Failure 

Diagnosis of Stroke 

Diagnosis of Anaemia 

Diagnosis of Obesity 

(obese class I, obese class II and III) 

Diagnosis of Proteinuria 

Research GP Records Database (n=876951) 

Number (% of total) 

58675 (6.69) 

45355 (5.17) 

155161 (17.69) 

246055 (28.06) 

32036 (3.65) 

6568 (0.75) 

19643 (2.24) 

7584 (0.86) 

19548 (2.23) 

21294 (2.43) 

121755 (13.88) 

33291 (3.80) 
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Diagnosis of Significant Proteinuria 3047 (0.35) 

Diagnosis of Positive Urine 31457 (3.59) 

Records of Albumin-Creatinine Ratio 1822 (0.21) 

(ACR) 

Records of Protein-Creatinine Ratio (PCR) 1756 (0.20) 

For each of the co-morbidities listed in Table 3.7, diagnosis of the clinical condition is 

designed to be a binary outcome where the outcome has only two possibilities; 0 if the disease 

is not present and I if the disease has been diagnosed. If the information about the diagnosis of 

any particular disease is missing, then it is assumed that the patient has not been diagnosed to 

have that specific disease. 

Only CKD diagnoses between stages 3 and 5 are considered in this study. Recent studies 

including NEORICA (2000), Health Survey for England (2009) and QI CKD (2010) indicate 

that about 5-10% of adults in the UK have moderate to severe CKD (stages 3-5) and the 

diagnosis of CKD in this dataset is found to be 6.7% which agrees with the existing literature, 

so this GP dataset is appropriate for further statistical analysis regarding CKD. 

Diagnoses of heart-related diseases, including cardiovascular diseases, ischaemic heart 

disease, peripheral vascular disease, cerebrovascular disease, heart failure and hypertension, 

covered the highest proportion of the study participants who had co-morbidities of CKD 

whereas only 5.17% of the study participants were diagnosed to have diabetes. Within these 

heart-related diseases mentioned earlier, cardiovascular diseases and hypertension are the most 

commonly diagnosed in this dataset. 13.88% of the study participants had been diagnosed to 

have obesity (class I-III). This suggests that the prevalence of obesity is high in this dataset 

compared to the diagnosis of chronic diseases such as CKD. 
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Figure 3.4: Histogram of Percentage of CKD Diagnosis against Age Groups 

As can be seen from Figure 3.4, considering the age distributions across the two groups, 

the one containing the patients diagnosed to have CKD is concentrated in the age range over 55 

years and peaking around age 80, whilst the group compromising the patients with no diagnosis 

of CKD is predominantly distributed across younger age groups, peaking around the age of 30. 

This means that CKD is a disease predominantly occurring in elderly people. 
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Figure 3.5: Histogram of Percentage ofCKD Diagnosis against Gender 

The histogram in Figure 3.5 shows that when the two groups (i.e positive diagnosis of 

CKD and negative diagnosis of CKD) are compared by their gender balance, the group not 

diagnosed to have CKD had a distribution almost 50% female and 50% male, whereas in the 

group with positive CKD diagnosis, the percentage of females was approximately 68% and the 

consequent proportion of males was around 32%. This means that CKD is a disease that is 

expected to be seen more in females than males. 
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As a result of the comparisons oftwo groups relating to the positive or negative diagnosis 

of CKD with respect to age and gender, the distribution of age and gender together can be seen 

in Figure 3.6 for the patients who have been diagnosed with CKD. From Figure 3.6, it can be 

concluded that older patients and female patients are more likely to have CKD than are others. 

Demographic results obtained from our EDA of this GP data set hence indicated similar results 

to previous studies in this area. 

Longitudinal Analysis of Routinely Collected General Practice Records 
71 



Chapter 3 - Data: Exploratory Data Analysis 

Table 3.6: Ethnic Description of study participants 

Ethnic description of study participants by CKD diagnosis 

CKD Diagnosis is positive % No Diagnosis of CKD % of 

of patients with CKD 

Total Number =58675 

Ethnicity 

White 46.1 

Mixed 0.7 

Asian! Asian British 4.2 

Caribbean/African Black 0.2 

Other Black 0.3 

Other 0.5 

Ethnicity not stated 4.1 

Ethnicity information IS 43.8 

unknown 

patients without CKD 

Total Number = 818276 

33.8 

1.1 

7.5 

0.3 

0.5 

1.3 

3.5 

52 
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Figure 3.7: Histogram of Percentage of CKD Diagnosis against Ethnicity 

White British are excluded from Figure 3.7. Table 3.8 and Figure 3.7 are used to study 

the ethnic groupings of the patients in this research dataset. In the UK, due to the reasons 

explained before, ethnicity is not consistently recorded. However, use of summary census-based 

information rather than a direct measure of ethnicity would introduce bias into the research. In 

this way, routinely collected data can be used to explain different prevalence rates of major 

chronic diseases (e.g. CKD) between different ethnic groups, to monitor ethnic differences in 

disease management and to assist equality in service provision. However, a suitable recording 

system has first to be established and the benefits of collecting ethnicity data, which is currently 

poorly recorded in medical records has to be emphasised. It is found that in this GP data set, 

only around 49% of patients have their ethnicity recorded and of those, 92% have not been 

diagnosed to have CKD while the other 8% have been diagnosed with CKD. 

Values reported from Table 3.8 and histogram from Figure 3.7 shows that when the 

diagnosis ofCKD is considered, the proportions of patients in each ethnic group follow a similar 

pattern in each category of outcome (i.e. when CKD is present or not). However, a higher 

proportion of Asian patients are diagnosed with CKD than of other ethnic groups. 

Longitudinal Analysis of Routinely Collected General Practice Records 
73 



Chapter 3 - Data: Exploratory Data Analysis 

Table 3.7: Mean serum creatinine and value used for CKD diagnosis with respect to gender and 

age groups. 

Gender 

Female 

Male 

Age groups 

<20 

20-24 

25-29 

30-34 

35-39 

40-44 

45-49 

50-54 

55-59 

60-64 

65-69 

70-74 

75-79 

SCr (J.lmoI/L) Value used for CKD Diagnosis 

N Mean± SD N Mean ± SO 

116776 73.48 ± 11.72 248718 78.81 ± 20.92 

95400 90.44 ± 12.93 197124 81.90 ± 20.23 

3488 73.73± 13.85 5087 114.38 ± 29.40 

9929 76.91 ± 14.18 16291 102.89 ± 23.70 

13031 79.00 ± 14.71 22740 94.71 ± 20.27 

15890 79.35 ± 14.95 27786 90.81 ± 19.08 

18828 80.00 ± 14.94 32841 87.94 ± 18.15 

21974 80.93 ± 14.80 39667 85.12 ± 17.29 

23944 81.82 ± 14.77 44395 82.55 ± 16.84 

21695 81.74 ± 14.57 42322 81.01 ± 16.74 

18887 81.95 ± 14.44 38983 79.36 ± 16.78 

19310 82.52 ± 14.21 42221 76.87 ± 16.42 

14041 82.64 ± 14.44 34219 74.45 ± 16.47 

10814 82.23 ± 14.60 29432 71.69± 16.92 

8294 82.71 ± 15.28 25628 67.86 ± 17.33 
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80-84 5923 82.61 ± 16.23 20490 64.35 ± 17.69 

85-89 3690 83.19± 17.27 14455 60.51 ± 17.75 

~90 2438 84.74± 18.88 9285 56.53 ± 17.13 

The value of eGFR used for the CKD diagnosis in this research dataset is reported in 

Table 3.9 and this value represents either eGFR value directly reported by the patient's GP or 

eGFR calculated from the SCr using MDRD formula. From Table 3.9, it is clear that the SCr 

values are significantly different from the eGFR values used for the diagnosis ofCKD for each 

age group and gender and hence, using just the SCr value alone for the CKD diagnosis is not 

accurate. From the same table, the negative correlation between the SCr and eGFR values can 

also be seen. 

Table 3.8: Frequencies of patients in each co-morbidity group 

Age Group (years) 

<20 

20-24 

25-29 

Co-morbidities N (% of total) 

IHD Hypertension Diabetes Anaemia Obesity 

32036 161534 45355 21294 122187 

(3.7) (18.4) (5.2) (2.4) (13.9) 

N (% within the age group) 

4 129 163 467 1636 

(0.0) (0.3) (0.4) (1.1 ) (3.9) 

8 676 355 1428 4822 

(0.0) (0.9) (0.5) (2.0) (6.7) 

30 1684 553 2072 7700 

(0.0) (1.8) (0.6) (2.2) (8.2) 
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30-34 

35-39 

40-44 

45-49 

50-54 

55-59 

60-64 

65-69 

70-74 

75-79 

80-84 

53 2982 865 2369 9197 

(0.1 ) (3.2) (0.9) (2.6) (9.9) 

150 5375 1463 2422 11691 

(0.2) (6.0) ( 1.6) (2.7) (13.1 ) 

350 8455 2221 2000 13166 

(0.4) (9.8) (2.6) (2.3) ( 15.3) 

776 12025 3209 1532 13848 

(1.0) (15.2) (4.1 ) ( 1.9) (17.5) 

1441 14718 4056 940 12266 

(2.2) (22.9) (6.3) ( 1.5) ( 19.1) 

2142 16699 4658 612 10941 

(3.8) (29.9) (13.6) (1.1 ) (19.6) 

3571 19859 5546 682 11036 

(6.6) (36.5) (10.2) ( 1.3) (20.3) 

4009 17812 5480 735 8524 

(10.0) (44.3) (13.6) (1.8) (21.2) 

4725 17386 5497 992 7115 

(14.1) (51.7) (16.4) (3.0) (21.2) 

5187 16340 4933 1300 5234 

(18.4) (57.9) (17.5) (4.6) (18.6) 

4481 13143 3560 1394 3084 

(20.8) (61.0) ( 16.5) (6.5) (14.3) 
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85-89 

~90 

Gender 

Female 

Male 

Ethnicity 

White 

Mixed 

Asian/Asian British 

African/Caribbean 

Black 

Other Black 

Ethnicity cannot be 

determined 

3310 9450 1985 1352 1481 

(21.6) (61.6) (12.9) (8.8) (9.7) 

1789 4801 811 997 446 

(21.0) (56.4) (9.5) (11.7) (5.2) 

N (% within the gender group) 

12307 83251 20594 17961 69809 

(2.78) (18.78) (4.65) (4.05) (15.75) 

19729 78283 24761 3333 52378 

(4.55) (18.05) (5.71) (0.77) (12.08) 

N (% within the ethnic group) 

15832 68756 19343 6939 53372 

(5.22) (22.66) (6.37) (2.29) ( 17.59) 

174 1601 

( 1.82) 
1279 (13.38) 547 (5.72) 315 (3.29) 

(16.74) 

2756 11053 7448 3243 9048 

(4.32) (17.31 ) (11.66) (5.08) (14.17) 

328 
50 (1.91) 670 (25.55) 231 (8.81) III (4.23) 

(12.51 ) 

833 
56 (1.20) 681 (14.62) 229 (4.92) 216 (4.64) 

(17.88) 

13168 79095 17557 10470 57005 

(2.67) ( 16.05) (3.56) (2.12) (11.57) 
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From Table 3.10, it can be observed that, in this dataset IHD tends to be most common 

in the older age group, peaking in those aged 85-89 and more common in males than females. 

It is also more prevalent in Whites than in other ethnic groups. 

Similarly, hypertension is also more common in the older age groups and highest 

amongst the 85-89 category. However, it is slightly more common in females than males. It is 

more common in African/Caribbeans and Whites compared with other ethnic groups. 

However, diabetes follows a rather different pattern from IHD or hypertension. Diabetes 

is most prevalent in the early elderly age groups, peaking in the 75-79 category, and slightly 

more common in males than females. It is most prevalent in the Asian ethnic group, but also 

quite common amongst African/Caribbean blacks. 

Anaemia most frequently occurs in the very oldest age groups, and is much more 

common in females than in males. It is most prevalent amongst the Asian, followed by the Black 

ethnic groups. 

Obesity is most common in the 65-76 age groups and more prevalent in females than 

males. It tends to be less common amongst African/Caribbean and Asian ethnic groups than the 

others. 

3.5 Summary of chapter 3 

The data used in this research was collected from 129 GPs over England and Wales, 

containing about 1.1 million patients where all available information obtained from this 

collection was taken into account. This dataset was then cleaned and validated to ensure that the 

dataset is a good representation of the UK, so that any conclusions drawn from this dataset can 

be applicable to apply to population. 

In cleaning and validation steps, the dataset was used as a whole where later, when the 

interest was investigating patients with CKD, patients diagnosed with CKD at stages 3-5 (6.7% 

of the whole dataset) were flagged and used. From the results of the descriptive statistics applied 

on whole dataset, it was found that older patients and female patients are more likely to have 

CKD than others. It is also observed that high proportion of patients from Asian ethnic 
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background were diagnosed with CKD at stages 3-5. Average person in the dataset is found to 

have age 46, high HbA 1 c values, obese, high glucose level, high cholesterol values, normal 

blood pressure and good level of haemoglobin, serum creatinine, albumin, HDL, triglyceride 

and MCV. Additionally, in this research dataset, when all patients are taken into account, IHD, 

hypertension and anaemia are found to be the comorbidities of CKD that are the most prevalent 

in older age groups, 85-89, 85-89, and 2:90 categories respectively. On the other hand, diabetes 

and obesity are found to occur mostly in slightly younger age groups 75-79 and 65-74 

respectively. Hypertension, anaemia and obesity are found to exist more in females compared 

to males, whereas for IHD and diabetes the opposite is observed. The highest proportion of 

patients who have been diagnosed to have IHD are found to be from the white ethnic background 

but, for the other comorbidities, the highest proportion of patients with hypertension is from the 

African/Caribbean ethnic background, for both diabetes and anaemia, those from Asian ethnic 

background, but for obesity those from other Black ethnic backgrounds. It is concluded that 

eGFR is used to diagnose CKD and is derived from serum creatinine (SCr). Using SCr alone is 

not a representation of eGFR and negative association is found between eGFR and SCr. Overall, 

the population distributions of our GP records on key variables relative to the investigation of 

CKD suggest that the data is a reasonably representative sample of the UK popUlation as a 

whole. As such any further analyses should provide reliable indicators of the patterns and 

associations within the clinical progress of CKD. 
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4 Logistic Regression 

4.1 Logistic Regression for modelling factors contributing to CKD 

4.2 Logistic Regression 
A first attempt at modeIling the cleaned data aims to investigate factors which might 

influence diagnosis of CKD, i.e. those factors that might be correlated with whether a patient 

will be diagnosed with CKD or not. The aim is to compare individual patient characteristics and 

co-morbidities (such as diabetes, anaemia, hypertension, ischaemic heart disease, stroke and 

obesity) between the two groups, CKD and non-CKD, with a view to identifying any significant 

differences between them. As the outcome of interest is dichotomous, i.e. 'diagnosis ofCKD or 

not' the investigation employs a Logistic regression model. 

In logistic regression, the predicted response measures the logit of the probability (p) of 

an event occurring given that the values of significant independent predictors are known. This 

means that the discrete outcome of belonging to either group was transformed to probabilities. 

This transformation was achieved by taking the mean of the outcome at the value of each 

predictor variable. Hence, cumulative probability distribution was obtained where the new 

probability was estimated as a result of the addition of a current probability to the total of the 

previous probabilities. 

The main purposes of the logistic regression analyses were to identify significant 

explanatory variables and to evaluate the effect size of each such variable (i.e. presence of 

certain characteristics and co-morbidities) on the diagnosis of CKD (or not). The technique 

models the effects of the explanatory variables on the response variable simultaneously and 

hence the effect of predictors on other predictors are automaticaIly controlled. 

In this chapter, two applications of the logistic regression were performed on the dataset. 

In the initial application (model 1 section 4.2.1.1.3) the model is applied to the complete cleaned 

dataset. This application allows identification of which factors affect whether or not a patient is 

diagnosed with CKD and which are most influential. Our findings are compared against current 

knowledge in the CKD field. 
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A second application, (models 2 and 3 section 4.2.1.2.1 and 4.2.1.2.2 respectively) 

begins to investigate the time and decline aspects of the project and focuses only on patients 

with a CKD diagnosis (58675 patients). The CKD patients are classified according to whether 

progression of their disease can be considered as rapid decline or not. Within the CKD 

community there are two definitions of rapid decline (definition I; a change of5 mLiminll.73m2 

over I year or; definition 2; a change of 10 mLiminll.73m2 over 5 years). Here we run two 

replica logistic regression models where only the definition of the outcome differs. The two 

different outcomes align with the two definitions of rapid decline as described above. All logistic 

models presented in this chapter are fitted using SPSS v.2l. 

4.2.1 Applications of logistic regression 

4.2.1.1 Initial Application on Whole Dataset - Modell 

The logistic model applied to the data is 

eq. (4.1) 

(Burns and Burns. 2009). 

Where; 

p is the probability of the outcome of occurrence, 

a is the intercept of the best fit line 

bl to bn are the coefficients where each predictor has its own beta coefficient. B' s represent the 

slope of the equation and are defined as logits which is the log transformation of odds and 

Ei is the error term. 

Goodness of fit 

The logistic method uses Maximum Likelihood estimation (MLE) to estimate the 

difference between the logits of the dependent variable (Field, 2013). The MLE approach 
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maximises the capability of predicting the probability of the outcome using the information from 

predictor variables. When compared to the linear regression, the logistic model requires a higher 

sample size since maximum likelihood estimation is a technique applied on larger sample sizes; 

a minimum of 50 observations per predictor variable is reasonable (Field, 2013). Likelihood is 

a measure of the overall fit of the model; but since likelihood usually results in small numbers, 

the natural logarithm of the likelihood is used to examine model fit. Log-likelihood is calculated; 

N 

Log -likelihood = 2)Yi In(PCYi )) + C1- ya In(l- POi))] 
i=l 

eq. (4.2) 

(Field, 2013). 

Where; 

Ln represents the natural logarithm. 

Yi is the outcome, 

P(Yi) is the probability of outcome and 

i represents the patients from I to N where N is the total number. 

Log-likelihood indicates the amount of unexplained variation left after the current model 

is fitted (Bums and Bums, 2009). Due to the probabilities always being less than one, log 

likelihoods were always negative. The likelihood ratio test is used to assess model fit (Bums 

and Bums, 2009). 

Model fitting: Comparing model fits 

To compare two logistic models we look to the difference in the Log likelihoods. For example 

to compare the baseline model (that containing the constant term only) against a model where 

additional predictors have been added, the change in model fits is evaluated as the difference 

between the two log-likelihoods multiplied by 2. The differences is multiplied by 2 in order for 

the resultant value to follow a chi-square distribution (Bums and Bums, 2009; Field, 2013). A 
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chi-square test is then used to measure the significance of the difference. The equation used for 

this was; 

x2 = 2[LL(new) - LL(baseline)] 

eq. (4.3) 

where (d! = .knew - .kbaseline) 

(Field,2013). 

Where; 

.k represents the degrees of freedom, degrees of freedom shows the number of predictors and 

the number of predictors at the baseline model which contains only the constant term is taken 

as I and LL represents the log-likelihood ratio. 

An R statistic, similar to the R and the R2 values evaluated in linear regression, can be 

calculated for a logistic regression as. 

(Field, 2013). 

Where; 

R = ± (Wald - (2 x df)) 
- 2LL (orig inal) 

df represents the degrees of freedom of the model, 

-2LL represents the log-likelihood ratio of the model and 

Wald represents the Wald statistics obtained from the model. 

eq. (4.4) 

The R-statistic shows the partial association between the response and each of the 

independent predictors (Field, 2013). The value of the R-statistics can range from -1 to I. A 

positive R is interpreted as showing a positive relationship between the outcome and the 

predictor, so that an increase in the predictor results in an increase in the likelihood of the event 
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occurring. A negative value ofR indicates a negative relationship between the response and the 

predictor where an increase in the predictor results in a decrease in the likelihood of the event 

occurring. The strength of the association is detennined as strong if the absolute value ofR was 

close to I and weak if the absolute value ofR was close to zero. The strength of the association 

is evaluated as strong, when the impact of the variable on the overall model is high and vice 

versa. 

As can be seen from the equation above, R-statistics are calculated using the Wald test 

(Field, 2013) and hence should be applied with caution because Wald statistics can produce 

imprecise results in certain cases. For this reason, Hosmer and Lemeshow (1989) developed an 

alternative statistic calculated as: 

2 _ -2LL(model) 
RL - -2LL(original) 

(Hosmer and Lemeshow, 1989; Field, 2013). 

eq. (4.5) 

The fonnula (eq. 4.5) shows how much development was made on the model fit when a 

predictor was added. Since it is a squared tenn, the values of this statistic range from 0 to I and 

hence negative values ofR2 are prohibited. This statistic represents the reduction in the absolute 

value of the log-likelihood of the current model relative to the absolute value of the log­

likelihood of the baseline model. In the same year, Cox and Snell reported an alternative R2 

measure fonnula as: 

REs = 1 - e[-~LL(new))-(LL(baseline))] 

eq. (4.6) 

(Cox and Snell, 1989; Field, 2013). 

While this statistic is also based on the log-likelihood (eq. 4.6), it differs from the 

Hosmer and Lemeshow R2 in that it takes into account the sample size, n. However as the 

natural logarithm can never result in zero, this statistics never reaches to the value of I which is 
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the maximum limit of the R2 statistics (Field, 2013). Hence, in 1991, Nagelkerke improved this 

statistics and indicated a modified version of the Cox and Snell's statistics as; 

REs R2 = __ ."........,..~~_--= 
N [2( LL(baseline) )] 

l-e n 

eq. (4.7) 

(Nagelkerke, 1991; Field, 2013). 

The advantage of this statistic (eq. 4.7) is that it takes into account both the log-likelihood 

ratios and the sample size and in addition it can reach the maximum limit of 1. 

4.2.1.1.1 Assessing and interpreting individual parameters: Wald Statistics and Odds 
ratios 

Wald statistics are used in logistic regression to test the significance of each predictor 

variable. The Wald statistic follows a Chi-square distribution and is calculated with the 

equation; 

(Field. 2013). 

Where; 

b 
Wald= -

SEb 

eq. (4.8) 

b is the coefficient for each predictor and 

SE is the corresponding standard error for that predictor. 

Wald statistics, though, might produce biased results especially if the standard errors are 

inflated. Such a case happens when the coefficient of the predictor is large, so that the standard 

error is larger and hence the Wald statistics results in very small number. Hence, the Wald 

statistics is underestimated and shows the predictor as very significant, as this significance is 

Longitudinal Analysis of Routinely Collected General Practice Records 
85 



Chapter 4 - Logistic Regression 

caused by the inflation ofthe standard errors due to the high beta coefficients (Menard, 1995). 

Therefore the result is imprecise. Consequently, it can be stated that it is better to use log­

likelihood ratio statistics to measure the significance of the predictor rather than the Wald 

statistics, and the researcher minimises the likelihood of making a type II error (i.e. probability 

of failure to reject the null hypothesis when it is actually false). 

4.2.1.1.2 Odds ratio: Exp(8) 
The odds ratio illustrates the change the odds of a particular outcome due to a unit change 

in the predictor (Burns and Burns, 2009). Odds are used to describe the probability of an event 

occurring relative to the probability of the same event not occurring (Field, 2013). Odds is 

calculated as: 

Where; 

and 

(Field,2013). 

P(event Y) 
odds=----­

P (no event Y) 

P(no event Y) = 1- P(event Y) 

eq. (4.9) 

eq. (4.10) 

eq.(4.11) 

The odds ratio can be explained as the change in odds. If the result of the odds ratio is 

greater than I, this means that as a unit increase in the predictor variable was observed and hence 

the odds of the event Y occurring was also increased. On the other hand, if the odds ratio resulted 

in a value smaller than I, this means that a unit change in the predictor variable causes the odds 

of the even Y occurring to decrease (Humphrey, 2009). 
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Assumptions of Logistic regression and stepwise methods 

The assumptions of the logistic regression model include; the requirement of categories 

of outcome variable as mutually exclusive and as exhaustive (Bums and Bums, 2009), meaning 

that every patient in the research dataset should belong to one category of outcome and can only 

be in one group at a time. Hence, errors are assumed to be independent. The model does not 

assume a linear relationship between the dependent and the independent variables and the 

independent variables do not have to be normally distributed, do not need to be interval and do 

not need to have equal variance within the group (Bums and Bums, 2009). 

Similar to the linear regression, the logistic regression also assumes that there is no 

multicollinearity between the independent predictors. 

The results of a logistic regression model can be used to predict probabilities and hence 

can take any value within the range of 0 to I rather than being restricted to take just a value of 

o or I. The outcome obtained from the model indicates the probability of a subject belonging to 

either of the two groups. In order to normalise the probability distribution, further transformation 

was needed and the probabilities were transformed to logits by performing the log 

transformation on the probabilities. Transforming from probabilities to logits, removed the 

limitation on the predicted outcome restricted to lie between 0 and I. Therefore, logits can take 

any value from negative infinity to positive infinity. 

Stepwise procedures: 

When performing logistic regression in SPSS, there are various options for finding the 

most parsimonious model. The forced entry method is the default unless an alternative method 

is selected. 

In using stepwise methods, the purpose is to investigate whether or not the addition of 

each predictor improves the model. While both forward stepwise and backward elimination 

methods can be used, and in this thesis, same results were obtained by using both methods, we 

have opted for a backward elimination method in the following analyses. The procedure starts 

with a model containing all the predictor variables (Field, 2013) and then removes a non-
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significant predictor each step, starting with the variable with the highest p-value, i.e. the 

predictor which has the smallest effect on outcome. 

The backward elimination method is often chosen over the forward methods for this type 

of investigation. The reason for this is, in forward stepwise methods, predictors having a 

suppressor effect are removed and hence this increases the possibility of a type II error. 

Suppressor effect occurs when a predictor is only significant under the condition of keeping the 

other predictors constant. 

4.2.1.1.3 Results of Logistic Regression (Modell) 
Initially a multiple logistic regression model was applied to the cleaned dataset, 

comprising 876951 patients from 129 General Practices in England and Wales. The outcome 

was whether or not a patient has been diagnosed with CKD, where a patient who has been 

diagnosed with CKD was coded as I and those who have no diagnosis of CKD are coded as O. 

In the dataset 58675 (6.7%) patients were classified as having been diagnosed with CKD (stages 

3-5) and the remaining 818276 (93.3%) patients had not (been diagnosed with CKD). The 

independent predictors considered were diagnoses of different co-morbidities namely; anaemia, 

diabetes, ischaemic heart disease, stroke, hypertension and obesity. All of these independent 

variables are also binary coded; I meaning that the patient has been diagnosed with that disease 

and 0 indicating they have not. 

All of the predictors namely; anaemia diagnosis, diabetes diagnosis, hypertension 

diagnosis, IHD diagnosis, stroke diagnosis and obesity diagnosis were added to the logistic 

regression analysis and a backwards stepwise procedure was applied using the log-likelihood 

ratio statistics as the criterion for removing the variable from the model. The stepwise procedure 

produced a model of best fit that included all but except one of the six predictor variables 

included initially (Table 4.3). The results indicate that obesity (measured as yes/no) is not 

statistically significant in predicting whether or not a patient has been diagnosed with CKD. 

Hence obesity is removed and the model refitted. The results of this analysis (Table 4.3) show 

all remaining predictor variables to be significant, i.e. they have coefficients significantly 

different from zero. The results from the initial model are presented in Table 4.3. 

Longitudinal Analysis of Routinely Collected General Practice Records 
88 



Chapter 4 - Logistic Regression 

Table 4.1: Results of logistic regression model for diagnosis of CKD 

95% CI for Exp(B) 

Predictor Beta SE Wald Df Sig. Exp(B) Lower Upper 

Anaemia 1.037 0.020 2666.810 0.000 2.820 2.711 2.933 

Diabetes 0.480 0.014 1176.259 0.000 1.1616 1.573 1.661 

Hypertension 1.672 0.010 30424.066 0.000 5.323 5.223 5.423 

IHD 1.170 0.014 6557.963 0.000 3.222 3.132 3.3314 

Stroke 1.025 0.018 3279.157 0.000 2.787 2.691 2.887 

Constant -3.433 0.007 267241.034 0.000 0.032 

The equation of final logistic regression model was; 

Logit( CKD Diagnosis (YIN)) 

= -3.433 + 1.037(Anaemia Diagnosis) + 0.480(Diabetes Diagnosis) 

+ 1.672(Hypertension Diagnosis) + 1.170(JHD Diagnosis) 

+ l.025(Stroke Diagnosis) 

eq. (4.12) 

The estimates of the p" s (Table 4.1) are used to define the logistic regression equation from 

which we can compute the probability that a patient was diagnosed as having CKD (or not) 

given a particular combination of co-morbidities. The p values correspond to the change in the 

logit of the outcome variable when a unit change is observed in the predictor variable. The logit 

of the is the natural logarithm of the odds of outcome Y occurring; in this case Y is a patient 

having had a diagnosis of CKD 

The odds ratio (EXP(B» is the more commonly used interpretation of the parameter 

estimates, p. 

From Table 4.1. it can be concluded that the odds of a patient with hypertension being 

diagnosed with CKD are 5.323 times higher than for a patient who does not have hypertension. 

The results suggest that hypertension is the most influential predictor for diagnosis ofCKD. The 
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second highest predictor affecting the diagnosis of CKD is the presence of IHD where the odds 

of a patient who was diagnosed with IHD as being diagnosed with CKD was 3.222 times greater 

than those of a patient who does not have IHD. After IHD, factors affecting the outcome are 

anaemia. stroke and diabetes respectively with odds ratios of 2.820, 2.787 and 1.616. 

Table 4.2: Model Summary of the Final Logistic Regression Model 

Step 

2 

-2 Log likelihood Cox & Snell R Nagelkerle 

366684.435 

366685.210 

Square Square 

0.070 

0.070 

0.181 

0.181 

R 

The overall fit of the final logistic regression model was assessed using the -2 Log 

likelihood statistics (Table 4.2). Since step 2 was the final step of the stepwise procedure, we 

can compare fit between our best model (step 2) against the baseline model (containing constant 

term only) which had -2LL = 430699.293. The decrease in -2LL between models suggests that 

the addition of predictors have improved the model and the significance of this improvement is 

tested by comparing the change in -2LL = 64014.083 against X2
0.05,4= 9.488. It can be concluded 

that the model including all 5 predictors is a significantly better fit to the data than the baseline 

model (no predictors). 

Both Cox & Snell R Square and Nagelkerke R Square measures from Table 4.2 were 

used as an effect size measures of the model, showing how effective the independent predictors 

are on determining the outcome of the model. Using such information from Table 4.2, concluded 

that 18.1 % of the total variation in the outcome can be explained by knowing the information 

about these predictors. 

The results from the final model of binary logistic regression predict that 4960 patients 

have CKD. This prediction was found to be correct for 2532 patients, therefore 2428 patients 

were misclassified. The model also predicted that 871991 patients do not have CKD but this 

prediction was only correct for 815848 patients, therefore 56143 patients in this category were 

misclassified. This means that for the diagnosis a patient, who has CKD, 4.3% of the cases were 

correctly classified and for the diagnosis of a patient who does not have CKD, 99.7% of the 
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cases were correctly classified. In this application the outcome modelled is whether the patient 

has been diagnosed to have CKD or not. The results show only 18.1 % of variation explained by 

the model. a low sensitivity suggesting that the model as constructed is not useful for predicting 

whether a patient has a diagnosis ofCKD. Hence we cannot determine from this model that the 

co-morbidities considered are useful predictors of the prevalence of CKD in individuals. As 

progression of CKD is of more interest than prevalence in this research, a different approach is 

taken for a second logistic regression application in order to look in more detail on how such 

potential predictors affect the progression of CKD. 

4.2.1.2 Logistic Regression Application Two: Rapid decline in CKD status 
As one of the main aims of this research is to examine the changes in CKD status over 

time, a further application of the logistic regression was used in order to develop some 

understanding of the patterns of the progression ofCKD by considering the progression ofCKD 

using the two definitions of rapid decline. Rapid decline and rate of decline are of great interest 

to the clinical community and according to the CG73 Chronic Kidney Disease NICE Guidelines, 

2008, there are two standard definitions of 'rapid decline' of kidney function when the 

progression of chronic kidney disease is considered. The first (definition 1) is defined as a 

decline in eGFR of more than 5 mLiminf1.73m2 within 1 year. The second (definition 2) 

indicates rapid decline as a decrease of more than 10 mLimin/1.73m2 in eGFR over a 5 year 

time period. 

Here logistic regression is used to investigate progression of the CKD measured as rapid 

decline, and the impact of co-morbidities on this progression. Two separate but identical models 

are used to investigate the rapid decline corresponding to the two definitions described above. 

The CKD population is also refined according to findings from model 1. As obesity was 

found not to be an influencing factor in diagnosis of CKD and it is known that the MDRD 

formula is not valid for obese people (having 8MI values above 30), we have removed patients 

with BMI> 30 from our analysis sample. This was done in order to improve validity of our 

model estimates by including only those with reliable CKD diagnosis. In doing so our full 

analysis sample was decreased to 754764 patients. From the remaining sample, in order to 

identify rapid decline. patients must have at least two repeated eGFR measurements. Hence a 
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further, 507825 patients who do not have any repeated eGFR measurements (including not even 

a single measurement) are excluded leaving 246939 patients who have repeated eGFR 

measurements. In this group patients can have between two to fifteen eGFR measurements. The 

next step was to identify patients who have experienced rapid decline at any time point within 

the sub-group of patients who have been diagnosed with CKD, only the patients who have been 

diagnosed with CKD are taken into consideration (23478 patients from the total 110958 patients, 

21.2% of 110958). Rapid decline was defined for those patients according to two different 

definitions and two different logistic regression models were generated. 

In order to define a rapid decline, the change in eGFR was calculated from the first 

available measurement (at first time point). As the time of first eGFR reading was different for 

each patient, the date for the first measurement (for each individual) is denoted as time zero and 

subsequent readings are used to calculate the following time points by subtracting the date of 

the baseline measurement from the date of the next measurement. Hence a time related variable 

was created where the value of the first measurement of time was zero and the value for the 

following measurements of time was increasing cumulatively. 

On completion of this process, 1514 (6.4% of 23478) patients were found as having a 

rapid decline based on definition 1 (i.e. more than 5mLlminll.74m2 decrease of eGFR within 1 

year) and 3306 (14.1 % of23478) patients are found as having a rapid decline based on definition 

2 (i.e. more than lOmLimin/1.74m2 decrease of eGFR within 5 years). It was notable that the 

number of patients with rapid decline over 5 years (definition 2) was more than the double of 

number of patients who showed a rapid decline of kidney function within a year (definition 1). 

This shows that rapid decline over 5 years is more common than rapid decline over a year. When 

a patient suffers from a rapid decline of kidney function, presence of CKD for that patient is 

diagnosed and hence, suitable therapy is started after the awareness of diagnosis ofCKD. Slower 

deterioration of kidney function could be obtained as a result of awareness and therapy after 

diagnosis of CKD. The results obtained here shows that there are less amount of patients who 

are suffering from rapid decline over a year than the number of patients suffering a rapid decline 

over 5 years and this suggest that kidney function continue to have a rapid decline for majority 

of patients which means that more patients are diagnosed with CKD at later stages such as stages 

3-5. 
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4.2.1.2.1 Results of Logistic Regression Model 2 
In this section, the model fitted into the data (model 2) aims to model rapid decline based 

on definition 1 (i.e. more than 5mLlminll.74m2 decrease of eGFR within 1 year). The co­

morbidities namely, anaemia, diabetes, hypertension, IHD and stroke diagnosis were added to 

the model initially. 

Table 4.3: Results of final logistic regression model for rapid decline based on definition I 

95% CI for 
Exp(B) 

Predictor Beta SE Wald Of Sig. Exp(B) Lower Upper 

Anaemia 0.420 0.084 25.248 0.000 1.522 1.292 1.793 
Diagnosis 

Diabetes 0.284 0.066 18.820 0.000 1.329 1.169 1.511 

Diagnosis 

Constant -2.770 0.031 7959.683 1 0.000 0.063 

The results in Table 4.3 suggested that only anaemia and diabetes were significant predictors of 

rapid decline as defined by definition I (>5mLlminl1.74m2 decrease within 1 year). The 

equation of the final logistic regression model for the rapid decline based on definition 1 was 

found as being; 

Logit(Rapid Decline (YIN)) 

= -2.770 + 0.420(Anaemia Diagnosis) + 0.284(Diabetes Diagnosis) 

eq. (4.13) 

The results (Table 4.3) further suggest that a previous diagnosis of anaemia was the 

most influential factor in rapid decline as a patient with anaemia is 1.522 times more likely to 

experience a rapid decline of kidney function (definition I) than a patient who does not have 

anaemia. Similarly, the odds of a diabetic patient experiencing rapid decline of kidney function 

(definition I) is 1.329 times more than a patient who does not have diabetes. 
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4.2.1.2.2 Results of Logistic Regression Model 3 
The same model was set up to examine the impact of co-morbidities on rapid decline, 

defined as more than IOmLimin/1.74m2 decrease of eGFR within 5 years (definition 2). 

Table 4.4: Results of final logistic regression model for rapid decline based on definition 2 

95% CI for 
Exp(B) 

Predictor Beta SE Wald Df Sig. Exp(8) Lower Upper 

Anaemia 0.618 0.058 112.951 0.000 1.854 1.655 2.078 

Diagnosis 

Diabetes 0.560 0.045 115.110 0.000 1.751 1.603 1.912 

Diagnosis 

Hypertension 0.308 0.042 53.835 0.000 1.360 1.253 1.477 

Diagnosis 

IHD 0.239 0.044 29.851 0.000 1.271 1.166 1.384 

Diagnosis 

Stroke 0.215 0.052 17.263 0.000 1.240 1.120 1.372 

Diagnosis 

Constant -2.285 0.038 3618.972 1 0.000 0.102 

The results of this model (Table 4.4) indicated that all of the co-morbidities considered 

were significantly associated with the rapid decline ofCKD (according to definition 2). 

The equation of final logistic regression model for rapid decline based on definition 2 

(Model 3) was found to be; 

Logit(Rapid Decline (YIN») 

= -2.285 + O.618(Anaemia Diagnosis) + O.560(Diabetes Diagnosis) 

+ 0.308(Hypertension Diagnosis) + O.239(IHD Diagnosis) 

+ 0.215(Stroke Diagnosis) 

eq. (4.14) 
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Again the presence of anaemia was the most influential factor in rapid decline 

(definition 2), hence a patient who has anaemia, was 1.854 times more likely to exhibit a rapid 

decline in kidney function than a patient who does not have anaemia. The values reported in 

Table 4.4 also suggest that diabetes was a significant factor in rapid decline, with diabetic 

patients being 1.751 times more likely to show rapid decline than non-diabetic CKO patients. 

When the figures of odds ratios were compared, both anaemia diagnosis and diabetes 

diagnosis influenced the outcome even more when the rapid decline was defined according to 

definition 2, rather than identifying the patients sutTering from rapid decline based on definition 

1. According to definition 1, other factors such as hypertension, IHO and stroke have not 

provided any additional benefit to the diagnosis of rapid decline whereas with definition 2, 

significant contributions are achieved from each predictor. This means that, an initial faster 

decline of kidney function occurring for a short period of time was atTected from anaemia and 

diabetes whereas a slower, gradual decline of kidney function over longer period of time was 

atTected from other factors such as hypertension, IHO and stroke as well as anaemia and 

diabetes. 

In summary, when using logistic regression to model diagnosis of CKO (model I), the 

predictor having the highest etTect on the outcome was the diagnosis of hypertension with an 

odds ratio of 5.323, followed by diagnosis of IHO with an odds ratio of 3.222, after that 

diagnosis of stroke with an odds ratio of 2.787, then diagnosis of anaemia with an odds ratio of 

2.820 and lastly the diagnosis of diabetes with an odds ratio of 2.787. However the best model 

did not provided a very good fit. 

The logistic model was much more useful in the second application where it was used 

to model rapid decline in CKO status, or in other words progression ofCKO. In this application 

it was found that a co-diagnosis of anaemia was the most influential factor in rapid decline 

whether using definition 1 or 2. Further we found that diabetes also had a significant effect on 

rapid decline according to definition 1 but that the other comorbidities were not significant. 

However when considering an alternative definition of rapid decline (definition 2) we found 

that all co-morbidities considered had an influential impact, but again anaemia was the most 
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significant with an odds ratio of 1.854 (followed by diabetes,OR= 1.751; hypertension,OR= 

1.360; IHD, OR =1.271 and Stroke, OR= 1.240). 

In conclusion while all of the co-morbidity predictors were significantly important for 

both types of outcome, the primary factors affecting the prevalence of CKD were different to 

the primary factors affecting the progression of CKD. While hypertension and IHD were found 

as the predominant factors affecting the diagnosis ofCKD, anaemia and diabetes were found as 

the predominant factors affecting the progression of CKD when a patient was categorised as 

having rapid decline of kidney function based on definition 1 or definition 2. 
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5 Parametric Modelling 

5.1 Introduction 

The results obtained thus far indicate that the co-morbidities which have the greatest effect 

on the prevalence ofCKD (identified by diagnosis ofCKD) are different from the co-morbidities 

which have the greatest effect on rapid decline of a patient's CKD status. This suggests that the 

presence and impact ofdifferent combinations of co-morbidities may affect progression ofCKD 

in different ways. Therefore, in order to fully understand variation in the progression of CKD, 

there is a need to investigate which individual factors (primarily co-morbidities) influence 

progression ofCKD, and how. 

To investigate changes in CKD status we want to examine how the dependent variable 

(i.e. a patient's eGFR value) changes over time (measured in years). In this chapter, linear mixed 

models, generalized linear mixed models and polynomial mixed models are applied to examine 

variations in the progression of CKD over time. Two different types of methodologies, a data­

driven approach and a theory-driven approach can be used in modelling the type of change being 

investigated here and both are discussed and compared below. 

5.2 Data-driven approach or Theory-driven approach? 

A data-driven approach is used when the pattern of change in the dependent variable is 

unknown and experimental data is available to identify and describe this pattern. On the other 

hand, a theory-driven approach is the preferred technique when the expected pattern in the 

change of response is known and the interest lies in building a model to describe this pattern 

(Tuma, 2013). 

In this research, routinely collected general practice data provides empirical data about 

CKD and its progression due to having repeated measurements of eGFR (a biomarker for the 

diagnosis ofCKD) for each patient. While kidney function (in both CKD patients and non-CKD 

patients) is expected to decline over time, faster decline in kidney function is expected in patients 

diagnosed with CKD. The definite pattern of this decline is not known but is believed to differ 

between patients, due to other factors such as the presence of different combinations of co-
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morbidities (de Lusignan et 01.,2005). Therefore, a data-driven approach is used here to examine 

patterns of change in patients with CKD and to associate patterns of change in this phenomenon 

with other patterns that are known to be related to this change. 

Applying a data-driven approach involves using existing methodologies suited to the main 

features of the empirical data to describe the pattern of change in the dependent variable. The 

availability of repeated eGFR values for each patient (between 2 to 15 per patient) provide a 

series of repeated measurements, which are considered as the 'outcome', and change in this 

outcome is analysed over time. Hence, the change modelled here is the progression of CKD 

over time. A time variable based on a continuous scale, with unequal time intervals between 

measurements and unequal numbers of time measurements for different patients, is created from 

the repeated eGFR readings. The first measurement for each patient is classified as time zero 

(to=O) and the subsequent measurements form a cumulative set of measurements. 

Existing models of change are usually variable-based (Tum a, 2013). In this research, this 

means that the "units of analysis" are people and the characteristics of each person are measured 

using variables such as age, gender, 8M), eGFR. The aim of the research being to describe, 

explain and predict the change (in CKD measured by eGFR) over time according to the 

characteristics of the units of analysis, in this case CKD patients. 

The models used here aim to explain patterns of change in the responses as a function of 

individual characteristics (age, gender, and ethnicity) and changes in co-morbidities (i.e. 

differences in co-morbidities between patients). This means that such co-morbidities can affect 

changes in CKD but does not imply that they are necessarily the causes of variation occurring 

in the responses. In this dataset, in using these models as constructed it is assumed that the co­

morbidities considered in the model were diagnosed before the first diagnosis of CKD and the 

results obtained should be interpreted bearing this in mind. This assumption is made because 

since the recording of CKD is added on P4P reward scheme in 2006, the recording of the 

diagnosis of other co-morbidities by general practices were older than the recording of the 

diagnosis of CKD. The models used in this chapter are carried out on sub sample of 4 72 patients 

who are diagnosed with CKD from the first eGFR measurement. Since the recording of 

diagnosis of CKD in general practice records occurred after the recording of the diagnosis of 
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other co-morbidities, according to our assumption, if the patients are selected such that they 

have been diagnosed to have CKD from the first eGFR measurement, the diagnosis ofCKD will 

then be assumed to be after the diagnosis of other co-morbities for all patients. We believe that 

in order to observe the best picture for the pattern of change, at least 8 repeated eGFR 

measurements are needed. Even the models described in this chapter allow the use of missing 

observations, just to make the modelling procedure faster and to be able to compare with the 

models described in later chapter such as in chapter 6 where such models does not allow the use 

of missing observations, sub sample of 472 patients are used in the models described in both 

chapter 5 and chapter 6 where those patients have full 8 repeated eGFR measurements and have 

been diagnosed to have CKD from the first observation point. Therefore the patterns suggested 

using this approach allow the researcher to predict future outcomes for the value of eGFR at the 

next observation time point (e.g. the value ofa patient's eGFR after another 5 years) and hence 

enable prediction of that patient's stage ofCKD in the future. 

5.3 Models for Analysis of Repeated Measurements 

In this section, classical approaches for the analysis of repeated measures are discussed. 

Repeated measurements can be analysed using one of two broad categories of methodologies, 

namely univariate and multivariate approaches (see Figure 2.2). Here, such methods and their 

suitability for the data being investigated are discussed, providing a rationale for the models 

subsequently used for the analysis of our data. 

5.3.1 Univariate Approaches 

Univariate methods (Oiggle et aI., 1996; Twisk, 2003) can only be used if the repeated 

measurements from each patient are reduced to a single measurement by reducing the vector of 

repeated measurements (Davis, 2002). In other words, these methods are applicable where 

summary statistics data (e.g. mean, mode, median) can be used as a single measurement of 

response. Univariate approaches such as summary statistics and ordinary least square (OLS) 

methods are then employed as analysis techniques (Wishart, 1938; Pocock, 1983; Frison and 

Pocock, 1992; Dawson, 1994; Davis, 2002). 
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The benefits of such approaches lie in the simplicity and ease of use of the methods in 

applications, but they are inappropriate in situations where the number of repeated 

measurements from each patient is different, resulting in incomplete data. When the number and 

the temporal patterns of repeated measures differ for each patient, univariate approaches can 

lead to inaccurate results when making comparisons between patients (Davis, 2002). In such 

cases, to counteract this problem, weighted analysis of summary statistics can be used as an 

alternative to summary statistics to account the fact that some data points contribute more than 

others (such as when calculating the arithmetic mean of a measure of two classes when two 

classes contains different number of data points) (Matthews, 1993). The main disadvantage of 

the univariate approach is the loss of information in summarising results and the potential for 

missing information if the chosen summary statistics do not truly represent the actual data 

(Davis,2002). Hence, univariate approaches are not applied in this study. 

5.3.2 Multivariate Approaches 

The most commonly used multivariate approaches (Twisk, 2003) comprise four different 

techniques namely; unstructured multivariate approaches, multivariate analysis of variance 

(MANOYA) techniques, repeated measures ANOYA and linear mixed models. The advantage 

of multivariate approaches over univariate approaches lies in that all of the data points are 

utilised rather than just a single summary measure. In all of the multivariate techniques 

described below, the dependent variable is assumed to be normally distributed (Davis, 2002). 

5.3.2.1 Unstructured Multivariate Approaches 

When interest lies in testing whether or not the repeated measurements are different 

from each other within individual patients in a single sample, Hotelling's T-statistic, a 

generalization of one sample t-test, can be used (Hotelling, 1931; Albert, 1999). The dependent 

variable is assumed to follow a multivariate normal distribution and there should be fewer 

independent predictors than the number of patients. However, this test is not suitable for use 

where there is missing data and so is not applicable in this project (Davis, 2002). 
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5.3.2.2 Multivariate Analysis of Variance Approaches 

Multivariate analysis of variance methods, namely multivariate general linear model 

(based on MANOVA) and profile analysis are employed when there are two groups of patients 

(Twisk, 2003). In MANOVA, since the data contains multiple responses from the measurements 

at different times from each subject, the within (WSS), between (BSS) and total sum of squares 

(TSS) from the standard univariate AN OVA are replaced by three sum of squares matrices. The 

diagonal elements (also called "sums of squares") of the covariance matrix represent the 

variance of each variable and the off-diagonal elements represent the covariance between pairs 

of variables (also called cross-products). 

Profile analysis is used when the aims are to test if the profiles of different groups of 

patients within the data are parallel; i.e. testing if there is a difference in time profiles between 

groups and ifthere is a difference between measurements at different time points within a group. 

Profile analysis (using plots of the data to visually compare between groups) can be used in a 

very broad context so long as there is a multivariate outcome for each patient. However, profile 

analysis does not consider the natural order of the repeated measurements over time. However, 

as the data set used in this study is based on a single sample, these methods which require two 

samples (unstructured, MANOV A and profile analysis) are not appropriate (Davis, 2002). 

Growth curve analysis (Potthoff and Roy, 1964) can be used with both single and 

multiple sample data. This is another multivariate approach and it is used when the numbers of 

repeated measurements within patients are large (Rao, 1965, 1966, 1967; Khatri, 1966; Davis, 

2002). However, growth curve analysis assumes that the time points at which the repeated 

measurements are made are equally spaced (Davis, 2002) and since that is not the case for our 

data, again these types of models are not applicable here. 

5.3.2.3 Repeated Measures ANOV A (ANCOV A) Approaches 

Repeated measures ANOVA (or ANCOVA) is another multivariate analysis technique 

which can be applied to both single and multiple sample datasets (Twisk, 2003). The difference 

between this method and the unstructured multivariate and MANOV A techniques is that 

repeated measures ANOVA makes an assumption on the covariance structure of the vector of 
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repeated measurements. The model assumes that repeated measurements are continuous and 

normally distributed for each patient and that; 

All random components including the random effects for each patient and random error 

component are independent. 

Repeated measurements for anyone patient are correlated. 

Sphericity: the covariance matrix has all diagonal elements equal and all otT-diagonal 

elements equal, which means having a compound symmetry covariance structure 

(Huynh and Feldt, 1970). 

The correlation between any pair of repeated measurements for any patient is same. 

(Hedeker and Gibbons, 2006). 

In the dataset used here, the repeated eGFR measurements are not equally spaced in time 

and correlations between any pair of repeated measurements are not necessarily the same. Hence 

the assumptions of repeated measures ANOV A are not fully met. Furthermore, in our patient 

record data, repeated eGFR measurements taken closer together in time tend to be more strongly 

correlated than those taken further apart in time and so careful consideration is needed before 

we may assume a compound symmetry covariance matrix. Due to strict assumptions such as the 

assumption of equally spaced repeated measurements and the assumption on the correlation 

between the measurements, the repeated measures ANOVA method is not an appropriate 

technique for use in this research. 

In summary, the classical multivariate approaches described above (i.e. unstructured 

multivariate, MANOV A, ANCOVA) are not applicable here for the reasons described above. 

The unsuitability of these traditional approaches is mainly due to variable numbers of repeated 

eGFR measurements amongst patients and so, in etTect, there is missing data within the repeated 

measures, i.e. the data can be considered incomplete. Furthermore, the repeated measurements 

within patients are not equally spaced in time, leading to the data being considered as unbalanced 

(Fitzmaurice et a/., 2004). Therefore, alternative modelling approaches must be considered. 
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5.3.2.4 Linear Mixed Models (LMM) 

Typically, data from longitudinal studies is unbalanced and incomplete. Linear mixed 

models have been developed from ANOVA models by including extra random effect terms. 

Addition of these random effect terms allow certain regression coefficients to vary randomly 

between individuals, resulting in statistical models that have an ability to handle unbalanced and 

incomplete measurements in a natural way. These methods are therefore suitable for modelling 

heterogeneity both within and between individuals in complex, longitudinal outcomes 

containing multiple sources of variation (Laird and Ware, 1982; Singer and Willlett. 2003). 

Hence, Linear Mixed Models (LMMs) (Ware, 1985; McLean et aI., 1991) provide an alternative 

to modem methods based on classical multivariate approaches and can deal with the challenges 

typical of longitudinal data, for example when missing repeated measurements are located at 

the end of the measurement period for each patient rather than located in the middle, between 

two actual repeated measurements (Diggle et al., 1994; Longford, 1994). 

The "mixed" concept of such models combines the need to consider both within patient 

differences and between patient differences simultaneously. Instead of applying additional 

constraints to meet the assumptions of the model, such models allow the patient level 

information to be used in generating the model. In simple terms, a linear mixed model analysis 

can be considered as a univariate or multivariate regression analysis of responses with correlated 

errors (Bates, 2012). 

The general form of a LM can be expressed as; 

y = Xp + E 

eq.(5.1) 

Where; 

y is the vector of responses in of n x 1 dimensions consisting independent observations, 

p is the vector of unknown parameters to be determined in dimensions of p x I, namely the 

coefficients of the predictors. 

X is the model matrix in ofn x p dimensions where xij represents predictor j for individual i and 
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E is the vector of independent errors with mean zero and constant variance. 

(Davis, 2002). 

In linear mixed models, the unknown ~ parameters are evaluated using the ordinary least 

squares method. The main purpose of using this method is to model the average ofthe outcome 

of interest for a given patient. If the assumption of independent errors (E) employed in LMMs 

is changed, so that the errors are assumed to have mean zero but differing variances per patient, 

this enables modelling of the outcome using a weighted least squares (WLS) approach, that is 

the approach of weighting observations to estimate variance based on known positive constants 

to counteract the problem of non-constant variance, rather than ordinary least squares. On the 

other hand, if the errors are assumed to have zero mean and have a non-trivial covariance matrix, 

then the generalized least squares (GLS) approach which is the generalization of WLS is used 

to estimate the ~ coefficients. GLS is used if in addition to unequal variances where W LS can 

be used, correlation exists between observed variances. LMM is a "mixed" model containing 

fixed and random effects (Bickel, 2007). Therefore, the model equation becomes 

Where; 

y is the n x I vector of observations, 

X is the model matrix which is n x p, 

y = XP+Zy +E 

eq. (5.2) 

P is p x 1 vector of unknown parameters for the coefficients of the model matrix for fixed 

effects, 

Z is a given n x q matrix for the coefficients for random effects, 

y is an unobservable random vector in q x 1 dimensions and 

E is n x I vector of errors. 

(Davis, 2002). 

Random effects are unobservable and unmeasurable. Therefore, estimating the random 

effect component of the model is the biggest challenge. Usually parameters in such models are 

estimated using iterative procedures, such as maximum likelihood approaches (Longford, 1987; 

Singer and Willlett, 2003; Beaumont, 2012). 
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Harville (1977) used maximum likelihood (ML) estimation to estimate both fixed effects 

and variance components (i.e random effects). It was found that when a ML estimation 

procedure is used to estimate variance components, it results in biased estimates of parameters. 

An alternative approach called restricted maximum likelihood (REML) estimation was 

suggested by Patterson and Thompson (1971). The difference between ML and REML is that 

the maximum likelihood approach (ML) uses the original observed values whereas the REML 

method uses the likelihood function calculated from transformed data. In REML approach, 

original data is replaced by "contrasts" which are the combination of two or more factor level 

means where the coefficients add up to zero and likelihood function is calculated from the 

contrasts. This takes account of the degrees of freedom that are lost while estimating fixed 

effects. This then results in less biased estimates of variance components (Goldstein, 1995). 

For longitudinal data, the general LMM is; 

Where for each individual i; 

Yi is the n x I vector of observations, 

Xi is the n x p model matrix, 

i = 1,2,3, ... n 

Pi is p x I vector of unknown parameters, 

Zi is a given n x q matrix, 

Yi is an q x I unobservable random vector and 

Ei is n x 1 vector of errors. 

eq. (5.3) 

(Laird and Ware, 1982; Jenrich and Schlucter, 1986; Laird et aI., 1987; Diggle, 1988; Lindstrom 

and Bates, 1988; Jones and Boadi-Boateng, 1991; Jones, 1993). 

Laird and Ware (1982) stated that linear mixed models can be considered as a two-stage 

random effects model. For instance, in the dataset used in this research project, repeated 

measurements of eGFR values are taken from each patient and these repeated measurements 

can be classified as measurements at level I which are grouped within patients, whereas level 2 

is defined as the between patient level. Therefore, at level I we can identify differences between 
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measurements within a patient and at level 2, we can determine differences between the 

individual patients (Verbeke and Molenberghs, 2000). 

The equation for level 1 is expressed as; 

eq. (5.4) 

Where Wi is the non-constant variance for each i, i = 1,2,3, ... n. 

In this type of LMMs, an expectation-maximization (EM) algorithm (Laird and Ware, 

1982; Lindstrom and Bates, 1988) is applied as an iterative procedure to obtain the estimates for 

ML and REML parameters; where the estimation step in the EM algorithm is defined as the E 

step and the maximization step is defined as the M step. By using a two-level random effects 

model, unobservable random parameters can be estimated given that there is no missing data in 

the repeated measurements. jennrich and Schluchter (1986) proposed using LMMs to 

investigate unbalanced and incomplete responses with the main purpose being estimation of the 

model coefficients, the ~s. 

Where there are missing responses, then the total set of repeated measurements for each 

subject are expressed as a submatrix of the model matrix. When the covariance is estimated per 

patient i.e, it is subject-specific, then Jennrich and Schluchter (1986) suggest using Newton­

Raphson (NR) and Fisher scoring (a different form of Newton's method) algorithms instead of 

an EM algorithm to find the ML and REML estimates (Longford, 1987). Jennrich and 

Schluchter developed a generalized expectation-maximization (GEM) algorithm where, at each 

M step of the GEM algorithm, the likelihood function is increased. The GEM approach is only 

applicable if the data is incomplete, but the main benefit is that it can be used to fit covariance 

matrices when the number of parameters in the dataset is large (Jennrich and Schluchter, 1986; 

Laird et al., 1987). 

Laird et al (1987) suggested using an EM algorithm with incomplete datasets to find the 

estimates for ML and REML parameters. In such cases, at each iteration step, m steps of 

repetition have to be carried out before moving to the next iteration step. In previous research, 

the EM algorithm is used in random effects models where the data is complete with no missing 
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values. When the data is incomplete, i.e. in our case, there are missing eGFR readings, the EM 

algorithm is inappropriate and other estimation procedures are more favourable, for example the 

Newton- Raphson or Fisher scoring methods. Comparison between these two approaches 

(Newton-Raphson and Fisher scoring) concludes that the NR approach is usually preferred over 

Fisher scoring, as it generates estimates with lower standard errors. Laird el al (1987) further 

suggested that the generalized EM algorithm (GEM) can be used where data is incomplete, and 

this will be appropriate to a specific case of the random effects model. Therefore, using GEM 

approach allows the random effects models to be applied to incomplete data. Overall, Jennrich 

and Schuluchter (1986) concluded that where the number of covariate parameters is small, the 

NR approach is better due to its speed and the method being not limited to incomplete datasets. 

However, if the number of covariate parameters is large, measurements from more than 10 time 

points will be needed to fit the unstructured covariance matrix and in such cases the GEM 

algorithm is found to be better than other iterative procedures. In addition, using the GEM 

algorithm to estimate the random effects model does not require the covariance matrix to be 

specified in advance. 

Diggle (1988) proposed a model; 

eq. (5.5) 

J is a square matrix every element equal to 1, 

ti = [ tv t 2 , t 3 , t 4, . ..tini l is the vector of measurement times. 

R(t) is a symmetric matrix with R(k,l) = exp( -0"1 tk - tlle when c= I or 2. (Diggle, 1988). 

In equation (5.5) the within subject covariance structure contains three parameters, t 2, 

V 2,0"2 and these parameters are estimated using the ML or REML approaches. 
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In the model formulation of linear mixed models, a covariance structure should be 

specified in advance. The most commonly used covariance structures that can be assumed in 

LMM approaches are; compound symmetry, first-order autoregressive (AR-I), independence 

and unstructured (Zimmerman, 2000). 

Compound symmetry covariance structure (Tiwari and Shukla, 2011) is the basic, well 

known covariance structure where all variances are assumed to be the same and additionally, 

the correlation between any two successive repeated measurements are assumed to be same for 

all individuals irrespective of the time between these repeated measurements. The compound 

symmetry covariance structure is in the form; 

Compound symmetry covariance structure assumes a constant variance and covariance 

among the repeated measurements. 

The AR-l covariance structure (Tiwari and Shukla, 2011) takes the form of; 

[

1 P P
2

] 
pIp 

p2 P 1 

Where p is the correlation between successive measurements. 

The AR-I structure is known as first order autoregressive covariance structure and it 

assumes that variances among repeated measurements taken from each patient are the same. It 

also assumes that the association between any two adjacent repeated measurements from the 

same patient is equivalent to rho (p) which indicates that p represents the direct relationship 

between successive measurements, but only indirect correlation between the measurements 

further apart. In the data used in this research, repeated measurements are taken from each 

individuals at various different time points. The first observation is denoted as being at (to) and 

the following observations are identified by time (in years) after the first measurement. Since 
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the repeated measurements are not taken at equally spaced time values, covariance structures 

containing autoregressive models are not appropriate. 

The independent covariance structure (Tiwari and Shukla, 2011) is in the form; 

o 
C1~ 
o 

The independent covariance structure is also called a diagonal covariance structure. The 

independent covariance structure assumes that variances between repeated measurements taken 

from each distinct patient are different and there is no association among repeated measurements 

from the same patient. 

Unstructured covariance structure (Tiwari and Shukla, 2011) takes the form of; 

The unstructured covariance structure is the fully general covariance structure which 

does not have any restrictions on variance and covariance of repeated measurements either 

within or between patients other than that the variances and covariances are constant over time. 

In this way, different variances and covariance can be observed between repeated 

measurements. 

While analysing the data using LMM techniques, the function of the hypothesis test used 

is dependent on how close the chosen covariance structure is to the true covariance structure of 

the dataset (Laird and Ware, 1982). 

In general, to choose the best covariance structure for the data, different models are 

applied and compared. These different models are implemented using the same fixed effects 

where these fixed effects are estimated by using ML or REML approaches. 

Where there is a small number of repeated measurements at equally spaced time points 

per subject, and when the data is complete and all of the independent predictor variables are 
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categorical variables, then the likelihood ratio test can be used. However, where there are a large 

number of repeated measurements per subject not equally spaced in time, the likelihood ratio 

test is not suitable for identifying the best covariance structure. 

When the models under consideration are nested, as they are here, models can be 

compared by looking at Akaike's (1974) Information Criteria (AIC) and Schwarz's (1978) 

Bayesian Information Criteria (BIC). These information criteria are based on the log-likelihood, 

both also consider the number of observations orland number of parameters involved in the 

model (Vallejo et at., 2011). 

AIC= -2LL + 2P 

BIC= -2LL + Plog(n) 

Where; 

LL is the log likelihood, 

P is the number of parameters and 

n is the number of observations (Davis, 2002). 

It can be seen from the above equations that AIC penalizes the log-likelihood based on 

the number of parameters; whereas BlC penalizes log-likelihood according to number of 

observations and the number of parameters in the model (Jones, 1993; Vallejo et al., 2011). 

In the models investigated in this research project (see sections 5.4 & 5.6.1), the nature of 

the AIC and BlC mean that the lower the AIC (or BIC) values, the better the model fit. The 

random intercept and random slope models are used as initial linear mixed modelling 

approaches. These models are attractive in that they compute only four parameters to form the 

covariance structure but the pitfall is that they do not have a stable covariance matrix of the 

vector of observations. 

The purpose of this research project is to identify within-subject differences as well as 

between-subject differences. Therefore, the covariance structure of the model should allow the 

intercept, which is the initial condition (i.e. based on the first of the all repeated measurements), 

to vary from patient to patient. As well as this, the model should enable the rate of change of 
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the repeated measurements over time (i.e. the slope) to vary between patients. Thus, an 

appropriate covariance structure should take account of both a random intercept and a random 

slope. In addition, inclusion of independent within-subject variations in the covariance structure 

will allow modelling of within subject differences as well. Here, the most appropriate covariance 

structure of the model is the unstructured covariance structure. The model formulated using an 

unstructured covariance structure is then compared with the basic model which has the 

compound symmetry covariance structure. 

LMMs are applied to our dataset using both types of covariance structures; compound 

symmetry and unstructured covariance structure. The two models are then compared, to identify 

which covariance structure is more applicable to the data. 

5.4 Application of LMMs on Research Dataset 

The linear mixed models described and used in this chapter follow a two level repeated 

measures structure where the lower level (level I) observations are eGFR measurements over a 

period of time. Level 1 observations are nested within patients at the higher level (level 2). 

Variation between eGFR measurements for each individual is analysed at level I and 

variation between individuals (patients) is analysed at level 2. In effect, this means that a 

different regression line will be estimated for each patient, and regression parameters specific 

to patient attributes, which are called "random effects", are modelled at level 1 (Laird and 

Ware, 1982). 

The Linear mixed model is formulated as; 

eq. (5.6) 

Where; 

Yi is the response vector, which is the set of repeated eGFR measurements in ni x 1 dimensions, 

where ni is the total number of observations for individual i, 
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Xi is the model matrix for the fixed effects, which is in ni X p dimensions, where p is the total 

number of fixed effects, 

P is the vector of fixed-effects coefficients in p x 1 dimensions, 

Zi is the model matrix for the random effects, which has ni x q dimensions, where q is the total 

number of random effects, 

hi is the vector of random-effects coefficients in q x 1 dimensions and, Ei is the vector of errors 

in ni x 1 dimensions, 

tjJ is the covariance matrix for random errors in q x q dimensions, 

and u 2 Ai is the covariance matrix for errors in ni x ni dimensions. (Laird and Ware, 1982). 

Initially, unconditional models, described below, are fitted to our data. These 

unconditional models are used to identify whether there is any systematic variation in the 

repeated eGFR values and, if so, where that variation lies- either within or between individuals. 

These are relatively primitive models but they are useful in providing a basic evaluation about 

within- and between-subject heterogeneity, which can be used to improve the subsequent 

models which will include substantive predictors (Peugh and Enders, 2005). 

5.4.1 Modell - Unconditional means model 

The first model was an unconditional mean model, a two-level model with a random 

intercept, used to estimate the total variation in the response. At this point, the model does not 

include any predictors at either level. This is equivalent to a one-way ANOY A model with a 

random effect (Sullivan et al., 1999). The model estimates the grand mean of repeated eGFR 

values across all individuals and all measurement times and estimates the amount of variation 

existing in within- and between-subjects (without considering time). The Intra-Class Correlation 

Coefficient (ICC) is used to compare the relative magnitude of variance components by 

estimating the proportion of total variation in the responses that lies between patients (level 2) 

(Twisk, 2003). This represents the percentage of total variation in eGFR values that is 

attributable to differences between patients (Shek and Ma, 2011). 

Model I (Unconditional mean model) has the form; 

Levell: l'/j = POi + Tij 
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Level 2: POj = Yoo + Uoj 

Combined: Yij = Yoo + UOj + rij 

eq. (5.7) 

Where; 

Yij is the measured outcome for individual i at measurement point j (i.e. the mean value for 

measurementj across all patients), 

POj is the group mean, 

Tij is the residual term for an individual i at measurement j, 

Yoo is the grand mean of the response values, across all patients and measurements and 

UOj is the individual specific random effect term. (Kwok et ai., 2008). 

5.4.2 Model 2 - Unconditional linear growth model 

In an attempt to improve on Modell, an unconditional linear growth model is applied. 

This model includes the single predictor, time. This baseline growth model allows investigation 

of variation in growth rates (in this case, deterioration of CKD status). The I inear slope aspect 

of this model, represent rates of change of eGFR with respect to time for the individual and the 

slope is allowed to vary randomly between individuals (Shek and Ma, 2011). 

Model 2 (Unconditional linear growth model): 

Level 2: 1fOi = 1300 + UOi 

Level 2: 1fli = 1310 + Uli 

eq. (5.8) 

Where; 

l'ij is the measured outcome for individual i at measurement j, 
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7rOi is the intercept, which is the initial status of eGFR, 

7rli is the slope, which is the rate of change of eGFR over time, 

Tij is the time specific residual term for each individual, 

Poo is the mean intercept, 

UOi is the individual specific random term for the intercept, 

Timeij is the time of jth measurement for individual i, relative to that individual's first 

measurement, 

PlO is the mean slope, 

and Uli is the individual specific random term in the slope (Kwok et ai., 2008). 

5.4.3 Model 3 - Conditional Linear growth model 

A further development of these models can be achieved by inclusion of predictor 

variables at the between-individual level (i.e. between subjects, level 2). In the case of this study, 

these are diagnoses of known co-morbidities at baseline (i.e. first eGFR measurement). Initially, 

a separate linear mixed model was produced for each of the co-morbidities considered (i.e. 

diabetes, cardiovascular disease, anaemia), followed by a single model containing all patient 

level predictors. The aim of this is to determine how much of the between-subject variation can 

be explained by knowledge of co-morbidity diagnoses at baseline for individual patients. 

The conditional linear growth model (Peugh and Enders, 2005) take the form: 

Level 2: 7rOi = POO + POl (Xi - X) + UOi 

Level 2: 7rli = PlO + Pll (Xi - X) + Uli 

Combined: l'ij 

Where; 

= POO + POl (Xi - X) + PlO(Timeij) + Pll[(Xi - X) x (Timeij)] + UOi 

eq. (5.9) 

Longitudinal Analysis of Routinely Collected General Practice Records 
114 



Chapter 5 - Parametric Modelling 

}fj is the measured outcome for individual i at measurement j, 

(Xi - X) is the difference between the predictor for individual i and the mean value of that 

predictor across all individuals, 

Poo is the mean intercept, 

PlO is the mean slope, 

POl is the coefficient for the intercept in the difference explained above and 

Pu is the coefficient for the slope with respect to the same difference. (Kwok et al., 2008). 

5.4.4 Results from all three models 

The sample of GP data used to formulate Model I - Model 3 contains only patients that 

have been diagnosed to have CKD at stages 3 to 5 from the first observation. Results obtained 

from all three models are given in Table 5.1 below. 

Table 5.1: Results from all three models 

Fixed Effects 

Intercept (foo) 

(SE)* 

p-value 

Time (flO) 

(SE)* 

p-value 

HbAlc 

(SE)* 

p-value 

Anaemia x Time 

(SE)* 

p-value 

Cardiovascular Disease x Time 

(SE)* 

Model I Model 2 

48.91 51.19 

(0.394) (0.392) 

p<O.OOI p<O.OOI 

-0.48 

(0.060) 

p<O.OOI 

Model 3 

52.17 

(0.480) 

p<O.OOI 

-0.20 

(0.105) 

p<0.005 

1.23 

(0.368) 

p<O.OOI 

-0.40 

(0.187) 

0.017 

-0.30 

(0.134) 
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p-value 

Random Effects 

Uoo 

Uu 

UOI 

Overall Model Test 

-2LL** 

AIC** 

DIC" 

*Standard error in parentheses. 

68.65 

36.08 

25569.609 

25573.609 

25586.082 

0.002 

62.37 49.94 

1.30 0.91 

-1.85 -1.13 

21.96 21.34 

24630.347 13443.495 

24638.347 13451.495 

24663.291 13474.061 

**Each one of these information criteria are such that the lower the value, the better the fit of the 

model to the data. 

The unconditional mean model (Model I) reveals that about one third of the total 

variation in the eGFR readings (34.45%) is within-subject variation, i.e. variation between 

eGFR readings over time within patients. The remaining two thirds (65.55%) of variation in the 

data is found between subjects, i.e. due to differences between the patients. This suggests that 

differences in average eGFR measures are due more to differences between patients than due to 

changes in eGFR measurements within each individual patient. The intra-class correlation 

coefficient (ICC) is the proportion of variance explained by between subject factors (K wok et 

al., 2008) and is 65.55% here. 

Since our sample of the GP data contains only patients that have been diagnosed to have 

CKD at stages 3 to 5 from the first observation, which is the point where the measurement time 

was set to zero, the grand mean of the eGFR values resulting from the unconditional mean model 

(48.91 mLimin/1.73m2) was considerably lower than the grand mean of the whole GP data set 

that contains all patients both with and without CKD (80.18 mLiminll. 73m2). 

In Model 2, the unconditional linear growth model, which estimates fixed effects 

parameters, statistically significant estimates were achieved for both intercept and linear slope, 

suggesting that initial status and linear growth rate for eGFR were non-zero across patients. The 

intercept value represents the expected initial eGFR value at time t=O, i.e. eGFR at the first CKD 
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diagnosis for each patient. The intercept estimate is 51.19 mLimin/1. 73m2, a higher increase in 

the intercept compared to Modell, indicating that the average initial eGFR measure is higher 

than the average over all observations (as estimated in Model I) for most patients. The average 

rate of change of eGFR is estimated at -0.48 units per year, which indicates that on average the 

eGFR value for most patients was decreasing with time. The estimate of the residual in the 

covariance was reduced, meaning that a higher proportion of within-subject variability is 

explained, as a result of the addition of the level 1 covariate (i.e. time). Here, 39.14% of variation 

at level 1 (between eGFR readings) which is 13.48 % of the total variation was explained by 

time variable. However, it can be concluded that 60.87 % of within-individual variance (i.e. 

20.97 % of the total variation) was still unexplained. The random error terms associated with 

the intercept and linear effect are also both found to be statistically significant. Therefore, by 

the addition of time variable into the unconditional means model, small amount of improvement 

is made on the explanation of variation in the outcome. 

Furthermore, a significant amount of variation in the outcome can be explained by 

further adding between subject (i.e. level 2) factors and covariates into the unconditional linear 

growth model. In this way, further explanation ofthe variability in eGFR measurements between 

patients are achieved by expanding Model 2 to include between-subject (i.e level 2) factors and 

covariates, i.e. by moving from Model 2 to Model 3 (K wok et al., 2008). 

The conditional linear growth model (Model 3) provides the best fit of all the three 

models. It includes baseline diagnosis of statistically significant co-morbidities; cardiovascular 

disease, anaemia, and the baseline value of HbA I c (the biomarker for diabetes). These 

parameters are included as level 2 factors and as covariates with time. The unstructured 

covariance structure was used, where all elements in the covariance structure are unique and 

estimated from the data separately. 

The best fit combined model (Model 3) was found to be; 

eGFRij = 52.17 + (-0.20)(Timeij) + (1.23)(HbAlca + (-0.40)(Anaemiaa * (Timeij) 

+ (-0.30) (Cardiovascular diseasei) * (Timeij) 

eq. (5.10) 
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Where eGFRij is the value of eGFR at time point j for an individual i, i=\ ,2.3 .. .472 (since we 

have 472 patients having 8 repeated eGFR measurements) and HbA I c is a continuous variable 

on the grand mean centred and 0 =:;; Timeij =:;; 18 years. Time is a continuous variable in years 

indicating the actual time of each repeated measurement and j (j = 1,2,3,4, ... ,15) indexes the 

time points where the measurements for that individual were made. HbA I c; is a biomarker used 

in the diagnosis of diabetes which is reported using a continuous scale. (The grand-mean centred 

HbA 1 c value is used in the model to allow for meaningful interpretation of the intercept, i.e. 

HbA 1 c=O represents the average value for the study group). 

The baseline diagnoses of anaemia and cardiovascular disease were binary coded using 

the SPSS convention, where absence of disease is coded as I and presence of disease is coded 

as o. ("CVO present" is defined as a previous/current diagnosis of cardiovascular disease 

(CVD), peripheral vascular disease (PVO) or ischaemic heart disease (lHD). However, this 

convention was not the case for the diagnosis ofCKO where the diagnosis ofCKD is kept coded 

as \ and the absence of the disease is kept coded as O. 

In this model, (eq. 5.10), each factor included is found to have some statistically 

significant effect on eGFR. Since the independent variable called "HbA 1 c*time" is found to 

have p-value greater than 0.05, the interaction of HbA 1 c with time is found to have a non­

significant effect on the eGFR value and hence, HbA 1 c was found to affect the intercept alone, 

indicating that this covariate has an effect on the baseline diagnosis of eGFR only, whereas 

presence of anaemia and cardiovascular disease were found to affect the rate of progression of 

the disease, but not the baseline value. Where a patient with CKD has none of the co-morbidities 

diagnosed, the average baseline eGFR value was found to be 52.17 mLlmin/1.73m2 and, for 

each one year increase in time, the eGFR value decreases by 0.20 units on average. 

In general, diabetes is diagnosed when HbA I c values exceed 6.5 %. In our data set, the 

average HbAlc value is found to be 7.05 %, indicating that many of the CKO patients (around 

50%) had a high HbAlc value and were therefore diabetic. An increase in average HbA Ic value 

indicates a worsening of diabetic condition, whereas a decrease => improving diabetic 

condition. Our results show that for each one percentage point that a patient's HbA 1 c is above 

the average, meaning that their diabetic condition is worse, typically corresponds to an expected 

increase in the initial eGFR value of 1.23 units. Thus, more serious cases of diabetes would have 
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a better initial eGFR value that is indicating a better initial state of kidneys. However, this initial 

increase in eGFR value does not mean that the condition of kidneys are getting better. Instead, 

it means that when a patient has diabetes, it has a greater chance of detection of CKD and having 

initial treatment for CKD results an initial rise in eGFR value. It is also concluded that over the 

time, patients having diabetes had a greater decline of eGFR compared to non-diabetic patients. 

If a patient has been diagnosed with anaemia only, a decrease in eGFR of 0.60 units is 

expected for every additional year in time from diagnosis. This compares to a decrease of 0.20 

units for a patient without a diagnosis of anaemia. Thus, anaemic patients tend to have a faster 

decline in kidney function than non-anaemic patients. Similarly, if a patient has been diagnosed 

with cardiovascular disease, each additional year after diagnosis will typically result in a 

decrease in eGFR of 0.50 units, compared to 0.20 units in non CVD patients. This means that 

diagnosis of either (or both) of these co-morbidities result in a faster decline of eGFR over time, 

increasing the rate of progression ofCKD. 

The covariance between intercept and slope in the final model was found to be negative 

and statistically significant. From this, assuming that the decline of eGFR over time is linear for 

now, we can deduce that when a patient has a higher initial (baseline) eGFR value, a faster 

decline of eGFR over time is expected, hence increasing the speed of progression of CKD 

towards the end stage renal disease (ESRD). We can further infer that patients who also have 

diabetes, and hence a higher initial eGFR due to the contribution of the HbA 1 c term in eq. 

(5.10), would show a more rapid decline in eGFR, despite this not being explicitly shown in eq. 

(5.10). Model 3 (i.e. the conditional linear growth model) is found to be the best fitting model 

of the three since it gave the lowest log-likelihood (-2LL), Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC) values, indicating a better model fit. (Table 5.1) 

(Leyland,2004). 

Pseudo-R2 statistics from the variation between all the intercepts for all individuals in 

the dataset (Model 3, conditional linear growth model) and average intercepts (Model 2, 

unconditional model) shows that 19.92 % of variation in the intercept (i.e. the variation of eGFR 

value between all patients at baseline) can be explained by Model 3. Pseudo-R2 statistics from 

the variation between all annual changes (Model 3, conditional linear growth model) and the 

average annual change (Model 2, unconditional model) shows that 30.77 % of variance of the 
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annual change in eGFR value across all patients is explained by Model 3. From these results, it 

can be concluded that the co-morbidities investigated here have medium to large effects on the 

eGFR value at the initial time point and large effects on the linear rate of change in eGFR value 

over time (K wok et al., 2008). 

Results obtained from applying LMMs to this data suggest that the research presented 

here confirms existing reports that CKD is related to other clinical conditions, known as co­

morbidities. While it is recognised that diabetes, anaemia and cardiovascular diseases have 

significant influence on eGFR and hence diagnoses ofCKD, our findings show and evaluate the 

impact of these conditions on the rate of decline of CKD status. Interpretation of the results 

obtained from our models reveal a clear trend for decline in eGFR over time and indicate that 

progression of CKD was faster for patients with the co-morbidities anaemia, diabetes and 

cardiovascular diseases both singly and in various combinations. Here, patients with these pre­

existing conditions who are subsequently diagnosed with CKD are found to be at higher risk of 

accelerated deterioration of kidney function over time. 

5.5 Extensions of Linear Models 

GLM models can be combined together with quasilikelihood methods to extend the GLM 

methodology for repeated measurements. There are four different types of such models (Zeger 

and Liand, 1992) namely; random-effects models (Laird and Ware, 1982), response condition 

models (Neuhaus, 1992), transition models (Diggle et aI., 2002) and marginal models (Liand 

and Zeger, 1986). All of these models can be used to analyse repeated measurements taken from 

the same subject. 

5.5.1 Random Effects Model 

Random effects models are also called linear mixed models, as described in a previous 

section (see section 5.3.2.4). In random effects models (Twisk, 2003), as well as considering the 

whole model as formed of two separate part, namely random and fixed components, subject­

specific random effects are also added to the model equation. Random effects are different from 

the random component of the model. The random component of the model includes the 
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individual repeated measurements whereas random effects take account of heterogeneity 

between subjects caused by unmeasured variables. In this way, the fact that the every individual 

is different is considered in the model formulation. Therefore, this methodology is assumed to 

describe all of the within-subject correlation included in the dataset. Responses for a subject are 

dependent on the random effect for that subject. However, since random effects for each subject 

are different, the set of responses from each subject are assumed to be different to and 

independent of those from each other subject. This means that responses within any subject are 

assumed to be dependent on the random effects and the responses between subjects are assumed 

to be independent. Besides, subject-specific random effects are assumed to be identically, 

independently distributed (i.i.d.), assuming that the random effects follow a normal distribution 

(Fieuws et at., 2007; Verbeke et at., 2012). 

A random effects model, which is also known as "subject-specific" or "cluster-specific" 

approach, is used to model between-subject differences by using subject-specific effects (Zeger 

et at., 1988; Neuhaus et at., 1991). This means that within-subject effects are used to formulate 

between-subject differences. In this way, the between-subject variation is identified by 

investigating within-subject variation. When looking from the perspective of this research 

project, random effects models are considered to be the optimal linear models to analyse the 

repeated measurements in this dataset in order to examine the effect of factors and covariates 

on both an individual's response and on the average response of the population. 

However, in this research, even random effects models are considered as initial 

modelling techniques, in the following parts of this section, alternative extensions of linear 

models are also explained and reasons for not choosing these alternatives are discussed. 

5.5.2 Response-conditional models 

Response-conditional models were studied by Neuhaus (1992). According to Neuhaus 

and Jewell (1990), response-conditional models are only applicable if the main purpose of the 

research is to determine the inter-dependence of repeated measurements within the individual 

rather than considering the effects of predictors on the response (Neuhaus and Jewell, 1990). 

Since the main aim of this research project includes looking at both within-individual and 
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between-individual differences, and the effects ofpredictors on the response are important, these 

methods are not suitable for this research work. 

5.5.3 Transition Models 

In transition models (Twisk, 2003), it is taken into account that the current repeated 

measurement from a same subject is dependent on the previous value observed for that same 

particular subject. Therefore, the latest response is dependent on the previous responses for the 

same individual and hence the previous values are used as predictors in the model formulation. 

The function that describes the pattern of the behaviour of the outcome is not known and hence 

the vector containing the parameters that describes the functional behaviour of past observations 

are unknown in the model formulation. Furthermore, the variance of the response is conditional 

on the past responses and it is described by the product of an unknown scale parameter and the 

known variance function that is represented in terms of the mean of the responses being 

conditional on the past responses (Kon and Whittemore, 1979; Kaufmann, 1987; Ware el al., 

1988). 

Transition models are appropriate for use in analysing the repeated measurements if the 

interest is focused on looking at the effects of time-dependent covariates on the within-subject 

responses (Neuhaus, 1992). Since the assumption of transitional models require the assumption 

that the response is based on the past observations, this type of model should be used if the 

response follows a stochastic process (i.e. assuming that the evolution of the response variable 

over time is a random process). In transitional models, only within-subject variation is 

considered and since in this research the main aim is to investigate the effect of factors and 

covariates between-subjects as well as looking at within subject differences, transitional models 

are not the optimal approaches to analyse the dataset of interest in this present work. 

5.5.4 Marginal Models 

A marginal model allows modelling of the mean response (J.1) against independent 

predictors. Hence a marginal model would model the average eGFR value for a class of patients 

all having the same types of diseases (e.g. with both diabetes and anaemia). Marginal models 
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include Generalized Linear Models (GLMs) and the types of models fitted using Generalized 

Estimated Equations (GEE) (Liang and Zeger, 1986). 

In the GEE approach, a model is specified using a known link function, g(.), that can 

connect the predictors to the mean response (fljj). In addition to the link function, another 

assumption is made about the distribution of the response and, finally, a working correlation 

matrix is assumed (Zeger and Liang, 1986). This working correlation matrix is used to take 

account of dependencies between the repeated measurements within each individual. Models 

created using GEE approaches are very similar to GLM models, where a common effect of the 

exposure (i.e. the effect of the diagnosis of a co-morbidity) is assumed over the entire population 

and the mean of the outcome is conditioned on the exposure (Zeger, 1988). The main differences 

between the GEE and GLM approaches lie in the estimation of beta coefficients in the model 

(represented as ps in the previous sections of this chapter) and the evaluation of standard errors 

in these beta coefficients. In GLMs, beta coefficients are estimated using maximum likelihood 

(ML) approaches, whereas in GEE methods, they are estimated using estimated equations (EE) 

(Liang et aI., 1992). Furthermore, in GLMs standard errors do not take any account of any 

correlation between repeated measurements for each individual, whereas in GEE methods. 

correlation between repeated measurements within an individual is modelled using the working 

correlation matrix structure. This gives the GEE approach greater efficiency over GLMs. Using 

robust estimators which rule out the influence of outlying observations (i.e. when trimmed mean 

is used instead of arithmetic mean in descriptive statistics) can result in more precise standard 

error estimates in GLMs (Twisk, 2003). However, modelling the correlation structure as close 

as possible to the true correlation structure adds even more accuracy in models using GEE 

approaches. 

To rule out the use ofthe GEE methodology, a model using the GEE approach was fitted 

to a sample of the data. The sample included all patients who had been diagnosed with CKD at 

stages 3-5 from the first observation (i.e. with initial eGFR less than 60 mLlmin/1.743m2) and 

having exactly 8 repeated eGFR measurements (a total of 3776 measurements from 472 

patients). In this data, 52.5% of the total 472 patients had been diagnosed with CYD, 47.5% of 

the total patients had been diagnosed with diabetes and 14.6% of the total patients had been 

diagnosed with anaemia. The mean eGFR value, with corresponding standard deviation was 
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found to be 48.91 ± 10.23 mLlminll.73m2
• The average value of the time measurement across 

all measurements for all patients was found to be 4.93 ± 3.52 years. The resultant model equation 

was given as; 

In(eGFR) = 3.887 + 0.045(Diabetes diagnosis)i + 0.023(CVD diagnosis)i 

- 0.005(time)ij - 0.016(Anaemia diagnosis)ij * (timeij) 

- 0.004(CVD diagnosis)i * (timeij) 

eq. (5. I I) 

All ofthe predictors retained in eq. (5.11) were found be statistically significant at the 

99% confidence level, with associated p-values less than 0.01. In the model presented in eq. 

(5.11), since the co-morbidities were binary categorized, therefore only taking values of zero or 

one (i.e. 1 when disease was diagnosed and 0 when disease has not been diagnosed) and hence, 

the interaction terms of these co-morbidities with time are not time-dependent covariates. For 

this reason, in eq. (5.11), only time-dependent covariate was time and since, marginal models 

as discussed below, evaluated the mean model, time was kept at the mean level which was 4.93 

years. 

Marginal models are also known as "population-averaged" models and such models are 

used to investigate the effect of covariates on the population-averaged response only. Even 

smaller standard errors were estimated in the marginal models, such as when the GEE approach 

was employed in the model presented in eq. (5.11), than those obtained using linear mixed 

models, parameter estimates were found to be very similar. A marginal model assumes that 

every individual has the same response to the co-morbidities (i.e. having the same co-morbidity 

status) and therefore does not allow individuals to vary in their initial states (i.e. their initial 

eGFR values), nor does it allow individuals to vary in their progression over time (Le. their 

slopes). In marginal models even within-individual dependencies are taken account in the same 

way as in random-effect models, marginal models do not allow the researcher to investigate the 

division of the total variation into within-individual and between-individual components 

(Twisk, 2003). Therefore, since the interest in this research project is to look at the variation in 

the outcome in terms of between-individual and within-individual components, and to 

understand the progression of CKD over time by allowing individuals to differ in their both 
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initial states and their slopes, just like transitional models, marginal models are also not ideal 

for the analysis of the type of repeated measurements in this dataset, particularly due to the 

nature of the research questions discussed in Chapter 1. Marginal models are only useful if the 

main interest of the study is to focus on population averages. In cases where the covariates are 

time-independent (i.e. constant over time), marginal models can be the optimal type of model 

to use in the analysis in order to predict expected averages (Zeger et al., 1988; Neuhaus el al., 

1991; Graubard and Korn, 1994). 

In random effects models and transitional models, a single model equation is used to 

formulate both within-individual and covariate effects. However, in marginal models, iterative 

procedures are used and a sequence of several equations are formulated to analyse the 

population-averaged response. 

5.6 Generalized Linear Mixed Models (GLMMs) as Extensions of Linear Mixed Models 

When the repeated responses are measured on a continuous scale and can be assumed to 

follow a normal distribution, then normal parametric methods such as linear mixed models can 

be applied. However, if the repeated responses are found to have a non-Gaussian distribution, 

then extensions of linear mixed models (i.e. generalisations such as GLMMs) can be used, 

provided that the response variable follows a known distribution such as Poisson, Bionomial, 

Gamma, etc. (Molenberghs and Verbeke, 2005) (see Figure 2.2). 

The extensions of linear mixed models which are described below are based on the 

univariate general linear model (GLM). Such developments of GLMs are take account of 

random variables by the addition of random effect term in the model formulation (Neider and 

Wedderburn, 1974) and also enables the analysis of other types of outcomes, such as binary 

outcomes. In general, the random variables in the random effect component of the model are 

assumed to be independently, identically, normally distributed (i.i.d.) with constant variance per 

random effect. 

Wedderburn (1974) suggested an additional improvement to GLM models by establishing 

that the use of quasilikelihood can make GLMs suitable for a wider range of applications. 

However, some challenges (e.g. assuming that observations, both within and between subjects, 
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are uncorrelated) that need to be considered still exist in GLM approaches. Therefore, mixed 

modelling approaches, such as Generalized Linear Mixed Models (GLMMs) are usually 

preferred. 

A general linear model for Gaussian outcomes is; 

Where; 

Yi is the vector of the outcome, 

Po is the vector of intercepts, 

i = 1,2,3, ... n 

lit is the vector of fixed-effects coefficients, 

Xi is a vector which represents the independent predictors, 

i is the individual, 

n is the total number of individuals and 

eq. (5.12) 

E/ is a random error variable, where El' E2, ... En are each - N (0,1) (McCullagh and Neider 

(1989), Atkin et al. (1989), Dobson (1990». 

In the GLM model (Cnaan et al., 1977), the outcome variable Yt is assumed to be 

normally distributed with mean, Ili and constant variance, (j2, so Yi- N (Ili, (j2). 

eq. (5.13) 

(Davis, 2002). 

The main purpose of the GLM model is to examine the differences between the patient­

specific means by using independent predictors, and to analyse associations between these 

independent variables and the outcome variable. In this way, the impact of each predictor on the 

response variable can be estimated. This is achieved by modelling the patient-specific means 

indirectly by first transforming the patient-specific mean via a link function (Albert, 1999). The 

link function is denoted by g(.) and the model then becomes; 

Longitudinal Analysis of Routinely Collected General Practice Records 
126 



Chapter 5 - Parametric Modelling 

eq. (5.14) 

(Davis, 2002). 

Where the function g(JJ.i) is modelled as a linear function of the predictors. 

The error term in the above equation, eq. (5.14), must be generalized, based on the 

transformation applied using the function, g(.). 

The GLM model consists of a random component, a systematic component and a link 

between the random and systematic components. The random component is used to categorize 

the distribution of the response variable. The systematic component is included in the model to 

identify the independent predictor variables that will be used in the model. 

The random and systematic components are connected using the link function g(.), so 

that the model can examine the influence of independent predictors on the mean of the repeated 

measurements for each patient (i.e. the patient-specific means) (Davis, 2002). 

The appropriate link function, such as the identity link, log link or logit link, is chosen 

based on the distribution of the repeated measurements. Commonly used link functions include; 

Identity link, where; g(JJ.) = ~ 

Log link, where; g(JJ.) = 10g(JJ.) = In(JJ.) 

Logit link, where; gCJJ.) = log C~,J (Davis, 2002). 

In many of the models that follow in this study, the log link function is used to allow the 

association between the mean of the responses and the independent predictors to be nonlinear. 

When observations are taken at unequally-spaced time values. the problem of data being 

unbalanced caused by the measurements being unequally spaced is solved by considering 

generalized linear mixed models (GLMMs) (Jones and Boadi-Boateng (1991), Jones (1993)). 

GLMMs require either one of two assumptions to be valid. One assumption. is to assume that 

the observed responses are uncorrelated; the alternative is to assume that responses are 
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correlated and that the covariance matrix structure of the repeated measurements is continuous 

first-order autoregressive (AR-I). In GLMMs employed in this study. Maximum Likelihood 

estimations are carried out by using nonlinear optimization techniques. The greatest benefit of 

using such nonlinear optimization methods in ML estimation for GLMMs is the ability to 

estimate likelihood repetitively by breaking down the intervals between time measurements into 

small increments. 

Generalization of linear mixed models enables GLMM methodologies to be used for 

both normal and non-normal outcomes. For instance. if the response follows a normal 

distribution, LMMs can be used or if the response follows a non-normal distribution such as the 

gamma distribution, Generalized Linear Mixed Model (GLMM) methods can be used via a link 

function. GLMM methodologies also allow the use of both continuous and discrete responses. 

In terms of covariates, both time-dependent and time-independent predictors can be used. and 

missing data can be naturally handled by the method given that the missing data mechanism is 

either missing completely at random (MCAR; where missing observation does not depend on 

observed or unobserved measurement) or missing at random (MAR; where given the observed 

data, the missing observation does not depend on unobserved data) (Keselman el al .• 2001). 

Generalized Linear Mixed Models (GLMMs) are an extension of general linear models 

(GLM) which take both random and fixed effects into account and are used when the assumption 

of independence between observations is violated (e.g. in longitudinal studies. where repeated 

measurements are taken from the same individual) (Zeger and Karim. 1991; Berslow and 

Clayton, 1993; Brown and Prescott, 1999). GLMM models are the extension of LMMs to 

account for the response following various non-normal but standard distributions, such as the 

gamma distribution or binomial distribution. GLMMs allow the linear predictor to have, in 

addition to fixed effects, one or more random components, each with an assumed normal 

distribution of mean zero and constant variance for each one individual. In this way. the 

correlation between observations from the same individual is taken into account in GLMM 

models (Diggle et al., 2002). 

The general form of the GLMM is the same as in eq. (5.6). However, in a GLMM, 

instead of modelling the response itself, a link function is used to transform the response into a 

quantity which can be modelled using linear predictors. The link function is represented by a 
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generic link that is denoted by g(.), and the linear predictor is formed from the combination of 

fixed and random effects, excluding the residuals. 

A linear predictor has the form; 

71 = Xp + Zy 

eq. (5.15) 

Where; 

X is the matrix of predictors (e.g. independent variables), with corresponding ps which are the 

fixed effect parameter coefficient estimates for these regressors. 

Z is the matrix of variables having random effects, with corresponding random effects denoted 

by y where both ~ and 'Yare vectors of the corresponding coefficients (Hedeker. 2005). 

An inverse link function, denoted by h(.) = g.I(.), is used to convert the transformed 

response back to the original dimensions. For non-Gaussian data. the assumption of correlation 

between individual measurements is different from that for Gaussian data and hence results in 

different interpretations of the regression coefficients in the model (Diggle el al., 2002). 

In GLMMs, the effect of a covariate on the mean response for that individual is estimated 

conditionally based on the random effect for that individual (McCulloch el at .• 2008). The type 

of the link function and corresponding family of the distribution for the outcome is chosen based 

on whether the outcome is binary, discrete or continuous (Molenberghs and Verbeke, 2005; 

Zhang el al., 2008). 

In this study, the eGFR responses are measured on a continuous scale and since the 

distribution of eGFR responses are skewed, underline distribution is assumed to be gamma 

distribution. The most common link functions used with gamma distribution are inverse link 

function, log link function and identity link function as discussed before. Since the aim is to 

transform the responses, so that the responses will follow a normal distribution, identity link 

function is not appropriate. When both link functions (inverse link and log link) are employed 

on the same data by using gamma distribution with same fixed and random effects. the models 

are compared and log link function with a gamma distribution is shown to be the most 

appropriate choice in this study, proving a better fit to the model. 

The log link function (Azeuro et al., 2010) is defined by; 
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g(u) = log(u) 

Where here log, means the natural logarithm (log to the base e). 

The inverse link function is then defined as; 

u = h(s) = e1og(u) = eS 

eq. (5.16) 

eq. (5.17) 

The probability density function for the general gamma distribution (Hedeker. 2005) is defined 

as; 

1 a-l-~ 
{(x, a, b) = bar(a) X e b a > 0, b > 0, 0 < x < 00 eq. (5.18) 

Where "0" is the shape parameter and "b" is the scale parameter of the gamma distribution and 

rea) is the gamma function, and mean and variance of the distribution is defined by; 

E(X) = ba 

eq. (5.19) 

The gamma distribution used in this research represents a general family of distributions 

where the exponential distribution and chi-square distribution are special cases with 0 = I and 

with b = 2 respectively. The gamma distribution is employed in this research, so that the original 

responses (i.e. eGFR values) can be transformed by using gamma distribution to meet the 

normality assumption required by the GLMMs. 

5.6.1 Application of GLMMs to this Research Dataset 

A main objective of this study is to determine if there is any association between the 

changes in eGFR over time and the co-morbidities of interest (i.e. diagnoses of anaemia. 
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diabetes and cardiovascular diseases), and so the next step is to build the best possible model 

for our data. 
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Figure 5.1: Distribution of eGFR values across all measurements for all 
patients within our dataset who have been diagnosed with CKD between 
stages 3 to 5. The solid line is the best-fitting normal distribution. 

A histogram of the distribution of eGFR values across all the measurements for all 

patients (Figure 5.1) shows that the data is negatively skewed (i.e. the peak value of the data is 

to the right of that for the best-fitting normal distribution). 

Since the normality assumption assumed under the LMM method is violated, we look 

instead to using the GLMM methodology, assuming a gamma distribution for the response and 

using a log link function. The random effect here is a correction appropriate for a particular 

individual patient. For both the linear mixed models and generalized linear mixed models, the 

coefficients were computed using restricted maximum likelihood estimation in SPSS. 

In total, five models (I LMM and 4 GLMMs) were created and analysed for our data 

set. The purpose of forming out five different models in total is to find the "best" model with 

fewest parameters, best fit to the data, and with the least complex covariance structure. As each 

of these models are computed, the "goodness of fit" of each one to our data is found using the 

Akaike Information Criterion (AIC), -2 LogLikelihood (-2LL) and Bayesian Information 

Criterion (BIC), in order to compare the models and ensure that a better model is obtained at 
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each step (see Table 5.8). Each of these criteria is such that the lower (less positive or more 

negative) the value of the statistic, the better the model fits the data (Lv and Liu, 2013). In order 

to keep consistency between models and to make fair comparisons between them, the same co­

morbidities are initially included in each of the models studied, and in all five models, the same 

sample of the research dataset is used as for the LMM and the GLMM (i.e. using eq. (5.6), 

namely 472 patients with CKD at stages 3-5 with 8 repeated observations for each patient, 

resulting in 3776 observations of eGFR values in total). The results of the models are presented 

in Tables 5.2-5.3 and Tables 5.5-5.7. The results in these tables show the best fitting models (i.e 

those containing only the statistically significant coefficients for co-morbidities of each type). 

5.6.1.1 Modell - Modelling eGFR directly as a function of comorbidities and time 

Initially, Modell is produced assuming a normal distribution with identity link function. 

This model is essentially described in eq. (5.6) using the LMM approach. In this model, the co­

morbidities and other terms found to be significant and hence taken into account are diagnoses 

of diabetes and cardiovascular diseases at baseline and time and the interaction between time 

with the diagnoses of anaemia and of cardiovascular disease. The coefficient values for these 

terms, their standard errors and significance levels are given in Table 5.2. 

Table 5.2: Results of Model I - eGFR as a linear function of co-morbidities and time 

Modell 

Model Term 

Time (in years) 

Diagnosis of CVD 

Diagnosis of Diabetes 

(Diagnosis of Anaemia)*Time 

• p<0.05, •• p<O.O 1, ••• p<O.OO I 

Coefficient 

-0.213 

2.066 

3.016 

-0.567 

Standard Error P-Value 

in coefficient 

0.085 0.013" 

0.777 <0.001"·· 

0.724 O.OOS·· 

-0.567 <0.001""· 

The coefficients which best fit our CKD data are calculated and reported in the eq. (5.20) for 

Model 1 which is; 
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y = 48.592 + 3.016(diabetes diagnosis)i + 2.066 (CVD diagnosis)i - 0.213(time)ij 

- 0.567 (Anaemia diagnosis)i * (timeij) - 0.328 (CVD diagnosis)i 

* (time)ij 

eq. (5.20) 

Where y represents the eGFR value, and each diagnosis is 1 if the disease is present or 0 

otherwise. All other potential coefficients proved not to be statistically significant. 

5.6.1.2 Model 2 - Modelling log(eGFR) as a linear function of the co-morbidities and time 

In order to investigate whether a multiplicative rather than an additive model would be 

more appropriate for this data, the eGFR values are transfonned to the natural logarithmic 

domain that fonns log( eGFR) which we assume to be normally distributed. Model 2 is computed 

using a normal distribution but with log link function. The coefficients found, together with their 

standard errors and significance levels, are given in Table 5.3. The equation for Model 2, eq. 

(5.22), with only significant coefficients retained was found to be; 

In(eGFR) = 3.877 + O.060(Diabetes diagnosis)i + O.043(CVD diagnosis)i 

- O.007(time)ij - O.013(Anaemia diagnosis)i * (timeij) 

- 0.006(CVD diagnosis)i * (timeij) 

eq. (5.21) 

Since Model 2 is evaluated in the log domain, very different coefficients are observed 

from before. When the AlC, SIC and -2LL information criteria for Models 1 and 2 are 

compared, it can be observed that transfonning the eGFR values using the natural logarithm 

improved the model fit by a large amount, even though nonnality assumption was still retained 

(see Table 5.4). 

Longitudinal Analysis of Routinely Collected General Practice Records 
133 



Chapter 5 - Parametric Modelling 

500 

. 00 

~ 300 
c: • " or 
~ 
IL 

'00 

2 ,00 2 .50 3 .00 

I 

3 .50 4 .00 • . SO 5 .00 

Mean - 3 .66 
Std . Dev . • . 237 
N - 3,776 

Figure 5.2: Distribution of In(eGFR) values across all measurements for 
all patients within our dataset who have been diagnosed with CKD 
between stages 3 to 5. The solid line is the best-fitting normal 
distribution. 

Table 5.3: Results of Model 2 -log(eGFR) as a linear function of co-morbidities and time 

Model 2 

Model Term 

Intercept 

Time (years) 

Diagnosis of CYD 

Diagnosis of Diabetes 

Diagnosis of Anaemia*Time 

Diagnosis of CYD*Time 

• p<0.05, •• p<O.O 1, ••• p<O.OO 1 

Coefficient 

3.877 

-0.007 

0.043 

0.060 

-0.013 

-0.006 

Standard Error 

0.016 

0.002 

0.0\6 

0.015 

0,004 

0.003 

A step to adjust the non-normality of the research dataset in using GLMMs 

P-Value 

<0.00 I··· 

<0.001··· 

0.007·· 

<0.001·" 

0.003·· 

0.021* 

Since the sample from the research dataset contains only the patients with CKD at stages 3-5, 

the majority of all of the eGFR values across all patients in this sample are lower than the 

average eGFR value of the whole dataset. This makes the distribution of the sample to be skewed 
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towards left whereas a standard gamma distribution is skewed towards right. Therefore, in order 

to ament the distribution of the sample to the standard gamma distribution, the majority of the 

eGFR values has to be rehabilitated from left tail to right tail. If the dependent variable (i.e. 

eGFR) is subtracted from the highest eGFR value found in our sample dataset (i.e. a constant 

value which is 107), then it can be assumed that this transformed dependent variable will follow 

a standard gamma distribution since now the majority of all of the eGFR values will be on the 

right tail , so that the distribution of the sample will be skewed towards right. The reason of 

choosing the highest eGFR value to rehabilitate the data from left tail to right tail is the eliminate 

the problem of negative logarithmic values that can be cause when the dependent variable (i.e. 

eGFR) will be transformed using a gamma distribution with log link function. As can be seen 

from Figure 5.3 , the distribution is still not normal , but it is closer to normality compared to 

Figure 5.2 and hence, assuming a gamma distribution when using the transformed eGFR value 

rather than eGFR value itself is considered superior. 

1200 

1 .000 

800 

,... ... 
c: • ::s 
o:r 600 
~ ... 

400 

200 

0 
~ 

.2.00 .00 2 .00 

\ 
4 .00 

Mean - 4 05 
Std Dev . • . 198 
N - 3 .776 

Figure 5.3: Distribution of In(Transformed eGFR) values across all 
measurements for all patients within our dataset who have been 
diagnosed with CKD between stages 3 to 5. The solid line is the best­
fitting normal distribution. 
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Test of Normality: 

Ho: The sample data are statistically not different from a normal population 

H1 : The sample data are statistically different from a normal population 

Table 5.4: Normality Test Results for eGFR and In(eGFR) datasets 

Kolmogorov-Smirnov 

Statistics df Sig. 

Shapiro-Wilk 

Statistics df Sig. 

(a) eGFR Data (Figure 5.1) 

eGFR Value 

(b) In(eGFR) Data (Figure 5.2) 

In(eGFR) Value 

0.054 

0.101 

(a)foreGFR data (Figure 5.1) and 

(b) for In(eGFR) data (Figure 5.2). 

3776 <0.001 0.985 3776 <0.001 

3776 <0.001 0.917 3776 <0.001 

In this sample ofthe data set, since the total number of observations is greater than 2000, 

the Kolmogorov-Smimov test is used to test the assumption of normality of the dependent 

variable. From the results (Table 5.4) it can be concluded that the sample data is not normally 

distributed. GLMM models are suitable to model a dependent variable which does not follow a 

normal distribution, but which does follow one of the known distributions from the exponential 

family. 

5.6.1.3 Model 3 - GLMM model using a Gamma distribution 

Hence, in Model 3, the normality assumption is removed and, the eGFR values are 

modelled using a gamma distribution with log link function. In this way, the natural logarithm 

of the mean of the eGFR values over all measurements across all patients is modelled, the new 

model coefficients were calculated and these, their standard errors and significance values are 

given in Table 5.5. The equation with best coefficient values for this model (Model 3) with only 

statistically significant terms retained is found to be; 
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In(eGFR) = 3.869 + 0.064(Diabetes diagnosis)i + O.OSO(CVD diagnosis)i 

- 0.006(time)ij - O.OlS(Anaemia diagnosis)i * (timeij) 

- 0.007(CVD diagnosis)i * (timeij) 

eq. (5.22) 

Table 5.5: Results of Model 3 - GLMM model using a Gamma distribution 

Model 3 Coefficient Standard Error P-Value 

Model Term 

Intercept 3.869 0.017 <0.001··-

Time (years) -0.006 0.002 0.003--

Diagnosis of CVD 0.050 0.050 0.004--

Diagnosis of Diabetes 0.064 0.064 <0.001·" 

Diagnosis of Anaemia*Time -0.015 0.005 0.004--

Diagnosis of CVD*Time -0.007 0.003 0.014-

- •• ... 0001 p<0.05, p<O.O 1, p<. 

A gamma distribution is usually employed when the data is positively skewed. However, 

in this study the data is negatively skewed (see Figure 5.1). Therefore, when the difference 

between the information criteria for Model 3 and Model 2 are compared with the corresponding 

difference between Model 2 and Modell (see Table 5.8), only small improvements are observed 

in the former case. In order to get a further improved model, the eGFR values are first 

manipulated to reverse the shape of the distribution from negatively-skewed to positively­

skewed (i.e. so that the peak value of the data will be to the left side of that for the corresponding 

normal distribution). This transformation of eGFR values is carried out by subtracting each 

eGFR value from the whole number just greater than the maximum eGFR value found amongst 

all our CKD patients (i.e. max eGFR=107). This ensures any potential problems due to having 

to find the logarithm of a negative-valued quantity are removed. In this way, the distribution is 

changed to positively-skewed and hence will be more appropriate for being modelled using a 

gamma distribution in the analysis. 
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5.6.1.4 Model 4 - GLMM using log link function and Gamma distribution to model 
transformed data 

Therefore, Model 4 is performed on the manipulated eGFR values as described above as 

response variable, using a gamma distribution with log link function. The equation with optimal 

coefficients for this model (Model 4), with only statistically significant terms retained is found 

to be; 

In(107 - eGFR) 

= 4.060 - 0.OS2(Diabetes diagnosis)i - 0.033(CVD diagnosis)i 

+ 0.003(time)ij + 0.009(Anaemia diagnosis)i * (timeij) 

+ O.OOS(CVD diagnosis)i * (timeij) 

eq. (5.23) 

The full set of coefficients and the significant values are given in Table 5.6. 

Table 5.6: Results of Model 4 - GLMM using log link function and Gamma distribution to 

model transformed data 

Model 4 

Model Term 

Intercept 

Time (years) 

Diagnosis of CVD 

Diagnosis of Diabetes 

Diagnosis of Anaemia*Time 

Diagnosis of CVD*Time 

o p<0.05, 00 p<O.O 1, 000 p<O.OO 1 

Coefficient 

4.060 

0.003 

-0.033 

-0.052 

0.009 

0.005 

Standard Error 

0.012 

0.001 

0.013 

0.012 

0.003 

0.002 

P-Value 

<0.00 1
000 

<0.001 000 

0.001 00• 

0.00200 

When the information criteria for Model 4 and Model 3 are compared, a major 

improvement is observed in all the three measured goodness of fit criteria, indicating that Model 

4 is a much better model for this data than Model 3 (see Table 5.8). 
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The association between the initial eGFR status and the progression of eGFR over time 

is estimated by calculating the covariance matrix. The "unknown structure" of the covariance 

matrix is estimated by the SPSS software. In each of the models above (Models I to 4), the 

covariance matrix was evaluated with the "unstructured" covariance option selected and the 

programme then estimated the covariance. However, for each of these models, the covariance 

between the intercept and the slope is estimated to be zero. Therefore, a simpler covariance 

matrix structure, such as a variance component (diagonal) matrix, could possibly be used to 

achieve a better model with lower computational requirements. 

5.6.1.5 Model 5 - GLMM assuming a simpler covariance matrix 

In Model 5, the process used to obtain Model 4 is repeated, but with the "variance 

component" option rather than "unstructured" selected for the form of the covariance matrix in 

the calculations. In this approach, a better fit to the data (in terms of information criteria) is 

achieved using this simpler covariance matrix (see Table 5.8). The coefficients, their standard 

errors and significance levels for this simpler model (Model 5) are given in Table 5.7. Model 5 

with only statistically significant terms retained is; 

In(107 - eGFR) 

= 4.060 - O.OSO(Diabetes diagnosis)i - 0.033(CVD diagnosis)i 

+ 0.003(time)ij + 0.008(Anaemia diagnosis)i * (timeij) 

+ O.OOS(CVD diagnosis)i * (timeij) 

eq. (5.24) 
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Table 5.7: Results of Model 5 - GLMM assuming a simpler covariance matrix 

Model 5 Coefficient 

Model Term 

Intercept 4.060 

Time (years) 0.003 

Diagnosis of CYD -0.033 

Diagnosis of Diabetes -0.050 

(Diagnosis of Anaemia)*(Time) 0.003 

(Diagnosis of CYD)*(Time) 

• •• ••• 0001 p<0.05, p<O.O 1. p<. 

Table 5.8: Model Comparison 

Model 

2 

3 

4 

5 

Type 

LMM 

GLMM 

GLMM 

GLMM 

GLMM 

0.002 

AIC 

24553.059 

-4489.937 

-4450.508 

-5724.751 

-5733.991 

Standard Error P-Value 

0.012 <0.001··· 

0.001 0.05· 

0.013 0.013· 

0.012 <0.001··· 

0.002 0.003·· 

0.003 0.005·· 

BIC -2LL 

24621.572 24530.989 

-4421.424 -4512.007 

-4381.995 -4472.578 

-5656.239 -5746.822 

-5671.701 -5754.049 

When comparing all five models (Model 1-5) in Table 5.8, the lowest AIC, BIC and 

-2LL values are found for Model 5 and, hence, it can be concluded that of these, Model 5 is the 

best-fitting model for our data. The results from all five models indicated that statistically 

significant parameters in all cases (to account for the changes in initial value of eGFR (i.e. the 

intercept) across patients) are the diagnoses of CYD and of diabetes, whereas the parameters 

included to describe the progression ofCKD (i.e. the slope) and the effect of co-morbidities on 

this are in all cases the interaction of the diagnoses of anaemia and of CYD with time. 

For evaluation and interpretation of the coefficients in terms of eGFR values, values 

obtained using Model 5 and appropriate values for the diagnoses and time are transformed back 

by exponentiation (i.e. the inverse of taking the logarithm), and then subtracting the result from 
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107, to give meaningful model-predicted eGFR values. The mean eGFR value at time zero is 

found from Model 5 to be 49.0257 mLimin/l.743m2
, given that the patient has not been 

diagnosed to have CVD or diabetes. If the patient has been diagnosed to have CVD only, this 

eGFR value at time zero rises to 50.9076 mLiminll.743m2, whereas if the patient has been 

diagnosed to have diabetes only, the resulting eGFR value is 51.8531 mLimin/1.743m2 at time 

zero. This means that both diagnoses ofCVD and of diabetes tend to increase the initial eGFR 

value, with the effect of having diabetes being more influential than of having CVD at baseline. 

However, each yearly increase in time results in a decrease in this predicted eGFR value by a 

factor of 0.9964 if the patient has none of the co-morbidities. Thus, when a patient has not been 

diagnosed with CVD or diabetes, then the initial eGFR value (i.e. 49.0257 mLiminll.743m2) at 

time zero would be expected to decrease to 48.8515 mLimin/1.743m2 after one year. This 

decrease of 0.9964 units in one year will be greater if the patient has either anaemia, CVD or 

both (see eq. (5.24». 

Each regression coefficient was estimated by using a robust method, hence resulting in 

the corresponding standard errors being low. The regression coefficients for the parameters 

affecting the progression ofCKD show lower standard errors (i.e. are each less than 0.005) than 

those standard errors for the regression coefficients for the parameters affecting the initial eGFR 

value (i.e. the standard errors for these are between 0.0 I 0 and 0.015). 

The higher eGFR values observed for patients with CVD indicates that, for some initial 

period, they will have better (i.e. higher) eGFR values than patients without that disease. 

However, the faster rate of decline in eGFR for patients with CVD results in lower eGFR values 

than those for non-CVD patients after some time, typically around 4.125 years. 

Overall, the most appropriate ways of analysing longitudinal data with repeated 

measurements when the data is incomplete and unbalanced (as it is on this study) are found to 

be use of methodologies known as Linear Mixed Models (LMMs) and Generalized Linear 

Mixed Models (GLMMs). LMMs are used when the outcome measure can be assumed to follow 

a normal distribution, whereas GLMMs are applied otherwise, i.e. when this normality 

assumption is violated. However, some standard distribution should be assumed for the data in 

order to be able to perform the GLMM approach, and here a gamma distribution is used since 

the distribution of the outcome is skewed. Furthermore, with this choice of distribution a natural 
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logarithm link function is used to transform the response. Here, the results obtained from the 

GLMM approach used in Model 5 indicates that when a patient has a diagnosis of CYD or 

diabetes, that patient will have a higher initial eGFR value compared with a patient without 

those diseases. However, having either CYD or anaemia will increase the rate of decline of 

eGFR, and hence the progression ofCKD. The models could be improved if a distribution that 

better fits the data were used instead of assuming a gamma distribution. 

The results of this study are consistent with those of previous research on the progression 

ofCKD (de Lusignan, et al., 2009). However, our work is based on a large sample of routinely­

collected General Practice patient records, in contrast to the more usual controlled cross­

sectional studies or clinical trials. Our results provide evidence that the methodological approach 

presented here applied to this routinely collected data is a useful and appropriate mechanism for 

investigating dynamic relationships within health-related data. 

5.7 Centring in Regression Analysis and Polynomial Mixed Models 

In research papers employing regression analysis, centring of data is not commonly 

reported (Paccagnella, 2006). However, data centring can be very important in interpretation 

of research results, as it selects an appropriate reference value for an outcome and modelling 

of the outcome is relative to that reference value (Kraemer and Blasey, 2004). Hence, in the 

context of time-dependent models, use of appropriate time centring will ensure that the level-l 

(i.e. within individual) growth parameters are meaningful, which will allow the interpretation of 

the level-l intercepts as the different statuses of individuals at the reference value of time, and 

the level-l gradients as the average rate of change of eGFR for those individuals. The main 

purpose of centring in regression analysis is to deal with multicollinearity (Glanz and Slinker, 

2001). 

In this section, initially four linear models are computed to show the effects of different 

techniques of centring of the time variable. Comparison between these four linear models 

indicated that mean centring worked best for this data. Subsequently, two more models are 

analysed to examine non-linear changes in eGFR values over time, using polynomial functions 

of time, after centring the time variable using the mean centring technique which had been 

found to be the best for the linear models applied to our data. In all four initial (linear) models, 
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both the diagnoses of three major co-morbidities of CKD - namely cardiovascular diseases 

(CYD), diabetes and anaemia - and their interactions with time, were taken into account. All 

statistically non-significant parameters are then removed from each model, using a backward 

elimination procedure. 

Table 5.9: Results of the initial four linear models, with different centrings of time 

Model 

Number 

Model Equation 

Modell Yij = 49.73 + 3.07(Diagnosis of Diabetes)i - 0.35(Timeij) 

- 0.24(Diagnosis of Cardiovascular Diseases)i * (Timeij) 

Model 2 Yij = 45.69 + 2.94(Diagnosis of Diabetes)i - 0.33(Timeij) 

- 0.29(Diagnosis of Cardiovascular Diseases)i * (Timeij) 

Model 3 Yij = 48.10 + 3.03(Diagnosis of Diabetes)i 

- 4.28(Diagnosis of Anaemia)i - 0.22(Timeij) 

- 0.46(Diagnosis of Anaemia) * (Timeij) 

- 0.37(Diagnosis of Cardiovascular Diseases)i * (Timeij) 

Model 4 Yij = 47.94 + 3.10(Diagnosis of Diabetes)i 

- 4.51 (Diagnosis of Anaemia)i - 0.22(Timeij) 

- 0.46(Diagnosis of Anaemia)i * (Timeij) 

- 0.37(Diagnosis of Cardiovascular Diseases)i * (Timeij) 

Equations for Models 1 to 4, show the best fit models, i.e. those including 

statistically significant parameters (Table 5.9). All the included coefficients are significant at 

the 2.5% (p < 0.025) level, but none of the removed coefficients were significant at the 5% (p < 

0.05) level. In each model the time variable is centred in a different way. 

F or Modell, time is measured relative to the first observation of the data sequence for 

each subject, which represents the initial eGFR status for that subject. In Model 2, the time is 

measured relative to the last observation in the data for each patient, which is the final status for 
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that particular individual. For Model 3, the time variable for each individual is centred on the 

mean time of all hislher eGFR measurements. Model 4 is calculated using a time variable which 

is centred on the median time of that individual's eGFR measurements. 

From the results of all four models (see Table 5.9), for a typical individual, the average 

eGFR value at initial status (i.e. first measurement) is expected to be 49.73 mLimin/1.743m2, 

whereas it is found to be 45.69 mLiminl1.743m2 at the final status (i.e. last measurement), 

48.10 mLiminll.743m2 at the mean measurement time and 47.94 mLiminll.743m2 at the 

median time, all of these eGFR values assume that the individual patient has not been diagnosed 

with CYD, diabetes or anaemia at the corresponding time point. 

The coefficient of time is defined to be the rate of change of the eGFR value per year. 

It can be concluded that, for all four models, (Table 5.9) the eGFR value for a typical CKD 

patient decreases by around 0.2-0.3 units per year increase in time and that diagnosis of diabetes 

is a statistically significant factor in all four models, increasing the corresponding eGFR 

intercept value by about 3.0 units. The interaction term of CYD with time is another parameter 

that is also statistically significant in all four models, accelerating the rate of decline of eGFR 

value by about 0.3 units per year. Additionally, in Models 3 and 4, diagnosis of anaemia and 

its interaction with time are observed to be statistically significant, reducing the eGFR intercept 

by about 4.5 units and increasing the rate of decline of eGFR value by 0.46 units per year. When 

random effects in each of the four models are compared, there is not much difference in the 

within-person residual variance between the four models. The different centrings also have 

negligible effect on the between- person residual variance in the rate of change. However, it is 

found that centring does have an effect on the covariance between the eGFR intercept and the 

coefficient of time. 
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Table 5.10: Model-fit results for the linear models with various time centrings 

Model 

Number 

Model I 

Model 2 

Model 3 

Model 4 

Description 

Time measurement from first 

Time measurement from last 

Time measurement centred on 

mean 

Time measurement centred on 

median 

AIC and BIC criteria 

AIC = 24618.161, BIC = 

24643.103 

AIC = 24589.763, BIC = 

24614.705 

AIC = 24578.116, BIC = 

24603.055 

AIC = 24584.859, BIC = 

24609.799 

In Table 5.10, the Akaike and Bayesian Information Criteria goodness of fit statistics are shown 

for all four models computed in this section of this chapter. From these results, although the 

goodness of fit differences is small, it can be concluded that Model 3 is the best-fitting model for 

our data, since it shows the lowest AIC and BIC values. Since Model 3 used a time variable 

centred on the mean measurement time for each individual, this approach is also adopted in 

computing two further models, using quadratic and cubic polynomials in time, in order to 

account for non-linear changes of eGFR over time. Model 5 allows quadratic dependence on 

time, whereas Model 6 permits cubic dependence on time, time being mean centred (i.e. centred 

on the mean time measurement for each individual) in each case. The polynomial terms are 

added to both levels (i.e. both level 1, within individual and level 2, between individual) for 

both models. 
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Table 5.11: Equations resulting from fitting quadratic and cubic polynomial models. 

Model Model Equation 

Number 

Model 

5 

Model 

6 

Where; 

Yij = 48.10 + 2.69(Diagnosis of Diabetes)i 

- 4.81 (Diagnosis of Anaemia)i + (Oi - 0.22(Timeij) 

- 0.42(Diagnosis of Anaemia)i * (Timeij) 

- 0.24(Diagnosis of Cardiovascular Diseases)i * (Timeij) 

+ (Ii Timeij + (2i Time(ij)2 

Yij = 48.10 + 2.63(Diagnosis of Diabetes)i 

- 4.57(Diagnosis of Anaemia)i + (Oi - 0.22(Timeij) 

- 0.35(Diagnosis of Anaemia)i * (Timeij) 

- 0.28(Diagnosis of Cardiovascular Diseases)i * (TimelJ 

+ (liTimeij + (2i(Timeij)2 + (3i(Timeij)3 

Yij is the ph eGFR measurement for patient i, 

Timeij is relative to the mean measurement time for the ph patient and 

(Oi' (li' (2i, (3i are the random coefficients for each patient for the intercept, time, quadratic 

time and cubic time terms respectively. 

It can be observed that the quadratic and cubic time terms have no significant effect on 

level 2 (i.e. the between-patient differences). However, they do have an effect at level I, 

which is the within-individual level (Le. different measurements made for a single individual). 

The residual variance is reduced from 22.01 to 18.25 by moving from Model 1 to Model 5. 

This means that 17.08% more of the variation within the measurements for an individual is 

explained when the time squared term is added in Model 5, compared to just having a linear 
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time component in the random effects. On the other hand, the residual variance in Model 6 is 

reduced to 16.64, which means that a further 8.8% of the within person variation has been 

explained by including the cubic time term, compared to the quadratic time term in Model 5. 

From Model 6, it can further be concluded that, by including both squared and cubic time terms 

to the within- individual level, Model 6 explains 22% more of the within-individual variation 

compared to the best linear model (i.e. Model 3). In terms of goodness of fit, by comparing the 

AIC and BIC values reported in Table 5.12 with those in Table 5.10, it can be seen that Model 

6 provides the best of these models for our data, explaining more of both between individual and 

within individual variation than did the earlier models. 

Table 5.12: Goodness of fit statistics for the quadratic and cubic time models 

Model Number Description AIC and BIC criteria 

Model 5 Quadratic in time AIC = 24320.510, BIC = 24364.154 

Model 6 Cubic in time AIC = 24250.388, BIC = 24318.971 

Various linear and polynomial mixed models for eGFR measurements on our CKD 

patients over time have been computed. Hence, it is observed that, for this data, use of centring 

the time on the mean time of the observation points for each individual leads to more 

meaningful and reliable values of the level 1 eGFR intercept (i.e. at the reference mean time 

value) and helps to take into account multicollinearity. Furthermore, when quadratic and cubic 

time dependent terms were introduced into the models, a higher proportion of both within- and 

between- individual variation was explained and a better fitting model was obtained, as observed 

from the AIC and BIC values. Hence, the cubic model is the best-fitting one of these models for 

this data. 

Semi-parametric and non-parametric modelling approaches are explained in the 

following chapter (chapter 6) (Davidian and GiItinan, 1993, 1995; Vonesh and Chichilli, 1997; 

Davidian and GiItinan, 003; Molenberghs and Verbeke, 2005). 

Longitudinal Analysis of Routinely Collected General Practice Records 
147 



Chapter 6 - Semi-parametric and Non-parametric Modelling 

6 Semi-parametric and Non-parametric Modelling 

6.1 Introduction 

When parametric models such as LMMs and GLMMs are applied on the dataset used in 

this project, results obtained from such models in chapter 5 showed that these models are 

parsimonious and efficient when correctly specified. However, if one of the assumptions for 

these models are violated, then LMMs and GLMMs are restrictive and less powerful against 

these violations. Results obtained in chapter 5 from the application of LMMs and GLMMs on 

this dataset suggested that the relationship between eGFR and time is non-linear. Hence, the 

assumption of linearity between response (i.e. eGFR) and independent variable (i.e. time) in 

LMMs and GLMMs is violated. Therefore, in this chapter, semi-parametric and non-parametric 

models are investigated on this dataset in order to take account the non-linear relationship 

between eGFR and time. 

Additive models (AMs) are generalisation of linear models (LMs) where smooth 

functions are used to model the non-linear relationship between response and independent 

predictor instead of parametric component (i.e. linear term) for continuous covariates. 

Generalized additive models (GAMs) are generalisation of additive models by allowing the 

response to follow some distribution from the exponential family of distributions, relaxing the 

assumption of normality on the outcome. Additive mixed models (AMM) are another 

generalisation of additive models by the inclusion of random component to the additive model. 

In this way, AMMs model both random component and fixed linear component, allow 

modelling of smooth variation about the linear trend and hence enable the modelling of non­

linear relationship between the response and covariate effectively. Generalized additive mixed 

models (GAMMs) are generalisation of AMMs as like the generalisation ofGAMs from AMs. 

6.2 Generalized Additive Models (GAM) 

Generalized additive models (GAM) are developed from additive models (Hastie and 

Tibshirani, 1986, 1990) in much the same way as Generalized Linear Models (GLMs) are a 

generalisation of linear models. The main difference between the two (i.e GAMs and GLMs) 

lies in that the linear predictor component (in a GLM) is replaced by using some smooth 
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function(s) in additive models (i.e GAMs). Therefore, the assumption of a linear relationship 

between the outcome and the covariates (the independent predictors) no longer holds and the 

relationship between them is represented by some smooth function(s) instead. These known. 

smooth, monotonic (i.e. meaning either always increasing or always decreasing) functions are 

evaluated using observed data and specified using a smoothing spline as a base function which 

is a basis defining the space of functions of which/ or close approximation of/is an element. 

In GAM models, the outcome can follow any known distribution from the exponential family 

in a similar way to in GLMs. A GAM model has the general form; 

(eq.6.1) 

Jli == E(l'i) and Yi - some member of exponential family of distributions 

Where; 

Yi is the response (outcome), 

xt is a row of the model matrix for any strictly parametric component, 

(J is the corresponding parameter vector, 

/j is thejth smooth function of the ICh covariate, Xk (Wood, 2006). 

A typical additive model contains two parts; a parametric component and a non­

parametric component. If the relationship between the response and some covariate is linear. 

then the dependence on this covariate is modelled in the parametric component of the model. If 

the relationship between the response and a covariate is not linear, then the dependence on that 

covariate is modelled in the non-parametric component using some smooth function. Another 

difference between basic additive models and GAM models is the procedure for estimating 

smoothing parameters. Whereas parameter estimation for additive models uses penalized least 

squares techniques (PLS), in GAMs the penalized likelihood maximization method is used 

instead. In GAMs, the reason of using penalized likelihood maximization over likelihood 

maximization is because if parameters are estimated by maximum likelihood, estimation of 

splines will be overfitted due to not taking the wiggliness ofthe function into account (Wood, 

2006). 

Longitudinal Analysis of Routinely Collected General Practice Records 
149 



Chapter 6 - Semi-parametric and Non-parametric Modelling 
In additive models, PLS technique is used in parameter estimations, so that the additive 

model can take the response, the penalty matrix and smoothing parameters to calculate the 

model matrix. However, there is no simple trick to produce penalized likelihood of GAM. 

Therefore in GAM, the inclusion of smooth functions creates a challenge in estimation of the 

smoothing parameter associated with each covariate. Once the base function of the smooth 

function has been selected, the penalized likelihood maximization method is used. However this 

poses two problems; estimating the smooth tenn for the parameter where the smooth tenn is the 

constant that controls degrees of smoothness (i.e. controls the weight to be given to make the 

function smooth) and also estimation of the 'wiggliness' of the function. If the smooth term is 

equal to zero, this results in un-penalized regression estimate. Whereas, if the smooth tenn tends 

to infinity, the regression estimate of spline tends to straight line. In order to overcome these 

two problems mentioned above, penalized iteratively re-weighted least squares (P-IRLS) in two 

steps method is used which proceeds as follows: 

When the current p estimate and the corresponding estimated mean response, J.L is given, at the 

~ iteration, 

Where 

l'i is the vector of responses and 

l/> is a constant where l/> = u2 if the distribution of the response is Gaussian or l/> = ~ if the 
v 

response follows a Gamma distribution where v is the degrees of freedom. 

Then at the first step, Zi and Wi are calculated where Wi is the weight which will be multiplied 

by the least error that is (z - XfJ) in the second step. 

1 
Wi= 
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Where 

B is the link function such as log link function when the distribution of the response is taken as 

Gamma distribution, 

Mean response, l1i is taken as outcome that is used in transforming the response via link function 

and 

Xi is the ,-th row of the model matrix, X. 

Then, at the second step, Wi is minimized with respect to P in order to estimate the next 

parameter, p[k+1 j • In this way, the least absolute error is minimized rather than least square 

error. In order to perform this minimization, the statement below is minimized with respect to p: 

Where 

W is the diagonal matrix such that Wu = Wi' 

X is the model matrix, 

A. is a constant smooth term controlling the degrees of smoothness and 

S is a vector of known coefficients. 

For instance if the mean response assumed to follow a Gamma distribution and modelled by 

using a log link function, then g' (Pi) = l1i1 and V (pa = Ill· Hence Wi and zi are calculated as 

(W 000, 2006). 
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Use of Spline Functions 

A spline is a function generated from polynomials. A spline function is obtained when, 

for a specific covariate, the area under the polynomial curve is divided into non-overlapping 

sections and each section is estimated separately by using various polynomials defined as bases 

or base functions (de Boor, 1978; Wahba, 1990). At the point where the two adjacent sections 

meet, a vector with elements can be formed giving the position of knots. Regression modelling 

using smoothing functions uses penalized regression smoothers, based on splines, to model long 

term variation as a smooth function and to separate the long term overall systematic between 

subject variations from random between subject variations. 

For each non-linear but smooth term corresponding to the contribution to eq. (6.1) from 

a single independent predictor Xi> an appropriate smooth function fi. (xa should be found. This 

function is found by using a suitable set of basis functions. One possible approach is the use of 

splines. There are several different types of splines, but they all have the same common feature 

in that each type can approximate any given smooth function by a sequence of functions, each 

of which is smoothed; over non-overlapping but connected sub-intervals of the domain of the 

variable Xi. The domain for Xi is sub-divided into intervals in such a way that over anyone 

interval, the function fi. (Xi) is monotonic. The bounding points ofthese intervals are called knots 

(or nodes). The same type of base spline must be used throughout for the function associated 

with any given predictor. However, different types of splines can be used for the functions 

associated with other predictors. Using the appropriate spline optimisation method, a smooth 

function for each predictor is obtained leading to an overall smooth function which is as close 

an approximation as possible from which our data comes. Hence, spline bases provide an 

attractive option for modelling smooth functions of covariates and to estimate the model 

parameters. Several different kinds of splines are available, for example the most commonly 

used splines are cubic regression splines, cyclic cubic regression splines, P-splines and thin­

plate regression splines. 
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6.2.1 P-splines for GAMs 
Initially, all of the four commonly used spline techniques namely; cubic regression 

splines, cyclic cubic regression splines, P-splines and thin-plate regression splines are studied 

to investigate which spline technique is more suitable than others to use on the data for this 

project. Investigations suggested that cubic regression splines and cyclic cubic regression 

splines are not appropriate for this data due to the strict constrains applied when estimating the 

smooth function. These constrains include estimating the parameter by fixing the value of the 

smooth tenn to the value obtained at the knot for cubic regression spline whereas requiring to 

have the same value at both the upper and lower boundaries of the knot in cyclic cubic regression 

splines. P-splines are based on B-splines. However, the reasons of not considering B-splines 

over P-splines are the lack of availability of the numerical methodologies to achieve the stability 

of the B-splines and the restriction of B-splines on the smooth function which allows the basis 

function to be non-zero only for the specific interval (i.e. m + 3 knots where m is the I degree 

less than the basis function). Hence, p-splines and thin-plate regression splines are further 

investigated. 

Further investigations have found that both P-splines and thin-plate regression splines 

are favourable than other spline techniques because both of these splines use low-rank base 

function and therefore difference penalty is employed on the estimation of parameter p to control 

the "wiggleness" of the function. However, in the GAM models that follow, P splines have been 

chosen as the most appropriate for modelling the smooth functions to represent the variation of 

the outcome within our data. Thin-plate regression splines overcome many problems that occur 

in other spline techniques such as selection of knot locations, and as a result, such splines 

produce knot-free bases and create smoothing functions for mUltiple predictors by finding the 

best match between the data and smoothing object. Therefore, even thin-plate regression splines 

are useful specifically when the data is noisy, since P-splines are based on cubic splines, such 

splines are easier to create and additionally, P-splines can use any order of penalty as well as 

any B-spline basis to control the "wiggleness" of the function. Therefore, P-splines are more 

flexible and stable than thin-plate regression splines when knots are equally spaced and in 

addition to this, P-splines have lower computational cost than thin-plate regression splines when 

Longitudinal Analysis of Routinely Collected General Practice Records 
153 



Chapter 6 - Semi-parametric and Non-parametric Modelling 
used for large datasets and hence P-splines are chosen over thin-plate regression splines for this 

project. 

P splines are an improved version ofB -splines, as proposed by Eilers and Marx in 1996. 

(B-splines (deBoor, 1978) were developed for spline interpolation purposes. Both B-splines 

and P-splines are developed from cubic splines. 

In cubic splines, it is required to have a continuous function!;. (Xi) that has a continuous 

first and second derivatives at each knot in order to estimate the p parameters. In this way, 

spline function can be evaluated as; 

(eq.6.2) 

Where; 

bi(xa is a standard base spline function, 

k is the number of knots 

j is the number of parameters (Wood, 2006). 

A major advantage of cubic spline is that it has easily understandable parameters, and 

the base function does not demand any re-scaling condition on the covariates. However, the 

requirements of selecting the number of and locations of the knots are disadvantage. 

B-splines are a development of polynomial (i.e. cubic) splines and are considered to be 

stable and large scale splines. However to achieve stability, B-splines require advanced 

numerical methodologies and those currently available provide poor performance on stability. 

P-splines are an improved development of B-splines which overcome this problem (Eilers & 

Marx 1996). P-splines also have the added advantages of being low rank smoothers (i.e. using 

the low-rank base functions) meaning that when the knots are evenly spaced, the difference 

penalty is employed on parameter fJ to control "wiggliness" of the function. P-splines allow use 

of any order of penalty plus any B-spline as a basis function to estimate the parameter. Hence 

P-splines are considered to be flexible when the knots are evenly spaced but are problematic for 

non-evenly spaced knots (Wood, 2006). 
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Cyclic cubic regression splines, which are a further development of cubic splines, and 

thin-plate regression splines, that generate the best function that matches the data and the 

smoothing object (i.e. the function that we are trying to estimate) are the other two alternative 

spline choices that can be selected by the researcher. After the theoretical investigations on all 

of the commonly used spline techniques, P-splines are chosen due to the reasons stated earlier. 

However, all of the commonly used various spline techniques that are investigated theoretically 

have also been tested on our data for the practical check and it has been concluded that P-splines 

offer the best fit for modelling the data points in this research and these are used in the models 

that follow. 

6.3 Generalized Additive Mixed Models (GAMM) 
In a similar manner to progression from GLM to GLMM models (see section 5.6), if 

random effects are added to a GAM model, then the model becomes a GAMM model. GAMM 

models are mixed models characterizing both fixed effects with parametric components and 

random effects describing by smooth functions of the covariates. Non-normal responses are 

permitted, since these models are generalized versions of additive mixed models. The 

assumptions of such models are very similar to those of GLMMs except that the assumption of 

linearity between the response and the independent predictors is removed. Linearity which is 

the dependence of outcome variable on the covariates (the independent predictors) is replaced 

by smooth functions describing the influence of the covariates. Therefore, GAMM models are 

considered to have great flexibility and allow complex relationships to be modelled. The general 

form of a GAMM model is; 

(eq.6.3) 

Where; 

g(y) is a monotonic, differentiable link function of the outcome such as log link function, 

(J is the vector of fixed parameters, 

X· is the fixed effects model matrix, 

/j is the smooth function estimated for covariate Xj. where this Xj is centred on mean, 
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Z is the random effects model matrix, 

k is the number of continuous covariates, 

b is the vector of random effects coefficients with unknown positive definite covariance matrix 

Ge, so that bE N(O, Ge) and 

E is the vector of residual error with positive definite covariance matrix R, so that E E N (0, R), 

The conditional mean of the response given random effects b is defined to be J.l[b] and is linked 

to the linear predictor, TJ (i.e. the link function such as log link). Then, 

(eq.6.4) 

(Lin and Zhang, 1999; F ahrmeir and Lang, 200 I; Wood, 2006). 

Since flexible covariance structure can be used for the random effects, b, by using this 

linear predictor, TJ (i.e. linear link function), GAMM models can be applied in different study 

designs, including hierarchical designs. In GAMM models, if the linear link function is used. 

the link function transform the conditional mean of outcome into a linear outcome, so that the 

smooth function is reduce to linear which then creates a linear or polynomial model that can be 

defined as GLMM model and is considered as a special case ofGAMM models. 

Instead of taking the value of the covariate as an independent predictor as in GLMMs. a 

linear predictor in GLMMs is improved in GAMM models, so that a single smooth function is 

formed from the combination of piecewise functions corresponding to that covariate. For each 

smooth term, two components are evaluated. One is the fixed effect, calculated by an un­

penalized component, and the other is the random effect, computed using a penalized 

component. The random effect of the smooth component is also assumed to be normally 

distributed. In estimating each smooth parameter in GAMM models, each is first considered as 

a variance component of the covariate, then each parameter is estimated by using either 

restricted estimation of maximum likelihood (REML) or penalized quasi-likelihood (PQL) 

methods (Wood, 2006). 
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6.3.1 Application of GAMM Models 

The GLMM models described previously (chapter 5) are based on the assumption of 

linearity between the dependent and independent variables (i.e. between eGFR and time 

respectively). This assumption is now examined to investigate the possibility of non-linearity 

of the association between the outcome and covariates (e.g. between eGFR and time). Up to this 

point, we have used eGFR which is calculated using the MDRD formula (see section 2.1.3), 

which includes age, gender, ethnicity and SCr in its calculation as the dependent variable. 

Hence, the effects of these covariates (i.e. age, gender, ethnicity, SCr) cannot be fully explored 

using eGFR as the outcome. 

In order to examine the effects of age, gender, ethnicity and SCr in more detail, the 

MDRD formula for eGFR is inverted to extract the corresponding SCr values for each patient. 

Extraction of SCr values from eGFR using the MDRD formula allows the use of SCr values 

(obtained directly from a patient's blood sample) as the dependent variable and allows the 

effects of age, gender and ethnicity to be studied. In addition to this, eGFR calculated by MDRD 

formula is not commonly reported in the routine practice for every patient. However, SCr is a 

measurement obtained directly from the blood of the patient and hence more commonly reported 

in the routine practice. Therefore, every patient might not have a calculated eGFR value but can 

have SCr measurement. Since GAMM models require a large amount of data points and desire 

the data to be balance, using SCr as an outcome instead of eGFR in such models can provide 

better models and this is investigated in this section of the thesis. 

The dependent variable now becomes the SCr value, which is transformed by taking the 

natural logarithm to achieve a normally distributed dependent variable. GAMM models are then 

applied to the log (SCr) values using the P-splines approach described in section 6.3.1. In order 

to overcome the disadvantages of P-splines due to needing to decide on the number of knots, 

the number of knots is not specified when defining the model, so that the number of knots can 

be chosen automatically by the software package based on the data available for that covariate. 

Throughout this section, the GAMM models presented involve the application of 

smoothing splines to model SCr readings against continuous covariates including time, age, age 
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at diagnosis of CKD, systolic blood pressure value and the interactions of the co-morbidities 

with time. 

Diagnostic testing of the models is achieved using graphical analysis, Quantile Quantile 

plots (QQ-plots) and histograms to assess normality, 'residuals versus predictor plot' and 

'residuals versus fitted value plots' to examine homogeneity, and 'fitted values versus observed 

values plots' to check the quality of the model fit (e.g. Figure 6.12). 

Before describing the models applied on log (SCr) values, a GAMM model is first fitted 

using eGFR values as an outcome to compare with the GLMM model described in chapter 5. 

6.3.1.1 Comparing a GAMM Model using eGFR values as an outcome with GLMM 

Model 

LMM models described in chapter 5 are parametric models which are fully identifiable 

In finitie dimensitional parameter space. Parameters are estimated and interpreted easily. 

However, estimation of parameters are only accurate if the assumptions of the parametric 

models are met by the data such as normality assumption. In such cases, parametric models are 

more powerful than semi-parametric or nonparametric models. 

Even, restrictive assumptions of the parametric models are violated in nonparametric 

models, parameters in nonparameteric models are in infinite dimensional space and therefore 

interpretation of the parameters are difficult and estimation can be inaccurate if the model 

contains large number of independent variables. 

Semi parametric models combine components of parametric and non parametric models 

where the parameters of interest are in finite dimensional space and nuisance parameters (e.g. 

mean and variance) are in infinite dimentional space. In semi-parametric models, parameters of 

interest are interpreted easily due to parametric component and models are flexible due to 

nonparametric component. 

Both GLMM and GAMM models are semi-parametric models. However, GLMM 

models are more towards the parametric models and GAMM models are more towards the 

nonparametric models. This is because, even the normality assumption is violated in GLMM 

models, the known distribution from the exponential family is assumed for the outcome and 
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hence such models are identifiable. In addition to this, linearity between the outcome and 

independent variables is still assumed in GLMM models. However, in GAMM models, the 

outcome is not assumed from a known distribution. Hence the models are not identifiable and 

linearity assumption between outcome and independent variables is also violated. The 

distribution of the outcome is identified by the data point using the smoothing spline functions. 

However, GAMM models require large amount of data points and desire the data to be balance. 

Firstly, when the GAMM model is fitted using the eGFR values as outcome, it is 

observed that same data points used to fit the GLMM models in chapter 5 are not enough to fit 

the interaction effects ofeGFR with time and other covariates in GAMM model. Therefore, only 

the single effects are considered in this model. By using the same single effect parameters 

employed in the best GLMM model in chapter 5, a GAMM model is carried out and only the 

diagnosis of anaemia and diabetes are found to be the statistically significant (both with p < 

0.001) single effect parameters affecting the outcome. Time is taken as a smooth term to model 

the progression of CKD by looking at how eGFR changes over time and since the smoothing 

parameter is estimated as 6.459 with p < 0.001, it can be concluded that the decline of eGFR 

over time is nonlinear. When the diagnostic plots are investigated for this model, it is concluded 

that there is no evidence of serious model fitting problems. However, since this model only 

explains 4.85% of the total variation in the outcome, it is found to be less powerful than GLMM 

model when the outcome is used eGFR values. In the next sections, the outcome variable is 

changed and assessed as SCr values to obtain better fitting models and investigating alternative 

variables affecting the outcome to explain the variation in the SCr and hence in the eGFR. 

6.3.1.2 GAMM Modell - Modelling SCr as a smooth function of time 

The research question now lies in investigating changes in SCr readings over time and 

what function affect such changes. The first GAMM model (Model I, eq. 6.5) is a basic model 

which models changes in SCr as a smooth function of time, where the subject (i.e. the patient) 

is the random component. The additive mixed model framework is defined as; 

(eq.6.5) 
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Where; 

Yt is the 10g(SCr) ofa given patient at time measurement t, where log is the natural logarithm, 

a is the intercept, 

timet is the time of the tth measurement after the first diagnosis of CKD, in years, 

Nt is the identically, independent, normally distributed noise (error) term. 

The function !i(timet , A1) is the smoothing curve for time and can have any smooth shape, 

A1 is the smoothing parameter for the time, if A1 = 1, then this means that there is a linear 

relationship between time and SCr, which is the assumption made in GLMM models. 

In the results in all models below in this section, s represents an additive spline contribution to 

log (SCr). 

Formulation 

of Model 1 in R Software 

Modell <- gamm4(y-s(Time, bs= ''ps "), random=-(i lID), data=CKDdata, method= "REML ") 

(Wood and Scheipl, 2015) (Wood, 2015). 
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Table 6.1: Output of Model 1 

Family: gaussian 
Link function: identity 

Formula: 
y - s(Timeyears, bs = "ps") 

Parametric coefficients: 
Estimate Std. Error t value Pr(>jtj) 

(Intercept) 2.068248 0.004263 485.2 <2e-16 *** 

Signif. codes: 
'***'; 0 < p-value ~ 0.001, 
'**': 0.001 < p-value ~ 0.01, 
'*';0.01< p-value ~ 0.05, 

'.': 0.05 < p-value ~ 0.1, 
": 0.1< p-value ~ 1 

Approximate significance of smooth terms: 
edf Ref.df F p-value 

s(Timeyears) 6.164 6.164 24.33 <2e-16 * ** 

Signif. codes: 
'***': 0 < p-value ~ 0.001, 
'**': 0.001 < p-value ~ 0.01, 
'*':0.01< p-value ~ 0.05, 
'.': 0.05 < p-value ~ 0.1, 
, ': 0.1 < p-value ~ 1 

R-sq.(adj) = -0.00176 Imer.REML score = -10440 Scale est. = 0.0024038 n = 3776 
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Figure 6.1: The smoothed term of time from Model I 
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The "tick marks" in Figure 6.1 on the horizontal axis represent the actual mea urement times 

and the dotted curves represents the limits on 95% Confidence Interval. Vertical line shows the 

spline function of time. 

The further A. is away from I, the greater the non-linearity with respect to the covariate 

presented. In GAMM models, A. is computed by finding the value wh ich gives the lowe tAle. 

The resulting A. value is called the expected degrees of freedom (edt). The results of Model I 

(Table 6.1) show the edf for the time variable to be 6.164, and both Figure 6.1 and output from 

Model I (Table 6.1) show that the patient' s SCr has a highly significant nonlinear upward trend 

with associated p-value of 0.000 (3dp), and hence it can be concluded that eGFR decreases over 

time (note: as known from the MDRD formula that there is an inverse relationship between 

eGFR and SCr - as one increases, the other decreases). Figure 6.1 also indicates that SCr 

changes non-linearly over time which in turn leads to the conclusion that change in eGFR, and 

hence the progression of CKD, over time is non-linear in nature. 
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6.3.1.3 GAMM Model 2 - Treating measurements from different subjects separately 

The next stage of GAMM analysis asks; 'can the non-linear changes in SCr over time 

be explained by between subject differences'. In this model, Model 2, the smoothed time­

dependent tenn is replaced by a smoothed tenn of time interacting with the subject. From the 

output of Model 2 (Table 6.2), it can be concluded that the change ofSCr over time is different 

for different subjects. 

Formulation of Model 2 in R Software 

Model2 <- gamm 4 (y-s (Time. by=/D. bs= "ps "). random=-( I lID). dala=CKDdala, 

method= "REML '/ (Wood and Scheipl, 20]5) (Wood, 2015). 

Table 6.2: Output of Model 2 

Family: gaussian 

Link function: identity 

Formula: 
y - s(Timeyears, by = ID, bs = "ps") 

Parametric coefficients: 
Estimate Std. Error t value Pr(>ltl) 

(Intercept) 2.05874 0.00724 284.4 <2e-16 *** 

Signif. codes: 
'***': 0 < p-value::::: 0.001, 

'**': 0.001 < p-value::::: 0.01, 

'*':0.01 < p-value ::::: 0.05, 
, .': 0.05 < p-value ::::: 0.1, 
, ': 0.1< p-value::::: I 

Approximate significance of smooth terms: 
Edf Ref.df F p-value 

s(Timeyears):ID 5.277 5.277 20.15 <2e-16 *** 

Signif. codes: 

'***': 0 < p-value::::: 0.001, 
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'**': 0.001 < p-value S 0.01 , 
' *' :0.0 I < p-value S 0.05, 
' .': 0.05 < p-value S 0.1, 
" : 0.1 < p-value S I 

R-sq.(adj) = 0.00468 Imer.REML score = -10349 Scale est. = 0.002438 n = 3776 
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Figure 6.2: Smoothed term of time interaction with the patient from Model 2 

Figure 6.2 shows that a very slight decrease is even observed in SCr values for around a 

year after diagnosis, suggesting a slight improvement in CKD status. This may be explained as 

a consequence of the effects of medication prescribed to the patient at time of diagnosis 

providing a minor improvement initially, resulting in a very small temporary increase in eGFR. 

However, since CKD status is known to generally worsen over time, eGFR will progressively 

decrease, and SCr increase over time, accord ingly. The trend over the subsequent 10 years (from 
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diagnosis) is described as a gradual increase in SCr (i.e decrease in eGFR). Beyond 10 years 

after diagnosis of CKD, the confidence intervals widen markedly and so the trend indicated on 

the graph in Figure 6.2 is presumed to be non-significant after 10 years. 

6.3.1.4 GAMM Model 3 - Including patient specific factors 

In Model 3, additional covariates such as age, age at diagnosis ofCKD, gender and stage 

of CKD at diagnosis are introduced into the model. When the influence of each co-morbidity on 

rapid decline in CKD status was investigated (see section 4.2.1.2), it was found that anaemia 

was the most influential single factor. Hence, in Model 3, the smooth tenn of time is replaced 

with the smoothed function of the interaction of time with the diagnosis of anaemia. 

Formulation of Model 3 in R Software 

Model3 <- gamm4(y-s(Time, by=AnaemiaDiagnosis, bs= "ps")+ s(Age, bs= "ps")+ 

s(Diagnosticage, bs= ''ps'')+ Gender + Diagnosticstage, random =-(1 lID), dala=CKDdata, 

method= "REML ") (Wood and Scheipl, 2015) (Wood, 2015). 

Table 6.3: Output of Model 3 

Family: gaussian 
Link function: identity 

Formula: 
y - s(Timeyears, by = AnaemiaDiagnosis, bs = "ps") + s(Ageyears, 

bs = "ps") + s(Diagnosticage, bs = "ps") + Gender + Diagnosticstage 

Parametric coefficients: 
Estimate Std. Error t value Pr(>ltl) 

(Intercept) 1.981976 0.003890 509.49 <2e-16 **. 

GenderMale 0.101625 0.004834 21.02 <2e-16·** 

DiagnosticstageStage 3b 0.066880 0.005028 13.30 <2e-16 **. 

DiagnosticstageStage 4 0.155996 0.008669 18.00 <2e-16 **. 

DiagnosticstageStage 5 0.241947 0.018369 13.17 <2e-16 **. 
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Signif. codes: 
'***': 0 < p-value::; 0.001, 
'**': 0.001 < p-value::; 0.01, 
'*':0.01< p-value::; 0.05, 
'.': 0.05 < p-value ::; 0.1, 
, ':O.I<p-value::;1 

It can be seen from the parametric coefficients that males tend to have higher SCr than 
females, and more serious the stage ofCKD, the higher the SCr (and hence lower eGFR). 

Approximate significance of smooth terms: 

edf Ref.df F p-value 

s(Timeyears):AnaemiaDiagnosisDo not have the disease 5.964 5.9643.0350.005954·· 

s(Timeyears):AnaemiaDiagnosisHaving the disease 3.635 3.6355.5950.000357 ... 

s(Ageyears) 6.285 6.2857.028 1.25e-07 ... 

s(Diagnosticage) 6.357 6.3574.0020.000422·" 

Signif. codes: 
'***': 0 < p-value::; 0.001, 
'**': 0.001 < p-value::; 0.01, 
'*':0.01< p-value::; 0.05, 
, .': 0.05 < p-value ::; 0.1, 
, ': 0.1 < p-value ::; 1 
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R-sq.(adj) = 0.572 Imer.REML score = -I 1020 Scale est. = 0.0023384 n = 3776 
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In Table 6.3, we see a highly statistically significant upward trend in the change in SCr 

over time for anaemic patients, with associated edf=3.635 and p-value<O.OO I and from Figure 

6.3 a small but significant upwards trend for non-anaemic patients with associated edf=5.964 

and p-value=0.006 (3dp). The non-linear upwards trend shown in Figure 6.1 is further 

decomposed for two separate groups of patients, non-anaemic (Figure 6.3) and anaemic (Figure 

6.4). Comparison of the upwards trends of SCr over time between these two groups of patients, 

shows anaemic patients experiencing a sharper increase in SCr over the first 10 years. This 

translates to a sharper decline of eGFR, hence quicker progression of CKD, in anaemic patients 

compared to non-anaemic patients. 

The smooth tenns for age in years, (p=O.OOO, Figure 6.5) and age at diagnosis of CKD 

(p < 0.00 I, Figure 6.6) both show statistically significant non-linear trends. In Figure 6.5, it is 

observed that there is a greater change in SCr for the under 50s, while the effect of age on change 

in SCr appears to lessen in patients over the age of 50. For patients aged 50 or over (and similarly 

for patients aged over 50 at the diagnosis of CKD), SCr changes little with increased age (or 

diagnostic age). However, it should be noted that the MDRD formula used to calculate eGFR 

from SCr does take the patient's age into account, and hence this effect of little change in SCr 

with age does not mean that eGFR (or the kidney function) is stable as the patient ages. 

In Figure 6.6, between the ages of 20 to 40, the higher the age at the diagnosis of CKD, 

the lower the SCr, and hence higher eGFR, is observed. eGFR is not routinely tested for younger 

people, so only those with exceptionally higher SCr will be diagnosed with CKD at younger 

age. This low number of young diagnoses contributed to the large confidence intervals between 

the ages 20 to 40. However, since CKD is commonly diagnosed between ages 40-50, when 

patients are diagnosed with CKD, certain appropriate medication is usually prescribed to those 

patients in order to decrease the speed of the decline of kidney function over time. In the first 

instance, after the first diagnosis of CKD, if suitable medication is given to those patients, a 

slight initial decrease in SCr and hence increase in eGFR may be observed due to kidney 

function being improved due to the effect of the treatments after the initial diagnosis of CKD. 

The effect of this slight initial increase in eGFR may explain the slight decrease in SCr in Figure 

6.6 between the ages at diagnosis 40-50. Since generally the diagnosis of CKD occurs between 
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ages 35-50, the higher the age at the diagnosis within this range, the higher the SCr and hence 

the lower the eGFR observed. 

6.3.1.5 GAMM Model 4 - including further patient-specific factors 

The model is expanded further to include; age at each repeated measure, gender, age at 

diagnosis of CKD, diagnosis of diabetes, diagnosis of cardiovascular diseases, stage of CKD at 

diagnosis and mean systolic blood pressure, along with the interaction between time and 

anaemia factored by two categories of diagnosis of anaemia (i.e. one for non-anaemic patients 

and one for anaemic patients). 

Formulation of Model 4 in R Software 

Model4 <- gamm4(y-s(Time, by =AnaemiaDiagnosis, bs=''ps'~ + s(Age, bs=''ps'~+ Gender+ 

Diagnosticstage + DiabetesDiagnosis+ CardiovascularDisease + s(.f}ystolicBP, bs="ps'~+ 

s(Diagnoslicage, bs= ''ps'~, random =-(1 lID), data=CKDData) 

(Wood and Scheipl, 20 15) (Wood, 2015). 
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Table 6.4: Output for Model 4 

Family: gaussian 
Link function: identity 

Formula: 
y - s(Timeyears, by = AnaemiaDiagnosis, bs = "ps") + s(Ageyears, 

bs = "ps") + Gender + Diagnosticstage + DiabetesDiagnosis + 
CardiovascularDisease + s(SystolicBP, bs = "ps") + s(Diagnosticage, 
bs = "ps") 

Parametric coefficients: 

(Intercept) 
GenderMale 
DiagnosticstageStage 3b 
DiagnosticstageStage 4 
DiagnosticstageStage 5 
DiabetesDiagnosisDiabetes diagnosed 
CardiovascularDiseaseDisease present 

Signif. codes: 
'***': 0 < p-value ~ 0.001, 
'**': 0.001 < p-value ~ 0.01, 
'*':0.01< p-value ~ 0.05, 
'.': 0.05 < p-value ~ 0.1, 
, ': 0.1 < p-value ~ 1 

Estimate Std. Error t value Pr(>ltl) 
1.996169 0.004840 412.463 < 2e-16 *** 
0.103190 0.004778 21.598 < 2e-16 *** 
0.065077 0.004887 13.317 < 2e-16 *** 
0.154962 0.008434 18.374 <2e-16*** 
0.235989 0.017836 13.231 < 2e-16 *** 

-0.016752 0.004590 -3.650 0.000266 *** 
-0.011831 0.004710 -2.512 0.012054 * 

Approximate significance of smooth terms: 

s(Timeyears):AnaemiaDiagnosisDo not have the disease 
s(Timeyears):AnaemiaDiagnosisHaving the disease 

s(Ageyears) 

s(SystolicBP) 
s(Diagnosticage) 

Signif. codes: 
'***': 0 < p-value:s 0.001, 
'**': 0.001 < p-value:s 0.01, 

edf Ref.df F p-value 
1.000 1.000 0.416 0.518817 

3.612 3.612 5.577 0.000381··· 
6.274 6.274 6.841 2.13e-07"· 

3.091 3.091 4.752 0.002404·· 
6.296 6.296 4.105 0.000336 ••• 

Longitudinal Analysis of Routinely Collected General Practice Records 
171 



Chapter 6 - Semi-parametric and Non-parametric Modelling 

'*':0.01 < p-value :5 0.05, 
'.': 0.05 < p-value :5 0.1, 
, ': 0.1 < p-value :5 1 

R-sq.(adj) = 0.589 Imer.REML score = -10976 Scale est. = 0.0023556 n = 3760 

The results from Model 4 (see Table 6.4) shows that all of the predictors in the 

parametric component included in the model are statistically significant. The smoothed term 

representing the interaction between time and diagnosis of anaemia indicates that. for non­

anaemic patients, SCr does not change significantly over time (i.e. change in SCr over time is 

linear since edf= 1.00). However, for anaemic patients, the smoothed term of interaction of time 

with anaemia is statistically significant (edf= 3.612, p < 0.001), and SCr displays a significant 

non-linear upwards trend over time. In real terms, this indicates that while there is no significant 

change in eGFR over time in non-anaemic patients; eGFR decreases significantly and non­

linearly over time in patients who have been diagnosed with anaemia. 

The most significant contributor to non-linear change in SCr over time (i.e. progression 

of CKD) is age with associated p-value of 2x 10-7
• This is followed by the nonlinear effect for 

the smoothed term due to the patient's age at diagnosis of CKD (p=O.00033). A further, albeit 

the least, statistically significant effect is that of the mean systolic blood pressure reading 

(p=0.0024). 
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Figure 6.7 shows that for non-anaemic patients, the general trend of SCr over lime is 

linear and upwards, but it is not significant for the first 10 years, suggesting that while eGFR 

declines over time due to aging, the change is negligible for these patients. Both Figure 6.9. 

representing non-linear change of SCr with age and Figure 6.10, displaying the dependence on 

the patient's age at the diagnosis of CKD, showed similar patterns to those obtained from the 

previous model (Model 3). However, graph of the smoothed term ofSCr change with respect to 

mean systolic blood pressure value (Figure 6.11) shows that for patients having normal systol ic 

blood pressure readings, i.e. where the systolic blood pressure value is below 120. almost no 

change in SCr and hence in eGFR is observed. However, at very high blood pressure values. a 

rise in SCr can be observed. 

In Figure 6.11 we can see the effects of the various stages of hypertension on SCr. For 

patients classified as normal, pre-hypertensive or hypertensive stage I, there is no added effect 

on SCr due to hypertensive status. A patient is classified to be normal if the systolic blood 

pressure is between 110 and 120, as being pre-hypertensive by having a systolic blood pressure 

value between 120 and 139, and classified as being hypertensive at stage I by having a systolic 

blood pressure reading between 140 and 159. For patients with more severe hypertensive status 

(i.e. stage 2 or crisis) there is a nonlinear increase in SCr (i.e. a decrease in eGFR). indicating a 

worsening ofCKD with increasing systolic blood pressure (SBP). In summary, the more severe 

the hypertension (in terms of higher systolic blood pressure) the greater and sharper the increase 

in observed SCr. This detrimental effect appears to increase further with increasing systolic 

blood pressure, being most severe for patients with hypertensive crisis (i.e. SBP> 180). However. 

it should be noted that this is based on very few observations. 
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Figure 6.12: Model validation graph for Model 4 

Figure 6.12 shows the model validation graphs for the AMM model (Model 4) that 

includes the predictors; age, interaction of time with diagnosi of ana mia, age at the diagnosi 

ofCKD, stage ofCKD at the diagnosis of the di sease, diagnosis ofdiabet s, di agnosis of YD. 

mean systolic blood pressure and gender. The histogram of the residuals show that residuals 

are approximately normally di stributed. Furthermore, the QQ-plot show just a litt le de iation 

from being a straight line between the theoretical quartiles. Therefor , it can be con luded from 

all four graphs in Figure 6.12 there is no ev idence of serious model fitting problems. 
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6.3.1.6 Evaluation of GAMM models 

The four GAMM models (Modell, Model 2, Model 3 and Model 4) presented in this 

section (6.3.]) are compared in terms of goodness of fit to the data by observing REML scores 

and adjusted R-square values (Table 6.5). From the adjusted R-square values. it can be 

concluded that, if the smooth term of time is used as the only predictor in the model. the model 

provides poor fit (Modell). Explaining the change ofSCr over time by taking account that this 

differs between patients improves the model (Model 2), although a low adjusted-R-value is still 

observed. The inclusion of additional predictors is needed to explain more of the total variation 

of the response, and so such information (i.e. age, gender, age at diagnosis, and stage ofCKD 

at diagnosis) is added into the model. The inclusion of these contributions greatly improves the 

model fit, increasing the explained variation from 0.47% of the total variation (in Model 2) to 

57.2% of the total variation (in Model 3). This would also confirm the value of considering 

factors such as age and gender in the MDRD formula to calculate eGFR from SCr. A small 

further increase in model fit (to 58.9%) was gained with the addition of covariates representing 

diagnoses of diabetes, CYD, and mean systolic blood pressure (Model 4). 

Table 6.5: Model fit statistics for GAMM models 

Model Number Model Formula 

Modell 

Model 2 

Model 3 

y - s(Timeyears, bs = "ps") 

y - s(Timeyears, by = ID, bs = 
"ps") 

y s(Timeyears, by = 
AnaemiaDiagnosis, bs = "ps") + 
s(Ageyears, bs = "ps") + Gender + 
Diagnosticstage 

Adjusted 
R-square 

-0.00] 76 

0.00468 

0.572 

REML Score 

-10440 

-10349 

-11020 
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Model 4 
y s(Timeyears, by = 
Anaem iaDiagnosis, bs = "ps ") + 
s(Ageyears, bs = lipS") + Gender + 
Diagnosticstage + 
DiabetesDiagnosis + 
CardiovascularDisease + 
s(SystolicBP, bs = "pS") + 
s(Diagnosticage, bs = lipS") 

6.4 A Bayesian Alternative Approach to GAMM Models 

0.589 ·10976 

In this section, a Bayesian perspective of generalized regression models is considered. 

Here, inference is achieved through a mixed model representation using penalised likelihood to 

estimate regression parameters of the model. These models provide an alternative Bayesian 

perspective ofGAMM models, in contrast to the frequentist perspective detailed in sections 6.2-

6.3. 

Generally, it is known that in the BayesX methodology (Belitz et ai., 2012), there are three 

main approaches for the estimation of regression parameters. These are: full Bayesian inference 

by using Markov Chain Monte Carlo (MCMC) techniques (Belitz el al., 2012). which is used 

to formulate generalized regression models from a purely Bayesian perspective; mixed model 

representation inference (Belitz et al., 2012) which is used to formulate generalized regression 

models from a Bayesian perspective in relation to mixed models (i.e. an empirical Bayes 

estimation) and penalized likelihood inference (Belitz et al., 2012) which is used to formulate 

generalized regression models from a frequentist perspective (i.e. a Non Bayesian estimation. 

such as stepwise regression). Here, the interest is in finding a Bayesian alternative to the GAMM 

model. As this is a mixed model, we want to compare the differences between the empirical 

Bayes model and the full Bayes model. The package 'R2BayesX' is an R interface that is used 

to estimate Structured Additive Regression (STAR) models (Belitz et al .• 2012), which include 

generalized additive mixed models (Lin & Zhang, 1999), using the BayesX methodology. 

When a mixed model methodology is applied, it enables the estimation process for STAR 

models to be carried out and benefits from the link penalisation of the likelihood and the 
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corresponding random effects distributions. The resulting smoothed terms of the estimated 

smooth parameters can then be assumed to represent the variance components of the mixed 

model. For a Gaussian response, variance components are (most commonly) estimated using 

REML. For non-Gaussian response, the marginal likelihood technique is generally used. In an 

empirical Bayes approach, regression parameters are estimated using penalised likelihood 

techniques, where an empirical Bayes posterior distribution is generated and the parameter 

estimates are classified as penalized likelihood estimates (Shen, 20 II). 

In a fully Bayesian MCMC method, firstly a prior distribution is defined for all unknown 

parameters. Then, estimation of parameters is carried out using MCMC techniques (Shen. 

2011). This approach in BayesX provides numerically effective methods for STAR models. 

The parameters in the model presented here are estimated using penalized likelihood. 

Model comparisons and parameter selection are achieved using goodness of fit criteria such as 

AIC, BIC and Generalized Cross-Validation (GCV). 

6.4.1 Bayesian perspective on continuous covariates using P-splines 

An advantage of using a mixed model representation is that it allows the investigation 

of the challenges inherent in non-parametric regression from an alternative perspective. In order 

to evaluate the effect of continuous covariates, a P-spline approach is used (Eilers & Marx 

1996), where the smooth function f is estimated by a polynomial spline with equally spaced 

knots. The biggest problem in using this approach is to determine the correct number of knots 

(too many or too few will cause over/under fitting, which would fail to estimate the smooth 

function properly). Usually a moderate number of knots, for example between 20 and 40, will 

be enough to adequately estimate the smoothness but prevent over fitting. The equally spaced 

knots are used to impose penalties on B-spline coefficients based on first and second differences 

of the smooth function. As a result, the approach creates penalized likelihood estimation, 

including penalty terms. 
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6.4.2 Empirical Bayes Estimation Based on Mixed Model Methodology 

In the mixed model representation within BayesX, a re-parameterization is applied, so 

that STAR models can be expressed as GLMM models (Green, 1987). When STAR models are 

represented as GLMM models, regression parameters and variance components are evaluated 

by using iteratively weighted least squares together with REML or marginal techniques. In this 

approach, the vector containing regression coefficients is divided into two separate parts, the 

un-penalized and the penalized parts. The GLMM consists of un-penalized parameters as fixed 

effects and penalized parameters as random effects. Smooth functions and variance parameters 

can be estimated at the same time (Shen, 20] ]). 

In order to carry out empirical Bayes estimates, estimation procedures are performed iteratively 

in two stages. 

At the first stage, penalized and un-penalized regression parameters are estimated by solving a 

system of equations involving known variance parameters. Then, at the second stage, variance 

parameters are revised using REML or marginal log-likelihood. These two steps are repeated 

until convergence is achieved. When marginal likelihood is used, Fisher's Scoring algorithm is 

used in the convergence criteria and, if the variance component is small, maximization of the 

likelihood by this algorithm can create problems and fail. For this reason, if the iterated criterion 

is found to be smaller than the lower limit for the variance component that is specified by the 

user, then the estimation of the variance component is stopped. The iterated criterion is defined 

to be; 

Where; 

c(T/) is the iteration criterion for variance component (T/) at time}, that is given by solving 

systems of equations and estimated by maximising the restricted log likelihood, 

x; is the model matrix estimated at time}, 
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Pjeil is the estimated corresponding penalized P parameters from the random component of the 

model and 

i1 is the estimated predictor (Belitz et ai., 2012). 

6.4.3 Application of BayesX Models 

As an exploration of how these Bayesian approaches might be suitable for modelling 

and analysis of data of the type used in this project, three models of the types described above 

are developed. These are computed in order to study which of these three Bayesian methods 

gives the best match in terms of AIC and BIC to the data in comparison to the GAMM models 

of section 6.3. However, the Bayesian modelling represented here is an initial "pilot" study just 

for overall comparison - the results of the individual models are not interpreted in detail and 

should be primarily regarded as providing stimulus for future research. 

The final model obtained in the previous section (6.3) using the GAMM methodology 

is used as a source in forming the two alternative, Bayesian perspective, full Bayes model using 

the MCMC technique and the empirical Bayes model using a mixed model representation. Both 

models are then compared in terms of assessing goodness of fit to the data. 

The first model is an empirical Bayes model using a mixed model representation. It 

includes the predictors 'smoothed term of interaction of time with diagnosis of anaemia in 

years', gender, a smoothed term of age at (CKD) diagnosis, stage (of CKD at diagnosis), 

diabetes and CYD. (N.B. smooth tenns for mean systolic blood pressure and for age in years 

are not included in these Bayesian models due to incomplete data on these features. BayesX 

models do not allow for missing data in observations). Similarly, model fonnulations including 

a smoothed tenn for age (in years) and time-varying covariates are problematic and are not 

included in the subsequent model. 

The interpretation of the parameters obtained for the models below is analogous to that 

for the GAMM models of section 6.3, since the smooth functions of the covariates are 

approximated using the same type of splines both here and in the GAMMs. 

Hence the Bayesian model fitted initially is; 
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6.4.3.1 Model 1- Empirical Bayesian Mixed Model using MGCV 

Modell <- bayesx(y-sx(Time, by=AnaemiaDiagnosis, bs= ''ps'') + Gender+ Diagnosticslage 

+ DiabetesDiagnosis+ CardiovascularDisease + sx( Diagnoslicage. hs= ''ps ''). 

random=-(JIID), method="REML", data=CKDData) (Belitz et aI., 2012) (Wood. 2015) 

(Umlauf et af., 2015). 

Table 6.6: Model Output for Modell 

bayesx(formula = y - sx(Timeyears, by = AnaemiaOiagnosis, bs = IpS") + 
Gender + Oiagnosticstage + OiabetesOiagnosis + CardiovascularOisease + 
sx(Oiagnosticage, bs = lipS "), data = ROata, random = -( I I 
10), method = "REML") 

Fixed effects estimation results: 

Parametric coefficients: 

(Intercept) 
GenderMale 
DiagnosticstageStage 3b 
DiagnosticstageStage 4 
DiagnosticstageStage 5 
OiabetesOiagnosisDiabetes diagnosed 
CardiovascularDiseaseDisease present 

Estimate 
2.0110 
0.1024 
0.0661 
0.1530 
0.2323 

-0.0179 
-0.0105 

Std. Error 
0.0049 
0.0023 
0.0024 
0.0042 
0.0087 
0.0022 
0.0023 

t-value Pr(>lt!) 
408.8323 < 2.2e-16 .... '" 
44.1582 < 2.2e-16 "' .... 
27.9673 < 2.2e-16 "' .... 
36.8442 < 2.2e-16 "' .. 
26.7712 < 2.2e-16·" 
-8.0409 < 2.2e-16·" 
-4.6178 < 2.2e-16·" 

Signif. codes: 0 < '''''''*' ~ 0.001 ''''*' ~ 0.01 '.' ~ 0.05 '.' ~ 0.1 ' , ~ I 

Smooth terms: 
Variance Smooth Par. df Stopped 

sx(Timeyears ):AnaemiaDiagnosisDonot_ have_the _disease 0.0000 7910.5600 2.150 I 0 
sx(Timeyears):AnaemiaDiagnosisHaving_the_disease 0.0000 256.5230 3.5008 0 
sx(Diagnosticage) 0.0017 2.6353 11.1929 0 

Scale estimate: 0.0044 

N = 3776 df= 23.8438 Ale = -16656.4 BIC = -16507.7 
GCV = 0.00446674 logLik = 8352.05 method = REML family = gaussian 
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6.4.3.2 Model 2 - Bayesian model using MCMC techniques 

Now, a Bayesian model containing the same predictors is formulated, but this time using 

the MCMC technique to estimate the model parameters instead of the REML approach. This 

results in the formulation of a full Bayes model. The R syntax formulation for this second model 

IS; 

Model2 <- bayesx (y-sx (Time, by=AnaemiaDiagnosis, bs=''ps'~ + Gender+ Diugnosth'.\·tuge 

+ DiabetesDiagnosis+ CardiovascularDisease + sx(Diagnosticage, bs= "ps'~. random=-( IIID 

), method= "MCMC", data=CKDData) 

(Belitz et ai., 2012) (Wood, 2015) (Umlauf et al., 2015). 
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Table 6.7: Model Output for Model 2 

bayesx(fonnula = y - sx(Timeyears, by = AnaemiaDiagnosis, bs = "pS") + 
Gender + Diagnosticstage + DiabetesDiagnosis + CardiovascularDisease + 
sx(Diagnosticage, bs = lipS"), data = RData, random = -( I I 
ID), method = "MCMC") 

Fixed effects estimation results: 

Parametric coefficients: 

(Intercept) 
GenderMale 
DiagnosticstageStage 3b 
DiagnosticstageStage 4 
DiagnosticstageStage 5 
DiabetesDiagnosisDiabetes diagnosed 
CardiovascularDiseaseDisease present 

Smooth terms variances: 

Mean Sd 2.5% 50% 97.5% 
1.6345 0.1449 1.4508 1.5997 1.8741 
0.1020 0.0024 0.0976 0.1020 0.1066 
0.0659 0.0023 0.0613 0.0659 0.0704 
0.1516 0.0043 0.1431 0.1517 0.1599 
0.2317 0.0086 0.2153 0.2317 0.2487 

-0.0181 0.0023 -0.0224 -0.0181 -0.0136 
-0.0104 0.0022 -0.0146 -0.0104 -0.0061 

Mean Sd 2.5% 50% 97.5% Min Max 

sx(Timeyears):Non-anaemic 
sx(Timeyears):Anaemic 
sx(Diagnosticage) 

Scale estimate: 
Mean Sd 

Sigma2 (a2
) 0.0044 0.0001 

0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0008 
0.0001 0.000 I 0.0000 0.0000 0.0002 0.0000 0.0014 
0.0054 0.0065 0.0005 0.0032 0.0230 0.0003 0.0679 

2.5% 
0.0042 

50% 97.5% 
0.0044 0.0046 

N = 3776 burnin = 2000 DIC = 3811.825 pd = 34.14964 
method = MCMC family = gaussian iterations = 12000 step = 10 

6.4.3.3 Model 3 - Empirical Bayesian Mixed Model using both MGCV and BayesX 

The final Bayesian model presented here is the same penalised likelihood (empirical 

Bayes) model but using mixed model representation and REML with the aid of both BayesX 

and Mixed GAM Computation Vehicle (MGCV) packages in R. The fonnulation in R syntax 

for model 3 is; 
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Model3 <- bayesx(y-s(l'ime, by =AnaemiaDiagnosis, bs="ps'~ + Gender+ Diagnosticstage + 

DiabetesDiagnosis+ CardiovascularDisease + s(Diagnosticage, bs= ''ps'~, random=-(lIID), 

method="REML", data=CKDData) (Belitz et al., 2012) (Wood, 2015) (Umlauf et al., 2015). 

Table 6.8: Model Output for Model 3 

bayesx(formula = y - s(Timeyears, by = AnaemiaDiagnosis, bs = "pS") + 
Gender + Diagnosticstage + DiabetesDiagnosis + CardiovascularDisease + 
s(Diagnosticage, bs = lipS"), data = RData, random = -(I I 
ID), method = "REML") 

Fixed effects estimation results: 

Parametric coefficients: 

(Intercept) 
GenderMale 

Estimate Std. Error t value Pr(>ltl) 
2.0117 0.0124 162.8066 < 2.2e-16· .... 

0.1026 0.0023 44.3708 < 2.2e-16 *** 
DiagnosticstageStage 3b 0.0664 
DiagnosticstageStage 4 0.1534 
DiagnosticstageStage 5 0.2326 
DiabetesDiagnosisDiabetes diagnosed -0.0180 
CardiovascularDiseaseDisease present -0.0102 

0.0024 28.1464 < 2.2e-16 •• * 
0.0041 37.0691 < 2.2e-16 **. 
0.0087 26.8317 < 2.2e-16 .** 
0.0022 -8.1156 < 2.2e-16 •• * 
0.0023 -4.5083 < 2.2e-16 * * * 

Signif. codes: 0 < ' ••• ' :::: 0.001 'u' :::: 0.01 ,*, :5 0.05'.' :5 0.1 ' , :5 1 

Smooth terms: 
Variance Smooth Par. df Stopped 

sx(Timeyears):AnaemiaDiagnosisDonot_have_the_disease 0.0000 438.9780 1.9956 0 
sx(Timeyears):AnaemiaDiagnosisHaving_the _disease 0.0004 10.1618 3.3130 0 
s(Diagnosticage) 0.0506 0.0880 7.3670 0 

Scale estimate: 0.0045 

N = 3776 df= 19.6757 AIC = -16647.9 DIC = -16525.2 
GCV = 0.00447675 logLik = 8343.65 method = REML family = gaussian 
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6.4.3.4 Summary and Discussion of Results of Bayesian modelling 

Models 1 and 3 are effectively the same model, but use different techniques for the 

estimation of the smoothed terms within the model (i.e. Model 3 uses MGCV package instead 

of BayesX). When considering the goodness of fit statistics for Models I and 3 (Table 6.9), it 

can be observed that Model 3 has the lower AIC and BIC scores but higher GCV score. Model 

3 therefore will subsequently be compared against Model 2. 

Table 6.9: Model Fit Comparison of Model I and Model 3 

Model Number AIC BIC GCV 

Model 1 -16656.4 -16507.7 0.00446674 

Model 3 -16647.9 -16525.2 0.00447675 

Model 1 and 3 are empirical Bayes models, which means that these models are semi­

parametric models, allowing mixed model inference from a Bayesian perspective. On the other 

hand, Model 2 is a fully Bayesian model, which allows the formulation of generalized regression 

models from a Bayesian perspective without considering a mixed model representation. 

The output for models 2 and 3 indicate that all of the predictors included in both of the 

models are statistically significantly affecting the change in SCr. The significant smooth terms 

indicate a non-linear relationship between the smooth predictors and SCr. 

Table 6.10: 99% Confidence limits for Model 2 

0.5% 99.5% 

(Intercept) 1.44023315 1.887537600 

GenderMale 0.09635132 0.108796685 

DiagnosticstageStage 3b 0.06006566 0.072057798 

DiagnosticstageStage 4 0.14044537 0.162441255 

DiagnosticstageStage 5 0.21093842 0.251973445 

DiabetesDiagnosisDiabetes diagnosed -0.02405719 -0.012076600 

CardiovascularDiseaseDisease present -0.01584129 -0.005213282 
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Table 6.11: 99% Confidence limits for Model 3 

0.5% 99.5% 
(Intercept) 1.97650141 2.046938585 
GenderMale 0.09599815 0.109177850 
DiagnosticstageStage 3b 0.05966755 0.073] ] 3455 

DiagnosticstageStage 4 0.]4]58953 0.165176473 
DiagnosticstageStage 5 0.20789375 0.2573] 0247 

DiabetesDiagnosisDiabetes diagnosed -0.02433946 -0.0] ]686937 
CardiovascularDiseaseDisease present -0.0] 668650 -0.003759899 

Note that the methodology used for computing Model 2 does not yield "p-values" for 

the significance of parameters on terms due to its use of the MCMC approach. However, we can 

infer whether or not each contribution is or is not significant by whether the confidence interval 

for that term does include (not significant) or does not include (significant) zero. Table 6.10 and 

6.] 1 show the confidence limits for the parametric terms of models 2 and 3 respectively. It can 

be observed that all the confidence intervals for those parameter do not include zero, so all the 

parameters are significant. 
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Figure 6.13 : Plots of partial effects of the covariates and box plots for each fixed 
effects using Model 2 and Model 3 together 
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It can be concluded that when the partial effects of Model 2 are compared graphically 

against Model 3 using Figure 6.13, no substantial differences are observed between these two 

models. In Model 3, the empirical Bayes model, AIC and BIC are computed as a goodness of 

fit criteria to the data. However, in Model 2, the fully Bayesian Model using the MCMC 

technique, Deviance Information Criterion (DIC) is computed as a goodness of fit criterion to 

the data. DIC is the generalisation of AIC that is used in hierarchical modelling specifically in 

Bayesian models. As like AIC and BIC, the lower the DIC is, the better the model fits to the 

data. Furthermore. since direct comparison of goodness of fit of Model 2 and Model 3 is not 

possible due to resulting different criteria, when the full Bayes model and the empirical Bayes 

model are compared graphically (Figure 6.13), there is very little/not significant difference in 

the observed parameter estimates obtained from each of these two models. Additionally, when 

properties of models 2 and 3 are compared against each other, the Empirical Bayesian Mixed 

Model (Model 3) is found to be a better model due to the high computational cost of the MCMC 

iteration technique used and hence the possible convergence problems in Model 2. Therefore, 

the Bayesian mixed model representation (Model 3) is found to be a useful alternative to the 

frequentist model for estimation of parameters using penalised likelihood. 
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7 Conclusion, Challenges and Future Research 

7.1 Conclusion 

The research presented in this thesis illustrates applications of advanced and developing 

statistical methodologies to analyse routinely collected longitudinal data, specifically repeated 

measurements from a representative sample of 129 general practices in England and Wales. The 

work details many of the new and emerging statistical methodologies that are being used in this 

area and demonstrates the significant potential for the use of such methods in the field of health 

research, while highlighting both advantages and disadvantages encountered therein. The 

application here is based on the study of the progression ofCKD, and the results obtained show 

that the techniques applied can help to further understanding of the natural progression ofCKD; 

and to explain patterns of change and the influence of key factors on this progression. From a 

wider perspective the procedures followed and mechanisms applied would be applicable to the 

study of any chronic disease using GP data, and to many other areas of health research and 

monitoring; as well as in the analysis of longitudinal data in other fields. 

In our dataset of GP records there are between two and fifteen repeated (eGFR) 

measurements per patient and these are used to develop parametric, semi-parametric and non­

parametric regression models. In general, three main study questions are investigated; 

1- What is the natural history of changes in the progression of CKD over time? 

2- Are there any differences in changes in this progression between patients? 

3- Can differences between patients be explained by patient level covariates such as age, 

gender and the presence of different co-morbidities? 

7.1.1 Conclusion on review of existing literature and descriptive statistics 

A review of existing literature revealed that the use of advanced statistical methods for the 

analysis of routinely collected longitudinal health data is not wide-spread (chapter 2). Before 

starting statistical modelling of any dataset it is wise to undertake some preliminary basic 

investigation of key variables within the data that are relevant to the study questions. Bearing in 

mind that the main outcome of interest is in the change overtime in the response (repeated eGFR 

readings) and factors affecting this change, a summary of descriptive statistics is presented in 
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chapter 3. Basic analyses are performed on the data in order to understand more about the nature 

of the dataset. The results indicated that the prevalence of CKD within our data is concurrent 

with estimates ofCKD within the UK population as a whole. Further, examination of population 

demographics (age, gender, ethnicity, etc.) against national figures validated that our dataset is 

a good representation of the general population of the UK. 

7.1.2 Conclusion on logistic regression analysis 

Subsequently and as a starting point for complex statistical analysis logistic regression 

models are applied to the data for the purpose of finding which-co-morbidities have the greatest 

impact on diagnosis of CKD. In chapter four, odds ratios and effect sizes are used to assess the 

impact of co-morbidities on CKD, where the outcome of interest is binary,based on whether the 

patient has been diagnosed to have CKD or not. From this analysis, it has been proven that 

cardiovascular diseases, diabetes, anaemia and stroke are the most influential factors influencing 

in the occurrence of CKD in individual patients. This is consistent with the existing medical 

literature. 

The logistic analyses also focus on the outcome 'rapid decline' (i.e. whether a patient has 

experienced rapid decline ofCKD status) - two models are run based on the two definitions of 

rapid decline recognised in the clinical setting. Obviously these analyses begin to focus only on 

patients who have been diagnosed with CKD, a smaller group than before. These two models 

aim to identify which factors influence rapid decline (each definition is modelled separately). 

From the results we can conclude that all of the predictors considered are significantly 

important, and further that the primary factors affecting the diagnosis ofCKD are different from 

the primary factors affecting the progression of CKD, a previously unrecognised fact within 

existing medical literature. For instance, cardiovascular diseases have the highest impact on the 

occurrence ofCKD but diagnosis of anaemia has the highest impact on the progression ofCKD. 

Further factors affecting the rate of decline differ between definitions; when progression is 

classified as rapid decline according to definition I (more than Sml decline in eGFR within a 

year), diagnoses of diabetes and anaemia were the only significant factors among those 

examined. However, when rapid decline or progression of CKD is based on definition 2 (i.e. 

more than 10 ml decline in eGFR within 5 years), all of the co-morbidities were significant. 
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This means that diabetes and anaemia are the only factors affecting rapid decline within the 

short tenn; whereas all of the factors are important in tenns of influencing rapid decline of 

kidney function over a longer time period. This fact is not reported within the clinical CKD 

community and the results obtained show the additional understanding of progressive health 

conditions can be achieved through the analysis of longitudinal data. 

7.1.3 Conclusion on parametric models 

The next step in this research was to move towards investigating progression of CKD and 

how this varies between patients, by taking repeated observations of eGFR into consideration. 

In chapter 5, a series of different parametric models of increasing complexity from linear mixed 

models to generalized linear mixed models and polynomial linear mixed models were 

developed. These are suitable as both random and fixed effects are considered in the model 

design. This means that they allow explanation of total variation in the outcome (i.e. repeated 

eGFR measurements) as two components, variation between individuals (fixed effects) and 

variation within individuals (random effects). These models are found to be parsimonious and 

efficient, and enable inferences from the results obtained to be generalised and applied to the 

wider popUlation. In LMMs, when there are no predictors at either level, the null model showed 

that 34.45% of the total unexplained variation is due to within-subject variation and 65.55% of 

the total variation is due to between-subject variation. When time is added at both levels (i.e. as 

level I and level 2 variable), the LMMs was improved by explaining 13.48% of with-in subject 

variation (of 34.45%, leaving 20.97% still unexplained) and 6% of between-subject variation 

(of 65.55%, leaving 59.55% still unexplained). Furthennore, addition of level 2 covariates and 

factors further improved the LMM by increasing explained with-in subject variation from 

13.48% to 14.07% and explained between-subject variation from 6% to 17.87%. 

However, as only patients with CKD are included, then the distribution of the outcome 

(eGFR readings) is unlikely to satisfy the nonnality assumption for linear mixed models. 

Therefore, appropriate transfonnations were used to bring the distribution of the transformed 

data closer to a nonnal distribution and make the data suitable for analysis using both LMMs 

and GLMMs. Firstly log transfonnations of repeated eGFR values are modelled as a linear 

function of co-morbidities and time (model 2, section 5.6.1.2, eq. (5.2 I ». This is considered as 
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the baseline GLMM. This model showed that 31.62% of the total variation in eGFR readings is 

due to with-in subject variation whereas 68.38% of the total variation is due to between-subject 

variation. A further development (model 3, section 5.6.1.3, eq. (5.22)) is performed by running 

a GLMM model assuming a gamma distribution, this model improves on the baseline GLMM 

(model 2, eq. (5.21» by explaining 15.59% of unexplained 31.62% with-in subject variation 

(leaving 16.03% still unexplained with-in subject variation) and by explaining 18.81 % of 

unexplained 68.38% between-subject variation (leaving 49.57% still unexplained between­

subject variation). Further, when a GLMM model using a log link function and assuming a 

gamma distribution is fitted (model 4, section 5.6.1.4, eq. (5.23)) the explained with-in subject 

variation increases from 15.59% to 18.59% and the explained between-subject variation from 

18.81 % to 39.32%. A final modification ofmode14 uses a simpler covariance matrix (Le. model 

5, section 5.6.1.5, eq. (5.24)) and results in a further improvement in explained within subject 

variation from 39.32% to 42.74% but without making a great difference in the explanation of 

with-in subject variation. The results obtained from LMMs and GLMMs have showed that 

significant improvement is achieved in the explanation of both types of variations specifically 

between-subject variation when GLMMs are used instead of LMMs. 

However, due to the great heterogeneity between patients, the linearity assumption between 

outcome and independent predictors required for these modelling techniques (LMM and 

GLMM) is unlikely to be valid. Therefore, both LMMs and GLMMs might be too restrictive 

and less robust against violations of the linearity assumption. For these reasons, polynomial 

models were constructed to look at the non-linear relationship between eGFR and time. It was 

concluded that the model obtained, based on various transformations, even with the addition of 

polynomial terms, gave a rather poorer model fit in terms of taking account for non-linear 

behaviour of eGFR over time. 

7.1.4 Conclusion on semi-parametric and non-parametric models 

A different approach is described in chapter 6, where semi-parametric GAMM models and 

Bayesian models were constructed. When the assumptions of the parametric models such as 

assuming a normal distribution for the outcome and assuming a linear relationship between 

outcome and independent variables are satisfied, parametric models are more powerful than 
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semi-parametric or non-parametric models. However, when these assumptions of the parametric 

models are violated, semi-parametric or non-parametric models are more powerful than 

parameteric models. Hence, GAMM models described in chapter 6 are more robust against 

violations of the linearity assumption than the parametric models described in chapter 5. In 

GAMM modelling, penalised smoothing spline methods are used for continuous covariates, e.g. 

systolic blood pressure or age, to model the outcome variable as a non-linear function using the 

available data. In doing so, an appealing model is constructed that contains a good combination 

of the properties of mixed effects models (i.e. combining fixed linear component with random 

component) whilst also using smoothing splines to model non-linearity between the covariate 

and the outcome. When the best GLMM model described in chapter 5 is carried out by using 

GAMM modelling approach, it is found that more data points are needed in order to evaluate 

the interaction effects of different co-morbidities. Therefore, only single effects are calculated 

and the model results show 4.85% of the total variation in the outcome explained. This indicates 

that, in such cases, GLMM models are more powerful than GAMM models as they can explain 

a greater proportion of the variation in the outcome. The application ofGAMM and Bayesian 

methodologies to model the complex, non-linear relationship between serum creatinine 

measures (SCr - substitute for eGFR) and covariates over time are used to to describe the 

progression of CKD and how defined factors such as age, gender and various co-morbidities 

influencing this progression. Factors included age, gender, CKD stage at diagnosis, age at CKD 

diagnosis and interactions of time with diagnoses of anaemia, diabetes, cardiovascular disease 

and mean values of systolic blood pressure. The results of the GAMM models show that there 

is a significant non-linear relationship between SCr and the independent covariates and 

heterogeneity between patients. When the outcome variable is changed to SCr in order to 

evaluate the effect of age, gender and various co-morbidities on the change in SCr and hence on 

the change in eGFR, in such models the results showed that explained variation is increased to 

58.9% of total variation in GAMM models where a greater amount of variation is explained 

compared to GLMM models. 

In GAMM models, since such models are from the frequentist perspective, the model 

coefficients for the effect of independent variables are estimated by using regression models 

such as REML approaches. Further in chapter 6, additional models are carried out from a 
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Bayesian perspective in order to see if alternative Bayesian models are available which will 

have similar power. The Bayesian perspective models can be either the full bayes models where 

the coefficients of are estimated by using MCMC approach; or mixed model representations 

where in relation to mixed models, empirical bayes estimation (i.e. REML) is used to evaluate 

the model coefficients. When these two models from the Bayesian perspective are compared 

with the model performed using frequestist approach, very similar results are achieved. From a 

Bayesian perspective the mixed model representations are preferable as an alternative models 

to GAMM models due to the high computational cost of the MCMC iteration technique and 

possible convergence problems in the full Bayes models. 

7.2 Limitations of the dataset 
While data collection within the health service is continually improving, the routine use of 

very large and complex datasets poses many challenges. Here we have used a secondary data 

source which was derived from raw GP records. The secondary nature of the data and the 

manipulations which were carried out on it prior to this investigation has limited the scope for 

clinical interpretation ofthe findings and any such findings should be viewed as indicative rather 

than conclusive. However it is reassuring that despite the limitations of the data the findings do 

reflect current knowledge within the CKD field and suggest additional knowledge that may be 

worthy of further investigation. The analysis of this reduced and condensed dataset has also 

highlighted the complexities involved in utilising routinely collected data. Here. even with using 

much condensed data, obtaining good fitting models proved to be difficult. We have had to 

make several assumptions in working with this data, for example, since the existence of co­

morbidities are labelled prior the data collection from 129 participating practices, it was 

assumed that diagnoses of all the co-morbidities were made before the diagnosis of CKD for 

all patients. This is unlikely to be the case in real life and is something that could be overcome 

using a primary raw data source. However, the focus of this thesis is the application and 

assessment of the statistical and modelling methodologies rather than findings relating to 

clinical aspects of CKD. As data collection in the primary care setting improves and more 

reliable and cleaner data is obtained, fewer assumptions may be necessary and valid data 

analysis may be more readily achievable. 
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7.3 Final Overall Statements 

In conclusion, the research presented in this thesis shows that there is much potential for the 

statistical analysis of routinely collected GP data to further understanding and knowledge of the 

natural progression of chronic disease. Methodologies that would suit the complexity of the 

medical questions that arise in this clinical area are available and developing. However such 

methods are very complex and would require skilled researchers and data analysts working 

alongside medical expertise to undertake meaningful investigations. Similarly further 

development of appropriate, user friendly software would facilitate further research and 

usability of such data and analysis techniques. 

Despite the many obstacles encountered this research, the research shows that meaningful 

results can be obtained using GP records and can reveal trends and associations that may 

otherwise go unrecognised. For example in our case study into CKD, the general decline of 

eGFR over time was confirmed, however substantial heterogeneity between patients was found 

in this decline. Another observation was a possible slight increase in eGFR within a year after 

the diagnosis ofCKD. This might be due to the initial effects of starting appropriate medications. 

Further, it was found that the relationship between eGFR and time was significantly non-linear 

both overall and in individual patients. In fully understanding the progression ofCKD it is very 

important to take this non-linearity into account over larger timescales (e.g. several years): 

current research assumes linear decline. 

When various covariates and influencing factors are taken into account to explain part of the 

total variation in the outcome, adjustments of the covariate included is found to significantly 

improve the proportion of the total variation of the outcome explained by the model. Analyses 

performed in this study also indicate that the random effects due to differences between repeated 

measurements within patients, the non-linear change in the outcome over time and patient level 

factors such as diagnoses of co-morbidities should be taken into consideration in the statistical 

model formulation. If these are considered, and non-linear mixed models are used in 

longitudinal analysis of the progression of CKD, then around 58.90 % of the total variation in 

the outcome is explained which can be compared against explanation of around 20% of total 

variation in the outcome by using linear mixed models. 
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7.4 Challenges and Future Research 

The main challenges for this type of research lie in the complexity of the appropriate 

methodologies and the need for very skilled analysts to undertake their application. For example 

the outcome considered in the semi-parametric models developed in this research is transformed 

into the log domain to ensure that the distribution of the response is Gaussian, because the 

theoretical properties of smoothing splines are only appropriate for Gaussian data. Even when 

the data follow a Gaussian distribution, the REML estimator used to evaluate the smooth terms 

is not well established. The GAMMs and the alternative semi-parametric Bayesian models are 

found to give better fits to the data than the LMMs or GLMMs. However, the complexity of 

GAMMs and semi-parametric Bayesian models can make such models less efficient and hence 

such models need further theoretical investigation. Furthermore, in non-parametric Bayesian 

models, the Markov Chain Monte Carlo (MCMC) iteration approach used, might be 

computationally costly and could create convergence problems. Therefore, theoretical 

investigation should be performed on such models as well, to assess consistency. efficiency and 

robustness. 

However, there is vast potential for the analysis of routinely collected computerized GP 

records, and other health data sources for research. They are particularly attractive as they are 

available at little or no cost to researchers and this study validates that datasets of this type can 

be used to investigate the progression of chronic diseases using suitable methodologies such as 

mixed-effect models. Since the dataset was shown to be a good representation of the UK 

population, the inferences made can also be applicable to the general population. Further 

research might also include consideration of the medications taken by the CKD patients. as this 

information is also routinely collected. This might allow further understanding of the impact of 

treatments on the progression of CKD, over and above the effects of co-morbidities. Other 

further work might be to consider changes in the status of co-morbidities and covariates over 

time and the effect this has on progression of CKD, which should be achievable using GP 

records. 

The methods and techniques presented within this work illustrate the use of complex 

statistical modelling to the GP data and how they can lead to useful and meaningful 
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interpretations. It also highlights that the process is not simple but with development should lead 

to easier applications. It is clear that routinely collected data contains much valuable information 

at minimal expense and as such should be more widely utilised both in health research and 

further afield. 
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