
A Framework for the Classification and Detection of

Design Defects and Software Quality Assurance

Khaled Kh. S. Kh. AUanqawi

A thesis submitted in partial fulfillment of the requirements of
Kingston University for the degree of Doctor of Philosophy

Faculty of Science, Engineering and Computing
Kingston University

February 2015

ACKNOWLEDGEMENTS

Initially, I would like to express my deep sincere gratitude for the invaluable advices,

continuous encouragement and scientific support of Prof. Dr. Souheil Khaddaj during

the course of this research.

Next, I would like to thank Kuwait Government for the financial support, without this

support, I could not spend my time researching and trying to do my best to complete

this dissertation.

Finally, I would like to thank my great family, my wife, my wonderful kids and my

parents. Especially, my parents that always stood by me with everything I needed

during my life.

2

ABSTRACT

In current software development lifecycles of heterogeneous environments, the pitfalls

businesses have to face are that software defect tracking, measurements and quality

assurance do not start early enough in the development process. In fact the cost of fixing

a defect in a production environment is much higher than in the initial phases of the

Software Development Life Cycle (SDLC) which is particularly true for Service

Oriented Architecture (SOA). Thus the aim of this study is to develop a new framework

for defect tracking and detection and quality estimation for early stages particularly for

the design stage of the SOLe. Part of the objectives of this work is to conceptualize,

borrow and customize from known frameworks. such as object-oriented programming

to build a solid framework using automated rule based intelligent mechanisms to detect

and classify defects in software design of SOA.

The framework on design defects and software quality assurance (DESQA) will blend

various design defect metrics and quality measurement approaches and will provide

measurements for both defect and quality factors. Unlike existing frameworks,

mechanisms are incorporated for the conversion of defect metrics into software quality

measurements. The framework is evaluated using a research tool supported by sample

used to complete the Design Defects Measuring Matrix, and data collection process. In

addition, the evaluation using a case study aims to demonstrate the use of the

framework on a number of designs and produces an overall picture regarding defects

and quality.

The implementation part demonstrated how the framework can predict the quality level

of the designed software. The results showed a good level of quality estimation can be

achieved based on the number of design attributes, the number of quality attributes and

the number of SOA Design Defects. Assessment shows that metrics provide guidelines

to indicate the progress that a software system has made and the quality of design. Using

these guidelines, we can develop more usable and maintainable software systems to

fulfil the demand of efficient systems for software applications.

3

Another valuable result coming from this study is that developers are trying to keep

backwards compatibility when they introduce new functionality. Sometimes, in the

same newly-introduced elements developers perform necessary breaking changes in

future versions. In that way they give time to their clients to adapt their systems. This

is a very valuable practice for the developers because they have more time to assess the

quality of their software before releasing it. Other improvements in this research

include investigation of other design attributes and SOA Design Defects which can be

computed in extending the tests we performed.

4

TABLE OF CONTENTS

CHAPTER 1: OVERVIEW AND BACKGROUND .. 15

1.1 Introduction ... 15

1.2 Background and Challenges .. 17

1.3 Aims and Objectives ... 20

1.4 Methodology and Framework Construction .. 20

1.4.1 Methodology ... 20

1.4.2 The Framework ... 21

1.5 Structure of Thesis .. 22

CHAPTER 2: SERVICE-ORIENTED ARCHITECTURE .. 24

2.1 Introduction .. 24

2.2 Service-Oriented Architecture ... 25

2.3 Service-Oriented Architecture Characteristics .. 31

2.4 Service-Oriented Architecture Principles .. 33

2.5 Service-Oriented Architecture Adoption .. 38

2.5.1 SOA Layers of Integration .. .40

2.5.2 Challenges to Adoption .. 42

2.5.3 Characteristics of Successful SOA Implementations42

2.6 Service Oriented Architecture Governance .. .45

2.6.1 Why is SOA Governance needed? .. .45

2.6.2 SOA Governance Implementation .. .46

2.6.3 Role of Governance ... 47

2.6.4 Characteristics of Good SOA Governance4 7

2.7 Service-Oriented Architecture and Web Services .. .48

2.7.1 Drivers for SOA ... 49

2.7.2 XML Web Services .. 49

2.8 Service-Oriented Architecture Strategies .. 51

2.9 Summary ... 53

CHAPTER 3: SOFTWARE QUALITy .. 56

3.1 Introduction .. 56

3.2 Quality of Service-Oriented Architecture .. 58

3.2.1 Hierarchy of Quality .. 58

3.2.2 Quality Assurance in Service-Oriented Architectures 59

3.2.3 Quality Attributes ... 60

5

3.3 Quality Metrics of Service-Oriented Architecture .. 66

3.4 Quality Models of Service-Oriented Architecture .. 67

3.4.1 Why Use Metrics? ... 72

3.4.2 Quality Metrics .. 73

3.5 Summary ... 81

CHAPTER 4: DESIGN DEFECTS ... 83

4.1 Introduction .. 83

4.2 Defects in System Development Life Cycle .. 84

4.3 Design Defects ... 87

4.3.1 Defect Identification .. 88

4.3.2 Defects Classification .. 88

4.3.3 Design Defects Categories ... 89

4.4 Design Attributes ... 96

4.5 Defect Detection .. 98

4.5.1 Defect Detection Categories .. 99

4.5.2 Defect Detection Strategies .. 100

4.5.3 Defect Prevention Activities .. 103

4.7 Summary ... 106

CHAPTER 5: THE PROPOSED FRAMEWORK .. 108

5.1 Introduction ... 108

5.2 Design Defects and Software Quality Assurance Framework DESQA 109

5.2.1 Framework Objective ... 109

5.2.2 Framework Assumptions ... 109

5.2.3 Framework Description ... 110

5.3 Framework Formalization ... 113

5.3.1 Design Phase .. 113

5.3.2 Building Phase ... 113

5.3.3 Preparation Phase ... 115

5.3.4 Application Phase .. 128

5.4 Framework Design Execution ... 130

5.4.1 VisuallStudio C# Advantages ... 130

5.4.2 Design Steps Using Visual Studio C# ... 131

5.4.3 Code Generation from UML Class Diagrams 131

5.4.4 Parsing Work ... 132

5.5 Summary ... 134

CHAPTER 6: CASE STUDY AND EVALUATION .. 136

6.1 Introduction ... 136

6

6.2 Research Tool .. 137

6.2.1 Sample Used .. 137

6.2.2 Data Collection .. 138

6.3 Results and Discussion .. 147

6.4 Case Study: Automated Teller Machine (ATM) ... 157

6.4.1 Requirements aspects .. 157

6.4.2 Design Aspects .. 159

6.4.3 Design Granularity .. 161

6.4.4 Evaluation and Observation .. 164

6.5 Conclusion ... 168

CHAPTER 7: CONCLUSIONS, CRITICAL DISCUSSIONS AND FUTURE WORK 169

7.1 Conclusions ... 169

7.2 Critical Discussions ... 170

7.3 Future Work .. 172

BIBLIOGRAPHY ... 174

APPENDIX A ... 183

7

LIST OF FIGURES

Figure 1.1: The Domain of the Research

Figure 1.2: Application Stakeholders

Figure 1.3: Abstract View of Key Aim and Approach of Each Chapter in the Thesis

Figure 2.1 : Overview of SOA Architecture

Figure 2.2: Simplified SOA Architecture

Figure 2.3: SOA Layers of Integration

Figure 2.4: SOA and SOA Technologies

Figure 2.5: An Architecture of Software Which Is Composed of Services

Figure 2.6: Web Service Architecture With XML

Figure 2.7: Web Services Architecture Stack

Figure 2.8: V-Model

Figure 3.1: Hierarchy of Quality Concepts

Figure 3.2: McCall Quality Model

Figure 3.3: Boehm's Quality Model

Figure 3.4: Dromey's Generic Quality Model

Figure 3.5: ISO Quality Model

Figure 3.6: Depth of Inheritance

Figure 3.7: Number of Children

Figure 4.1: Defect Leakages in SDLC

Figure 4.2: Defect Prevention Cycle

Figure 4.3: Software Defect - Rate of Discovery vis Time

Figure 4.4: Defect Prevention Cycle

Figure 4.5: Classification of Code Smell

Figure 4.6: Classification of Anti-Patterns

Figure 5.1: The Functionality of the Framework

Figure 5.2: The DESQA Framework

Figure 5.3: The DESQA Framework Components

Figure 5.4: Relations Outline

Figure 5.5: The First Step in Preparing the Proposed Design Defects Measuring Matrix

Figure 5.6: The Second Step in Preparing the Proposed Design Defects Measuring

Matrix

Figure 5.7: The Third Step in Preparing the Proposed Design Defects Measuring Matrix

8

Figure 5.8: The Fourth Step in Preparing the Proposed Design Defects Measuring

Matrix

Figure 5.9: The Fifth Step in Preparing the Proposed Design Defects Measuring Matrix

Figure 5.10: The Sixth Step in Preparing the Proposed Design Defects Measuring

Matrix

Figure 5.11: Attributes Weights

Figure 5.12: Parsing Process

Figure 6.1: A TM System

Figure 6.2: Use Case Diagram

Figure 6.3: Transaction Service

Figure 6.4: Fine Grain Services

Figure 6.5: Coarse Grain Services

Figure 6.6: Three Tier Architecture

Figure 6.7: Fine Grain Services

Figure 6.8: Coarse Grain Services

Figure 6.9: Thick Grain Services

Figure 6.10: Software Quality Factors

Figure 6.11: Different Granularity Impacts

9

LIST OF TABLES

Table 2.1: SOA Features and Benefits

Table 3.1: SOA Quality Attributes

Table 4.1: Design Defects

Table 4.2: Design Attributes

Table 6.1: Selection Process Results

Table 6.2: SOA Quality Attributes Weights

Table 6.3: Metrics Measurement Range

Table 6.4: Design Defects Measuring Matrix

Table 6.5: Impacts of Algorithmic and Processing Defects and Quality Attributes

Table 6.6: Quality Metrics Used to Assess the Impacts on Quality

Table 6.7: Impacts of Control, Logic and Sequence Defects and Quality Attributes

Table 6.8: Quality Metrics Used to Assess the Impacts on Quality

Table 6.9: Impacts of Omission Defects and Quality Attributes

Table 6.10: Quality Metrics Used to Assess the Impacts on Quality

Table 6.11: Impacts of Incorrect Fact Defects and Quality Attributes

Table 6.12: Quality Metrics Used to Assess the Impacts on Quality

Table 6.13: Impacts of Inconsistency Defects and Quality Attributes

Table 6.14: Quality Metrics Used to Assess the Impacts on Quality

Table 6.15: Impacts of Functional Description Defects and Quality Attributes

Table 6.16: Quality Metrics Used to Assess the Impacts on Quality

10

AHF

AIF

ASOM

AW

CAM

CBD

CBO

CC

COF

DECOR

DIT

DIT

ECC

GUI

HC

ISO

IT

JVM

LCOM

LOC

MHF

MI

MIF

Mli

NIST

NMI

NOC

ODC

000

PF

LIST OF ABBREVIATIONS

Attribute Hiding Factor

Attribute Inheritance Factor

Average Services Operation Complexity

Quality Attribute Weight

Cohesion Among Methods of Class

Component Based Development

Coupling Between Object Classes

Cyc\omatic Complexity

Coupling Object Factor

Defect Detection for Correction

Depth of Inheritance Tree

Depth of Inheritance Tree

Error Correcting Code

Graphical user interface

Halstead's Complexity

International Organization for Standardization

Infonnation Technology

Java Virtual Machine

Lack of Cohesion of Methods

Lines Of Code metric

Method Hiding Factor

Maintainability Index

Method Inheritance Factor

Metric Rank

National Institute of Standard Technology

Number of Methods Inherited

Number Of Children

Orthogonal Defect Classification

Object Oriented Development

Polymorphism Factor

11

POA

QA

QoS

REF

SDLC

SLOC

SOA

SOAP

SOG

UDDI

UML

WMC

WSDL

Process Oriented Architecture

Quality Attributes

Quality of Service (QoS)

Response Set for a Class

Software Development Life Cycle

Source Line of Code

Service Oriented Architecture

Simple Object Access Protocol

Services Operation Granularity

Universal Description. Discovery. and Integration

Unified Modeling Language

Weighted Methods per Class

Web Service Description Language

12

LIST OF EQUA TrONS

Eq. No. Equation

rTc 1
3.1

I I i _cliem(C,. C)
(OF = 1: 1): 1

TC~ - TC

3.2 WMC (c) = I VG(m)
I7I E M Im (c)

3.3 ASOJ\1 = (~r=l (SO 'G (i))=)
N S

NOM - I NOA1AF
3.4 LCO.~ (C) = oee

~OA1- 1

3.S
Lr~l Mi(Ci)

MI F = LT~l Ma(Ci)

3.6 LT~l Ai(Ci)
AIF = LT~l Aa(Ci)

I TC
\/ C

3.7 POF =)(I - I ' o(,)

I /=I [.Un (er)X DC(f,)]

3.8 Lr~l L~~\Ci) (l - V(Mmi))
MHF = TC Li=l Md (Ci)

13

~:rc I:Ad(Ci)(l - V(Ami))
3.9 AHF= 1-1 m=l

Ef;, Ad(Ci)

n mi

5.1 L L(Mli X WAij)/mij
i=l j=l

14

CHAPTER 1: OVERVIEW AND BACKGROUND

1.1 Introduction

Historically, the software quality management process was focused on finding the

defects in software and correcting them. This took place in two steps, developing

software to completion and checking for defects in the end product. The shortcoming

of this approach was that the same defects would still be realised in another software

process [I]. It is important to consider the uniqueness of each piece of software. They

are designed as artifacts and meant to serve the user needs adequately. However, the

processes, tools, methodologies followed are the same. This aspect of software

development shows that the defects in the process are likely to be repeated.

Applying quality management "control" on the software process is being adopted as a

guarantee to achieve software quality. Total quality management of the software design

aims at continuously improving the quality of the end [2]. Managing the software

design by controlling the end product at the design stage is a technique to carve out the

causes of defects. This technique adopts a set of practices throughout the software

process and is aimed at consistently meeting the end user needs.

While focusing on the software design defects, it is important to note that poor customer

requirements elicitation could contribute to poor design of the software [I]. The focus

here is the practices of software management adopted to counter software defects and

detect the defects. Most importantly, the main idea is using established processes to

catch the software design defects. From this perspective, we are able to examine how

total quality management and continuous management of the process are affected using

the design.

The development of code for software development is a practice that requires skill and

experience, producing a design defect free code that does not have bugs is a difficult

task. There are many tools that assist the programmer with the development of code.

15

These help in the detection and correction of these defects . To effectively perform

maintenance, programmers need to accurately detect defects. The classification of these

defects would also help formulate guidelines in correcting and avoiding them.

Therefore, this research endeavours to develop, test and validate a framework

methodology to be used within an intelligent approach for the purposes of detecting

and classifying defects at the design phase of software development life cycle (SOLC)

service-oriented architecture (SO A) paradigm, while at the same time balancing the

cost and quality of addressing such defects with business needs, functional needs and

other considerations that system developers and designers may need to handle for the

domain of the study, as shown in figure 1.1.

COST

QUALITY

Automation

SDLC of SO A DESIGN
PHASE

DEFECTS DEFECTS
DETECTION CLASSIFICA TION

Figure 1.1: The Domain of the Research

To achieve this goal , the objective of the research is to conceptualize, borrow and

customize from known working frameworks, such as object-oriented programming to

build a solid framework using automated rule-based intelligent mechanisms to detect

and classify defects in software design of SOA. Already, several frameworks have

been developed with the aim of improving defect detection and classification [2]. Each

framework has been designed in such a way that it can be extended and contextualized

to fit into any environment, but with no emphasis on distributed systems and services.

16

The use of intelligent approach will fonn the core of the frameworks to define and take

advantage of infonned and learning frameworks that adapt and extend to various

architectures. The intention is not brute force investigation of all available options;

rather, an intelligent and guided investigation of the frameworks that define the best

combination and projection of defect detection and classification framework.

This chapter gives the background and challenges of studying software especially in

the design phase. The last section describes the structure of the thesis.

1.2 Background and Challenges
Our world runs on software. Every business depends on it, every mobile phone uses it,

and even every new car relies on code. Without software, modem civilization would

fall apart. So, software quality is an important goal in the software development

process. But what exactly is software quality? It's not an easy question to answer, since

the concept means different things to different people. One useful way to think about

this topic is to divide software quality into two aspects: functional quality and structural

quality [3].

• Software functional quality reflects how well it complies with or confonns to a

given design, based on functional requirements or specifications. That attribute

can also be described as the fitness for purpose of a piece of software or how it

compares to competitors in the marketplace as a worthwhile product.

• Software structural quality refers to how it meets non-functional requirements

that support the delivery of the functional requirements, such as robustness or

maintainability, the degree to which the software was produced correctly.

The tenn software architecture intuitively denotes the high level structures of a software

system. It can be defined as the set of structures needed to reason about the software

system, which comprise the software elements, the relations between them, and the

properties of both elements and relations [4]. Systems should be designed with

consideration for the user, the system (the IT infrastructure), and the business goals as

shown in figure 1.2.

17

Figure 1.2: Application Stakeholders [4]

Service-oriented architectures (SOA) are based on the notion of software services,

which are high-level software components that include web services. Implementation

of an SOA requires tools as well as run-time infrastructure software. One of the most

important benefits of SOA is its ease of reuse [5]. But some criticisms of SOA depend

on conflating SOA with Web services. For example, some critics claim SOA results in

the addition ofXML layers, introducing XML parsing and composition. In the absence

of native or binary fonns of remote procedure call (RPC), applications could run more

slowly and require more processing power, increasing costs [6].

SOA provides an evolutionary approach to software development, however, it

introduces many distinct concepts and methodologies that need to be defmed and

explained in order to understand the SOA offerings in an accurate way and build a

competent architecture that satisfy the SOA vision. The main issue is to analyze and

assess the differences of SOA from past architectural styles, investigate the

improvement that SOA has brought to the computing environment, and apply this

knowledge to service based application development so as to have a satisfactory SOA.

Software systems have become a crucial part of business and commerce in the modem

world. Consequently, software quality has become fundamental in ensuring the proper

functioning of the systems and to minimize development and maintenance costs. The

quality of software should be guaranteed throughout the entire life cycle of software

development, which points toward detecting errors earlier during development.

18

One obvious and common challenge facing software quality is the detection of design

defects and their correction. The main objective of that is to achieve complete customer

satisfaction. One of the important steps towards total customer satisfaction is the

generation of nearly zero-defect products [7]. The defect management process includes

defect prevention, defect discovery and resolution, defect causal analysis, and process

improvement [8].

Another challenge involves the application architecture, because it seeks to build a

bridge between business requirements and technical requirements by understanding all

of the technical and operational requirements, while optimizing common quality

attributes. An architecture is the set of significant decisions about the organization of a

software system, the selection of the structural elements and their interfaces by which

the system is composed, together with their behaviour as specified in the collaborations

among those elements, the composition of these structural elements and behavioural

elements into progressively larger subsystems, and the architecture style that guides

this organization - these elements and their interfaces, their collaborations, and their

composition [9].

The Application Architecture (AA) describes the layout of an application's deployment.

This generally includes partitioned application logic and deployment to application

server engines. It relies less on specific tools or language technology than on

standardized middleware options, communications protocols, data gateways, and

platform infrastructures such as Component Object Model (COM), lavaBeans and

Common Object Request Broker Architecture (CORBA).

The application architecture is used as a blueprint to ensure that the underlying modules

of an application will support future growth. Growth can come in the areas of future

interoperability, increased resource demand, or increased reliability requirements. With

a completed architecture, stakeholders understand the complexities of the underlying

components should changes be necessary in the future. The application architect is

tasked with specifying an AA and supporting the deployment implementation.

19

Another challenge relates to providing a framework that will improve the defect

prevention process. The following aims and objectives will lead to the model of a

framework that will improve the defect prevention process:

• Analyze SOA quality and identify the common features of the quality models.

• Analyze the problems of automating the detection and the correction of software

design defects.

• Find out the most common quality metrics that can be used to assess the impacts

of design defect on software quality.

• Use multi-criteria decision-making tools to analyze QoS quality characteristics

in accessing and making decisions on prioritization of design patterns.

• Develop a guideline or framework to automate the detection of design defects

based on design patterns and using design constraints.

1.3 Aims and Objectives
Defect prevention is an important activity in any software project. Consequently, the

study aimed at:

• Investigating the service-oriented architecture (SOA) concept and its

applications and design defects.

• Investigating the enhancement of software quality.

• Investigating the most common design defects in the software industry.

• Analyzing the most important and key activities in the system development life

cycle (SDLC) phase that ensures the quality of software.

• Developing a new framework "design defects and software quality assurance

framework (DESQA)" for defect tracking and detection and quality estimation for

early stages particularly for the design stage of the SOLe.

1.4 Methodology and Framework Construction

1.4.1 Methodology

The Scope of Work for this study was divided into the following tasks:

20

• Review of Existing Work and Collection of Supplemental Information

• Propose a framework to automate the detection of design defects:

• Framework Assumptions

• Framework Description

• Framework Formalization

• Framework Design Execution

• Describe the evaluation of the proposed framework:

• Research Tool

• Sample Used

• Data Collection

• Discuss the results

Finally, find out conclusions and set up future work.

1.4.2 The Framework

The DESQA framework has a number of core components:

• The first component is the requirements, which had been set by the client and

analysed and validated by the business analysis team.

• The second component of the framework is the design, in which the design team

set the blueprint of the system, which consists of all major activities and

functions of the software.

• The third component is the description, when the design is converted to a set

of textual forms.

• The fourth component - the intelligent parser - considers the main part of

the framework. In this component, a deep investigation goes through all parts

of the design description and examines the functionality and the systematic

design.

• The fifth component - the defect database - interacts with the fourth

component which contains all the defects that had been classified according to

their type.

21

• The sixth is the "defects portfolio" , a type of report showing the defects and

their classifications. The final component is the correction and action , which is

based on the results of the processing mechanism of the intelligent parser.

• The seventh is the "Quality Assessment "which links the defects and their

metric measurements with software quality factors to produce an estimation of

software quality from the design stage.

The framework addresses the problem of defects and quality assurance in the early

stages of SOLe for service-oriented architecture and proposes a novel framework to

address the identified problems.

1.5 Structure of Thesis

The thesis follows the structure depicted in figure 1.3 starting with the introduction and

problem setting all the way to conclusions and future work.

Overview &
Sen-i ce Software Design DESQA

Case Study

Background
Oriented Quality Defects Framework &

Architecture E\'aluation

Cha pter 1 Chaptl'r "2 Chaptl'r 3 Chapter .J- Chapter 5 Chaptl'r &

Problem Scope Theoretical Evaluation &
Identification Proposal Architectural integration

Conclusion. Critical Discussions and Future Work

I ,
Chapter 7

~---------------------,--------- -- ----------
" t

,
I

A Framework for the Classification and Detection of Design Defects and Software Quality Assurance

Figure 1.3: Abstract View of Key Aim and Approach of Each Chapter in the Thesis

Chapter 2 is an introduction to service-oriented architecture definition, characteristics,

principles, adoption and governance. The web services technology, which is the most

appropriate environment to develop SOA currently, is also mentioned. Other

22

technologies for implementing SOA, such as CORBA are also considered. Also in this

chapter; service oriented architecture strategies are discussed.

Chapter 3 introduces software quality of service-oriented architecture and discusses

its models (McCall quality model, Boehm's quality model, Dromey's generic quality

model and ISO quality model). The last part of this chapter describes Quality Metrics

of Service Oriented Architecture and reviewing the different metrics of SOA. It also

focuses on how to measure the quality metrics and their impacts on SOA quality.

Chapter 4 covers the definition of defects in system development life cycle including

defects classification and defects categories, followed by a detailed description of

design defects. Design attributes: class, object, method, message instantiation,

inheritance, polymorphism, encapsulation, cohesion. coupling, design size, hierarchies.

abstraction and complexity are defined. Also in this chapter; defect detection categories

and strategies are discussed.

Chapter 5 discusses a new framework that can be used to measure QoS. It starts with

DESQA framework description (objectives and assumptions) together with a detailed

and comprehensive description of the proposed framework. A detailed description of

the process of using the DESQA framework and its formalization is presented. The last

part of this chapter describes the framework design execution including the potential

technologies for its applications.

Chapter 6 discusses the building process and the use of the proposed framework. It

also describes the research tool (questionnaire), the sample used to complete the Design

Defects Measuring Matrix, and data collection process. A simulation environment for

the DESQA framework applications is presented using a case study. Finally, the results

of the simulation and conclusion are presented.

Finally, Chapter 7 concludes the thesis by highlighting the main contribution in

service-oriented architecture. It gives a summary of the contribution and work done as

well as the method of evaluation and results. It also highlights further areas of research

that can be carried out in the areas of SOA.

23

CHAPTER 2: SERVICE-ORIENTED

ARCHITECTURE

2.1 Introduction

It is difficult to define what a service-oriented architecture (SOA) is. The term is being

used in an increasing number of contexts with conflicting understandings of implicit

terminology and components. SOA is a collection of independent loosely coupled

applications that are capable of communicating in the form of provision of service (e.g.

data transmission) [10]. SOA is defined in many literatures with extensive number of

articles attempting to define what it means and how it can be used and implemented in

an organization. In [t 0], [I 1] SOA is defined by identifying a number of specific

characteristics such as loose coupling, flexibility, connection and communication

among others to encompass and differentiate between a modular function and that of a

service function. Some of these characteristics can be associated with the more

traditional enterprise architectures for multi-tier application development that provided

the foundation from which SOA evolved [12].

CORBA, J2EE and other middleware platforms provided the gluing technology for

such enterprise applications separating the independence of the application from the

implementation technology, thus making it easier for organizations to deploy

independent applications readily when needed. Traditional, enterprise applications

based on the like J2EE and CORBA were constructed using component based

development (CBO) or object oriented development (000) encapsulating the business

modules in the form of components or objects offering specific solutions to the

business.

Services in SOA conform to a standard format to enable easy accessibility and

communication, and independence of the underlying development technology. Services

represent the blocks that are required in SOA; they are the individual components that

collectively define the SOA. SOA is not a definite framework of products that can be

purchased and implemented, however it represents the technical design framework of

how to develop applications as services within an organization. This chapter starts with

SOA definition and adoption, followed by web services in section 2.4. SOA strategies

24

are also discussed in section 2.5. Finally, a summary of the chapter is presented in

section 2.6.

2.2 Service-Oriented Architecture

There is no single, official definition of what an SOA is. Consequently, many of the

organizations promoting the use of SOAs and building technologies to make it easier

for organizations to adopt an SOA approach have defined the term. As a result, SOA is

defined in many different ways as follows:

• SOA is an application framework that takes everyday business applications and

breaks them down into individual business functions and processes, called

services. An SOA lets you build, deploy and integrate these services

independent of applications and the computing platforms on which they run

[13].

• SOA is an approach to organizing information technology in which data, logic,

and infrastructure resources are accessed by routing messages between network

interfaces [14].

• An SOA is a set of components which can be invoked, and whose interface

descriptions can be published and discovered [15].

• SOA is an architectural style that supports service-orientation. SOA is a

software design and software architecture design pattern based on structured

collections of discrete software modules, known as services that collectively

provide the complete functionality of a large software application [I6].

• SOA is a paradigm for developing distributed systems that deliver application

functionality as a set of services, which are reused by end-user applications and

other coarse-grained services [17].

Josuttis defined SOA as a collection of independent loosely coupled applications that

are capable of communicating in the form of provision of service (e.g. data

transmission) [10]. Sprott and Wilkes [18] defined SOA as: The policies, practices,

frameworks that enable application functionality to be provided and consumed as sets

of services published at a granularity relevant to the service consumer. Services can be

25

invoked, published and discovered, and are abstracted away from the implementation

using a single, standards-based form of interface. In 2012, Erl et al. [19] redefined SOA

as: A technology architectural pattern for service oriented solutions with distinct

characteristics in support of realizing service orientation and the strategic goals

associated with service-oriented computing.

The purpose of SOA is to allow easy cooperation of a large number of computers that

are connected over a network. Every computer can run an arbitrary number of programs

- called services in this context - that are built in a way that they can exchange

information with any other service within the reach of the network without human

interaction and without the need to make changes to the underlying program itself.

Services can be categorized into fine-grained (less functionality or operations), coarse­

grained or thick-grained (more functionality or operations). Within the concept of SOA

the more functionality with less functional operations can improve the execution

process. SOA brings together the interoperation and integration of technologies in

business processes within a framework of the enterprise consumer. The technologies

implemented and deployed for example using web services offer a layer of system

integration where software is used to implement a business process as a service which

can be made of functions or other services. With internet technology and web services,

SOA services are capable of been utilised beyond the domain of origin in the form of

added service or functionality delivered to consumers needing such specific services.

However, these require many ofthe distributed computing quality attributes in effective

implementation of delivery, interoperability, security, performance, availability,

scalability among others to meet the requirement of consumers.

In order to measure the need of services and their effective distribution, decomposing

services based on their functional and operational attribute offers the chance to be able

to incorporate the accessibility of services in a distributed environment such as Cloud

Computing. SOA services are independent and loosely coupled to offer great flexibility

with services, not hierarchical inherent of other services. However, the purpose of

decomposition will show the close matching of services in the form of execution to

26

represent the hierarchical , sequential and parallel layers of functions with dependencies

of functions in the service.

Figure 2.1 shows the architectural implementation of SOA, showing technologies like

UDDI , WSDL and web-services for the listing and invocation of requests. However,

the acceptance of Simple Object Access Protocol (SOAP) by World Wide Web

Consortium (W3C), HTTP has provided the framework for continuous development of

services and for inter-service communication. While XML provided the format for

transmission of data and information using SOAP that is platform independent and non­

domain specific for any technologies . The ability to offer applications to vendors

without the complication of a particular platform or technology using standard and

simple HTTP communication with XML has contributed to the domination of SO A and

its acceptance as an architectural style [14].

Provider

, , . . .
,. ----------------------.. ~

UDDI/ WSDL

------------------------ -,
,

, ,

Figure 2.1: Overview of SOA Architecture [141

Advantages of SO A: The concept of SO A is widely accepted as a software architecture

design paradigm which promises the design and implementation of flexible systems

and facilitates the change of business processes quickly. SOA leverages the alignment

27

of business processes and infonnation technology (IT). SOA can be used to combine

business services and IT resources. Based on components, SOA can transfer business

processes into a set of services linked to each other. Service consumers can use or

access these services through a network when necessary. SOA aligns the IT resource

with business processes by changing its IT architecture, and this brings many benefits

as follows [II, 17 & 20]:

• Maintaining the consistency of IT and business makes it easy to construct a

reusable business application system with flexible structure.

• SOA provides an abstract layer through which enterprises can keep on using

its IT investment, so as to get maximum utilization of IT assets.

• In SOA, systems are constructed by orchestrating different services which is

loosely coupled, platfonn independent and access transparent. This makes

systems much easier to integrate, manage and evolve. and impact on the

changes of infrastructure and implementation can be minimized.

• Better Return on Investment: The creation of a robust service layer has the

benefit of a better return on the investment made in the creation ofthe software.

Services map to distinct business domains. For example, a company might

create an inventory service that has all of the methods necessary to manage the

inventory for the company. By putting the logic into a separate layer, the layer

can exist well beyond the lifetime of any system it is composed into. For

example, if your organization needs to create a credit card authorization

service, there are basically two options. Developers will either develop the

functionality as part of the application that needs it, or they will develop it as a

separate component. If credit card authorization is developed as a separate

component and used as a service, then it is likely to outlive the original

application.

• Code Mobility: Since location transparency is a property of an SOA, code

mobility becomes a reality. The lookup and dynamic binding to a service

means that the client does not care where the service is located. Therefore, an

organization has the flexibility to move services to different machines, or to

move a service to an external provider.

• Focused Developer Roles: An SOA will force an application to have multiple

layers. Each layer has a set of specific roles for developers. For instance, the

28

service layer needs developers that have experience in data formats. business

logic. persistence mechanisms. transaction control. etc. A client developer

needs to know technologies such as SWING. JSP or MFC. Each layer requires

a complex set of skills. To the extent that developers can specialize. they will

excel at their craft in a particular layer of the application. Companies will also

benefit by not having to rely on highly experienced generalists for application

development. They may use less experienced developers for focused

development efforts.

• Better TestinglFewer Defects: Services have published interfaces that can be

tested easily by developers by writing unit tests. Developers can use tools such

as JUnit for creating test suites. These test suites can be run to validate the

service independently from any application that uses the service. It is also a

good practice to run the unit tests during an automated build process. There is

no reason for a QA tester to test an application ifthe unit tests did not complete

successfully. More and better testing usually means fewer defects and a higher

overall level of quality.

• Support for Multiple Client Types: As a benefit of an SOA, companies may

use multiple clients and multiple client types to access a service. A PDA using

J2ME may access a service via HTTP, and a SWING client may access the same

service via RMI. Since the layers are split into client and service layers. different

client types are easier to implement.

• Service Assembly: The services that developers create will evolve into a

catalog of reusable services. Customers will come to understand this catalog as

a set of reusable assets that can be combined in ways not conceived by their

originators. Everyone will benefit from new applications being developed more

quickly as a result of this catalog of reusable services.

• Better Maintainability: Software archaeology is the task of locating and

correcting defects in code. By focusing on the service layer as the location for

your business logic. maintainability increases because developers can more

easily locate and correct defects.

• More Reuse: Code reuse has been the most talked about form of reuse over the

last four decades of software development. Unfortunately. it is hard to achieve

due to language and platform incompatibilies. Component or service reuse is

much easier to achieve. Run-time service reuse is as easy as finding a service in

29

the directory. and binding to it. The developer does not have to worry about

compiler versions. platforms. and other incompatibilities that make code reuse

difficult.

• Better Parallelism in Development: The benefit of multiple layers means that

multiple developers can work on those layers independently. Developers should

create interface contracts at the start of a project and be able to create their parts

independently of one another.

• Better Scalability: One of the requirements of an SOA is location transparency.

To achieve location transparency, applications look up services in a directory

and bind to them dynamically at run-time. This feature promotes scalability

since a load-balancer may forward requests to multiple service instances

without the knowledge of the service client.

• Higher Availability: Also because of location transparency, multiple servers

may have multiple instances of a service running on them. If a network segment

or a machine goes down, a dispatcher can redirect requests to another service

without the client's knowledge.

• Efficiency: The ability to quickly and easily create new services and new

applications using a combination of new and old services, along with the ability

to focus on the data to be shared rather than the implementation underneath.

• Loose technology coupling: The ability to model services independently of

their execution environment and create messages that can be sent to any service.

• Division of responsibility: The ability to more easily allow business people to

concentrate on business issues, technical people to concentrate on technology

issues, and for both groups to collaborate using the service contract.

SOA framework: SOA-based solutions endeavour to enable business objectives while

building an enterprise-quality system. SOA architecture is viewed as five horizontal

layers [2 I]:

I. Consumer Interface Layer: These are GUI for end users or apps accessing

apps/service interfaces.

2. Business Process Layer: These are choreographed servIces representing

business-use cases in terms of applications.

30

3. Services: Services are consolidated together for a whole enterprise in a service

inventory.

4. Service Components: The components used to build the services. like

functional and technical libraries. technological interfaces etc.

5. Operational Systems: This layer contains the data models, enterprise data

repository, technological platforms etc.

There are four cross-cutting vertical layers, each of which are applied to and supported

by each of the horizontal layers [21]:

I. Integration Layer: Starts with platform integration (protocols support), data

integration, service integration, application integration, leading to enterprise

application integration supporting B2B and B2C.

2. Quality of Service: Security, availability, performance etc. constitute the

quality of service which is configured based on required SLAs. OLAs.

3. Informational: Provide business information.

4. Governance: IT strategy is governed to each horizontal layer to achieve

required operating and capability model.

SOA vision: The SOA vision statement should describe what is to be accomplished

with the SOA implementation and in a high-level overview how the organization plans

to achieve its goals. Optimally. the SOA vision statement would be the result of

activities performed before defining a governance model. though it can be created as

part of the SGMM engagement. In addition to the vision, the organization idealIy wilI

create a strategy and road map statement before the engagement begins [22].

2.3 Service-Oriented Architecture Characteristics
SOA is not appropriated for all types of systems. However, SOA copes well with many

difficult-to-handle characteristics of large systems as described next [19, 23 & 24]:

Distributed Systems

SOA systems are normalIy large and distributed. When business grows, it becomes

more and more complex. and more organizations get involved in it. In this context,

31

SOA solutions support integration of systems from different companies that may be

developed in different platforms and programming languages.

SOA is a software architectural concept where applications are partitioned into discrete

units of functionality called 'services'. Each service implements a small set of related

business rules or function points. These services are made available to consumers/client

applications. Whenever a business rule must be modified to support changing business

requirements, only the service which implements that business rule needs modification,

while the remainder of the application remains intact.

An SOA service can join (registering a profile) or leave (unregistering the profile) the

system anytime; e.g., peer to peer applications. To this aim SOAs are operated by so­

called Enabling Services, which are in charge of keeping the map of available services

and offer discovery mechanisms. Typically, services are designed to discover on

demand and interact with services of given types (i.e. providing certain APls and

relative functionalities), rather than to refer to known instances of services. The figure

below shows how the search scenario above can be interpreted in a SOA.

Different Owners

Another characteristic of SOA systems is that beside large and distributed, different

parts of the SOA solution may be under control of different ownership domains. The

presence of systems controlled by different owners is the key for certain properties of

SOA, and the major reason why an SOA is not only a technical concept.

Heterogeneity

Large systems differ from small systems due to their lack of harmony. Large systems

use different platforms and programming languages as already mentioned. They may

be composed by mainframes, databases, Java applications, and so on. In other words,

they are heterogeneous.

User Access and Security

One of the ways in which SOA can empower a workforce is the creation of a single

point sign on. The SOA solution should offer a browser based role-oriented experience

for the user which incorporates task lists based on the user's roles and the relevant

32

collaboration and knowledge content as well as links to the key web sites for the role.

The most critical parts of this are the concepts of enterprise-wide identity management

and federated identity management (across enterprises) which allow the user to sign on

once and for the appropriate access to be given in any application/task the user can

access. Given that an SOA environment inevitably will communicate both across the

internet and intranet, the set-up of appropriate firewalls to control external (internet)

access is a critical factor as for any system which needs to allow external access.

Workflow

Availability of workflow functionality in any SOA solution facilitates the following:

• Easy linking of processes / process parts.

• Linking into the underlying applications where necessary (it is a utopian

concept to imagine that ALL processes, across the whole enterprise, will be

abstracted into web services some processes may remain within the

application).

• Browser-based task lists for the users.

Resilience

As for any other IT architecture, an SOA must provide sufficient resilience to support

the business. The SOA run-time environment must facilitate this via enterprise-wide

alert handling and, if possible, the ability to target process flows on a specific server (or

server group) as a fallback (prioritization of flows).

2.4 Service-Oriented Architecture Principles

SOA is based on a set of service-oriented principles that support its theories and

characteristics. The set of principles that are directly related to SOA are described next

[10, 19,20 & 23]:

Coupling: It refers to the number of dependencies among services. In SOA,

services maintain a relationship that minimizes dependencies and only requires

that services retain an awareness of each other. Loose coupling is achieved

33

through the use of standards and service contracts among consumers and

providers that allow services to interact through well-defined interfaces.

Coupling also affects other quality attributes, e.g., modifiability and reusability.

Service contract: Services adhere to communication agreements, as defined

collectively by one or more service descriptions and related documents. They

define data formats, rules and characteristics of the services and their

operations. These documents are defined using standards in order to be readable

by the software elements of the architecture, e.g., XML, WSDL and XSD policy

documents.

Autonomy and Abstraction: Services have control over the logic they

encapsulate, i.e., they must be autonomous and self-contained. Moreover,

beyond what is described in the service contract, services hide internal logic

from the outside world. Services are like black boxes, and service consumers

only depend on the provided interface.

Stateless and Idempotent: Services minimize retaining information specific to

a customer's request. They should be as more stateless as possible in order to

increase reusability and scalability. Moreover, services should also be

idempotent, which is the ability to redo an operation without causing problems.

e.g., duplicated data.

Discoverability and Dynamic Binding: Services are designed to be apparently

descriptive so that they can be found and accessed via available discovery

mechanisms, e.g .• Universal Description, Discovery. and Integration (UDDI).

The use of a directory is not obligatory but a service should be discoverable.

Service discoverability is usually achieved through a third-party entity that

implements a discovery mechanism. e.g .• a service registry.

Coarse-Grained Interfaces: Services are abstractions that support the

separation of concerns and information hiding. However. they slow down

performance due to the remote calls. For this reason, services should provide

coarse-grained operations that transfer all the necessary data all together instead

34

of having several fine-grained calls. The requirements of the service consumers

should be taken into account when deciding the right granularity for the whole

services as well as their operations in order to avoid unnecessary data transfers

and performance problems.

Explicit Boundaries: Everything needed by the service to provide its

functionality should be passed to it when it is invoked. All access to the service

should be via its publicly exposed interface; no hidden assumptions must be

necessary to invoke the service. Services are inextricably tied to messaging in

that the only way into and out of a service are through messages. A service

invocation should as a general pattern not rely on a shared context; instead

service invocations should be modeled as stateless. An interface exposed by a

service is governed by a contract that describes its functional and non-functional

capabilities and characteristics. The invocation of a service is an action that has

a business effect, is possibly expensive in terms of resource consumption, and

introduces a category of errors different from those of a local method invocation

or remote procedure call. A service invocation is not a remote procedure call.

Shared Contract and Schema, not Class: Starting from a service description

(a contract), both a service consumer and a service provider should have

everything they need to consume or provide the service. Following the principle

of loose coupling, a service provider cannot rely on the consumer's ability to

reuse any code that it provides in its own environment; after all, it might be

using a different development or runtime environment. This principle puts

severe limits on the type of data that can be exchanged in an SOA. Ideally, the

data is exchanged as XML documents validatable against one or more schemas,

since these are supported in every programming environment one can imagine.

Policy-driven: To interact with a service, two orthogonal requirement sets have

to be met:

1. The functionality, syntax and semantics of the provider must fit the consumer's

requirements.

2. The technical capabilities and needs must match.

35

To support access to a service from the largest possible number of differently equipped

and capable consumers, a policy mechanism has been introduced as part of the SOA

tool set. While the functional aspects are described in the service interface, the

orthogonal, non-functional capabilities and needs are specified using policies.

Autonomous: Related to the explicit boundaries principle, a service IS

autonomous in that its only relation to the outside world at least from the SOA

perspective is through its interface. In particular, it must be possible to change

a service's runtime environment, e.g. from a lightweight prototype

implementation to a full-blown, application server-based collection of

collaborating components, without any effect on its consumers. Services can be

changed and deployed, versioned and managed independently of each other. A

service provider cannot rely on the ability of its consumers to quickly adapt to

a new version of the service; some of them might not even be able or willing to

adapt to a new version of a service interface at all (especially if they are outside

the service provider's sphere of control).

Wire formats, not Programming Language APIs: Services are exposed using a

specific wire format that needs to be supported. This principle is strongly related

to the first two principles, but introduces a new perspective: To ensure the

utmost accessibility (and therefore, long-term usability), a service must be

accessible from any platform that supports the exchange of messages adhering

to the service interface as long as the interaction conforms to the policy defined

for the service.

Document-oriented: To interact with services, data is passed as documents. A

document is an explicitly modeled, hierarchical container for data. Self­

descriptiveness is one important aspect of document-orientation. Ideally, a

document will be modeled after real-world documents, such as purchase orders,

invoices, or account statements. Documents should be designed so that they are

useful on the context of a problem domain, which may suggest their use with

one or more services.

36

Loosely coupled: Most SOA proponents will agree that loose coupling is an

important concept. Unfortunately, there are many different opinions about the

characteristics that make a system "loosely coupled". There are multiple

dimensions in which a system can be loosely or tightly coupled, and depending

on the requirements and context, it may be loosely coupled in some of them and

tightly coupled in others. Dimensions include:

• Time: When participants are loosely coupled in time, they don't have to be up

and running at the same time to communicate. This requires some way of

buffering/queuing in between them, although the approach taken for this is

irrelevant. When one participant sends a message to the other one, it does not

rely on an immediate answer message to continue processing (neither logically,

nor physically).

• Location: If participants query for the address of participants they intend to

communicate with, the location can change without having to re-program,

reconfigure or even restart the communication partners. This implies some sort

of lookup process using a directory or address that stores service endpoint

addresses.

• Type: In an analogy to the concept of static vs. dynamic and weak vs. strong

typing in programming languages, a participant can either rely on all or only on

parts of a document structure to perform its work.

• Version: Participants can depend on a specific version ofa service interface, or

be resilient to change (to a certain degree). The more exact the version match

has to be, the less loosely coupled the participants (in this dimension).

• Cardinality: There may be a I: I-relationship between service consumers and

service providers, especially in cases where a request/response interaction takes

place or an explicit message queue is used. In other cases, a service consumer

(which in this case is more reasonably called a "message sender or "event

source" may neither know nor care about the number of recipients of a message.

• Lookup: A participant that intends to invoke a service can either rely on a

(physical or logical) name of a service provider to communicate with, or it can

37

perform a lookup operation first, using a description of a set of capabilities

instead. This implies a registry and/or repository that is able to match the

consumer's needs to providers capabilities (either directly or indirectly).

• Interface: Participants may require adherence to a service-specific interface or

they may support a generic interface. If a generic interface is used, all

participants consuming this generic interface can interact with all participants

providing it. While this may seem awkward at first sight, the principle of a

single generic (uniform) interface is at the core of the WWW's architecture.

Standards-compliant: A key principle to be followed in an SOA approach is

the reliance on standards instead of proprietary APls and formats. Standards

exist for technical aspects such as data formats, metadata, transport and transfer

protocols, as well as for business-level artifacts such as document types (e.g. in

VBL). The most important aspect of any standard is its acceptance (which

basically translates to "Microsoft needs to be on the author list" in case of Web

services).

2.5 Service-Oriented Architecture Adoption

The adaptation of SOA continues to increase with more organizations implementing

the principle of SOA into their business IT strategy. The service ontology acts as the

connecting link between the service provider and the consumer of the service.

Implementing SOA revolves around three key elements, the service provider, the

registry and the consumer, the existence of all three can be within an organization. In a

more general application, the elements might be from different organizations dealing

with each other through the broker. Figure 2.2 shows the basic principle of the elements

inSOA.

38

Registry

r fWd·IiM". --,
r !WON'· --,
rhMH---,

Interaction

Figure 2.2: Simplified SOA Architecture [20)

Consumer: The application or the entity that uses the service, it can be an application

or any form of software component that requires the need of a service. The consumer

first requests the use of the service by locating the service, in the ontology of the service,

over communication transport protocol such as SOAP (Simple Object Access Protocol)

in a format that is acceptable to identify the specific service. Initiating and interaction

is instantiated and executed when the service is located and negotiated with the

provider.

Provider: The provider supplies the service that is available to the consumer; either a

simple software function or a collection of services may constitute a given service. In

order to use the service the provider publishes the service description information in

the registry that serves as the criteria to be accessed by the consumer.

Registry: The registry is a collection of service descriptions that is available to be

searched by consumers looking for a service to use. The registry is updated with the

service information by the provider of the service. The registry does not initiate any

form of connection between the consumer and the provider, only by making known

what is available. The service consumer does not have access to the service from the

provider directly and does not know the details of the service. The service provider

publishes, using technology such as XML and web service, the service description to

the ontology, either UDDI or other standard service. It is through this information that

the consumer provides the specification for the service request to the registry. The

39

registry lists the specific services ava ilable to the consumer to se lect and interact with

the prov ider for the service.

2.5.1 SOA Layers of Integration

Another way of viewing an SOA is to use the concept of layers. An SOA can then be

thought of as having 5 di stinct layers as per the fi gure 2.3. In the people integration

layer, the user accesses the role-based portal which deli vers the required collaboration,

information, content (unstructured information) and tasks li sts as per the role definiti on.

De li very of the content and information is achieved via the information integration

layer. The task li sts which compri se the outstanding tasks awaiting the user based on

their role is de livered from the process integration layer. The actual interaction with

the underlying application layer, both in terms of information delivery and process

execution is handled by the technical integration layer [24].

" u.2
~.
0"

..
u
>-.. u~ ... - ...

oS

" " .20

~ ~ .. co
~!
.5.5

" .. 0 .. -.-. " .. or t_
o:

c
o" u >-

i j ..
c

..
u
>-
!i

..
u
>-.. ...

Ii
~ ...

r
I-

I

User Portal
Role-based access, tasks and collaboration

Porta l, Role based accEtss \

"
,

I nformation Content ~ t---e
Integration Integration

Vl
Q)

-u IU .-

Process c >

/
L.. L..
Q)Q)

Integrat ion ~Vl , X.n
t V

WQ)

?;

Technica l I ntegration

I

r t r r 1

" " ~ l- I
I I I I I I I I I

Underlyinq applications

Figure 2.3: SOA - Layers of Integration [24)

Simple communication between the three, define the service location, selection and the

use of the serv ice by the consumer; more detailed information can be spec ified in the

request to match directl y to the service for the response to be accurate. Likewise, the

prov ider of the service determines the info rmation that is sent to the registry agent as

40

to the description to be advertised to the consumer. The whole process is based on the

following steps:

• Service Discovery: In order to discover a service and execute it, the consumer

must meet a standard that is set by the service provider, a contract or some form

of agreed terms of the service. Communication between the consumer and

registry must also conform to the SOA principle on communication technology,

such as SOAP. Service discovery in SOA is simplified to three key players as

explained above, however for the consumer to find, locate and interact with a

provider to use a service, the service must be visible to the consumer and in so

doing the consumer must be aware of the service, and be able to reach it [23].

• Service Request: The request is initiated by the consumer in a form of a

transport protocol communication such as SOAP or HTTP with information as

a standard SOA request format. In a simple request process, the consumer sends

the request to the registry which has the list of service descriptions, the registry

returns the descriptions based on the request with all the information relating to

the format, cost, etc of the service. The consumer selects the service based on

cost or other critical quality requirements.

• Directory Service: The internet has evolved to become a large resource pool

for information that can be accessed at any time. The location of resources on

the internet is facilitated by the use of search engines with the use of crawling

technologies to search and collect information into indexed storage for users to

use. Google, Bing and Yahoo are a few examples of the widely used internet

directory service. The concept is similar in SOA, i.e. providing services that

should be readily available for users to search and locate the service, and

offering matching services to be selected by the consumer.

SOA's answer to directory services is UDDI (Universal Directory and Discovery

Integration), JINI, [25] and others which have a different composition to the internet

search engine; the provider of the service is expected to update the ontology with a

description of the service containing the necessary details of requirement to use the

service. Whereas internet search engines uses spider and other technologies to

search for resources to update their index, the reverse is how UDDI works in SOA.

JINI, on the other hand is based on the Java technology and requires Java virtual

41

machine (JVM) to be running on all instances that is used for service repository and

discovery of services [26].

2.5.2 Challenges to Adoption

The main challenges to adoption of SOA include ensuring adequate staff training and

maintaining the level of discipline required to ensure the services that are developed

are reusable. Any technology, no matter how promising, can be abused and improperly

used. Services have to be developed not simply for immediate benefit, but also (and

perhaps primarily) for long-term benefit. To put it another way, the existence of an

individual service isn't of much value unless it fits into a larger collection of services

that can be consumed by multiple applications, and out of which mUltiple new

applications can be composed. In addition, the definition of a reusable service is very

difficult to get right the first time [24].

Another challenge is managmg short-term costs. Building an SOA isn't cheap;

reengineering existing systems costs money and the payback becomes larger over time.

It requires business analysts to define the business processes, systems architects to tum

processes into specifications, software engineers to develop the new code, and project

managers to track it all [24]. Another challenge is that some applications may need to

be modified in order to participate in the SOA. Some applications might not have a

callable interface that can be service-enabled. Some applications are only accessible via

file transfer or batch data input and output and may need additional programs for the

purpose ofservice-enablement [24].

2.5.3 Characteristics of Successful SOA Implementations

Strong Executive Level Sponsorship and SOA Evangelist

Each project had strong sponsorship from high ranking individuals from the business

and/or IT. This is critical for driving change throughout the organization and

removing roadblocks. Without top-level support, many SOA initiatives never get the

momentum, the resources and the drive required to allow IT to deliver the promise of

SOA to the business. It was also noted that a strong SOA evangelist was highly

42

critical for each of these award-winning case studies. In fact, research shows that in

instances where SOA evangelists leave a company, the company has a risk offailing

with future projects or regressing back to the previous methods of delivering software

[24].

Educating the Business of the Value of SO A

Each one of the case studies provided an enormous amount of value to the business.

In some cases, the return on investment was several billions of dollars over the course

of a few years. In order to find these extraordinary opportunities and to build a

business case around them, it is critical that the business becomes educated on the

promise of SOA. The key to educating the business, however, is not talking to the

business about the technology or even mentioning the term service-oriented

architecture. Instead the business needs to understand the key business drivers that are

being addressed (quicker access to information, integration with customers and

partners, eliminating wasteful business processes, etc.) on how IT has some "new

methods" for helping to deliver these drivers. The business doesn't necessarily need to

know how IT will do it; they need to understand which of their problems SOA solves

and what is required from the business to help IT solve them [24].

Establish a Centre of Excellence (CoE)

Every winning case study had some form ofCoE established. It may have been called

something else, such as a Configuration Control Board, but all had some formal body

that was responsible for governing the SOA initiative. Some of these companies

already had in place an established Enterprise Architecture complete with IT

governance and simply needed to make adjustments for SOA. Others did not have a

formal governance plan and had to create one with enough controls in place to deliver

the desired business results. The level of control and the scope of each company's

governance model were unique, but every successful project sited governance as a

key success factor [24].

Start With Well-defined Business Processes and Scale Up

In each case, candidate services were identified after well-defined business processes

were established. In some cases, the business processes were already in place; in

others some business processing reengineering was required prior to creating any

43

services. In each case, the goal was to start with some subset of business processes as

opposed to trying to do it all at once. Each case study had a well-defined scope and a

vision of what the future state looked like [24].

Define Completeness of Work within Services

A lot of thought was put into which services were critical to the key business drivers.

Business services provided a complete business function. Most successful SOA

implementations do not have a huge number of business services. This is where a lot

of SOA projects run into trouble. They try to make everything into a service, whether

it provides business value or not. There is a considerable amount of overhead and

costs involved with building, governing, and maintaining services. Successful SOA

implementations focus on a small number of core business services that provide real

business value and don't waste precious time and money on services that don't have

the payback [24].

Quality Assurance Is Key

SOA creates all sorts of new challenges for the QA department. Successful SOA

implementations require that proper QA best practices, such as load testing of each

service, is perfonned. Perfonnance, security and governance testing should be a part

of your overall testing plan to ensure that both the business and technical

requirements are met [24].

ROI is Difficult to Achieve Initially and is Realized Over Time

SOA is not a technology; it is architecture. Like any other architectures, value is

earned over time as the architecture expands and matures. Some of these companies

were on their second or third SOA project and were realizing substantial ROJ. Others

were in their first iteration and did not see immediate ROI but instead were laying

down the foundation for future SOA projects to maximize their ROI [24].

Deliver Substantial Business Value

In all cases, these award winning case studies delivered substantial business value.

None of these case studies were focused on fixing IT infrastructure or based solely on

reducing development costs through reuse. These may have been some side effects,

but the value of the IT benefits are minuscule as compared to the business benefits

44

which in some cases were in the billions of dollars over a given time period. So for all

of the pundits out there who claim that you should never talk to the business about

SOA or that SOA is an IT initiative not a business initiative-look at the huge ROls of

these projects and the business transformations that occurred and reconsider those

stances [24].

2.6 Service Oriented Architecture Governance
Governance has been rated as the main inhibitor of SOA adoption [26]. SOA

governance provides a set of policies, rules, and enforcement mechanisms for

developing, using, and evolving SOA-based systems, and for analysis of their business

value. SOA governance includes policies, procedures, roles, and responsibilities for

design time governance and runtime governance. Design-time governance includes

elements such as rules for strategic identification of services, development, and

deployment of services, reuse, and legacy system migration to services. It also enforces

consistency in use of standards, SOA infrastructure, and processes.

SOA Governance is about ensuring that each new and existing service conforms to the

standards, policies and objectives of an organization for the entire life of that service

[27]. Also, SOA governance is the mechanism by which organizations ensure that their

SOA implementation is built around the best possible alignment between the goals of

the business and IT [28]. This definition of governance implies that one needs to have

an SOA strategy, ensure that it's aligned with where the business is going, and develop

a concrete idea of what to expect from SOA investments. To meet business, Enterprise

Architecture (EA) and SOA goals, policies must be enacted across the different

business areas: architecture, technology infrastructure, information, finance. portfolios.

people, projects (or rather, the way in which projects are executed) and operations. This

is the role of governance: i.e. policies, which need to be designed and enacted to ensure

this alignment [27].

2.6.1 Why is SOA Governance needed?

SOA governance plays an increasingly important role in today's challenging business

environment. It provides structure. commitment and support for the development,

45

implementation and management of SOA. as necessary. to ensure it achieves its

objectives. SOA governance provides the following benefits:

• Realize business benefits of SOA

• Business process flexibility

• Improved time to market

• Maintaining Quality of Service (QoS)

• Ensuring consistency of service

• Measuring the right things

• Communicating clearly between businesses.

2.6.2 SOA Governance Implementation

SOA governance implementation is comprised of a number of sub-topics. which

include IT alignment. SOA and IT governance [28 - 33]:

I. IT Alignment: The references in the area of alignment between business and

technology provide support for discussion of all the strategies. technologies.

results and outcomes that are presented in this study. Literature in the areas of

SOA, SOA governance. IT governance and SOA implementation has roots in IT

alignment.

2. IT Governance: Like SOA. IT governance is another foundational layer in the

literature that needs to be covered before SOA governance can be appropriately

discussed. IT governance aims to place a governance framework around new

strategies and technologies such as SOA to ensure that they align with business

goals. The convergence of SOA and IT governance results in the body of

literature that is at the heart of the study SOA governance.

3. SOA: SOA is a core strategy and technology whose complexity spurred the need

for SOA governance. The references related to SOA provide a foundational step

before moving on to the discussion of SOA governance.

4. SOA Governance: The references in this section provide the basic framework

for understanding SOA governance and the management goals that SOA

governance aims to achieve.

46

5. SOA Governance Deployment: This section of references provides the majority

of insight into the detailed deployment phases of a SOA governance program

and is the most appealing to the audience of information technology managers

who is the target for the final outcome of this study.

6. Methodology: This study outlines a method plan based on literature review and

content analysis.

2.6.3 Role of Governance

The word governance describes many facets of management and policy for SOA-based

systems. Depending on context, governance can refer to [24]:

• overseeing and enforcing policy (business design, technical design, application

security) that directs the organization

• creating policy that directs the organization

• coordinating the people, policies, and processes that provide the framework for

management decision-making

• taking action to optimize outcomes related to an individual's responsibility

• promoting efficiency in the organization

• determining the integrity of services.

Good governance exemplifies such characteristics as accountability, freedom of

association and participation, a sound judicial system, freedom of information and

expression, capacity building, and similar things. The concept of governance is not

entirely new. What is new is that development and acquisition are, in an SOA context,

very different, and management and policy apply to more than simply construction.

However, like most aspects of management. traditional or otherwise. governance will

be reflected in one or more processes.

2.6.4 Characteristics of Good SOA Governance

In the context of SOA, governance should encourage active and efficient use of

available services by application builders. While a number of characteristics of

47

governance apply within the SOA context, we will focus in this column on just the

following [24]:

• a flexible authority structure

• management incentives

• full operational life cycle.

2.7 Service-Oriented Architecture and Web Services
Web services are defined as "a family of technologies that consist of specifications,

protocols, and industry-based standards that are used by heterogeneous applications to

communicate, collaborate, and exchange information among them in a secure, reliable,

and interoperable manner" [33]. Services in an SOA are modules of business or

technical functionality with exposed interfaces to the functionality. Web services are

the organizing principles of SOA at this time.

Although much has been written about SOA and Web services, there still is some

confusion between these two terms among software developers. SOA is an architectural

style, whereas Web services are a technology that can be used to implement SOAs. The

Web services technology consists of several published standards, the most important

ones being SOAP and WSDL. Other technologies may also be considered technologies

for implementing SOA, such as CORBA. Although no current technologies entirely

fulfil the vision and goals of SOA as defined by most authors, they are still referred to

as SOA technologies. The relationship between SOA and SOA technologies is

represented in Figure 2.4. Much of the technical information in this report is related to

Web services technology, because it is commonly used in today's SOA

implementations.

48

Key:

C:=J class

~ "is a"

? aggregation

Figure 2.4: SOA and SOA Technologies [33)

2.7.1 Drivers for SOA

In large organizations, the following types of organizational, business, and technology

changes drive a desire to reap the benefits of SOA:

• integration with legacy systems

• corporate mergers

• realignment of responsibilities through business reorganizations

• changing business partnerships (e.g. , relationships with suppliers and

customers)

• modernization of obsolete systems for financial , functional , or technical reasons

• acquisition or decommission of software products

• sociopolitical forces related to or independent of the drivers cited above.

2.7.2 XML Web Services

XML and Web services are used with each other in SOA, but the implementation of

SOA does not necessarily mean the implementation of XML Web service. However,

the implementation of XML Web service provides the foundation for the adaptation of

distributed and integrated computing over the internet, forming part of the SOA

architecture (figure 2.5). XML as mentioned above, offers the language format for

platform independence using SOAP communication protocol over the internet, whereas

49

Web service on the other hand, is the component of the application that is able to

communicate with other applications over the internet or web [34].

SOA

1- - - - - - - - - - - - - - - ~ ------ ------------ -- --- - -- -- ---------- ---- - -- -- --~

WEB
SERVICE

CORBA JINI

I

EJB

No Objects Objects Component based Objects I
I L _ __ ___ _ ___ I

-- --,
Simple WS: No session, no state c.g. Shopping Cart realization'!
Desirable: Object like Web sen-ices

Figure 2.5: An Architecture of Software Which Is Composed of Services (34]

The means of communication and exchange of information between Web services is

defined using XML. Fig 2.6 shows the simple Web service implementation, the

communication between the component in the architecture are implemented in XML

format [35].

Service
Requester

SOAP

. .
. . .

Service
Provider

Figure 2.6: Web Service Architecture With XML [33)

Web service acts as the implementation tool for SOA; it has an interface that is

described in the format of WSDL (Web Service Description Language). Figure 2.7

shows the details of a Web service, discovery of a service and service interface with a

description of the service in a machine-processable format (WSDL). The Web service

so

I
I
I

interface is exposed for discovery allowing it to be used by other systems, using SOAP

and communication through HTTP or SMTP protocols.

L. _ _ ___ _

,------- ----------------------,
: Processes :
: (Discovery. Aggregation, Choreography) , ,
,- --- - - - --- - - - - - -- - - ---- _ _ _ _ __ 1

1 - ,

o I Description (WSDL) 1
(J';

~ . ' ~ L _______________________ __ ___ _

....
~
>(

-----------------------------~ I

Message

(SOAP Ex.en ions)

, (OAP)
L. ___________________________ _

r --- - --- -- ---- -- ----- - - ---- --- -- - --~

I Communication La"er 1
I " I
I (HTIP, SMTP •...) I L _ _ ___ _ ___ __ _____ _ _____ _ ___________ _ ,

Figure 2.7: Web Services Architecture Stack [34)

Web services: XML-based technologies for messaging, service description ,

discovery, and extended features, providing:

• Pervasive, open standards for distributed computing interface descriptions and

document exchange via messages.

• Independence from the underlying execution technology and application

platforms.

• Extensibility for enterprise qualities of service such as security, reliability, and

transactions.

• Support for composite applications such as business process flows, multi­

channel access, and rapid integration.

2.8 Service-Oriented Architecture Strategies

SOA is the architectural approach that maintains loosely coupled services to allow

business fl ex ibility in an interoperable, technology-agnostic way. SOA involves a

51

composite set of business-aligned services that support a flexible and dynamically re­

configurable end-to-end business processes realisation using interface-based service

descri ptions.

Some aspects of execution go on throughout the whole SOA project life cycle. The V­

Model is a good methodology that applies some testing discipline through the project

life cycle [36] . The project starts with defining the User Requirements. The V-Model

suggests that the Business Acceptance Test Criteria for the defined requirements are

clear and decided before moving to the onset of the technical design phase. Before

moving to technical design, the model recommends test criteria distinct for that level

of technical requirements, and so on. The V -Model is illustrated in figure 2.8.

THE V MODEL

Figure 2.8: V-Model (36)

The work on SOA design defects has focused pattern and anti-pattern, some of which

are discussed below [36]:

I. Percolating Process: Organisations start with a detailed Process map and then

attempt to "fit" this into an SOA; this refactoring leads to the process becoming

S2

the dominant feature and leads to a process-oriented architecture (POA) rather

than SOA.

2. Point to Point Web Services: Web service point to point is still point to point;

doing a bad practice in XML does not make it better.

3. Splitting Hairs: Splitting into two separate tiers of Service and Process, with

separate rules and governance results in divergent solutions.

4. IT2B: Creating "business" services based on the belief that IT understands the

business results in services that neither meet IT nor business goals.

2.9 Summary
SOA is a type of software architecture that has special characteristics. This chapter

began by discussing the SOA field describing its definitions, characteristics and

motivations. It is necessary to think of SO As in a number of ways. In terms of delivering

design and run-time environments, the key characteristics of process orientation, an

agile development toolkit and enterprise wide run-time management is underpinned by

effective programme management and an agile development methodology.

An SOA can also be thought of in a more abstract way; as an environment which

delivers service-based integration at application, process, information and people level.

Further, the definition of SO A today is significantly different than that of25 years ago

which is expected to further evolve. It is a logical step for SOA eventually to encompass

both information flow management and organisation management. Even this is unlikely

to be the end-point. Because SOA is an evolving concept which is being shaped by

emerging standards and technologies the definition of what SOA encompasses will

also, inevitably, continue to evolve and to expand.

The Web services technology, which is the most appropriate environment to develop

SOA currently, was also mentioned. However, it was emphasized that the Web services

technology is not the only possible way to develop SOA concepts, which are technology

independent. So, we can see that the Web services standards, both the core and extended

specifications, contribute significantly to the ability to create and maintain SOAs on

which to build new enterprise applications. These applications are often called

composite applications because they work through a combination of multiple services.

53

We've seen that SOA is not an end in itself but a preparation for a longer journey. It's a

set of maps and directions to follow that lead to a better IT environment. It's a blueprint

for an infrastructure that aligns IT with business, saves money through reuse of assets,

rapid application development, and multichannel access.

Web services have had an initial success with the core standards and are now on to the

next step in the journey, which is to define extended features and functions that will

support more and more kinds of applications. Service orientation provides a different

perspective and way of thinking than object orientation. It's as significant a change as

going from procedure-oriented computing to object-oriented computing. Services tend

toward complementary rather than replacement technology, and are best suited for

interoperability across arbitrary execution environments. including object oriented.

procedure oriented. and other systems.

In summary, SOA promotes loose coupling, function specific solution and platform

independence. A few of SOA characters which also fall in the domain of distributed

computing applications development. Although SOA has been used in industry for a

while, interest in SOA has resurfaced strongly with the deployment of SOA in Cloud

Computing. But SOA is not the solution to all problems linked with software

development. There are a lot of problems: Ranging from finding the required services.

providing acceptable performance. security, realising transactions up to maintaining

one's own service, even ifforeign. integrated services have changed or are closed. There

are a lot of problems to resolve. but there are a lot of possibilities too. It will depend on

industry and academia. to develop an overall answer, containing solutions to all of these

problems.

In summary. SOA is a software architecture that determines the features that make up

an application and should be made available as services that communicate with each

other through messages. That way. applications can be developed into small parties,

facilitating management of development teams. But SOA is more than that - it is a

robust architecture, focused on the integration of systems, whose main benefits are

discussed below:

54

Table 2.1: SOA Features and Benefits

Feature Benefits

• Improved information flow

Service • Ability to expose internal functionality

• Organizational flexibility

Service Reuse • Lower software development and management costs

Messaging • Configuration flexibility

• Business intelligence

Message Monitoring • Performance measurement

• Security attack detection

• Application of management policy
Message Control

Application of security policy •
Message • Data translation

Transformation

Message Security • Data confidentiality and integrity

• Simplification of software structure

Complex Event • Ability to adapt quickly to different external

Processing environments

• Improved manageability and security

Service Composition • Ability to develop new function combinations rapidly

• Ability to optimize performance, functionality, and

Service Discovery cost

• Easier introduction of system upgrades

Asset Wrapping • Ability to integrate existing assets

• Improved reliability

Virtualization • Ability to scale operations to meet different demand
levels

Model-driven • Ability to develop new functions rapidly
Implementation

55

CHAPTER 3: SOFTWARE QUALITY

3.1 Introduction

Software quality measurement is about quantifying to what extent software design

possesses desirable characteristics. To understand the landscape of software quality it

is central to answer the so often asked question: what is quality? The following are the

quality principles according to quality management gurus:

Quality according to Crosby: The word "quality" is often used to signify the relative

worth of something in such phrases as "good quality", "bad quality" and ""quality of

life" which means different things to each and every person. As follows quality must

be defined as conformance to requirements' if we are to manage it. Consequently, the

nonconformance detected is the absence of quality, quality problems become

nonconformance problems, and quality becomes definable [37].

Quality according to Deming: The problem inherent in attempts to define the quality

of a product, almost any product, where stated by the master Walter A. Shewhart. The

difficulty in defining quality is to translate future needs of the user into measurable

characteristics, so that a product can be designed and turned out to give satisfaction at

a price that the user will pay. This is not easy, and as soon as one feels fairly successful

in the endeavor, he finds that the needs of the consumer have changed, competitors

have moved in etc [38].

Quality according to Feigenbaum: Quality is a customer determination, not an

engineer's determination, not a marketing determination, nor a general management

determination. [t is based upon the customer's actual experience with the product or

service, measured against his or her requirements stated or unstated, conscious or

merely sensed, technically operational or entirely subjective and always representing a

moving target in a competitive market [39].

Quality according to Ishikawa: We engage in quality control in order to manufacture

products with the quality which can satisfy the requirements of consumers. The mere

S6

fact of meeting national standards or specifications is not the answer, it is simply

insufficient. International standards established by the International Organization for

Standardization (ISO) or the International Electrotechnical Commission (lEC) is not

perfect. They contain many shortcomings. Consumers may not be satisfied with a

product which meets these standards. We must also keep in mind that consumer

requirements change from year to year and even frequently updated standards cannot

keep the pace with consumer requirements. How one interprets the term "quality" is

important. Narrowly interpreted, quality means quality of products. Broadly

interpreted, quality means quality of product, service, information, processes, people,

systems etc. [40].

Quality according to Juran: The word quality has multiple meanings. Two of those

meanings dominate the use of the word: I) Quality consists of those product features

which meet the need of customers and thereby provide product satisfaction. 2) Quality

consists of freedom from deficiencies. Nevertheless, in a handbook such as this it is

most convenient to standardize on a short definition of the word quality as "fitness for

use" [41].

Quality according to Shewhart: There are two common aspects of quality: One of

them has to do with the consideration of the quality of a thing as an objective reality

independent of the existence of man. The other has to do with what we think, feel or

sense as a result of the objective reality. In other words, there is a subjective side of

quality [42].

Software maintenance, which means fixing any defects after delivery, can cost 90% of

the total cost of normal software projects [43]. Many studies have discussed that any

new function to improve the software quality or fixing defects are the major parts of

those costs [44]. According to previous studies focused on bad design practice, which

also labeled defects as anti-patterns, smells or anomalies, these bad practices are

sometimes unavoidable and should be prevented by the development teams as early as

possible [45].

Software defects compromise the operation of the resultant software system. It is thus

a good practice to deal with the bugs at an early stage so as to avoid the resulting

57

weaknesses. Working with defects inherited from the preliminary periods of design

time causes a lot of problems as the debugging becomes cumbersome, more so in

finding errors that originates from the requirements and design [46]. Missing

requirements, incomplete requirements, code logic error, wrong requirements,

conflicting code modules, conflicting requirements and requirement execution cause

great problems, with the first being the worst case. This is the reason why defects at

earlier stages of development must be removed at as early a stage as possible.

This chapter starts with quality in general; SOA quality and quality attributes are

discussed in section 3.2. Section 3.3 presents a detailed discussion of quality models,

whereas section 3.4 presents a detailed discussion of quality metrics of SOA. Section

3.5 presents a summary of the chapter.

3.2 Quality of Service-Oriented Architecture

SOA-based software development has been gaining momentum in recent years due to

its perceived advantages such as more flexibility, and heterogeneity in software

structure and design. Moreover, SOA facilitates reusability through the encapsulation

of software products inside services. With the growing trend of deploying SOA in the

IT infrastructure of large companies, it is imperative that the performance and quality

of the products delivered in such a context is clearly evaluated and guaranteed

accordingly. Quality is currently considered one of the main assets with which a firm

can enhance its competitive global position. This is one reason "why quality has

become essential for ensuring that a company's products and processes meet

customers' needs" [47].

3.2.1 Hierarchy of Quality

The sum of quality characteristics and attributes applied to a Web service is defined as

"the totality of features and characteristics of a product or service that bear on its ability

to satisfy stated or implied needs" [48]. Kan [49] defined the Quality concepts as

Pyramids, its base are quality metrics and its top are quality characteristics as shown in

figure 3.1.

58

Totally of Quality Characterist ics of a Service

Quality [Groups of qual ity attributes]
Characteristics '"-, '("""" __________ --.-J.

Quality Attributes

Quality Metrics

Feature of the service that affects
Quality

Quantitative measurement of
a Quality Attri bute

Figure 3.1: Hierarchy of Quality Concepts [49]

One of the most challenging aspects of building SOA applications is quality assurance.

Developers must analyze every flow path, every condition, and every fault to ensure

that processes are bullet-proof. A software quality attribute of a software system is a

characteristic, feature or property that describes part of the software system. Internal

software quality attributes reflect structural properties of a software system (e.g.:

software size in terms of Lines of Code) [50].

3.2.2 Quality Assurance in Service-Oriented Architectures

Quality assurance has a vital role in building a software system because it provides

confidence and lowers the risks associated. Assurance in service-oriented systems is a

challenging problem, which requires a flexible and dynamic solution. When we talk

about qual ity of a service-oriented system we have to consider all the included services

that are interdependent to provide that service, including all the limitations of resources

and runtime situation.

It is anticipated that due to the difference between the nature of traditional software

development technologies and SOA that the verification and validation process in the

quality assurance model will resemble a paradigm shift. For instance, while a group of

independent software quality assurance experts can validate a traditional software

product based on structural (white-box) or functional (black-box) testing techniques; in

contrast such a process needs to be carried out through the collaboration of service

providers, brokers, and clients in an SOA setting. Moreover, while service providers

59

can benefit from both structural and functional testing techniques, the brokers and

clients will only have black-box testing at their disposal.

3.2.3 Quality Attributes

In 20 II Montagud et al. [61] classified quality attributes and measures for assessing

the quality of software product lines. These quality attributes were reusability and

efficiency. More recently, Galster et al. [62] suggested a framework for reference

architecture design for variability-intensive service-based systems using the following

quality attributes: Variability, Scalability, Interoperability, Performance, Reliability,

Privacy and Security. Marko [63] suggested an SOA prototype to evaluate the quality

of the architecture resulting from the combination ofEBI and SOA patterns. The quality

is evaluated with respect to: Efficiency, Functionality, Maintainability, Portability,

Reliability and Usability. Table 3.1 shows a summary of SOA Quality Attributes and

their definitions.

60

SOA Quality

Attributes

Adaptability

Analysability

Auditability

Table 3.1: SOA Quality Attributes

Definition

The quality of being adaptable to changes. The use of an SOA approach

should have a positive impact on adaptability, as long as the adaptations are

managed properly. However, the management of this quality attribute is left

up to the service users and providers, and no standards exist to support it.

This attribute must be managed in coordination with other quality attributes

including stability, performance, and availability, and the necessary trade­

offs must be identified and made.

Adaptability means the ease with which a system may be changed to fit

changed requirements. Adaptability for a business means it can adapt

quickly to new opportunities and potential competitive threats, which

implies that the application development and maintenance groups within the

business can quickly change the existing systems.

The capability of the software product to be diagnosed for deficiencies or

causes of failures in the software, or for the parts to be modified to be

identified.

Auditability is the quality factor representing the degree to which an

application or component keeps sufficiently adequate records to support one

or more specified financial or legal audits. With the ever-increasing need for

systems to comply with business and regulatory legislation (financial and

health sectors especially), the ability to audit a system for compliance is an

important consideration. However, the flexibility offered by SOAs may

make such audits difficult. If an application using an SOA approach

dynamically uses external services, it may be difficult to track which services

are actually used. If an outside service uses additional services (i.e., is

composed of other services) to carry out its functionality, the audit process

becomes even more complex.

61

Availability

Changeability

Correctness

Efficiency

Extensibility

Availability refers to the ability of the user community to access the service,

whether to submit a new request, update or alter an existing request, or

collect the results of a previous request. If a user cannot access the service,

it is said to be unavailable.

The capability of the software product to enable a specified modification to

be implemented.

Accountability for satisfying all requirements of the system. Measure of

exact adherence to specifications.

The efficiency characteristic relates to the capability ofa test specification to

provide acceptable performance in terms of speed and resource usage. The

ISOIIEe 9126 subcharacteristics time behaviour and resource utilisation

apply without change.

Extensibility is the ease with which the services ' capabilities can be extended

without affecting other services or parts of the system. Extensibility for

architecture today (in particular, an SOA) is important because the business

environment in which a software system lives is continually changing and

evolving. These changes in the environment will mean changes in the

software system, service users, and service providers and the messages

exchanged among them.

Extending an SOA by adding new services or incorporating additional

capabilities into existing services is supported within an SOA. However, the

interface/formal contract must be designed carefully to make sure that it can

be extended, if necessary, without causing a major impact on the service

users.

62

"

The ability to exchange and use information (usually In a large

heterogeneous network made up of several local area networks).

Interoperability may occur between two (or more) entities that are related to

one another in one of three ways:

Interoperability Integrated: where there is a standard format for all constituent systems

Unified: where there is a common meta-level structure across constituent

models, providing a means for establishing semantic equivalence

Federated: where models must be dynamically accommodated rather than

having a predetermined meta-model.

Maintainability

.

Modifiability

Maintainability of test specifications is important when test developers are

faced with changing or expanding a test specification. It characterizes the

capability of a test specification to be modified for error correction,

improvement, or adaption to changes in the environment or requirements.

The anaiysability, changeability, and stability sub-characteristics from

ISOllEe 9126 are applicable to test specifications as well. The testability

sub-characteristics do not play any role for test specifications .

Modifiability is the ability to make changes to a system quickly and cost­

effectively.

Modifiability considers how the system can accommodate anticipated and

unanticipated changes and is largely a measure of how changes can be made

locally, with little ripple effect on the system at large. The world around

most software systems is constantly changing. This requires software

systems to be modified several times after their initial development.

63

Performance

Reliability

I,

Reusability

Performance refers to the system responsiveness: either the time required

responding to specific events, or the number of events processed in a given

time interval. An SOA approach can have a negative impact on the

performance of an application due to network delays, the overhead of

looking up services in a directory, and the overhead caused by intermediaries

that handle communication. The service user must design and evaluate the

architecture carefully, and the service provider must design and evaluate its

services carefully to make sure that the necessary performance requirements

are met.

The reliability characteristic describes the capability of a test specification

to maintain a specific level of performance under different conditions. In this

context, the word " performance" expresses the degree to which needs are

satisfied. The reliability sub-characteristics maturity, fault-tolerance, and

recoverability of ISOIIEC 9126 apply to test specifications as well.

However, new sub-characteristics test repeatability and security has been

added. Test results should always be reproducible in subsequent test runs if

generally possible. Otherwise, debugging the SUT to locate a defect

becomes hard to impossible. Test repeatability includes the demand for

deterministic test specifications.

Although reusability is not part of ISO/IEC 9126, we consider this aspect to

be particularly important for test specifications since it matters when test

suites for different test types are specified. For example, the test behaviour

ofa performance or stress test specification may differ from a functional test,

but the test data, such as predefined messages, can be reused between those

test suites. It is noteworthy that the sub-characteristics correlate with the

maintainability aspects to some degree. Reusability is the degree to which a

software module or other work product can be used in more than one

computing program or software system.

64

Scalability

Security

Stability

Testability

Scalability is the ability of SO A to function well when the system is changed

in size or in volume in order to meet users ' needs.

Extending an SOA by adding new services or incorporating additional

capabilities into existing services is supported within an SOA. However, the

interface/formal contract must be designed carefully to make sure that it can

be extended, if necessary, without causing a major impact on the service

users.

The need for encryption, authentication, and trust within an SOA approach

requires detailed attention within the architecture. Many standards are being

developed to support security, but most are still immature. If these issues are

not dealt with appropriately within the SOA, security could be negatively

impacted.

Due to the distributed nature of the current enterprise systems, we have

difficulty in administering security policies and bridging diverse security

models. This leads to increased opportunities to make mistakes and leave

security holes; hence the chance of accidental disclosure and the

vulnerability to attack goes up.

The capability of the software product to avoid unexpected effects from

modifications of the software.

Testability is the degree to which a system or service facilitates the

establishment of test criteria and the performance of tests to determine

whether those criteria have been met.

Testability can be negatively impacted when usmg an SOA due to the

complexity of the testing services that are distributed across a network.

Those services might be provided by external organizations where access to

the source code is not available, and if they implement runtime discovery of

services, it may be impossible to identify which services are used until a

system executes. It is up to the service users and providers to test the

services, and very little support is currently provided for the end-to-end

testing of an SOA.

6S

The degree to which the purpose of the system or component is clear to the

evaluator. Understandability is important since the test user must be able to

Understandability understand whether a test specification IS suitable for his needs.

Usability

Documentation and description of the overall purpose of the test

specification are key factors - also to find suitable test selections.

The usability attributes characterise the ease to actually instantiate or execute

a test specification. This explicitly does not include usability in terms of

difficulty to maintain or reuse parts of the test specification which are

covered by other characteristics. Usability may decrease if the services

within the application support human interactions with the system and there

are performance problems with the services. It is up to the services users and

providers to build support for usability into their systems.

In SOAs, service users and service providers communicate over a network­

a process that can introduce delays, possibly in the order of seconds, in user

Data Granularity interactions. To avoid these delays, not only must the service respond to user

requests with the data requested but also with other relevant data that may

not be immediately displayed.

Operability and

Deployability

Operating and deploying services and systems that use services need to be

managed carefully to avoid problems. The interactions and tradeoffs among

this and other quality attributes need to be monitored and managed.

3.3 Quality Metrics of Service-Oriented Architecture

A software metric is an algorithm which computes a numeric value from source code

to measure properties of a software system. The purpose of software metrics is to make

assessments throughout the software life cycle as to whether the software quality

requirements are being met [62]. Software metrics are often used to assess the ability

of software to achieve a predefined goal [63]. Software metrics are a means of steering

development processes by assessing the quality of a software product and finding

imbalances in the code base. Metrics have always been used to help guide managers

with decisions about their organizations. Metrics have always been used to help guide

66

managers with decisions about their organizations. Defect tracking, for example, has

traditionally been a metric used to measure software quality throughout the lifecycle.

3.4 Quality Models of Service-Oriented Architecture

Software quality attributes are benchmarks that describe the intended behaviour of a

system within its environment. Quality attributes (QA) is defined as "A feature or

characteristic that affects an item's quality"[51].

One of the most important quality models is the quality model presented by McCall et

al. [52]. They presented a quality model focusing on a number of software quality factor

that reflect both the users' views and the developers priorities. The main quality factors

were correctness, reliability, efficiency and integrity as shown in figure 3.2.

67

TracebHity

Correctness
Completeness

Consistency

Accuracy

Reliability
Error tolerance

Execution emency

Emency
storage etrlel1CY

I Integrity

Operabtlity

Usability IE--- IL.. T_ra_in_lng ____ --I

Communicativeness

Figure 3.2: McCall Quality Model [52]

The second basic quality model is the quality model presented by Boehm et al. [53].

Boehm's model is similar to the McCall quality model in that it also presents a

hierarchical quality model consisted of 7 quality factors Portability, Reliability,

Efficiency, Usability, Testability, Understandability and Flexibility as shown in figure

3.3.

68

I Genera UWty

OeIIice
Independence

Figure 3.3: Boehm's Quality Model [53]

In 1987, Grady and Caswell proposed the FURPS model. It takes into account the five

characteristics: Functionality, Usability, Reliability, Performance, and Supportability.

When the FURPS model is used, two steps are considered: setting priorities and

defining quality attributes that can be measured. Grady and Caswell noted that setting

priorities is important given the implicit trade-off, i.e. one quality characteristic can be

obtained at the expense of another. One disadvantage of this model is that it fails to take

account of the software product's portability [54].

In 1996, Dromey [55] proposed a product based quality model that recognizes that

quality evaluation differs for each product and that a more dynamic idea for modelling

the process is needed to be wide enough to apply for di fferent systems. Dromey was

focusing on the relationship between the quality attributes and the sub-attributes, as

well as attempting to connect software product properties with software quality

attributes. Figure 3.4 shows Dromey's generic quality model.

69

Software product [ImpemenlatiCJ1
1

Product properties Correctness Internal CootexhJal
1

Descnptive

r I I I
Mamtailabllity,

MarltalnDlity,

Malntar"l<blty, reus:ililty,
reusabiity,

Functia1aity, reliability el!icilflcy, reliabilrj JX)Ilabliy.
portal)lity.

reliabllt(usability
Quality attributes

Figure 3.4: Dromey's Generic Quality Model [55]

In 1998, the International Organization for Standardization (ISO) [56] had defined a set

of ISO and ISO/IEC standards related to software quality. The ISO/IEC 9126 is

currently one of the most widespread quality standards. ISO 9126 indicated that

component of the software quality must be described in terms of one or more of six

characteristics defined as a set of attributes: Functionality, Reliability, Usability,

Efficiency, Maintainability and Portability as shown in figure 3.5. Wiegers [57]

suggested fourteen quality attributes: Reliability, Usability, Integrity, Efficiency,

Portability, Reusability, Interoperability, Maintainability, Flexibility, Testability,

Robustness, Installability, Safety and Availability.

70

II)
N

en
u a
!!l
>­.-111
:l o

Factors

Subfactors

Suitability

Understandability

Figure 3.5: ISO Quality Model (571

Also in 2003, Ortega et al. [47] designed a model prototype that reflects the essential

attributes of quality. This model pinpointed three working areas based on McCall ' s

Quality model as follows:

• Product Operation: which referred to the product's ability to be quickly

understood, efficiently operated and capable of providing the results required

by the user; the following quality attributes were taken into consideration:

Modifiability, Reliability, Efficiency, Integrity, and Usability.

• Product Revision: which related to error correction and system adaptation, the

following quality attributes were taken into consideration: Maintainability,

Flexibility and Testability.

• Product Transition: which contained the following quality attributes:

Portability, Reusability and Interoperability.

Recently, Pettersson [58] created an SOA Quality Evaluation Model that was applicable

to SOA implementations. The model was based on two perspectives:

71

• Technical Perspective: this contained eight quality attributes: Modifiability.

Portability. Reusability. Integrability. Security. Efficiency. Scalability and

Reliability.

• Business Perspective: this contained four quality attributes: Usability.

Flexibility. Development costs and Return on Investment (ROI).

3.4.1 Why Use Metrics?

Metrics allow an organization to identify the causes of defects that have the greatest

effect on software development. The ground rules for a Metrics Usage Plan are that:

• Metrics must be understandable to be useful. For example. lines-of-code and

function points are the most common. accepted measures of software size with

which software engineers are most familiar.

• Metrics must be economical. Metrics must be available as a natural by-product

of the work itself and integral to the software development process. Studies

indicate that approximately 5% to 10% of total software development costs can

be spent on metrics. The larger the software program. the more valuable the

investment in metrics becomes. Therefore. do not waste programmer time by

requiring specialty data collection that interferes with the coding task. Look for

tools which can collect most data on a non-intrusive basis.

• Metrics must be field tested. Beware of software contractors who offer metrics

programs that appear to have a sound theoretical basis, but have not had

practical application or evaluation. Make sure proposed metrics have been

successfully used on other programs or are prototyped before accepting them.

• Metrics must be highly leveraged. You are looking for data about the software

development process that permit management to make significant

improvements. Metrics that show deviations of .005% should be relegated to

the trivia bin.

• Metrics must be timely. Metrics must be available in time to effect change in

the development process. If a measurement is not available until the program is

in deep trouble it has no value.

• Metrics must give proper incentives for process improvement. High scoring

teams are driven to improve performance when trends of increasing

72

improvement and past successes are quantified. Conversely, metrics data should

be used very carefully during contractor performance reviews. A poor

performance review, based on metrics data, can lead to negative

government/industry working relationships. Do not use metrics to judge team

or individual performances.

• Metrics must be evenly spaced throughout all phases of development.

Effective measurement adds value to all life cycle activities.

• Metrics must be useful at multiple levels. They must be meaningful to both

management and technical team members for process improvement in all facets

of development.

3.4.2 Quality Metrics

Burnstein [64] defined quality metrics as "a quantitative measurement of the degree to

which an item possesses a given quality attribute". Different metrics have been

proposed for object-oriented systems. Several prior studies [50, 66 & 86] had used

metrics to identify defects impact on quality attributes, these metrics are:

3.4.2.1 Size Metrics:

Size of a class is used to evaluate the ease of understanding of code by developers and

maintainers. Size can be measured in a variety of ways. These include counting all

physical lines of code, the number of statements, the number of blank lines, and the

number of comment lines. Size metrics is often measured using the Lines-Of-Code

metric (LOC). Cardoso et al. [87] proposed the number of basic activities (NOA) as an

alternative to count the LOC metric.

Lines-of-Code metric (LOC): which counts the number of statements within a

program source code

Impact on quality: Size metrics are good candidates for developing cost or effort

estimates for implementation, review, testing, or maintenance activities. Such estimates

are then used as input for project planning purposes and the allocation of personnel.

73

3.4.2.2 Coupling Metrics:

Coupling metrics measure the relationships between entities [68 - 90]:

Depth of Inheritance Tree (DIT): The depth of a class within the inheritance

hierarchy is the maximum number of steps from the class node to the root of the tree

and is measured by the number of ancestor classes as shown in figure 3.6. The deeper

a class is within the hierarchy, the greater the number of methods it is likely to inherit

making it more complex to predict its behavior. Deeper trees constitute greater design

complexity, since more methods and classes are involved, but the greater the potential

for reuse of inherited methods. A support metric for D1T is the number of methods

inherited (NMI).

C1

C2 C3

C21 C31 C32 C33

Figure 3.6: Depth of Inheritance [79]

Response Set For a Class (RFC): The RFC is the count of the set of all methods that

can be invoked in response to a message to an object of the class or by some method in

the class. This includes all methods accessible within the class hierarchy. This metric

looks at the combination of the complexity of a class through the number of methods

and the amount of communication with other classes. The larger the number of methods

that can be invoked from a class through messages, the greater the complexity of the

class. If a large number of methods can be invoked in response to a message, the testing

and debugging of the class becomes complicated since it requires a greater level of

understanding on the part of the tester. A worst case value for possible responses will

assist in the appropriate allocation of testing time.

74

Coupling between Object Classes (CBO) / Coupling Object Factor (COF): is a

count of the number of other classes to which a class is coupled. It is measured by

counting the number of distinct non-inheritance related class hierarchies on which a

class depends. It used to compare the level of coupling between classes. Excess ive

coupling is detrimental to modular design and prevents reuse. The more independent a

class is, the easier it is to reuse in another application. The larger the number of couples,

the higher the sensitivity to changes in other parts of the design and therefore

maintenance is more difficult. Strong coupling complicates a system since a class is

harder to understand, change or correct by itself if it is interrelated with other classes.

Complexity can be reduced by designing systems with the weakest possible coupling

between classes. This improves modularity and promotes encapsulation. The following

formula can be used:

where:

TC 2 - Te = maximum number of couplings in a system with TC classes

1 iff C, ~ Cs /\ C, t Cs

o ofhel1rise

Eq. (3.1)

Impact on quality: Coupling connections cause dependencies between design

elements, which, in tum, have an impact on system qualities such as maintainability (a

modification of a design element may require modifications to its connected elements)

or testability (a fault in one design element may cause a failure in a completely different,

connected element). Thus, a common design principle is to minimize coupling.

3.4.2.3 Complexity Metrics:

Complexity is a measure of the degree of difficulty in understanding and

comprehending the internal and external structure of classes and their relationships.

Complexity metrics measure complexity in terms of control constructs and lexical

tokens, respectively [68, 80, 81 & 87].

Source Line of Code (SLOC): the number of executable lines of source code.

75

Weighted Methods per Class (WMC): The WMC is a count of the methods

implemented within a class or the sum of the complexities of the methods (method

complexity is measured by cyclomatic complexity). The second measurement is

difficult to implement since not all methods are assessable within the class hierarchy

due to inheritance. The number of methods and the complexity ofthe methods involved

is a predictor of how much time and effort is required to develop and maintain the class.

The larger the number of methods in a class, the greater the potential impact on

children; children inherit all of the methods defined in the parent class. Classes with

large numbers of methods are likely to be more application specific, limiting the

possibility of reuse. The following formula can be used:

WMC (c) = L VG (m) Eq. (3.2)
meM lm (c)

VG is the McCabe's Cyc10matic Complexity (CC)

VG= 2 + ifs + loops + switch cases -return

Good predictor of how much time/effort is required to: implement the class and

maintain the class.

Number of Children (NOC): The number of children is the number of immediate

subclasses subordinate to a class in the hierarchy as shown in figure 3.7. It is an

indicator of the potential influence a class can have on the design and on the system.

The greater the number of children, the greater the likelihood of improper abstraction

of the parent and may be a case of misuse of sub-classing. But the greater the number

of children, the greater the reuse since inheritance is a form of reuse. If a class has a

large number of children, it may require more testing of the methods of that class, thus

increase the testing time.

76

Figure 3.7: Number of Children [81]

Cyclomatic Complexity (CC): Used to evaluate the complexity of an algorithm in a

method. It is a count of the number of test cases that are needed to test the method

comprehensively. A method with a low cyclomatic complexity is generally better. This

may imply decreased testing and increased understandability or that decisions are

deferred through message passing, not that the method is not complex. Cyclomatic

complexity cannot be used to measure the complexity of a class because of inheritance,

but the cyclomatic complexity of individual methods can be combined with other

measures to evaluate the complexity of the class. Although this metric is specifically

applicable to the evaluation of Complexity, it also is related to all of the other attributes.

The following formula can be used:

Eq. (3.3) ASOM =::......-----;;...
NS

Where:

A SaM

SaG

NS

A verage Services Operation Complexity

Services Operation Granularity (granularity refers to the

scope of functionality exposed by a service or

component)

No. of Services Domain (NS >0)

77

Maintainability Index (MI): The MI was computed for the entire system of both

approaches since it is not computed on the method or class level.

Depth of Inheritance Tree (DIT): The depth of a class within the inheritance

hierarchy is the maximum length from the class node to the root of the tree and is

measured by the number of ancestor classes. The deeper a class is within the hierarchy,

the greater the number of methods it is likely to inherit making it more complex to

predict its behavior. Deeper trees constitute greater design complexity, since more

methods and classes are involved, but the greater the potential for reuse of inherited

methods.

Impact on quality: High complexity of interactions between the elements of a design

unit can lead to decreased understandability and therefore increased fault-proneness.

Also, testing such design units is more difficult.

3.4.2.4 Cohesion Metrics:

Cohesion is the degree to which methods within a class are related to one another and

work together to provide well-bounded behaviour. Effective object-oriented designs

maximize cohesion since it promotes encapSUlation. The third class metrics investigates

cohesion [68 - 90]. Cohesion metrics measure the relationships among the elements

within a single module.

Lack of Cohesion of Methods (LCOM): Lack of Cohesion (LCOM) measures the

dissimilarity of methods in a class by instance variable or attributes. It is defined in

terms of the number of pairs of class methods that use common class attributes and the

number of pairs of class methods that do not use common class attributes. A highly

cohesive module should stand alone; high cohesion indicates good class subdivision.

Lack of cohesion or low cohesion increases complexity, thereby increasing the

likelihood of errors during the development process. High cohesion implies simplicity

and high reusability. High cohesion indicates good class subdivision. Lack of cohesion

or low cohesion increases complexity, thereby increasing the likelihood of errors during

the development process. Classes with low cohesion could probably be subdivided into

two or more subclasses with increased cohesion. the following formula can be used:

78

NOM - L ~OA1AF
Eq. (3.4) LCO~ (C = IlEC

¥O~-l

Where:

NOM the total number of methods in the class

NOMAF the number of methods that access an attribute a in the

class (summation for all the attributes in the class)

Cohesion Among Methods of Class (CAM): This metric computes the relatedness

among methods of a class based upon the parameter list of the methods. The metric is

computed using the summation of number of different types of method parameters in

every method divided by a multiplication of number of different method parameter

types in a whole class and the number of methods.

Impact on quality: A low cohesive design element has been assigned many unrelated

responsibilities. Consequently, the design element is more difficult to understand and

therefore also harder to maintain and reuse. Design elements with low cohesion should

be considered for refactoring, for instance, by extracting parts of the functionality to

separate classes with clearly defined responsibilities.

3.4.2.5 Inheritance Metrics:

Inheritance is a type of relationship among classes that enables programmers to reuse

previously defined objects including variables and operators. Inheritance decreases

complexity by reducing the number of operations and operators, but this abstraction of

objects can make maintenance and design difficult. The two metrics used to measure

the amount of inheritance are the depth and breadth of the inheritance hierarchy.

Depth of Inheritance (OIT)

Number of Children (NOC)

Method Inheritance Factor (MIF): MIF is defined as the ratio of the sum of the

79

inherited methods in all classes of the system under consideration to the total number

of available methods (locally defined plus inherited) for all classes. The following

formula can be used:

MI F

Where:

Lf~l MiCCi)

LT~l MaCeO

Ma (ei) = Md (ei) + Mi (ei)

Eq. (3.5)

Attribute Inheritance Factor (AIF): AIF is defined as the ratio of the sum of

inherited attributes in all classes of the system under consideration to the total number

of available attributes (locally defined plus inherited) for all classes. The following

formula can be used:

Where:

Aa (ei) = Ad (ei) +Ai (ei)

It is defined analogous to MIF.

MOOD- Java Binding:

Ai (ei) number of inherited attributes

Eq. (3.6)

Ad (Ci) number of defined attributes with any access

3.4.2.6 Polymorphism Metrics:

Polymorphism Factor (PF): PF is defined as the ratio of the actual number of possible

different polymorphic situation for class Ci to the maximum number of possible distinct

polymorphic situations for class Ci. The following formula can be used:

80

3.4.2.7 Encapsulation Metrics:

Method Hiding Factor (MHF): MHF is defined as the ratio of the sum of the

invisibil ities of all methods defined in all classes to the total number of methods defined

in the system under consideration. The invisibility of a method is the percentage of the

total classes from which this method is not visible. The following formula can be used:

~!C ~Md (Ci) (l - V(M .))
L.tl=l L.tm=l mL

MHF - T C
Li= l Md(Ci)

\Vhet'e:
rj~l is_visible(Mmi.Cf)

V (Mull) = TC - l Eq. (3.7)

And:

1
1 iff j * i and Cj may 1

is_visible (MUll, Cj) = call Mmi
o otherwise

Attribute Hiding Factor (AHF): AHF is defined as the ratio of the sum of the

invisibilities of all attributes defined in all classes to the total number of attributes

defined in the system under consideration. The following formula can be used:

~T;l ~!d:~i)(l - V(Ami))
AH F = ~f;l Ad(Ci)

v,rhere:
rT,.Et is_" isible(Ami ,Cj)

V (Mull) = ~-..:....-----
- TC - l

And:

1
1 iff j * i an.d Cj may 1

is_visible (Ami. Cj) = reference Ami
o otherwise

3.5 Summary

Eq. (3.8)

The most challenging aspects of building SOA applications are quality. Despite the

increasing importance of service-oriented systems and numerous publications on QoS,

this concept still remains rather vaguely defined. It is due to complexity, multi­

dimensionality, and multi-sided and context-dependent nature of this concept. The QoS

may be considered from a service owner's, requestor's, designer' s, network's and other

perspectives. Quality assurance should be a central interest from the start, when

81

developing a service-oriented system. Beginning quality assurance late in the cycle can

be costly. Mostly a blend of corresponding quality assurance strategies will be required

to attain satisfactory level of quality assurance in service-oriented environments. No

single assurance framework is enough until now. Present assurance practices are

effective underneath service level.

One of the most important quality models is the quality model presented by McCall et

al. [52]. The second basic quality model is the quality model presented by Boehm et al.

[53]. Also, the International Organization for Standardization (ISO) [56] issued

ISO/IEC 9126 which is currently one of the most widespread quality standards. We

have noticed many similarities between the quality models but there are some

differences between them. However, it is not a simple task to precisely define the

perceived quality, because this quality is associated with subjective estimates

depending on the requestor's expectations, past experience and preferences that in turn

can be influenced even by the present fashion trends. On the other hand, this concept is

very important because the lack of common understanding of QoS is a serious obstacle

to direct efforts of all stakeholders of service-oriented systems under development

towards a particular common cause. Software metrics are a means of steering

development processes by assessing the quality of a software product and finding

imbalances in the code base. Metrics have always been used to define the perceived

quality and to help guide managers with decisions about their organizations. Several

metrics are used such as Size Metrics, Coupling Metrics, Complexity Metrics,

Cohesion Metrics, Inheritance Metrics, Polymorphism Metrics and Encapsulation

Metrics.

82

CHAPTER 4: DESIGN DEFECTS

4.1 Introduction

The core of every software system is its architecture. Designing software architecture

is a demanding task requiring much expertise and knowledge of different design

alternatives. Traditional software engineering attempts to find solutions to problems in

a variety of areas, such as testing, software design, requirements engineering. etc.

Design patterns are used in software development to provide reusable and documented

solutions to common design problems.

Software defects playa major role in determining the quality of a product. Defects

occur in any of the phases i.e., requirement phase, design phase, development phase.

implementation phase etc. Defects occurrences can be quantified by measuring the

defect density and comparing it against the requirements and Service Level Agreement

(SLA) contracts. Software faults or defects usually come under the quality factors such

as correctness, reliability etc. They have invariable effect and are interdependent

directly or indirectly on other quality factors like maintainability. availability.

performance, costlbenefit etc. Businesses spend a lot of money trying to fix defects as

it affects their outcome. Failure and a fault are considered as defects.

• Failure can be defined as the inability of a system or component to perform its

required functions within specified performance requirements and is an

observable behavioural deviation from the user requirement or product

specification.

• Fault can be defined as an incorrect step, process, or data definition in a

computer program which can cause certain failures.

Software design defects will exist as long as software itself exists and is proven to be

true in all aspects. Businesses tend to have a defect management system to tackle the

problem of solving it or providing information to the users/suppliers regarding the

issues. There are products available commercially to manage defects to help businesses.

83

The key requirements of a useful defect management system are:

• A continual improvement of defect management system until the software /

application is retired

• User and role-based allocation of issues/defects

• Defect identification and segregation (multiple products supported)

• Defect cross-referencing - preferably across segregation

• Root cause analysis (incomplete/inaccurate requirements, coding error, unit

testing, system testing) [33].

Architectural design decisions determine the ability of the system to meet functional

and quality attribute requirements. In the architecture evaluation, the architecture

should be analyzed to reveal its strengths and weaknesses, while eliciting any risks.

This chapter starts with an introduction to the software defects and explores what makes

defects and defects in system development life cycle, followed by a detailed description

of design defects in section 4.3. Furthermore, the impact of defects and prioritization

depending on the nature of the defect is explored. Additionally, section 4.4 summarizes

design attributes and their definitions, whereas section 4.5 discusses defect detection

categories and strategies. Finally, section 4.6 presents a summary of the chapter.

4.2 Defects in System Development Life Cycle

In fact, evolving business needs as a result of dynamic and adaptive strategies and

market requirements have created a critical demand for defect-free software systems

and services. The adoption of service architecture distributed systems, often spanning

several geographical locations and cultural differences, has increased the pressure on

business analysts, systems architects and developers to quickly deliver usable systems

in a cost-efficient manner that serve customers' needs. Such pressure has more than

often led to compromise in software quality, particularly in terms of reliability and

correctness, as a result of defects leakage from the early stages of projects' life cycles

see figure 4.1.

84

RequirementJ

R.D
leakage

Design

0.0
leaka

1.0 leakage

Testing

T.D
leakage

Figure 4.1: Defect Leakages in SOLe

Support

Nevertheless, defect prevention is an essential task in any software project, which

should be based on an organised problem-solving methodology to identify, analyse and

prevent the manifestation of defects. Defect prevention is a continuing process of

collecting the defect data, doing root cause analysis, determining and implementing the

corrective actions and sharing the findings learned to avoid future defects. The basic

part of the defect prevention process should begin with requirement analysis, which

translates customer requirements into product specifications without generating more

errors. Next, software architecture is formulated ; code reviewed and then testing is

carried out to observe the defects, followed by defect logging and documentation , see

figure 4.2 illustration of defect prevention [91].

The major advantage of early defect prevention, according to the National Institute of

Standard Technology (NIST), is that the cost of fixing one bug found in the production

stage of software is 15 hours compared to five hours of effort if the same bug was found

in the coding stage. Also, according to the Systems Sciences Institute at IBM, the cost

to fix a defect realised after product release is four to five times as much as one

recognised during design, and up to 100 times more than one real ised in the

maintenance phases as shown in figure 4.3 , it is much cheaper to fix defects at early

stages, such as requirement, design than at late stage of testing [91 & 92].

85

Organlzatlon
process

Defoct ----r----
Implement ation of Defect
Pre·vention Mechanism

Baseline for
Futu re P roje cts

Prevontlon ::!:~!!!!~!!!!!=-a
Loarn lng S hort-term .,J

Long-term
Act ions

A ctions

Action Team
Meeting

Software
P roduction

Software

Problem
Dofoct Loggcrl Database
Traokor

Build

Rovlews
Sample or
Prob lems

Root Cause
Analysis

Causal
Analysis
Meeting

Figure 4.2: Defect Prevention Cycle [91]

Software
Testing

Old Late Defect
Discovery Res ults in

Signific;lIlt Rewolk

Requirements Design &
Build

Defect
Plevention

Release
to Test

Release
to Field

______________ - TIME - - - ___________ ...

Io!oE·i,m;iBJi,CittijlZ',i§III·N,I!'·Cfflj .-

Software Defect Rate Of Discovery Versus Time

Figure 4.3: Software Defect - Rate of Discovery vis Time (92)

Figure 4.4 shows a typical waterfall model for the prevention of the defects in software

defect life cycle. A better design can prevent the majority of the errors. The aim of the

software development process should be to produce high quality products. Iffollowed

86

rigorously most of the defects can be avoided, also called a linear-sequential life cycle

model [93].

Waterfall Model of Defect Prevention Cycle

Figure 4.4: Defect Prevention Cycle [93]

To address this need, this research proposes an approach for early assessment of SOA

system quality by defining desirable quality attributes and tracing necessary metrics

required measuring them. Using the proposed approach , design problems can be

detected and resolved before they work into the implemented system where they are

more difficult to resolve.

4.3 Design Defects

Software design defects can be defined as " Imperfections in software development

processes that would cause software to fail to meet the desired expectations". Defect

prevention (OP) is a process of improving quality whose purpose is to identify the

common causes of defects, and change the relevant process(es) to prevent that type of

defect from recurring.

87

4.3.1 Defect Identification

Design defects, also called design anomalies, refer to design situations that adversely

affect the development of software. Design defects are unlikely to cause failures

directly, but may do it indirectly. In general, they make a system difficult to change,

which may in turn introduce bugs.

Defects are found by preplanned activities specifically intended to uncover defects. In

general, defects are identified at various stages of the software life cycle through

activities like design review, code inspection, GUI review, function and unit testing.

Design defects are bad solutions to recurring design problems in object-oriented

programming. Design defects occur when system components, interactions between

system components, interactions between the components and outside software /

hardware, or users are incorrectly designed. Reliable systems are often designed with

the possibility of component failure in mind, and with repercussions in place to

considerably reduce the odds of system failure. It is worth contemplating how totally

engrained the discipline of dependable system design is, outside software engineering.

Developing code free of defects is a major concern for the object-oriented software

community. Once defects are identified they are then classified using first level of

Orthogonal Defect Classification. Sorting and classifying design defects is complex

because of the multiple points of view available.

4.3.2 Defects Classification

Orthogonal Defect Classification (ODC) is the most prevailing technique for

identifying defects, wherein defects are grouped into types rather than considered

independently. ODC classifies defects at two different points in time:

• When the defect was first detected - opener section

• When the defect was fixed - closer section.

88

ODe methodology classifies each defect into orthogonal (mutually exclusive)

attributes, some technical and some managerial. These attributes provide all the

information to be able to shift through the enormous volume of data and arrive at

patterns on which root-cause analysis can be done. This coupled with good action

planning and tracking, can achieve a high degree of defect reduction and cross learning.

For small and medium projects, in order to save time and effort the defects can be

classified up to first level of ODe while critical projects, typically large projects, need

the defects to be classified deeply in order to analyse and understand.

Basili et al. [90] classified design defects according User Interface (UI) to: Omission,

Incorrect Fact, Inconsistency, Ambiguity and Extraneous Information. Whereas,

Gueheneuc [94] classified design defects as: Within classes (intra-class), Among

classes (inter-classes) and Semantic nature (behavioural).

4.3.3 Design Defects Categories

Based on the structure of the defect, the design defects are classified into the following

categories [95]:

• Interface Capability: This means a wrong design of the interface, so that it

does not give what is expected of it.

• Interface Specification: This means a wrong specification of the interface,

such that the parameters involved cannot deliver all the information needed to

provide the anticipated functionality. The specification of an interface is wrong,

so that the parameters involved cannot transfer all of the information required

for providing the intended functionality.

• Interface Description: This means an incomplete or misleading description of

the non-formal parts of the interface. The description of a variable or class

attribute or data structure invariant is an (internal) interface as well.

• Missing Design: A certain requirement is not covered in the design Boehm

observed in 1987 that, "This insight has been a major driver in focusing

industrial software practice on thorough requirements analysis and design, on

early verification and validation, and on up-front prototyping and simulation to

avoid costly downstream fixes."

89

Also, design defects may be defined as those that are caused by algorithm and

processing control, logic and sequence data. In addition, specifically to SOA, such

defects may be as a result of module interface description and/or external interface.

Such defects may be the result of wrong system component design, overlooked

relations between system components, failure for proper analysis description relations

between external and internal systems.

Design faults that adversely affect that development process of software are called

design defects or anomalies. These can instigate direct or indirect failures that make

any changes to a software system difficult and may produce a number of bugs [42].

Code smells and anti-patterns are commonly mentioned in previous studies and

literature [41 & 43]. The main purpose of introducing different types of defects is to

facilitate their detection and present an amendments process. There are different sets of

symptoms that have been defined as common design defects, such as code smells [43].

A "code smell" is any symptom in the source code of a program that possibly indicates

a deeper problem. Often the deeper problem hinted by a code smell can be uncovered

when the code is subjected to a short feedback cycle, where it is re-factored in small,

controlled steps, and the resulting design is examined to see if there are any further code

smells that indicate the need of more refactoring. From the point of view of a

programmer charged with performing refactoring, code smells are heuristics to indicate

when to re-factor, and what specific refactoring techniques to use. Thus, a code smell

is a driver for refactoring. The term appears to have been coined by Kent Beck on Wards

Wiki in the late I 990s. Usage of the term increased after it was featured in refactoring

improving the design of existing code [93]. Code smell is also a term used by agile

programmers. Determining what is and is not a code smell is often a subjective

judgment, and will often vary by language, developer and development methodology

as shown in figure 4.5.

90

Code Smell

Struaural

/ Message Chain

- Shalgun SU'VIHY

"'" Dupicated Coc» (be)

Inter-CIaS5 -+-- Lexic.3I - Comments (his)

Measurable / DupIicat8d Coc» (bis)

Y DaWClus

Structur '" No Polymorphism
Global Variable

Intra-Class -+-- Lexical

Comments (bis)

/ Controller Class

~ Procedural CI.1.S5

Figure 4.5: Classification of Code Smell [94J

Intra-classes: defects related to the internal structure of a class, whereas Inter-classes:

defects related to the external structure of the classes (public interface) and their

relations (inheritance, association, etc.). There are tools, sllch as Check style, PMD and

Find Bugs for Java, to automatically check for certain kinds of code smells as follow:

I. Duplicated code: Identical or very similar code exists In more than one

location.

2. Long method: A method function or procedure that has grown too large.

3. Lazy class: A class that does too little, or has a very small number of methods;

this also can be configured in our framework.

4. Long parameter list: The more parameters a method has, the more complex it

is. This point also can be configured in the framework.

5. Conditional complexity: Large conditional logic blocks, particularly blocks

that tend to grow larger or change significantly over time.

91

6. Dead code: The dead code is the code that never called.

7. Refused bequest: If you inherit from a class, but never use any of the inherited

functionality, should you really be using inheritance.

An anti-pattern is a literary form that describes a commonly occurring solution to a

design problem, which generates decidedly negative consequences. Anti-patterns

represent a different category of design defects as shown in figure 4.6.

-E
structural ~

Blob J God Class

Inter-Ciass Lexical ~ Fu''"'"'''' Oe<cmpoOtion

Measu~
AntiPattem

-C
Structural ~

~
Spaghetti Code

Intra-Ciass Lexical
/ / Swiss Army Knife

Measurn Y

Figure 4.6: Classification of Anti-Patterns 195)

I-Blob: Single class with a large number of attributes or operations, or both, usually

indicates the presence of the Blob.

2-Functional Decomposition: Also known as no object-oriented anti-pattern. This

anti-pattern is the result of experienced, non-object-oriented developers who design

and implement an application in an object-oriented language. When developers are

comfortable with a "main" routine that calls numerous sub-routines, they may tend

to make every sub-routine a class, ignoring class hierarchy altogether (and pretty

much ignoring object orientation entirely). The resulting code resembles a structural

language such as C or FORTRAN in class structure. It can be incredibly complex,

as smart procedural developers devise very clever ways to replicate their time-tested

methods in an object-oriented architecture.

3-Spagbetti Code: Spaghetti Code appears as a program or system that contains

very little software structure. Coding and progressive extensions compromise the

software structure to such an extent that the structure lacks clarity, even to the

original developer, if he or she is away from the software for any length oftime. If

developed using an object-oriented language, the software may include a small

92

number of objects that contain methods with very large implementations that invoke

a single. multi-stage process flow. Furthermore. the object methods are invoked in a

very predictable manner. and there is a negligible degree of dynamic interaction

between the objects in the system. The system is very difficult to maintain and

extend. and there is no opportunity to reuse the objects and modules in other similar

systems.

4-Swiss Army Knife: A Swiss Army Knife. also known as Kitchen Sink, is an

excessively complex class interface. The designer attempts to provide for all

possible uses of the class. He or she adds a large number of interface signatures in a

futile attempt to meet all possible needs. Real-world examples of Swiss Army Knife

include dozens to thousands of method signatures for a single class. The designer

may not have a clear abstraction or purpose for the class, which is represented by

the lack of focus in the interface. Swiss Army Knives are prevalent in commercial

software interfaces, where vendors are attempting to make their products applicable

to all possible applications.

5-Poltergeists: Poltergeists are classes with limited responsibilities and roles to play

in the system; therefore, their effective life cycle is quite brief. Poltergeists clutter

software designs, creating unnecessary abstractions; they are excessively complex,

hard to understand, and hard to maintain. This anti-pattern is typical in cases where

designers familiar with process modelling but new to object-oriented design define

architectures. In this anti-pattern, it is possible to identify one or more ghostlike

apparition classes that appear only briefly to initiate some action in another more

permanent class. The Poltergeist anti-pattern is usually intentional on the part of

some greenhorn architect who doesn't really understand the object-oriented concept.

Nevertheless, quality managers and project managers need to identify, while at the same

time engage in, a strategy for defect detection and classification that adds value and

benefits the project [65]. This is one of the driving parameters of the project. It is

therefore evident that such defects detection and classification should be highly

effective and efficient, according to [96], in order to find a balance between the defect

cost and customer detected defects.

Developers will understand the source code easily if the defects have been detected and

removed. However, it is time-consuming, as it is to some extent a manual process [91].

93

The amount of resources available may not cover all the type of defects, as there are

known and unknown defects. Thus, several automated detection techniques have been

developed to handle this enormous amount of activity [[43, 94, 97 - 99].

Design defect detection and classification therefore should be done early into the

project to ensure the organization benefits from a cost perspective, as such defects are

costly to resolve, especially if noticed later into the project [91].

On the other hand, various and extensive research work and solutions have been done,

especially in the recent past, which focus on object oriented software design in the

development cycle. These solutions use tools for the detection and classification of

design defects that demonstrate high levels of precision.

Nevertheless, all these tools are based on the ability to detect defects and classify them

without diligently factoring the cost of addressing such defects, which calls for a proper

classification framework, and correct information attachment on the reported defects.

It is quite necessary to have a solution developed from the perspective of business

requirements rather than system perspective. Table 4.1 shows an example of SOA

Design Defects and their definitions.

94

SOA Design Defects

Algorithmic and

Processing Defects

Control, Logic, and

Sequence Defects

Omission

Incorrect Fact

Inconsistency

Ambiguity

Extraneous

Information

Functional

Description Defects

Table 4.1: Design Defects

Definition

These occur when the processing steps in the algorithm as described by

the pseudo code are incorrect.

In the latter case a step may be missing or a step may be duplicated.

In the case of algorithm reuse, a designer may have selected an

inappropriate algorithm for this problem (it may not work for all case)

Control defects occur when logic now in the pseudo code is not correct.

Logic defects usually relate to incorrect use of logic operators, such as less

than <, greater than >, etc.

These may be used incorrectly in a Boolean expression controlling a

branching instruction.

Necessary information about the system has been omitted from the

software artifact.

Some of the information in the software artifact contradicts with the

information In the requirements document or the general domain

knowledge forthe usage of the software.

The information within one part of the software artifact is inconsistent

with other information in the software artifact and such types of user

design could also lead to defect.

Information within the software artifact is ambiguous, i.e. any of a

number of interpretations may be derived that should not be the

prerogative of the developer doing the implementation.

Information is provided that is not needed or used can also confuse the

user and lead to defects.

The defects in this category include incorrect, missing, and/or unclear

design elements. These defects are best detected during a design review.

95

This category includes any design defect related to the internal structure
Intra-class Defects

ofa class.

Behavioral Defects
All the design defects related to the application semantics belong to thi s

category.

This category encloses any design defect related to the external structure
Inter-class Defects

of the classes (their public interface) and their relationships.

Design feature/approach is not clear to the reviewer. Also includes
Ambiguous Design

ambiguous use of words or unclear design features.

Ambiguous Requirement is not clear to the reviewer. Also includes ambiguous u e of

Requirements words - e.g. Like, such as, may be, could be, might etc.

Some information of the SRS document is not relevant to the problem
Superfluous

being solved or will not contribute to the solution.

Not-conforming to Some items in the requirement are written in a way not conforming to the

standards standards determined by quality assurance representatives.

Some requirements are not implementable due to system constraints,
Not-implementable

human resources, budget, or technology limitations.

Some requirements are risk prone due to unstable requirements or
Risk-prone

requirements with high interdependence.

4.4 Design Attributes

Perepletchikov et al. [76] provided a comparative study on the impact of object

orientation and service orientation on the structural attributes of size, complexity,

coupling and cohesion.

Recently, Shaik et al. [81] studied design components that were exclusive and defined

the architecture of an object oriented design and listed the key terms in object oriented

development environment: Class, Object, Method, Message Instantiation, Inheritance,

96

Polymorphism, Encapsulation, Cohesion, Coupling, Design Size, Hierarchies,

Abstraction and Complexity.

In 2011 , Yaser and Suleiman [50] assessed software quality attributes of Service­

Oriented Software Development Paradigms using four SOA design attribute: Size,

Complexity, Coupling and Cohesion. Table 4.2 shows a summary of Design Attributes

and their definitions.

Table 4.2: Design Attributes

Design Attributes Definition

A set of objects that share a common structure and common behaviour

Class manifested by a set of methods; the set serves as a template from which objects

can be instantiated.

An instantiation of some class which is able to save a state (information) and
Object

which offers a number of operations to examine or affect this state.

An operation upon an object, defined as part of the declaration of a class.

Method Methods are operations but not all operations are actual methods declared for

a specific class.

Message A request that an object makes of another object to perform an operation.

Design size measures the size of design elements, typically by counting the

Design Size elements contained within the design. For example, the number of operations

in a class, the number of classes in a package, and so on.

Complexity measures the degree of connectivity between elements of a design

unit. Whereas size counts the elements in a design unit, and coupling the

relationships/dependencies leaving the design unit boundary, complexity is

Complexity concerned with the relationships/dependencies between the elements in the

design unit. For instance, counting the number method invocations among the

methods within one class can be considered a measure of class complexity, or

the number of transitions between the states in a state diagram.

97

Coupling Coupling is the degree to which the elements in a design are connected.

Cohesion is the degree to which the elements in a design unit (package, class

Cohesion etc.) are logically related, or "belong together". As such, cohesion is a semantic

concept.

A relationship among classes wherein one class shares methods defined in one
Inheritance

(for single inheritance) or more (for multiple inheritance) other classes.

The ability of an object to interpret a message differently at execution
Polymorphism

depending upon the super class of the calling object.

The process of bundling together the elements of an abstraction that constitute
Encapsulation

its structure and behaviour.

Hierarchies are used to represent different general izat ion-special izat ion
Hierarchies

concepts in a design.

Abstraction A measure of the generalization specialization aspect of the design.

The process of creating an instance of the object and binding or adding the
Instantiation

specific data.

4.5 Defect Detection
Software defect prevention is an important part of the software development. The

quality, reliability and cost of the software product heavily depend on the software

defect detection and prevention process. In the development of software product 40%

or more of the project time is spent on defect detection activities. Defects are found by

pre-planned activities specifically intended to uncover defects. In general, defects are

identified at various stages of software life cycle through activities like design review,

code inspection, GUI (graphical user interface) review, function and unit testing. Once

defects are identi fied they are then classi fied using the first level of Orthogonal Defect

Classification.

Software reviews have been extensively studied. However, very little information on

the detected defect types was provided in the most recent review articles. Different

98

techniques, frameworks and strategies focused on detecting and fixing design defects

in software have been presented in several studies [] 00 - 103]. However. most of the

previous work has focused on solving design defect problems in traditional applications

and monolithic architectures. On the other hand, the current study is focusing on

detecting defects in distributed component-based applications, particularly those based

on SOA paradigm.

4.5.1 Defect Detection Categories

Defect classification is the most prevailing technique for identifying defects wherein

defects are grouped into categories rather than considered independently. Defects

detection research work can be classified into three broad categories:

• Visual detection and inspection

• Rules-driven detection-correction

• A combination of detection and correction techniques.

The first category, visual detection and inspection, is based on the available

visualization design environments combined with human ability to analyze,

conceptualize and incorporate previous knowledge and design expertise. The ability to

inspect complex contextual information is fundamental for design defect detection.

Approaches for visual design detection have been proposed in literature. A pattem­

based framework for the detection of software anomalies by representing potential

defects with different colours was proposed by Kothari et al [104]. Another approach

presented by Dhambri [105] is based on semi-automatic detecting of design anomalies

and defects by combining automatic defects symptoms detection with human analysis.

The main issue with the visualization approach is the fact that it is hard to evaluate for

complex large-scale systems.

The second category, rules-driven detection-correction, is based on a set of predefined

rules and quality metrics. Such an approach is clearly based on a well-defined list of

rules and metrics, as proposed by Marinescu [99], for detecting design defects in object­

oriented design at system, sub-system, class and method levels. Other works focused

on the use of metrics to improve the accuracy of detection and for frameworks

evaluation, as proposed in [104], where the concept of multi-metrics, n-tuples of

99

metrics expressing a quality criterion, has been presented and discussed. The rules,

however, require defining threshold values for the metrics, which has been addressed

in [106] where defect detection is expressed as "fuzzy rules with fuzzy labels for

metrics".

Other rule-driven approaches have adopted an abstract rule language to describe design

defects symptoms, such as the DECOR approach. This involves describing classes,

structures etc and their roles, which are then mapped to detection algorithms. The

approach also adopts a heuristic approximation of the threshold values for the metrics

[66] DECOR was further extended in [97] to sorting defects and to support uncertainty,

which was, according to Bayesian belief, networks that implement the detection rules

of DECOR.

The third category of work is based on implicit detection of defects, ie they are not

detected explicitly because the approaches generate a refactoring strategy, which fixes

detected defects, first by detecting elements that can be changed to improve the quality

criterion. A refactoring approach based on problem optimisation was proposed in [I 07],

where up to 12 metrics were used to measure the impact of ref acto ring, including simple

ones such as moving methods between classes. Overall the aim of the optimisation is

to find out the sequence that maximises a function reflecting the variations of metrics

[108].

4.5.2 Defect Detection Strategies

4.5.2.1 Walkthrough and Visual Inspection

A walkthrough involves a statement of objectives for the entire process, the software

product, and any regulations, standards or guidelines. The process is considered

successful when the entire software has been examined, and recommendations have

been addressed [43].

A prominent feature ofthe walkthrough strategy in design is that it allows the designers

to obtain early substantiation of the design decisions related to software. The scope of

a walkthrough covers design of the GUI, treatment of content and elements of the

100

software functionality. Walkthroughs are important to both the designer and the

customer, in that they provide a way to access and identify whether the design addresses

the project's goal and meets the requirements.

An effective walkthrough has to include specific components, in an effort to relay the

design specifics to the customer. The developer guides members of the development

team and other interested parties through a segment of the design. The aim of a

walkthrough is to get a valid feedback from the client or peers, i.e. other developers.

Usually, the team comments on standards, errors or violations in the development

process [109].

Some aspects of walkthroughs pose potential drawbacks to the process. First, the

designer has to prepare for the meeting. This involves coordinating the effort and time

of each participant and making sure that their personal work plans are synchronised

with the project's schedule [110]. Inadequate individual preparation may result in poor

review, or misconception of the principles applied in the design. Another aspect of a

walkthrough that may make it ineffective is the selection of the right participants. It is

important to invite the participants with relevant knowledge background and skills to

make the exercise meaningful for all. Inviting the right participants ensures that the

walkthrough adds value and quality to the product and not to the participants learning

[Ill].

The improvement of the project quality is of the utmost importance. This assists in

increasing team morale and hence enhances the development process. For a

walkthrough to be successful and systematic, at least two members have to be involved.

The walkthrough leader serves as the author or recorder. A walkthrough member should

not hold a managerial post over other members.

4.5.2.2 Object-Oriented Defect Detection

Design defects originate from poor design choices. They degrade quality of the designs;

therefore, they present opportunities for quality improvement. The design defects are

defined as wrong solutions to regular problems in object-oriented design. Basically,

they come from UML class diagrams that encompass problems at different levels of

complexity. Defects in object-oriented applications arise as a result of poor design

101

choices which cause degrading effects on the [110]. Various tools and methods have

been developed to aid in error detection and correction during software development.

However, due to non-specification of design defects, there exist a few appropriate

methods for detection.

In object-oriented designs, defects are defined as wrong solutions to recurrmg

problems. Problems may occur at different levels of design, ranging from the

architectural level, anti-patterns, to the low level, such as code smells. A good example

of a common defect in object-oriented applications is the "spaghetti code", which

involves unstructured classes, thus declaring long methods with no parameters [112].

Defect detection and correction in object-oriented programming is done early in

software development to reduce development costs for subsequent steps. Designs that

are free from defects are easy to implement. These defect detection procedures may be

time and resource consuming. Various approaches have been developed to detect and

correct defects in object-oriented designs.

However, design detection has some shortcomings where the design defects are not

precisely specified. It only provides a systematic method that can automatically detect

and correct the errors. The size of the software applications makes it harder to achieve

non-defective design using this methodology. In addition, the object-oriented defect

detection can be expensive which is due to the complexities of software designs, hence

requiring professionals and experienced designers.

4.5.2.3 DECOR Method

DECOR stands for Defect Detection for Correction [113]. It is applied to specific high­

level design defects, and determines correction algorithms based on defect

specification. This method employs four main stages, from analysis of the defect, to

detection and correction of defects.

Specification is the first stage in this method. It entails characterization of all the

defects based on their characteristics and effect on the system. Taxonomy is established,

describing terminology and classification of design defects related to theoretical

102

descriptions to avoid misinterpretation. From the specification of the system's design

goals, defects can be detected by comparing the system's performance to its design

goals. A model of the system is created for easy analysis of possible sources of defects.

Detection from the specified areas follows. Techniques and algorithms are defined to

detect design defects from the system model previously developed. These techniques

are based on semantics, structure and metrics of the system. The system metrics define

its size, complexity, coupling and cohesion [113]. Defects in a system are directly

proportional to the magnitude description of the system's metrics. Metric values are

classified into five different levels: very low, low, medium, high and very high.

Corrections are done sequentially while testing the system to determine proper system

functionality. Improvements on the design are made precisely with the intention of

matching the systems performance to the intended goals. After the correction of the

detected defects in the design, the software is then validated.

Validation involves a series of steps and experiments to evaluate system performance

after having corrected the design defects of the system. The previous performance is

compared to the current performance and functionality to determine the effect after

error correction.

It is essential to specify the design defects in object-oriented programming. This acts

as a framework for generating detection algorithms of a system. There exist methods

developed to generate detection algorithms automatically, based on specifications

written using a domain-specific language [113]. Thus, a framework for the automatic

detection and the classification of design defects is proposed in the next chapter.

4.5.3 Defect Prevention Activities

The five general activities of defect prevention are [91]:

1. Software Requirements Analysis

Errors in software requirements and software design documents are more frequent than

errors in the source code itself, according to Computer Finance Magazine [114].

103

Defects introduced during the requirements and design phase are not only more

probable but also are more severe and more difficult to remove. Front-end errors in

requirements and design cannot be found and removed via testing, but instead need pre­

test reviews and inspections.

2. Reviews: Self-Review and Peer Review

Self-review is one of the most effective activities in uncovering the defects which may

later be discovered by a testing team or directly by a customer. The majority of the

software organizations is now making this a part of "coding best practices" and is really

increasing their product quality.

3. Defect Logging and Documentation

Effective defect tracking begins with a systematic process. A structured tracking

process begins with initially logging the defects, investigating the defects, then

providing the structure to resolve them. Defect analysis and reporting offer a powerful

means to manage defects and defect depletion trends, hence, costs.

4. Root Cause Analysis and Preventive Measures Determination

After defects are logged and documented, the next step is to analyze them. Generally

the designated defect prevention coordinator or development project leader facilitates

a meeting to explore root causes. Root cause analysis is the process of finding and

eliminating the cause, which would prevent the problem from recurring. Finding the

causes and eliminating them are equally important. The cause-and-effect diagram, also

known as a fish bone diagram, is a simple graphical technique for sorting and relating

factors that contribute to a given situation.

Once the root causes are documented, finding ways to eliminate them requires another

round ofbrainstonning. The object is to detennine what changes should be incorporated

in the processes so that recurrence of the defects can be minimized.

5. Embedding Procedures into Software Development Process

Implementation is the toughest of all activities of defect prevention. It requires total

commitment from the development team and management. A plan of action is made

for deployment of the modification of the existing processes or introduction of the new

104

ones with the consent of management and the team. Monthly status of the team should

mention the severe defects and their analyses.

4.6 Related Approaches
Agile methodologies embrace iterations [92]. Teams work together with stakeholders

to define quick prototypes, proof of concepts, or other visual means to describe the

problem to be solved. The team defines the requirements for the iteration, develops the

code, and defines and runs integrated test scripts, and the users verify the results.

The most widely used methodologies based on the agile philosophy are XP and Scrum.

These differ in particulars but share the iterative approach described above.

• XP: XP stands for extreme programming. It concentrates on the development

rather than managerial aspects of software projects. XP was designed so that

organizations would be free to adopt all or part of the methodology.

• Serum: In rugby, "scrum" (related to "scrimmage") is the term for a huddled

mass of players engaged with each other to get a job done. In software

development, the job is to put out a release. Scrum for software development

came out of the rapid prototyping community because prototypes wanted a

methodology that would support an environment in which the requirements

were not only incomplete at the start, but also could change rapidly during

development. Unlike XP, Scrum methodology includes both managerial and

development processes.

Early feedback on defects in SOLe will fit within the agile methodology as they are

communicated to stakeholders. and agreed on the identification and corrections of

defects as well as quality assurance before moving to the next stages of the software

development lifecycle such as implementation and testing.

From an architectural point of view, the Architecture Defect Detection (A TAM) [93]

considers how early architectural decisions define how the system is organized in terms

of permanent data management, data communication, data input and output, coarse-

105

grained modularization and allocation within the organizational structure. Such a

system's "back-bone" has been referred to as the System Organization Pattern.

Analyzing architecture early in the development life cycle can help identify significant

technical risks and mitigate them at a minimal cost. However, architecture assessment

methods, such as the Architecture Trade-off Analysis Method, cannot easily be applied

very early for architecture defined only conceptually. In addition, the influence of the

System Organization Pattern on the detailed properties of the final system cannot be

precisely quantified, which makes applying known architecture analysis methods even

more difficult. The Early Architecture Evaluation Method has been developed to assess

the System Organization Pattern much earlier than an A TAM-based assessment would

be possible, i.e. in the inception phase of the Rational Unified Process. The method

defines an architecture evaluation process, at the heart of which is an assessment model

based on the Goal-Question-Metric scheme. The method identifies substantial risks

posed by the architectural decisions comprising the System Organization Pattern. The

method has been evaluated on seven real-life examples of large-scale systems.

4.7 Summary
Software design is one of the most important and key activities in the system

development life cycle (SDLe) phase that ensures the quality of software. Different

key areas of design are very vital to be taken into consideration while designing

software. Software design describes how the software system is decomposed and

managed in smaller components. From the studies made by various software

development communities, it is evident that most serious failures in software products

are due to errors in the requirements and design phases. The detection of design defects

is important to improve the quality of software systems, to ease their evolution, and

thus to reduce the overall cost of software development. The computation times of the

design defects vary with the design defects and the systems. However, the manual

detection of design defects is tedious and time-consuming.

Defect prevention is an essential task in any software project. Defect prevention is a

continuing process of collecting the defect data, doing root cause analysis, determining

and implementing the corrective actions and sharing the findings learned to avoid future

106

defects. Design defects are bad solutions to recurring design problems in object­

oriented programming. Based on the structure of the defect, the design defects are

classified into Interface Capability, Interface Specification, Interface Description and

Missing Design. Software defect prevention is an important part of the software

development. The quality, reliability and cost of the software product heavily depend

on the software defect detection and prevention process. The main Defect Detection

Strategies are: Walkthrough and Visual Inspection, Object-oriented Defect Detection

and DECOR Method. Finally, defect prevention is not an individual exercise but a team

effort. The software development team should be striving to improve its process by

identifying defects early. minimizing resolution time and therefore reducing project

costs. There are a number of issues with the discussed approaches. Firstly. they are

mainly related to object oriented paradigm and do not tackle service oriented

architecture; secondly. they are not fully automated; and finally. they do not link

software quality with defect designs.

107

CHAPTER 5: THE PROPOSED FRAMEWORK

5.1 Introduction
The SOA model has been realized from the need for an interdisciplinary and enhanced

service modelling approach. SOA is an emerging architectural style that is instrumental

in creating next-generation applications. In SOA software design, there two key

principles for the entire process, pattern and anti-patterns. Patterns are guidance steps

and best practices used in the design process. Anti-patterns are common design flaws

in the process of coming up with a software product [114]. Recognising anti-patterns is

a fundamental part of software development; it allows the developer to learn from

previous mistakes.

Metric computation is a way of evaluating software's capabilities in terms of size,

cohesion or complexity. It is derived from quality goals in the documentation. Metrics

in SOA software design involves the evaluation of models and business processes. The

detection process involves correct identification of patterns and anti-patterns. This

process may be fuzzy or inaccurate, but all possible design flaws can be identified by

locating discontinuities in the patterns [115]. Primitive rules may also suggest the

presence of anti-patterns. A more accurate detection process can also be undertaken.

Defect identification may seem impractical since one needs to identify each defect from

the fuzzy analysis. Thus, historically design defect detection is done manually using

visual detection and inspection.

This chapter starts with the proposed framework on design defects and software quality

assurance (DESQA), the framework description in section 5.2 includes its objectives

and assumptions together with a detailed and comprehensive description of the

framework. Section 5.3 describes in details the process of using the proposed

framework and its formalization. Section 5.4 describes the framework design execution

including the potential technologies for its applications. Finally, section 5.5 presents a

summary of the chapter.

108

5.2 Design Defects and Software Quality Assurance Framework

DESQA

Defect prevention is an important activity in any software project. In most software

organizations, the project team focuses on defect detection and rework. Thus, defect

prevention, often becomes a neglected component. It is therefore advisable to make

measures that prevent the defect from being introduced into the software products right

from early stages of the project. Defect prevention provides the greatest cost and

schedule savings over the duration of the application development efforts. Detection of

errors in the development life cycle helps to prevent the migration of errors from

requirement specification to design and from design into code. The DESQA framework

will be applied to UML (Unified Modeling Language) design diagrams, which are

generated from the project requirement specifications, in order to minimize design

defects leakage into the implementation stage. In addition, the DESQA framework aims

to provide a software quality estimation, thus linking design defects to particular

software quality factors.

5.2.1 Framework Objective

Developing quality code is a major concern for the software community. Producing

bug-free, extensible, and adaptable code is a hard task. It requires skills, experience,

and a deep understanding of the structure and behaviour of the software under

development. Many studies [17, 20, 53, 71 & 73] addressed the problems of automating

the detection and the correction of design defects. The link between design defects,

metrics and software quality factors has not been addressed; in addition the impact of

design defects on software quality estimation has not been evaluated. Thus, there is a

clear need for an integrated framework not only for the identification of the design

defects but also for providing software quality estimation. Consequently, the purpose

of this study is to propose a framework to automate the detection of design defects

based on design patterns and using design constraints, and to use software metrics for

measurement of defects and estimation of software quality factors.

5.2.2 Framework Assumptions

The DESQA framework was based on the following assumptions:

109

• The DESQA framework can be used with Design phase only (Conceptual ,

Preliminary and Final design phases).

• All SOA design attributes, quality metrics, SOA design defects and SOA quality

attributes are well defined and can be measured.

5.2.3 Framework Description

Starting with eliciting the project requirement, and following the requirement

specification a detailed design of the system is produced. The design is then converted

to some sort of description, for example textual form , which is then analysed by an

intelligent parser. The parser has two functions , first it checks against an existing defect

database for potential defects. It also checks for potential corrective action using the

defects portfolio. Figure 5.1 shows the stages of the DESQA framework as well as the

flow between the stages of the framework.

Requirem ents

Corr ect ion &
Action

Oesign

Description

Inte lligent

Portfolio

"Oefect s

Assessm e nt"

Figure 5.1: The Functionality of the Framework

In the DESQA framework the design is considered in three stages, conceptual design,

preliminary design and final design. The defects database is reflex the different stages.

Moreover, code generation and intelligent techniques for defect detection and defect

portfolio are also used as shown in figure 5.2.

110

"Defect
PortfoBo"

Figure 5.2: The DESQA Framework

The DESQA framework is a comprehensive, multidimensional framework of SOA

defects detection. The measures used in this work were adapted primarily from previous

research; the components of the DESQA framework are shown in figure 5.3. 1t is

important to note that figure 5.3 integrates the previous diagrams presented in figures

5.1 and 5.2.

111

1
Duign SOA ~ De:foca Req~me:nts I :J - ~:ri"'ic p.....,.".,.;.....

~'
.., Daf .. c c -

- C-crol Lo:ic.. Se.p_c,e

Description
Drle-cc

' i" · o..zm-.., - h ce:rT'''c [1". C[
· b~~~·

- • .ua~~
- hcr~fIIPm IraD:rw.aao. - l"-CDe.d DP.Kri,pm- De'fecc
- h<r~ Drlecc

Intelligent P.i:rR.r - :Bei'Utiar.d nne-CD

L - h . er-da!c nnKC
CorTKtion &:

Action 1-'"
~ A[aiIo.tft

- 01£:5 - OIojec[

i !
-Ai - llr.n:a=e
-Dri,:rc" .. - C-plni[y
- c..,JiIo: -c
- ID .. riuac .. -~-.~

ArtifU:Dl
~

-~.- _Hia r.a:..,. ...

In~ - A. .. cr..: -I .. u :."lia

Techniques

SIOA. QMIi<y Actriloec_

~ - --- · .:WqWili~ - .-\a.d\'UloiIiC'" - ~ - ~ - A. - .~ ... ui..'lIiIi~ ..
~~:;@@- - CbI!:~~ - <A:rr'K c....,. c' •• ~.c~

'J'" == - & r:y - Ia[Pn!perA'lIiIi~'

'- ~ -r i - .M.fiIia.liiIicy -Pam· c ..

. " - - R.......wJi~· -Sah.1IiIi~' - ~ - - - Sec:.rir:y - Stdilir:y

! - T ,mtodoiliiC'" - U:u.loi1ir:y
- "(j_ .. a~~·

I
'~:u.aia

I De&cts Portfolio LOC.. oc. r oc. He. AlI. WMc..
DIT. 1'04 CBO. JUPC ALCOA!

t !

Figure 5.3: The DESQA Framework Components

In real ity, however, every study has interpreted and classified qua li ty system metrics

conform to its context, the proposed approach consists of eleven items to measure SOA

Des ign Defects, fourteen items to measure SOA Design Attributes, seventeen items

were selected to measure SOA Quality Attributes and eleven items to measure SOA

Quality Metri cs. The user can adapt the number of se lected items according to the actua l

case.

112

5.3 Framework Formalization
The framework formalization process consists of four main phases. First phase (design

phase), provides a survey of publications on which the DESQA framework is based.

Second phase (building phase), four steps or parts are used to build the proposed

framework. Third (preparation phase), provides six main steps used to prepare the

DESQA framework for usage. Finally (application phase), it provides a formula for

measuring the impacts of SOA design defects on quality attributes.

5.3.1 Design Phase

• Measures of SOA Design Defects: Eleven items were selected to measure

SOA Design Defects; these items were selected from the previous studies done

by [85 & 90].

• Measures of SO A Design Attributes: Fourteen items were selected to measure

SOA Design Attributes; these items were selected from the previous studies

done by [43, 86 & 90].

• Measures of SOA Quality Attributes: Seventeen items were selected to

measure SOA Quality Attributes from the previous studies done by [34, 45,46,

55&57-61].

• Measures of SOA Quality Metrics: Eleven items were selected to measure

SOA Quality Metrics from the previous studies done by [43, 55, 59, 71 -74 &

77 - 81].

5.3.2 Building Phase

The intent of these measures is to measure customer satisfaction by assessing the design

defects and its impacts on design quality. The approach tool consists of four parts and

their relationship as shown in figure 5.4:

• Part (I) represents SOA design attributes.

• Example (but not limited to): size, complexity, coupling, and cohesion.

• Part (II) represents metrics may be used to measure defects' impact on

quality attributes.

113

• Example (but not lim ited to): LOC, CC, ECC, HC, MI , WMC, OfT, NOC, C80,

RFC& LCOM.

• Part (III) rep resents SOA des ign defects.

• Example (but not limited to) : Algori thmic and Process ing Defects, Contro l,

Logic, and Sequence Defects, Data Defects and Functiona l Desc ription Defects.

• Part (IV) represents SOA qua lity a ttributes.

• Example (but not limi ted to) : Availabili ty, Security, Perfo rmance,

Modifiabil ity, Scalab il ity, Adaptabili ty, Interoperability and Audi tabili ty.

.usei!ing esi~ O'ffects Impact on Qu,ility Attrib ute;

SOA Dri~ Attrib ute;

I
C_--- J - --=--c---c-

Size Complexity Coup~ Cohesion

I

SOA D6ign :fetries

I

L -I 1 1 -I 1 1 '1 1

eso NOC Loe Ece ·tC ·rr ',n·te OIT REF LCO t

I I I I
I

I I I 1

SOA 6i.gn [)efE<Ct3

.. -
T

AIg rithmic Ami Control LogicAmi
DA :It Functional Oescripti'lIl

Proce»in.!: Secuence
I

Quality Attrib ute;

,...L ~ ~ J- ~ ;.L... :.I ~
QI b b

b
b u b b

b c:
til .0

.0 -
~ - .0 .0 .0 ..: .0 !l iii ;:j
~ .! oj

:0 :::l. :::l.

~
QJ

!S 0 ? '0
til Qj 0 '0 :::i rll § < Il. :£ < <

"""'- i.-o ~ """'- """'- ~
E

'---
0.....-

Figure 5.4 : Rela tions Outline

114

5.3.3 Preparation Phase

The preparation phase consists of six main steps as follows.

The first step in preparing the "Design Defects Measuring Matrix" is to select the most

common design attributes as shown in figure 5.5, these attributes are:

• Class: A set of objects that share a common structure and common behav iour

manifested by a set of methods.

• Object: An instantiation of some class which is able to save a state

(information) and which offers a number of operations to examine or affect this

state.

• Method: An operation upon an object, defined as part of the declaration of a

class.

• Message: A request that an object makes of another object to perform an

operation.

• Design Size: Measures the size of design elements, typically by counting the

elements contained within the design unit.

• Complexity: Measures the degree of connectivity between elements of a design

unit.

• Coupling: The degree to which the elements in a design are connected.

• Cohesion: The degree to which the elements in a design unit.

• Inheritance: The relationship among classes wherein one class shares methods

defined in one (for single inheritance) or more (for multiple inheritance) other

classes.

• Polymorphism: The ability of an object to interpret a message differently at

execution depending upon the super class of the calling object.

• Encapsulation: The process of bundling together the elements of an abstraction

that constitute its structure and behaviour.

• Hierarchies: Used to represent different generalization-specialization concepts

in a design.

• Abstraction: A measure of the generalization specialization aspect of the

design.

115

• Instantiation: The process of creating an instance of the object and binding or

adding the specific data.

SOA Design Attribute Metrics SOA Design Defects
SOA Quality

Attributes

Size

Complexity

Coupling

Cohesion

Figure 5.5: The First Step in Preparing the Proposed Design Defects Measuring
Matrix

The second step is to define the suitable metrics used to describe the selected design

attributes as shown in figure 5.6. The following metrics are the most common metrics:

- Lines-Of-Code metric (LOC) - Weighted Methods per Class (WMC)

- Depth of Inheritance Tree (DIT) - Response set For a Class (RFC)

- Source Line of Code (SLOC) - Coupling Between Object (CBO)

- Number Of Children (NOC) - Cyclomatic Complexity (CC)

- Halstead ' s Complexity (HC) - Maintainability Index (MI)

- Method Inheritance Factor (MIF) - Lack of Cohesion of Methods (LCOM)

- Attribute Inheritance Factor (AIF) - Polymorphism Factor (PF)

- Method Hiding Factor (MHF) - Attribute Hiding Factor (AHF)

Once we have narrowed and assigned the list of metrics to consider for each design

attribute, we can go to the next step.

116

SOADesign
Metrics SOA Design Defects SOA Quality Attributes

Attribute

Size

Complexity

Coupling
LOC,

Cohesion CC,

ECC,
...

HC, MI,

WMC, ...
DIT,

NOC, ...
CBO,

RFC& ...
LCOM

...

...

Figure 5.6: The Second Step in Preparing the Proposed Design Defects

Measuring Matrix

The third step is to define the most common design defects as shown in figure 5.7,

these design defects are:

•

•

Algorithmic and Processing Defects that occur when the processing steps in

the algorithm as described by the pseudo code are incorrect.

Control, Logic and Sequence Defects that occur when logic now in the

pseudo code is not correct. Logic defects usually related to incorrect lise oflogic

operators.

117

• Omission it means that necessary information about the system has been

omitted from the software artefact.

• Incorrect Fact it means that some information in the software artefact

contradicts information in the requirements document or the general domain

knowledge.

• Inconsistency it means that information within one part of the software artefact

is inconsistent with other information in the software artefact.

• Ambiguity it means that information within the software artefact is ambiguous.

• Extraneous Information it means that information is provided that is not

needed or used.

• Functional Description Defects that include incorrect, missing, and/or unclear

design elements.

• Intra-class Defects that includes any design defect related to the internal

structure of a class.

• Behavioral Defects it means all design defects related to the application

semantics.

• Inter-class Defects it encloses any design defect related to the external structure

of the classes and their relationships.

SOA Design
Metrics SOA Design Defects

SOA Quality

Attribute Attributes

Size LOC Algorithmic and Processing

CC, ECC,

HC, MI ,

WMC,
Control , Logic, and

Complexity

DIT,
Sequence

NOC,

Coupling C80, Data

RFC&

Cohesion LCOM Functional Description

.
Figure 5.7: The Third Step m Preparmg the Proposed Design Defects Measuring

Matrix

118

Once we have narrowed and assigned the list of design defects. we can go to the next

step.

The fourth step is to define the most common quality attributes as shown in figures

5.8. The quality attributes are:

• Adaptability: The quality of being adaptable to changes.

• Analysability: The capability of the software product to be diagnosed for

deficiencies or causes of failures in the software.

• Auditability: The quality factor representing the degree to which an application

or component keeps sufficiently adequate records to support one or more

specified financial or legal audits.

• Availability: The ability of the user community to access the service. whether

to submit a new request, update or alter existing request. or collect the results

of a previous request.

• Changeability: The capability of the software product to enable a specified

modification to be implemented.

• Correctness: The accountability for satisfying all requirements of the system.

Measure of exact adherence to specifications.

• Extensibility: Extending an SOA by adding new services or incorporating

additional capabilities into existing services is supported within an SOA.

• Interoperability: The ability to exchange and use information (usually in a

large heterogeneous network made up of several local area networks).

• Modifiability: How the system can accommodate anticipated and unanticipated

changes and is largely a measure of how changes can be made locally. with little

ripple effect on the system at large.

• Performance: Refers to the system responsiveness: either the time required

responding to specific events, or the number of events processed in a given time

interval.

• Reusability: The degree to which a software module or other work product can

be used in more than one computing program or software system.

• Scalability: The ability of SOA to function well when the system is changed in

size or in volume in order to meet users' needs.

119

• Stability: The capability of the software product to avoid unexpected effects

from modifications of the software.

• Testability: Can be negatively impacted when using an SOA due to the

complexity of the testing services that are distributed across a network.

• Understandability: The degree to which the purpose of the system or

component is clear to the evaluator.

• Usability: May decrease if the services within the application support human

interactions with the system and there are performance problems with the

services.

Once we have narrowed and assigned the most common quality attributes. we can

go to assign and matching between all of them in the next steps.

120

SOA Quality Attributes
I

~

SOA Design SOA Design '"d ~ > = > ~ rIJ
...

~ ~
Metrics rIJ S-

o t') Q. ., = to:! ~ Q. to:! to:! C Q.
Attribute Defects •. t') :; ;' "0 "0 •.

;' = ., ...
~

... , , to:! cr ., e ; to:! !=. to:! ., cr •. g g to:! •.
~ to:! - •.

~ = ~ •. g q t') ~ ~ 1 ~ ~

Size
Algorithmic and

LOC
Processing

CC, ECC,

HC, MI, Control, Logic,
Complexity

WMC, and Sequence

OtT, NOC,

CBO,
Coupling RFC& Data

LCOM

Functional
Cohesion

Description
-------- - -

Figure 5.8: The Fourth Step in Preparing the Proposed Design Defects Measuring Matrix

The fifth step is to match between design attributes and design defects through the

selected metrics and to match between design defects and quality attributes as

shown in figure 5.9.

SOA Quality Attributes

~ rIJ Io'C a:: ~ > > I SOA Design Defects I g ~ Q. = = SOADesign
\ Metrics

., Q II) -!. = S' c. ;'
II) ~ C.
"0 a _.

;' ., 5 -.,
~ - II) Attribute C' ~ e II) II) 'g C' = g; ~ ~

_.
II) .,

~ ~ = ~
II)

n ~ g; ~

~

Algorithmic and

Processing

LOC I Control, Logic, and

Size ICC ECC Sequence , ,

HC, MI, I Data

WMC,
Functional

DIT,

NOC,
Description

CBO, Algorithmic and

RFC& Processing

Complexity I
LCOM

Control, Logic, and

Sequence

Data

Coupling

Cohesion

Functional

Description

Algorithmic and

Processing

Control , Logic, and

Sequence

Data

Functional

Description

Algorithmic and

Processing

Control, Logic, and

Sequence

Data

Functional

Description

Figure 5.9: The Fifth Step in Preparing the Proposed Design Defects Measuring Matrix

124

The sixth step is to assign the suitable metrics that can be used to measure the

impact of design defects on quality attributes as shown in figure 5.10.

SOA Quality Attributes

~ ~ ~ :: ~ > >
SOADesign I Metrics I SOA Design Defects I ~ c. = = n ., 0 ~ -~ [= sa c. - ~ ~ e: ::: :3. 5

, ~ "0 a -Attribute ~ .,
~ - ~ g; ~ 51 ~ ~ "g

~ ~ =- ~ ... ~ ... i3 ~ = ~ ~ n ~ g; ~

~

Algorithmic and
CC LOC

Processing

LOC I Control, Logic, and
I ECC

Size ICC, ECC, Sequence

HC, MI, I Data MI

WMC,
Functional

OfT, I HC

NOC,
Description

CBO, Algorithmic and

RFC& Processing

Complexity I LCOM
Control, Logic, and

Sequence

Data

Coupling

Cohesion

Functional

Description

Algorithmic and

Processing

Control, Logic, and

Sequence

Data

Functional

Description

Algorithmic and

Processing

Control, Logic, and

Sequence

Data

Functional

Description

Figure 5.10: The Sixth Step in Preparing the Proposed Design Defects Measuring Matrix

127

5.3.4 Application Phase

After preparing the "Design Defects Measuring Matrix", the following formula for

measuring the impacts of SOA design defects on quality attributes can be used:

SOA design Defect Impact = Summation of Metrics ranks X Attributes Weights

SOA design Defect Impact =
n -rni

L L(Mli X WAij)/mij
i=l j=l Eq. (5.1)

Where:

MJi - Metric Rank

AW - Quality Attribute Weight

i - Metric number

j - Attribute number measured by metric i

n - Total number of Metrics in each SOA Design Defect

mi - Total number of Attributes affected by metric i

mij - Total number of Attributes affected by metrics

To calculate the weight of each quality attributes (A W); a scale of 100 can be used

according to its impacts on SOA Quality as shown in figure 5.11.

-.::
Q

~

Auditability

Interoperability

Adaptability

Scalability

Modifiability

Performance

Security

Availability

~
~
= ..c .-
"" 1::
<
,e. .--«I

= 01
<
0
00

= = ~

~ -= =.0
.~

~

-= = ~ ...
Q ...
= e-

~
= .c .i:
1::
< .. --.n
~
= Oll

~

Once we have designed the Defects Measuring Matrix, Attributes Weights and Metric

Rank, we can use the DESQA framework to calculate SOA Design Defect Impacts.

5.4 Framework Design Execution
Having previously identified and formalized the different aspects of the framework in

this section the application of the framework is described using number of tools and

technologies as following the high level architecture and design and functionalities as

presented in sections 5.3.1-5.3.2 and shown in figures 5.5-5.11.

The process starts with the preparation phase in which the requirements specification

leading to a one or more design solutions to be considered. The design description is

then created reflecting the actual design. Next, an intelligent parser is used on the

design description in order to identify the potential defects and to create a defect

portfolio "Design Defects Measuring Matrix".

Once this is done the values are collected in DB to produce the type of high level defects

(pattern) and quality attributes and the framework is then ready to be applied for defect

detection and quality estimation. In order to evaluate the framework, next to design

description, number of technologies can be used such as Visual studio C#, UML,

parsing etc.

5.4.1 VisuallStudio C# Advantages

The choice between C# and VB.NET is largely one of subjective preference. Some

people like C#'s terse syntax, others like VB.NET's natural language, case-insensitive

approach. Both have access to the same framework libraries. Both will perform largely

equivalently. The following are the reasons for using Visual studio C#:

•
•
•
•

XML documentation generated from source code comments.

Operator overloading.

Language support for unsigned types.

The using statement, which makes unmanaged resource disposal simple.

• Explicit interface implementation, where an interface which is already

implemented in a base class can be re-implemented separately in a derived class.

Arguably, this makes the class harder to understand, in the same way that

member hiding normally does.

• Unsafe code. This allows pointer arithmetic etc, and can improve performance

in some situations. However, it is not to be used lightly, as a lot of the normal

safety ofC# is lost (as the name implies). Note that unsafe code is still managed

code, i.e. it is compiled to IL, JITted, and run within the CLR.

5.4.2 Design Steps Using Visual Studio C#

• Creating the Project

• Creating a Control Library Project

• Referencing the Custom Control Project

• Defining a Custom Control and Its Custom Designer

• Creating an Instance of the Custom Control

• Setting Up the Project for Design-Time Debugging

• Implementing the Custom Control

• Creating a Child Control for the Custom Control

• Create the Marquee Border Child Control

• Creating a Custom Designer to Shadow and Filter Properties

• Handling Component Changes

• Adding Designer Verbs to the Custom Designer

• Creating a Custom UI Type Editor

• Testing the Custom Control in the Designer

5.4.3 Code Generation from UML Class Diagrams

UML is a general-purpose modeling language in the field of software engineering,

which is designed to provide a standard way to visualize the design of a system. In

order to evaluate the framework number of UML design diagrams can be used:

• Class Diagram: This shows a collection of static model elements such as

classes, types, their contents, and their relationships.

131

• Activity Diagram: Which depicts high-level business processes, including data

flow, and complex logic within a system.

• Component Diagram: This depicts the components/services that compose the

application, their interrelationships, interactions, and their public interfaces.

• Deployment Diagram: This shows the execution architecture of systems.

However, the main focus in this work will be on Class and Component diagrams.

To generate Visual C# .NET code from UML class diagrams in Visual Studio Ultimate,

the Generate Code command is used. By default, the command generates a C# type for

each UML type that is selected. In addition it is possible to modify and extend this

behaviour by modifying or copying the text templates that generate the code. Moreover,

it is possible to specify different behaviour for the types that are contained in different

packages in the model.

The Generate Code command is particularly suited to generating code from the user's

selection of elements, and to generating one file for each UML class or other element.

For example, the screenshot shows two C# files that have been generated from two

UML classes.

As an alternative, it is possible to generate code in which the generated files do not have

a I: I relationship with the UML elements, and writing text templates that are invoked

with the Transform All Templates command can be considered [116].

5.4.4 Parsing Work

The task of the parser is essentially to determine if and how the input can be derived

from the start symbol of the grammar. This can be done in essentially two ways:

Top-down parsing: Top-down parsing can be viewed as an attempt to find left-most

derivations of an input-stream by searching for parse trees using a top-down expansion

of the given formal grammar rules. Tokens are consumed from left to right. Inclusive

choice is used to accommodate ambiguity by expanding all alternative right-hand-sides

of grammar rules [I 17].

132

Some of the parsers that use top-down parsing include:

• Recursive descent parser

• LL parser (Left-to-right, Leftmost derivation)

• Earley parser.

Bottom-up parsing: A parser can start with the input and attempt to rewrite it to the

start symbol. Intuitively, the parser attempts to locate the most basic elements. then the

elements containing these, and so on. LR parsers are examples of bottom-up parsers.

Another tenn used for this type of parser is Shift-Reduce parsing.

Some of the parsers that use bottom-up parsing include:

• Precedence parser

• Operator-precedence parser

• Simple precedence parser

• BC (bounded context) parsing

• LR parser (Left-to-right, Rightmost derivation)

• Simple LR (SLR) parser

• LALR parser

• Canonical LR (LR(J» parser

• GLR parser

• CYK parser

• Recursive ascent parser

• Shift-Reduce parser

The first stage is the token generation as shown in figure 5.12, by which the input

character stream is split into meaningful symbols defined by a grammar of regular

expressions.

133

Create Tokens

Compiler
(Interpreter)

Figure 5.12: Parsing Process [118]

The next stage is parsing or syntactic analysis, which is checking that the tokens form

an allowable expression. This is usually done with reference to a context-free grammar

which recursively defines components that can make up an expression and the order in

which they must appear. The final phase is semantic parsing or analysis, which is

working out the implications of the expression just validated and taking the appropriate

action. C# has some of the best text libraries out there. Parser is created based on the

identified metrics like:

-LOC -CC -ECC - HC -MI

-WMC - DIT -NOC -C80 -RFC

LCOM

5.5 Summary
Developing quality code IS a major concern for the software community. Defect

prevention is an important activity in any software quality. The main objective of this

work is to propose a new framework to measure software quality. The DESQA

framework is a comprehensive, multidimensional framework of SO A defects detection.

134

It consists of seven major components: requirements, design, description, intelligent

parser, defect database, defects portfolio and quality assessment.

The DESQA framework can be used to calculate SOA design Defect Impacts in Design

phase only (Conceptual, Preliminary and Final design phases), and all SOA design

attributes, quality metrics, SOA design defects and SOA quality attributes are well

defined and can be measured.

To fonnalize and build the proposed framework, the following measures are defined

and adapted primarily from previous researches:

• Eleven items were selected to measure SOA Design Defects (for example:

Algorithmic and Processing Defects, Omission, Incorrect Fact, Inconsistency,

Functional Description Defects ...)

• Fourteen items were selected to measure SOA Design Attributes (for example:

Design Size, Complexity, Coupling, Cohesion ...)

• Seventeen items were selected to measure SOA Quality Attributes (for example:

Correctness, Modifiability, Perfonnance, Usability, Reusability, Scalability,

Stability, Testability, Understandability ...)

• Eleven items were selected to measure SOA Quality Metrics (for example:

LOC, WMC, DIT, RFC, CBO, NOC, CC, LCOM ...).

The process of application starts with defining Attributes weights and Metric Rank

before using the Defects Measuring Matrix. In the preparation phase the requirements

specification leading to one or more design solutions needs to be considered. Once this

is done the values are collected in DB to produce the type of high level defects (pattern)

and quality attributes and the framework is then ready to be applied in the application

phase. After designing Defects Measuring Matrix, Attributes Weights and Metric Rank,

we can use the proposed fonnula to calculate SOA Design Defect Impacts.

135

CHAPTER 6: CASE STUDY AND EVALUATION

6.1 Introduction

The design of the framework is only as good as the analysis, and the basic overarching

question at this phase is "How will the framework actually work?". Thus, this chapter

presents the evaluation of the proposed framework, particularly its "Design Defects

Measuring Matrix" firstly using research tool based on a questionnaire and workshop

in order to assess the different phases of the framework. Secondly, a case study

commonly used in service-oriented systems with a number of design approaches is

considered in order not only to evaluate the framework but also to check the impact of

different architectural styles on both software defects and software quality.

A part of framework evaluation consists of capturing the quality attributes the

architecture must handle and to prioritize the control of these attributes. If the list of the

quality attributes is suitable in the sense that at least all the business objectives are

indirectly considered, then, we can keep working with the same architecture.

Otherwise, an alternative architecture that is more suitable for the business should be

considered. These quality attributes may be conflictive for achieving business

objectives. In such a case, it should be focused on a limited set of attributes, especially

if the evaluation of the architecture gives a positive result in a business and a poor one

in another one.

In this sense, this chapter starts with a preliminary evaluation performed with the

purpose of evaluating the usability, understanding and applicability of the proposed

framework. The goal of this work is to investigate the relationship between several

software metrics, the design defects and software quality. This chapter discusses the

building process and the use of Design Defects Measuring Matrix as a mean of helping

assessing software quality. Most of the metrics discussed in this chapter are not

difficult to compute. In addition, the evaluation using a case study aims to demonstrate

the use of the framework on a number of designs and produces an overall picture

regarding defects and quality.

136

The rest of the chapter is organized as follows. Section 6.2 describes the research tool

(questionnaire). the sample used to complete the Design Defects Measuring Matrix. and

data collection process. Section 6.3 describes the results of the analysis process. Section

6.4 presents a case study together with the main findings. Finally, a conclusion is

presented in section 6.5.

6.2 Research Tool
The success of the preliminary evaluation of the framework depends on how well the

questionnaire is constructed. In this section, the research tool is a questionnaire. The

designed questionnaire examines the relationship between service-oriented

architectures (SOAs) and quality attributes. The questionnaire consists of two parts as

follows (See appendix A):

Part (I): Definitions

• Definition of Design Defects

• Definition of Design Attributes

• Definition of Metrics

• Definition of Quality Attribute

Part (II): Selection Process

• Identification of Relation between Design Attributes, SOA Design Defects.

Quality Metrics and Quality Attributes

Part (III): Metrics Measurement Range

• Mapping the relationship between SOA Quality Attribute and Quality Metrics

6.2.1 Sample Used

To demonstrate the usability of the proposed "Design Defects Measuring Matrix". we

have designed and implemented two different scenarios (building and using the matrix).

For the purpose of this study. two conditions were applied to select the participant

companies: experience and acceptance to participate. Five software companies working

in Kuwait were selected based on their experiences. After personal contact. three

companies agreed to participate in the study with the condition that we hide their names.

Each company nominated four experts. These experts divided into two groups; the first

137

group consists of nine software designers working in software development. The

second group consists of three programmers. All participants were trained in a one-day

workshop on how to use the "Design Defects Measuring Matrix", after that the first

group used the proposed questionnaire to construct the matrix and the second one used

the final matrix.

6.2.2 Data Collection

After having presented and introduced general definitions of SOA, as well as some

detailed information about different attributes of the architecture, the first group was

asked to select the most used items. The results of the selection process are as follows

and as summarized in table (6-1):

• The design attributes

Size, complexity, coupling, and cohesion.

• The SOA Design Defects

Algorithmic and Processing Defects, Control, Logic, and Sequence Defects,

Omission, Incorrect Fact, Inconsistency and Functional Description Defects.

• The metrics

Since specific metrics for measuring software attributes of SO A-based systems

are yet to be defined, one of the objectives of this work was to assess the

applicability of conventional software engineering metrics to SOA. A set of

seven well-established metrics was chosen based on their importance and

applicability to SOA approaches. For the purpose of this study the metrics usage

are as follows:

l) For Size: Lines of Code (LOC) that constitute the system.

2) For Complexity:

a) Traditional Cyc10matic Complexity (CC)

b) Weighted Method per Class (WMC)

c) Depth of Inheritance Tree (DIT) and Number of Children (NOC)

3) For Coupling:

a) Coupling between Objects (C80)

b) Response for Class (RFC)

4) For Cohesion: lack of cohesion of methods (LCOM).

138

• The quality attributes

The first step is the identification of attributes of the qualities of SO A; the group

looks at each quality attributes listed in Table 3.1. The results show that:

• The following attributes are favoured by simple solutions - Testability.

Flexibility, Portability, Changeability, Reusability. Stability and

Analysability

• The following attributes are favoured by general solutions - Flexibility

and Reusability

• The following attributes are favoured by having a modular design -

Testability. Flexibility, Reusability and Analysability

• The following attributes are favoured by designing with change in mind

- Flexibility. Changeability, Stability and Analysability

• The following attributes are favoured by using a middleware system

Interoperability, Reusability and Testability

• The following attributes are favoured by having traceability between

system artefacts: Correctness and Analysability

• The following attributes are favoured by low coupling between

components or modules: Changeability. Stability and Testability

We see that using simple solutions, having a modular design and designingfor change

are three approaches that facilitate most of the quality attributes. The group suggested

that the following attributes are the most influential quality attributes (Final Quality

Attributes):

Correctness: which appears in McCall's quality model. can be seen as a developer­

oriented quality attribute given that it should be relevant for developers that seek to ease

their efforts in developing and maintaining the system. McCall's model links

Correctness to three quality criteria, i.e. characteristics: Traceability, Completeness and

Consistency.

Modifiability: which appears in Boehm's model, the degree to which a system or

component facilitates the incorporation of changes, once the nature of the desired

change has been determined.

139

Performance: perfonnance can have different meanings In different contexts. In

general, it is related to response time (how long it takes to process a request), throughput

(how many requests overall can be processed per unit of time), or timeliness (ability to

meet deadlines, i.e., to process a request in a detenninistic and acceptable amount of

time). Perfonnance is an important quality attribute that is usually affected negatively

in SOAs. An SOA approach can have a negative impact on the perfonnance of an

application due to network delays, the overhead oflooking up services in a directory,

and the overhead caused by intennediaries that handle communication. The service user

must design and evaluate the architecture carefully, and the service provider must

design and evaluate its services carefully to make sure that the necessary perfonnance

requirements are met.

Usability, which appears in ISOIIEC 9126 quality model, Usability may decrease

if the services within the application support human interactions with the system

and there are perfonnance problems with the services. It is up to the service users

and providers to build support for usability into their systems.

Reusability, which appears in McCall's model, and is decomposed into the

following characteristics: Simplicity. Generality, Modularity, Software system

independence and Machine independence.

Scalability, which is the ability of an SOA to function well (without degradation

of other quality attributes) when the system is changed in size or in volume in order

to meet users' needs. There are ways to deal with an increase in the number of

service users and the increased need to support more requests for services.

However. these solutions require detailed analysis by the service providers to make

sure that other quality attributes are not negatively impacted. Options for solving

scalability problems include

• Horizontal scalability: distributing the workload across more computers.

Doing so may mean adding an additional tier or more service sites.

• Vertical scalability: upgrading to more powerful hardware for the service site.

140

Stability, which appears in ISOIIEC 9126 quality model, Stability is in this context

not directly connected to the ability of the system to show stable behaviour when

used. However, if modifications often have unexpected effects, then system's

Stability from a use perspective will be affected. Stability is related to

Changeability, in that a system with low Changeability is likely to show low

Stability as well. This follows from the fact that trying to modify a system with

low Changeability is associated with great risk and can result in faults.

Testability, which appears in ISOIIEC 9126 quality model, Testability is an

attribute that occurs in both McCall's model and Boehm's model. In the models, it

corresponds to the following characteristics: Simplicity, Instrumentation, Self­

descriptiveness, Modularity and structuredness, Accountability, Accessibility and

Communicativeness.

Understandability, which appears in Boehm's model, Understandability is the

degree to which a system or component facilitates the incorporation of changes,

once the nature of the desired change has been determined.

Based on the discussions below, table (6.1) summarizes the selection results. After

selecting the items (SOA Design Attribute, Metrics, SOA Design Defects and SOA Quality

Attributes), the group was asked to give weights to the selected SOA Quality Attributes.

The group gave weights out of 100 as shown in table (6.2).

141

Table (6.1): Selection Process Results

SOA Design Attribute Metrics SOA Design Defects SOA Quality Attributes

Design Size LOC • Algorithmic and Correctness

Complexity WMC Processing Defects Modifiability

Coupling DIT · Control , Logic, and Performance

Cohes ion RFC Sequence Defects Usability

CBO · Omission Reusability

OC · Incorrect Fact Scalability

CC · Inconsistency Stability

LCOM · Functional Description Testability

Defects U nderstandabi lily

Table (6.2): SOA Quality Attributes Weights

~

~ -=
::s

n ~ C/}, Q.

= = fD
~

fD ;, fD n C/} tD ..,
SOA Quality

.., Co f'-I = = ~ '" '", .,
5 = f'-I i' = ;- ~

fD .., g: = C" = = n = e g: C" 5: C" ::s -Attributes - C" - ~. •. Co = ::s = •. - - == fD :: :s ~ •.
~ ~ = -

'" -. n ~ ~ =-f'-I ~ tD E
~

Weights 10 10 10 15 10 7 8 15 15 tOO

Once the weights of Quality Attributes were defined, the group was asked to match

between the qua lity metrics and quality a ttributes and g ive we ights to the metrics

impacts on qua lity o ut of 10 as shown in table (6.3).

142

Table (6.3): Metrics Measurement Range

Impact on Quality [(10) Highest impact (1) Lowest impact]

SOA Quality Attributes

c::
~ ""C

::s
Quality n ttl ::c rJ) ..., Co

Q Q ., c:: It> n rJ) It>
It> ., ., Co 0' ", = ~ ", ",

Metrics
.,

::i ~ ", - ~
ttl .,

!2': ~ ~ C" ~ ~
n ~ 3 !2': C"

_ .
g ::s C" - $::s ~

_. - Co _.
It> - ::s '<

_.
q ~ ~

",

_.
n C" '< ", '< It>

_.
~

LOC 6 5 4 5 4

WMC 7 4 3

DIT 1 3 3

RFC 3 4

CBO 1 2

NOC 3 6 5 3

CC 5 2

LCOM 3 8

10 10 10 10 10 10 10 10 10

The overall structure of the Design Defects Measuring Matrix is shown in Table (6.4).

143

Table (6.4): Design Defects Measuring Matrix

SOA Quality Attributes

~

= ~ := ~ :c rJl ~
Q.

~
~ ~ 0 0

~
~ t') rJl ~ ~ ., Q. fIl = to) - fIl

f2 5; to) fIl ;' to) - -SOA Design Defects a g; to) g; to) to)
t') to) g; C'" C' = a- g; E: -. Q. to)

~ ~ ~ fo) 1l = ~ q
~ t') g; fIl

~ ...
~

10 10 10 15 10 7 8 15 15

L..OC WMC
(6) (4) WMC L..oe

CRO L..OC WMC DlT L..oe (3) (4)
(I) (4) (7) (I) (5) DlT Noe

Algorithmic and Processing Defects
NOC Noe RFC CRO Noe (3) (3)

(3) (6) (3) (2) (5) RFC DlT

LeOM (4) (3)

(3)

LOC WMC

(6) LOC LOC CC (3)

Control. Logic. and Sequence CBO (4) (5) (2) D1T

Defects (I) NOC NOC LCOM (3)

NOC (6) (5) (8) RFC

(3) (4)

LOC WMC LOC

(6) LOC WMC (3) (4)

Omission
CBO (5) (7) DIT NOC

(I) CC RFC (3) (3)

NOC (5) (3) RFC DIT

(3) (4) (3)

LOC WMC LOC

(6) LOC LOC WMC (3) (4)

Incorrect Fact
CBO (5) (4) (7) D1T NOC

(I) CC NOC RFC (3) (3)

NOC (5) (6) (3) RFC D1T

(3) (4) (3)
--- - -_.- ------ - -- - _L-.---- -- -

145

WMC

LOC (4) WMC

(6) DlT CC (3)

Inconsistency
CRO (1) (2) DlT

(I) CRO LCOM (3)

NOC (2) (8) RFC

(3) LCOM (4)

(3)

WMC

LOC (4) WMC LOC

(6) LOC DlT LOC (3) (4)

Functional Description Defects
CRO (5) (1) (5) DlT NOC

(1) CC CRO NOC (3) (3)

NOC (5) (2) (5) RFC DIT

(3) LCOM (4) (3)

(3)

--- -- -_ ... _-

146

6.3 Results and Discussion

The main objective of this case study is to demonstrate the usability or practical

applicability of the proposed Design Defects Measuring Matrix. The second group then

used the designed Design Defects Measuring Matrix shown in table (6.4) to assess the

impacts of expected design defects on quality. The second group required to calculate

the expected quality leve l of the designed software based on the design defects using

the following formula:

11 mi

L LCMli X WAij)/mij
i= 1 }=1

Defect related to Algorithmic and Processing Defects will affect the following quality

attributes: Correctness, Performance, Usability, Reusability, Scalability, Testability

and Understandability as shown in table (6.5).

The quality metrics used to assess the impacts on quality are shown in table (6.6). The

weights of metrics and quality attributes are used to calculate the total impact on

quality.

Table (6.5): Impacts of Algorithmic and Processing Defects and Quality

Attributes

SOA Quality Attributes

~
"'C = (1

==
r.IJ ~

g.
tI>

~ tI> = ~
tI> f') tI> .,

SOA Design
., fI) = = fI) fI) ., = fI) - ~ ~
tI> .,

0" = = = = f') 53 5: 0" 0" 0" = Defects ~
_. ... 5: g. = = -tI> = -< c: ... = fI) f') -< -< -< 0"

fI) tI> 5:
-<

10 10 15 10 7 15 15

LOC WMC

(6) (4) WMC LOC

CBO LOC WMC D1T LOC (3) (4)

Algorithmic and (I) (4) (7) (I) (5) D1T NOC

Processing Defects NOC NOC RFC CBO NOC (3) (3)

(3) (6) (3) (2) (5) RFC D1T

LCOM (4) (3)

(3)

148

Table (6.6): Quality Metrics Used to Assess the Impacts on Quality

Quality
Impact on Quality

Metrics

Correctness + Perfonnance + Scalability
LOC

(6* 10 + 4* I 0 + 5*7 + 4* 15) 14 = 195/4

Usability + Reusability + Testability
WMC

(7* 15 + 4* 10+ 3* 15) I 3 = 140/3

Reusability + Testability + Understandability
DIT

(I * 10+ 3* 15 + 3* 15) 13= 100/3

Usability + Testability
RFC

(3*15+4*15)/2= 105/2

Correctness + Reusability
CBO

(I * 10 + 2* I 0) I 2 = 3012

Correctness + Perfonnance + Scalability + Understandability
NOC

(3* I 0 + 6* \0 + 5*7 + 3* 15) 14 = 170/4

CC 0

Reusability
LCOM

(3 * 10) I I =30

Total Impact on Quality = % 38.39

It means that Algorithmic and Processing Defects will reduce the quality by % 38.39

and the expected quality of the design = 100 - 38.39 = % 61.61.

Similarly Defects related to Control , Logic, and Sequence Defects will affect the

following quality attributes: Correctness, Performance, Scalability, Stability and

Testability as shown in table (6.7). Quality metrics used to assess the impacts on quality

are shown in table (6.8).

149

Table (6.7): Impacts of Control, Logic, and Sequence Defects and Quality

Attributes

SOA Quality Attributes

~ "'= (JJ ~ tD e ;, n rJ'J !l .,
~, - ~ ...

SOA Design Defects tD ., ~ cr ~ n 8 cr cr a- t:: 5: ~.
~

== tD =
_.

~ ~ n ~ ~ ~ tD

10 10 7 8 15

Loe WMe
(6) LOe LOe ee (3)

Control, Logic, and Sequence eBO (4) (5) (2) D1T

Defects (I) Noe NOC LCOM (3)

NOC (6) (5) (8) RFC

(3) (4)

Table (6.8): Quality Metrics Used to Assess the Impacts on Quality

Quality Metrics Impact on Quality

LOC (6* I 0 + 4* I 0 + 5*7) / 3 = 135/3

WMC (3* 15) / I = 45

DIT (3* 15) / I = 45

RFC (4*15) / I = 60

CBO (I * I 0) / I = 10

NOC (3* 10 + 6*10 + 5*7) / 3 = 125/3

CC (2*8)/ I = 16

LCOM (8*8) / I = 64

Total Impact on Quality = % 43.33

150

It means that Contro l, Logic, and Sequence Defects will reduce the qua lity by % 43.33

and the expected quali ty of the des ign = 100 - 43.33 = % 56.67.

Similarly Defects related to Omiss ion Defects w ill affect the fo llowing qua lity

attributes: Correctness, Modi fiability, Usability, Testability and Understandability as

shown in table (6.9). Quality metrics used to assess the impacts on quality are shown

in table (6. 10).

Table (6.9): Impacts of Omission Defects and Quality Attributes

SOA Quality Attributes

~

~ = n ~
Q.

Q Q ~ fD
t'I> ~ .., Q. ~ ~ .., D:I - S' t'I> =a c::r D:I

SOA Design Defects
n D:I 5: c::r = - c::r 5: Q. = c:: ~ D:I t'I> ~ ~

.... c::r
~ ~

== ~

10 10 15 15 15

LOC WMC LOC

(6) LOC WMC (3) (4)

CBO (5) (7) DlT NOC
Omission

(1) CC RFC (3) (3)

NOC (5) (3) RFC DlT

(3) (4) (3)

151

Table (6.10): Quality Metrics Used to Assess the Impacts on Quality

Quality Metrics Impact on Quality

LOC (6* I 0 + S* I 0 + 4* IS) I 3 = 170/3

WMC (7* 15 + 3* IS) / 2 = 150/2

DIT (3* IS + 3* IS) I 2 = 9012

RFC (3*IS +4*IS)/2 = IOS/2

CBO (I * I 0) I I = 10

NOC (3* 10+ 3* IS) 12 = 7S/2

CC (S* I 0) / I = SO

LCOM 0

Total Impact on Quality = % 47.67

It means that Omission Defects will reduce the quality by % 47.67 and the expected

quality of the design = 100 - 47.67 = % S3.33

Similarly Defects related to Incorrect Fact Defects will affect the following quality

attributes: Correctness, Modifiability, Performance, Usability, Testability and

Understandability as shown in table (6.11). Quality metrics used to assess the impacts

on quality are shown in table (6.12).

It means that Incorrect Fact Defects will reduce the quality by % 45.00 and the

expected quality of the design = 100 - 4S.00 = % 5S.00

152

Table (6.11): Impacts of Incorrect Fact Defects and Quality Attributes

SOA Quality Attributes

~

~ -= = n ~ ~
Co

= = .., ~ ~
~ ..,

SOA Design
.., Co S' r'-I r'-I r'-I ..,

5 ~
~ .., cr ~ ~ n ~ e cr = Defects = cr ~ = 5: Co

~ ~ - = ~
~

r'-I cr
~

n
'" ~

==
~

10 10 10 15 15 15

LOC WMC LOC

(6) LOC LOC WMC (3) (4)

CBO (5) (4) (7) DlT NOC
Incorrect Fact

(I) CC NOC RFC (3) (3)

NOC (5) (6) (3) RFC D1T

(3) (4) (3)

Table (6.12): Quality Metrics Used to Assess the Impacts on Quality

Quality Metrics Impact on Quality

LOC (6* 10 + 5* 10 + 4* I 0 + 4* 15) / 4 = 210/4

WMC (7* 15 + 3* 15) / 2 = 150/2

DIT (I * I 0 + 3 * 15 + 3 * 15) / 3 = 100/3

RFC (3*15 + 4*15) / 2 = 105/2

CBO (I * I 0) / I = 10

NOC (3* I 0 + 6* 10 + 3* 15) / 3 = 125/3

CC (5*10) / 1 = 50

LCOM 0

Total Impact on Quality = % 45.00

153

Similarly Defects related to Inconsistency Defects will affect the following quality

attributes: Correctness, Reusability, Stability and Testability Standability as shown in

table (6.13). Quality metrics used to assess the impacts on quality are shown in table

(6.14).

Table (6.13): Impacts ofInconsistency Defects and Quality Attributes

SOA Quality Attributes

n ~ ~ = tD r:LJ tD .., C - "-' ... "-' 0) S-SOA Design Defects tD 0) =-" =- =-- == = 5: •. 5: tD -< "-' -< ~ "-'

10 10 8 15

WMC

LOC (4) WMC

(6) DlT CC (3)

CBO (I) (2) DlT
Inconsistency

(I) CBO LCOM (3)

NOC (2) (8) RFC

(3) LCOM (4)

(3)

154

Table (6.14): Quality Metrics Used to Assess the Impacts on Quality

Quality Metrics Impact on Quality

LOC (6*10)/1=60

WMC (4*10 + 3* 15) / 2 = 8512

DIT (I * 1 0 + 3* 15) / 2 = 55/2

RFC (4* I 5) / I = 60

CBO (I * 10 + 2* 10) / 2 = 30/2

NOC (3* I 0) / I = 30

CC (2*8) / I = 16

LCOM (3*10) /1 =30

Total Impact on Quality = % 38.39

It means that Inconsistency Defects will reduce the quality by % 35.13 and the expected

quality of the design = 100-35.13= %64.87

Similarly Defects related to Functional Description Defects will affect the following

quality attributes: Correctness, Modifiability, Reusability, Scalability, Testability and

Understandability as shown in table (6.15). Quality metrics used to assess the impacts

on quality are shown in table (6.16).

155

Table (6.15): Impacts of Functional Description Defects and Quality Attributes

SOA Quality Attributes

~

3: = ~ ~ VJ ~
C.

= = nI
nI n nI ., ., c. = = f'-I " f'-I ., f'-I -

SOA Design Defects nI = = = = = n = C" C" I' C" = -= c:r c:: c:: e: c.
nI c:: = rI.I

~ ~ ~ C"
rI.I ~ e:

~

10 10 10 7 15 15

WMC

LOC (4) WMC LOC

(6) LOC DlT LOC (3) (4)

Functional Description CRO (5) (I) (5) DIT NOC

Defects (I) CC CRO NOC (3) (3)

NOC (5) (2) (5) RFC DlT

(3) LCOM (4) (3)

(3)

Table (6.16): Quality Metrics Used to Assess the Impacts on Quality

Quality Metrics Impact on Quality

LOC (6* I 0 + 5* 10 + 5*7 + 4* 15) / 4 = 205/4

WMC (4* 10+ 3* 15) / 2 = 85/2

DIT (1*10+3*15+3*15)/3 = 100/3

RFC (4*15) / 1 = 60

CBO (I * 10 + 2 * I 0) / 2 = 30/2

NOC (3* I 0 + 5*7 + 3* 15) / 3 = 110/3

CC (5*10) / I = 50

LCOM (3*10) / 1= 30

Total Impact on Quality = % 38.39

156

It means that Functional Description Defects will reduce the quality by % 39.84 and

the expected quality of the design = 100 - 39.84 = % 60.16.

6.4 Case Study: Automated Teller Machine (A TM)
This section demonstrates the applicability and use of the framework proposed in the

previous chapter, and describes how its components are deployed in a case study which

is based on a typical banking service namely, the Automated Teller Machine (A TM)

[119]. The choice of the case study is driven by the fact that the A TM provides a service

that is communicating with a number of banking services such as authentication,

transactions, reporting etc. within one bank as well as communication and obtaining

services from other banks. Thus, A TM processes require communication between a

numbers of components/services to complete a user request, including transaction,

client (user interface) and back-end service as well as authentications etc.

ATM, as a case study, has been commonly used in early object-oriented systems [120].

In addition, it exhibits the service concepts reflect in client/server architecture with the

banking sector including different modules for front end (user interface) and back

engine services. A TM services are relatively easy to model, and can be used as a proof

of concept for evaluating the proposed framework. In addition it can be modeled using

different designs that broadly follow the SOA principles. Thus, it can be used for testing

different SOA architectural styles.

In order to meet comprehensive A TM requirements and system analysis with

requirement specification both functional and non-functional requirements need to be

considered for the design and development of service-oriented based architectures, that

can be used and compared both in terms of potential defects and quality estimation for

different SOA architectural styles [121].

6.4.1 Requirements aspects

An A TM provides money to authorised users who have sufficient funds on deposit. It

requires the user to provide a personal identification number (PIN) as an authorisation.

157

Money is provided after a confinnation from the bank's computer system. Overall the

main function of the A TM is to provide a number of serv ices to the customer:

• A customer must be able to make a cash withdrawal from any suitable account

linked to hislher card. A customer must be able to make a deposit to any account

linked to the card, consisting of cash and/or cheques in an envelope. The

customer will enter the amount of the deposit into the ATM, subject to manual

verification when the envelope is removed from the machine by an operator.

• A customer must be able to make a balance inquiry of any account linked to the

card.

• A customer must be able to abort a transaction in progress by pressing the

Cancel key instead of responding to a request from the machine.

• A customer must be able to print the balance, mini-statements, receipts etc.

• Transfer money, change PINs etc.

The A TM wiII service one customer at a time. A customer will be required to insert an

A TM card and enter a PIN. The customer will then be able to perfonn one or more

transactions. The card will be retained in the machine until the customer indicates that

he/she desires no further transactions, at which point it will be returned.

The A TM will have a key-operated switch that will allow an operator to start and stop

the servicing of customers. After turning the switch to the "on" position, the operator

will be required to verify and enter the total cash on hand. The machine can only be

turned off when it is not servicing a customer. When the switch is moved to the "orr'

position, the machine will shut down, so that the operator may remove deposit

envelopes and reload the machine with cash, blank receipts, etc.

As well as functional requirements there are a number of non-functional requirements

i.e. expected quality requirement such as:

• Perfonnance - how long does a transaction take?

• Availability - what are the hours of operations?

• Security - how to identify the client

158

• Usability - is the client able to cancel the operation?

• Modifiability - how long does it take to change the authentication mechanism?

• Reusability - how easy is it to reuse existing components?

By applying the framework, the potential defects in the application development will

be identified thus the number of defects leaking to the implementation stage will be

reduced. In addition an estimation of the quality requirements and quality factors will

be produced.

6.4.2 Design Aspects

At a high level the A TM machine is based on four main services, Authentication

Service for user authentication including card verification, PIN etc.

Transaction Service reflecting the required transactions, withdraw, deposit etc. Storage

Service which is used for storing the transactions as well as user details, and Client

Service that provides the interface to user of the A TM such as menu (Figure 6.1).

Figure 6.1: A TM System

Services are linked together for example the Client Service provides an interface on the

local machine to invoke other services such as Authentication and Transaction Services.

159

The same applies to other services for example Authentication Service invokes a signal

to other services such as Storage Service checking and verifying users. A number of

services (use cases) are represented in the use case diagram (Figure 6.2).

© uml- diagrams.org

condition: {customer requested help}
extension point: Menu

" -­"
«extend» ~"

Figure 6.2 Use Case Diagram [1221

A transaction service (figure 6.3) shows a description of using an A TM machine to

withdraw money from a bank account as follows:

• Insert Card: The use case begins when the customer inserts their bank card

into the card reader ofthe ATM. The system allocates an ATM session identifier

to enable errors to be tracked and synchronized between the A TM and the Bank

System.

•
•

Read Card: The system reads the bank card information from the card.

Authenticate Customer: Perform Sub flow Authenticate customer to

authenticate the use of the bank card by the individual using the machine .

• Select Withdrawal: The system displays the service options that are currently

available on the machine. The customer selects to withdraw cash.

• Select Amount: The system prompts for the amount to be withdrawn by

displaying the list of standard withdrawal amounts. The cllstomer selects an

amount to be withdrawn.

• Confirm Withdrawal: Perform Subflow Assess Funds on Hand. Perform

Sub flow Conduct Withdrawal.

160

• Eject Card: The system ejects the customer's bank card. The customer takes

the bank card from the machine.

• Dispense Cash: The system dispenses the requested amount of cash to the

customer. The system records a transaction log entry for the withdrawal.

(Aw~)

(",",",oW)O(~ .. fNMd,

~\:)rPN c.ro O

Figure 6.3: Transaction Service

6.4.3 Design Granularity

(OD~)

Having considered both functional and non-functional requirements as well as the main

services (use cases) and flow of services, the next stage is to consider the level of

granularity of services and its impact on the software quality factors as well as the

potential defects. Thus, different designs will be considered, but they should reflect the

basic SOA principles, and that can be achieved through a variety of styles/granularity.

Thus, in the design of the services and their architecture we seek to evaluate the

different granularity i.e. fine grain, coarse grain and thick grain, and their impact on

defects as well as quality factors.

The types of granularity, if not handled properly, might give ri se to different types of

anti-patterns (please see chapter 4), mainly in the form of tiny service and multi service.

These are two common anti-patterns in service-oriented systems, similar to the well­

known anti-patterns in object-oriented systems. They might lead not only to serious

defects but even to software failures. Tiny service is an SOA anti-pattern that

corresponds to thin service with a small number of methods. This often requires several

thin services that are coupled to be used together for the composition of client

applications which adds to service management complexity. On the other hand, multi

service corresponds to a large service that with a larger number of methods. This might

161

reduce service reusability because of the low cohesion of its methods. Thus, for the

A TM case study we apply the framework using different levels of granularity, fine,

coarse and thick. The aim is to produce potential defects portfolio and quality

estimation, and providing a comparison between the different granularity levels.

6.4.3.1 Fine Grain

The identified, from user requirements, service candidates are mapped to a typical SOA

configuration (Figure 6.4) and include Authentication, Balance Inquiry, Withdraw,

Deposit, etc. Each of the fme grain services were designed to reflect the business logics

and rules. In summary all functional requirements and all operations are considered as

services i.e. the A TM application is made up of all the individual services. Clearly this

is a fine grain approach (tiny services).

Request

Figure 6.4 Fine Grain Services

6.4.3.2 Coarse Grain

Next some of the operations discussed in the previous sections are aggregated in a

logical and consistent fashion to create the A TM application. The aim is to create coarse

grain services that are still meeting all the functional requirements. For, example in

Transaction Service will be comprised of a number of operations such as Withdrawal,

Deposit, Balance query etc. while Authentication will have check (d, Check PrN,

change PIN etc. As shown in Figure 6.5 the operations are represented by various

components/services that follow the principles of SOA.

162

User Int~rfac~

Alltb~DticatiOD Utilities

Figure 6.5 Coarse Grain Services

6.4.3.3 Thick Grain

Finally, some of the services/components presented in the previous section are

aggregated from the three tier architecture of the system, with frontend , middleware

and backend components, with services/operations mapped to different components

still in a logical and consistent fashion to create the ATM application. The aim is to

create think grain services that are still meeting all the functional requirements as shown

in Figure 6.6.

163

ATM User
Interface

ATM logic
(tra nsactions etc.)

Bank Data
store

Figure 6.6 Three Tier Architecture

6.4.4 Evaluation and Observation

The next stage is to apply the framework on the different architectural styles and

produce an estimate of defects and the impact of software metrics such as size,

complexity, coupling, cohesion etc. and to use the metrics values to produce a quality

estimation including the most relevant, from SOA point of view, software quality

factors that have been identified in the non-functional requirements. This evaluation

wi II allow us not only to evaluate the framework but also to make a comparison between

different SOA based architectural styles.

The first stage is to produce the defects portfolio for the different levels of granularity

as shown in figures 6.7,6.8 and 6.9. In all experiments the following metrics have been

used:

•
•
•
•

The LOC was used to compare the size

The CC, ECC, MI, WMC are used to compare the degree of complexity

The CBO and RFC are used to compare the level of coupling

The LCOM is used to compare the level of cohesion.

164

The metrics have been calculated using the equations presented tn the LIST Of

EQU A TION S (please refer to page 13 of this thesis).

650
600
550
}oo
4}0
400

~ 3}0
u 300

2}0
200
\}O
\00

}O

6}0
600
}}O
~OO
450

.. 400
c: 350 g
U 300

2~0

200
\~O
\00

50
o

RfC LCOM

Figure 6.7 Fine Grain Services

Coa~Graill

RFC LCOM

Figure 6.8 Coarse Grain Services

165

650
600
550
500
450

.. 400
; 350
o 300

U 250
200
1$0
100

50
o

Thick Gu ill

LCOM

Figure 6.9 Thick Grain Services

The comparison of the various granularity levels for the case study has shown that fine

grain style shows a lower degree of coupling, than the other two styles, coarse and thick

grain, in fact the degree of coupling seems to be increasing as we move from fine, to

coarse and then to thick services. In terms of complexity thick grain style has the lower

complexity followed by coarse grain and fmally by fine grain style. The experiment

also has shown that the size is highest for fine grain, and the lowest for thick grain due

to additional code associated with each layer (Service Interface Layer, Business Layer,

and Data Access Layer).

The second phase is to consider the impact on software quality factors, particularly

reusability and performance as key factors for SOA applications (Figure 6.10).

166

100

00

ro
70 60 ..

i 50 ...
i: 40 Po< • Reusability

• Performance

Thick Grain

Figure 6.10 Software Quality Factors

The comparison of the various granularity levels for the case study has shown that fine

grain styles tends to promote higher reusability than larger grain styles. In fact the larger

the granularity the less reusable individual services become. Performance on the other

hand shows the opposite trend, i.e. the higher the granularity the better the performance.

This is directly linked to coupling and complexity metrics. Thus, we conclude that there

should be a compromise between reusability and performance, so coarse grain services

seem to offer this compromise between the two factors (figure 6.11), but this will at the

end depend very much on the type of applications and the user requirements.

Figure 6.11 Different Granularity Impacts

167

Overall, fine grained services are relatively simple and provide small and well specified

functionalities. They have the advantage of being easily reusable. i.e. they provide high

reusability which is a very important quality factor. They can be used by many services

within an application domain or across multiple domains and typically require the

transmission of small amounts of data. The disadvantage is that they might become a

very large number of services which is hard to manage. This might have negative

impact on performance which is another important software quality factor. for example

when multiple calls to different services with real time communication and data

transfer. On the other hand coarse grained services will be fewer therefore they require

less management, with possibly better performance but lower reusability .In addition

they might require larger volumes of data to be transmitted and be more complex for

other services to use. Thick grain services almost approach full blown applications.

6.5 Conclusion
Ideally, one would want to optimize for all quality attributes. but the fact is that this is

nearly impossible, because any given system has trade-off points that prevent this.

Essentially, changing one quality attribute often forces a change in another quality

attribute either positively or negatively. The purpose of this chapter was to investigate

the applicability of the DESQA framework and how the design defects measuring

matrix can assess attributes of size. complexity. coupling. and cohesion using quality

metrics. Thus, after preliminary research study and date selection to build a defects

measuring matrix, a case study was presented where different SOA styles for the same

applications were compared using the framework.

However, there are a number of limitations associated with the case study. Firstly.

relatively a small numbers of participants were used to design the proposed matrix.

Secondly, implementations are not fully operational due to the absence of experiences.

although the designs and implementations are structurally complete. Such factors could

influence matrix under investigation. In addition. the chosen case study although it is

used as a proof of concept it is relatively straightforward. perhaps a larger and more

complex case study needs to be considered in future work.

168

CHAPTER 7: CONCLUSIONS, CRITICAL

DISCUSSIONS AND FUTURE WORK

7.1 Conclusions

Quality is an important goal in the software development process and the detection of

design defects and their correction early in the development process substantially

reduce the cost of subsequent activities of the development and support phases. Bad

design and software defects often make source codes hard to understand and lead to

maintenance difficulties. Whereas detecting and fixing defects make programs easier

to understand by developers. Implementation of corrective and preventive actions is the

path towards improvement and effectiveness of software quality. The correction

solutions, a combination of refactoring operations. should minimize. as much as

possible, the number of defects detected using the detection rules.

Defect prevention practices enhance the ability of software developers to learn from

those errors and, more importantly, learn from the mistakes of others. Effective defect

tracking begins with a systematic process. It involves a structured problem-solving

methodology to identify, analyze and prevent the occurrence of defects. Defect

prevention is a framework and ongoing process of collecting the defect data, doing root

cause analysis, determining and implementing the corrective actions and sharing the

lessons learned to avoid future defects.

Service-oriented architecture (SOA) is an architectural design pattern based on distinct

pieces of software providing application functionality to support service-orientation. In

this research, a detailed definition and discussion of SOA, its characteristics and

principles are presented. The adoption and governance are also discussed. Web services

can implement an SOA. So, the web services technology, which is the most appropriate

environment to develop SOA currently. is also mentioned. Other technologies for

implementing SOA, such as CORBA are also considered.

Software quality measurement is about quantifying to what extent software design

possesses desirable characteristics. In this research software quality of service-oriented

169

architecture and its models (McCall quality model, Boehm's quality model. Dromey's

generic quality model and ISO quality model) are discussed in detail. The tools of

measuring the software quality (quality metrics) are reviewed and discussed.

7.2 Critical Discussions
The classification of defects found during software development plays an important

role in measurement-based process and product improvement. The research also goes

through the definition of defects in system development life cycle including defects

classification. categories and detailed description of design defects. The design

attributes are also discussed (class. object, method, message instantiation. inheritance.

polymorphism, encapsulation, cohesion, coupling, design size. hierarchies. abstraction

and complexity).

However, as pointed out earlier most of the reviewed techniques were developed for

the detection of object-oriented design defects. Although. a number of SOA design

defects were identified no attempts so far have been made to automate the process of

detections of such defects and estimate quality. The main objective and contribution of

this thesis is to address the defects in the software development life cycle process

particularly at the design stages. To achieve this objective. a comprehensive and

multidimensional framework of SOA defects detection was proposed. This framework

examines the relationship between service-oriented architectures (SOAs) and quality

attributes and outlines a set of quality attributes that may be derived from an

organization's business goals and examines how those attributes relate to an SOA

quality.

In addition. it describes how the SOA impacts those attributes and how choosing an

SOA can help an organization estimate software quality based on its business goals.

Finally. the framework presents guidelines for the automation process which is based

on the intelligent application for the detecting SOA defects and estimating software

quality factors. In this section the achievements and conclusions which have been

previously drawn will be summarized.

170

The framework we proposed to study the design defects has a lot of potential. The

correlation of metrics values with the number of quality attributes is an important step

forward in the assessment of the quality of software design. Still, there is room for

improvement. We have selected several defects metrics and software quality factors but

we need to perform the same study on different scenarios. To evaluate the proposed

framework. two groups representing some experts in the State of Kuwait were used to

demonstrate the impact of quality metrics and quality attributes development on the

design attributes of size, complexity. coupling. and cohesion.

The implementation part demonstrated how the framework can predict the quality level

of the designed software. The results showed how a good level of quality estimation

can be achieved based on the number of design attributes, the number of quality

attributes and the number of SOA Design Defects. Assessment shows that metrics

provide guidelines to indicate the progress that a software system has made and the

quality of design. Using these guidelines. we can develop a more usable and

maintainable software system to fulfil the demand of an efficient system for software

applications. The overall quality value is then calculated by using the formula proposed

in chapter 5.

Another valuable result coming from this study is that developers are trying to keep

backwards compatibility when they introduce new functionality. Sometimes. in the

same newly-introduced elements developers perform necessary breaking changes in

future versions. In that way they give time to their clients to adapt their systems. This

is a very valuable practice for the developers because they have more time to assess the

quality of their software before releasing it. Other improvements in this research

include investigation of other design attributes and SOA Design Defects which can be

computed in extending the tests we performed.

In addition. a real case study "Automated Teller Machine" was used to examine the

validity of the proposed framework; we apply the framework using different levels of

granularity. fine. coarse and thick. The comparison of the various granularity levels for

the case study has shown that fine grain style shows a lower degree of coupling, than

the other two styles, coarse and thick grain and tends to promote higher reusability than

larger grain styles. In terms of complexity thick grain style has the lower complexity

171

followed by coarse grain and finally by fine grain style. The experiment also has shown

that the size is highest for fine grain, and the lowest for thick grain due to additional

code associated with each layer (Service Interface Layer, Business Layer, and Data

Access Layer).

7.3 Future Work
The important limitations of this study are concerned with its generalizability. So, based

on the work presented in this thesis, there are a number of areas that can be further

improved and carried forward.

The perception of quality differs from individual to individual, a further improvement

can be added by redeploying the design defect measuring matrix using large numbers

of participants when building it and increasing the number of quality attributes, the

number of quality metrics and the number of design attributes. The main purpose of

that is to standardize them, to build the trust and the confidence level between the

provider and the consumer and will continue to evolve as more new technologies

emerge on the horizon.

Although there are areas that could have helped improve the framework significantly,

the work presented so far has been able to demonstrate how the aim can be analyzed.

The case study discussed in this thesis is limited to one application, the first suggestion

is related to the fact that the implementation was carried out in a simulated environment

with the results presented. It would be of great benefit for this to be tested in a real-life

case. It also will be interesting if the scope is expanded to include large number of

applications which form part of the whole business. The DESQA framework can be

adapted in the design process using its measuring matrix components and can

incorporate metrics to measure design defects. A reverse engineering methodology can

be added to this system to improve the traceability of individual components of the

system or incorporate changes easily. To improve granularity a refined pattern can be

added to the future expansion.

The second relates to the extension offramework applications. As seen in the evaluation

of the results, the framework was designed with the possibility to extend it to adapt

172

additional quality metrics. The extension can be considered in future work by building

complexities to adapt more different design attributes and quality metrics. The last

suggestion relates to testing the framework for the impact of larger and potentially

conflicting quality requirements in non-controlled environments.

173

BIBLIOGRAPHY
I. Moha. Gueheneuc & Leduc (2009). Bad Smell in Design Patterns. Journal of

the Object Oriented Technology.

2. Kessentini, M.. Sahraoui, H., & Boukadoum, M. (2008). Model

Transformation as an Optimization Problem. Proc.MODELS: 159-173 Vol.

530 I of LNCS. Springer.

3. Pressman, S. (2005). Software Engineering: A Practitioner's Approach (Sixth

International ed.). McGraw-Hili Education. pp. 388.

4. Clements. P., Bachmann. F .• Bass. L.. Garlan, D., Ivers, 1, Little. R., Merson,

P., Nord, R .• & Stafford, J. (2010). Documenting Software Architectures:

Views and Beyond, Second Edition. Addison-Wesley, Boston.

5. Bell. M. (2008). Introduction to Service-Oriented Modeling. Service-Oriented

Modeling: Service Analysis, Design, and Architecture. Wiley & Sons.

6. M. Riad. Alaa. E. Hassan, Ahmed, & F. Hassan, Qusay (2009). Investigating

Performance of XML Web Services in Real-Time Business Systems. Journal

of Computer Science & Systems Biology 02 (05): 266-271.

7. Gopalakrishnan Nair, T.R .• & Suma. V. (2010). The Pattern of Software

Defects Spanning across Size Complexity. International Journal of Software

Engineering.

8. Jiintti. M., Toroi, T., & Eerola, A. (2006). Difficulties in Establishing a Defect

Management Process: A Case StUdy. Journal of Software Engineering.

Springer.

9. Booch, G., Rumbaugh, 1, & Jacobson, I. (1999). The Unified Modeling

Language User Guide. Addison-Wesley. Reading, MA.

10. Josuttis. N.M. (2007). SOA in Practice: The Art of Distributed System Design

(Theory in Practice). O'Reilly.

11. Sanders, D.T .• Hamilton Jr, J.A.. & MacDonald, R.A. (2008. April).

Supporting a service-oriented architecture. In Proceedings of the 2008 Spring

Simulation Multi-conference. pp. 325-334. Society for Computer Simulation

International.

12. Bertoa. M.F., & Vallecillo, A. (2002). Quality attributes for COTS

components.

13. IBM. Autonomic Computing. http://www.research.ibm.comlautonomic/ (2005).

14. Microsoft. Core Principles of the Dynamic Systems Initiative.

http://www.microsoft.comlwindowsserversystemldsi/dsicore.mspx (2005).

174

IS. Worldwide Web Consortium (W3C). Web Services Glossary.

http://www.w3.org/TRlws-gloss/ (2004, February). Velte, A.T. (2010). Cloud

Computing: A Practical Approach. McGraw Hill.

16. Endrei , M. , Ang, J. , Arsanjani , A. , Chua, S., Comte, P. , Krogdahl , P. , Luo, M. ,

& Newling, T. (2004). Patterns: Service-Oriented Architecture and Web

Services. IBM Redbooks.

17. Sprott, D. , & Wilkes, L. (2004). Understanding Service-Oriented Architecture.

http://msdn.microsoft.com!en-us/library/aa480021 .aspx. Accessed 1.5.2013 .

18. Erl , T. , Carlyle B., Pautasso C., & Balasubramanian R. (2012). SOA with

REST: Principles, Patterns & Constraints for Building Enterprise Solutions

with REST. The Prentice Hall Service Technology Series from Thomas Ert.

Pearson Education.

19. Huifang Li & Cong Chen (2012). A Flexible Workflow Management System

Architecture Based on SOA. 2012 International Conference on Affective

Computing and Intelligent Interaction: 382-387.

20.0pengroup. Service Oriented Architecture: What Is SOA?

http://www.opengroup.org!soalsource-booklsoa_refarch/concepts.htm.

21. ftp://ftp.software.ibm.com!software/soalpdf/IBMSGMMOverview.pdf.

22. MacKenzie, C.M., Laskey, K., McCabe, F. , Brown, P.F. , & Metz, R. (2006).

Reference model for service oriented architecture 1.0. oasis standard, 12

October 2006. Organization for the Advancement of Structured Information

Standards. URL: http://docs. oasis-open. org!soa-rrnIv 1.0 (visited on Sept. 13,

2012).

23. Coulouri s, G.F. , Dollimore, J., & Kindberg, T. (2005). Distributed systems:

concepts and design. Pearson Education.

24. McGovern, J. , Tyagi , S. , Stevens, M. & Mathew, S. (2003). Java Web Services

Architecture. Morgan Kaufmann.

25. Oracle, SOA Governance: Framework and Best Practices

http://www.oracle.com!us/technologies/soaloracle-soa-governance-best­

practice-066427.pdf.

26. Weill , P. & Ross, J.W. (2004) . ITgovernance: How top performers manage IT

decision rights f or superior results. Harvard Business School Press, Boston,

Massachusetts.

27. Cassese, V. (2006). Natural alignment. Computerworld. 40: 31-32.

28 . Luftman, J. (2004). Managing the information technology resource:

Leadership in the information age. Prentice Hall , New Jersey.

175

29. Bieberstein, N., Bose, S., Fiammante, M., Jones, K. & Shaw, R. (2006).

Service-Oriented architecture compass: business value. planning, and

enterprise roadmap. IBM Press, Indianapolis, Indiana.

30. Moore, J. (2006). SOA success: five actions you should take. CIO Insight. 7-1,

103-111.

31. Windley, P. (2006). SOA governance: rules of the game. Info World. 28 (01),

29- 35.

32. Latino, RJ., Latino. K.C, & Latino, M.A. (2011). Root Cause Analysis:

Improving Performance for Bottom-Line Results. CRC Press.

33. Alonso, G., & Casati, F. (2005). Web services and service-oriented

architectures. In Data Engineering. ICDE 2005. Proceedings 21 st International

Conference on IEEE Web Services and Service Oriented Architectures

[Thomas Soddemann, RZG]. Pp. 1147.

34. Web service http://en.wikipedia.orglwiki/Web_service (Last visited

05/07/2010).

35. http://www.infog.com!articles/SOA-anti-

atterns;jsessionid=EA 71 A2B6A5292 ACC4049A05F7E 16BEAD.

36. Crosby, P.B. (1979). Quality is free: the art of making quality certain.

McGraw-Hili, New York.

37. Deming, W.E. (1988). Out of the crisis: quality, productivity and competitive

position. Cambridge Univ. Press.

38. Feigenbaum, A.V. (1983). Total quality control. McGraw-HilI.

39. Ishikawa, K. (1985). What is total quality control? The Japanese way. Prentice­

Hall.

40. Juran, J.M. (1988). Juran's Quality Control Handbook. McGraw-HilI.

41. Shew hart, W.A. (1931). Economic control of quality of manufactured product.

Van Nostrand.

42. Brown, WJ., Malveau, R.C., Brown, W.H., McCormick III, H. W. &

Mowbray. T.J. (1998). Anti-Patterns: Refactoring Software, Architectures. and

Projects in Crisis (1 st ed.). John Wiley and Sons.

43. Fenton, N. & Pfleeger, S.L. (1997). Software Metrics: A Rigorous and

Practical Approach (2nd ed.). International Thomson Computer Press. London.

44. Fowler, M. (1999). Refactoring - Improving the Design of Existing Code (1st

ed). Addison-Wesley.

45. Lewallen, R. (2005). Software Development Life Cycle Models

http://codebetter.com!raymondlewallenl2005/07 1 13/software-development­

life-cycle-models/.

176

46. Ortega, M .• Perez, M., & Rojas T. (2003). Construction ofa Systemic Quality

Model for evaluating a Software Product. Software Qua/ityJournal. 11:3. pp.

219-242.

47. ISO. (1994). ISO 8402:1994 - Quality management and quality assurance -

Vocabulary .

48. Kan. S. (2002). Metrics and Models in Software Quality Engineering.

Addison-Wesley Longman Publishing Co., Inc. Boston, MA.

49. Mansour, Y.I.. & Mustafa, S.H., (2011). Assessing Internal Software Quality

Attributes of the Object-Oriented and Service-Oriented Software Development

Paradigms: A Comparative Study. Journal of Software Engineering and

Applications. 4: 244-252.

50. Institute of Electrical and Electronics Engineers, (1990). IEEE 610.12-1990:

IEEE Standard Glossary of Software Engineering Terminology.

51. McCall, J., Richards, K., & Walters, F. (1977). Factors in Software Qual ity.

Nat'l Tech.lnformation Service: Vol. 1,2 and 3.

52. Boehm, B., Brown. R., Kaspar, H .• Lipow. M .. McLeod. G .• & Merritt, M.

(1978). Characteristics of Software Quality. North Holland.

53. Grady, R. & Caswell, D. (1987). Software Metrics: Establishing a Company­

Wide Program. Prentice Hall.

54. Dromey, R.G. (1996). Concerning the Chimera [software quality]. IEEE

Software, no. 1: 33-43.

55. ISOIIEC 9126-1.2. (1998). ISOIIEC 9126-1.2: Information Technology -

Software Product Quality - Part I: Quality Model, ISOIIEC JTC I/SC7/WG6.

56. Wiegers, K. (2003). Software Requirements (2nd ed.). Microsoft Press.

57. Pettersson. A. (2006). Service-Oriented Architecture (SOA) quality attributes­

A research model. MSc thesis. University of Lund.

58. O'Brien, L., Paulo, M. & Len B. (2007). Quality Attributes for Service­

Oriented Architectures. In Proceedings of the International Workshop on

Systems Development in SOA Environments SDSOA '07. IEEE Computer

Society, Washington, DC.

59. Peng, Q. (2008). SOA and Quality. MSc thesis, Vttxjl:S University.

60. Montagud, S., Abrahao S., & Ins fran E., (2012). A systematic review of quality

attributes and measures for software product lines. Software Quality Journal

20: Issue 3-4: 425-486.

61. Galster, M., Avgeriou, P., & Tofan, D., (2013). Constraints for the design of

variability-intensive service-oriented reference architectures - An industrial

case study. Information and Software Technology 55: 428-441.

177

62. Marko, M. (2013). Using EBI Pattern in Conjunction with Service-Oriented

Architectures. MSc thesis, University of Jyvliskyla.

63. IEEE (1998). IEEE Std. 1061-1998. Standard for a Software Quality Metrics

Methodology, revision. IEEE Standards Dept., Piscataway, NJ.

64. Jaquith. A. (2007). Security Metrics: Replacing Fear. Uncertainty, and Doubt.

Pearson Education Inc., Upper Saddle River, NJ.

65. Burnstein, I. (2003). Practical Software Testing: A Process-Oriented

Approach. Springer.

66. Sharble, R. & Cohen, S. (1993). The Object Oriented Brewery: A Comparison

of Two object oriented Development Methods. Software Engineering Notes,

18. No 2: 60 -73.

67. Chidamber. S. & Kemerer, C. (1994). A Metrics Suite for Object Oriented

Design. IEEE Transactions on Software Engineering. 20. No.6.

68. Henderson-Sellers, B. (1996). Object-Oriented Metrics: Measures of

Complexity. Prentice-Hall, New Jersey.

69. Travassos. G .• Shull, F., Fredericks, M. & Bas iii , V. (1999). Detecting Defects

in Object Oriented Designs: Using Reading Techniques to Increase Software

Quality. Conference on Object-Oriented Programming, Systems, Languages.

and Applications (OOPS LA), Denver, Colorado, 1-10.

70. Fenton. N.E. & Neil, M. (2000). Software Metrics: Roadmap. In Finkelstein.

A. (ed), Future of Software Engineering. ACM Press.

71. Prnjat. O. & Sacks. L. (2001). Measuring complexity of network and service

management components. 2nd IEEE Latin American Network Operations and

Management Symposium (LANOMS 200 I). Belo Horizonte. Brazil.

72. Bansiya, J. & Davis, C. (2002). A Hierarchical Model for Object-Oriented

Design Quality Assessment. IEEE Transactions on Software Engineering. 28.

No I.

73. Prechelt. L.. Unger. B .• Philippsen. M., & Tichy, W. (2003). A controlled

experiment on inheritance depth as a cost factor for code maintenance. The

Journal of Systems and Software, 65: 115-126.

74. Succi, G., Pedrycz, W., Stefanovic, M. & Miller. J. (2003). Practical

Assessment of the Models for Identification of Defect-prone Classes in Object­

Oriented Commercial Systems Using Design Metrics. The Journal of Systems

and Software, 65: 1-12.

75. Perepletchikov. M .• Ryan, C. & Frampton, K. (2005). Comparing the Impact

of Service-Oriented and Object-Oriented Paradigms on the Structural

178

Properties of Software. In Second International Workshop on Modeling Inter­

Organizational Systems. Cyprus, 3762: 431-441.

76. Elish. K. & Elish. M. (2008). Predicting Defect-prone Software Modules Using

Support Vector Machines. The Journa/ of Systems and Software, 81: 649-660.

77. Jay, G .• Hale, J.E., Smith, R.K .• Hale, D., Kraft, N.A. & Ward, C. (2009).

Cyclomatic Complexity and Lines of Code: Empirical Evidence of a Stable

Linear Relationship. Journal of Software Engineering and Applications, 2:

137-143.

78. Chowdhury, I. (2009). Using Complexity, Coupling, and Cohesion Metrics as

Early Indicators of Vulnerabilities. MSc thesis, Queen's University.

79. Thapaliyal, M. & Verma. G. (2010). Software Defects and Object Oriented

Metrics - An Empirical Analysis. International Journal of Computer

Applications (0975 - 8887),9, No 5: 1-44.

80. Shaik, A., Reddy, K., Manda, B., Prakashini, C, & Deepthi, K. (2010). An

Empirical Validation of Object Oriented Design Metrics in Object Oriented

Systems. Journal of Emerging Trends in Engineering and Applied Sciences

(JETEAS), 1(2): 216-224.

81. Sanjay, D. & Ajay, R. (2010). A Comprehensive Assessment of Object­

Oriented Software Systems Using Metrics Approach. International Journal on

Computer Science and Engineering (IJCSE), 2, No 8: 2726-2730.

82. Gurdev, S., Dilbag, S. & Vikram, S. (2011). A Study of Software Metrics.

International Journal of Computational Engineering & Management

(lJCEM). 11: 22-27.

83. Kehan. G .• Taghi, M., Huanjing, W. & Naeem. S. (2011). Choosing software

metrics for defect prediction: an investigation on feature selection techniques.

Softw. Pract. Exper, 41 :579-606.

84. Agrawal. D. & Mishra, M. (2012). An Integrated Approach to Measurement

Software Defect using Software Matrices. International Journal of Computer

and Organization Trends, 2 (4): 90-94.

85. Alahmari, S. (2012). A Design Framework for IdentifYing Optimum Services

Using Choreography and Model Transformation. PhD thesis. Faculty of

Physical and Applied Science. University of Southampton.

86. Cardoso, J., Mendling, J., Neumann, G. & Reijers H. (2006). A discourse on

complexity of process models. In Eder, J. & Dustdar, S. (eds), BPI06 Second

International Workshop on Business Process Intelligence in conjunction with

BPM 2006. LNCS, 4103: 117-128. Springer-Verlag, Berlin.

179

87. Papazoglou, M. & Heuvel, W. (2006). Service-oriented design and

development methodology. International Journal of Web Engineering and

Technology (IJWET), 2(4), 412-442.

88. Abreu, F. & Melo, W. (1996). Evaluating the Impact of Object-Oriented

Design on Software Quality. Third International S/W Metrics Symposium,

March 1996, pp 1-16. Berl in.

89. Basili, V., Green, S., Laitenberger, 0., Lanubile, F., Shull, F., Sorumgard, S.

& Zelkowitz, M. V. (1996). The Empirical Investigation of Perspective-Based

Reading. Empirical Software Engineering Journal, I: 133-164.

90. http://www.isixsigma.comlindustries/software-itldefect-prevention-reducing­

costs-and-enhanci ng-gual ity/.

91. Serena, (2007). An Introduction to Agile a Software Development.

92. Universidad Politecnica de Valencia. Architecture Evaluation Methods:

Introduction to AT AM.

93. http://www.isixsigma.comlindustries/software-itlsoftware-defect-prevention­

nutshell/

94. Lewallen, R. (2005). Software Development Life Cycle Models.

http://codebetter.comlraymondlewallenl2005/07 / 13/software-devel 0oment­

Iife-cycle-models/.

95. Gueheneuc, Y. (2001). Design defects: A taxonomy. Technical Report INFO-

2001, Ecole des Mines de Nantes.

96. Tian, J. (2005). Software Quality Engineering. John Wiley and Sons.

97. Moha, N .. Gueheneuc, Y., Duchien, L., & Le Meur, A. (2010). DECOR: A

Method for the Specification and Detection of Code and Design Smells. IEEE

Transactions on Software Engineering, 36 (Issue I): 20-36.

98. Khomh, F., Vaucher, S., Gueheneuc, Y.-G. & Sahraoui, H. (2009). A Bayesian

Approach for the Detection of Code and Design Smells. Proc. of the ICQS

2009.

99. Liu, H.,Yang, L., Niu, Z., Ma, Z. & Shao W. (2009). Facilitating Software

Refactoring with Appropriate Resolution Order of Bad Smells. Proc. of the

ESEC/FSE 2009. Pp 265-268.

100. Marinescu, R. (2004). Detection Strategies - Metrics-based Rules for

Detecting Design Flaws. Proc. oflCM 2004. Pp 350-359.

101. Kessentini, M., Vaucher, S. & Sahraoui, H. (2010). Deviance from

Perfection is a Better Criterion than Closeness to Evil When Identifying Risky

Code. Proc. of the International Conference on Automated Software

Engineering. ASE 2010.

180

102. Riel, A. J. (1996). Object-Oriented Design Heuristics. Addison-

Wesley.

103. Gaffney. J.E. (1981). Metrics in Software Quality Assurance. Proc. of

the ACM 1981 Conference. Pp 126-130.

104. Mantyla, M., Vanhanen, J. & Lassenius, C. (2003). A Taxonomy and

an Initial Empirical Study of Bad Smells in Code. Proc. oflCSM 2003, IEEE

Computer Society.

105. Kothari, S.c., Bishop, L., Sauceda, J. & Daugherty, G., (2004). A

Pattern-based Framework for Software Anomaly Detection. Software Quality

Journal, 12(2): 99-120.

106. Dhambri. K., Sahraoui. H.A. & Poulin, P. (2008). Visual Detection of

Design Anomalies. In CSMR, IEEE. Pp 279-283.

107. Erni, K. & Lewerentz. C. (1996). Applying Design Metrics to Object-

oriented Frameworks. Proceedings of the 3rd International Software Metrics

Symposium, 1996.

108. Alikacem, H. & Sahraoui, H. (2006). Detection d'anomalies utilisant

un langage de description de regIe de qualite. In actes du 12e colloque LMO.

109. http://www.marouane-kessentini/icpcll.zip.

I 10. Raedt, D. (1996). Advances in Inductive Logic Programming. lOS

Press.

Ill. Opdyke, W.F. (1992). Refactoring: A Program Restructuring Aid in

Designing Object-Oriented Application Frameworks. PhD thesis, University

of Illinois at Urbana-Champaign.

112. Beck, J., & Eichmann, D. (1993). Program and Interface Slicing for

Reverse Engineering. In Proceedings of the International Conference on

Software Engineering, I: 15-16.

113. Beck, K. (1999). Extreme Programming Explained: Embrace Change.

Addison-Wesley, Boston, MA

114. Beck, K. (2003). Test Driven-Development by Example. Addison-

Wesley, Boston, MA

115. Naouel, M., Yann-Gael, G., Le Meur, AF. & Laurence, D. (200 I). A

Domain Analysis to Specify Design Defects and Generate Detection.

116. Nirmal, K.G. & Mukesh, K.R. (2011). An Approach for Detection and

Correction of Design Defects in Object-oriented Software. International

Journal of Information Technology and Knowledge Management. 4(I): 63-67.

117. Florijn, G .. Meijers, M. & Winsen, P. V. (1997). To Supply Object-

oriented Patterns. Proceedings of ECOOP, 1(2): 5-7.

181

118. Microsoft (20 14). How to: Generate Files from a UML Model", Microsoft

2014: http://msdn.microsoft.comien-usllibrary/ft057795.aspx.

119. Aho. A.V .. Sethi. R. & Ullman, J.D. (1986). Compilers: principles.

techniques. and tools. Addison-Wesley Longman Publishing Co., Inc. Boston,

MA.

120. Frost. R .• Hafiz, R. & Callaghan. P. (2007). Modular and Efficient Top-

Down Parsing for Ambiguous Left-Recursive Grammars., 10th International

Workshop on Parsing Technologies (IWPT). ACL-SIGPARSE June 2007.

Prague. Pp 109-120.

121. Yingxu. W .• Yanan. Z., Philip. C., Xuhui, L. & Hong, G., (2010). The

Fonnal Design Model of an Automatic Teller Machine (ATM). International

Journal of Software Science and Computational Intelligence, 2(1): 102-131.

122. Rajni Pamnani. Pramila Chawan, Satish Salunkhe. Object Oriented UML

Modeling for ATM Systems. Department of computer technology. VJTI

University, Mumbai.

123. Wikipedia. "ATM System"

www.wikipedia.orglwikiiAutomated teller machine.

182

APPENDIX A

Research Tool

INTRODUCTION

Developing quality code is a major concern for the software community. Producing

bug-free, extensible, and adaptable code is a hard task. It requires skills, experience,

and a deep understanding of the structure and behavior of the software under

development. The purpose of the study was to propose a framework to automate the

detection of design defects based on design patterns and using design constraints. The

framework will otTer defects identification and quality measurements in two main

steps: Defects identification based on the design And Using the defects to measure

and estimate quality.

This tool examines the relationship between service-oriented architectures (SOAs) and

quality attributes. The quality attribute requirements drive software architecture design,

it is important to understand how SOAs support these requirements. This tool outlines

a set of quality attributes with short definition to describe how those attributes impact

the SOA quality and which metrics can help in measuring these impacts.

Position: .. .

Experiences in Design Filed:

183

Part (I): Definitions

eSlgn e ec s D D Ii t

SOA Design Defects Definition

These occur when the processing steps in the algorithm as described

Algorithmic and
by the pseudo code are incorrect. In the latter case a step may be

missing or a step may be dupl icated. In the case of algorithm reuse, a
Processing Defects

designer may have selected an inappropriate algorithm for this

problem (it may not work for all cases).

Control defects occur when logic flow in the pseudo code is not

Control, Logic, and correct. Logic defects usually relate to incorrect use oflogic operators,

Sequence Defects such as less than <, greater than >, etc. These may be used incorrect ly

in a Boolean expression controlling a branching instruction.

Necessary information about the system has been omitted from the
Omission

software artifact.

Some information in the software artifact contradicts information in
Incorrect Fact

the requirements document or the general domain knowledge.

Information within one part of the software artifact is inconsistent
Inconsistency

with other information in the software artifact.

Information within the software artifact is ambiguous, i.e. any of a

Ambiguity number of interpretations may be derived that should not be the

prerogative of the developer doing the implementation.

Extraneous Information is provided that is not needed or used.

Information

Functional
The defects in this category include incorrect, missing, and/or unclear

design elements. These defects are best detected during a design
Description Defects

review.

This category includes any design defect related to the internal
Intra-class Defects

structure of a class.

184

All the design defects related to the application semantics belong to
Behavioral Defects

this category.

This category encloses any design defect re lated to the external

Inter-class Defects structure of the classes (the ir public interface) and the ir relationshi ps.

D Att °b t eS12" rI U es
Design

Definition
Attributes

A set of objects that share a common structure and common behav ior

Class mani fested by a set of methods; the set serves as a template from which

objects can be instantiated.

An instanti ation of some class which is able to save a state (in fonnation) and
Object

which otTers a number of operations to examine or affect th is state.

An operation upon on object, defined as part of the declaration of a cIa s.

Method Methods are operations but not all operations are actual methods dec lared

fo r a specific class .

Message A request that an object makes of another object to perform an operati on

Design size measure the size of design elements, typica lly by count ing the

Design Size elements contained within. For example, the number of operations in a c lass.

the number of classes in a package, and so on.

Complexity measures the degree of connecti vity between elements of a

design unit. Whereas size counts the elements in a des ign unit. and coupling

the relationships/dependencies leaving the design uni t boundary. complexity

Complexity
is concerned with the relationships/dependencies between the elements in

the design unit. For instance, counting the number method invocations

among the methods wi thin one c lass can be considered a measure of c ia s

complexity, or the number of transitions between the states in a state

diagram.

Coupling Coupling is the degree to which the elements in a des ign are connected.

185

Cohesion is the degree to which the elements in a design unit (package, c ia s

Cohesion etc.) are logically related, or "belong together". As such, co he ion i a

semantic concept.

A relationship among classes wherein one class shares or methods defined

Inheritance in one (for single inheritance) or more (for multiple inheritance) other

classes.

The ability of an object to interpret a message d i flerently at execution
Polymorphism

depending upon the super class of the ca lling object.

The process of bundling together the elements of an abstraction that
Encapsulation

constitute its structure and behaviour.

Hierarchies are used to represent different genera lization-speciali zation
Hierarchies

concepts in a design.

Abstraction A measure of the generalization specialization aspect of the design.

Instantiation
The process of creating an instance of the object and binding or adding the

specific data.

Metrics

Quality Metrics Definition

Lines-Of-Code metric Counts the number of statements within a program source code.

(LOC)

Weighted Methods per The WMC is a count of the methods implemented within a class or

Class (WMC) the sum of the complexities of the methods.

Depth of Inheritance Tree It measures the inter-class coupling due to inheritance.

(DIT)

The RFC is the count of the set of all methods that can be invoked in
Response set For a Class

response to a message to an object of the class or by some method in
(RFC)

the class .

186

Coupling Between Object

classes (CBO)

Source Line of Code

(SLOC)

Number Of Children

(NOC)

Cyciomatic Complexity

(CC)

Lack of Cohesion of

Methods (LCOM)

Is a count of the number of other classes to which a cia s is coupled.

It is measured by counting the number of distinct non-inheritance

related class hierarchies on which a class depends. It used to compare

the level of coupling between classes.

The number of executable lines of source code.

The number of children is the number of immediate subcla e

subordinate to a class in the hierarchy. It is an indicator of the

potential influence a class can have on the design and on the y tem.

Is used to evaluate the complexity of an algorithm in a method. It i

a count of the number of test cases that are needed to test the method

comprehensively.

Lack of Cohesion (LCOM) measures the dissimilarity of methods in

a class by instance variable or attributes. It defined in term of the

number of pairs of class methods that use common cia s attributes

and the number of pairs of class methods that do not u e common

class attributes.

MIF is defined as the ratio of the sum of the inherited Methods in all

Method Inheritance Factor classes of the system under consideration to the total number of

(MIF) available methods (locally defined plus inherited) for all c1asse .

Attribute Inheritance

Factor

(AI F)

AIF is defined as the ratio of the sum of inherited attribute in all

classes of the system under consideration to the total number of

avai lable attributes (locally defined plus inherited) for all cia e .

PF is defined as the ratio of the actual number of possible different

Polymorphism Factor (PF) polymorphic situation for class Ci to the maximum number of

possible distinct polymorphic situations for class Ci.

Method Hiding Factor

(MHF)

MHF is defined as the ratio of the sum of the invisibilities of all

methods defined in all classes to the total number of methods defined

in the system under consideration. The invisibility of a method i the

percentage of the total classes from which thi s method is not vi ible.

187

Attribute Hiding Factor

(AHF)

AHF is defined as the ratio of the sum of the invi ibilitie of all

attributes defined in all classes to the total number of attributes

defined in the system under consideration.

SOA Quality

Attributes

Ada pta bility

AnaJysa bility

Auditability

Availability

Changeability

Correctness

Quality Attributes

Definition

The quality of being adaptable to changes. The use of an SOA approach

should have a positive impact on adaptability, as long as the adaptations

are managed properly. However, the management of this quality

attribute is left up to the service users and providers, and no tandards

exist to support it. This attribute must be managed in coordination with

other quality attributes including stability. performance, and

availability, and the necessary trade-offs must be identified and made.

The capability of the software product to be diagnosed for deficiencies

or causes of failures in the software, or for the parts to be modified to

be identified.

Auditability is the quality factor representing the degree to which an

application or component keeps sufficiently adequate records to support

one or more specified financial or legal audits. With the ever-increa ing

need for systems to comply with business and regulatory legislation

(financial and health sectors especially), the ability to audit a system for

compliance is an important consideration.

Availability refers to the ability of the user community to acce s the

service, whether to submit new request, update or alter existing request.

or collect the results of previous request.

The capability of the software product to enable a specified

modification to be implemented.

Accountability for satisfYing all requirements of the system. Measure of

exact adherence to specifications.

188

Extensibility

Interoperability

Modifiability

Performance

Reusability

Extending an SOA by adding new services or incorporating additional

capabilities into existing services is supported within an SOA. However,

the interface/formal contract must be designed carefully to make sure

that it can be extended, ifnecessary, without causing a major impact on

the service users.

The ability to exchange and use information (usually In a large

heterogeneous network made up of several local area networks).

Interoperability may occur between two (or more) entities that are

related to one another in one of three ways:

Integrated: where there is a standard fonnat for all constituent systems

Unified: where there is a common meta-level structure across

constituent models, providing a means for establishing semantic

equivalence

Federated: where models must be dynamically accommodated rather

than having a predetennined meta-model.

Modifiability considers how the system can accommodate anticipated

and unanticipated changes and is largely a measure of how changes can

be made locally, with little ripple effect on the system at large. The

world around most Software System is constantly changing. This

requires software systems to be modified several times after their initial

development.

Perfonnance refers to the system responsiveness: either the time

required responding to specific events, or the number of events

processed in a given time interval. An SOA approach can have a

negative impact on the perfonnance of an application due to network

delays, the overhead of looking up services in a directory, and the

overhead caused by intennediaries that handle communication. The

service user must design and evaluate the architecture carefully, and the

service provider must design and evaluate its services carefully to make

sure that the necessary perfonnance requirements are met.

The degree to which a software module or other work product can be

used in more than one computing program or software system.

189

Scalability

Security

Stability

Testability

Understandability

Usability

Maintainability

Reliability

Scalability is the ability of SOA to function well when the system is

changed in size or in volume in order to meet users' needs.

Extending an SOA by adding new services or incorporating additional

capabilities into existing services is supported within an SOA. However,

the interface/formal contract must be designed carefully to make sure

that it can be extended, if necessary, without causing a major impact on

the service users.

Due to the distributed nature of the current enterprise systems, we have

difficulty In administering security policies and bridging diverse

security models. This leads to increased opportunities to make mistakes

and leave security holes; hence the chance of accidental disclosure and

the vulnerability to attack goes up.

The capability of the software product to avoid unexpected effects from

modifications of the software.

Testability can be negatively impacted when using an SOA due to the

complexity of the testing services that are distributed across a network.

Those services might be provided by external organizations where

access to the source code is not available, and if they implement runtime

discovery of services, it may be impossible to identifY which services

are used until a system executes. It is up to the service lIsers and

providers to test the services, and very little support is currently

provided for the end-to-end testing of an SOA.

The degree to which the purpose of the system or component is clear to

the evaluator.

Usability may decrease if the services within the application support

human interactions with the system and there are performance problems

with the services. It is up to the services users and providers to build

support for usability into their systems.

The ability to identify and fix a fault within a software component i

what the maintainability characteristic addresses.

The capability of the system to maintain its service provision under

defined conditions for defined periods of time.

190

SOA Quality Attributes

- ~
3: SOADesign > > ("') l"'l

::I 3: "'CI ::I
> > =- (""J ... ::a= ""'l

Q, 110
Metrics Q, ::I ~ $ ft ~ $::a= SOA Design Defects • c -< • 0, 0 ., ft g f(l ~

~ ~ ~ :i' ri Q. • ~
.,

$ ~
Q, 0' c $

Attribute ~ i ri CI =- .. ;- n • S- IlO S- u· .. ;- .. ., • C r::1' r::1' • • $ n ft • 51 r::1' !2: ::I Er r::1' r::1' !2: g; • ... s: ;: g; .,
~ ==

g r::1' CI !2: 110

~ ~ ~
Q,

~ • ~ ~ ~ == ! ~ !2: ~
::I

~ • r::1'
~ ~ ~ ~

n g; ~ ft
~ .

. .

-
Class LOC

Algorithmic and

Object WMC Processing Defects

Method DIT
Control, Logic, and

Message RFC Sequence Defects

Design Size CBO Omission

Complexity SLOC Incorrect Fact

Coupling NOC Inconsistency

Cohesion CC Ambiguity

Inheritance LCOM Extraneous Information

191

Polymorphism MIF
Functional Description

Defects
Encapsulation AIF

Hierarchies PF Intra-class Defects

Abstraction MHF Behavioral Defects

Instantiation AHF Inter-class Defects

192

> >
Quality :: Q.

Ql

~ ~ Metrics '" Ql Ql g g
~ ~

LOC

WMC

DIT

RFC

CBO

SLOC

Noe
ee
DIT

LCOM

MIF

A1F

PF

MHF

LOC

Part (III): Metrics Measurement Range
Impact On Quality [(10) Highest impact - (1) lowest impact]

SOA Quality Attributes

~
~

i ~
::

> ~ ~ i "C

" VJ .., Q.
II> II> C ~
., I!> ..., VJ VJ I!> .,

e: i I 0- c Ql I!> - III III
III ii) ..., Ql ;-

~
[.,

Ql C g Ql Ql

3 g g ., g :: g
~ ~

Ql ~ ~
Q.

W :: q" ~ q" II:> :;-

~ ~ ~ ..., g '< II>

q"

193

3;
Ql

" ~ :i' !!. III -Ql Ql ; "
~ Sf g
q" Ql

g ~
~

-

Total

ReUability

Maintainability

Usability

Understandability

Testability

Stability

I Security
.c

~
ScalabiUty

ReusabiUtv

Performance

Modifiability

Interoperability

I Extensibility

Correctness

ChangeabiUty

Availability

Auditabilitv

Analysability

Adaptability

£ - ~ ~

= ...
0' = .::l

< ·C
0 en <

= = -

<Il ...
.c
I:)!)
.~

~

..-. = = -.....
Q ...
= 0
'-'

o:t
en
M

SOA Quality Attributes

,

- ~
~ SOA Design > > r> ~

:I ::: ."
:I

> > ::r r> - ~ 00 .., Q. = Metrics SOA Design Defects Q. :I C Q >01 tD Q tD tD ~ S' ~ = < ID - ., ., tD n ~ 00 tD ~ ~ Q. ID
~

.,
tD i Q. 0' c ID ... (I) (I) tD

Attribute -< ... -;:.- iii'
.,

:I S II) ;- n = - S- IlO = iii' ... (I) = ~
tD (I)

., • c !2: ID c::r S' • ID II ID a !2: c::r :I c::r
!2: !2: ~ g iZ !2: .,

~ g; c::r :I !2: • ~ ~ ~
Q. ~ = ~ ~ ~ ~ 11 ~

!2: ~
:I ~ = c::r

~ ~
n g; ~ II)

~ tD

~

LOC
Algorithmic and

WMC Processing Defects

DIT
Control, Logic, and

RFC Sequence Defects

Design Size CRO Omission

Complexity SLOC Incorrect Fact

Coupling NOC Inconsistency

Cohesion CC Ambiguity

Inheritance LCOM Extraneous Information

195

Polymorphism MIF
Functional Description

Defects
Encapsulation AIF

Hierarchies PF Intra-class Defects

Abstraction MHF Behavioral Defects

Instantiation AHF Inter-class Defects
L- __ - ----- -- --------- ---

196

> >
Quality ::I Q.

D)

~ q
Metrics - '" D) D)

g; g
~ ;;-

~

LOe

WMC

DIT

RFC

eBO

SLOe

NOC

ce

DIT

LCOM

MIF

AlF

PF

MHF

Loe

Part (VI): Metrics Measurement Range
Impact On Quality [(10) Highest impact - (1) lowest impactl

SOA Quality Attributes

~ ~

i I
::I

> ~ b ~
."

" 'JJ -oj
Q.

t'> t'> C ., t'> f") 'JJ 'JJ t'> .,
e: ~ 0- c D) t'> - '" '"

~
'" ;' f") D) - -fJ I

.,
D) c g D) D)

r 3 g g ::::!. g ::I g ~ D) q ~
Q. :: ,.

::I ~ ~ ~
D)

~ ~ !<' f") g
t'> q.

197

::
~. " ~ ::I ~ '" fJ D) j;;.

g 5· g q. DO

~ ~
~

Total

Reliability

Maintainability

Usability

Understandability

Testability

Stabilitv

Security

; Scalability

f Reusabilitv

!
Performance

: Modifiability
:
: Interoperability ,

:" Extensibility

~ Correctness
:
: Changeability

Availability

Auditability

Analysability

Adaptability

~ ---; I'IJ
~ = -0 = .c

< --a. .-0 -rIl <

= = -

I'IJ -.c
OJ)

-~

~

-. = = -""' 0 -= 0 -

00
m
.-4

