
An Automatic Machine-Learning

Framework for Testing Service

Oriented Architecture

Osama Altalabani

A thesis submitted in partial fulfillment of the requirements of

Kingston University for the degree of Doctor of Philosophy

Faculty of Science, Engineering and Computing

Kingston University

April 2014

Abstract

Today, Service Oriented Architecture (SOA) systems such as web services have the

advantage of offering defined protocol and standard requirement specifications by

means of a formal contract between the service requestor and the service provider, for

example, the WSDL (Web Services Description Language) , PBEL (Business Process

Execution Language), and BPMN (Business Process Model and Notation). This gives a high

degree of flexibility to the design, development, Information Technology (IT)

infrastructure implementation, and promise a world where computing resources work

transparently and efficiently. Furthermore, the rich interface standards and speCifications

of SOA web services (collectively referred to as the WS-* Architecture) enable service

providers and consumers to solve important problems, as these interfaces enable the

development of interoperable computing environments that incorporate end-to-end

security, reliability and transaction support, thus, promoting existing IT infrastructure

investments.

However, many of the benefits of SOA become challenges for testing approaches and

frameworks due to their specific design and implementation characteristics, which cause

many testability problems. Thus, a number of testing approaches and frameworks have

been proposed in the literature to address various aspects of SOA testability. However,

most of these approaches and frameworks are based on intuition and not carried out in a

systematic manner that is based on the standards and specifications of SOA. Generally,

they lack sophisticated and automated testing, which provide data mining and knowledge

discovery in accordance with the system based on SOA requirements, which

consequently would provide better testability, deeper intelligence and prudence.

Thus, this thesis proposes an automated and systematic testing framework based on user

requirements, both functional and non-functional, with support of machine-learning

techniques for intelligent reliability, real-time monitoring, SOA protocols and standard

requirements coverage analysis to improve the testability of SOA-based systems. This

thesis addresses the development, implementation, and evaluation of the proposed

framework, by means of a proof-of-concept prototype for testing SOA systems based on

the web services protocol stack specifications. The framework extends to intelligent

analysis of SOA web service specifications and the generation of test cases based on static

test analysis using machine-learning support.

ii

Table of Contents
Abstract .. ;
Table 0/ Contents .. iii
List of Figures .. v
List o/Table ... vii
Acknowledgment .. viii
Chapter 1-lntroduction and Motivation .. 1

1.1 Introduction ... 1
1.2 Challenges .. 3
1.3 Research Questions and Objectives ... 5
1.4 Research Contribution ... 6
1.5 Structure 0/ the Thesis ... 7
1.6 Publications .. 9
Chapter 2 - Service Oriented Architecture (SOA) .. 10
2.1 Introduction ... 10
2.2 SOA Historical Background .. 10
2.3 SOA Design Principles .. 13
2.4 SOA Design Concept ... 14

2.4.1 Generic Software Architecture ... 15
2.4.1.1 Generic SOA Design layers .. 16

2.4.2 Web Services and their Categories ... 19
2.4.2.1 Categories of Web Services .. 20
2.4.2.2 Web Services' Quality of Services .. 21
2.4.2.3 Web Service Protocol Stack (WS-* Architecture) .. 21

2.4.3 Extending SOA Design ... 22
2.4.3.1 Extending SOA Design to WS-* Architecture ... 24

2.4.4 Generic Software Testability ... 27
2.4.4.1 Generic SOA Testability Problems ... 27

2.5 Conclusion .. 30
Chapter 3 - SOA Testing Approaches and Tools .. 32
3.1 Introduction ... 32
3.2 Testability Challenges .. 33
3.3 Current Testing Approaches and Tools .. 34

3.3.1 Background ... 34
3.3.1.1 Testing Based on Traditional Software Methods ... 35
3.3.1.2 Adaptive SOA Software Testing ... 37
3.3.1.3 Testing Based on SOA Systems Standards ... 39
3.3.2 Current SOA Testability Summary and Evaluation ... 41

3.4 Conclusion .. 43
Chapter 4 -An Intelligent Framework/or SOA Testability .. 45
4.1 Introduction ... 45
4.2 SOA Testability Status Recapitulation .. .46
4.3 Framework Conceptual Design .. 47

4.3.1 Functional Requirements Specification .. SO
4.3.1.1 System Analysis (SA) Module ... 54
4.3.1.2 Test Cases Generation (TCG) Module .. 58
4.3.1.3 Test Execution (TE) Module ... 61
4.3.1.4 learning and Decision Making (lDM) Module ... 63
4.3.1.5 Monitoring Module .. 66

iii

4.3.1.6 Administration Module .. 67

4.4 Conclusion ..•... 70
Chapter 5 - Framework Evaluation ... 72
5.1 Introduction ... 72
5.2 System Analysis Example ... 73
5.3 Test Generation Example ... 83

5.3.1 Test data Category Partitioning .. 83
5.3.2 Equivalence Class Partitioning .. 84

5.4 Test Execution Example ... 87
5.5 Test Monitoring Example ... 91
5.6 Empirical Framework Evaluation ... 93
5.7 Defect Detection and Coverage Metrics .. 94

5.7.1 Test Completeness Measurement .. 94
5.7.2 Defect Detection Effectiveness Measurement ... 96

5.7.2.1 Defect Seeding ... 96

5.8 Cost-effectiveness Measurements ... 99
5.9 Threat to Construct Validity ... 101

5.9.1 Threats to Internal Validity (Degree Level of Automation) .. 103
5.9.2 Threat to External Validity (Supporting Industrial Practices) ... 104

5.10 cost-Effectiveness Evaluation Summary ... 105
Chapter 6 -Industrial Case Study .. 108
6.1 Introduction ... 108
6.2 Scope .. 108
6.3S0A in Industry Segments .. 110

6.3.1 Web Service Protocol Stack Industry Implementation ... 110
6.3.2 Enabling Business Process Layer ... 111

6.4 SOA Architecture Use Case Implementation ... 111
6.4.1 Online Stock Trading Process .. 113
6.4.2 Initiating the Proposed Framework .. 116
6.4.3 Initialising Testing the Implemented WS-* Architecture .. 116

6.4.3.1 Testing WS-ReliableMessaging, Security, and Addressing ... 117
6.4.3.2 Testing Choreography (WS-CDL) .. 119
6.4.3.3 Testing Web Services Atomic Transaction and WS .. 122
6.4.3.4 Testing Orchestration (WS-BPEL) ... 123

6.5 Test Effort Measurement .. , 124
6.5.1 Test Cases Generation Result ... 124
6.5.2 Test Effort Result .. 125
6.5.3 Experimental Setup ... 126
6.5.4 Computer Resource Test Cost .. 127
6.5.5 Test Effectiveness Measurement .. 128

6.5.5.1 Test Coverage Evaluation ... 129
6.5.5.2 Defect Detection Effectiveness Measurement Evaluation .. 130

6.5.6 Cost-Effectiveness Measurement Evaluation ... 131
6.6 Conclusion .. 132
Chapter 7 - Conclusion and Future Work .. 134
7.1 Conclusion .. 134
7.2 Future Work ... , 141
References , , , 249

iv

List of Figures

Figure 2.1. SOA implementation ... 12
Figure 2.2. Generic SOA design layer ... 17
Figure 2.3. Generic interoperable SOA web services design of the service layers 19
Figure 2.4. SOA design extended layers .. 23
Figure 2.5. Web services protocol stack protocol components relationships 26
Figure 4.1. An overview conceptual design diagram of the proposed framework
architecture .. 49
Figure 4.2. An overall view of the function relationships among the modules of the
framework ... 51
Figure 4.3. Functional process flowchart of the System AnalysiS module 55
Figure 4.4. Functional process and data flow flowchart diagram of the Test Cases
Generation module ... 59
Figure 4.5. Functional process and data flowchart ofTE module 62
Figure 4.6. The activity diagram of the LDMA supporting classification and data mining of
other module in the framework .. 65
Figure 4.7. A flowchart diagram ofthe Monitoring module ... 66
Figure 4.8. The sequence workflow diagram of the events between system administration
module and other modules in the framework ... 68
Figure 5.1. A screenshot of the WSDL extract tables of the SAA parsing process 74
Figure 5.4. A highlighted section of the decision tree structure of the training dataset
evaluation of the WSDL Implementation Static classifier ... 80
Figure 5.6. A highlighted section of the decision tree structure the training QoS assertions
dataset ... 82
Figure 5.7. The result set of classifying the web services operations into categories 83
Figure 5.8. The result set of partitioning the categories into choices 83
Figure 5.9. A section of the structure of the decision tree from training QoS WS-
Addressing dataset .. 89
Figure 5.10. WS-Addressing protocol properties in StockTickerPrice.wsdl file 90
Figure 5.11. Specifying test-execution environment data in the Test Case.xml 91
Figure 5.12. A section of the structure of the decision-tree resulting from system
invocation monitoring training dataset ... 93
Figure 5.13. Code coverage measurement for calculator web services 96
Figure 5.14. Defect detection ratio for calculator web services test suite 98
Figure 5.15. Defect detection metrics for the generated mutation testing l01
Figure 5.16. A comparison of test-case generation cost in milliseconds l02
Figure 5.17. A comparison of test-case execution cost in milliseconds 103
Figure 5.18. A comparison of test-case execution response time in milliseconds l03
Figure 5.19. A comparison of level of automation of the proposed framework against
other benchmark open-source and commercial tools .. 104
Figure 5.20. A comparison of level of automation of the proposed framework against
other benchmark open-source and commercial tools .. 105
Figure 6.1. Online stock trading web services system-testing environment 113
Figure 6.2. A section of the structure of the decision tree from training dataset for the
WS-Security test execution environment ... 118

Figure 6.3. A test harness setup scenario for Authentication web services 118

v

Figure 6.4. The BPMN2.0 processes of the subscription account management web service .
... 120
Figure 6.S. Test cost results of testing task for System Analysis step of the authentication
web service .. 126
Figure 6.6. Test cost results of testing task for Test Case Generation step of the
authentication web service•.................•.. 126
Figure 6.7. CPU and memory test cost results of testing task for System Analysis step of
the authentication web service ..•................•...... 127
Figure 6.8. CPU and memory test cost results of testing task for Test Case Generation step
of the Authentication web service .. 128
Figure 6.9. The result of the test suite coverage ... 130
Figure 6.10. Defect detection ratio for authentication web service test suite 131
Figure 6.11. Cost-effectiveness measurement ofthe authentication web service test suite
... 132

vi

List of Tables

Table 2.1. The web services protocol stack in relation to the extended SOA 25
Table 5.1. List of core requirement assertions and applicable training data patterns of
WS-* Architecture .. 77
Table 5.2. Examples of mapping xml data types to Java primitive data type 84
Table 5.3. The result set of the ECP step .. 85
Table 5.4. The list of test cases for the find city temperature web services method 86
Table 5.5. WS-Addressing protocol assertions communications rules mapping 87
Table 5.6. Selective mutation types from Mothra Mutant Operators 97
Table 5.7. Defect detection metrics for the generated mutation testing 97
Table 6.1. Online stock trading web services system components according to WS-*
Architecture .. 112
Table 6.2. Authentication web service environment protocol assertions communications
rules mapping ... 117
Table 6.3. Subscription Account Management web service environment protocol
assertions communications rules mapping .. 121
Table 6.4. Transforming and mapping from BPMN to WS-CDL and to WSDL 121
Table 6.5. Buy-Sell-Stock web service environment protocol assertions communications
rules mapping ... 123
Table 6.6. Test cases generation result for online stock trading web services methods.125

vii

Acknowledgements

I would like thank my PhD advisor, Dr. Souheil Khaddaj, for all his help and support that

he has given me over the past years. He allowed me considerable freedom in my

research. I feel honoured to have had a chance to work with him and learn from him.

I dedicate this thesis to my family, my wife and my beloved children for their constant

support and encouragement.

viii

Chapter 1 - Introduction and Motivation

1.1 Introduction

As SOA technology advances, there is a significant increase in the complexity and

sophistication of the major testing procedures, verification and validation of these

systems. In industry, these two procedures are often performed manually and not in a

systematic manner. They are mainly dependent on the intuition and experience of the

tester. However, many open issues remain, in particular systematic validation and testing

of SOA components is a widely unexplored field [51]. In general, software testing

component observability and controllability are essential factors for component

testability. Thus, component requirement understand-ability facilitates test environment

knowledge acquisition and helps component test engineers and users to obtain high

testability of functional requirements of components so that component test criteria are

easily scoped and effective testing can be accomplished [92].

Henceforth, the high testability of SOA components can be achieved by establishing a

testability design knowledge which demands requirement knowledge acquisition in order

to verify the design of a SOA component, and then to validate its functions, behaviours

and performance. This ensures that a component under test meets its functional

requirements and specified design in a given operational environment [92].

However, the integration and inter-operability of systems based on SOA have strongly

limited the access to efficient testability degree criteria. Thus, the number of possible

controllability problems has increased while the restricted monitoring ability has resulted

in reduced test observability, making it a problematic for testing. As consequence, testing

systems based on SOA presents great challenges to services providers and consumers and

1

for this reason, testing approaches and frameworks for supporting SOA testability are

becoming highly important.

In attempt to solve the practical problems of the lack of SOA testability, knowledge of

test design and testing processes is needed. This however, requires knowledge

acquisition of system requirements, testing environments during the testing process, and

analysis of the results of the testing processes. Hence, this thesis presents a fully

automated and systematic approach for testing systems based on SOA supported by

Machine Learning (ML) technique and based on knowledge discovery and data mining of

protocols and standard requirements and test coverage analysis. Furthermore, the focus

of this research specifically includes the web services protocol stack within the testing

process, to specifically enable effective automated testing and increase the testability of

these systems.

The presented approach builds on a framework of a number of testing modules based on

SOA testability knowledge-based (KB) scope. The framework modules analyses the static

functional and non-functional (QoS) requirements of the SOA system under test,

establishes functional and QoS requirements coverage criteria, and determines whether

those criteria have been met beforehand and to what degree. It analyses the testability

from using requirements coverage, builds tests criteria based on testability knowledge,

acquires information by functional and QoS test simulation and monitoring and acquires

test coverage knowledge by comprehensive analysis of the results of the tests. The

testability knowledge of test design and processes guided by ML support is important

factor presented by the proposed framework, for this reason the reliability of testability

2

knowledge acquired by the presented framework is high, which has important

implications in improving the testability design level for systems based on SOA.

1.2 Challenges

Attentively, any informal system requirement provided by a software specification

document is considered the primary source of information for the software engineers for

supporting software system integration. With SOA systems, the whole process can be

done automatically and systematically. Using WSDL for example, a web service consumer

can locate a SOA web services provider and invoke any of its publicly available operations

automatically. The WSDL is an XMl (Extensible Markup language) format interface used

for describing the web services abstractly, it provides a machine-readable

description interface for the functionality offered by a web service, and it describes a web

service as a set of endpoints operating on messages containing either document-oriented

or procedure-oriented information. The operations and messages are first described

abstractly, and then are bound to a concrete network protocol and message format to

define an endpoint. Related concrete endpoints are then combined into abstract

endpoints (services) (2).

Hence, these system interfaces can also be used to derive the test suites for testing

purposes. However, to enable an automatic and systematic SOA testing approach, the

informal requirements are specified as formal requirements using an appropriate formal

specification language, i.e. the WSDl, SPEl, and SPMN (106).

Following a review of related approaches and frameworks in the literature, in this

research, the requirements-based functional and non-functional (QoS) testing, the

coverage analyses methods of the functional and non-functional requirements and

3

testing across the middle tiers of SOA systems will be thoroughly investigated and

addressed. This can be problematic, since testing the SOA service's front-end user

interface becomes irrelevant when it provides no observability of what is actually

happening at the SOA service provider or consumer ends. Another problem that will be

addressed is associated with the fact that SOA systems are being composed of loosely

coupled services at a business-level which are distributed across computer networks,

these systems must be tested as end-to-end integration testing methods. Moreover,

systems based on SOA require consistent monitoring of testing processes, this include

input-out data, and subsequent analysis of test results to determine causes of the defects

and recommend solutions. Moreover, such testing approach requires testability

knowledge across all heterogeneous environments and across all SOA service providers

and consumers, so that a proper fix can applied to the SOA system under test.

Furthermore, to accommodate integration errors and defects of the very nature of SOA

systems, i.e. service compositions and dynamic service discovery and invocation, which

can be validated at run-time only, in this aspect, these systems are required to be

monitored at run-time.

These challenges are investigated and addressed in the proposed framework, and

implemented by means of a proof-of-concept prototype, this includes empirical analysis

of cost-effectiveness and evaluation of the framework. The proposed framework includes

a mechanism for incorporating a Multi-Agent System (MAS) with ML systems to support

testability of SOA [47], which can playa key role in solving much of the SOA testability

problems such as automation, monitoring and quality assurance, and supports proper

tests and defect detection. The proposed framework will be widely investigated to verify

4

and validate SOA-based systems, namely web services implementation. This includes SOA

system testing coverage for assessing and finding defects when most cost effective and at

all test cycles which include system under test analysis, SOA principle and standard

requirements, test requirements coverage, and test coverage measurement.

An empirical study of SOA-based prototypes, at development and testing stages, is used

to demonstrate how to apply the proposed testing framework and to work out cost

effectiveness measurements for identifying efficient defect detection processes.

Furthermore, to accommodate integration errors and defects of service compositions,

and dynamic service discovery and invocation, the research proposes using run-time

monitoring approach supported by feedback mechanisms from the ML system, in this

way, the interactions among SOA applications can be then translated into test cases that

are generated by MAS.

1.3 Research Questions and Objectives

The proposed framework acknowledges that the general concept of the SOA system's

testability is limited due to a lack of observation and control of test process and

environments. As a result SOA systems still pose many validation and verification

problems. These problems are the norms which are the focus of the current research

which due to the implementation testing of these systems has become a major problem

[106],(47),[78],[8],[68],[91). The following research questions arise:

1. How to design and develop a testing approach that would increase SOA

testability?

2. As consequence of any of approaches for testing SOA systems, a problem that

arises is, how to cover functional requirements when validating these systems?

5

3. How a system based on SOA is validated systematically? What actions have to be

taken to ensure a test approach completely and adequately covers all the

requirements called for by SOA providers?

4. How can systems based on SOA testing frameworks or tools validate non

functional (QoS) requirements?

In practical steps, the following are the core objectives to meet the aims of the research:

1. Analyse and improve SOA systems testability as practical deliverables for the

industry, i.e. not only theoretical.

2. Enable systematic SOA testing and accordingly increase the testability of systems

based on SOA standards and principles, rather than refinement of software design

and development processes.

3. Use offline-online testing and monitoring methods to meet the lack of the

testability factors and improve the testability degree of systems based on SOA.

4. Use automated SOA systems testing in the proposed formwork, as it has

been deemed a vital factor in the software industry. Consequently, employing

and machine-learning approaches can be a very useful part of these automated

testing systems based on SOA.

1.4 Research Contribution

A major contribution of this study is to propose a systematic framework for improving

SOA testability. The research demonstrates and supports the hypothesis of using

automated software testing by utilising a MAS supported by ML capabilities of reasoning,

learning and decision-making. In addition, the work presents several contributions

including:

6

1. An automatic ML framework by means of a proof-of-concept implementation for a

testing SOA system, together with a research prototype for proposed frameworks

has been developed. This has been developed exclusively for framework

implementation and to support the methods in testing, investigation, evaluation,

and the outcome of the research work.

2. Improve testing systems as actual deliverables for the industry (top-down

integration testing approach) [13].

3. Enable an effective testability degree that is based on combining test case

generation with ML and monitoring.

4. Facilitate SOA test automation and increase test productivity.

5. Apply a MAS supported by ML reliability, such as preferences, with purely SOA

principle and a standard-based approach using the web services protocol stack.

This is essential to increase QoS and level of deployment within both academic

and industry sectors.

1.5 Structure of the Thesis

Chapter 2 conducts a thorough investigation into SOA testability problems, leading to the

establishment of testability design knowledge and the design of a suitable automated and

standard-based framework. The chapter investigates SOA principles, design concepts, and

the standards and protocols within SOA, which have emerged to aid and increase the

testability of these systems. The chapter concludes with a summary identifying the

advantages as well as limitations of the reviewed web services protocol stack. In addition,

it identifies the need for a new approach to meet the lack of SOA testability problems and

consequently improve the degree of testability.

7

Chapter 3 investigates and presents what has been done so far in terms of testability

including approaches, frameworks, and tools; in order to determine the various

approaches and examine how they are applied in various domains for testing systems

based on SOA. The chapter also presents an evaluation and concludes with a summary of

the approaches.

Chapter 4 presents analyses, design, and implementation of the proposed framework.

The chapter proposes a framework to address the challenges that are discussed in

Chapter 2. It also presents a suitable approach for improving SOA testability, describes

the design and implementation of the proposed framework architecture. The chapter

elaborates and describes all the required modules and functional flow processes within a

prototype framework. The chapter's findings are summarised in the conclusion section.

Chapter 5 discusses the framework evaluation and the process of evaluation using

practical examples including an empirical analysis in order to evaluate the cost

effectiveness of the proposed framework by using key factors such as test cost, defect

detection effectiveness and cost-effectiveness measurements. The chapter concludes by

discussing the empirical evaluation results and the computational cost-effectiveness of

the proposed framework.

Chapter 6 evaluates the proposed framework detailed in Chapter 4 and 5 through an

industrial case study. The chapter presents an evaluation of the effectiveness of the

proposed framework by practical and systematic implementation on a generic business

use case within industry sectors. The industry case study is designed and implemented,

as a prototype system that is based on a business use case of an SOA web services

environment.

8

Chapter 7 presents the thesis conclusion by specifying the main contributions of the work

in both academia and the industry. It gives a summary of the work done as well as its

evaluation results. It also outlines possible research areas that can be carried out in

future.

1.6 Publications

During the research, the following papers have been published:

• Altalabani, 0 and Khaddaj, S. A. (2010), An approach for the testability of SOA and

other component-based distributed systems. In: 3rd conference on semantic e

business and enterprise computing; 15 Sept -17 Sept 2010, Cochin, India.

• Altalabani, 0 and Khaddaj, S. A. (2011), Automatic Machine Learning Test Case

Generation for Service Oriented Architecture, in: 4th conference on semantic e

business and enterprise computing, 2011, London, UK.

• Altalabani, 0 and Khaddaj, S., (2012), A framework for the testability of service

oriented architecture. Journal of Algorithms and Computational Technology, 6(3), pp.

455-472. ISSN (print) 1748-3018.

• O. Altalabani, S. Khaddaj, Test Case Generation for Service Oriented Architecture, in

"Enterprise and Cloud Computing: Infrastructure, Applications and Service", pp 43-53,

Excel Publications, 2013. ISBN 97881-921320-3-7.

• Altalabani, 0 and Khaddaj, S. An Automatic Machine-learning Framework for Testing

Service-Oriented Architecture. Manuscript submitted for publication to ACM

Transactions on Software Engineering and Methodology journal.

9

Chapter 2 - Service Oriented Architecture
(SOA)

2.1 Introduction

In recent years, SOA have gained significant attention and support from companies in e-

business and industry, which are adopting this new design paradigm for increasing IT

flexibility and greater reuse of existing assets. More specifically, SOA defines sets of rules

and capabilities as design principles, standards, and protocols that must be obeyed in

order to take advantage of the services [42],[44],[119]. These rules define how to

integrate widely disparate applications that are interconnected and integrated within

wide multiple networks and use multiple computers.

In order to understand and to improve the testability of SOA, which lead to design a

suitable automated and standard-based framework, this chapter conducts a thorough

investigation into SOA design concept and principles, standards, and protocols in attempt

to establish a testability design knowledge and to identify SOA testability problems and

consequently improve the testability degree. The chapter concludes with a summary

identifying the advantages as well as limitations of the reviewed web services protocol

stack. In addition, it identifies the need for a new approach to meet the lack of SOA

testability problems and consequently improve the testability degree.

2.2 SOA Historical Background

The principal concept of SOA dates back to the 1960s. The Component Object Model

(COM), Distributed Component Model (DCOM), Common Object Request Broker

Architecture (CORBA), Remote Method Invocation (RMI), and Electronic Data Interchange

10

(EDI) are familiar examples of component-based distributed architectures [80]. However,

these older examples of distributed computing platforms are subject to a number of

problems. First, they are tightly coupled, which meant that both ends of each distributed

system interface had to agree on the details of the updates or upgrades of the

Application Programming Interfaces (APls). Secondly, these Service-Oriented Architecture

software are proprietary; while DeOM controlled by Microsoft, eORBA supposedly is an

open standards effort, but in practice implementing eORBA architecture added the

restriction of working only under a single vendor's implementation and specification [26].

Nowadays, SOA represents a new generation of distributed computing platforms. SOA

builds upon previous distributed system platforms, adding new design principle layers,

governance roles, and a wide set of standards and protocols. In addition to that, defining

and publishing a public technical interface in terms of a service contract, which is

considered the most fundamental part of service-orientation. A service contract is

comprised of one or more of service technical description documents provided by a SOA

system to access services protocols, functionalities, and end points entries for SOA

implementation [86].

At present, web services are a key breakthrough to support the openness, heterogeneity,

and flexibility of SOA systems, but there is still a big gap between the underpinnings of

the architectural style and its supporting technology. The architectural style embodies

dynamism and flexibility, while supporting technologies are still static.

Web services can be implemented and integrated widely with disparate applications on

the web in heterogeneous platforms [32]. SOA does not limit consumers to any particular

transport or medium in order to consume services-it could be Hypertext Transfer

11

Protocol (HTIP) through Internet, Java Message Service (JMS), File Transfer Protocol

(FTP), Simple Mail Transfer Protocol (SMTP), or any protocol. SOA components can be

deployed on different types of hardware and platforms (see the Figure 2.1). On the other

hand, these components have to use and agree upon a known protocol. SOA components

can be developed using such technology disregarding the idea that other components

have to understand or even know about other components' technologies [86].

ZoneB
zooec

zooeA.
~OA

E.<le<ll81 tyue

(.of'WUMf"

!lOA !lOA.
c.cn.u /'\. eon....m

I

/'\. /

Figure 2.1. SOA implementation

12

2.3 SOA Design Principles

In order to design and implement SOA solutions, SOA services generally need to adhere

to the following principles [86],[32]:

1. Service abstraction (advocates for exposing minimal amount of information about

a service from the outside world).

2. Service autonomy (advocates for controlling the shared access of service

resources and service logic encapsulation).

3. Service composability (concerns about the ability of any service to act as an

effective composition participator, regardless the size and complexity of the

composition procedure).

4. Service discoverability (advocates for effective and manageable service discovery

by different kind of users, with or without technical background).

5. Service formal contract (advocates for maximising the adherence of Service Level

Agreement (SLA) for delivering SOA services within a given service inventory).

6. Service loose coupling (advocates for minimising service coupling requirements

and dependencies between service provider and consumer).

7. Service reusability (promotes for full support of services reusability).

8. Service statelessness (advocates for minimising the amount of resource

consumption due to service states management in order to remain available to

other concurrent consumers).

13

2.4 SOA Design Concept

In contrast to conventional software architectures which primarily define the software

components of a system in its subsystems and their interconnections, SOA systems

capture the software design concept as external visible components in a logical way.

External visible components support the concept of software components can make of a

system architecture that will work together to implement the overall system, such as

providing services to either end-user applications or other services distributed in a

network through published and discoverable interfaces [58].

SOA supports designing and implementing software in the form of interoperable services

which support an IT business architecture model called service-orientation, where

service-orientation is about solution logic which provides software capabilities as

discoverable and composable services through interfaces called service contracts [112],

[93].

Service-orientation provides a set of design principles to ensure the manner in which it

carries out the separation of operations of the SOA system components, in order to

handle the complexity and to achieve the required software quality factors [93]. SOA is

governed by these principles. Applying service-orientation design principles results in the

components of SOA system being partitioned into operational capabilities, each designed

to solve an individual concern, such as run-time interoperability, loose-coupling, re

usability of SOA services when implementing new businesses or extending life-spans of

existing systems. The overall goal of SOA is to support the idea of run-time integration

and loosely coupled services across heterogeneous platforms and throughout distributed

14

environments. Consequently, SOA systems have the advantage of improving the flexibility

of system design, development and implementation.

SOA promotes the use of protocols and standards, which are critical in any integration

because protocols and standards create a common baseline between SOA service

providers and consumers to work on. In addition, the compliance provided by SOA

enhances the integration experience with the flexibility to compose, change, or update

services almost seamlessly to clients with SOA's decoupling capabilities [93].

2.4.1 Generic Software Architecture

In software engineering, conventional software architecture is the process of analysing,

identifying, and presenting a structured software system that can be successfully

designed and implemented according to the requirements analysis of the software

components. Each system is composed of subsystems, which in turn are made up of

other subsystems, each subsystem being delineated by its boundaries. The

interconnections and interactions between the subsystems are termed "Interfaces".

Interfaces occur at the boundary and take the form of inputs and outputs. The process

also includes optimisation of the quality of software system's characteristics in general,

such as performance, security, reliability, and so on [58].

Software architecture is determined based on a wide range of principles and each of

these principles can have considerable standards and specifications, which can affect

software architecture design and implementation, and overall quality of the software

[63].

15

2.4.1.1 Generic SOA Design Layers

In a typical conventional SOA architectural scenario, a web service system employs basic

service capabilities provided in the basic service layer, e.g. building a simple weather

report web service. It defines an interaction between A service broker (service discovery

agency) as an exchange of messages between service consumers (clients) and service

providers. These interactions involve the publishing, finding and binding of operations

[50]. A service provider hosts the web services within a computer network as an

accessible software component and as an implementation of the given web services

[93].The web services provider defines the description of the service and publishes it to a

requestor or to the service broker through which the web service description is published

and made discoverable.

The web services then require two fundamental operations: find and bind. The service

requesters find the required service using a service broker and bind to it. The service

client retrieves the service description typically from the registry or repository (instance

of a service broker) such as Universal Description, Discovery and Integration (UDDI), and

uses the service description the WSDL to bind with the service provider and invoke the

service or interact with service implementation [72].The conventional SOA web services

architectural design idea is shown in Figure 2.2.

16

Service
provider

§ I ~.;:j

Service
of Service

broker Find requester

Figure 2.2. Generic SOA design layer

In order to perform the three operations of publish, find and bind in an interoperable

way, the web services must adapt web service stack standards and protocols of the

service layer at each level of web service operations [44]. The foundation layer of the web

services protocol stack's service layer is the web service's network which must be

accessible to be invoked by a service requestor. Web services that are publicly available

on the Internet use commonly deployed network protocols. Due to its predominance,

HTIP is the de facto standard network protocol for web services which are using the

Internet as a network interconnection. Similarly, other Internet protocols can be

supported, including SMTP and FTP. The next web services protocol stack's service layer

is the XML-messaging layer which uses the XML as the basis for the messaging protocol

called Simple Object Access Protocol (SOAP). SOAP is a simple standardised HTIP POST

with an XML payload envelope mechanism for communicating document-centric

messages and remote procedure calls. SOAP incorporates defined extensions to the

message envelope using SOAP headers and a standard encoding of operation or function.

SOAP messages supports publish, find, and bind operations in the web services

architecture.

17

The next layer is the service description layer which is actually a stack of description

documents called the WSDL. The WSDL is the de facto standard for XML-based service

description. It can define the interface and mechanics of service interaction as a

minimum standard service description which is necessary to support interoperable web

services. Additional descriptions can be specified for business context, qualities of service

and service-to-service relationships.

The WSDL document can be complemented by other service description documents to

describe these higher level aspects of the web services. For example, a business context is

described using UDDI data structures in addition to the WSDL document. Service

composition and flow are described in a PBEL and BPMN document.

Due to the fact that a web service is defined as being network-accessible via SOAP and

represented by a service description, the first three layers of the stack are required to

provide or use any web services. The simplest web services stack would consist of HTTP

for the network layer, the SOAP protocol for the XML messaging layer and WSDL for the

service description layer. This is the generic interoperable SOA web services design layer

that all inter-enterprise or public web services should support. Web services especially

intra-enterprise, or private, web services, can support other network protocols and

distributed computing technologies. Figure 2.3 depicts the generic interoperable SOA

web service's design layers.

18

WSDL

SOAP

HTTP

Service Description

Figure 2.3. Generic interoperable SOA web services design of the service layers

2.4.2 Web Services and their Categories

In many cases, SOA systems are typically built from web services . However, any service

based technology may be used. Web services are currently the preferred standard base

model to represent SOA implementation [44] . Web services are considered to be

applications that use standard transports, encodings and protocols in order to exchange

data and information. They enable computer systems on any platform to communicate in

a range of application integration scenarios, within both internal and external

organizations. The core architecture of web services, the basic service layer is based on a

set of communication standards including the HTTP transport, the XML for representing

data format, the SOAP for data exchange, and the WSDL to describe the capabilities of a

web service. Additional standards and protocols (WS-* Architecture) are defined over the

last few years to facilitate specific functional requirements, such as web services

discovery, events, attachments, security, reliable messaging, transactions and

management [62],[72] .

Nowadays, web services are used largely for the realisation of distributed applications. In

spite of the increasing use of web services within internal and external applications, their

19

functionalities and capabilities (e.g. service interaction, service performance, and overall

testability) are becoming key elements in their acceptance and degree of quality.

2.4.2.1 Categories of Web Services

Web services can be grouped into three business-related categories [32]:

1. Business information or device-oriented web services: a business shares

information with consumers or other businesses. In this case, the business is using

web services to expand its scope. Examples of business informational web

services are news streams, weather reports, or stock quotations.

2. Business integration web services: a business provides transactional, "for fee"

services to its customers. In this case, the business becomes part of a global

network of value-added suppliers that can be used to conduct commerce.

Examples of business integration web services include, bid and auction e

marketplaces, reservation systems, and credit checking Business-to-Consumer

(B2C) website, across multi B2C systems.

3. Business process externalization web services: a business differentiates itself from

its competition through the creation of a global value chain. In this case, the

business uses web services to dynamically integrate its processes. An example of

a business process externalization web service is the association between

different companies to combine manufacturing, assembly, wholesale distribution

and retail sales of a particular product, Enterprise Resource Planning (EPR),

Customer Relationship Management (CRM) as well as application system

integration [93].

20

2.4.2.2 Web Services' Quality of Services

A service Quality of Service (QoS) description can be published using a variety of

mechanisms. These various mechanisms provide different capabilities depending on how

dynamic the application using the service is intended to be. The service description may

be published to multiple service registries using several different mechanisms. The

simplest case is a direct publish, which means that the web service provider sends the

service description directly to the service requestor. This can be accomplished using an e

mail attachment, an FTP site, or even Compact Disc, Read-only-Memory (CDROM)

distribution. Direct publish can occur after two business partners have agreed on terms of

doing e-business over the web, or after fees have been paid by the service requestor for

access to the service [58].

2.4.2.3 Web Service Protocol Stack (WS-* Architecture)

There are many standards and protocols that aim to define web service specifications.

Moreover, a growing enthusiasm for these standards and protocols is evident from the

industry, as they are becoming aware of the key advantages of implementing SOA

systems. These standards consist of a collection of norms and protocols, which are open

standards that include web transport protocols such as HTTP, FTP and SMTP. The

fundamental technologies of the web services model are XML, Messaging and Metadata.

Within the web services protocol stack, standards and protocols evolve, merge or

become irrelevant.

21

2.4.3 Extending SOA Design

The dynamic nature of SOA systems present new challenges to the design, development

and testing phases. Consumers of SOA systems need to be assured that the services or

components will not fail and will return responses quickly.

Currently, the basic generic SOA web services design of service layer do not address

concerns of designing and implementing such systems, for example, services

management, services composition, and QoS properties that apply to all components in a

SOA system. Such concerns can be addressed by extending the SOA design to support

such service capabilities. The extended SOA extends and adds new SOA design layers of

more advanced service operations protocols, standards and rules. In this way, SOA

systems can offer huge advantages in capabilities such as service management by service

orchestration and intelligent synchronisation and asynchronisation routing, services

provisioning and QoS guarantees such as integrity, reliability and security of messages

[64].

22

The work of Papazoglou and Hevel [64] has presented SOA as an extended model with

three logical SOA operation layers, providing a horizontal separation view of the different

operations which are involved in these layers, while the vertical view indicates service

characteristics that cut across all three layers. The logical separation of operations is

based on the need to separate basic service capabilities provided by the conventional

SOA operations from more advanced ones, which are needed for composing services,

also based on the need to distinguish between the operations for composing services

from that of the management of services (see Figure 2.4).

Figure 2.4. SOA design extended layers [64]

23

While SOAP and HTTP are sufficient for interoperable XML messaging, and WSDL is

sufficient to communicate what messages are required between service requestor and

service provider, more is needed to cover the full range of requirements for SOA systems.

To fully support e-business, extensions are needed for security, reliable messaging,

quality of service and management for each layer of the web services protocol stack [49].

Additional requirements for web services infrastructure include support for service

context, conversations and activities, intermediaries, portal integration and service flow

management.

2.4.3.1 Extending SOA Design to WS-* Architecture

In order to understand and to improve the testability of SOA, which lead to designing a

suitable automated and standard-based framework, the technical role and characteristics

of the standards and protocols of the web services protocol stack (WS-* Architecture)

within SOA was classified. We also classified the elements of the web services protocol

stack according to their relationships with different logical layers across the extended

SOA, i.e. the foundation layer, the composition layer, and the management and

monitoring layer as depicted in Figure 2.4.

24

~~::':':":"'--=-------j Messagi ng

~~--------j Descript ion

t~~~~~=====1 Business
Processes

Security
~~~~~----~ 

Table 2.1. The web services protocol stack in relation to the extended SOA 

Table 2.1 provides a high-level grouping view of web service standards and protocols 

which were republished by architecture industrial standards, for example, the Open 

Group, OASIS and OMG standards organizations. The elements of the web services 

protocol stack were classified by their relationships to core functional and non-functional 

(QoS) characteristics. For the core functional characteristics which are required for basic 

connectivity mechanisms (describe, publish, interact) [30], the standards are: XML, 

Simple Object Access Protocol (SOAP1.1-2), WSDL, Message Transmission Optimization 

Mechanism (MTOM), XML Schema, Web Services Addressing (WS-Addressing), Universal 

Description, Discovery and Integration (UDDI), and Web Services Interoperability Basic 

Profile (WS-I) [2]. For service composition and for quality of service, several standards 

have been proposed in the extended SOA system, most notably the Web 

Services Business Process Execution Language (WS-BPEL) for service composition, Web 

Services Coordination (WS-Coordination), Choreography Description Language (WS-CDL) 

and Web Services Transaction (WS-Transaction) to support robust service interactions. 

25 



Also the Web Services Security (WS-Security), and Web Services Reliable Messaging (WS

ReliableMessaging) for supporting meaningful business interactions. The descriptive 

capabilities of WSDL are enhanced by the Web Services Policy Framework (WS-Policy), 

which extends WSDL to allow encoding and include attachments. Along with the adaption 

of SOA principles and web services protocol stack, there are relationships and 

dependencies between each web services protocol stack standard and protocol 

components (see Figure 2.5)[13] . 

I XML Infoset I 

Figure 2.5. Web services protocol stack protocol components relationships [13] 

Web services protocol stack covers the full range of requirements for SOA systems. 

Nowadays, web services are used to a great extent for the realisation of distributed 

applications. In spite of the increasing use of web services within internal and external 

applications, their functionalities and capabilities (e.g. service interaction, service 

performance, and overall testability) are becoming key elements in their acceptance and 

degree of quality. 

26 



2.4.4 Generic Software Testability 

The definition of ''testability'' according to IEEE standards is the degree to which a system 

or component facilitates the establishment of testing criteria and the performance of 

tests, determining whether those criteria have been met beforehand and to what degree 

[88]. Given the context of the above definition, the concept of software testability 

extends to the approaches and tools which are able to provide adequate testability in 

software testing, which allows establishment of a feasible and effective software testing. 

Software testing mainly depends on what the user can see, control and observe using any 

test sets in any system test level or phase. Noting that, software with an acceptable 

testability degree ensures that test scripts are executed and satisfactory test coverage is 

applied. Furthermore, most of the defects should be uncovered and fixed before the 

product is released [21]. To this extent as mentioned, any software testability is built 

upon two vital elements: (1) control and (2) observation. To extend the idea, a cost

effective test approach relies on how the systems under test can be better controlled 

(e.g. making invocations of the services, or setting internal variables, or simulating and 

changing the execution environments, and so on). Moreover, it also relies on how the 

systems under test can be better observed (e.g. observing how the system reacts and 

behaves in response to a test request or input). In addition, it relies on the elements 

which are related to the combination of the above two elements (e.g. test cases which 

are dependent on the results of inputs and also on the observation) [95]. 

2.4.4.1 Generic SOA Testability Problems 

Generally, in SOA systems the testability issues are due to [41],[45],[71],[18],[68]: 

27 



1. Lack of observation; SOA services need to be invoked, integrated, and monitored 

within consumers' sites. This hinders testers from verifying and validating the 

internal and external behaviours of the services in terms of their operational 

behaviours, input-outputs parameters (test oracles). Moreover, the only 

information made available for service consumers by a service is the service 

description in XML-based format, this prevents White-Box testing and Mutation

testing approaches which require access source code of the service. 

2. Lack of control; SOA services are run physically independently under the control of 

the provider. This hinders testers and service consumers from controlling the 

services operational behaviours, feature customization, and installation and 

deployment. This also prevents regression testing of the system by consumers due 

to an inability to decide on the test strategy for a new or the updated version of a 

service. 

Furthermore, looking at testability problems from practical test implementation aspect, 

we can define the primary differences between SOA testing and traditional application 

testing as follows [45]: 

3. Lack of software artifacts. 

4. Lack of control over test executions. 

5. Lack of methods of observing system behavior. 

6. Problems with testing service compositions, dynamic discovery and invocation 

capabilities of SOA. 

28 



Moreover, examining testability problems from a common software design aspect, the 

traditional application-centric design focuses on the user interface (Presentation) layer, 

the process logic (Business) layer, and the data (Resource) layer. 

Primarily, the reference architecture of SOA systems is categorised into three main 

architectures [89]: 

1. Business Architecture. 

2. Infrastructure Architecture. 

3. Information and Data Architecture. 

In addition, considering systems heterogeneous implementation, another two layers have 

been added [47]: 

4. Business Process layer to manage the process steps. 

5. Integration layer to manage the interoperability of the applications provided by 

the services. 

Thus, many testing methods and approaches that are implemented for supporting SOA 

experience unique challenges due to the former testability problems within organisations 

deploying these systems. 

One study [2] indicated that organisations at workplaces are conducting several different 

approaches to solving testability problems, e.g. combining automation in the testing lab 

and applying changes to the processes at an organisational level. Furthermore, 

organisations are trying to increase the involvement and communication of the business 

users in all phases of the software life cycle. Also organisations are now emphasising that 

quality is not something that has to be required at the end of the software life cycle, but 

should be considered as a trait that spans horizontally across the business processes. As 

29 



indicated in another study [13], the most important missing piece of building SOA 

systems is the top-down approach, which considers testing disciplines throughout the 

software life cycle and also encourages the project team to continually determine how 

they would successfully test the system based on SOA [43]. Another study [123] 

describes the common blind spots in SOA testing that testers are experiencing in real-life 

scenarios. The blind spots focus on the areas of performance, security, SOAP, WSDL, and 

interoperability. The paper concludes that: "through collaboration with development 

teams, with growing understanding of web services technologies, and with 

comprehensive SOA testing tools, SOA testers can ensure that the SOA testing blind spots 

are reduced if not eliminated". Furthermore, most research reported in the literature 

comes from low-level techniques and implementation details [107], and there is a need 

for more formal and disciplined implementation of these standards and protocols 

[53],[49],[108]. Much research, which deals with run-time testing is correspond to the 

experiments implemented in lab and available for exploitation; however, it's not yet used 

in real industry environment and its transformation to the support industry is an 

awkward and uneasy task [91],[95] .This mainly can be resolved using specific protocols 

of communication and collaboration between the different end points [18],[49]. 

2.5 Conclusion 

In this chapter, in order to establish testability design knowledge and to identify SOA 

testability problems and consequently improve the testability degree, which leads to 

designing a suitable automated and standard-based framework a comprehensive 

investigation is conducted to understand SOA technologies, principles, standards and 

protocols. In addition, a wide analysis is carried out to breakdown and classify the 

30 



technical role and characteristics of the standards and protocols of the web services 

protocol stack within SOA implementations. Moreover, an extended classification is 

concluded to classify the elements of the web services protocol stack according to its 

relationships with different logical layers across the extended SOA. Many testing methods 

and approaches that are implemented for supporting SOA are experiencing unique 

challenges due to the testability problems within organisations deploying these systems. 

The chapter concludes that there is a need to adhere to SOA standards and protocols, as 

they wi" progress SOA implementations beyond basic connectivity mechanisms between 

service providers, integrators and consumers to a services run-time composition 

mechanism, which supports external process (business-to-business) integration and 

cross-internal (process-to-process) integration. 

31 



Chapter 3 - SOA Testing Approaches and 
Tools 

3.1 Introduction 

In the research related to SOA systems testability, several initiatives were conducted with 

the intention of providing testing approaches and frameworks that support the IT 

industry which experiences unique challenges deploying and testing these 

systems[36],[76],[11],[68]. In general, in the area of SOA testing, one faces the problem 

that common traditional functional and non-functional testing can be very crucial, 

extremely time consuming and error-prone. Having research through which to view the 

literature shows there is less research on how SOA services spread around several 

different computing locations can be tested. 

Furthermore, in relation to SOA systems testing coverage, many SOA systems defect and 

shortcoming reliability issues stem from the fact of poor specification of functional 

requirements coverage. Typically, SOA system test cases are designed manually by a test 

engineer with no particular test coverage criteria in mind. As consequence, the typical 

test case suite covers only about 60 percent of functionality [118]. On the other hand, 

generally, SOA test automation has gained ground, and accordingly there many tools for 

automated testing on the market. However, most of these tools simply automate tests 

that are manually designed. Hence, if the design of a particular test is flawed, or if the 

suite of tests does not provide full coverage, the test automation offers limited value. 

In this chapter research on SOA testing criteria will be considered. What has been done 

so far in terms of SOA testability knowledge including approaches, frameworks, and tools 

32 



will be presented. These related research tools will then be evaluated and classified 

according to relevant testability methods and strategies. 

3.2 Testability Challenges 

The adoption of SOA has changed the architecture of computing systems where it caused 

many changes in the process of designing, building, and using the systems. Furthermore, 

it has affected traditional testing processes due to several implications in the testability of 

a system based on SOA. In essence, implementing the important features of SOA e.g. the 

reusability and interoperability brings up many testability issues. Moreover, the dynamic 

discovery and invocation methods like runtime binding or dynamic composing between 

services, allow a flexible and dynamic method of composing the SOA services just at 

execution time. In this instance, this restricts the ability to test SOA systems beforehand, 

as the context of any SOA service is often unknown only at run-time. In addition, it 

restricts testing real-time synchronisation and asynchronisation messages between the 

different SOA providers and consumers within heterogonous environments. Therefore, a 

successful SOA test coverage may realise some or all of these benefits and features 

depending on the quality and requirements' relevance in the SOA implementation 

designs. However, these implementations pose problems for SOA testers to predict and 

foresee possible requirements and test usage scenarios between SOA services providers 

and consumers. 

Thus, the idea of testing is challenged by the SOA unique features; primarily it is the 

distinct SOA testability knowledge that overlaps with research in relation to the SOA 

unique features e.g., the automated SOA services discovery in heterogonous and runtime 

binding invocation environments, which imply that the actual services and consumer 

33 



configurations which are involved in the service-client invocation are unknown only at 

execution time. Hence, this limited testability issue of SOA systems appeals reconsidering 

and redesigning the current traditional and automated testing approaches and to invents 

new testing approaches and frameworks. 

3.3 Current Testing Approaches and Tools 

3.3.1 Background 

In recent years, traditional manual and automated testing methodologies have been 

applied to SOA systems, particularly by adapting combinations of unit, integration, 

system and regression testing methods [36],[76],[27],[68],[17]. These testing methods 

are normally based on test cases and oracles, which would usually be constructed 

manually based on tester experience, or automatically generated according to system 

specifications using test case generation tools. Yet, testing of SOA systems on account of 

their specific characteristics is more complex than traditional testing methods allow, 

indeed testing of SOA systems continues to become more complex and challenging. 

Therefore, the traditional functional and non-functional testing approaches are no longer 

sufficient. Nowadays, the dynamic composition verification, validation and monitoring in 

real-time and at run-time environment are new and critical pieces of the overall testing 

strategy [27],[115],[108]. Added to the mix, are service trustworthiness and robustness, 

such as integration, performance and security testing, which rely upon run-time testing of 

QoS parameters of individual services, which largely depend on business process 

profiling. Still, most of the research approaches for testing SOA systems either extend the 

traditional testing methods, or attempt to develop new frameworks or approaches by 

addressing specific issues during the testing procedure [38],[36],[95],[120]. Numerous 

34 



contributions have been presented in the literature, primarily in the areas of unit testing, 

regression testing, integration testing, SOA services orchestration testing, and testing of 

non-functional properties. We reviewed related tools and frameworks. Based on that, 

the current testing frameworks, approaches, and tools for testing SOA systems can be 

categorised according to three testing methods and approaches: 

1. Traditional software testing methods. 

2. Adaptive SOA systems testing. 

3. Testing and evaluation based on SOA systems standards. 

The subsequent sub-sections provide descriptions through many SOA testing approaches, 

tools and frameworks presented in the literature within each category. 

3.3.1.1 Testing Based on Traditional Software Methods 

The purpose of SOA functional and non-functional testing is to ensure that applications 

are designed and function as expected, which are usually performed on service 

components which construct the SOA system. There are common traditional functional 

and non-functional testing tools, which can be applied in the software life phases of SOA 

systems, such as unit (white-box), system, integration, performance, compliance, 

interoperability, and security testing. However, unit testing techniques require access to a 

SOA services component's code, which is not a practical test as they are required to run 

in clients' sites. There are many commercial products for SOA functional and non

functional testing, for example Parasoft SOAtest [73] which is an automated commercial 

web services testing tool which can support WSDL validation, client server unit testing, 

and functional testing. Other commercial products can be used for unit testing, some of 

which include LISA WS-testing [60], Borland SilkPerformer SOA edition [14], jBlitz [SO], 

35 



and Agitar Agitator [4]. A set of test cases, both positive and negative, can also be 

generated by SOAPSonar from a WSDL file [123]. The tool can discover defects in the 

target web services using Gray box testing, in an effort to push Black box testing towards 

White box testing. Prasanth et al. [117] proposed an automated utility called ATU 

(Automated Testing Utility) for functional testing of the core web services standards; 

WSDL and SOAP, by using Sax (Simple API for XML) for parsing WSDL file, Apache Axis 

tool to generate SOAP stubs, and using manual input parameters to invoke web services 

methods. Chan et al. [20] proposed a metamorphic testing framework for supporting unit 

testing, and follow-up action is made automatically to generate integration test cases. 

The framework applies a dynamic services integration test autonomously. Non

functional, e.g. load testing can be done interactively by SoapUI [91] and TestMaker [75]. 

These are open source tools for testing web services which can also be used for scalability 

and performance testing. Referring to this type of testing, Schieferdecker et al. [83] 

presented an automated web services testing approach. The approach is a flexible test 

framework for web services testing, using Testing and Test Control Notation (TICN-3). 

TTCN-3 is an international standardised testing language, which can be applied to a 

variety of application domains and testing types [108]. TTCN-3 can provide service 

interactions, functional testing, and load testing with flexible and various test 

configurations. A conversion tool is used to automate the translation of XML data to 

TICN-3 notation based on the specification of the web service. In this way test beds can 

be generated directly. 

36 



3.3.1.2 Adaptive SOA Software Testing 

These approaches can handle a specific SOA systems feature, or particular function 

testing, or they can offer an alternative presentation to a traditional testing method, e.g. 

solutions focusing on dynamic composition of SOA systems. Generally, these approaches 

are designed to make the tests shorter and more accurate. Mattsson et al. [57] propose 

an alternative method to the traditional testing method, by creating complementary 

roles to take responsibility for integrating the business processes and ensuring their 

interoperability and service quality. These include a Business Process Integrator, which is 

responsible for monitoring the interoperability and business process components 

integration. Another role is Business Process Tester, which is responsible for testing the 

overall business processes and validating them against their functional and non

functional requirements. An automated composite testing approach in a simulated 

environment is described [9] by Bartolini et al. The approach is called Service-Oriented 

Coverage Testing (SOCT) and is composed of a service provider called (TCov) which sits 

between the integrator and the service provider. TCov monitors test execution, and 

provides results to the service integrator through a published web service testing 

interface. An approach using an automated online test tool is introduced by Dustdar et al. 

[82] for testing SOA and Component-Based Distributed systems. The work presents a real 

life prototype called SlIT (Service Integration Test Tool). SlIT is designed in such a way 

that it can also be used for monitoring SOA endpoints by using test daemons. Bertolin 

[10] presented the PUPPET environment for the automatic generation of stubs. The tools 

simulate the behaviour of the external services, which invoke a service under test 

environment. The approach implements knowledge modelling techniques to generate 

37 



test cases from the functional specification, and from the SLA of the composed services. 

Zhu [45] discusses the testability of SOA just before the invocation while the SOA 

components are in the operational environment. The author proposes the creation of a 

Testing Service (Automating Test Services), which can be either provided by the same 

vendor of the functional services, or by a third party (an external Test Service). 

A model-driven testing approach is presented by Lee [120] based on an MDA reference 

model (Model Driven Architecture). The author proposes the implementation of a 

business-centric SOA test framework, for testing SOA systems based on an MDA 

reference model in a business-centric way. A test harness (called BOSET) is presented to 

simulate business process functionality, so that it behaves as a BPM (Business Process 

Management) method, and thus simultaneously tests the overall system performance. 

Here, the test harness can execute business process, perform tests and create metric 

values concurrently. Another approach which is also regarded as adaptive SOA testing is 

the Data-Driven test using an ontology reasoning approach. This approach specifies 

precisely the data that will be exchanged among service entities, in order to design test 

scenarios in a methodical way. Offutt et al. [67] presented a knowledge modelling 

technique for testing the interaction between pairs of web services using a Data 

Perturbation approach. The technique is based on modifying values in the captured 

requested messages, then sending the messages to the service consumers, and obtaining 

the test results by analysing the values in the responded messages. Another Data-Driven 

test tool called WS-TAXI [19] has been developed to provide a framework for generating 

web service test suites. In this framework, the testers combine test coverage provided by 

a SoapUI tool with WS-TAXI to generate data-driven test cases based on the XML schema. 

38 



An agent-based approach was proposed by Lennon [59]; the approach uses agents to 

determine the different elements of composite web services, and to ensure they are 

complying with the overall clients' SLAs. The author considers these agents as a form of 

middleware between clients and service providers. Moreover, Taranti et al. [71] proposed 

using a MAS for testing SOA systems. In this research, the agents are deployed as 

external testing simulators, which act as providers and as consumers within the SOA 

system. These simulators were developed to test the critical functionalities and qualities 

of ship monitoring systems in order to improve safety and security at sea. The system is 

used as an interface for the integration testing phase, and also to obtain performance 

metrics for validating non-functional requirements of the system. The system was 

developed by the Brazilian Navy. Lazarou et al. [99] highlighted the research which covers 

the deployment of software agents to support software testing. The authors concluded 

that the proposed work is theoretical, and there is an important need for tools to be 

developed to verify and validate SOA systems, mainly through the use of test agents. The 

authors add that current approaches have researched the prototype levels, and 

implementing a richer variety of test agents is advisable. In particular, a highly significant 

approach would be to employ deeper intelligence techniques, e.g. machine learning, 

consecutively as this will enhance agent capabilities. 

3.3.1.3 Testing Based on SOA Systems Standards 

These are the frameworks and approaches which can handle the testability of SOA 

systems, according to architecture industrial standards, e.g. the Open Group, OASIS and 

OMG standards organizations. These frameworks require understanding of the various 

emerging standards from W3C for testing SOA systems, from the perspectives of service 

39 



provider, consumer, and services registry (UDDI). The most important of these emerging 

standards concerned with the service composition, are the Web Ontology Language for 

Services (OWLS), the Choreography, and the Orchestration standards [115]. Web service 

orchestration is defined as a specification which aims to standardise integration logic and 

long-running processes across web service systems. Some popular open source products, 

such as SoapUI, JUnit and TestMaker, can be used for testing orchestration of services 

which are involved in the communications between business services and application 

services [120]. A framework utilising architecture industrial standards is presented by Dai 

et al. [42]. The framework uses model checking for web service compositions, which is 

based on the BPEL4WS standard. Another piece of research on testing service 

composition is presented by Bucchiarone et al. [17]. The work highlights the status of 

testing techniques using standard approaches for web service composition, and discusses 

strategies for doing integration testing from orchestrations and similarly from a 

choreography perspective. Canfora and Penta [36],[38] addressed the challenges of SOA 

testing from the perspective of applying an non-traditional testing approach. The authors 

discussed testing a service discovery feature, focusing on run-time discovery of services in 

open environments, with late binding availability. The authors propose combining testing 

and monitoring as an alternative method of traditional testing for SOA systems. They 

propose testing the SOA system by continuous self-checking and monitoring of the 

services during execution time, while using complementary roles for testing and run-time 

monitoring. Bertolino et al. [11] also suggested active auditing and testing of the services 

by the web services registry. Dung Cao et al. [28] propose a passive system testing 

approach for verifying observable traces of messages sequences between web services 

40 



providers and consumers using set of real-timed constraints. Passive testing is usually 

used as a monitoring technique for detecting and reporting system errors when active 

testing method cannot be performed. Active testing allows testers to interact directly and 

find problems with the system under test [28], while passive testing is better suited as a 

troubleshooting approach to identify source of problems on a web services site after they 

have occurred [3]. 

3.3.2 Current SOA Testability Summary and Evaluation 

Having navigated through many SOA testing approaches in the literature which involved 

manual and automated testing methods, these approaches can be defined as a 

combination of unit, integration, system and regression testing. The test cases and 

criteria can be established, and updated according to test beds. Test cases are 

constructed manually based on testers' familiarity and experience of the SOA system 

under test, or generated automatically from source code, or using Model-Driven 

Architecture (MDA) testing [119],[9]. Many of these approaches and tools are applied 

over SOA systems in typical simulated environments [10],[73],[99],[94],[119]. Other 

online testing and monitoring approaches are presented along with other SOA testing 

approaches [9],[76]. The approaches propose testing the SOA system in relation to 

dynamiC binding compositions at run time. This is done by the continuous self-checking 

of SOA systems, and monitoring the services during execution time, while using 

complementary roles for testing and run-time monitoring, in the process of testing the 

overall SOA systems. 

Testing SOA systems is attempting to be a more automated and self-managed process 

[30]. Various automated approaches have been proposed and developed, which can 

41 



support the generation of test cases from system specifications based on web service 

ontology languages [27],[114]. The test cases and criteria can be established, and 

updated according to test beds. Test cases are generally created from service 

specifications, service contracts, or service log files, and also from user inputs. Test cases 

are generated also from communication messages and events between services and 

clients in a typical SOA architecture, and via typical simulated test environments. 

Moreover, industry and software engineering have not kept up with the emerging SOA 

standards and protocols, most importantly for dealing with run-time services' 

trustworthiness, and overall quality assurance [58],[115],[41],[56],[25]. 

Moreover, several frameworks utilised automated testing using the MAS techniques in 

the development and testing phases. The agents can create and execute different test 

types in each phase of the software life cycle. Several frameworks cooperate as multi

agents working together in parallel in order to minimise testing resources, time and costs. 

The multi-agent can perform positive testing to verify the required functionalities, and 

they can perform negative testing to ensure the robustness of the systems by using 

specified inputs from internal sources or invocation. However, most of these MAS test 

systems are used as typical simulators in traditional user-defined test environments. 

These simulators are easy to use although they ultimately fail to capture most of the SOA 

real-time environment characteristics [113]. Moreover, simulating the behaviour of 

external SOA services to invoke a service manually under a test lab, or in vitro [22] is not a 

valid test due to the essential idea that there are simply too many possible SOA system 

configurations and options to test in variant client environments, ultimately this requires 

wide test environment scenarios. 

42 



Additionally, testing SOA systems' lack of sophisticated tools provide better testability 

knowledge and deeper intelligence, this includes MAS, or any other automated system 

[59]. These systems need to be implemented in realistic and automated testing 

approaches with the ability to apply the testability knowledge about SOA system under 

test within accurate and specified test environments, and generate test cases and analyse 

the outcome as measured by effective testability criteria. 

Thus, as testing SOA systems is more sophisticated than traditional testing methods, 

which is basically because SOA systems are distributed applications with numerous run

time behaviours, and using testing automation tools implemented in traditional 

simulated environments cannot accommodate the fundamental characteristic of the 

dynamicity and adaptability of SOA systems. 

Moreover, the ideal approach to enabling an effective testability degree of SOA systems 

should be based on combining test simulators as offline testing with online testing and 

monitoring for validating and verifying the system, and service's trustworthiness. The 

system under test can be supported by realistic, controlled, and intellectual capabilities of 

MAS frameworks. MAS will enable full automated offline-online testing, and monitoring 

systems which are more practical and accurate than manual testing. MAS supported by 

intelligent reliability can playa key role in solving much of the automation, monitoring 

and quality assurance problems, because they can support proper tests and early defect 

leak detection. 

3.4 Conclusion 

This chapter reports several investigations into means of improving the testability of SOA 

systems. Nevertheless, many of the approaches and tools do not provide support for 

43 



input or output (test oracles) data selection, for which they still rely on the human 

tester's intervention. 

Moreover, up to now, most of the research into SOA systems testing is still theoretically 

based on formal methods, such as model checking and FSM (Finite State Machine) testing 

methods. Furthermore, most research into SOA systems test execution and verification 

reported in the literature comes from low-level techniques and implementation details. 

In addition, industry and academia have not kept up with the emerging SOA system 

standards and protocols, most significantly with those for dealing with run-time service 

trustworthiness and overall quality assurance. 

Thus, some research dealing with run-time testing is available for exploitation, though its 

transformation to support industry is a difficult, if not impractical task. A salient point in 

the literature on automated MAS and other automated testing systems is the lack of 

sophisticated tools that would provide SOA systems testability with deeper levels of 

intelligence and prudence. In general, such tools and approaches could automatically 

derive skeletons of SOA systems test cases and provide support for their execution with 

continuous monitoring in real-time environments and result analysis. In the next chapter, 

the proposed framework which will address many of the testability issues in SOA will be 

presented. 

44 



Chapter 4 - An Intelligent Framework for SOA 
Testability 

4.1 Introduction 

Based on the results of the analysis and substantive problems of the current testability 

state of SOA systems in Chapter 2, there is a general acknowledgement that the concept 

is limited due to a lack of observation and control of the testing processes. Furthermore, 

based on facts from the literature review in Chapter 3, where an evaluation was 

presented, it was observed that a numerous SOA testing approaches, frameworks, and 

tools are proposed to bring structured solutions for improve SOA testability. However, 

the existing approaches and frameworks are still considered inadequate to satisfy the 

need for improving the testability of SOA systems. For that reason, these approaches and 

frameworks are still theoretical and their transformation to support the industry is a 

difficult, if not impractical task. Thus, this chapter proposes an automated and 

systematic monitoring SOA system testability framework supported by the ML technique 

and based on the knowledge discovery and data mining of protocols and standard 

requirements and test coverage analysis. The framework provides a practical solution to 

the testability problems in SOA systems by automatically establishing testability links 

between the prerequisites of intelligent knowledge of SOA testability and the system 

under test requirement and test coverage analysis. 

This chapter describes the proposed framework for SOA system testability which aims to 

combine existing computational techniques and methods for resolving the problems of 

testability. The chapter starts by presenting a suitable approach for improving testability 

in the context of integration of ML in the testability in which the new approach has 

4S 



evolved. The implemented framework, is described together with all the required 

modules and functional flow processes within the prototype framework. Finally, the 

findings are summarised in the conclusion. 

4.2 SOA Testability Status Recapitulation 

The proposed framework acknowledges the use of offline-online testing and monitoring 

to meet the lack of the SOA system's testability factors and improve the testability degree 

of SOA systems. The proposed approach also acknowledges that the use of automated 

and systematic testing software has now become a vital in the software industry. 

Consequently, employing the intelligent reliability approach can be a very useful part of 

SOA automated testing systems and would increase SOA testability. 

However, the proposed framework approach also acknowledges the fact that systematic 

requirements based on the functional and non-functional testing approach of SOA 

systems are widely unexplored [53],[108],[41],[56],[114],[49]. 

The proposed framework approach also acknowledges the fact that SOA standards and 

protocols define various aspects of standards and protocols, such as WS-* Architecture 

which consists of a collection of such which are open standards specifications, for 

example the transport protocol, document types, security requirements and 

transactional properties. Hence, in order to guarantee interoperability and QoS between 

SOA service providers and consumers, organisations that play certain roles in 

collaboration have to support these standards or protocol specifications. If a standard or 

a protocol specification does not cover certain aspects, these organisations have to agree 

on them in order to achieve interoperability and QoS of their applications. 

46 



Moreover, with SOA, consistent monitoring of testing processes is required, this includes 

input-out data, and subsequent analysis of test results to determine causes of the defects 

and recommend solutions. Such a testing approach requires testability knowledge across 

all heterogeneous environments and across all SOA services providers and consumers, so 

that a proper fix can be applied to the SOA system under test. 

For this reason, the proposed framework enables overall SOA nature and principles to be 

determined, which can then be identified based on a requirement of SOA standards and 

protocol. The proposed framework provides a practical solution to the problems by 

automatically establishing testability links between prerequisites of SOA testability, 

requirements coverage, test case coverage, dynamic testing and test monitoring, and test 

coverage analysis. It is of interest to note that the focus of this research work is analysing 

and improving testing systems as actual and applicable deliverables for the industry, and 

accordingly increasing the testability of systems based on SOA principles, rather than 

theoretical refinement of SOA testability design or testing processes. 

4.3 Framework Conceptual Design 

The conceptual design of the proposed framework is to utilise automation while using 

two defect detection techniques: the dynamic and static analysis techniques and a 

combination of both. Control and observation within testing processes are initiated by 

using a static analysis technique to evaluate the system under test specifications 

according to the WS-* Architecture. As pointed out in previous section, adapting WS-* 

Architecture is considered the key enabler for deploying web services in the industry. By 

adapting WS-* Architecture, the industry will also be able to adhere to the principles of 

SOA. These principles give SOA systems an explicit goal of defining the modular 

47 



technology stack for supporting and resolving the communication and collaboration 

between different parties within SOA implementations. The framework provides defect 

finding using directed test generation based on learning properties from test cycles and 

monitoring outputs. The process is supported by a Learning and Decision Making {LDM} 

module for learning, reasoning and decision-making process {see Figure 4.1}. The LDM 

utilises knowledge about the SOA system under test and problem domains, and produces 

the appropriate KB feedback for the requested modules within the system. The static test 

and dynamic test analysis techniques can be performed in numerous ways based on the 

properties of the service under test and on service specification. For example, a static 

test analysis can be used to verify service specifications through web service interfaces 

like WSDL, PBEL, and BPMN documents, whereas general dynamic testing analysis aims to 

identify general defects in the entire system. The dynamic testing will be performed by 

running test agents as simulators of service clients for consuming the SOA services. Test 

procedures will be described in test case scenarios which define the system's input

output and run-time environment settings. 

48 



LAulrnlng & 
Oed.lon 
Maklng 
Module 

TeA Suite 
Generation 

Module 

Sy.tem 
Administration 

Module 

Monltonng 
Module 

Service 
E ... 8Iu.tJon 

Module 

T •• t 
Eaecutlon 

Module 
QoS 

i 
SeNlco 

CompCKltion 

Sor" Ieo 
Composi tion 

1 MUItI-Agont • • 

System ~ (MAS) 

8 • • c!'':~~on 

~ \~:S Service 
Provid e r 
Boundary 

Suvlco 

Figure 4.1. An overview conceptual design diagram of the proposed framework 
architecture 

The system properties learned from the LDM module are fed into the test case 

generation system. The tests from this system are executed and their outputs added to 

the testing data database. Each test cycle uses the LDM KB feedback as a guide to explore 

new test inputs that were not explored in the previous iterations. As the test cases are 

executed and the outputs added to the testing data database, the coverage of the tests is 

enhanced, and test cases which are expected to expose defects in the system are 

increased. However, many errors may still remain in the system that needs to be exposed 

by formulating appropriate test cases for run-time properties, for example service 

composition testing. As compensation for this, run-time operational monitoring explores 

49 



the paths and input data values that have not been covered by testing cycles. This can 

support automated testing and early defect leak detection, and expose these remaining 

defects. Also it effectively handles positive and negative tests during test executions, and 

during run-time operational conditions. In general, using KB feedback from LDM module 

will support the learning and decision making concept, and will be able to produce 

effective quality level testing. 

4.3.1 Functional Requirements Specification 

This section highlights the functional requirements and relationships between different 

modules in the proposed approach. Figure 4.2 illustrates the functional requirements 

specification of the proposed architecture. 

so 



Admlnistratlon ~rform- ~ 
module 0 

I 
Update 

~ 
Admlnilltration 
Dam Storaoe 

Web Services 
Log files 

L:] SLA 
- . BPEL 

OWSPoIiCY 
Definition 

~ XML 
LJ Schema 

~ WSDL 

•• • • Live Log Data 

Multi-Agent System 
(MAS) 

. . . . . . . 
MA 

8 
I 

Perta<m 

8 _ Perform 

SAA 

---, 
PerfOfm 

~l$toricBI 
pda OataSaage 

Web services Logs 

I 
LOM 

Web Services 
Specificatio n 
Documents 

Monitoring 
module 

Produce 

Test Cases r 
Generatlon I "-l 

l-_m_od-r-ul_e_-J II 
Test ExecuUon 

module 
le$ming 

r r- Decision Making 

Produce 

Update • 
Tesl ed" 
Metadata 
Storage 

II 
II 
I, 

t6!ol ... xe<cu 1Ion 

&oenanos I 
II 

Produce 

Update T est Log • I 

Test Results 
Metadata I-- J 
Stomge 

l -- -- -+<8 Feedback--

Legend 

o Process 

I / 
Data 

EU Internal Storage 

___ -;.~ Action 

-+ Internal Oala Flow 

... . . . .. EK(etnal Data Flow 

'-

module 
I 

Web Servoces Specifications 

Produce 

Update 

data Pr 

I 
I 
I 
I 

Update 

• 
Web Services KI1ow1edge-

Based -.J SpeeiflcaIlon 
Metlldata Mflladata 
Storage Stol'age 

-- -t<B Feedback --

Figure 4.2. An overall view of the function relationships among the modules of the 
framework 

51 

, 

I 
I 
I 
I 
I 
, 



As mentioned in Section 4.2, a static test analysis can be used to verify service 

specifications through web service interfaces, for example WSDL specifications. The 

system analysis module employs system analysis agent (SAA) to perform static analysis on 

service specifications, SM analyses the SOA system to determine system properties and 

behaviour by extracting the required data from WSDL structure. KB feedback will be 

provided by the Learning and Decision Making Agent (LDMA) using a form of ML 

algorithm. A decision-tree learning algorithm can be used for data mining the properties 

and behaviours of the web service under test, and for populating the data set and 

validating the discovered patterns. The decision tree learning algorithm classifies the 

properties and the behaviour of the web service according to mapping and matching to 

WS-* Architecture in an attempt to find possible requirement mismatches of the web 

service properties and behaviours, which will allow for achieving and maintaining 

adherence to SOA principles. 

The system properties and behaviour obtained from the system analysis process will be 

saved in the service metadata database. This data can then be used to generate test case 

abstractions through the test case generation process. The test case generation module 

employs a Test Case Generation Agent (TCGA) to generate baseline test cases, runtime 

environments and execution scripts which are supported by intelligent learning and 

decision making from the LDM module. The LDM module combines learning, reasoning, 

and decision- making capabilities to explore web service characteristics, i.e. input-output 

properties and parameters, QoS elements, and other operation conditions and 

behaviours. Additionally, the defects and inconsistent execution patterns that were 

captured during test cycles could form learning facts or premises in the intelligent 

52 



learning and decision-making process through the LDM module. LDM module processes 

functional requirements and test coverage criteria by verifying and analysing the results 

of test executions, and makes decisions that correspond to it and the targeted test 

environment, these tests which will cause the service under test exercises positive or 

negative behaviours. 

The Test Execution module will deploy Test Execution Agents (TEAs) to carry out test 

simulation tasks. The test execution tasks could include for example, service invocation 

under given a simulation task by a test scenario. Test Execution module then performs 

test result analysis and inputs the results in metadata database. LDM then analyses the 

output data obtained from test execution procedures, and verify the condition of the test 

cases determining whether the test cases have met the initial test objectives. Otherwise, 

new test cases need to be generated, targeting the service under test to exercise the 

behaviours which are outside the executed test cases. The test outputs at the end of each 

test cycle will be joined to the earlier data inputs in the metadata database, this data will 

be used by the LDM module in the process of exploring and exposing advance defects. 

The LDM module provides automated KB feedback as a guide to explore the test outputs 

that were obtained from the test cycles. Hence, this concept supports the 

implementation of the intelligent automated testing and defect detection approach. 

The Monitoring module deploys Monitoring Agent (MA) to perform operational 

monitoring. This process will allow for learning useful facts from operational monitoring, 

and exposing the errors which may still remain in the service under test through offline 

testing, for example, run-time service composition by service consumers within live 

heterogeneous environments. MA monitors web service log files in real-time, and checks 

53 



for the errors caused by the interaction between service requester and web service 

provider. MA then will transform these errors to a specific format and then save them in 

the historical database. The error logs in the historical database then can be used by the 

LDM module as defect logs for analysis whether the different components of the web 

service have met the requirements of the run-time operational standards. These defects 

then may need to be exposed by the creation of appropriate new test cases. This process 

effectively handles positive and negative tests during online operational conditions. 

On the other hand, the administration module uses the administration agent (AA) to 

control certain aspects of test agents' allocation, schedules, and administration such as, 

MAS executions and synchronisation in real-time conditions. AA administrates and 

observes the simulation tasks in real-time and makes the MAS environment controllable 

and flexible. AA also will help the modularity, scalability, and interactivity between the 

test agents, through administration in a distributed MAS environment. 

The subsequent sub-sections provide a description of each module in the proposed 

approach, which can to be read in connection with the accompanying module's flowchart 

diagram. 

4.3.1.1 System Analysis (SA) Module 

The System Analysis module systematically captures and classifies the core functional and 

aoS standards and specifications of the web services under test. The captured data will 

then be used in the process of generating test cases, and in the processes of test 

verification and validation. Furthermore, as mentioned previously, the focus of this 

research is on including the WS-* Architecture within the testing process, to specifically 

enable effective automated testing and increase the testability of SOA systems. The 

54 



System Ana lysis module analyses the web services specifications using the WSDL and 

possible BPEL and BPMN documents. These XML files can be used to define the necessary 

standards and th e protocol implementation requirements by means of a formal contract 

between the web services consumer and the web services under test . Figure 4.3 

describes th e cross-functional and data flow within the system analysis processes. The 

flowchart diagram exempl ifi es t he technical details of the activities of th e underlying 

design of this module. 

Web services 
sped !ications 

WSDlJ'BEL,SLA 

rn)ces~ flow 

O.tI.t{)O,," 

ML 
Cbssirler 

rrocess () ow 

I 
ML d.lssific.ltion 
of WSDL stoltic WO!b services 

specitic.,tions 
parsing 

I-----f'''roceos flow- - -+t .,nalysis in ...----I'r S6 flow----I~ 

(1) 

)Jal. flow 

Metada la 
database 

ML classificallon of 
QoS system 

requiremen t coverage 
analysis 

(5) 

u.t. flow 

relation to WS-' 
(2l 

rrocess 
flo .... 

CI.usifler 

D.t. flow 

rrocc , 
flow 

Ml 

Process lIow 

I 
!\II L cbss ific.ltion of 

WSDL 
implementation 
s tatic ana lysis 

(3) 

I 
Process flow 

ML dilssification of 
core ystem 
requirement 

co erage analys is 
(4) 

System requirements misllUlch J 
Figure 4.3. Functional process flowchart of the system analysis module 

The System Analysis Agent (SAA) activates by receiving an Agent Communication 

Language (ACL) message with " start SA" content from AA. 

55 



Accordingly, the SAA first parses the available WSDL and BPEL documents and transforms 

them into a structured DOM (Document Object Model) tree (see Step 1 in Figure 4.3). 

Subsequently, the WSDL Static classifier (see step 2 in figure 4.3)-a machine-learning 

classifier and an implementation part of LDM module is used to generate SOA web 

services under formal test requirement and specifications data according to the core 

functional and non-functional (QoS) standards and specifications within the web services 

protocol stack. 

Next in Step 3 in Figure 4.3, another machine-learning classifier of the LDM module-the 

WSDL Implementation Static classifier is implemented to support SAA and generates the 

conventional core implementation parameters and variables of web services under test 

such as, operating methods, agreement binding, message types, service description, 

service publication and discovery based on core functional standards and specifications in 

the WS-* Architecture. Generally, this data is required to achieve successful invocations 

and interactions between web service providers and consumers. 

Next in Step 4 in Figure 4.3, another machine-learning classifier of the LDM module to 

support SAA, the System Requirement-Coverage classifier uses the outcome of data 

mining process knowledge from previous steps to define and classify a structural 

machine-learned requirement-coverage metric. The metric will be then used to guide the 

test-data generation and to derive a test suite. The System Requirement-Coverage 

classifier process data mining to identify and assess the core functional characteristics of 

the web services under test. The Requirement-Coverage classifier uses a mismatch 

checklist to identify the possible requirements mismatches of the service core 

components according to the WS-* Architecture. Thus, the SAA with the support of LDM 

56 



module will determine if the system under test requirements is valid according to 

outcome of the data mining of the core requirement-coverage analysis. 

Similarly, in Step 5 in Figure 4.3, the QoS System Requirement-Coverage classifier 

generates QoS requirement-coverage analysis metrics as structural and machine-learned 

coverage criteria of the web services under test, and according to the non-functional-QoS 

standards and specifications within the WS-* Architecture. The QoS System Requirement

Coverage classifier uses the outcome of the data mining process by the WSDL Static 

classifier (Step 2 - Figure 4.3) which contains the mapping references of the QoS for web 

services under test specifications to the QoS protocols and standards within the WS-* 

Architecture. This includes messaging, addressing, security, reliability, transactions and 

so on. These protocols and standards support simple and complex QoS requirement 

message and behaviour patterns between web services provider and consumer. For 

example, if a web service being tested is advertising QoS as WS-Policy assertions then a 

set of behaviours concerning those properties can be used in conjunction with the web 

services provider and the consumer messaging communication patterns. 

Accordingly, a training dataset is used to set a classification model of the possible QoS 

classification for each specified QoS protocols and standards within the web services 

protocols stack. Each class then set to tuple-sample data patterns which are assumed to 

belong to each QoS class mapped to syntaxes, semantic and rule are provided in the 

training dataset. A predictive machine-learning algorithm-the J48 decision-tree classifier 

[61], is used to learn the training dataset, modelling a classifier model for the QoS System 

Requirement-Coverage classifier. Eventually, the QoS System Requirement-Coverage 

classifier searches for syntaxes of the QoS behaviour properties and values for the 

57 



possible QoS data mining. The process of data mining determines the setting of the web 

services client's test-harness environment that will be needed in the test case generation 

and test-execution of each operation. 

4.3.1.2 Test Cases Generation (TCG) Module 

The Test Cases Generation module generates systematic automated test cases supported 

by the machine-learning method. The generated test cases range from a formal test 

cycle process to scheduled ad-hoc test cases. The process of test case generation adapts 

the static reasoning analysis technique based on system input-output and QoS properties 

obtained from the web services under test specification data mining tasks from the 

former system analysis process. The test cases generation module covers all the 

combinations of the WSDL elements by performing the systematic generation of black

box test cases. For this reason, the approach applies the Category Partition (CP) 

technique [97) to the WSDL. CP provides an approach to identify the relevant input

output parameters and QoS conditions and enables their values to be combined into 

data sets of categories and partitions. Once these datasets are available, a machine

learning algorithm is used to learn the rules that relate to the generating sets of 

(category, choice, and constraints). The indicated constraints will be produced using the 

Equivalent Classification Partitioning (ECP) technique [65], which can then be used for 

generating abstract test cases. Practically, the identifying individual operation of the web 

services under test can be carried out separately. Figure 4.4 illustrates a flowchart 

diagram of the cross-functional and data flow of the Test Cases Generation module. 

58 



s ystem 
req u irem ent 

ulwt!'1 
p rocess 

ProC'e1'S n o w 

Dab lIow 

Test 
datab.~e 

Test d ata 
C· '''tcV'Y 

Partitioning 
(1) 

I j 
t 

Dat3 fiow "r~ no .... 

M1 1es l dalil 
I-_..A_--<~ ""(u.iv.hmt GoO". 

Partitionins 
(2,) 

Data fluw 

-D~la fl o,"" ----/ 
Tesl ("ast frames 
& test ell(e<uti on 

caS<!' 

O~ta flow 

~ 
Ye-N~ ~ Ap ply true te5 

rl ---c • puts &: Or;)c1 ' ><4t-----.. 
l'ro( css ~ l'rocess 

Generate true teli l 

Dau. flow 

I'O(CSS flow 

l
~nl,--'" _ now 

inputs &: Orade- test Generate test 
ex«ullon cyd e e .. ,'C'Ullun cycle 

(7) (6) 

ML dASSlCi ... 

t 
Process now 

Ml. test data QoS 
""l w vaL<nl CJ"". 

Parti ti oni n g 
C J~ 

Test ca....., 
g,Cl lcl olllon 

W 

I 
.. mN-' .. nn,,, 

QoS t-est C.l~ 
sen"Nlion 

(51 

Process 11.,,,,, -

Figure 4,4. Functional process and data flow flowchart diagram of the Test Cases 
Generation module 

The underlying idea of using these techniques is to develop a systematic and automated 

static analysis and structural formal specification-based test cases generation approach, 

by using a MAS. On the other hand, the Learning and Decision Making module can 

produce correct classification decisions based on training datasets to capture new data 

tests. 

Initially, the test case generation starts with the CP procedure (Step 1 in Figure 4.4) by 

capturing and identifying the data from the results of data mining of the core and QoS 

requirements specification of the web services under test, which already is saved in the 

metadata database. For each of the web services' WSDL, the process identifies and 

59 



classifies the web services data into categories of operations, input-output data type 

properties, and QoS characteristic values. The possible default-explicit input-output data 

type properties are further constrained by restrictions called XML facets, which are used 

to define the acceptable values of the XML elements and attributes [116]. The possible 

WSOL data-type input-output facets can be classified into input and output equivalent 

value ranges using the ECP technique (Step 2 and 3 in Figure 4.4). The different 

combinations of input data classifications are selected and arranged into test sequences. 

The Test Cases Generation module then writes abstract frames of the test core and QoS 

test cases (Step 4 and 5 in Figure 4.4) including the data result from CP and ECP 

processes. Finally, the Test Cases Generation module transforms test case frames into 

XML test-execution scenarios (Step 6 and 7 in Figure 4.4), adding the actual input test 

values, expected result (Test Oracles), the test 10, and the test cycle number. For the 

actual input test and oracles values, two approaches are adopted: (a) values can be 

picked from an associated test inputs-oracles table, or (b) generated randomly according 

to the input value conditions that are derived from the ECP step. The generating test

execution XML files can include test inputs and oracles manually as required by the user. 

Accordingly, the Test Cases Generation module configured as "Apply true oracle?" option 

(see Figure 4.4) for including true test inputs and oracle assertions (the exact values of 

expected test results). The true test inputs and oracle values are specified in the 

testjnputs_oracles table in the metadata database. Hence, the XML test case files are 

updated with the exact value assertions by the "Generate true test inputs & oracle- test 

execution cycle" (Step 7 in Figure 4.4). The true test inputs and oracles are determined 

60 



by manual analysis. Actually, this is the only manual effort required during the testing 

process. 

4.3.1.3 Test Execution (TE) Module 

The Test-Execution module utilises TEAs for serving as entities which are capable of 

carrying out automated testing processes. The process includes test execution simulation 

tasks, performing server response analysis, and feeding the test executions results into 

the test database. The test simulation tasks could be for example, exploring inconsistent 

execution conditions based on run-time monitoring events, or scheduled test harness to 

demonstrate defect finding in accordance with the SOA principles. The typical objectives 

of a test harness are; (1) to automate the testing process, (2) to execute the test suites, 

and (3) to generate the associated test execution results logging. 

TEAs simulate test service consumers and execute tests according to inputs, outputs, and 

service behaviour test data through the test cases. TEAs behave as service invocation 

stimuli either based on test case formation or based on run-time operational events, 

which are received from the administration module. The test simulation outputs at the 

end of each test cycle will be joined to the earlier inputs in the test database, which will 

be used by the LDM module in the learning, reasoning, and decision-making processes 

within the monitoring process. Figure 4.5 demonstrates the workflow of the activities 

within the test execution module. 

61 



Tes cases 
generatiOfl model 

process 

I 
Process flow 

I I Test case 7 frames XML 
files 

/ Test } execution 
data 

Data flow 

Test_e~e(utlon 

_dat 14 -
j 

table 

Pars lextracl/ 
fi lter data from 

Test cas eculion 
XML ,.1 

( 1 ) 

Data now 

Process now 

Parse/extr ell 
f ilt r data f rom 

est execution 
respo SOAP 

m 9g 
(4) 

Process now 

execution 
(2) 

now 

14---Proce now 

Figure 4.5. Functional process and data flowchart of TE module 

As mentioned earlier, the LDMA also searches for any applicable QoS behaviours 

mapping the data to the web services protocol stack, this data is included in the XML test 

cases as part of the headers, which are afterward used by the TEAs for test -harness 

implantation which include test environment setup, test-execution, and test-execution 

response report of the web services test client. Through Step 1 in Figure 4.5, the TEA 

parses and identifies the test data in the test execution XML file; the data includes the 

web services name, the target name space, the end -point URL, the port name, the 

operation to be tested, the unique Test ID, the HTIP and the request test message body 

content which includes the test inputs parameters. Moreover, the identified test data 

includes the environment settings, which are required for implementing the test harness 

of the web services test client or consumer at the time of creation of the SOAP message 

communication dispatcher. 

62 



Through Step 2 and Step 3 in Figure 4.5, TEA is ready to initiate the dynamic testing 

processes in order to validate the system and QoS requirements. The TEA executes XML 

test-execution files using the unique test ID to identify and match test execution results 

for each test execution simulation task. Simultaneously, the TEA waits for the web 

services response message send from the web services under test in real-time. The TEA 

generates test execution reports, by transforming the SOAP message to a data string for 

parsing and extracting the test response data (Step 4 in Figure 4.5). The response data 

includes the Test ID, the response Body, and the message content result. The TEA 

updates the test_execation_data table in the test database with the test execution result 

for each case according to its unique test ID number. The test simulation outputs at the 

end of each test cycle are used by the LDM module in the learning, reasoning, and 

decision making process, throughout the test validation procedure within the monitoring 

process in the next stage. 

4.3.1.4 Learning and Decision Making (LDM) Module 

The Learning and Decision Making module makes use of LDMA to combine learning, 

reasoning, and decision-making abilities in generating test-case scenarios and exploring 

the properties of the test-harness implementation, such as test-execution environment 

and the test-execution results for the web services tested. Predictive machine

learning algorithms and implementation parts of the Weka system [61] are used to learn 

the datasets that relate to the web services protocol stack. The learning system is trained 

with the training datasets using classifiers. 

As mentioned in Sub-sections 4.3.1.1 and 4.3.1.2, the LDMA classifies and maps data 

properties and values of methods, input-output data-type of the web services under test, 

63 



and any core functional standard and specification, for example the web services name, 

the target name space, the end-point URL, the port name, the operation to be tested, the 

output method name, the output expected data-type name, and the output element 

type. Also, the LDMA searches for QoS behaviour properties and values in the web 

services specification metadata database, mapping service specifications to the web 

services protocol stack, from which new test-execution environment classification cases 

may be predicted. The TEAs use this data to set the test-execution environment of the 

web services test client or consumer when the SOAP message communication dispatcher 

is created and the web services are invoked. Additionally, the lDM module verifies and 

analyses the test-execution results, and obtains the decisions corresponding to the web 

services protocol stack, realised from the web services specifications. Defects and 

inconsistent test-execution patterns could arise from the facts or premises of the testing 

process. The LDMA will have access to the test database, which contains defective data, 

tracking logs, system properties, and QoS characteristics of the web services under test, 

according to the web services protocols stack which includes messaging, addressing, 

security, reliability, transactions, metadata exchange, etc. 

In general, the feedback from the LDMA will support the learning and decision making 

concept, and will be capable of producing effective quality-level testing. In accordance 

with the expected test outputs, the LDMA can analyse the output data of test executions 

of the baseline test cases, classify their condition, and determine whether they have 

meet the test objectives. If not, the generation of the new test cycle is targeted to cause 

the system to execute the re-testing process. Figure 4.6 shows the activity diagram of the 

LDMA supporting classification and data mining of other modules in the framework. 

64 



System Analysis moduJe 

Ie 
Slarl Syslem An.llysis Agenl ~ 

l,-_ "_st_art_S_A ,_. -====::_...J ~ I e ~ 
( ~nal yll' 

t 

Trigger d.lta miDing process\ 

(cener.Jlf sy,tclll & Qo n'quirenlen D 

1 

Slart Lc.lmillg and Decision Agenl 
"SlarILDMA -

1 

Trigg.r dala mining proct!ss 

Make d('(ision~ 

-' 

Moniloriag module .-, 
S:.lrt MonitOring Agenl 

· Slar1MA" 

( Monitor 

1 

e"crolles monitoring siollis tical r('ports ) 

1 
Tri!'8ef dat~ miaing pro~l! :v-

~ 

10ri&ger d~la mining process 

I/'---~ 1 
Gent'nle Kno"'l~dgc b~s"d f""dba c~ 

Systell & QoS cowrage analysis Gtner .. l .. lesl results Ol.naJYSi~ 

\ II 

• • 
"esl Case , Generation lJIodulr 

Slu t Tcsl c.ues Generalion Agent ~I' 
"StartTCGA" I 

t il' 
(Ge neral.: test case i) 

'" (Generale lesl dati CPIECP 

~ 
Trigg .. r dol" minbg PRlCe5~ 

t 
Cenerale test ca!es co~erage analysis ) 

~rigger dala mini:lg PRlCes~ 

"J 
(cen~rale I~I ca e fr.l mcs 

i 
Figure 4.6. The activity diagram of the LDMA supporting classification and data mining 

of other module in the framework 

65 



4.3.1.5 Monitoring Module 

The system Monitor module deploys MA to monitor the web services in the real-time 

environment. MA monitors and checks service log file for messages occurring throughout 

interactions between service requesters and the web service under test in active status, 

MA then reports these messages and transforms them to types of customised messages 

which can be used by the LDM module, it then saves these messages in the 

System_Historical_Data database. This data will be considered as observed learning 

inputs at a monitoring period. The LDM module will analyse and judge whether the 

components of service meet the requirement of the system operational standards, 

otherwise it will need to expose new test experiences and extra maintenance effort to be 

directed. Figure 4.7 shows a flowchart of the monitoring module. 

syst ID_ 

Historical da 
r, d~t.ilbase 

Tl'!lt Eu'CUtiun 
model 
proct's~ 

MonItoring 
h1stonco\I lO'eb I-__ ..J'- ·ro~~ OO\V Web ~rvices 

L.. __ ~n..'r< .. oc_"essflow---~ ",~ --~ I . nal ' --- • st'rvi('es logging og&ln& a }'1it.'I-

rn W 

Ml cI.usHier 

' ''',. fI'W~ 

r "f 
Ml test coverage 

rrocess (low 

Test in\'OG1t1on 
log anal)' Is 

(3) 

DAtafi 
Test iJwocaUon 

log ao.tlysls 0& t~ 
co\'enge analysis 

analysis 14----P'ocess flow---..J 
(4) 

Figure 4.7. A flowchart diagram of the Monitoring module 

66 



The monitoring process includes run-time operational monitoring of the web services log 

file for messages and logs sent between the web services test client and web services in 

real-time (see Step 1 in Figure 4.7). The MA generates monitoring analysis and statistical 

reports, including Test ID, Message ID, HTTP Request and Response Body, message 

content, etc. (see Step 2 and Step 3 in Figure 4.7). The MA updates the 

System_Historical_Data database with the new results test invocation analysis for further 

test coverage analyses. The results of the testing data metrics become an input for the 

trained machine-learning classifier. Using the J48 decision-tree classifier, a new classifier 

model is trained with the training dataset to validate against the testing dataset (see Step 

4 in Figure 4.7). According to the testing results, the LDM module will judge whether the 

test executions of the test cases meet the expected results and requirements of the QoS 

system's operational standards. 

4.3.1.6 Administration Module 

The TEAs will be required to run as scheduled test harness executions, or as concurrent 

multi-agent executions which make the simulation tasks for a number of test executions 

within distributed environments. As a result, TEAs may need further instruction from AA 

in order to execute test cases properly. AA extended the proposed approach 

infrastructure to run-time infrastructure which supports agents' allocation, schedules, 

interaction, and synchronisation. AA sends task events based on formal test cases or on 

given test conditions captured though system monitoring log files which are already 

saved in the System_Historical_Data database. The AA passes the external events as 

discrete monitoring events and once an event comes from the monitoring agent, the 

administration agent will put the event into its waiting queue in the metadata database. 

67 



The events in the waiting queue will processed depending on the test task allocation 

procedure, i.e. if the allocation task procedure is formed as an mUlti-agent task 

simulation, any incoming event can be processed as long as there is enough resource, if 

the system is formed as a single-agent simulation, an incoming event can be only 

processed until no one else is using the processing resource and so on. Figure 4.8 

illustrates the sequence workflow diagram of the events between system administration 

module and others module in the framework. 

68 



Adminiit ration Agent Sy.tem An. y.is Al,ent I Ie}! cas~enllon I I I . _ • T..-I hewtion Aggnt 

Start SAA 

SA agent .s nnl~hed 

~AA p.arsing error 

-- - --(OA) 

Start WSOl Slatic cI~slfle. 

LDM ~ent is flnl~hed 

- - Refetlh ~_~P.wsPS ta~ - - -

- St;;;; \;;;-oUnplern;;;[ai;n St";b;da-;n;- -

LDM agen t Is finished 

LD'v1 classification error 

------------Invalid co.e system requirement • • ro. 

-- - --------. 

SIMl I@!1 c~teJlO'" pamtioo! (!jSII ' er 
lOM acent 15 finished LDM ae~t ... Ilnlshed 

mYe"R'h Wl':.c'iD>,Ws_cp-1TabIiS -
- - - - - - - - - Start I",t equl/alenee cla~ part itions clJulfier 

_ ~D~Il:t ::n:l!d_ _ _ ~ __ ~ a~~'i~h~ _ -, 

Refersh M_cp_2 tabll! I 1 
- - - - - - - - - ~Urt II!1OI QpS lqulValenC!! cliHS p;anitlonscllMlfler 

LOM alienI is f irlishl!d 
oM agent .. linished 

10M a8~t 15 IInlshecl 

• LOM "lent error --------- -~------
l CG "lien Ilflnlshl!d : _ _ _______ L __ ~ ______ _ 

l eG Acolnt error • 

---------~------ - - ~ -;tart T~t ExeClltioo A8ent fORI 

I 1£ agent(s) Is f1nl~hed 

-- ) 

-"'.., -
- - - - - - - - - r - IEAg;i e~r- - - - - - - - - - - -

- - -------r-------------- - -SUrt MonilO.ln, Atlenl 

Start LOMM ClassIfier 
LOM agent Is fjno.hed leG ~8l'nl l1 flnl,hed 

Monito.inG Ag.rlt 

---------------- - -- - -
Refersh test..!nyocatlon_analy;ls table 

Figure 4.8. The sequence workflow diagram of the events between system administration 
module and other modules in the framework 

69 



4.4 Conclusion 

This chapter started by presenting a suitable approach for improving SOA testability, in 

the context of integrating the machine learning in the SOA testing on which the new 

framework has evolved. Then, the design of a new framework for SOA testability is 

described which aims to combine existing computational techniques and methods for 

resolving the problems of SOA testability. Then, aspects of the implementation of the 

machine-learning SOA testing framework are elaborated with detailed descriptions 

together with all the required modules and functional flow processes within the 

framework. 

In summary, in this chapter, the many aspects of the new framework for SOA testability 

were considered. The approach provides a practical solution based on a functional 

prototype to resolve the testability problems in SOA by automatically establishing 

testability links between the prerequisites of intelligent knowledge of SOA testability and 

system under test requirement and test coverage analysis. A suitable approach was 

presented for improving SOA testability, in the context of integration of machine

learning in the SOA testability on which the new framework has evolved. The chapter 

presented the design and implementation of an automatic machine-learning framework 

by means of a functional prototype implementation. The framework realises the 

advantages of the MAS approach supported by intelligent reliability, such as preferences, 

with purely SOA principles and a standard-based approach using the web services 

protocol stack. This is essential to increase the OoS and level of deployment within both 

academic and industry sectors. 

70 



The underlying idea of using these techniques is to develop an automated testing cases 

generation module that applies a structural machine-learned core and QoS requirements 

based specification-an automated black-box test cases generation process by using MAS 

technique. On the other hand, machine-learned data mining process produces correct 

classification decisions based on the training dataset applied upon new classification 

cases. Then, an intelligent test case-coverage analysis supported by machine-learning 

method is applied to determine that the test suite satisfies the coverage criteria 

according to the core and QoS requirements specification of the web services under test. 

An empirical evaluation of the functional prototype of the framework using practical 

examples based on the quantitative data analysis of cost-effectiveness will be carried out 

in Chapter 5, in order to evaluate and prove that significant saving in time and effort and 

can be achieved by employing the developed framework. 

Moreover, a practical case study will be presented in Chapter 6 to test and evaluate the 

functional prototype of the framework by using it in a real-life business situation. It is 

also to present the possible integration of the framework architecture in the current SOA 

computing infrastructure, with aims of confirming the suitability of the proposed 

architecture within industries, or companies and their strategies. 

71 



Chapter 5 - Framework Evaluation 

5.1 Introduction 

According to the Capability Maturity Model (CMM) by the Software Engineering Institute 

(SEI), in order to assess and improve the IT architecture, all CMM compliant organizations 

that have reached the specific level of maturity (Level-4 and above) must have 

Information Technology (IT) architecture defined, managed, and all quality and 

performance metrics captured, measured and associated with the IT architecture (39). 

Within this context, the primary objective of studying cost-effectiveness metrics of 

software testing techniques used by frameworks or tools could lead to measuring, 

comparing and evaluating which lead in order to improve software testing techniques 

and practices. 

An analytical evaluation study has been carried out in order to evaluate cost

effectiveness of the proposed framework exclusively by using the following key factor; 

test cost, defect detection effectiveness and cost-effectiveness measurements within the 

testing phase. All of these are considered as primary factors which can produce concrete 

structures of test framework. The result helps to define high quality degrees of 

frameworks in a cost-effective manner. However, though intuitively, the empirical 

analysis of test cost and defect-detection rates are considered the primary parameters 

for measuring cost-effectiveness of a testing technique, still they consider proportional 

measures since there are other validity assessment factors. These validity factors can be 

utilised for cost-effectiveness by comparison with other SOA test frameworks and tools. 

For example, practically in relation to internal validity factor, the degree level of 

automation for a testing technique could be determined by comparing it to current 

72 



innovative research, or typically comparing it to similar open source and commercial 

tools. However, depending of the choice made, the results which are obtained from the 

assessment could in realistic situations represent a lower bound in suboptimal if there is 

no representative technology or available tools to match the specific level which is 

encountered in the compared testing techniques. The following subsections will provide 

analytical evaluation descriptions of the practical evaluation study of the functions of 

each core module in the proposed framework. Then, in the following sections and sub

sections, the proposed framework will be empirically evaluated and compared to other 

frameworks and tools for testing SOA systems. 

5.2 System Analysis Example 

The System Analysis module first generates web services under test requirements and 

specifications by parsing the WSDL document and transforms them into a structured 

DaM (Document Object Model) tree. The WSDL data is generated by all data tags 

according to standard XML syntax in the WSDL document. This includes filtering the main 

WSDL's tags-sections which are: the wsdl:definitions, the wsdl:types, the wsdl:message, 

the wsdl:portType, the wsdl:binding, and the wsdl:service tags which are generated 

based on core functional standards and specifications in the Web Services Protocols 

Stack. The WSDL data included in these six tags-sections is filtered and the extracted data 

for each section is inserted correspondingly in six tables (named as WSDL extract tables) 

within the metadata database. Figure 5.1 shows a screenshot of the six WSDl extract 

tables including the extracted WSDL data following the System Analysis module parsing 

process. 

73 



WSDL XML parsing 
Binding Info , PortT~pe inlo , T~P3s Info I Service Inlo ,"7.u:-:-es- s-.g-eC-lnf-::-o', Definitions Inlo I BPEll 

Id definifions blMlno oDeration input boc!)l output 
1 denniUons .. dennmon, ... bindlngtype=1ns ... blndllg type='ns :S .. operation name=':getTlckerPrlce- s . DIMlng Iype=1ns StockTlc~erPrlce- bind 
2 binding !yp ... binding type='ns :. blndllg Iype='ns:S . operallon name=-getTlckerPrlce- s ... blndlng!YPe='nsSiockTICkerPrlce~lnd 
J binding typ .. binding type=1ns .. blndng Iype='ns:S .. operation name=-getlastUpdatecr binding tvpe=1ns StockTl c~e r Prtce - tiin~ 
4 binding !yp binding type=1ns :. operation name=-getlastUPdatecr .'-
5 binding I)p binding type=1ns operation name=-g~Change-~a~-==-_ - - ~ _ -
6 binding type='ns operation name=-getChange- soap 
~7-----+------t-----~bl~nd~in!g·typ~e~=1n~s~----------~~~~~~~~~~---

--------E~~":_";2-'1--
8 _ _ _ binding type=~s_= __ 
9 - blndlngtYPe; 'ns 
_10___ blndlngtype=1ns _ _ 
2.:11!-__ -+ ____ -!-___ ---Ebl~nd;;;;ln~gl~· typle:;:,='i;;-ns;.=t _________ -+ --__ _ __ 
12 binding lype=1ns . 

Figure 5.1. A screenshot of the WSDl extract tables of the SAA parsing process 

The WSDL Static classification model learns from the training dataset, which greatly 

depends on the training data patterns which are presented in the dataset. Considering 

that the web services protocol stack elements can provide the core functional and QoS 

training dataset for the WSDL Static classifier, the training data patte rn s are investigated 

according to the classification of the technical rol e and characteristics of the sta ndards 

and protocols of the web services protocol stack in the extended SOA design layers in 

Sub-section 2.4.3 .1. Each element in the web services protoco l stack in the extended SOA 

design layers is labelled as a categorical class within the training dataset. Each class is 

then set to tuple-sample data patterns which are assumed to belong to each class, as 

determined by the class label attribute and rule. Then, the classification algorithm 

discovers knowledge from the training dataset and constructs a classification model and 

can be evaluated using the evaluation module. The WSDL Static cl assi fi er uses a Naive 

Bayes classification method [94], which is a simple probabilistic classifier based on Bayes' 

theorem with strong independence assumption for text mining. 

The WSDL Static classifier then performs WSDL text mining of t he web services core and 

QoS protocols and standards which are sea rched and captured from the WSDL extract 

data, which new classification cases may be predicted according to their relationship to 

core and QoS element within the web services protocol stack. The result of classification 

74 



is saved in a specific table (named as WSDL_TO_WSPS) as references for mapping core 

and QoS services specifications to web services protocol stack. Subsequently, the 

outcome of the above data mining is used in the validation and verification processes 

which include defining core and QoS requirement-coverage metrics as structural 

coverage criteria, the structural coverage metrics will be used to guide the test-data 

generation and to derive a test suite including test execution environments. The test 

suite will be used during dynamic testing implementation, and then during test 

operational monitoring and test coverage metrics during the verification stage. 

In order to train and build a classification model, the WSDL Implementation Static 

classifier is trained by data patterns semantics which are investigated and mapped 

according to the syntaxes in the generic SOA design layers as in Section 2.4.1.1. The 

generic SOA design layers provide the core functional standards and protocols to achieve 

a successful invocation and interaction implementation between web service providers 

and consumers. Hence, these data patterns provide a data set of the request and 

response messages exchange, the service data, and the signatures of its operations which 

they need to be extracted from the WSDL elements. 

Each element in the web services protocol stack in the extended SOA design layers is 

labelled as a categorical class within the training dataset. Each class then set to tuple

sample data patterns which are assumed to belong to each class, as determined by the 

class label attribute and rule. These core functional standards and protocols requirement 

syntaxes can be discovered and extracted from the six WSDL's sections tags which are 

following: (1) <definitions> the root WSDL element which declare the namespaces used 

in the document, (2) <types> element which contains the data types which will be 

75 



transmitted, (3) <message> element which contains the information about the messages 

which will be transmitted, (4) <portType> element which contains the information about 

the operations that will be supported, (5) <binding> element which contains the 

information about the means which the messages be transmitted on, and the <service> 

element which contains the information about the location- URL address of the service. 

Then, the training data patterns semantics are classified and mapped to the syntaxes of 

the core functional standards and protocols within the generic SOA design layers. 

This data is required to achieve successful invocations and interactions between web 

service providers and consumers. Collectively, this data is considered the core functional 

and non-functional (QoS) testing resources of the formal requirement specifications of 

the web services under test. Accordingly, in order to train and build the classification 

model of the WSDL Implementation Static classifier, the semantics of the trained data 

patterns are investigated and mapped according to the syntaxes of the core functional 

standards and protocols in the WS-* Architecture design layers which provide the core 

functional standards and protocols to achieve a successful invocation and interaction 

implementation between web services providers and consumers. Table 5.1 lists the 

applicable core functional standards and protocols syntaxes of the web services 

implementation, which are used in the training data patterns. Table 5.1 also lists the 

technical roles and the mapped WSDL tags syntaxes and attributes for each of the core 

functional standards and protocols. 

76 



." , 

\ :'t: J 
. ~ , .. 

;,'1 

t argetNamespace Definition Must be th e root element <wsdl :definitions " targetNamespace=" 
uri Dec lare the namespaces name="targetNamespace=""/ > 

used in the document 

Name of the Se rvice Defi ne t he name of the <wsdl :service name-""> "service name- " 
service se rvi ce 

Wh ere t he Service Defines the end points (i .e. <wsdlsoap:address "address locat ion=" 
serv ice is address) of web service location=""/ > 

loca t ed? 
Port name(s) Se rvice Defines one or more <wsd l:port bind ing-" "/> " port bind ing=" 

bind ing ports 

How messages Bind ing Defines transm ission <wsd l:soap:bind ing "binding t ra nsport=" 
w ill be media (e.g. HTTP, FTP and transport=""/> 

transmitted? SMTP) 

Message style Binding Defines M essage format <wsdl :binding t ransport="" " bindi ng style=" 
type (e .g. SOAP, REST, style=''''/> 
XM L-RPC) 

What is PortType Defines the operation < wsdl :PortType input "input=" 
operation in- input elements to form a wsaw :Action=""/> 

put ts)? complete one-way or 
round-t rip operat ion 

W hat is PortType Defines the operat ion < wsdl:PortType output "output =" 
operation out- output elements t o fo rm a w saw :Act ion =""/> 

putts)? complete one-way or 
ro und-t ri p operation 

What is message M essage Defines t he name of the < wsdl: M essage message IIm essage nam e=!! 
name? request/response name= 1111 / > 

messages 

W hat is PortType Defines the na me of t he < wsdl: PortType operation "operation name=" 
operation name? servi ce operation name=""/> 

What are M essage Define t he message part < wsdl :M essage part II part name::; '"1 
message part names elements name='III/ > 

names? 

W hat are M essage Defines the message part < wsdl: M essage part name="" "part element=" 
message part elements element =""/ > 

elements? 
What are simple Types Defines the simple data < wsdl : Types element name "e lement name=" 
datatype names? type names used by the =1111/> 

w eb se rv ice provider and 
consumer 

What are Types Defines the complex data < wsdl : Types complexType "complextype name=" 
com plex type names used by the name=""/ > 

data t ype names? w eb service provider and 
consumer 

W hat is data type Types Defines th e dat a type < wsdl : Types com plexType "element type=" 
value(s)? values used by the web name=lI .. type ::;1111 /> 

service provider and 
consumer 

Table 5.1. List of core requirement assertions and applicable training data patterns of 
WS-* Architecture 

Accordingly, the WS-* Architecture elements provide the core functional training dat aset 

for a machine-learning classifier, Each WS-* Architecture element is labelled as a class 

within the training dataset, Each class is then set to sample data patterns associat ed with 

each class and with a predicted classification rule which is determined by the cla ss label 

attributes and rule, Using a machine-learning classifier, the LDM module learns from the 

77 



training dataset, which greatly depends on the training dataset size. A Naive Bayes 

classifier [94]-a simple probabilistic classifier based on Bayes' theorem with strong 

independence assumption for text mining -is used as the WSDL Implementation Static 

classifier for learning and classification of the WSDL data to the WS-* Architecture 

elements. The classification algorithm discovers knowledge from the training dataset and 

constructs a classification model and can be evaluated using the evaluation module. 

According to the data mapping patterns from the 5.1 table, the WSDL Implementation 

Static classifier is trained and a training dataset is built. 

The WSDL Implementation Static classifier then processes data mining analysis by 

extracting and classifying the grammar rules, properties abstractions, and concrete 

elements of the web service under test from the WSDL extract tables in the metadata 

database. The interest is including the web services name, the target name space, the 

end-point URL, the port name, the operation to be tested, the output method name, the 

output expected data-type name, and the output element type. The WSDL 

Implementation Static classifier then saves the outcome of the data mining process for 

further use during the validation and verification processes, which include the core SOA 

principle, standard requirement-coverage, and test coverage measurement analysis. 

The WSDL Static classifier then performs WSDL text mining of the web services core and 

QoS protocols and standards which are searched and captured from the WSDL extract 

data, which new classification cases may be predicted according to their relationship to 

core and QoS element within the web services protocol stack. The result of classification 

is saved in a specific table (named as WSDL_TO-'mplement) as references for mapping 

core and QoS service specifications to web services protocol stack. Subsequently, the 

78 



outcome of above data mine is used in the validation and verification processes which 

includes defining core and QoS requirement-coverage metrics as structural coverage 

criteria, the structural coverage metrics will be used to guide the test-data generation 

and to derive a test suite including test execution environments. The test suite will be 

used during dynamic testing implementation, and then during test operational 

monitoring and test coverage metrics during the verification stage. 

Next another machine-learning classifier of the LDM model to support SAA, the System 

Requirement-Coverage classifier uses outcome of knowledge of data mining process from 

previous steps to define and classify a structural machine-learned requirement-coverage 

metric. The metric will be then used to guide the test-data generation and to derive a test 

suite. The System Requirement-Coverage classifier process data mining to identify and 

assess the core functional characteristics of the web services under test. The 

Requirement-Coverage classifier uses a mismatch checklist to identify the possible 

requirement mismatches of the service core components according to the web services 

protocol stack. Thus, the SAA with the support of the LDM model will determine if the 

system under test requirements is valid according to outcome of the data mining of the 

core requirement-coverage analysis. Figure 5.2 shows a highlighted section of the 

decision tree structure of the training dataset evaluation of the WSDL Implementation 

Static classifier, which is based on core functional standard and specification 

requirement-coverage. 

79 



, ill Prefuse tree [System ~uirement covrage c.lassification tree graph] >, .1" ,"=, l~l@ M 

- 7 

a? 1-7 

compluTyp.n.m. ( 1.0) Iypn_what~_o.t.typ._nornet 

,- compluTypon.",. 

-7 

.., 

Figure 5.2. A highlighted section of the decision tree structure of the training 
dataset evaluation of the WSDL Implementation Sztatic classifier 

Similarly, the QoS System Requirement-Coverage classifier generates QoS requirement-

coverage analysis metrics as structural and machine-learned coverage criteria of the w eb 

se rvices under test , and according to the non-functional - QoS standards and 

specifications within the web services protocol stack. The QoS System Requirement-

Coverage classifier uses the outcome of data mining process by the WSDL Static classifier 

which is saved in WSDL_TO_WSPS table in the metadata database, the table contains th e 

mapping references of the QoS for web services under test specifications to the QoS 

protocols and standards within the web services protocols stack. This includes messaging, 

80 



addressing, security, reliability, transactions, and so on. These protocols and standards 

support simple and complex QoS requirement message and behaviour patterns between 

web service provider and consumer. For example, if a web service being tested is 

advertising QoS as WS-Policy assertions then a set of behaviours concerning those 

properties can be used in conjunction with the web services provider and the consumer 

messaging communication patterns. 

Accordingly, a training dataset is used to set a classification model of the possible QoS 

classification for each specified QoS protocol and standard within the web services 

protocols stack. Each class then set to tuple-sample data patterns which are assumed to 

belong to each QoS class mapped to syntaxes, semantic, and rule are provided in the 

training dataset. A predictive machine-learning algorithm-the J48 decision-tree classifier 

is used to learn the training dataset, modelling a classifier model for the QoS System 

Requirement-Coverage classifier. 

Eventually, the QoS System Requirement-Coverage classifier searches for syntaxes of the 

QoS behaviour properties and values from the WSDL_TO_WSPS table for the possible 

QoS data mining. The process of the data mining determines the setting of the web 

services client's test-harness environment that will be needed in the test case generation 

and test-execution of each operation. 

An example of data mining by QoS System Requirement-Coverage is the knowledge 

discovery of the QoS semantics, such as the WS-Policy assertions mapped as QoS 

protocols and standards in the web services protocol stack, from which new QoS 

requirement-coverage classification cases may be predicted. A decision tree structure of 

training datasets is built-up for further data mining of the new classification cases of WS-

81 



Policy assertions. Figure 5.3 shows a highlighted section of the structure of the decision 

tree from the training QoS assertions dataset based on QoS protocols and standards in 

the web services protocols stack, which is based on OoS standard and specification 

requirement-coverage. 

"(iJ Prefuse tree (QoS system requirement covrage classification tree graph] 

poIicyAssettionType 

poIlcyAssertionName 

- no 

missinO..JlolicyAsserbonCateQOl·y (1 .0) 

- availability 

missinO_availabilityType (1 .0) 

- capacity 
I 

, 

J 

missino_capacityType (1 .0) miSlinlLefficiencyType (1 .0) 

Figure 5.3. A highlighted section of the decision tree structure the training QoS 
assertions dataset 

The QoS data-mining outcome is then used to guide the t est-data generation and to 

derive a test suite including test execution environments. 

82 



5.3 Test Generation Example 

5.3.1 Test data Category Partitioning 

Initially, the test cases generation starts with the CP procedure by capturing and 

identifying the data from results of data mining of the core and QoS requirements 

specification of the web services under test, which is saved in the metadata database. 

The CP procedure decomposes the data into categories of operations, input-output 

parameter properties, and core and QoS characteristic values. These categories are then 

identified into partitions of choices of parameter types (a choice is a specific test input 

and output parameter type or value for a category) . For example, choices for primitive 

parameter types can be selected from primitive data types of programming languages, 

for example, integer, character, and string. The example below demonstrates the steps of 

the approach. 

Example: web services operation; find city temperature using Java primitive data type as 

input-output parameters: 

1. Classify the web services operations into categories using the CP technique, as 

shown in figure 5.4: 

Category 
operation 
find city temp 
Input: city name 

Category 
operation 
find_city temp 

Category 
Core/QoS standard 

<wsdl:*> 

Figure 5.4. The result set of classifying the web services operations into categories 

2. Partition the categories into choices, as shown in Figure 5.5: 

Input: aty _nama 
l ypc: :;tring 
I.~ngth: 

1MX1.Ctlgth 
minLcngth 

outpUt: oty _t~p 
Type: integer 
Length: intl!gec 

<wsdl:'S 
<w~l:~",ic:l!>

..:w:s.dl :binl.:jjnp,:.> 

..:"v:s.dl;m~~.II.l!:'> 
< .. :"ndl;types.;... 

Figure 5.5. The result set of partitioning the categories into choices 

83 



5.3.2 Equivalence Class Partitioning 

The Test Cases Generation module uses ECP procedures to produce equivalence class 

partitions for partitions of choices for input-output test data. In essence, most 

programming languages provide values for primitive types which can be mapped to 

represent most of the input-output XML data type conditions values (constraints) . Table 

5.2 contains examples of mapping input-output facet XML data types to the constant 

value of the Java primitive data types [24] . 

XMI. ...... - . 1, ".,~~~~ ... 
String enumeration Integer.MAX_ VALUE 

length Integer.~N_ VALUE 
maxLength 
minLength 
whitespace 
pattern 

Double enumeration minInclusit-e Double.MAX_ VALUE 
minExclusive maxlnclusive Double.MIN_ VALUE 
maxExclusj,-e 
w hitespace 
pattern 

Table S.2. Examples of mapping xml data types to Java primitive data type 

(Note : The String class in Java programming language keeps track of the number of 

characters in the array within integer data type range [101]) . Taking that into 

consideration, the input parameters and QoS conditions values (constraints) can be 

combined as partitions of data as training datasets for machine-learning classifications. 

Once the training dataset is available, a machine-learning algorithm is used to learn the 

classification's rules that relate to generating data sets of category, choice, and 

constraints-classifications-rules. The Test Case Generation module uses the Naive Bayes 

classifier to produce equivalence class partitions from the test data which is produced 

from CP step, which consists of a set of operation names, data types of input-output, 

84 



constraints (conditions) which are determined among the choices of CP, the example 

below demonstrates the steps of the ECP approach: 

1. Determine the constraints among the choices using the ECP technique according 

to the following rules [40] : (a) if the input condition specifies a range of values, 

then define at minimum one valid and two invalid equivalence classes, (b) if the 

input condition requires a specific value, then define one valid and one invalid 

equivalence class, (c) if the input condition specifies a member of a set, then 

define one valid and one invalid equivalence class. We then include any applicable 

core functional and QoS standard specification, by implementing CP techniques . 

Table 5.3 demonstrates the result set of the ECP step . 

. - ;-.l.-- ~ 1~""JJ.~':~:.':'I.J, • ~"t~ 

stnng:>m eger.MAX_ .... LUE.m\·~d In\'~d error < \vsd1: sen'lat> 
output ,.vsdl : ser\·,ce :~e 

w sdl:address 
w sdl:port :bmdmg:rume 

mtger.M1:-':_ V .... LUE-:>strmg:>- V~d <,,,sdl:sen,c:e /:> 
mteger .MAX_V .... LUE. \·~d output <,,,sdl :bmdmg:> 

Wsdl:b.ndmg:.ume 
w sdl:bmdmg:tro.nsport 
wsdl :oper~bon:rume 

stnng<11lteger.M1:-:_ V .... LUE • • r\\"~d Im'~d error <,,,sdl :bmdmg /:> 
output <\ .. tsdl :me~8e> 

wsdl :oper~hon:name 
w sdl:mput 
w sdl:output 
<,,'sdl:me~8e I> 
<wsdl :ty pes:> 
Element:name:type 
<,vsdl:types / :> 

Table 5.3. The result set of the ECP step 

2. With the test case generation approach identified, develop a list of test cases 

frames based on possible inputs and expected outcome for the find city 

temperature web services method using Java primitive data type as test inputs. 

The ECP step generates test input values using Strong Normal Equivalence Class 

Testing methods [40], which uses Cartesian Products for possible input values for 

each of the input parameters. In Cartesian products, every unit of a group is 

paired with every unit of every other group. Thus, all combinations of the inputs 

across all groups are obtained. Hence, the ECP method promotes a design test 

85 



which ensures completeness and non-redundancy of test case generation. For the 

find city temperature method which has one input parameter with three input 

values, taking into consideration the special case conditions of the input values of 

the parameter, e.g., lower boundary, upper boundary and zero inputs for each 

web service method, 6 (6"n) test cases are generated. Table 5.4 shows the 6 test 

cases which are identified. 

Table 5.4. The list of test cases for the find city temperature web services method 

3. The Test Case Generation module then writes XML abstract frames of the test 

core and QoS test cases, including the test data result from CP and ECP processes. 

These XML abstract frames also include the web services name, the target name 

space, the end-point URL, the port name, the operation to be tested, the output 

method name, the output expected data type, the output element type, the t est 

validity, the test type, and any applicable test environment and OoS condition 

values. 

4. Once the abstract test case frames have been defined, the Test Case Generation 

module will automatically transform test case frames into XML test-execution 

scenarios, adding for each test case the actual input test values, the expected 

result, the test ID, and the test cycle number. 

86 



5.4 Test Execution Example 

As mentioned earlier, the LDM module also searches for any applicable OoS behaviours 

mapping the data to WS-* Architecture. This data is also included in the test cases as part 

of the headers, which are afterward used by the Test-Execution module for test-harness 

implementation which include systematic automated test environment setup, test-

execution, and test-execution response reports of the web services test client. For 

example, if a web service being tested is advertising WS-Addressing protocol assertions, 

then the OoS web services rules in the SOAP header description according to WS-

Addressing specification are applied. The WS-Addressing specification outlines a set of 

End Point References (EPR) and Message Addressing Properties (MAP), as well as a set of 

behaviours concerning those properties which can be used in conjunction with web 

service provider and consumer communications to support simple and complex message 

patterns in both asynchronous and synchronous communication types [105]. Table s.s 

list WS-Addressing protocol assertions and applicable mapping web services, as well as 

consumers' communications rules. 

t,~:~~~·-":=<., .. :' , ,.,,; '~ , ,.' :'" ',~'. ,~t: .. ~.'.' '~, ,.' , .... ,~::~~~.~~ . .. . 
<fuabkd 

enabled 

Table 5.5. WS-Addressing protocol assertions communications rules mapping 

87 



According to the data and mapping rules, the LDM module determines the setting of the 

web service client's test-harness environment that will be needed in the test-execution of 

each operation. A dataset can be used as a training set, according to the QoS standards 

and protocols advertised by the web services under test. A predictive machine

learning algorithm, the J48 decision-tree classifier [61], is used to learn rule pairs 

(category, choice) that relate to the web services, modelling input properties to output

domain equivalence classes according to the discovered WS-Addressing XMLlnfoset in 

the web services under test WSDL. Figure S.6 shows a section of the decision tree 

structure from the training QoS WS-Addressing dataset. The LDM module searches for 

QoS Infoset values in a specific table in the web services specification metadata database, 

from which new QoS classification cases may be predicted, mapping the QoS 

implementation of web services to communication types between the test consumers of 

the web services under test. The Test-Execution module uses these settings to implement 

the test harness of the web services test client at the time of creation of the SOAP 

message asynchronous or synchronous communication dispatcher. 

88 



Prefuse tree (QoS system rrquiremtnt ~~ classification tree grllph) 

-1 

poIicyAssertionType 

poIocyAssertionName 

- no 

rTVss~cyAssertlonCateQOfY (1 .0) 

- avaiabdity 

- capady 

Figure 5.6. A section of the structure of the decision tree from training QoS WS
Addressing dataset 

A web services prototype is developed as a proof of concept to test the invocation of web 

service operations according to the test execution environment of the QoS WS-

Addressing protocol. The web services under test provide live stock information through 

web service operation s: ticker last price, ticker price change, and last change dat e. The 

web services implement WS-Addressing, and in accordance with that, th e WS-Addressing 

XML Infoset appears in the WSDL. Figure 5.7 shows the applicable WS-Addressing 

protocol properties in StockTickerPrice.wsdl. 

89 



<?xml verslon='l.O' encodlng='UTF -0' 1> 
<!w. F',J.. l :~hej t' r' T.I.X-W': FI r ht.J ~ :1 J3>,-\·~,d~\'.:'i\· ':a.I1et. PI e VI!LH.)n 19 !te tr r') ~.l Ib(flo:hee!2.1-6'26: 2IJ l 1- 1};-'J3TH : li. : :·c",})(( J.lX\l~-~I' .. . l 3 J.~):'J5 ~_ 

> 
_ <definitions xmlns: wsu='http ://docs .oasis-open.org/wss/2004/0 1/oasis-200401-wss-wssecurity-utllity-1.0 .xsd' xmlns: wsp='http://www .w3.org/ns/ws-policy' 

xmlns: wsp 1_2='http://schemas.xmlsoap.org/ws/2004/09/policy' xmlns : wsam='http ://wl'lw .1'13 .org/2007 /051 addresslng/metodoto' 
xmlns : wsaw='http://www.w3.org/2006/0S/ addresslng/wsdl' xmlns : soap='http://schemas.Kmlsoap .org/wsdl/soap/' xmlns : tns='http://pkg/' 
xmlns :xsd='http://wwl'I .w3 .org/2001/XMLSchemo' xmlns='http://schemos.Kmlsoap.org/l'Isdl/, targetNamespace='http://pkg/' name='StockTickerPrice'> 

_ <wsp: Policy xmlns: wsapw3c='http ://www.1'I3.org/2006/0s/ oddressing/l'Isdl' wsu: Id='stockTickerPricePortBlndin!L Wsaw _Addressin!LPolicy
StockTickerPricePortBindina WSAM Addressin!LPolicy-StockTickerPricePortBindin!LWSAM_Addressin!LPolicy'> 
<wsapw3c: USing Addressing /> 

- <wsam:Addresmg> 
- <wsp:Policy> 

<wsam: NonAnonymousResponses /> 
</wsp: Policy> 

</wsam: Addressing> 
</wsp:Policy> 

- <types> 
- <xsd: schema> 

<xsd:lmport namespace='http://pkg/' schemaLocat lOn='http://osos:8000/StockTicker/stockTlckerPricelxsd= l ' /> 
</xsd: schema> 

</types> 
- <message name='ping'> 

<part name='parameters' element='tns:ping' /> 
</message> 

- <message name='getTickerPrice '> 
<part name='parameters' element='tns :getTickerPrice' I> 

</message> 
- <message name='getTickerPriceResponse'> 

<part name='porameters ' element='tns:getTickerPriceResponse' /> 

Figure 5,7, WS-Addressing protocol properties in StockTickerPrice,wsdl file 

The LDM module makes a decision based on training datasets, by capturing the specific 

QoS WS-Addressing protocol data retrieved from the web services speCification metadata 

database, and on the basis of this the test-harness environment is predicted . The figure 

shows that the test-harness environment data is included in the test cases as part of the 

headers. Figure 5.8 specifies the test execution environment header in the Test Case.xml 

file. 

90 



- <S: EnvelJpe ~m ln5 : S ='http://schemas .~mlsoap .org/soap/envelope/' ~mln5 : SOAP-ENV=' http ://schemas .xmlsoop .org/soop/envelope/'> 
- <S: Hecder> 

<5 xmlns='ServiceNome'> TickerPriceWS</s> 
<s ~mlns ='torgetNomespoce'>http ://pkg/</s> 
<s ~mln s='endpointUrl'>http : //osos :BOBO/StockTicker/TickerPriceWS</5> 
<5 ~mln s ='portNome'> TlckerPriceWSPort </5> 
<s ~mln s = 'soapActionUrl'>http ://pkg/TickerPriceWS/TickerPriceRequest</5> 

<s ~ml n s='test case frame no '>2</s> 
<5 ~mln5 ='test type'>core</5> 
<s xmlns='operlltion to be tested' > TlckerPrice</s> 
<5 xmlns='lnput test e~ecution datilType'>string</5> 
<s xmlns='test validit y'>valid</s> 
<s ~mlns='out put method nilme'>getChangeResponse</5> 
<s xmlns='output e~pected dotanome'>retum xs :element minOccurs=O</s) 

<5 xmlns='output elementType'>string</5> 
<5 xmlns='expected resul ' > 17 .B</5> 
<s xmlns='testIO')b3a69970-0cf9- 47f3-90cb-e26BBd54fcf3</5> 
« xmln' , ' tact r urlo nn ' , 1.'/. " 

I <5 xmlns='WS Addresslng'>NonAnonymousRes_MsLExchg</5> I 
<'/ ~ : n~dU~I '" 

- <S:BOdy> 
- <n52 Tickerl'rice Xmln 5 : n5~='http ://pkg/,> 

<5ymbol>ibm</symbol> 
</ns2: Tlckerl'rice> 

</S:Body> 
</S:EnVEloDe> 

Figure 5,8, Specifying test-execution environment data in the Test Case,xml 

Supporting both polling and call-back mechanisms when calling web services 

asynchronously, the Test-Execution module and Monitoring module implement the test-

harness for web services under test, sets the input parameters in the SOAP Body, and 

executes the test case systematically. 

5.5 Test Monitoring Example 

The Monitoring module performs run-time operational monitoring of the web services 

log file for messages and logs sent between the web services test client and web services 

in real-time. The Monitoring module generates monitoring statistical reports, the Test-

Execution module initiates the dynamic testing process by executing the XML test-

execution files using the unique test ID to identify, match, and update the test execution 

result for each test execution simulation task. Simultaneously, the Test-Execution module 

waits for the response messages sent from the web services under test in real-time. The 

Test-Execution module generates a test execution report, by transforming the SOAP 

91 



message to string of data for parsing and extracting the test response data. The response 

data includes the Test 10, the response Body, and the message content result. The Test

Execution module updates the tescexecution_data table in the test database with the 

test execution result for each case according to its unique test 10 number. The test 

simulation outputs at the end of each test cycle are used within the monitoring process 

with support of LOM module for test validation in the next stage by Monitoring module. 

The Monitoring module then reports these messages and transforms them to sort of 

customised message data which can be used by the LOM module and then saves this data 

in the System_HistoricaLOata database. This data is considered the final observational 

learning inputs throughout the monitoring process. Eventually, the LOM module analyses 

and judges whether the components of the web services under test have met the 

requirements and the system operational standards, otherwise it needs to expose new 

test experiences and proper debugging efforts to be directed. The results of the testing 

data metrics become an input for the trained machine-learning classifier. Using the 

J48 decision-tree classifier, a new classifier module is trained with the training dataset to 

validate against the testing dataset. Figure 5.9 shows a section of structure of the 

decision tree from the system invocation monitoring training dataset. 

92 



11 e\t,ew 

_ ... - ----------- . . -- ---- -
. "~I- " ...,. - -

dltIt.tdl (1 0) 
r -+ 

: JJJ , : 6' 1 , ____ : , ~ ~ ... ] --------- t: f, .. "'1 

tllttIUHLCldI_JIO (1 0). 

,. nr!;I' J. 'r" :"f' L ·,c:r B ,q.·~.. . ____ I: 0..----... 'Z 

ttehttttdl_ (1 0 1INl~(lSt. rt(/It( _~C)(Ie_no_ ItMlItSlUStJ'$lC)("_ 1tJlfCt..ld.iJlttJll(1a) 

I1!II\"lH1"ttu. "MM • ..... ______ .;..~J ...... ~ 

----~ItSl.l 

Figure 5.9. A section of the structure of the decision-tree resulting from system 
invocation monitoring training dataset 

The LDM module analyses the test results in the historical database in order to judge 

whether the test executions of the test cases meet the expected results and 

requirements of the QoS system 's operational standards. The LDM module then feeds 

the analysis of the results to the test database. 

5.6 Empirical Framework Evaluation 

As mentioned in the introduction section of this chapter, the cost-effectiveness matrices 

deal with capturing, defining, monitoring, and analysing software testing techniques and 

93 



practices exclusively by using certain key factors within the testing phase [78]. These 

factors are considered essential for producing concrete structures of software test 

techniques which could prescribe their quality levels in a cost-effective manner. These 

key factors are as follows [16],[79L[70]: 

1. The total effort spent on the testing phase (test cost). 

2. The total defects captured at test phase (defect detection effectiveness). 

3. The defect detection effectiveness which is computed against test suite size (test 

cost) to obtain the cost-effectiveness or test-efficiency ratio (defect detection 

rate/test cost). 

Since all the testing technique structures are, to various extents, based on heuristics and 

simplifying assumptions [16],[79], the cost-effectiveness of various techniques cannot be 

systemically assessed and compared. Hence, it is natural to utilize empirical analysis in 

order to compare and improve software testing techniques and practices. Thus, in the 

following sections and subsections, the proposed framework will be empirically evaluated 

comparing it against other frameworks and tools 

5.7 Defect Detection and Coverage Metrics 

5.7.1 Test Completeness Measurement 

In order to demonstrate that the test suite which was generated by the proposed 

framework satisfies the coverage criteria according to the requirements of the web 

services under test, test cases were generated using a white-box (unit testing) testing 

tool. The JUnit tool [54] was employed to generate and execute unit tests for the same 

source code, of the web services under test, used by the proposed framework for 

generating test cases by the Test Cases Generation module. The generated Unit Test 

94 



Cases (UTC) include the same combination of input test data, method calls, and expected 

outputs which are used during the test-case generation through the proposed 

framework. Then, the CodeCover tool [23] (an open source instrumentation tool which is 

integrated into JUnit) was used to independently gauge the coverage level achieved by a 

test suite through instrumenting the source code. Thus, the code coverage metrics can be 

generated for each unit test case providing the percentage of code that is covered by the 

unit test case, i.e. the proportion of requirements that have been satisfied [16],[26]. The 

CodeCover tool supports statement (instruction) coverage, branch coverage, line 

coverage, complexity coverage, and method coverage. For implementing the test 

coverage measurement, the calculator web services test suite generated by the proposed 

framework is employed. The test suite is composed of test cases for testing the web 

service methods of the calculator web services, with two input parameters of Integer 

type and one output of Long type for each method. Having two input parameters, and six 

different values for each parameter for the four methods (Add, Subtract, Multiply, Divide) 

of the calculator web services. Using the Cartesian product (as exemplified in section 

5.3.2), every test input of a unit test case is paired with every test input of every other 

unit test case. Appropriately, all combinations of the test inputs across all unit tests are 

obtained, 144 (61\2)*4 of test cases are identified and generated. Then, the JUnit tool 

was employed to execute the test suite. Accordingly, by using the CodeCover tool to 

generate the coverage rate percentages covered by each unit test; various coverage 

percentage values are generated for 144 unit test cases for the calculator web services. 

The graph in Figure 5.10 summarizes the results of the source code instrumentation. 

95 



100.0% 

9J.o% 

if. 00.0% 

J 
iU.O% 

SJO% 

~.();1> 

.!:! 40.0% 

~ 3:>.0% 
2.1.0;~ 

, 
/ 

/ ~ 
J~ 

~ 
r 

10.0% 

/' ~ 
~ 

~ 

/~ 
,/~ 

v 

-

__ line 

aJWftd 

- Cnnpe.city 
aJW!l!I!d 

0.0';'0 
__ Method 

u e me ue me me we me me me me me aJWftd 
1-12 13-25 25-3S JJ-51 52~ 65-;-7 78-90 91-100 104-116 117-129 J.3O.144 

Figure 5.10. Code coverage measurement for calculator web services 

As the unit test case is iterated (1-144), the code coverage was found to be improving, 

reaching 100% coverage, for all, i.e. for instruction, branch, line, complexity, and methods 

coverage percentage values. Hence, this result can attain full coverage criteria according 

to web services under test requirement. 

5.7.2 Defect Detection Effectiveness Measurement 

In order to measure the second factor of cost-effectiveness -the defect detection 

effectiveness- the mutation score [122] can be used to measure the effectiveness of a 

test set in terms of its abi lity to detect defects, which gives an indication of the defect 

detection effectiveness of the test suite. 

5.7.2.1 Defect Seeding 

Mutation testing is performed by selecting a set of mutation operators and then applying 

them as manually seeded defects (or mutants) to the source code of the web services 

under test, one at a time for each applicable piece or block of the source code. The 

outputs from the running test suite are then compared against the web services under 

test. If the test suite is able to detect the change, (Le. one of the tests fails its positive 

test ing) t hen t he mutant is said t o have been ki ll ed (detected) and the test suite is 

96 



successful. When all mutants have been killed, the saved test case is comprised of the 

test suite, which could be used to test the web services. There are three kinds of 

mutation operators available, namely statement-level operators, method-level operators 

and class-level operators (77] . For our mutation testing, the statement level operators 

are chosen for measuring the mutation score, because this involves the creation of a 

traditional set of code-line-level mutants for the web services being tested . Mutation 

operators for method and class-level mutation testing focus instead on testing object

oriented specific features, for example inheritance, polymorphism, dynamic binding, and 

encapsulation. Moreover, the seeded defects in our mutation testing should include an 

adequate number of mutations (or defect) types that cover the unit test cases, based on 

the "selective mutation" operator set introduced by Mothra [25]. Table 5.6 shows seven 

mutation types were chosen for selective mutation operator set. 

Table 5.6. Selective mutation types from Mothra Mutant Operators 

The seven mutation types that we have been selected and then applied as 18 manual 

seeded defects, some of different types while others of the same type, to the source code 

of the calculator web services one at a time. After running the unit test suite, the killed 

mutants (detected defects) metric of the test suite was constructed, and the defect 

detection rate of the test set was measured according to the mutation score. The 

mutation score takes real values between 0.0 and 1.0, where 1.0 is the best score 

97 



possible, meaning that this particular test set can kill all the non-equivalent mutants 

(there are some mutants that can never be killed because they always produce the same 

output as the original program, these mutants are called (Equivalent Mutants). Such a 

test set is said to be 100% mutation adequate to measure the rate of defect detection of 

the test suite [56]. The graph in the Figure 5.11 summarizes the mutation-detection 

effectiveness of the generated test suite by the proposed framework for the (Add) 

method of the calculator web services. The graph illustrates that the test approach 

adapted by the proposed framework is capable of finding all defects of all the selective 

mutation types with 100% mutation score. The horizontal axis signifies the mutants, 

while the vertical axis signifies the percentage of the test cases which detected the 

mutants, for example, defect 1 was found by 19.4% of the test cases while defect 10 was 

found by 36.10%, still all defects were found . The area under the curve represents the 

mutation-detection ratio, which shows the detected defects over the life of the test suite. 

100% 
90% ---
80% 

~ 
7C1*. 

~ 
6Cm 
5C1*. 

4C1*. -In 30% ::J ... 
2C1*. 

Figure 5.11. Defect detection ratio for calculator web services test suite 

Table 5.7 shows mutation testing metrics for the (Add) method of the calculator web 

services corresponding to the graph - Figure 5.11. 

98 



Table 5.7. Defect detection metrics for the generated mutation testing 

The results in table 5.7 indicate that mutation-detection effectiveness is ranges between 

19 and 100% presented in UTC Coverage % column. The Defect Types column signifies the 

mutants, while the numbers are shown in Detected Defects column which signifies the 

number of detected defects. 

5.8 Cost-effectiveness Measurements 

In order to measure the cost-effectiveness of the test approach which is adapted by the 

proposed framework, the defect detection effectiveness was calculated and plotted 

against the test suite size (test cost) [16]. The resulting graph is presented in Figure 5.12, 

where the horizontal axis represents the test suite size or test cost, while the vertical axes 

represent the detected defect rates (UTC Coverage % column-Table 5.7). The figure 

shows the cost-effectiveness line which illustrates as the test suite size increases (first 

row in green-Table 5.7), the number of detected defects increase (last row in red - Table 

5.7), which provides evidence of the defect detection adequacy criteria . The graph also 

99 



illustrates the defect detection effectiveness line of the test execution cycles, as more 

mutants (defects) of different mutation types are found when new mutants are injected 

with zero undetected defects. This provides in-process evaluation of the actual test suite 

effectiveness at detecting defects [74]. Furthermore, the figure shows the confidence 

proportion of defect detection around the cost-effectiveness line, which provides a 

further insight into the dependence of defect detection probability on the test suite 

coverage, as very often, many adequate test suites can be found for a given coverage 

criterion [16]. The fit of the defect detection to the test-case coverage demonstrates that 

the proposed framework is consistent which indicates high cost-effectiveness from the 

perspective of the test coverage. 

Many of the cost-effectiveness parameters and measures depend on other validity 

factors that were not addressed in this empirical analysis, and which could reflect on the 

confidence given to the study outcomes. These factors ensure that any cost-effectiveness 

comparison among test techniques is unbiased. The following subsections discuss the 

different types of threats to the validity of evaluating the cost-effectiveness of the 

proposed framework. 

100 



Un it Test Cases 

Defectdetectionetfecti~·~sliru! 

Figure 5.12. Analysis of test cost-effectiveness 

5.9 Threat to Construct Validity 

One threat applicable to construct validity is related to the effort required or the test cost 

when the required resource is machine or human time for test-case generation, test-

execution, and collecting and logging the test result, the test cost can be measured in 

terms of actual time is needed to generate and execute a test case. In order to address 

this validity issue, the overall test cost is calculated, the proposed framework was used 

and compared against other open -source and commercial tools for SOA testing. The test 

cost is estimated by measuring the actual time required to generate and execute a test 

case along with the steps presented by the proposed framework, they were then 

manually compared against generated ones, by mimicking a human tester using the other 

benchmark open source and commercial tools for testing SOA for SOA testing. In 

particular, this evaluation, one test case is used for testing the addition method (add) of 

101 



the calculator web services and the result of the comparison is collected for the 

generation and execution test case with a test input of value of the upper boundary. 

Figures 5.13,5.14, and 5.15 show the result of the comparison of the test task expended 

by the proposed framework for generating and executing a test case for the addition 

method (add) of the calculator web services with four leading and comprehensive SOA 

test tools, namely HP Service Test [46], SoapUl, Soapsonar, and Parasoft SOAtest. In the 

graphs, the vertical axis shows the SOA test tool or framework, while the horizontal axis 

shows the work-time consumed (total actual time in seconds) in the test-case generation 

and in the test-harness implementation which includes test environment setup, test-

execution, and test-execution response of each test case by the SOA test tools. The 

results demonstrated reduced testing effort (test cost) using the proposed framework as 

compared with other SOA test tools. The actual results show that the proposed 

framework clearly required the lowest amount of time of these SOA test tools-7.9 

seconds for generating and executing a test case for a single web services method per 

test cycle. Other SOA test tools required significantly more time than the proposed 

framework-on average 47.5 seconds for generating and executing a test case for a single 

web services method per test cycle. 

Framework/tool 

Test case generation effort in time 
(Second) 

• Proposed Prototype 

• HP Service Test 

• SoapUI 

• Soapsonar 

• Parasoft SOAtest 
+---------~--------~--------~ 

o 20 40 60 

Figure 5.13. A comparison of test-case generation cost 

102 



Framework/tool 

Test case execuation effort in time 
(Second) 

• Proposed Prototype 

• HP Service Test 

• SoapUI 

• Soapsonar 

L-____ ~ ______ ~ ______ L-____ ~ • Parasoft SOAtest 

o 5 10 15 20 

Figure 5.14. A comparison of test-case execution cost 

Framework/tool 

o 

Test-case execution response time 
(Second) 

0.2 0.4 0.6 0.8 1 

• Proposed Prototype 

• HP Service Test 

SoapUI 

Soapsonar 

Parasoft SOAtest 

1.2 

Figure S.lS. A comparison of test-case execution response time 

Computing infrastructure: the evaluation is conducted on two computers with Processor 

Intel(R) Core(TM) i3 CPU M 370 @ 2.40GHz, 2399 Mhz, 2 Core(s), 4 Logical Processor(s) at 

3.2GHz, 4GB of RAM, running Windows 7, XP. 

5.9.1 Threats to Internal Validity (Degree Level of Automation) 

A relevant internal validity factor is related to the degree level of automation of the 

proposed framework for testing SOA. This validity issue could be det erm ined by 

comparing it against other open source and commercial tools, according to test 

automation validity factors [16]. Figure 5.16 shows a comparison graph which tracks the 

103 



degree level of test automation metrics of the proposed framework and other benchmark 

open source and commercial tools for SOA testing. 

35 ~~----------------------____ _ 

30 

25 

20 

15 

10 

Parasoft 

SOAtest 

• Requirement coverage 

• Test case generation 

• Test execution 

HP Service 

Test 

QoS coverage 

Proposed 
Prototype 

Test harness-testability 

Test diagnosis and monitoring 

Test automation 

validity scale 

None: 0 

Low: 2 

Medium: 4 

High: 6 

Figure 5.16. A comparison of level of automation of the proposed framework against 
other benchmark open-source and commercial tools 

5.9.2 Threat to External Validity (Supporting Industrial Practices) 

There are several external validity threats which limit the ability to generalize the design 

and implementation of the proposed framework according to industrial practices for SOA 

testing, e.g. WS-* Architecture implementation [51], [55]. These external validity issues 

can be resolved by properly addressing and implementing them in the proposed 

framework, and also using them as comparison factors for cost -effectiveness 

measurement against similar frameworks and techniques from the literature. Figure 5.17 

shows a comparison graph which covers and captures the level of implementation of 

these factors in the proposed framework and in other similar frameworks and techniques 

from the literature. 

104 



Industrial practices 
factors references 

Proposed ... • Support ws-* protocol 
stack 

." 163J 

• Support full automation ... 
0 

component testing Industria l 
... 

1191 u 
ru 

• Support public interface practices 

(WSDL) (Black box t esting) implementation 

• Su pport full life cycle 
validity scale 

Yes: 5 

-." 
<II 11J u 
.~ 
u 
ru 111 51 ... 
Q. 

No: 1 

• Support run -time Low: 2 
ru 1821 .;: ... 

monitoring Medium: 3 

Support machine learning 
High: 4 

." 
::::I 11 031 "t:I .: 

1611 

[121 J • Support heterogeneous 
distributed enviroment 

0 10 15 20 25 30 35 
40 • Prototype availability 

Industrial practices implementation level 

Figure 5.17. A comparison of level of automation of the proposed framework against 
other benchmark open-source and commercial tools 

5.10 Cost-Effectiveness Evaluation Summary 

After detailed presentations of individual modules of the framework together with 

working examples, an empirical analysis was carried out in order to evaluate the cost-

effectiveness of the proposed framework by using key factors such as test cost, defect 

detection effectiveness, and cost-effectiveness measurements. A measure for the first 

key factor, the test cost, was conducted to evaluate the test suite completeness 

generated by the proposed framework as a measure for the test cost. The test suite 

completeness result has shown full code coverage by the test suite which implies that the 

test suite generated by the proposed framework has a high degree of test cost-

effectiveness with requirement specification traceability. An internal validity factor for 

test cost evaluation has been addressed through a practical comparison of the proposed 

framework against four leading and comprehensive open source and commercial SOA 

105 



test tools: HP Service Test, SoapUI, Soapsonar, and Parasoft SOAtest. The results 

demonstrated reduced testing effort (test cost) using the proposed framework as 

compared with other SOA test tools. The actual results show that the proposed 

framework clearly required the lowest amount of time of these SOA test tools. The 

degree level of automation, another internal validity issue, was also established and 

determined through empirical comparison of the proposed framework against the other 

SOA test tools according to the automation validity factors. The results verified that the 

proposed framework attains good automation in comparison to other SOA test tools. 

An external validity factor which could limit the ability to generalize the proposed 

framework for supporting SOA industry practices is also determined through an empirical 

comparison of the level of implementation of these factors in the proposed framework 

against similar frameworks and techniques from the literature; the results show that the 

highest level of implementation of these characteristics is in the proposed framework, in 

comparison to other frameworks from the literature. This verifies that the proposed 

framework implements and supports the standards and protocols that make it more 

transparent and applicable in the implementation of SOA systems according to industry 

practices. Another practical evaluation carried out to measure the second prinCipal key 

factor, defect detection effectiveness, has shown that the test approach adapted by the 

proposed framework is efficient and capable of finding all injected mutant types with 

100% mutation score, which indicates a high degree of defect detection. A 

conclusive measure of the cost-effectiveness of the proposed framework was computed 

and provided evidence of high adequacy test suite for a given coverage criterion, high 

defect detection adequacy criteria and high degree of cost-effectiveness. All tests based 

106 



on core functional and QoS system requirements were executed. The test oracles which 

are based on data-type references are fully automated. 

107 



Chapter 6 - Industrial Case Study 

6.1 Introduction 

In this chapter, the proposed framework detailed in Chapter 4 and 5 is evaluated through 

an industrial case study. The chapter presents an evaluation of the effectiveness of the 

proposed framework by practical and systematic implementation on a generic business 

use case within different industry sectors. The industry case study is designed and 

implemented as a prototype system based on a business use case of a SOA web services 

environment. The environment deployed the majority of the predominant WS-* 

Architecture specifications such as WS-Transactions, WS-Security, WS-Chorography, WS

BPEL and other standards and specifications. The implemented case study of the SOA 

web services prototype system is designed to generalize and increase the scale of 

supporting business activities and the context of usage of standardised industry protocol 

within the web services protocol layers. The evaluation aims to reach additional 

conclusions for the potential improvement of SOA testability on each possible industry 

usage situation. 

In this chapter, Section 6.2 revisits and reviews the use of SOA in industry; Section 6.3 

describes the setup of the case study. The evaluation of the case study using the 

proposed framework is conducted in Section 6.4. Finally, we discuss the evaluation 

results and threats to validity in Section 6.5. 

6.2 Scope 

Due to the fact that SOA web services are often seen as the foundation of a new 

generation of Business-to-Business (B2B) and Business-To-Business Integration (B2Bi) 

108 



they are considered the key mechanisms for enterprises to gain competitive advantage. 

Furthermore, web services are becoming truly pervasive by taking the full benefits of the 

rich capacities of WS-* Architecture such as transaction, security, choreography, and 

orchestration standard and specifications. Hence, much of SOA implementations are 

becoming collaborations of choreography and orchestration of services. Each web 

service will provide some large or small functions for the businesses' needs, and the 

majority of businesses will be able to simply choreograph and orchestrate how these 

services communicate. Given this wide spectrum of SOA web service implementation 

within industry sectors, and the relative novelty of the field (i.e. the testing and test 

analysis of SOA web services), this chapter will attempt to conceive a case study that 

addresses the different aspects of the field as fully as possible, and according to the 

literature review on market and industry demand. 

An advanced SOA web services system prototype deployment is proposed for integrating 

security, choreography, and orchestrating standards and specifications in the testing 

cycle, starting at the choreography level and showing how the requirements map through 

the different levels of web services protocol stack layer abstractions (see Section 2.3.4.1). 

Abstract domain-level models are linked to their technical implementation and show how 

requirements are realized through prototype components in a target architecture based 

on a web service protocol stack framework. In the following section, the scenario case 

motivated by testing implementation from security to transaction is implemented, to 

choreograph and orchestrate. The machine-learning module is deployed together with all 

the required modules within the framework as proposed in Chapter 4. 

109 



6.3 SOA in Industry Segments 

Based on existing reports from a number of credible sources ,such as the Gartner reports 

[37], regarding the popularity of SOA we can conclude that SOA is at the centre of the 

technologies used to implement e-business. Moving forward, SOA markets are 

dominated by business process analysis and workflow products. The fact that budgets 

are in place that pay for existing integration functionality, drives market growth for SOA 

[87]. SOA automates many business processes in a manner not accomplished by custom 

coding. Furthermore, SOA offers improved efficiency and significantly lower costs for 

integrating systems and implementing supply chain efficiencies, thus providing a market 

driving force. The increased importance of SOA ensures that web services will be widely 

used, affecting virtually all types of development tools and runtime middleware. Web 

services are one of important factors affecting middleware markets. 

6.3.1 Web Service Protocol Stack Industry Implementation 

WS-* Architecture provides end-to-end testing of all three layers: the service layer, 

service composition and coordination layer, business process and collaboration layer. 

The major specifications for defining business processes on the business process and 

collaboration layer, are the WS-BPEL, the WS-CDL , and BPM (Business Process Modeling) 

built on WSDL which are drawing the most interest from the industry [87]. Business 

Processes Languages allow for establishing metadata business protocol specifications. 

This metadata intends to establish a common understanding of the meaning, by 

specifying syntax and semantics of the data exchanges. These business processes are 

graphs of activities that carry out meaningful business operations. Examples are 

purchasing an airline ticket, managing inventory in a warehouse, and ordering furniture 

110 



for a home or office. Long-running transactions, such as tracking an order to fulfilment or 

supporting collaborative planning and forecasting are also business processes. 

In order to implement a business process using web service technology the flow of a 

business process to a set of web service interactions need to be mapped. Services will 

happen dynamically at runtime, heralding a new era of Business-to-Business integration 

over the Internet. B2B and B2Bi describe electronic commerce, or e-commerce, 

transactions between businesses (as opposed to between businesses and consumers). 

Businesses that engage in electronic commerce transactions are called trading partners, 

and can include retailers, manufacturers, suppliers, and marketplaces. 

6.3.2 Enabling Business Process Layer 

Companies implementing business process solutions in the context of scalability and 

enterprise wide solution sets are achieving significant competitive advantages and 

improvements in productivity. Areas of demand include financial services, customer 

relationship management, e-government, and e-business. The WS-* Architecture is seen 

as an enabling technology for a broader use of web services in B2Bi [111]. Although, the 

second-generation web services specifications using WS-* Architecture are able to 

provide comprehensive QoS support, interoperability is still one of the core requirements 

for B2Bi which use requirements cannot be met by all WS-* Architecture 

implementations [87]. 

6.4 SOA Architecture Use Case Implementation 

The SOA architecture used a case prototype implementation, consisting of web services 

of an online stock trading system, as shown in Figure 6.1. The online stock trading web 

111 



services system, covering stock-buy-sell business activities, is used in this case study 

prototype in order to further illustrate and evaluate the framework testing technique . 

The online stock trading web services system in this practical use case, consists of web 

services components, each of these web services components implement a web service 

interface and multiple simulation client web service, residing in different locations. All 

web services under group testing are implemented with the same hardware and software 

specifications. Table 6.1 lists the core functional and QoS system requirements 

specifications of the online stock trading web services according to WS-* Architecture 

specifications. 

.-~- --- -" . :)-- -.- . -. - ., - - r' .. . " ~ 1 t~ . , - :,. <. . \; - ~- .. ~ , .. , 
r~~ ·(:.~1:~:I\~: .J".:.,..;..' ~~~ t'--':'~ ., -~-:- ,- .. :. 
~,~~~ ..... ~.~~ ,,,,,,",~~\,.,,,_:""""">4J .... '.J 

. -- ~ ,~ 
, I. ,,,,- • ,.-.' ... ,' -"- .~ " , - "' . . ,~""" --~ .. 

Aumentico lion fA umentia tJOn WSDL us"", .s """etrle encryptIOn twoHO on a SJ~ seaet e 
webl .. rvice _bs.rva ws- iknow,", only tothtt ~rbti involved in an extha"le of mesu&e~ 

~ - ~M .. .ua"'" be~ a client and a .. rver . USin, sy m4'tr ic .ncr pttOn, 

WS -SKUf ity WS-secureoonv.ation b d.s on both ws-sKUrity • nd anam.r sund. rd. 
W5-Policy WS-Trust. WS-Trun its. builds onW5-St!CUI"ity, definin& an interface 
ws-Addre-~in& for a _b, s.ervocetNIt iuue~ and ",orb ,,,'itt\ security tokens . 

su~iptJon Account ws~~r .. phy IWMN2..0 USin, choreo,raphy s.ervice com.~ition. ~~nts 

Mana&:eme-nt ervice WSOt Play ~ meua,in& beNov~ it in terms of the ~non, and 
WIIb .e-rvica WS-ReliabIeMtna;;", WS-<:horo&r a phy tiTnin& of the ~&es mat thtty an cons ..... and produce lIS ~r-~ 

1.1 n pr incipIR I WS -5 t!CUI" ity Inter actions . 
service wS-Policy 

WS-Addr~in& 

ransaction WSOL u.sin& trans.action protocol, ~rtJcipants, to coordlNlte in an ome-rope-ra ble 
~v .. b se-rv ic. WS- manner between hete-ro,eneous transactions infrastructur~. 

A tornicTr a nsaction 
ws-secur ity 

8uy-S.I-Stoc:k wS-Pofocy 
web •• tva WS-Addr~in: 

!Coor dina tor .. rv ic. ws<OOl'dination M ,IIUI,U the- trllnsaction;o t state lcoordination contextl llnd eNbia 
Web 1. rvle •• a nd ~nts to r e,-in.r a s ~ rtiOpa nts. 

iActiva tion s.e rvice WS-<DOI'dination ~Nb~ activate transactions and aeate 
coordination contexts_ once a~ated. the coordJnation 
conte:xts a re pauad to thtt tr a nsaction •• rvica . 

~~istrlltion ,,'rvice WS<OOl'dination ~ N bIes a n a pplia tion to r., iner a s II Pi rticiplI nt. 

us.r Pl5f L s.rvice P8fL USin& or c:n.,nr ation web .. rv O. which .peof'_ a n ~ ble pr octs.s 

Account WSOL tNt involves mtua,. exc:NI~e.s in inter oper a bIe ~~r betwe-4!n 
Mana&..".....nt WS-S-ecur ity Ntte ...... neous infustruct\Jre-s . 
WIIb •• rvo ws-Policy 

WS-Addr~ 

Table 6.1. Online stock trading web services system components according to WS-* 
Arch itectu re 

The proposed practical use case is a web services Business-to-Business (B2B) one covering 

secure transaction characteristics with business process solutions based on SOAr The 

idea is to define adequacy criteria to test SOA web services. This specification has value 

in state-full secure e-commerce systems, especially in the B2B world, where services are 

112 



invoked dynamically according to the result of the previous invocation. The web services 

offer online stock trading web services and client web services that can access these 

functions individually. The online stock trading web services system-testing environment 

shows in Figure 6.1. 

PBMN70 
rws COL) 

Syslem componenu 
clwronmt1nt.ilccord,n 10 

ws • A'chit clur speclf l callon~ 

Proposed 
Fr~mework. 

L .... r nlng and ' 
o cl~l on 

M .. klnc 
module 

j} 
~/ Data /~I V> 0 

~ 

Figure 6.1. Online stock trading web services system-testing environment 

6.4.1 Online Stock Trading Process 

In a typical client's stock trading requests from online stock trading web services, the flow 

of information is as follows: 

1. Login: clients communicate with the authentication web service using reliable 

messaging (WS ReliableMessaging) with security mechanisms (WS-Security), and 

using addressing location (WS-Addressing) within collection of QoS policy (WS-

Policy) protocols, which requires the use of Secure Conversation. Secure 

Conversation enables a consumer and provider to establish a shared security 

113 



context when a multiple-message-exchange sequence is first initiated [39]. The 

web service verifies that the client is a valid account holder. If the condition is 

met, the authentication web service sends back an authentication confirmation, 

including a symmetric key established via username and password using HTTPS. 

Using username authentication security mechanism with a symmetric key 

signature message level will protect application integrity and confidentiality. For 

this mechanism, the client does not possess any certificate or key of its own, but 

instead sends its use rna me/password for authentication. The client shares a 

secret key with the server. The shared, symmetric key is generated at runtime 

and encrypted using the service's certificate. The web service client must provide 

a username and password in addition to specifying the certificate of the web 

service. To specify the certificate, the client must specify the location and alias to 

be used of the tltruststore" file and its password to identifying the server's 

certificate [68]. Further information about the IP address and port number to 

connect to the actual Account Management web service will be sent along with an 

issued symmetric signature key and session token that identifies the user's unique 

session. The online stock trading web services authenticate a user with a 

symmetric signature key, and use a session token to keep track of the user. 

2. User account: web service clients can communicate with the User Account 

Management web service at the IP address and port number returned in Step 1. 

For each SOAP request, the User Account Management web service will respond 

with information about the client's account, including current positions and 

buying power as well as currently open orders. In addition, the service respond 

114 



can include portfolio user activities such as Orders, Trades, and a Trade Summary. 

Once the clients account has been approved and funded, clients will be able to 

send successful request to the Stock Quote web services. 

3. Stock Quoting: web service clients can retrieve stock quotes, users can direct

access trading for options, futures, forex, stocks, bonds and funds. Before users 

receive real-time data, the user must request it from the Subscription Account 

Management service and retrieve user market data subscriptions. Once the user 

receives the subscriptions data, the user can add ticker symbols to the stock quote 

service list. Subscriptions to which they are not subscribed will be sent as delayed 

data real-time subscription if allowed by the exchange. The ticker is then added 

to the live stock quote service watch list. A web service client can send requests 

to the web service and the service responses with live stock quotes. 

4. Sending Orders: web service clients can send orders on the tickers that are 

currently the focus of users' portfolios to the Buy-Sell-Stock web service. By 

default, the Order entries are parts of user accounts, which also include the watch 

lists. Web service clients will be able to send request to the Buy-Sell-Stock web 

service to get live orders, cancel, or complete order requests. In the stock trading 

process, users may submit, "put" orders, which mean that the clients want to sell 

stock. Users "buy" orders, which mean that they want to buy stock. The Buy-Sell

Stock web service matches put requests and registers them as successful trades, 

all request messages must be accompanied by the session key provided to the 

client in Step 1. The Buy-Sell-Stock web service sends a back order or cancels 

confirmations, or execution or cancellation reports to the client. 

115 



6.4.2 Initiating the Proposed Framework 

In order to initiate the testing process of online stock trading web services under test by 

the proposed framework, the System Analysing Agent (SAA) is activated by receiving an 

Agent Communication Language (ACL) message with "start SAA" text that initiates the 

proposed framework. 

6.4.3 Initialising Testing the Implemented WS-* Architecture 

The SAA retrieves the core functional and QoS system requirements after SAA parsing the 

WSDL, PBEL, and BPMN 2.0 files. SAA performs data mining supported by machine

learning classifiers from the Learning and Decision Making module and generates the 

conventional core implementation parameters and variables of Online Stock Trading web 

services under test, such as, operating methods, agreement binding, message types, 

service description, service publication and discovery based on core functional standards 

and specifications in the WS-* Architecture. This data is required to achieve successful 

test case generation, invocations and interactions between Online Stock Trading web 

services and services consumers. The Test Execution module which uses TEAs, and the 

Monitoring module implement the test-harness for Online Stock Trading web services 

under test, set the input test oracles in the SOAP Body, and execute and monitor the 

execution of the test case systematically. Simultaneously, machine-learning classifiers 

from the Learning and Decision Making module support the framewrok modules in real

time. The TEAs carry out further instructions from AA in order to execute tests cases 

properly. 

116 



6.4.3.1 Testing WS-ReJiableMessaging, Security, and Addressing 

The Authentication web service uses reliable messaging (WS-ReliableMessaging), a 

security mechanism (WS-Security), and addressing location (WS-Addressing) when 

collecting QoS policies (WS-Policy) assertions. These QoS policies assertions make 

mapping environment rules of the Authentication web service protocols during test cases 

generation and test invocations as shown in Table 6.2. 

Authentication 
web service 

<wsp PoI i",> WS-PoI i", 
<wsrmp·DeliveryAssurance> WS-Rel iableMessaeine 
<wsp·PoI i",> 
<wsrmp:lnOrder/ > 

</wsp PoI i",> 
</ wsrmp:DelivervAssurance> 

</ wsp:PoIi",> 
</ wsrmp:RMAssertion> 
<wsam :Addressine/ > 

icy> 
nedEncryptedSupporti neTokens > 

<wsp:PoI i",> WS-Security 
<sp:UsernameToken 

sp.lncludeTokenz"hnp:/ / docs.oasis
open.ore/ ws-sx!ws
securitypOli",/ 200702/1 ncludeToken/ Alw 
aysToRecipient"> 

<wsp:PoIicy> 
<sp:WssUsernameTokenlO/> 

</wsp:PoIicy> 
</sp:UsernameToken> 

</ wsp:PoIi",> 

he web service specifies a 
poI i", assertion that spedfies 
that WS-ReliableMessllll ine 
protocol must be used when 
seodine messaees 

The web service s a 
poIi", that includes WS
SecurltyPoI l", requires that 
the token Is both slened aod 
encrypted 

Table 6.2. Authentication web service environment protocol assertions communications 
rules mapping 

The LDM module makes a decision based on training datasets according to mapping rules 

in Table 6.2, and preforms data mining by capturing the specific QoS: the WS-Security, 

WS-Addressing, and WS-Policy protocols data retrieved from the Authentication web 

services requirement specification in the metadata database, and on that basis the test -

harness environment is predicted. Taking WS-Security protocols as an example for 

making machine-learning test-harness decisions based on training datasets, WS-Security 

seeks to encapsulate the security interactions described above within a set of SOAP 

Headers. WS-Security handles credential management and defines a special 

117 



element, UsernameToken, to pass the username and password to the Authentication 

web service. WS-Security also provides a place to provide binary authentication tokens 

such as Kerberos Tickets and X.509 Certifications BinarySecurityToken [85]. Figure 6.2 

shows a section of structure of the decision tree from the WS-Security test execution 

environment training dataset. 

~ WeI! Classifier Trtt VlSUafIZtr.16:41f.30 -b'ttSJ48 (QoSWS-Rtliable~ingl 

Tree \\tW 

RelableMessa~ngReq 

=? != ? 

=? != ? =7 != ? 

= no 1= no =7 1= 7 

Figure 6.2. A section of the structure of the decision tree from training dataset for the 
WS-Security test execution environment 

Figure 6.3 shows the test-harness environment setup data which is generat ed as part of 

the input parameters and header in the SOAP Body in the test cases, which are 

systematically executed accordingly as the test case execution scenarios. 

118 



<?xml verston." \.O"?> 
< S: Env.lope xmlns:SOAP-E " . "hllp:11 sch .. mas.xmlsoap.org/ soap/ envelopf'l" .ml" •. S: "hllp: II schemas.xmlsoap.orgl soap I envelope/ "> 

<S.Header> 
<5 xmlns:"ServlceHalll .. ">STWebServlce</s> 
<5 "nlnsz"targeIHame pace">hnp://pkg/ </s> 
<. "nI"sz"endpolntUrl">htlP://localhost:8080/ l 09lnAulhenlcationWS/l 09lnAulhenlcationWS </ s> 
< 5 lmln. : "portH.me" > l09lnAulhenlcalionWSPort <Is > 
< 5 .ml., = "soapAclIonUrl">hltp://pkg/l09lnAuthenlcatlonWS/ AddloglnRequesl <Is > 
<5 xml1s:'le I easelrame no"> 2</s> 
<5 .mlns:'I ... t type '> core</s> 
<5 ~mlns :"operatlon to be tested ">addCuslomer</s> 
<5 lmlns:"'npUI lesl execution dalaType">lnt </ s> 
<5 .mlns:'test valldlty">valld </ 5> 
<5 xmln. ="output method name">GetSesslon ld </s> 
<5 .mlo,="outpul expected dalaname">retum xs:element mlnOccu~=O xs:element </s> 
< • • mI05 : "output .. lemenllype">strlng </s> 
<5 .,ml :) E~expected result">relum strfng</ s> 
<5 ","o.:'lest Input elemenl name ">custld </s> 
<5 lmlns:'QoS envlronme"t'>AnonymousRes_Msg_Exchg </s ' 
<s .mlns:"t .. t10", testExKutionlO</ s> 
<5 ,mi. :"\est cycle no"> testExeculionCycleHo</s> 

- <S·Secunty> 
. <S:Keylnlo> 

< S: secur.tyT oi<enRelerence > 
- <S:Slgnature S Id ="Signalure' > 

<S.Slgntd lnfo > 
<S :TrustSlore peerahas: ·xws -secu rlty-serv .. r" storepass: "osy" type =" JKS" location : "C: \glassnshJ \glassnsh \domalns\domaln_ l 

\conllg\cacert.s,jks" S: vlslblllly : "private"l> 
</S:SIQned lnfo > 

</S:Slgnature> 
<IS ~ Secunty Tok~nRe(erence > 

</S:Keylnfo > 
<IS:Secunty > 

Figure 6"3" A test harness setup scenario for authentication web services 

6.4.3.2 Testing Choreography (WS-CDL) 

The subscription Account Management web service uses reliable messaging (WS-

ReliableMessaging) with WS-Chorography, and uses addressing location (WS-Addressing) 

within the collection of QoS policies (WS-Policy) protocols. In WS-Chorography, protocol 

participants use a multistep process to complete a collaborative SOAP request between 

multiple-participants. Choreography is a kind of process that focuses on how participants 

coordinate their interactions through the exchange of messages, At the beginning of the 

choreography, a web services' client uses the session key returned from 

the Authentication web service to request from the Subscription Account Management 

web service to retrieve a ticker subscribing data , WS-Chorography describes interactions 

between peers without describing how those peers do their business internally, Using 

BPMN2,O the process is a graph of flow elements, which are a set of activities, events, 

gateways and sequence flow, Choreographies represent sets of tasks performed by 

119 



participants. A Process describes a sequence or flow of Activities in an organization with 

the objective of carrying out work. The BPMN2.0 processes of the Subscription Account 

Management web service are shown in Figure 6.4. 

Statt eus 
__ ---~."-o ------------------------------~ 

~ ~ ~ 

~ ___ ~.M _________________ ~ 

vo · 

c .... '" BR.~ .. tT'lc1"QljOl' 

U .. , 
Us .. U .. , U." 

Loqm Rein ..... market daU SUbsc,.phOOI '-- Add .II tICker 10 th. Slock QUOIt r--- ChOftOl11c:ilv rISk' 

subscn "court menI lubsen I0I'l ICCCK.I1l rnttt Slotk QUOte ItMCt Stock • 'INC' 

Dellytd lubKnbt datI 

Figure 6.4. The BPMN2.0 processes of the subscription account management web 
service 

The core of a choreography task is depending on the element of choreography, which 

specifies a set of peer-to-peer interactions. A package can contain one or more 

choreography assertions, one being the root for all other assertions. These assertions can 

be mapped as communications rules as shown in Table.6.3. 

120 



subscription 

Account 
M anagement 
w eb servi ce 

name="Re trieve market data subscriptions" 
ini tia ti ngPartic ipantRef= "_ Participant_ 4 "> 
<bpmn2:incoming>SequenceF low_S</bpmn2:incoming> 

<bpmn2:outgoing>SequenceFlow_13</bpmn2 :outgoing> 
<bpmn2:pa rt ici pantRef> _Participant_ 4</bpmn2 :participantRef> 
<bpmn2: parti ci pa ntRef> _Part ic i pa nt_5</bpm n2 :parti cipa ntRef> 

bpmn 2:messageF lowRef>M essageFlow_ 4</bpmn2:messageFlow 

Ref> 
bpmn2 :messageFlowRef>M essageFlow_5</bpmn2 :m essageFlow 

Ref> 

bpmn2 :choreographyTask><bpmn2:message id="Message_ l " 
itemRef="ltemDefinition_ l" name="Request User 
subscrip t ions"/ > 
<bpmn2:itemDefinit ion 
id="' temDefinition_ l " stru ctu reRef="nsl _StockTickerPrice"/ > 

<bpmn2:interface id= "_ In terfa ce_3 " 

implementationRef= "nsl :StockTickerPrice" 
name="StockTickerPrice "> 
<bpmn2:operat ion id="_ Operation_3" 

im plementationRef="nsl :getTickerPrice" 
na me= "getTickerPrice "> 
<bpm n2:inMessageRef> _M essage_ 4</bpmn2:inMessageRef> 

<bpmn2:ou Ref> mn2: 

WS-Chorogra phy 
WS
Reliabl eMessaging (I n 
principle) se rvice 
WS-Addressing 
WS-Policy 

or events, 
create a 

uence flow 
hp'twF>p n multiple 

represent decision 
ontrols and 

"'·Llu e 'flL e flow of the 

Table 6.3. Subscription account management web service environment protocol 
assertions communications rules mapping 

Using t he BPMN 2.0 process, rul es mapping to t ra nsform commun ication ru les from 

BPMN2.0 t o WS-CDL and to WSDL [5] are set (as shown in Table.6.4). 

Table 6.4. Transforming and mapping from BPMN to WS-CDl and to WSDl 

The LDM module makes a data mining decision based on t raining dat asets as in Table 6.4. 

Thus, it captures the specific core choreographies assertions of th e choreography t ask, 

121 



which specifies a set of peer-to-peer interactions, and on the basis of this the test-

harness environment is predicted and requests to the Subscription Account Management 

web service is established, then a subscribed ticker data can be retrieved automatically 

and systematically. 

6.4.3.3 Testing Web Services Atomic Transaction and WS 
Coordination 

The Buy-Sell-Stock web service uses WS-AtomicTransaction, WS-Coordination, and uses 

addressing location (WS-Addressing) in collecting QoS policies' (WS-Policy) protocols. The 

QoS policies assertions can be mapped as communications rules as shown in Table 6.5. To 

begin an atomic transaction, the web service client firstly locates a WSCoordination 

coordinator web service that supports WS-Transaction within Buy-Sell-Stock web service. 

Once located, the client sends a WS-Coordination "CreateCoordinationContext" message 

to the activation service specifying ''http://schemas.xmlsoap.org/ws/2002/08/wstx'' as its 

coordination type and will recveive an appropriate WS-Transaction context from the 

activation service. The response to the "CreateCoordinationContext" message, the 

transaction context has its CoordinationType element set to the WS-Atomic Transaction 

namespace ''http://schemas.xmlsoap.org/ws/2004/10/wsat'' and also contain a reference to 

the atomic transaction coordinator endpoint within the Buy-Sell-Stock web service (the 

WS-Coordination registration service) where participants can be enlisted. After obtaining 

a transaction context from the coordinator, the client then proceeds to interact with a 

Buy-Sell-Stock web service to accomplish its business-level work. With each invocation of 

a Buy-Sell-Stock web service, the client add requests the transaction context into a SOAP 

header block, such that the each invocation is implicitly seoped by the transaction. 

122 



Buy-Sell -Stock 
w eb service 

< portType> 
<w sdl :portType 

name="Activation CoordinatorPortType"> 

<w sdl :operation 
nam e="Crea t eCoordinationContext "> 

<w sdl:input 
message="w scoor :Cr ea teCoordinationContext"/> 
</w sdl :operation> 

</w sdl :portType> 
<portType> 

<w sd l:portType 
na m e:::: "ActivationR equesl e rPortType"> 

<w sdl :operation 
na m e="CreateCoordinationContextRespon se"> 

<w sd l:input 
message="w scoor :CreateCoordinationContextRespon 
se"/> </w sdl :operation> 

<w sdl :operation name:;"Error" > 
<w sdl:input m essage="wscoor:Error"/> 

</w sdl:operation> 
> 

<po rtType> 
<w sdl: portType 
na me="Registration CoordinatorPortType"> 
<w sd l:operation n ame~"Register" > 

<w sdl:input m essage="wscoor :Regist er" / > 
</wsdl :operation> 

</wsdl:portTy pe> 
< ! __ Registration Requester portType Declaration --> 

<w sd l:portType 
name~"Regi strationRequeste rPortType"> 

<w sdl :operation name=" RegisterResponse"> 
<w sd l: input 

m essage="wscoor:RegisterResponse li / > 
</wsdl :operation> 

<wsdl:operation name~ II E rror" > 

<w sdl :input m essage="w scoo r :Error"/> 
</wsdl :operat ion> 

A tomicTran saction 
WS-Policy 

W S-Coord in ation 
Activation Service 

W S-Coord ination 
Registration Service 

The web service specifies a policy expre ssion 
contai ning the Atomic Transa ction policy 
assertion . 

The w eb service defines a si ngle port declaring 
CreateCoordinationContext operation. 

The operation takes an input t o speci fy ing the 
details o f th e transaction to be created ; It 
returns an output conta ining th e deta il s of the 
newly created transaction context : the 
transaction id e ntifi e r. coordination type, and 
registration servi ce URl. 

The w eb serv ice defines registrati on service 

message ta rge ts th e Coordina ti o nConte)( t, and 

provides th e nam e of the protocol it w ants to 

regist er for and the Part icipa nt se rvice's 

EndpointRefe rence. 

The Regist erR esponse m essage prov ides th e 

AtomicTransaction service's 

EndpointReference. 

Table 6.S. Buy-Sell-Stock web service environment protocol assertions 
communications rules mapping 

6.4.3.4 Testing Orchestration (WS-BPEL) 

The User Account Management web service uses the BPEL web services to control the 

activities of the User Account Management web service via scopes, structured and basic 

activities, Unlike BPMN2.0, using BPEL, the SOAP request begins with business logic of 

application learning the method and parameters to call web services methods, Also, each 

activity allows for nesting of other activities. 

123 



6.5 Test Effort Measurement 

Test effort or the test cost measurement is carried out to estimate cost in time and 

machine resources for test-case generation, test-execution, and collecting and logging 

the test result. The test cost is estimated by measuring the actual time required to 

generate and execute test cases along the test steps presented as break down parts of 

the functional modules used by the proposed framework, in particular, for evaluating the 

test cost for testing ClientsLogin method of the Authentication web service. Test cost in 

time is collected for the generation test case with test input of values as outlined in Table 

6.6, including test harness setup which is described in Table 6.2, while applying the 

assertions communications rules for mapping establishing authentication web service 

invocation, this includes symmetric key information with username and password using 

HTIPS. 

6.5.1 Test Case Generation Result 

The Test Case Generation module captures and identifies the data from the results of 

data mining of the core and the QoS requirements specification of the online stock 

trading web services system by implementing the CP and ECP procedure as proposed in 

Section 5.3.1 and 5.3.2. The result of test cases generation of the online stock trading 

web services methods is shown in Table 6.6. 

124 



seNce -- ; . ., '.f;', h . 
:;.~ 'C<.:-' -.'c·, WNo11: 

Authentication web WS -ReliableMessaging. WS-Securitv ,W S- O ients Login method with 2 inputs 64 

service Addressing , and WS-Policy protocols parameter w ith 6 input values 
(2"6) - 1 

Account Management WS- BPEL GetUserPortfolio 256 
web service GetBuyingPower 

GetOpenOrders 
AddFund 

Subscription Account WS-ReliableMessaging, WS-chorography, G etsTi ckerSubscri ption 64 

Management web WS-Addressing, and WS-Policy 

service 
Buy-Sell -Stock web WS-AtomicTransaction. WS GetUveOrder 384 
service Coordination, WS-Address ing, and WS- GetCancelOrder 

Pol icy GetCompleteOrder 
PutOrder 
BuyOrder 
GetReport 

Table 6.6. Test case generation result for online stock trading web services methods 

6.5.2 Test Effort Result 

Figures 6.5 and Figures 6.6 show the results of the testing task expended by the proposed 

framework on generating test cases of the Authentication web service. In the graphs, the 

vertical axis shows the breakdown of the functional modules used by the proposed 

framework, while the horizontal axis shows the work-time consumed (total actual time in 

seconds) in the test-case generation, in the test-harness implementation, which includes 

test environment setup, and test execution cases generation. The results demonstrat ed 

testing effort (test cost) using the proposed framework. The actual results show th at the 

proposed framework required approximately 20.67 seconds for System An alysis and Test 

Cases Generating steps for all test cases for the Authentication web se rvice per t est cycle. 

125 



... c 
CII 
c: 
0 
a 
E 
0 
u 
~ .... 
0 
~ 
(I) 

E 
n:I .... 
u.. 

... 
c: 
CII 
c: 
o 
a. 
E 
o 
u 
~ .... 
o 
~ 
CII 
E 
~ 
u.. 

System Analysis Test Effort in Time (Second) 

We b service specification parsing (SAA) 11.806 

Ml WSDl stati c classification (LDMA) 3.967 

Ml WSDl imple mentat ion classification (lDMA) 1.125 

Ml Core req cove rage classification (lDMA) 0.797 

Ml QoS req coverage classification (lDMA) 0.36 

Ml Test data CP (lDMA) 0 .266 

Ml Test data ECP (lDMA) 

Ml QoS Test data ECP (lDMA) 234 

Tota l test cost 18.882 

Figure 6.5. Test cost results of testing task for system analysis step of the 
authentication web service 

Test Case Generation Effort in Time (Second) 

Test case frames generation (TCGA) 

Test execuation cycle generation (TCGAl 

Total t est cost 

0.984 

0.797 

327 

1.781 

Figure 6.6. Test cost results of testing task for test case generation step of the 
authentication web service 

6.5.3 Experimental Setup 

The use case prototype is built with Java 7.0 (Java SDK 1.7) and Maven 3.0., it is designed 

to be run on a Glassfish server Platform. The computer used to run the use case is 

configured as follows: Intel Core i3 2.4 GHz with 6GB RAM, Windows 7 Professional, 

NetBeans 7.4.0, and MySQL 5.2. The proposed framework ran against the use case 

prototype web services on the same environment. 

126 



6.5.4 Computer Resource Test Cost 

A resource usage measurement is carried out to see how much computer resource tests 

cost in the running agents of the proposed framework. The Computer Performance 

Monitoring application is used to measure CPU and memory usages aspects according to 

selected counters of the computer resources specifically to measure: Processor Usage In 

Time (CPU), Committed Bytes of In Use (Memory), and Available Bytes In Use (Memory) 

of the proposed framework computer resource usage for testing Authentication web 

service use case. The result of the machine test cost is shown in Figure 6.7. The figure 

displays CPU and memory usages of testing task for System Analysis step which shows 

the process which used by the testing agents consuming maximum 23.3% of processor 

time for a duration of 1.4 seconds and with an average of 1.5 % during the process of 

testing the Authentication web service. 

CP U ~n.d memory uSc'"ge by propCKed fram ework 

~+-------------------------------------------------~ 

O~--~~~------~----~~ 
16:27t55 16:28125 16:28:55 16:29:25 116 ,.20s3~ 

Last I 0..000 Average I 1.576 Minimum I 0.000 

Maximum I ,------23375 Duration I 1:40 

Show Color Scale Counter Instan... Par;"t Object 

1"' 1 1.0 % Committed B esln U5e Memo 

I? 
r?l 1.0 Available Bytes Memory 

Figure 6.7. CPU and memory test cost results of testing t ask for system analysis step of 
the authent ication web service 

127 



The result of the machine test cost for the Test Case Generation step is shown in Figure 

6.8 which displays CPU and memory usages of the testing task. The figure shows the 

process which is used by the testing agents consuming with maximum 50% for a duration 

of 1.4 second during the process of the test ing task of Authentication web service. 

100 

50 

o 
20:26:35 

CPU and memory usa ge by proposed fram ework 

I 

It )\ .oJ\. 

20:27:05 20:27:35 20 :28:0520:28:14 

Last I 2,546,622,464 Average I 2,582,002,033 Minimum 12,542,923.776 

Maximum I 2,630,844,416 Duration I 1:40 

Show Color Scale Counter Instan.. . Par; nt Object 

I" --- 1.0 % Committed Bytes In Use 

~C::~~~~1~'0C:::J%~prioC~5~sioriTiim:e::::::::~::~~::~~~J p 

Figure 6.8. CPU and memory test cost results of testing task for test case generation 
step of the authentication web service 

6.5.5 Test Effectiveness Measurement 

Another practical evaluation is carried out to measure the test effectiveness of the test 

approach adapted by the proposed framework . The test effectiveness measurement is 

conducted by measuring and evaluating the cost-effectiveness of the authentication web 

service test suite. The cost-effectiveness was evaluated by computing the t est suite (test 

cost) for a given coverage criterion against the defect det ection adequacy criteria. The 

tests cases were based on core functional and ODS system requirements, and the test 

oracles were based on data-type references. In the following subsections, the test 

effectiveness of proposed framework will be empirically eva luated. 

128 



6.5.5.1 Test Coverage Evaluation 

A test coverage analysis was carried out to evaluate the coverage level achieved by the 

Authentication web service method source code. This analysis was conducted in a 

very similar fashion to that of the empirical test coverage evaluation in Chapter 5. The 

test coverage analysis is implemented by generating unit test suite and instrumenting the 

code source, the JUnit unit testing tool is used to generate the Unit Test Cases (UTe) 

which includes the same combination of input test data, methods calls, and expected 

outputs which are used during test-case generation through the proposed framework. As 

mentioned earlier in Chapter 5, the CodeCover tool is used to instrument and gauge the 

coverage level achieved by a test suite for each unit test case, which provides the 

percentage of the proportion of requirements that have been satisfied for statement 

(instruction) coverage, branch coverage, line coverage, complexity coverage, and method 

coverage .Using Cartesian product (as exemplified in Section 5.3.2), every test input of a 

unit test case is paired with every test input of every other unit test case. The 

Authentication web service is composed of test cases for testing with two input 

parameters of a String. Thus, all combinations of the test inputs across all unit tests are 

obtained, 36 (6A 2)*1 of test cases are identified and generated. The JUnit tool was 

employed to execute the test suite, accordingly, by using the CodeCover tool to generate 

the coverage rate percentages covered by each unit test. The graph in Figure 6.9 

summarises the result of test suite coverage. 

129 



100% / / 

90% 

80% 

70% 

I r,./-J 
I r 

'* C1I 60% 
tI.O 

"' 50% ... 
C1I 
> 

40% 0 
u 

11 
r .... 

" L .LI j 

I I 
C1I 30% "0 
0 
u 20% 

10% 

1 
---------

J 

0% 

Unit test case 

Figure 6.9. The result of the test suite coverage 

-J..'L 
- I str 

l ove 

ran 
awe 

- Line 
cove 

---~ 

uction 
red 

ch 
red 

red 

cove 
plexity 
red 

- Met hod 
red - ----COVe 

The graph in Figure 6.9 shows that as TEA executed the 36 unit test cases one by one, the 

code coverage is improved, reaching 100% coverage, for all, i.e. for instruction, branch, 

line, complexity and method coverage percentage value. This result is consistent with 

earlier result obtained through the empirical test coverage evaluation that conducted in 

Chapter 5. Hence, the result of this test coverage evaluation demonstrates full test 

coverage criteria according to the Authentication web service system requirements. 

6.5.5.2 Defect Detection Effectiveness Measurement Evaluation 

A mutation-detection effectiveness measurement is carried out to evaluate the defect 

detection level which is achieved by the Authentication web service test suite. Figure 6.10 

summarizes in a graph the mutation-detection effectiveness of the generated test suite 

by the proposed framework. The horizontal axis signifies applied mutant types, while the 

vertical axis signifies the percentage of the test cases which detected the mutants. The 

graph illustrates that the test approach adapted by the proposed framework is capable of 

130 



finding all defects of the selective mutation types which are applied on the 

Authentication web service system requirement with 100% mutation score. 

100% 
90% 
80% 

?Ie 70% 
~ 60% 
850% 
~ 40% \I) 

~ 30% f--. 

20% 
10% 

Figure 6.10. Defect detection ratio for authentication web service test suite 

6.5.6 Cost-Effectiveness Measurement Evaluation 

The cost effectiveness measurement was calculated and plotted against the test suite size 

(test cost). The approach is adapted by calculating and plotting the defect detection 

effectiveness against the test cost. The resulting graph is presented in Figure 6.11, where 

the horizontal axis represents the test suite size or test cost, while the vertical axis 

represents the detected defect rates. The figure shows the cost-effectiveness line which 

illustrates as the test suite size increases, the number of detected defects which provide 

evidence of the defect detection adequacy criteria, this indicates that the actual test suite 

cost effectiveness at detecting defects. The result of the cost effectiveness measurement 

demonstrates that the proposed framework ;s consistent which indicates high cost-

effectiveness from the perspective of the test coverage. 

131 



<II ... 
ns ... 
c: 
0 .. 
u 
<II ... 
<II 

"C ... 
u 
<II -<II 
0 

14 

12 

10 

8 

6 

4 

K 2 

o - I I 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 

Test suit size 

Figure 6.11. Cost-effectiveness measurement of the authentication web service test 
suite 

6.6 Conclusion 

An online stock trading use case is developed and used as a prototype system by means 

of a proof-of-concept implementation for testing systems based on SOA testing using the 

proposed framework solution. The proposed framework is utilised on a larger scale as an 

approach for improving the cost-effectiveness of various testing stages. The framework is 

extended to support test oracle generation from web services business process 

XML languages, Business Process Execution Language (BPEL), and Web Services 

Choreography Description Language (WS-Choreography) using BPMN2.0 processes. The 

test cases generated from this specification will drastically reduce the time it takes to 

generate test cases and test the SOA based applications and will improve the Return of 

Investment (ROI). This specification addresses all kinds of collaborations, especially 

dynamically invoked and freely interacting different types of web services components. 

The specifications implemented are in state-full e-commerce system, in the B2B world, 

where services are invoked dynamically accord ing to the result of the previous 

132 



invocation. The evaluation demonstrated the benefits of the proposed framework as an 

automated framework with low cost associated which gives confidence to the research 

outcomes. Furthermore, the evaluation analysis showed that the proposed framework 

can support automated QoS test generation and execution with high-test coverage for 

advanced and complex SOA implementation within industry sectors. 

133 



Chapter 7 - Conclusion and Future Work 

7.1 Conclusion 

SOA has become popular and gained significant attention and support from major 

companies in computing. However, testing the implementation of systems based on SOA 

such as web services has become a major issue, as the task of testing is made more 

complex by the specific characteristics of these systems. The primary aims and 

contributions of this thesis are the design, implementation, and evaluation of a new 

automatic machine-learning framework by means of a proof-of concept implementation 

for testing system based on SOA. The work which was carried out to achieve these aims, 

as well as the results of the work, was reported in the previous chapters of this thesis. In 

this section the achievements and conclusions, which have been previously drawn, will be 

summarised. 

The research began with a thorough investigation into the testability problem of SOA 

based systems which has become a major issue, in particular the systematic validation 

and testing of SOA components. The investigation is considered a necessary 

prerequisite to support intelligent learning of SOA component testability which facilitates 

test environment knowledge acquisition and helps SOA component test engineers and 

users to obtain high testability design knowledge of functional and non-functional 

requirements so that component test criteria is easily scoped and effective testing 

accomplished. 

The thesis then conducted a thorough investigation and evaluation of the existing 

contributions presented in the literature. The investigation started by discussing and 

comparing the SOA testing frameworks and tools, sharing common aspects, and 

134 



evaluating their approaches into a means of improving the testability of systems based on 

SOA, as well as their deficiencies and shortcomings with respect to current testability 

issues which are due to specific SOA characteristics. The actual outcome of the 

investigation and evaluation from the literature has appealed to reconsider and redesign 

the current traditional and automated testing approaches, and to invent new testing 

approaches and frameworks. For that matter, the thesis has investigated a suitable 

approach with test coverage strategies in order to specify how it is implemented with 

different type of approaches, methods, and computational techniques and to provide a 

practical solution of testing these systems. Hence, the thesis highlighted a suitable and 

ideal approach to enabling an effective testability degree of SOA systems based on 

combining automated test simulators as systematic offline testing with online testing and 

monitoring for validating and verifying the core system and service's trustworthiness, 

based on protocols and standard requirements and test creation and execution coverage 

analysis. Moreover, the thesis highlighted a suitable machine-learning approach which 

can automatically derive skeletons of SOA test cases and provide support for their 

execution and result analysis. 

The identified testability issues of SOA based system have been addressed in this thesis 

by designing, developing, and implementing an automated and systematic testing and 

monitoring framework as a functional prototype and as actual deliverable for the 

industry. The framework is supported by MAS and Machine Learning techniques and 

based on knowledge discovery and data mining of protocols and standard requirements 

based on web service protocol stack and test coverage analysis. The functional prototype 

provides a practical solution to the testability problems in SOA systems by automatically 

135 



establishing testability links between the prerequisites of intelligent knowledge of SOA 

testability and system under test requirement and test coverage analysis. 

The design of the functional prototype aimed to combine existing computational 

techniques and methods for resolving the problems of SOA testability and to improve 

testing systems using top-down testing approach which creates necessary inputs and 

output required from high-level system specifications based on WS-* Architecture for 

each method in each service within SOA system ,and then invoke the method which 

enables an effective testability degree based on combining automation machine-learning 

with test cases generation and monitoring their execution and resulting analysis. 

Moreover, the aspects of the design and implementation of the functional prototype of 

the machine-learning SOA testing framework was elaborated and demonstrated together 

with all the required functional modules and functional flow processes within the 

framework. 

Furthermore, the novel framework on which it has evolved has demonstrated the 

advantages of utilising the MAS approach supported by intelligent reliability, such as 

preferences, with purely SOA principles and a standard-based approach using the web 

services protocol stack. The identified approach is considered essential to increase the 

QoS and level of deployment within both academic and industry sectors. In addition, the 

proposed framework has demonstrated a suitable level of achievement of using different 

type of methods and computational techniques to develop an automated testing case 

generation module supported by the LDM module to apply a structural machine-learned 

technique and to process knowledge discovery and data mining of the core and QoS 

requirements based specification and then automats black-box test cases generation 

136 



supported by MAS technique. In addition, the proposed framework has demonstrated 

that the machine-learned data mining method produces correct classification decisions 

based on different type training datasets which applied upon new classification cases. 

Furthermore, the framework has demonstrated a suitable level of achievement of 

developing an automated and intelligent test case-coverage analysis supported by 

machine-learning methods applied to determine if the generated test suite satisfies the 

coverage criteria according to the core and QoS requirements specification of the web 

services under test. Moreover, the novel framework has demonstrated achieving the 

processing test execution simulation tasks using MAS agents as test simulators and by 

performing offline testing with online testing and monitoring for validating and verifying 

server response analysis, and feeding the test executions results into a test database. 

The identified test execution data include the environment settings, which are required 

for implementing the test harness of the test client at the time of creation of the SOAP 

message communication dispatcher. The test simulation outputs were used by the lDM 

module in the learning, reasoning, and decision making process, throughout the test 

validation procedure within the monitoring process. The novel framework also has 

demonstrated intelligent analysis achievement of using the feedback from the lDM 

module to support the learning and decision making concept and produce effective 

quality-level testing in accordance with the expected test outputs. The proposed 

framework demonstrated that the lOM module supported by machine-learning classifiers 

can be trained and then classify the output data of test executions of the baseline test 

cases, then classify the condition of the test cases, and determine whether the test cases 

have meet the test objectives. 

137 



After detailed presentations of individual modules of the novel framework on which it 

has evolved and in order to exemplify the practical solution and prove the testability 

aspects were considered, the thesis has presented the individual modules of the 

framework together with working examples using practical SOA web services prototypes 

example implementations. The example implementation results have provided analytical 

evaluation descriptions of the effective practical evaluation study of the functions of each 

of the core modules in the proposed framework. 

Furthermore, an extensive empirical evaluation of the framework's functional prototype 

using practical examples based on the quantitative data analysis of cost-effectiveness was 

carried out, in order to evaluate and prove that significant savings in time and effort and 

can be achieved by employing the developed framework. The empirical evaluation of the 

proposed framework is conducted by comparing it to leading commercial and open 

source benchmark frameworks and tools for testing SOA systems by using key factors 

such as test cost, defect detection effectiveness and cost-effectiveness measurements. 

The test cost carried out as a measure for the test cost and to evaluate the test suite 

completeness generated by the proposed framework. The test suite completeness result 

has shown full code coverage by the test suite. This implies that the test suite generated 

by the proposed framework has a high degree of test cost-effectiveness traced to the 

requirement specification of the SOA system under test. Moreover, an internal validity 

factor for test cost evaluation was established and determined through a practical 

comparison of the proposed framework against leading and comprehensive open source 

and commercial SOA test tools. The results demonstrated reduced test costs using the 

proposed framework compared with other SOA test frameworks and tools. The actual 

138 



results showed that the proposed framework positively required the lowest amount of 

time of these SOA test tools. In addition, another internal validity factor which is the 

degree level of automation, was also established and determined through empirical 

comparison of the proposed framework against the other SOA test tools according to the 

automation validity factors. The results showed that the proposed framework could 

achieve a good degree of automation in comparison to other SOA test tools. 

Moreover, an external validity factor which could limit the ability to generalise the 

proposed framework for supporting SOA industry practices was also determined through 

an empirical comparison of the level of implementation of these factors against similar 

frameworks and tools from the literature. The results showed that the highest level of 

implementation of these characteristics was achieved by the proposed framework in 

comparison to other frameworks from the literature. This verifies respectively that the 

proposed framework implements and supports the standards and protocols that make it 

more transparent and applicable in the implementation according to industry practices. 

Additionally, another practical evaluation carried out to measure another key factor, the 

defect detection effectiveness which has showed that the test approach adapted by the 

proposed framework is efficient and capable of finding all injected mutant types with 

100% mutation score, which indicates a high degree of defect detection. A final measure 

of the cost-effectiveness of the proposed framework was computed. The empirical 

analyses of the cost-effectiveness of the proposed framework has shown that the 

proposed framework is effective at a much lower test cost than other SOA test tools. The 

evaluation demonstrated the benefits of the proposed framework as an automated 

framework, compared to the cost associated with others which gives credence to the 

139 



research outcomes. Furthermore, the evaluation analysis showed that the proposed 

framework can support automated QoS test generation and execution with high test 

coverage and defect detection levels, as compared with other frameworks from the 

literature. 

Finally, a use case study conducted experimentally to evaluation effectiveness of the 

proposed framework by practical and systematic implementation on a generic and 

complex business use case within industry sectors. The implementation involved an 

Online Stock Trading web services system which was designed and developed as a 

prototype for the SOA web services environment implementation for testing systems 

based on using the proposed framework solution. The use case environment has 

deployed the majority of the predominant web services protocol stack WS-* Architecture 

specifications such as WS-Transactions, WS-Security, WS-Chorography, WS-BPEL and 

other standards and specifications. The deployed WS-* Architecture specifications 

addressed all kind of collaborations, especially dynamically invoked and freely Interacting 

different types of web services components. The specifications implemented are in state

full e-commerce system, in the B2B world, where services are invoked dynamically 

according to the result of the previous invocation. The evaluation demonstrated the 

benefits of proposed framework as an automated framework with low cost associated 

which gives confidence to the research outcomes. Furthermore, the evaluation analysis 

showed that the proposed framework can support automated QoS test generation and 

execution with high-test coverage for advance SOA implementation within industry 

sectors. 

140 



7.2 Future Work 

In this section, suggestions are given about how the work presented in this thesis can be 

further elaborated. The future work can be classified into a three key areas of 

improvement. 

The first improvement for future work is related to the System Analysis process for 

supporting system requirements based on the web service protocol stack and test 

coverage analysis of the proposed framework, which to the fact that the current 

implementation of the system analysis stage does not support function knowledge and 

constraints based on SOA service method's functional requirement. Such constraints 

should ideally be expressed as business rules. Business rule knowledge can be derived 

from business logic e.g. (Integrity Rules-e.g. received request data validation rule, or 

Derivation Rules-e.g. price calculation rule, Reaction Rules-e.g. action rules for 

checking if flights where found otherwise skip) which can be used to evaluate the 

business rules of a SOA services. One of the most important facts about business rules is 

that they are declarative statements, they specify what has to be done and not how it is 

to be done. The framework will be extended to support test function knowledge and 

constraint generation from web services business processes XML languages, such as 

Business Process Execution language (PBEl) and Web Services Choreography Description 

Language (WS-Choreography). This can be achieved by using structural machine-learning 

technique, to process knowledge discovery of business logics which are embedded inside 

PBEl or BPMN documents of SOA systems, this can be investigated and integrated into 

the data mining process of the SOA services under test. 

141 



The second improvement for future work is related to LDM module in the learning, 

reasoning, and decision-making process, throughout the test cases generation. The fact 

that the current implementation of the machine learning classification method of 

generation test oracles cannot learn what input or output properties are potentially of 

interest as true oracles, but only which ones matter once they are defined as primitive 

type values provided by programming languages which are produced by the ECP method 

for partitions of choices of the input-output of test data. In other words, without some 

additional guidance, the learning algorithm is unlikely to find the precise conditions under 

which test oracles in the test cases. This guidance comes in the form of choices or 

constraints, as acquired by CP and ECP methods from business logics. As previously 

described in the first improvement, once the initial knowledge from data mining of the 

business logics are transformed into abstract test oracles in the generated test cases. 

The third improvement is related to the second stage of the SOA testing process in the 

proposed framework, as the current implementation of the test case generation stage 

does not support setting test cases update rules. These rules are in turn analysed using 

LDM module in the learning, reasoning, and decision-making to determine potential 

improvements of the test suite e.g. redundant test cases, need for additional test cases 

as well as improvements of the CP and ECP methods, e.g. need to add a category or 

choices. The result from the analysis will evaluate the effectiveness of the test suites and 

CP and ECP methods specifications created and trained by a LDM module classifier. The 

machine learning iterative process can improve the CP and ECP methods specifications to 

a level that is equivalent to what an expert system would likely produce improvement 

cycles. The resulting test suites will be more effective in terms of defect detection. 

142 



Finally, the fourth suggested improvement for future work is related to the general SOA 

testing process of the proposed framework. The framework will be extended to support 

Reverse Engineering Modeling of the specific SOA system under test. In practice, the 

system specification is used to identify the test cases. In this case, the test specification 

has to be either reverse-engineered or created from high-level system specifications, for 

example the WSDL document. To enable reverse engineering to learn and conclude the 

SOA system under test specifications, the output domain of the generated test suite of 

the SOA system has to thoroughly exercise a draft model of the SOA system under test 

according to various core functional, QoS test environments and coverage metrics form 

the test suite to produce a contract of SOA services specification, e.g. WSDL document. 

The resulting WSDL document is fed then into framework testing process which 

automatically generates a test suite. The generated test suite thoroughly exercises the 

test model by comparing the outputs produced by the SOA system under test and the 

model on the tests in the test suite. The deviations in the behaviour of the model from 

the SOA services specification under test are readily detectable and can be used to guide 

the user in refining the model to ensure that it correctly captures the behaviour of the 

SOA system. 

143 



References 

[1] Abbas Tarhini, Hacene Fouchal, and Nashat Mansour. 2005. A simple approach for testing web 
service based applications. In Proceedings of the 5th international conference on Innovative 
Internet Community Systems (IICS'05), Alain Sui, Marc Sui, Thomas Bohme, and Herwig Unger 
(Eds.). Springer-Verlag, Berlin, Heidelberg, 134-146. 001=10.1007/11749776_12 
http://dx.doLorg/l0.1007/11749776_12. 

[2] Aberdeen group: SOA and Web Services Testing: How Different Can It Be?, August 2007. 
Retrieved from: http://www.aberdeen.com/Aberdeen-Library/4117 /RA-soa-web
services.aspx. 

[3] Active vs. Passive Web Performance Monitoring. Retrieved from: https:/lwww.dotcom
monitor.com/release-active-vs-passive-web-performance-monitoring.aspx. 

[4] Agitar:http://www.agitar.com. 
[5] Alahmari,S., A design framework for identifying optimum services using choreography and 

model transformation.2012).University of Southampton, Faculty of Applied Science, Doctoral 
Thesis. 

[6] Applabs.com :Approach to Testing SOA Applications. 
App_WhitePaper_Approach_to_SOA_lv04, Available from 
: http://www.docstoc.com/docs/ 4248918/ Approach-to-Testing-SOA-Appl ications,2007. 

[7] Architecture Maturity Models, 2006, TOGAF- the Open Group, 
http://pubs.opengroup.org/architecture/togaf8doc/arch/chap27.html. 

[8] Ariba, International Business Machines Corporation, Microsoft. Retrieved from: 

http://www.w3.org/TR/wsdl. 
[9] Bartolini, A.Bertolino, S.Elbaum and E.Marchetti, "Whitening SOA Testing," Proc. 7th joint 

meeting of the European Software Engineering. 
[10] Bertolino, A. 2009. Approaches to testing service-oriented software systems. In Proceedings 

of the 1st international Workshop on Quality of Service-Oriented Software Systems 
(Amsterdam, The Netherlands, August 24-28, 2009). QUASOSS '09. ACM, New York, NY 
Bertolino, A. 2009. Approaches to testing service-oriented software systems. In Proceedings 
of the 1st international Workshop on Quality of Service-Oriented Software Systems 
(Amsterdam, The Netherlands, August 24-28, 2009). QUASOSS '09. ACM, New York, NY. 

[11] Bertolino, A., l. Frantzen, A. Polini and J. Tretmans, Audition of web services for testing 
conformance to open specified protocols, in: R. Reussner, J. Stafford and C. Szyperski, 
editors, Architecting Systems with Trustworthy Components, number 3938 in LNCS (2006).M. 
Young, The Technical Writer's Handbook: Univ. Science, 1989. 

[12] Bertolino, A.Angelis, G. DeFrantzen, l.Polini, A.SuzukL, K, Model-Based Generation of 
Testbeds for Web Services, Testing of Software and Communicating Systems: 20th IFIP TC 
6/WG 6.1 International Conference, TestCom 2008 8th International Workshop, FATES 2008 
Tokyo, Japan, June 10-13, 2008 Proceedings. 

[13] Bloomberg,J., "Principles of SOAN. Retrieved 
from:http://adtmag.com/articles/2003/02/28/principles-of-soa.aspx,110Smedia.com 

02/28/2003. 
[14] Borland SilkPerformer SOA edition:http://www.borland.com/us/products/silk/silkperformer. 
[15] Bozkurt, M., Harman, M. and Hassoun, Y. (2013), Testing and verification in service- oriented 

architecture: a survey. Softw. Test. Verif. Reliab., 23: 261-313. doi: 10.1002/stvr.1470. 
[16] Briand, l.C.;, itA Critical Analysis of Empirical Research in Software Testing," Empirical 

Software Engineering and Measurement, 2007. ESEM 2007. First International Symposium 
on, vol., no., pp.1-8, 20-21 Sept. 2007. 

144 



[17] Bucchiarone, A.,Melgratti, H., Severoni, F.: Testing service composition. In Proceedings of the 
Sth Argentine Symposium on Software Engineering (ASSE'07). (2007). 

[lS] Canfora, G.; Di Penta, M.; , "Testing services and service-centric systems: challenges and 
opportunities, " IT Professional, voLS, no.2, pp.10-17, March-April 2006 doi: 
10.1109/M ITP .2006.51. 

[19] Cesare Bartolini, Antonia Bertolino, Eda Marchetti, Andrea Polini, "WS-TAXI: A WSDL-based 
Testing Tool for Web Services," Software Testing, Verification, and Validation, 200S 

International Conference on, pp. 326-335, 2009 International Conference on Software 
Testing Verification and Validation, 2009. 

[20] Chan, W. K., Cheung, S. C., and Leung, K. R. 2005. Towards a Metamorphic Testing 
Methodology for Service-Oriented Software Applications. In Proceedings of the Fifth 
international Conference on Quality Software (September 19 - 20, 2005). QSIC. IEEE 
Computer Society, Washington, DC, 470-476. 001= http://dx.doLorg/10.1109/QSIC.2005.67. 

[21] Chatterjee, J., Testability, StickyMinds.com. Retrieved 
from:http://www.stickyminds.com/sitewide.asp?Objectld=SO77&Function=edetail&ObjectTy 
pe=ART, 2010. 

[22] Chu, M., Murphy, c., and Kaiser, G. 200S. Distributed In Vivo Testing of Software 
Applications. In Proceedings of the 2008 international Conference on Software Testing, 
Verification, and Validation (April 09 - 11, 200S). ICST. IEEE Computer Society, Washington, 
DC, 509-512. 001= http://dx.doLorg/10.1109/ICST.2008.13. 

[23] CodeCover: http://codecover.org/. 
[24] Constant Field Values, Java 2 Platform Standard Edition 5.0 API Specification. Retrieved 

from:http://download.oracle.com/javase/1.5.0/docs/api/constantvalues.html. 
[25] Demilio, R.A., Guind.S, king, K.N., Mccrackn, W,.M., And Offutt, A, J.198S. An extended 

overview of the Mothra software testing environment. In Proceedings of the 2
nd 

Workshop 
on Software Testing, Verification, and Analysis (Banff, Alberta, Canada, July).IEEE Computer 

Society Press, Los Alamitos, Calif., 142-151. 
[26] Developing Cost-effective Model-based Techniques for GUI Testing, Xie, Q., University of 

Maryland, College Park, ISBN 9780542961168, 
http://books.google.ie/books?id=t2wkmdNGWQ4C, 2006, University of Maryland, College 

Park. 
[27] 000 Towards Software", Wipro IT Business. Retrieved from: 

http://www.wipro.com/wiproforms/thankyou.aspx?ReturnUrl=/datadocs/whitepaper/wipro 

_soa_testing.pdf,2009. 
[2S] Dung Cao, Richard Castanet, Patrick Felix, Kevin Chiew. An Approach to Automated Runtime 
[29] Eclipse documentation Archived Release, from: 

http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.jst.ws.doc.user%2Fconcepts%2F 

cws.html 
[30] EI Yamany, H.F.; Capretz, M.A.M.; Capretz, L.F.; , "A Multi-Agent Framework for Testing 

Distributed Systems," Computer Software and Applications Conference, 2006. COMPSAC '06. 
30th Annual International, voL2, no., pp.151-156, 17-21 Sept. 2006 
doi: 10.1109/COMPSAC.2006.98 
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4020160&isnumber=4020 
l1S. 

[31] Eler, M.M.; Delamaro, M.E.; Masiero, P.C., "Using structural testing information to support 
monitoring activities," Service Oriented System Engineering (SOSE), 2011 IEEE 6th 
International Symposium on, voL, no., pp.25,30, 12-14 Dec. 2011 doi: 
10.1109/S0SE.2011.61390S9. 

[32] Erl,T.,"What Is SOA". Retrieved from:http://www.whatissoa.com/p9.php.SOA Systems Inc, 

2009. 

145 



[33] Extended Web Services Standards Business Process Automation, 
http://www.eti.pg.gda.pl/katedry/kask/dydaktyka/Automatyzacja_procesow_biznesowych/ 

APB2011/wWSStackAPB.pdf. 
[34] Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai, and Sanjiva Weerawarana. 2003. 

The next step in Web services. Commun. ACM 46, 10 (October 2003), 29-34. 
001=10.1145/944217 .944234 http://doLacm.org/l0.1145/944217.944234. 

[35] Freedman, R.S,"Testability of software components," Software Engineering, IEEE 
Transactions on, vol.17, no.6, pp.553-564.1991 
doi: 10.1109/32.87281. 

[36] G. Canfora and M. Oi Penta. SOA: testing and self-checking. In Proceedings of the 
International Workshop on Web Services: Modeling and Testing (WSMaTe2006), pages 3-12. 
Palermo, Italy, 2006. 

[37] Gartner, Inc http://www.gartner.com/technology/home.jsp. 
[38] Gerardo Canfora and Massimiliano Penta. 2009. Service-Oriented Architectures Testing: A 

Survey. In Software Engineering, Andrea Lucia and Filomena Ferrucci (Eds.). Lecture Notes In 
Computer Science, Vol. 5413. Springer-Verlag, Berlin, Heidelberg. 

[39] GlassFish.Metro Security Mechanism Configuration Options. Retrieved from: 
https://metro.java.net/2.0/guide/Security-Mechanism_Configuration_Options.html. 

[40] Glenford 1 Myers: The art of software testing (2.ed.). Wiley 2004, isbn 978-0-471-46912-4, 
pp. I-XV, 1-234. 

[41] Greiler.M, Gross.H-G, Naser.K Runtime Integration and Testing for Highly Oynamic Service 
Oriented ICT Solutions-An Industry Challenges Report. 

[42] Guilan Oai, Xiaoying Bai, Chongchong Zhao, "A Framework for Model Checking Web Service 
Compositions Based on BPEL4WS," ice be, pp.165-172, IEEE International Conference on e
Business Engineering (lCEBE'07), 2007. 

[43] Harris. T, SOA Test Methodology,Torry Harris Business Solutions. Retrieved from: 

http://www.thbs.com/white_papers.html.2007. 
[44] Heather Kreger. Web Services Conceptual Architecture (WSCA 1.0). 2001. Retrieved from: 

http://www.cs.uoi.gr/ .... pitoura/courses/ds04~r/webt.pdf. 
[45] Hong Zhu, "A Framework for Service-Oriented Testing of Web Services, " compsac, vol. 2, 

pp.145-150, 30th Annual International Computer Software and Applications Conference 
(COMPSAC'06), 2006 Oxford Booker University .Oxford.UK, 2008. 

[46] HP Service Test :http://www8.hp.com/us/en/software-
sol utions/ software .html ?com pURI= 1173 796#. UPrnKCfZbuY. 

http://www.zapthink.com/2005/08/24/what-belongs-in-a-service-contract/. 
[47] IBM Corporation, Web services overview. 2005. Retrieved from: 

http://publib.boulder.ibm.com/infocenter/rtnlhelp/v6rOmO/index.jsp?topic=%2Fcom.ibm.et 
00Is.webservice.doc%2Fconcepts%2Fcws.html. 

[48] In~ki, K.; Ari, I.; Sozer, H., "A Survey of Software Testing in the Cloud," Software Security and 
Reliability Companion (SERE-C), 2012 IEEE Sixth International Conference on, vol., no., 
pp.18,23, 20-22 June 2012 doi: 10.1109/SERE-C.2012.32. 

[49] lGao. Component Testability and Component Testing Challenges. In International Workshop 
on Component-Based Software Engineering. 2000. 

[50] jBlitz:http://www.clanproductions.com/jblitz/. 
[51] Johannes Ryser, Stefan Berner, and Martin Glinz. 1999. On the State of the Art in 

Requirements-Based Validation and Test Of software. Technical Report. University of Zurich. 
[52) Jones,S, "Toward an acceptable definition of service [service-oriented 

architecture]," Software, IEEE, vol.22, no.3, pp. 87- 93,2005 
doi: 10.1109/MS.2005.80. 

[53] Jose Garcfa-Fanjul, Marcos Palacios-Gutierrez, Javier Tuya-Gonzalez, and Claudio de la Riva
Alvarez: Methods for testing Web Service Compositions, Experiences and Advances in 

146 



Software Quality, CEPIS, Volume: 2009, Issue V, 2009. 

[54] JUnit:http://www.junit.org. 
[55] K. ZieliEski, T. Szmuc: Software engineering: evolution and emerging technologies, 

Amsterdam.IOS Press, (2005). 
[56] K.Adamopoulos, M. Harman, and R. M. Hierons, "How to overcome the equivalent mutant 

problem and achieve tailored selective mutation using co-evolution, " in Genetic and 
Evolutionary Computation Conference (GECCO), 2004, pp. 1338-1349. 

[57] Kajko-Mattsson, M.; Lewis, G.A.; Smith, D.B.; , "A Framework for Roles for Development, 
Evolution and Maintenance of SOA-Based Systems," Systems Development in SOA 
Environments, 2007. SDSOA '07: ICSE Workshops 2007. International Workshop on, voL, no., 
pp.7-7, 20-26 May 2007 doi: 10.1109/SDSOA.2007.1. 

[58] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison Wesley, 
Reading, Mass., 1998. 

[59] Lennon, R. 2005. Optimisation of service provision for composite web services. In Companion 
To the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, 
Languages, and Applications (San Diego, CA, USA, October 16-20, 2005). OOPSLA '05. ACM, 
New York, NY, 216-17.DOI=http://doLacm.org/10.1145/1094855.1094942. 

[60] LlSA:http://www.itko.com/. 
[61] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H. 

Witten (2009);The WEKA Data Mining Software: An Update; SIGKDD Explorations, Volume 

11, Issue 1. 
[62] Michael Papazoglou. Web Services: Principles and Technology. Prentice Hall, 1 edition, 

September 2007. 
[63] Microsoft Application Architecture Guide, 2nd Edition. Retrieved from: 

http://msdn.microsoft.com/ en-us/Ii bra ry / ee658098.aspx#WhatlsSoftwa reArchitecture. 
[64] Mike P. Papazoglou, Willem-Jan van den Heuvel: Service oriented architectures: approaches, 

technologies and research issues. VLDB J. 16(3): 389-415 (2007). 
[65] Mousavi,M.,Equivalence Class Testing, Eindhoven University of Technology,The Netherlands, 

pp,2013,retrieved from :http://www.win.tue.nl/ ... mousavi/2IW65/2.pdf. 
[66] Nguyen, C.D., Marchetto, A., Tonella, P., "Challenges in Audit Testing of Web Services," 

Software Testing, Verification and Validation Workshops (ICSTW), 2011. 
[67] Offutt, Xu: Generating Test Cases for Web Services Using Data Perturbation. Fairfax, VA. TAV

WEB Proceedings/ACM SIGSOFT SEN Pl Volume 29 Number 5,2004. 
[68] Oracle Corporation. HTTP Binding Component User's Guide. 2010.Retrieved from: 

http://docs.oracle.com/cd/E19182-01/821-0830/gggsrv/index.html. 
[69] Oracle, April 2012, The Java EE 6 Tutorial. Retrieved from: 

http://docs.oracle.com/javaee/6/tutorial/doc/giqsx.htm I. 
[70] P. G. Frankl and O. lakounenko, "Further Empirical Studies oftest Effectiveness, " Proc. 6th 

ACM SIGSOFT International Symposium on Foundations of Software Engineering, Orlando 
(FL, USA), pp. 153-162, November 1-5, 1998. 

[71] P.Taranti, C.J.P.D. Lucena, and R. Choren, "An Industry Use Case: Testing SOA Systems with 
MAS Simulators," in Proc. MALLOW, 2009. 

[72] Papazoglou, M., 2005."Extending the service-oriented architecture,"Open Access 
publications from Tilburg University urn:nbn:nl:ui:12-3969166, Tilburg University. 

[73] Parasoft SOAtest:http://parasoft.com. 
[74] Perry, William E., Effective Methods for Software Testing, Wiley- QED Information Sciences, 

Inc., John Wiley & Sons, Inc., New York, NY, 1995,ISBN #0-471-06097-
principle,.http://trese.cs.utwente.nl/taosad/separation_oCconcerns.htm. 

[75] PushToTest TESTMAKER: http://www.pushtotest.com. 
[76] Qusay H. Mahmoud, Service-Oriented Architecture (SOA) and Web Services: The Road to 

Enterprise Application Integration (EAI), Oracle, April 2005. Retrieved from 

147 



:http://java.sun.com/developer/technicaIArticies/WebServices/soa/. 

[77] RJeevarathinam and A.S. Thanamani, "Test Case Generation using Mutation Operators and 
Fault Classification," presented at CoRR, 2010. 

[7S] Raimund Kirner and Susanne Kandl. Test Coverage Analysis and Preservation for 
Requirements-Based Testing of Safety-Critical Systems. 200S. Retrieved from:http://ercim
news.ercim.org/content/view/456/699/. 

[79] Rakesh Kumar, Deepali Gupta, Metrics and Heuristics in Software Engineering, GJCST (2010) 
Volume 10 Issue 15: 23-26. Category: 0.2.8, 0.4.8, 1.2.8 

[SO] ROCHA, Camila Ribeiro and MARTINS, Eliane. A method for model based test harness 
generation for component testing. J. Braz. Compo Soc. [online]. 200S, vol.14, n.1, pp. 7-23. 
ISSN 0104-6500. http://dx.doi.org/10.1007 /BF03192549. 

[S1] S. Paydar and M. Kahani, "An Agent-Based Framework for Automated Testing of Web-Based 
Systems,"Journal of Software Engineering and Applications, Vol. 4 No.2, 2011, pp. S6-94. 
doi: 10.4236/jsea.2011.42010. 

[S2] Schahram Dustdar, Stephan Haslinger, Object-Oriented and Internet-Based Technologies, 
Chapter Title: Testing of Service-Oriented Architectures-A Practical Approach, PP 55-65, 
2004. 

[83] Schieferdecker, Stepien: Automated Testing of XML/SOAP based Web Services. Retrieved 
from:: http://www.site.uottawa.ca/ ... berna rd/Testi ngWebServices.pdf. 

[84] Schmelzer,R. What Belongs in a Service Contract. 2005. Retrieved from: 

[85] Seely,S.,Microsoft. Understanding WS-Security. 2002.Retrieved 
from: http://msdn.microsoft.com/ en-us/libra ry /ms977327 .aspx#understw _to pic3. 

[S6] Service-Oriented Architecture, Wikipedia. Retrieved from: 
http:// en. wi kipedi a .org/wiki/Service-oriented_ arch itecture,2010. 

[S7] Services Oriented Architecture (SOA) Infrastructure Market Shares, Market Strategy, and 
Market Forecasts.Retrieved from: 

ftp://ftp.software.ibm.com/software/ soa/pdf/Service_ Oriented_Arch itecture_SOA_1 nfrastru 
cture_all.pdf. 

[SS) Sharma, A.; Hellmann, T.D.; Maurer, F., "Testing of web services - A systematic mapping," 
Services (SERVICES), 2012 IEEE Eighth World Congress on , voL, no., pp.346,352, 24-29 June 
2012 doi: 10.1109/SERVICES.2012.21. 

[89] SOA Alliance, Group of SOA Practitioners, SOA Blueprint- Reference Architecture V1.1, , 
Available 

from: http://www.soablueprint.com/wh itepapers/SOAReferenceArch itectu reReformatted. pd 
f,2006. 

[90] SOA fundamentals in a nutshell: Prepare to become an IBM Certified SOA Associate: 
Mohamed I. Mabrouk. 

[91] SoapUI-WebService:Testing: http://www.soapuLorg. 
[92] Stefan Jungmayr: Improving testability of object-oriented systems.ISBN 3-S9825-781-9. 

Retrieved from: http://www.dissertation.de/index.php3?active_document=/FDP/sj929.pdf. 
[93] Tekinerdogan,B .Separation of concerns. Retrieved from: 
[94] Text classification and Naive Bayes, Cambridge University Pres. 200S.Retrieved from: 

http:// n I p.sta nfo rd .ed u/I R -boo k/htm I/htm led iti 0 n/text -classification-a nd-na ive-bayes-
1.html. 

[95] Tsai, W. T., Gao, J., Wei, X., and Chen, Y. 2006. Testability of Software in Service-Oriented 
Architecture. In Proceedings of the 30th Annual international Computer Software and 
Applications Conference, Volume 02 (September 17-21, 2006). COMPSAC. IEEE Computer 

Society, Washington, DC, USA. 
[96] Tsai, W.T.; Xinyu Zhou; Yinong Chen; Xiaoying 8ai; , "On Testing and Evaluating Service

Oriented Software," Computer, vol.41, no.S, pp.40-46, Aug. 200S doi: 

10.1109/MC.2ooS.304. 

14S 



[97) Using machine learning to refine Category-Partition test specifications and test suites 
Original Research Article Information and Software Technology, Volume 51, Issue 11, 
November 2009, Pages 1551-15G4 Lionel C. Briand, Yvan Labiche, Zaheer Bawar and Nadia 

Traldi Spido. 
[98) Valecha ,G. ,Testability:Test Before Testing!, CodeProject, 2011. Retrieved from: 

http://www.codeproject.com/Articles/2 75631/T esta bility-Test -before-Testi ng. 
[99] Vasilios S. Lazarou, Spyridon K. Gardikiotis and Nicos Malevris (2008). Agent Systems in 

Software Engineering, Tools in Artificial Intelligence, Paula Fritzsche (Ed.), ISBN: 978-953-
7619-03-9, InTech, Austria.Retrieved from: 
http://sciyo.com/articies/show/titie/agencsystems_in_software_engineering. 

[100) Verification for Timed Systems: Applications to Web Services. Journal of Software,20n, 7 
(G), pp.1338-1350. 

[101) Vmware, vFabric 5 Documentation Center, Data Types, Retrieved from: 
http://pubs.vmware.com/vfabric5/index.jsp?topic=/com.vmware.vfabric.sqlfire.l.0/referenc 
e/language_ref/ref-data-types.html. 

[102) Voas, J.M.; Miller, K.W., "Improving the software development process using testability 
research," Software Reliability Engineering, 1992. Proceedings., Third International 
Symposium on , voL, no., pp.1l4,121, 7-10 Oct 1992 .doi: 10.ll09/ISSRE.1992.285852. 

[103] W. T. Tsai et al. Scenario-based web service testing with distributed agents. IEICE 
Transaction on Information and System, E86-D(10):213D-2144, 2003. 

[104] Wang, Hongbing, et al. "Web services: problems and future directions." Web Semantics: 
Science, Services and Agents on the World Wide Web 1.3 (2004): 309-320. 

[105] Web Services Addressing 1.0 - Core, M. Gudgin, M. Hadley, and T. Rogers, Editors. World 
Wide Web Consortium, 9 May 2006. Available at http://www.w3.org/TR/ws-addr-core. 

[lOG] Web Services Architecture, W3C Working Draft .2002.(Massachusetts Institute of 
Technology, Institut National de Recherche en Informatique et en Automatique, Keio 
University).Retrieved from: http://www.w3.org/TR/2002/WD-ws-arch-20021114/. 

[107) Website Load Test - JBlitz Professional 5.1, Clan Productions Limited, Retrieved 
from:http://www.clanproductions.com/jblitz/.2010. 

(108) Wei-Tek Tsai, Yinong Chen, and Ray Paul. 2005. Specification-Based Verification and 
Validation of Web Services and Service-Oriented Operating Systems. In Proceedings of the 
10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems 
(WORDS 'OS). IEEE Computer Society, Washington, DC, USA. 

[109] What is nCN-3?, ETSI CTI, available from: http://www.ttcn-3.org/WhatisT3.htm.2009. 
[110] Wieland, Matthias, et al. "Institut fUr Architektur von Anwendungssystemen."Retrieved 

from: ftp://ftp.informatik.uni-stuttgart.de/pub/libra ry /ncstrl.ustuttgart_fi/TR-2008-09/TR-
2008-09.pdf. 

[111) Wirtz, Guido. "Distributed Systems Group." (2009).Retrieved from: 
https:/lopus4mig.kobv.de/opus4-bamberg/files/249/BBWIAI87Schwalbfinal2.pdf 

[112) Ws-soa granularity, 2012. Retrieved from: 
http://www.ibm.com/developerworks/webservices/library/ws-soa-granularity/#resources. 

[113] Xiang Li, Jinpeng Huai, Xudong Liu, Jin Zeng, Zicheng Huang, "SOArMetrics: A Toolkit for 
Testing and Evaluating SOA Middleware, " services, pp.1G3-170, 2009 Congress on Services 
1,2009. 

[114] Xiaoying Bai; Dezheng Xu; Guilan Dai; Wei-Tek Tsai; Yinong Chen; , "Dynamic Reconfigurable 
Testing of Service-Oriented Architecture, " Computer Software and Applications 
Conference, 2007. COMPSAC 2007. 31st Annual International, voJ.1, no., pp.3G8-378, 24-27 

July 2007 
doi: 10.1109/COMPSAC.2007.106. 

[l1S] Xiaoying Bai; Guilan Dai; Dezheng Xu; Wei-Tek Tsai;, "A multi-agent based framework for 
collaborative testing on Web services, " Software Technologies for Future Embedded and 

149 



Ubiquitous Systems, 2006 and the 2006 Second International Workshop on Collaborative 
Computing, Integration, and Assurance. SEUS 2006/WCCIA 2006. The Fourth IEEE 
Workshop on, vol., no., pp.6 pp., 27-28 April 2006 doi: 10.1109/SEUS-WCCIA.2006.7. 

[116] XSD restriction/Fascets, W3Schools.com. Retrieved 
from: http://www.w3schools.com/schema_facets.asp. 

[117J Y.Prasanth , V.Sarika , D.Santhosh Anuhya , Y.Vineela ,A. Ajay Babu . "Framework for 

Testing Web Services Through SOA (Service Oriented Architecture)". International Journal 
of Engineering Trends and Technology (IJETT). V3(2):103-109 Mar-Apr 2012. ISSN:2231-

5381 
[118] Ying-Dar Lina, Chi-Heng Choua, Yuan-Cheng Lai, Tse-Yau Huang, Simon Chung, Jui-Tsun 

Hunga and Frank C. Line, "Test coverage optimization for large code problems," Journal of 
Systems and Software archive, Vol. 85,No. 1,pp.16-27, 2011. 

[119] Yoon, H., Ji, E., and Choi, B. 2008. Building test steps for SOA service orchestration in web 
service testing tools. In Proceedings of the 2nd international Conference on Ubiquitous 
information Management and Communication (Suwon, Korea, January 31 - February 01, 
200S). ICUIMC 'OS. ACM, New York. 

[120] Youngkon Lee, "2-Layered SOA Test Framework Based on Event-Simulating Proxy, It ncm, 
pp.1479-1484, 2009 Fifth International Joint Conference on INC, IMS and IDC, 2009. 

[121J Yu Qi, David Kung and Eric Wong, "An Agent-based Data-Flow Testing Approach for Web 
Applications," Journal of Information and Software Technology, July 2006. 

[122J Vue Jia; Harman, M.; "An Analysis and Survey of the Development of Mutation Testing 
It Software Engineering, IEEE Transactions on, vo1.37, no.5, pp.649-678, Sept.-Oct. 2011. 

[123] Yunus, Mallal :SOA Testing using Black, White and Gray Box Techniques. Crosscheck 
Networks. 

[124] Yunus,M., Mallal,R., "Watch your SOA Testing Blind Spots", Crosscheck Networks. Retrieved 
from:http://www.softwaremag.com/pdfs/whitepapers/Crosscheck_wp2.pdf?CFID=306793 
47&CFTOKEN=35280601. 

150 


