An Automatic Machine-Learning
Framework for Testing Service-

Oriented Architecture

Osama Altalabani

A thesis submitted in partial fulfillment of the requirements of
Kingston University for the degree of Doctor of Philosophy
Faculty of Science, Engineering and Computing
Kingston University

April 2014

Abstract

Today, Service Oriented Architecture (SOA) systems such as web services have the
advantage of offering defined protocol and standard requirement specifications by
means of a formal contract between the service requestor and the service provider, for
example, the WSDL (Web Services Description Language) , PBEL (Business Process
Execution Language), and BPMN (Business Process Model and Notation). This gives a high
degree of flexibility to the design, development, Information Technology (IT)
infrastructure implementation, and promise a world where computing resources work
transparently and efficiently. Furthermore, the rich interface standards and specifications
of SOA web services (collectively referred to as the WS-* Architecture) enable service
providers and consumers to solve important problems, as these interfaces enable the
development of interoperable computing environments that incorporate end-to-end
security, reliability and transaction support, thus, promoting existing IT infrastructure
investments.

However, many of the benefits of SOA become challenges for testing approaches and
frameworks due to their specific design and implementation characteristics, which cause
many testability problems. Thus, a number of testing approaches and frameworks have
been proposed in the literature to address various aspects of SOA testability. However,
most of these approaches and frameworks are based on intuition and not carried out in a
systematic manner that is based on the standards and specifications of SOA. Generally,
they lack sophisticated and automated testing, which provide data mining and knowledge
discovery in accordance with the system based on SOA requirements, which

consequently would provide better testability, deeper intelligence and prudence.

Thus, this thesis proposes an automated and systematic testing framework based on user
requirements, both functional and non-functional, with support of machine-learning
techniques for intelligent reliability, real-time monitoring, SOA protocols and standard
requirements coverage analysis to improve the testability of SOA-based systems. This
thesis addresses the development, implementation, and evaluation of the proposed
framewprk, by means of a proof-of-concept prototype for testing SOA systems based on
the web services protocol stack specifications. The framework extends to intelligent
analysis of SOA web service specifications and the generation of test cases based on static

test analysis using machine-learning support.

Table of Contents

ADSEIACE.c.vuvvcvsvesiesversssssssssesessasssssssssssssssssssnssesssesesesssesassssssasasasasssssesassssssnssessss senssesessssssasnsssnsssssssssssnes i
TADIE Of CONLENES..cuuvvvrrnnsrisiissssisssisscssessssssssssssssnssssssssssessassassassssassssssssssessssssssssossossrassssssssosssnes iii
LISt Of FIQUIS.uececvsritseriesimsinsinsras e ssesessessassas s ssssssssssssersess s s ssesassssensasssss s ssssessssssssssssssas ssssosssson v
L e [-3 vii
ACKNOWIBAGMENT cuuaceetiristctrirrisesusiesnacrssessniie s ssssts s sssssssesssssassssssssssssnsassssesssssssessssns ssssrassss viii
Chapter 1 — Introduction and MOLIVALION..........cceuvverververiissssisesiirssisssnesissssisisnessssssienes 1
.1 INETOQUCLION cuveverveerenerereenseecssesssseessssonsessnsesssesssesssesssessssesssasssssessesssussnsessssersaassnnessessnses 1
1.2 CRANENGES ...vcerrrerisraisinirinissiseisississeecsstisesssssssssssissessssseessssansossossstssssssssressissssssassssssssans 3
1.3 Research QUEStioNS AN ODJECLIVEScccvieivurrererresernssrneessieessseeessessersnsessssesssanesssesesses 5
1.4 ReSCAICH CONIIDULIONvveeeeneeeerereerrursscivenssneersasssssssesssssrssescsssnsssssssssssssesssesssssssssasesnses 6
1.5 SErUCLUTe Of the TRESIS cuveccvrecverseirsriarerissnecsessorsscisssassensaresassersesesssssssssnsessassnsesssssersssseses 7
.6 PUDIICOLIONS.ccuetereecreneesnrreesseneesssesseseessssnseesssssssesssisssnessssneesssssssssessssesasssssssnssssssssesssssssssnns 9
Chapter 2 — Service Oriented ArchiteCture (SOA)cccvvrssrvssenrersrsssssssssssssssssssssrsssssssonss 10
2.1 INELOAUCTION vvvvvevrerervecsenvesssessnressseessusessesssnessnssssessassonsesssessssessanesssesssssssassssssssasenssesssesss 10
2.2 SOA HiStoricQl BaCKGrOUNGccoeeeevrirrvreerssensssseecssersseresesssssssssessssssesssnessrssssssssosssnsses 10
2.3 SOA DeSiGN PriNCIPIES .uccvevvuvrereivisivsviserisirisiiisisssisisssincsnsseessssssnisssssssssssssssrnssssassassnseneans 13
2.4 SOA DESiGN CONCEPL..occccruvriiisrrsiecsiscrsnssssiresssssssssisesssnsessessssssessssssssssssssssssssnnsssssssnnessossane 14
2.4.1 Generic SOftWare ArChitECTUNEccivvcreerreririreiirenissnnieisiintecsnsessarsssssecrssnossssessssaosaasssnsssns 15
2.4.1.1 Generic SOA DESIZN LAYETS wcvcriiesrisioririossssressnsrosmessssionsissisnastssssssesssssessessssssonssssesssstessossssasorsss 16
2.4.2 Web Services and their Categories....umimmeonsniieiennnes teereeeeeriraresssiteeeessansreestaseeesaatessrnrene 19
2.4.2.1 Categories Of Web ServiCes.......uiiimiiiniiicniinaissieiesmesnnesmisenssiiomsssnsssessssssensosress 20
2.4.2.2 Web Services’ Quality Of SErviCes ... 21
2.4.2.3 Web Service Protocol Stack (WS-* ArChitECUIE) vuuccivuireeeressrenveeisersrssssesnessesesssesssrsssssansanssaeas 21
2.4.3 EXtending SOA DESIBN cuiiiviniiiiiiiiniinasinessissiissinasesansesessrosssssasssnssssessssssassrsessssassssasssasenss 22
2.4.3.1 Extending SOA Design t0 WS-* ArchiteCtUre w...iccmineciicecrenicecreniennsessessmenesssersisesessssnssssssssses 24
2.4.4 Generic SOftWare Testability...eeeircinaieeininnsiseeiserrenseisseissersesessnsissssesssnissssasssssne 27
2.4.4.1 Generic SOA Testability Problemsccicieieicnnenininimesisismmesssenimniesmmsesmeisesssaessssosssens 27

2.5 CONCIUSION caeeveenveeerrerereriissonrenrrereasssersssstssisunnesesssssesesssssansesssene teerssressnrenserarernensesssnarananen 30
Chapter 3 — SOA Testing Approaches and TOOIScuerverveneeviniinisensisissusessisessssnssesssssns 32
3.1 INLrOAUCHION cocevvrenreeisirsrreniicsississssnnnnsisssossssssnnsssssssesesssnsonsessesassssssnnnanssessssssrsssnssnssnsssssns 32
3.2 TesStability CRAIENGEScccvvevirvensnsosssersssissiisiosisiossissnssssssesssssssssssionsenassessasssonsonsenss 33
3.3 Current Testing APProaches GNA TOOIS.....cccvveeeruversverecssveisersnsesssessisessssssssssssessssssssssesosss 34
3.3.1 BACKBIOUNG wooviiiinintesinrissnsnneiesiissensstsssosssisnesisssissssssossssnssssssssssessassssssssssssassssssassnsssessassene 34
3.3.1.1 Testing Based on Traditional SOftware@ Methods.........ceiereerercreeicneninesssisssnnsensssssensssesssseosarses 35
3.3.1.2 Adaptive SOA SOftWare TESHING ...ccciriviicrrenisiiismsississirionssmnmesssssersssrassssertssssssssasnosassnssssses 37
3.3.1.3 Testing Based on SOA Systems Standardsccrueerncnrereriorsmsseesetsessessnessesssssssssesseseesenssssssesses 39

3.3.2 Current SOA Testability Summary and EValuation.........ceeveceeiienensienseneenesieirscsenssessesessmsssssssens 41

3.4 CONCIUSION .vveeeerrrererrerrrerrresseessesssreissnssssssessssssssssssesssssossssesessessssressssssssenssssssrsssssessssssssns 43
Chapter 4 — An Intelligent Framework for SOA Testability...........c.cecvveerevrersereseeseeesesserens 45
4.1 INErOAUCTION cvvviririuiiresrticsnsreresisnnnerrossessesssersnssesssnsesssssssssssssssansessssssnsssssssantossssssnnsssssss 45
4.2 SOA Testability Status RECAPILUIALION ..c..ccecrierrersrecrrrnrecssvrsurersressvesseressasssssossesssssases 46
4.3 Framework CONCEPLUAI DESIGN......ueccieveisrvecrensensiererereeornsssnessesssessorsssnesssssesssessssssassssons 47
4.3.1 Functional Requirements SPeCifiCationciveveerenereensinniensnsrnesisssssssssssessssseossesesssssesnes 50
4.3.1.1 System Analysis (SA) MOAUIE........ccuiiiiiinriirienrenenesrotesssossssessessesssosssseassessessssnsonsssons 54
4.3.1.2 Test Cases Generation (TCG) MOTUIE w.uivivruieriieeneesncessissasssesssssssossessssssessessssssssesssnosnsssnssssese 58
4.3.1.3 Test EXCCULION (TE) MOGUIE aeeeceeeeereeirennesrineeseessaeesessssasssssssessssassnssrsssssessesssssssssssssontassans 61
4.3.1.4 Learning and Decision Making (LDM) MOGUIE.........ccccuveeerirririsneseersersrersessessesssssssssssresssesssssans 63
4.3.1.5 MONITOTING MOGUIR...vcuiriritereereasisrsnresesnrsermismsesissesssssssssssssssssessssssssssssssassrssssssssssessossns e son 66

4.3.1.6 AdMINISLration MOGUIE ...ccccviiiisicemsismsesessnsinsstisssesasnssnsrssasssstsssssssssssoninsssssssasssssssens sagssssssasassssses 67

G4 CONCIUSION e.verereereiervessnssesssrsssssssssessssssssssesssossssasssasssssanessssnssssassesssssnsssnsssessssossasnsssnsssssns 70
Chapter 5= Framework EVaIUGLIONvvcssssisscssessisissesinssisnssmssnsssisssssesssssstsesssnsnns 72
5.7 INETOQUCEION c.veveervverrrrssarenerressssssssssssssssssssssmsssscsssssssssssanssssassesansssssssessssssrasesssnsessnssosanes 72
5.2 System AnQlysis EXAMPIE c...cueveueversecersisisssssiisinsnsssisisissssisisisisessisssussesssiisisissasiencas 73
5.3 Test Generation EXAMPIE.......cceeneevsivisiessinininnsneniisiecssisnesiinismissieoieiesssssssesssne 83
5.3.1 Test data Category Partitioningcciuvreniinninnininiinenenieiisneeninionsssnsieesess 83
5.3.2 Equivalence Class Partitioningccvcceinniinninisnsnenstiisssnsisnisinsssiei. 84
5.4 Test EXECULION EXAMPIE c..uuuvecvuerieresiririersinsiissinsnrirenssiesssesssnssnsossssssssssesssnssssasessassans 87
5.5 Test MONtoring EXAMPI...........cervvevesinsiiinecnnenecissesssnonisssesssnssssnissssssssossaesssessaes 91
5.6 Empirical Framework EVAIUGLIONcovevrmveivesireersninsessisnstsisssesssoresisssssssssnsesssnssenes 93
5.7 Defect Detection and COVerage MEtriCS......uuivmenninniesenenrntssisenisesnsseseresssesesssnssssessnes 94
5.7.1 Test Completeness MeasuremMeNnt ...ttt s 94
5.7.2 Defect Detection Effectiveness Measurementiicveeeciiiniecernicnnnneennnsceeessiseeecssressseses 96
5.7.2.1 DEfECt SEEAING vvvveriererrererceriercnrnssesstsssisssssssasssisssssssisssssssossss sasssssssscsssssssesissessosssssassssnssansasssesses 96

5.8 Cost-effectiveness MeaSUrEMENTS.......cccvuevvercsrereensessssnssssenasssenseisanssnessesssessenssesssssanas 99
5.9 Threat to CONSLIUCE VAIIAItY......cevvveeviuerirrnrirerresicssnescsierssssrsesssssssssssssssessssesessesessses 101
5.9.1 Threats to Internal Validity (Degree Level of AUtOMAtIoN)cccveriiiirenieeineenecceecrecunseinnesns 103
5.9.2 Threat to External Validity (Supporting Industrial Practices)ceecuveeirrscrecceeesseesesessenens 104
5.10 Cost-Effectiveness Evaluation SUMMQTYeceineessicnsenssnscnniccsnenisssresssesssssenans 105
Chapter 6 = Industrial Case StUAY..........ocvvrvvinnireniiiinsrennnsinnseisssessresssisens 108
6.1 INLTOGUCTION c..vvevvereerrercresseersssessseesssessseessressesssssssessseessssessessssessnsosssesssnerssessansssssssnness 108
6.2 SCOPL.cocvcerreiresrisrmiririissssiesssstsssessessesassssssessessssstsssssssssonssnsanssssensossssssssssnsontossinssssssssosssnes 108
6.3 SOA N INAUSETY SEGMENTS.....ueeeeeereecreiceeireeererrrirrisieesessseissessesssesssissssssesssssstsssesssssssenses 110
6.3.1 Web Service Protocol Stack Industry Implementationcc..eeeeneneenneereeniresesssseresnns 110
6.3.2 ENabling BUSINESS PrOCESS LAYl ..cciciiicrrerrrerennenitnssseersesessnnssssrasssnesosssssssessnssssssessanaesanaes 111
6.4 SOA Architecture Use Case IMPIEMENTALIONcuvveeecrreereressessessesssssessssesssssesssssssosseses 111
6.4.1 ONIINE STOCK TradiNg PrOCESS cviveerirerireesernssniesessssesersssssssesensesansssnsasesssessssssstossesssssosrassass 113
6.4.2 Initiating the Proposed FramMEWOIKc.ucueiienennnireisenssesissseseessissnessssssssseseessssssesssssessessens 116
6.4.3 Initialising Testing the Implemented WS-* ArchiteCtUre.....uiimieeiiresiinerisessesesssessssersosans 116
6.4.3.1 Testing WS-ReliableMessaging, Security, and Addressing ... esermieseresssssnssesnsssssssssessesssens 117
6.4.3.2 Testing ChOreoBraphy (WS-CDL)....cccviuerieirecsnsrrsessssnssesscsssasssneresssnesesstessssssessssssssnsasssssssases 119
6.4.3.3 Testing Web Services Atomic Transaction @Nd WS......evevevmsicesessssessesesssessessesssssssssasssseres 122
6.4.3.4 Testing Orchestration (WS-BPEL).......cveverrnvereeresnsisnssnsismsessssesssessosssssssassnssonssssssnssnasssssssssseasasss 123

6.5 Test Effort Measurement............ccoevvvriersnens veerserersaenens vreteresrenesrenerenaes veveresrserresesns 124
6.5.1 Test Cases GENEration RESUILcoveerreneriieiniisessesiseesiscesesssssssssssssessssssssssssssssssorenens 124
6.5.2 TESE EffOIT RESUIL uiiisiisiicsiiisiinereicinnieenieeresnisseissessesssssssssessssessssssasssnnessssessesssessnsesnssssersane 125
6.5.3 EXPEriMENtal SETUD...civieiiiiiiiiiuiiiiinninssresersnissressnesssisssesssessesessisssesssssssssssssesssarenaressesens 126
6.5.4 Computer ReSOUrCe TESt COSt .uiiiiniinmnmmnisniiimiimmiemsiessemnesmersssssessssssesses 127
6.5.5 Test Effectiveness MeasUremMENT........vvvveeerinionieesinnissseissssneissssssseesssnessssesssasssssessssnssosane 128
6.5.5.1 TESt COVErage EVAIULION ...ccueeeieeeericeectieecseeierccneenesresnessnosesstsaresessnessossossassassosssonsssnssssnsosasnsss 129
6.5.5.2 Defect Detection Effectiveness Measurement EValUALIONuvccrereerenniceneensresssesssessnronsens 130
6.5.6 Cost-Effectiveness Measurement EValUtioNvueveeiiiincneinreeseeeiscseessessssnsesssnsessaes 131
6.6 CONCIUSION c.vveeverererssnerreecsorsunnsnneeeesssnsrssssesescssosssssssssssssssssossasssssessssssssrnsstsssssssnssasassannns 132
Chapter 7 — Conclusion and FULUIE WOrK..........ccvvvievienesisnninnsesiiiisssisscsssssssmsnsssens 134
7.1 CONCIUSION .vvverrveeirrrieererarserssssseesesssssseesssnnesiosssvesessssssesessarssssssesessssssossasssssannansessssansesss 134
7.2 FULUIE WOTK c.ueeevreeiireravrereesesssnsensseresssssssssasssessossssnsesssssssssssassssessessssssssnnonsensossssssssnnnnne 141
REFEIENCES .. cvvvvievsrsensssssissssissssisssssissisisssissesisssss sesstssssss s ssasossas e sen st sebsesassssbsusanasansrssensnsasssessasasasnsans 149

List of Figures

Figure 2.1. SOA implementation ..., 12
Figure 2.2. Generic SOA design layer.. it st s s s s saees 17
Figure 2.3. Generic interoperable SOA web services design of the service layers. 19
Figure 2.4. SOA design extended layers..cuveiniennennrinnneniennssesisiiianss 23
Figure 2.5. Web services protocol stack protocol components relationships..................... 26
Figure 4.1. An overview conceptual design diagram of the proposed framework
ATCNIEECUI .. e ererererers e iseerssenesssnssesesesasssssss sesssessssesssesas sensss srsseaesssasssansssasost aonsessntonssrsnsaassannses 49
Figure 4.2. An overall view of the function relationships among the modules of the
FrAMEBWOTK. veouereieerireerrernrrrsneseeeserssasesanssssessesssusssatssonssssesssessssssntssossessssssaessnnssstesssssssesonsossns 51
Figure 4.3. Functional process flowchart of the System Analysis module.........ccccccevvinnnae 55
Figure 4.4. Functional process and data flow flowchart diagram of the Test Cases
GENETAtION MOQUIE..cciciiverereercenssusisiesinerasistssnsssssssorsssssns e snssstsssassssssss sanasases sss saresssessns sssssssssasss 59
Figure 4.5. Functional process and data flowchart of TE module........cccovvvviiniinnnnencnnne 62
Figure 4.6. The activity diagram of the LDMA supporting classification and data mining of
other module in the framework... .. 65
Figure 4.7. A flowchart diagram of the Monitoring module. ..., 66
Figure 4.8. The sequence workflow diagram of the events between system administration
module and other modules in the framewo k... i s 68
Figure 5.1. A screenshot of the WSDL extract tables of the SAA parsing process.............. 74
Figure 5.4. A highlighted section of the decision tree structure of the training dataset
evaluation of the WSDL Implementation Static classifier.. ..., 80
Figure 5.6. A highlighted section of the decision tree structure the training QoS assertions
Lo] € 1= SR 82
Figure 5.7. The result set of classifying the web services operations into categories........ 83
Figure 5.8. The result set of partitioning the categories into choices........ccecerirrvercrrnsrisnens 83
Figure 5.9. A section of the structure of the decision tree from training QoS WS-
AdAressing Aatasetcccccvverrrrnieininiinrisieiisisieeeeiiisssssereesssssssssnssesssssssssansassssssssssassasssssssssanes 89
Figure 5.10. WS-Addressing protocol properties in StockTickerPrice.wsdl file..........cc.c......90
Figure 5.11. Specifying test-execution environment data in the Test Case.Xxml....cererreenne. 91
Figure 5.12. A section of the structure of the decision-tree resulting from system
invocation monitoring traiNing datasel....cccireinrmerremeeieeeeemeemieerieeeeeseseses 93
Figure 5.13. Code coverage measurement for calculator web Services......oueenneneneenes 96
Figure 5.14. Defect detection ratio for calculator web services test suite........cevveverrereenee 98
Figure 5.15. Defect detection metrics for the generated mutation testing.........cecveerrvenes 101
Figure 5.16. A comparison of test-case generation cost in MilliSECONdS...vrurerrersserererenenes 102
Figure 5.17. A comparison of test-case execution cost in milliseconds....cc..ceeevrnveinennen 103
Figure 5.18. A comparison of test-case execution response time in milliseconds............. 103
Figure 5.19. A comparison of level of automation of the proposed framework against
other benchmark open-source and commercial tooISs........uvvveeruerirreriiireccveessrnnssesenesns 104
Figure 5.20. A comparison of level of automation of the proposed framework against
other benchmark open-source and commercial tools..........cccvvvevrieneeiiriiensrennssesnenaees 105
Figure 6.1. Online stock trading web services system-testing environment.ccceueeeneen. 113
Figure 6.2. A section of the structure of the decision tree from training dataset for the
WS-Security test execution enviroNMEeNtccceiiiiicnniiniiimmmmereeresmmesssesn 118
Figure 6.3. A test harness setup scenario for Authentication web services.........ouuuvnee. 118

Figure 6.4. The BPMN2.0 processes of the subscription account management web service.

... 120
Figure 6.5. Test cost results of testing task for System Analysis step of the authentication
WED SOIVICE ettt se e s s e s ssr s b s e R b e an s 126
Figure 6.6. Test cost results of testing task for Test Case Generation step of the
authentication Web SEIVICE ...ttt ssssesssessrsssssnaee 126
Figure 6.7. CPU and memory test cost results of testing task for System Analysis step of
the authentiCation WED SEIVICE..... i sssssnssessssrenssesssssssssssessossns 127
Figure 6.8. CPU and memory test cost results of testing task for Test Case Generation step
of the Authentication Web SErviCe.cumiiiiiiiniiiiiniceieiresnssssessessasses 128
Figure 6.9. The result of the test suite coverage..........ccvinnniinneniinivnnnincnn, 130
Figure 6.10. Defect detection ratio for authentication web service test suite.........ccouuens 131
Figure 6.11. Cost-effectiveness measurement of the authentication web service test suite
... 132

vi

List of Tables

Table 2.1. The web services protocol stack in relation to the extended SOA..........ccuueeee. 25
Table 5.1. List of core requirement assertions and applicable training data patterns of
WS-* AFCRILECTUIE wiiiuvreieeeenreeeirreesranersssnrisssssssssessssnsssssnessssnsresssasessasessanserssssssaneessessssaneasses 77
Table 5.2. Examples of mapping xm! data types to Java primitive data typecceeervunene 84
Table 5.3. The result set 0f the ECP SteP ..uiveiiverereeniiineeeneennesnienninsessnnisecseeseeseseones 85
Table 5.4. The list of test cases for the find city temperature web services method........ 86
Table 5.5. WS-Addressing protocol assertions communications rules mapping............... 87
Table 5.6. Selective mutation types from Mothra Mutant Operators........ccecevveeereereneenns 97
Table 5.7. Defect detection metrics for the generated mutation testing.......ccceveeevereenne. 97
Table 6.1. Online stock trading web services system components according to WS-*
ATCRILECTUNE «eveeeieeeinreeeericiciinteeetttiesesssseeeessssassssrnsstesssessssssensessssessssssnnsrasssasssssasasasesansns 112
Table 6.2. Authentication web service environment protocol assertions communications
FUIES MAPPINE cveeverrrirrreitininiriininisinisiiieiteasresrstssressssesessstsstsssssssesassssessssessssssestsssssnaes 117
Table 6.3. Subscription Account Management web service environment protocol
assertions communications rules MaPPING ..cccccveiivviiierrnerteiriiseeeeiiirerssssrressesessessssareses 121
Table 6.4. Transforming and mapping from BPMN to WS-CDL and to WSDL.................. 121
Table 6.5. Buy-Sell-Stock web service environment protocol assertions communications
L] L= .4 o] 1 -2 123

Table 6.6. Test cases generation result for online stock trading web services methods.125

vii

Acknowledgements

| would like thank my PhD advisor, Dr. Souheil Khaddaj, for all his help and support that
he has given me over the past years. He allowed me considerable freedom in my
research. | feel honoured to have had a chance to work with him and learn from him.

| dedicate this thesis to my family, my wife and my beloved children for their constant

support and encouragement.

viii

Chapter 1 - Introduction and Motivation

1.1 Introduction

As SOA technology advances, there is a significant increase in the complexity and
sophistication of the major testing procedures, verification and validation of these
systems. In industry, these two procedures are often performed manually and not in a
systematic manner. They are mainly dependent on the intuition and experience of the
tester. However, many open issues remain, in particular systematic validation and testing
of SOA components is a widely unexplored field [51]. In general, software testing
component observability and controllability are essential factors for component
testability. Thus, component requirement understand-ability facilitates test environment
knowledge acquisition and helps component test engineers and users to obtain high
testability of functional requirements of components so that component test criteria are
easily scoped and effective testing can be accomplished [92].

Henceforth, the high testability of SOA components can be achieved by establishing a
testability design knowledge which demands requirement knowledge acquisition in order
to verify the design of a SOA component, and then to validate its functions, behaviours
and performance. This ensures that a component under test meets its functional
requirements and specified design in a given operational environment [92].

However, the integration and inter-operability of systems based on SOA have strongly
limited the access to efficient testability degree criteria. Thus, the number of possible
controllability problems has increased while the restricted monitoring ability has resulted
in reduced test observability, making it a problematic for testing. As consequence, testing

systems based on SOA presents great challenges to services providers and consumers and

for this reason, testing approaches and frameworks for supporting SOA testability are
becoming highly important.

In attempt to solve the practical problems of the lack of SOA testability, knowledge of
test design and testing processes is needed. This however, requires knowledge
acquisition of system requirements, testing environments during the testing process, and
analysis of the results of the testing processes. Hence, this thesis presents a fully
automated and systematic approach for testing systems based on SOA supported by
Machine Learning (ML) technique and based on knowledge discovery and data mining of
protocols and standard requirements and test coverage analysis. Furthermore, the focus
of this research specifically includes the web services protocol stack within the testing
process, to specifically enable effective automated testing and increase the testability of
these systems.

The presented approach builds on a framework of a number of testing modules based on
SOA testability knowledge-based (KB) scope. The framework modules analyses the static
functional and non-functional (QoS) requirements of the SOA system under test,
establishes functional and QoS requirements coverage criteria, and determines whether
those criteria have been met beforehand and to what degree. It analyses the testability
from using requirements coverage, builds tests criteria based on testability knowledge,
acquires information by functional and QoS test simulation and monitoring and acquires
test coverage knowledge by comprehensive analysis of the results of the tests. The
testability knowledge of test design and processes guided by ML support is important

factor presented by the proposed framework, for this reason the reliability of testability

knowledge acquired by the presented framework is high, which has important

implications in improving the testability design level for systems based on SOA.

1.2 Challenges

Attentively, any informal system requirement provided by a software specification
document is considered the primary source of information for the software engineers for
supporting software system integration. With SOA systems, the whole process can be
done automatically and systematically. Using WSDL for example, a web service consumer
can locate a SOA web services provider and invoke any of its publicly available operations
automatically. The WSDL is an XML (Extensible Markup Language) format interface used
for describing the web services abstractly, it provides a machine-readable
description interface for the functionality offered by a web service, and it describes a web
service as a set of endpoints operating on messages containing either document-oriented
or procedure-oriented information. The operations and messages are first described
abstractly, and then are bound to a concrete network protocol and message format to
define an endpoint. Related concrete endpoints are then combined into abstract
endpoints (services) [2].

Hence, these system interfaces can also be used to derive the test suites for testing
purposes. However, to enable an automatic and systematic SOA testing approach, the
informal requirements are specified as formal requirements using an appropriate formal
specification language, i.e. the WSDL, BPEL, and BPMN [106).

Following a review of related approaches and frameworks in the literature, in this
research, the requirements-based functional and non-functional (QoS) testing, the

coverage analyses methods of the functional and non-functional requirements and

testing across the middle tiers of SOA systems will be thoroughly investigated and
addressed. This can be problematic, since testing the SOA service’s front-end user
interface becomes irrelevant when it provides no observability of what is actually
happening at the SOA service provider or consumer ends. Another problem that will be
addressed is associated with the fact that SOA systems are being composed of loosely
coupled services at a business-level which are distributed across computer networks,
these systems must be tested as end-to-end integration testing methods. Moreover,
systems based on SOA require consistent monitoring of testing processes, this include
input-out data, and subsequent analysis of test results to determine causes of the defects
and recommend solutions. Moreover, such testing approach requires testability
knowledge across all heterogeneous environments and across all SOA service providers
and consumers, so that a proper fix can applied to the SOA system under test.
Furthermore, to accommodate integration errors and defects of the very nature of SOA
systems, i.e. service compositions and dynamic service discovery and invocation, which
can be validated at run-time only, in this aspect, these systems are required to be
monitored at run-time.

These challenges are investigated and addressed in the proposed framework, and
implemented by means of a proof-of-concept prototype, this includes empirical analysis
of cost-effectiveness and evaluation of the framework. The proposed framework includes
a mechanism for incorporating a Multi-Agent System (MAS) with ML systems to support
testability of SOA [47], which can play a key role in solving much of the SOA testability
problems such as automation, monitoring and quality assurance, and supports proper

tests and defect detection. The proposed framework will be widely investigated to verify

and validate SOA-based systems, namely web services implementation. This includes SOA
system testing coverage for assessing and finding defects when most cost effective and at
all test cycles which include system under test analysis, SOA principle and standard
requirements, test requirements coverage, and test coverage measurement.

An empirical study of SOA-based prototypes, at development and testing stages, is used
to demonstrate how to apply the proposed testing framework and to work out cost
effectiveness measurements for identifying efficient defect detection processes.
Furthermore, to accommodate integration errors and defects of service compositions,
and dynamic service discovery and invocation, the research proposes using run-time
monitoring approach supported by feedback mechanisms from the ML system, in this
way, the interactions among SOA applications can be then translated into test cases that

are generated by MAS.

1.3 Research Questions and Objectives
The proposed framework acknowledges that the general concept of the SOA system’s
testability is limited due to a lack of observation and control of test process and
environments. As a result SOA systems still pose many validation and verification
problems. These problems are the norms which are the focus of the current research
which due to the implementation testing of these systems has become a major problem
[106],[47],[78),[8],(68],[91]. The following research questions arise:

1. How to design and develop a testing approach that would increase SOA

testability?
2. As consequence of any of approaches for testing SOA systems, a problem that

arises is , how to cover functional requirements when validating these systems?

3. How a system based on SOA is validated systematically? What actions have to be
taken to ensure a test approach completely and adequately covers all the
requirements called for by SOA providers?

4, How can systems based on SOA testing frameworks or tools validate non-
functional (QoS) requirements?

In practical steps, the following are the core objectives to meet the aims of the research:

1. Analyse and improve SOA systems testability as practical deliverables for the
industry, i.e. not only theoretical.

2. Enable systematic SOA testing and accordingly increase the testability of systems
based on SOA standards and principles, rather than refinement of software design
and development processes.

3. Use offline-online testing and monitoring methods to meet the lack of the
testability factors and improve the testability degree of systems based on SOA.

4. Use automated SOA systems testing in the proposed formwork, as it has
been deemed a vital factor in the software industry. Consequently, employing
and machine-learning approaches can be a very useful part of these automated

testing systems based on SOA.

1.4 Research Contribution

A major contribution of this study is to propose a systematic framework for improving
SOA testability. The research demonstrates and supports the hypothesis of using
automated software testing by utilising a MAS supported by ML capabilities of reasoning,
learning and decision-making. In addition, the work presents several contributions

including:

1. An automatic ML framework by means of a proof-of-concept implementation for a
testing SOA system, together with a research prototype for proposed frameworks
has been developed. This has been developed exclusively for framework
implementation and to support the methods in testing, investigation, evaluation,
and the outcome of the research work.

2. Improve testing systems as actual deliverables for the industry (top-down
integration testing approach) [13].

3. Enable an effective testability degree that is based on combining test case
generation with ML and monitoring.

4. Facilitate SOA test automation and increase test productivity.

5. Apply a MAS supported by ML reliability, such as preferences, with purely SOA
principle and a standard-based approach using the web services protocol stack.
This is essential to increase QoS and level of deployment within both academic

and industry sectors.

1.5 Structure of the Thesis

Chapter 2 conducts a thorough investigation into SOA testability problems, leading to the
establishment of testability design knowledge and the design of a suitable automated and
standard-based framework. The chapter investigates SOA principles, design concepts, and
the standards and protocols within SOA, which have emerged to aid and increase the
testability of these systems. The chapter concludes with a summary identifying the
advantages as well as limitations of the reviewed web services protocol stack. In addition,
it identifies the need for a new approach to meet the lack of SOA testability problems and

consequently improve the degree of testability.

Chapter 3 investigates and presents what has been done so far in terms of testability
including approaches, frameworks, and tools; in order to determine the various
approaches and examine how they are applied in various domains for testing systems
based on SOA. The chapter also presents an evaluation and concludes with a summary of
the approaches.

Chapter 4 presents analyses, design, and implementation of the proposed framework.
The chapter proposes a framework to address the challenges that are discussed in
Chapter 2. It also presents a suitable approach for improving SOA testability, describes
the design and implementation of the proposed framework architecture. The chapter
elaborates and describes all the required modules and functional flow processes within a
prototype framework. The chapter’s findings are summarised in the conclusion section.
Chapter 5 discusses the framework evaluation and the process of evaluation using
practical examples including an empirical analysis in order to evaluate the cost-
effectiveness of the proposed framework by using key factors such as test cost, defect
detection effectiveness and cost-effectiveness measurements. The chapter concludes by
discussing the empirical evaluation results and the computational cost-effectiveness of
the proposed framework.

Chapter 6 evaluates the proposed framework detailed in Chapter 4 and 5 through an
industrial case study. The chapter presents an evaluation of the effectiveness of the
proposed framework by practical and systematic implementation on a generic business
use case within industry sectors. The industry case study is designed and implemented,

as a prototype system that is based on a business use case of an SOA web services

environment.

Chapter 7 presents the thesis conclusion by specifying the main contributions of the work
in both academia and the industry. It gives a summary of the work done as well as its
evaluation results. It also outlines possible research areas that can be carried out in

future.

1.6 Publications
During the research, the following papers have been published:

¢ Altalabani, O and Khaddaj, S. A. (2010), An approach for the testability of SOA and
other component-based distributed systems. In: 3rd conference on semantic e-
business and enterprise computing; 15 Sept - 17 Sept 2010, Cochin, India.

o Altalabani, O and Khaddaj, S. A. (2011), Automatic Machine Learning Test Case
Generation for Service Oriented Architecture, in: 4th conference on semantic e-
business and enterprise computing, 2011, London, UK.

¢ Altalabani, O and Khaddaj, S., (2012), A framework for the testability of service
oriented architecture. Journal of Algorithms and Computational Technology, 6(3), pp.
455-472. ISSN (print) 1748-3018.

e 0. Altalabani, S. Khaddaj, Test Case Generation for Service Oriented Architecture, in
“Enterprise and Cloud Computing: Infrastructure, Applications and Service”, pp 43-53,
Excel Publications, 2013. ISBN 97881-921320-3-7.

e Altalabani, O and Khaddaj, S. An Automatic Machine-Learning Framework for Testing
Service-Oriented Architecture. Manuscript submitted for publication to ACM

Transactions on Software Engineering and Methodology journal.

Chapter 2 - Service Oriented Architecture
(SOA)

2.1 Introduction

In recent years, SOA have gained significant attention and support from companies in e-
business and industry, which are adopting this new design paradigm for increasing IT
flexibility and greater reuse of existing assets. More specifically, SOA defines sets of rules
and capabilities as design principles, standards, and protocols that must be obeyed in
order to take advantage of the services [42],[44],[119]. These rules define how to
integrate widely disparate applications that are interconnected and integrated within

wide multiple networks and use multiple computers.

In order to understand and to improve the testability of SOA, which lead to design a
suitable automated and standard-based framework, this chapter conducts a thorough
investigation into SOA design concept and principles, standards, and protocols in attempt
to establish a testability design knowledge and to identify SOA testability problems and
consequently improve the testability degree. The chapter concludes with a summary
identifying the advantages as well as limitations of the reviewed web services protocol
stack. In addition, it identifies the need for a new approach to meet the lack of SOA

testability problems and consequently improve the testability degree.

2.2 SOA Historical Background

The principal concept of SOA dates back to the 1960s. The Component Object Model
(COM), Distributed Component Model (DCOM), Common Object Request Broker

Architecture (CORBA), Remote Method Invocation (RMI), and Electronic Data Interchange

10

(EDI) are familiar examples of component-based distributed architectures [80]. However,
these older examples of distributed computing platforms are subject to a number of
problems. First, they are tightly coupled, which meant that both ends of each distributed
system interface had to agree on the details of the updates or upgrades of the
Application Programming Interfaces (APls). Secondly, these Service-Oriented Architecture
software are proprietary; while DCOM controlled by Microsoft, CORBA supposedly is an
open standards effort, but in practice implementing CORBA architecture added the
restriction of working only under a single vendor's implementation and specification [26].
Nowadays, SOA represents a new generation of distributed computing platforms. SOA
builds upon previous distributed system platforms, adding new design principle layers,
governance roles, and a wide set of standards and protocols. In addition to that, defining
and publishing a public technical interface in terms of a service contract, which is
considered the most fundamental part of service-orientation. A service contract is
comprised of one or more of service technical description documents provided by a SOA
system to access services protocols, functionalities, and end points entries for SOA
implementation [86].

At present, web services are a key breakthrough to support the openness, heterogeneity,
and flexibility of SOA systems, but there is still a big gap between the underpinnings of
the architectural style and its supporting technology. The architectural style embodies
dynamism and flexibility, while supporting technologies are still static.

Web services can be implemented and integrated widely with disparate applications on
the web in heterogeneous platforms [32]. SOA does not limit consumers to any particular

transport or medium in order to consume services—it could be Hypertext Transfer

11

Protocol (HTTP) through Internet, Java Message Service (JMS), File Transfer Protocol
(FTP), Simple Mail Transfer Protocol (SMTP), or any protocol. SOA components can be
deployed on different types of hardware and platforms (see the Figure 2.1). On the other
hand, these components have to use and agree upon a known protocol. SOA components
can be developed using such technology disregarding the idea that other components

have to understand or even know about other components’ technologies [86].

Zona B
Zone C
Zore A SR External system
BN BOA
Conaume 2\ Cansum
' L
N A 7N

Esternal
Syslems

S0A
Apphicaton
Boundary

Dhalia Skt g

S04 Servece

T yren Internal Syslem

Figure 2.1. SOA implementation

12

2.3 SOA Design Principles
In order to design and implement SOA solutions, SOA services generally need to adhere
to the following principles [86],[32]:
1. Service abstraction (advocates for exposing minimal amount of information about
a service from the outside world).
2. Service autonomy (advocates for controlling the shared access of service
resources and service logic encapsulation).
3. Service composability (concerns about the ability of any service to act as an

effective composition participator, regardless the size and complexity of the

composition procedure).

4, Service discoverability (advocates for effective and manageable service discovery
by different kind of users, with or without technical background).

5. Service formal contract (advocates for maximising the adherence of Service Level
Agreement (SLA) for delivering SOA services within a given service inventory).

6. Service loose coupling (advocates for minimising service coupling requirements
and dependencies between service provider and consumer).

7. Service reusability (promotes for full support of services reusability).

8. Service statelessness (advocates for minimising the amount of resource

consumption due to service states management in order to remain available to

other concurrent consumers).

13

2.4 SOA Design Concept

In contrast to conventional software architectures which primarily define the software
components of a system in its subsystems and their interconnections, SOA systems
capture the software design concept as external visible components in a logical way.
External visible components support the concept of software components can make of a
system architecture that will work together to implement the overall system, such as
providing services to either end-user applications or other services distributed in a
network through published and discoverable interfaces [58].

SOA supports designing and implementing software in the form of interoperable services
which support an IT business architecture model called service-orientation, where
service-orientation is about solution logic which provides software capabilities as
discoverable and composable services through interfaces called service contracts [112],
[93].

Service-orientation provides a set of design principles to ensure the manner in which it
carries out the separation of operations of the SOA system components, in order to
handle the complexity and to achieve the required software quality factors [93]. SOA is
governed by these principles. Applying service-orientation design principles results in the
components of SOA system being partitioned into operational capabilities, each designed
to solve an individual concern, such as run-time interoperability, loose-coupling, re-
usability of SOA services when implementing new businesses or extending life-spans of
existing systems. The overall goal of SOA is to support the idea of run-time integration

and loosely coupled services across heterogeneous platforms and throughout distributed

14

environments. Consequently, SOA systems have the advantage of improving the flexibility
of system design, development and implementation.

SOA promotes the use of protocols and standards, which are critical in any integration
because protocols and standards create a common baseline between SOA service
providers and consumers to work on. In addition, the compliance provided by SOA
enhances the integration experience with the flexibility to compose, change, or update

services almost seamlessly to clients with SOA's decoupling capabilities [93].

2.4.1 Generic Software Architecture

In software engineering, conventional software architecture is the process of analysing,
identifying, and presenting a structured software system that can be successfully
designed and implemented according to the requirements analysis of the software
components. Each system is composed of subsystems, which in turn are made up of
other subsystems, each subsystem being delineated by its boundaries. The
interconnections and interactions between the subsystems are termed “Interfaces”.
Interfaces occur at the boundary and take the form of inputs and outputs. The process
also includes optimisation of the quality of software system’s characteristics in general,
such as performance, security, reliability, and so on [58].

Software architecture is determined based on a wide range of principles and each of
these principles can have considerable standards and specifications, which can affect
software architecture design and implementation, and overall quality of the software

[63].

15

2.4.1.1 Generic SOA Design Layers

In a typical conventional SOA architectural scenario, a web service system employs basic
service capabilities provided in the basic service layer, e.g. building a simple weather
report web service. It defines an interaction between A service broker (service discovery
agency) as an exchange of messages between service consumers {clients) and service
providers. These interactions involve the publishing, finding and binding of operations
[50]. A service provider hosts the web services within a computer network as an
accessible software component and as an implementation of the given web services
[93].The web services provider defines the description of the service and publishes it to a
requestor or to the service broker through which the web service description is published
and made discoverable.

The web services then require two fundamental operations: find and bind. The service
requesters find the required service using a service broker and bind to it. The service
client retrieves the service description typically from the registry or repository (instance
of a service broker) such as Universal Description, Discovery and Integration (UDDI), and
uses the service description the WSDL to bind with the service provider and invoke the

service or interact with service implementation [72].The conventional SOA web services

architectural design idea is shown in Figure 2.2,

16

O
§ %
&Y 4
Sevice , Service
broker Find requester

Figure 2.2. Generic SOA design layer
In order to perform the three operations of publish, find and bind in an interoperable
way, the web services must adapt web service stack standards and protocols of the
service layer at each level of web service operations [44]. The foundation layer of the web
services protocol stack’s service layer is the web service’s network which must be
accessible to be invoked by a service requestor. Web services that are publicly available
on the Internet use commonly deployed network protocols. Due to its predominance,
HTTP is the de facto standard network protocol for web services which are using the
Internet as a network interconnection. Similarly, other Internet protocols can be
supported, including SMTP and FTP. The next web services protocol stack’s service layer
is the XML-messaging layer which uses the XML as the basis for the messaging protocol
called Simple Object Access Protocol (SOAP). SOAP is a simple standardised HTTP POST
with an XML payload envelope mechanism for communicating document-centric
messages and remote procedure calls. SOAP incorporates defined extensions to the
message envelope using SOAP headers and a standard encoding of operation or function.
SOAP messages supports publish, find, and bind operations in the web services

architecture.

17

The next layer is the service description layer which is actually a stack of description
documents called the WSDL. The WSDL is the de facto standard for XML-based service
description. It can define the interface and mechanics of service interaction as a
minimum standard service description which is necessary to support interoperable web
services. Additional descriptions can be specified for business context, qualities of service
and service-to-service relationships.

The WSDL document can be complemented by other service description documents to
describe these higher level aspects of the web services. For example, a business context is
described using UDDI data structures in addition to the WSDL document. Service
composition and flow are described in a PBEL and BPMN document.

Due to the fact that a web service is defined as being network-accessible via SOAP and
represented by a service description, the first three layers of the stack are required to
provide or use any web services. The simplest web services stack would consist of HTTP
for the network layer, the SOAP protocol for the XML messaging layer and WSDL for the
service description layer. This is the generic interoperable SOA web services design layer
that all inter-enterprise or public web services should support. Web services especially
intra-enterprise, or private, web services, can support other network protocols and

distributed computing technologies. Figure 2.3 depicts the generic interoperable SOA

web service’s design layers.

18

WSDL

SOAP

HTTP

Figure 2.3. Generic interoperable SOA web services design of the service layers

2.4.2 Web Services and their Categories

In many cases, SOA systems are typically built from web services. However, any service-
based technology may be used. Web services are currently the preferred standard base
model to represent SOA implementation [44]. Web services are considered to be
applications that use standard transports, encodings and protocols in order to exchange
data and information. They enable computer systems on any platform to communicate in
a range of application integration scenarios, within both internal and external
organizations. The core architecture of web services, the basic service layer is based on a
set of communication standards including the HTTP transport, the XML for representing
data format, the SOAP for data exchange, and the WSDL to describe the capabilities of a
web service. Additional standards and protocols (WS-* Architecture) are defined over the
last few years to facilitate specific functional requirements, such as web services
discovery, events, attachments, security, reliable messaging, transactions and
management [62],[72].

Nowadays, web services are used largely for the realisation of distributed applications. In

spite of the increasing use of web services within internal and external applications, their

19

functionalities and capabilities (e.g. service interaction, service performance, and overall

testability) are becoming key elements in their acceptance and degree of quality.

2.4.2.1 Categories of Web Services
Web services can be grouped into three business-related categories [32]:

1. Business information or device-oriented web services: a business shares
information with consumers or other businesses. In this case, the business is using
web services to expand its scope. Examples of business informational web
services are news streams, weather reports, or stock quotations.

2. Business integration web services: a business provides transactional, “for fee”
services to its customers. In this case, the business becomes part of a global
network of value-added suppliers that can be used to conduct commerce.
Examples of business integration web services include, bid and auction e-
marketplaces, reservation systems, and credit checking Business-to-Consumer
(B2C) website, across multi B2C systems.

3. Business process externalization web services: a business differentiates itself from
its competition through the creation of a global value chain. In this case, the
business uses web services to dynamically integrate its processes. An example of
a business process externalization web service is the association between
different companies to combine manufacturing, assembly, wholesale distribution
and retail sales of a particular product, Enterprise Resource Planning (EPR),
Customer Relationship Management (CRM) as well as application system

integration [93].

20

2.4.2.2 Web Services’ Quality of Services

A service Quality of Service (QoS) description can be published using a variety of
mechanisms. These various mechanisms provide different capabilities depending on how
dynamic the application using the service is intended to be. The service description may
be published to multiple service registries using several different mechanisms. The
simplest case is a direct publish, which means that the web service provider sends the
service description directly to the service requestor. This can be accomplished using an e-
mail attachment, an FTP site, or even Compact Disc, Read-only-Memory (CDROM)
distribution. Direct publish can occur after two business partners have agreed on terms of
doing e-business over the web, or after fees have been paid by the service requestor for

access to the service [58].

2.4.2.3 Web Service Protocol Stack (WS-* Architecture)

There are many standards and protocols that aim to define web service specifications.
Moreover, a growing enthusiasm for these standards and protocols is evident from the
industry, as they are becoming aware of the key advantages of implementing SOA
systems. These standards consist of a collection of norms and protocols, which are open
standards that include web transport protocols such as HTTP, FTP and SMTP. The
fundamental technologies of the web services model are XML, Messaging and Metadata.
Within the web services protocol stack, standards and protocols evolve, merge or

become irrelevant.

21

2.4.3 Extending SOA Design

The dynamic nature of SOA systems present new challenges to the design, development
and testing phases. Consumers of SOA systems need to be assured that the services or
components will not fail and will return responses quickly.

Currently, the basic generic SOA web services design of service layer do not address
concerns of designing and implementing such systems, for example, services
management, services composition, and QoS properties that apply to all components in a
SOA system. Such concerns can be addressed by extending the SOA design to support
such service capabilities. The extended SOA extends and adds new SOA design layers of
more advanced service operations protocols, standards and rules. In this way, SOA
systems can offer huge advantages in capabilities such as service management by service
orchestration and intelligent synchronisation and asynchronisation routing, services
provisioning and QoS guarantees such as integrity, reliability and security of messages

[64].

22

The work of Papazoglou and Hevel [64] has presented SOA as an extended model with
three logical SOA operation layers, providing a horizontal separation view of the different
operations which are involved in these layers, while the vertical view indicates service
characteristics that cut across all three layers. The logical separation of operations is
based on the need to separate basic service capabilities provided by the conventional
SOA operations from more advanced ones, which are needed for composing services,
also based on the need to distinguish between the operations for composing services

from that of the management of services (see Figure 2.4).

Modelling,
service onented engneernng

-‘;'1"1',1_ u«m
A M Gealy Semantics

balyrpg, = \ ~ - -
hang 3 . non - funchional characrnislics
m
s . Qos

| Rolo achorns
Partons ==
PUbiShas =i

. Usas s |

| BOocomuos =]

Figure 2.4. SOA design extended layers [64]

23

While SOAP and HTTP are sufficient for interoperable XML messaging, and WSDL is
sufficient to communicate what messages are required between service requestor and
service provider, more is needed to cover the full range of requirements for SOA systems.
To fully support e-business, extensions are needed for security, reliable messaging,
quality of service and management for each layer of the web services protocol stack (49].
Additional requirements for web services infrastructure include support for service
context, conversations and activities, intermediaries, portal integration and service flow

management.

2.4.3.1 Extending SOA Design to WS-* Architecture

In order to understand and to improve the testability of SOA, which lead to designing a
suitable automated and standard-based framework, the technical role and characteristics
of the standards and protocols of the web services protocol stack (WS-* Architecture)
within SOA was classified. We also classified the elements of the web services protocol
stack according to their relationships with different logical layers across the extended
SOA, i.e. the foundation layer, the composition layer, and the management and

monitoring layer as depicted in Figure 2.4.

24

XML
XML Schema
SDAP Messaging
MTOM

Web Sarvices Attachments
wWsDL

uDDI Description
WS-Policy
WS-
WS-Addressing Reliable messaging
WS-Reliability
WS-Atomic Transaction Transactions
WS-Coordination
WS5-Coordination

Compaosition

WS-Choreography Business and Coordination

PBEL Processes

PBMIN

WS-Security

WS SecurityPolicy Security

W5-Trust

WS-Federation

WSsoOM Management/Monitoring Management/Monitoring

Table 2.1. The web services protocol stack in relation to the extended SOA

Table 2.1 provides a high-level grouping view of web service standards and protocols
which were republished by architecture industrial standards, for example, the Open
Group, OASIS and OMG standards organizations. The elements of the web services
protocol stack were classified by their relationships to core functional and non-functional
(QoS) characteristics. For the core functional characteristics which are required for basic
connectivity mechanisms (describe, publish, interact) [30], the standards are: XML,
Simple Object Access Protocol (SOAP1.1-2), WSDL, Message Transmission Optimization
Mechanism (MTOM), XML Schema, Web Services Addressing (WS-Addressing), Universal
Description, Discovery and Integration (UDDI), and Web Services Interoperability Basic
Profile (WS-I) [2]. For service composition and for quality of service, several standards
have been proposed in the extended SOA system, most notably the Web
Services Business Process Execution Language (WS-BPEL) for service composition, Web
Services Coordination (WS-Coordination), Choreography Description Language (WS-CDL)

and Web Services Transaction (WS-Transaction) to support robust service interactions.

25

Also the Web Services Security (WS-Security), and Web Services Reliable Messaging (WS-
ReliableMessaging) for supporting meaningful business interactions. The descriptive
capabilities of WSDL are enhanced by the Web Services Policy Framework (WS-Policy),
which extends WSDL to allow encoding and include attachments. Along with the adaption
of SOA principles and web services protocol stack, there are relationships and

dependencies between each web services protocol stack standard and protocol

components (see Figure 2.5)[13].

IBF’EL 1.1

i WS-ReliableMessaging]
WS-Transaction I

| ws-Addressing |

‘ WS-CoordinationJ

Xpath 1.0

WS-Security

WS-Policy
Auclond

Vg‘PollcyP!‘mrthns] erhy?ulibf I

| ﬂmpoucquéhmenu |
4

I \‘I&Slcummer!auon I

WS-Trust

[XML schema 1.0 | WS-Rouung

L\

| XML Infoset | | XML 1.0 | I XML Namespaces I | ¥X.509 | | XML Encryption l

[XML signature |

Figure 2.5. Web services protocol stack protocol components relationships [13]
Web services protocol stack covers the full range of requirements for SOA systems.
Nowadays, web services are used to a great extent for the realisation of distributed
applications. In spite of the increasing use of web services within internal and external
applications, their functionalities and capabilities (e.g. service interaction, service

performance, and overall testability) are becoming key elements in their acceptance and

degree of quality.

26

2.4.4 Generic Software Testability

The definition of “testability” according to IEEE standards is the degree to which a system
or component facilitates the establishment of testing criteria and the performance of
tests, determining whether those criteria have been met beforehand and to what degree
[88]. Given the context of the above definition, the concept of software testability
extends to the approaches and tools which are able to provide adequate testability in
software testing, which allows establishment of a feasible and effective software testing.
Software testing mainly depends on what the user can see, control and observe using any
test sets in any system test level or phase. Noting that, software with an acceptable
testability degree ensures that test scripts are executed and satisfactory test coverage is
applied. Furthermore, most of the defects should be uncovered and fixed before the
product is released [21]. To this extent as mentioned, any software testability is built
upon two vital elements: (1) control and (2) observation. To extend the idea, a cost-
effective test approach relies on how the systems under test can be better controlled
(e.g. making invocationls of the services, or setting internal variables, or simulating and
changing the execution environments, and so on). Moreover, it also relies on how the
systems under test can be better observed (e.g. observing how the system reacts and
behaves in response to a test request or input). In addition, it relies on the elements
which are related to the combination of the above two elements (e.g. test cases which

are dependent on the results of inputs and also on the observation) [95].

2.4.4.1 Generic SOA Testability Problems

Generally, in SOA systems the testability issues are due to [41],[45],[71],[18],[68]:

27

1. Lack of observation; SOA services need to be invoked, integrated, and monitored
within consumers’ sites. This hinders testers from verifying and validating the
internal and external behaviours of the services in terms of their operational
behaviours, input-outputs parameters (test oracles). Moreover, the only
information made available for service consumers by a service is the service
description in XML-based format, this prevents White-Box testing and Mutation-
testing approaches which require access source code of the service.

2. Lack of control; SOA services are run physically independently under the control of
the provider. This hinders testers and service consumers from controlling the
services operational behaviours, feature customization, and installation and
deployment. This also prevents regression testing of the system by consumers due
to an inability to decide on the test strategy for a new or the updated version of a
service.

Furthermore, looking at testability problems from practical test implementation aspect,
we can define the primary differences between SOA testing and traditional application
testing as follows [45]:

3. Lack of software artifacts.

4, Lack of control over test executions.

S. Lack of methods of observing system behavior.

6. Problems with testing service compositions, dynamic discovery and invocation

capabilities of SOA.

28

Moreover, examining testability problems from a common software design aspect, the
traditional application-centric design focuses on the user interface (Presentation) layer,
the process logic (Business) layer, and the data (Resource) layer.
Primarily, the reference architecture of SOA systems is categorised into three main
architectures [89]:

1. Business Architecture.

2. Infrastructure Architecture.

3. Information and Data Architecture.
In addition, considering systems heterogeneous implementation, another two layers have
been added [47]:

4. Business Process layer to manage the process steps.

5. Integration layer to manage the interoperability of the applications provided by

the services.

Thus, many testing methods and approaches that are implemented for supporting SOA
experience unique challenges due to the former testability problems within organisations
deploying these systems.
One study [2] indicated that organisations at workplaces are conducting several different
approaches to solving testability problems, e.g. combining automation in the testing lab
and applying changes to the processes at an organisational level. Furthermore,
organisations are trying to increase the involvement and communication of the business
users in all phases of the software life cycle. Also organisations are now emphasising that
quality is not something that has to be required at the end of the software life cycle, but

should be considered as a trait that spans horizontally across the business processes. As

29

indicated in another study [13], the most important missing piece of building SOA
systems is the top-down approach, which considers testing disciplines throughout the
software life cycle and also encourages the project team to continually determine how
they would successfully test the system based on SOA [43]. Another study [123]
describes the common blind spots in SOA testing that testers are experiencing in real-life
scenarios. The blind spots focus on the areas of performance, security, SOAP, WSDL, and
interoperability. The paper concludes that: “through collaboration with development
teams, with growing understanding of web services technologies, and with
comprehensive SOA testing tools, SOA testers can ensure that the SOA testing blind spots
are reduced if not eliminated”. Furthermore, most research reported in the literature
comes from low-level techniqugs and implementation details [107], and there is a need
for more formal and disciplined implementation of these standards and protocols
[53],[49],[108]). Much research, which deals with run-time testing is correspond to the
experiments implemented in lab and available for exploitation; however, it's not yet used
in real industry environment and its transformation to the support industry is an
awkward and uneasy task [91],[95] .This mainly can be resolved using specific protocols

of communication and collaboration between the different end points [18],[49].

2.5 Conclusion

In this chapter, in order to establish testability design knowledge and to identify SOA
testability problems and consequently improve the testability degree, which leads to
designing a suitable automated and standard-based framework a comprehensive
investigation is conducted to understand SOA technologies, principles, standards and

protocols. In addition, a wide analysis is carried out to breakdown and classify the

30

technical role and characteristics of the standards and protocols of the web services
protocol stack within SOA implementations. Moreover, an extended classification is
concluded to classify the elements of the web servicés protocol stack according to its
relationships with different logical layers across the extended SOA. Many testing methods
and approaches that are implemented for supporting SOA are experiencing unique
challenges due to the testability problems within organisations deploying these systems.
The chapter concludes that there is a need to adhere to SOA standards and protocols, as
they will progress SOA implementations beyond basic connectivity mechanisms between
service providers, integrators and consumers to a services run-time composition
mechanism, which supports external process (business-to-business) integration and

cross-internal (process-to-process) integration.

31

Chapter 3 - SOA Testing Approaches and
Tools

3.1 Introduction

In the research related to SOA systems testability, several initiatives were conducted with
the intention of providing testing approaches and frameworks that support the IT
industry which experiences unique challenges deploying and testing these
systems[36],[76],[11],[68]. In general, in the area of SOA testing, one faces the problem
that common traditional functional and non-functional testing can be very crucial,
extremely time consuming and error-prone. Having research through which to view the
literature shows there is less research on how SOA services spread around several
different computing locations can be tested.

Furthermore, in relation to SOA systems testing coverage, many SOA systems defect and
shortcoming reliability issues stem from the fact of poor specification of functional
requirements coverage. Typically, SOA system test cases are designed manually by a test
engineer with no particular test coverage criteria in mind. As consequence, the typical
test case suite covers only about 60 percent of functionality [118]. On the other hand,
generally, SOA test automation has gained ground, and accordingly there many tools for
automated testing on the market. However, most of these tools simply automate tests
that are manually designed. Hence, if the design of a particular test is flawed, or if the
suite of tests does not provide full coverage, the test automation offers limited value.

In this chapter research on SOA testing criteria will be considered. What has been done

so far in terms of SOA testability knowledge including approaches, frameworks, and tools

32

will be presented. These related research tools will then be evaluated and classified

according to relevant testability methods and strategies.

3.2 Testability Challenges

The adoption of SOA has changed the architecture of computing systems where it caused
many changes in the process of designing, building, and using the systems. Furthermore,
it has affected traditional testing processes due to several implications in the testability of
a system based on SOA. In essence, implementing the important features of SOA e.g. the
reusability and interoperability brings up many testability issues. Moreover, the dynamic
discovery and invocation methods like runtime binding or dynamic composing between
services, allow a flexible and dynamic method of composing the SOA services just at
execution time. In this instance, this restricts the ability to test SOA systems beforehand,
as the context of any SOA service is often unknown only at run-time. In addition, it
restricts testing real-time synchronisation and asynchronisation messages between the
different SOA providers and consumers within heterogonous environments. Therefore, a
successful SOA test coverage may realise some or all of these benefits and features
depending on the quality and requirements’ relevance in the SOA implementation
designs. However, these implementations pose problems for SOA testers to predict and

foresee possible requirements and test usage scenarios between SOA services providers

and consumers.

Thus, the idea of testing is challenged by the SOA unique features; primarily it is the
distinct SOA testability knowledge that overlaps with research in relation to the SOA
unique features e.g., the automated SOA services discovery in heterogonous and runtime

binding invocation environments, which imply that the actual services and consumer

33

configurations which are involved in the service-client invocation are unknown only at
execution time. Hence, this limited testability issue of SOA systems appeals reconsidering
and redesigning the current traditional and automated testing approaches and to invents

new testing approaches and frameworks.

3.3 Current Testing Approaches and Tools

3.3.1 Background

In recent years, traditional manual and automated testing methodologies have been
applied to SOA systems, particularly by adapting combinations of unit, integration,
system and regression testing methods [36],(76],[27],[68],[17]. These testing methods
are normally based on test cases and oracles, which would usually be constructed
manually based on tester experience, or automatically generated according to system
specifications using test case generation tools. Yet, testing of SOA systems on account of
their specific characteristics is more complex than traditional testing methods allow,
indeed testing of SOA systems continues to become more complex and challenging.
Therefore, the traditional functional and non-functional testing approaches are no longer
sufficient. Nowadays, the dynamic composition verification, validation and monitoring in
real-time and at run-time environment are new and critical pieces of the overall testing
strategy [27],[115],[108]. Added to the mix, are service trustworthiness and robustness,
such as integration, performance and security testing, which rely upon run-time testing of
QoS parameters of individual services, which largely depend on business process
profiling. Still, most of the research approaches for testing SOA systems either extend the
traditional testing methods, or attempt to develop new frameworks or approaches by

addressing specific issues during the testing procedure [38],[36],[95],[120]. Numerous

34

contributions have been presented in the literature, primarily in the areas of unit testing,
regression testing, integration testing, SOA services orchestration testing, and testing of
non-functional properties. We reviewed related tools and frameworks. Based on that,
the current testing frameworks, approaches, and tools for testing SOA systems can be
categorised according to three testing methods and approaches:

1. Traditional software testing methods.

2. Adaptive SOA systems testing.

3. Testing and evaluation based on SOA systems standards.

The subsequent sub-sections provide descriptions through many SOA testing approaches,

tools and frameworks presented in the literature within each category.

3.3.1.1 Testing Based on Traditional Software Methods

The purpose of SOA functional and non-functional testing is to ensure that applications
are designed and function as expected, which are usually performed on service
components which construct the SOA system. There are common traditional functional
and non-functional testing tools, which can be applied in the software life phases of SOA
systems, such as unit (white-box), system, integration, performance, compliance,
interoperability, and security testing. However, unit testing techniques require access to a
SOA services component’s code, which is not a practical test as they are required to run
in clients’ sites. There are many commercial products for SOA functional and non-
functional testing, for example Parasoft SOAtest [73] which is an automated commercial
web services testing tool which can support WSDL validation, client server unit testing,
and functional testing. Other commercial products can be used for unit testing, some of

which include LISA WS-testing [60], Borland SilkPerformer SOA edition [14], jBlitz [50],

35

and Agitar Agitator [4]. A set of test cases, both positive and negative, can also be
generated by SOAPSonar from a WSDL file [123]. The tool can discover defects in the
target web services using Gray box testing, in an effort to push Black box testing towards
White box testing. Prasanth et al. [117] proposed an automated utility called ATU
(Automated Testing Utility) for functional testing of the core web services standards;
WSDL and SOAP, by using Sax (Simple API for XML) for parsing WSDL file, Apache Axis
tool to generate SOAP stubs , and using manual input parameters to invoke web services
methods. Chan et al. [20] proposed a metamorphic testing framework for supporting unit
testing, and follow-up action is made automatically to generate integration test cases.
The framework applies a dynamic services integration test autonomously. Non-
functional, e.g. load testing can be done interactively by SoapUI [91] and TestMaker [75].
These are open source tools for testing web services which can also be used for scalability
and performance testing. Referring to this type of testing, Schieferdecker et al. [83]
presented an automated web services testing approach. The approach is a flexible test
framework for web services testing, using Testing and Test Control Notation (TTCN-3).
TTCN-3 is an international standardised testing language, which can be applied to a
variety of application domains and testing types [108]. TTCN-3 can provide service
interactions, functional testing, and load testing with flexible and various test
configurations. A conversion tool is used to automate the translation of XML data to
TTCN-3 notation based on the specification of the web service. In this way test beds can

be generated directly.

36

3.3.1.2 Adaptive SOA Software Testing

These approaches can handle a specific SOA systems feature, or particular function
testing, or they can offer an alternative presentation to a traditional testing method, e.g.
solutions focusing on dynamic composition of SOA systems. Generally, these approaches
are designed to make the tests shorter and more accurate. Mattsson et al. [57] propose
an alternative method to the traditional testing method, by creating complementary
roles to take responsibility for integrating the business processes and ensuring their
interoperability and service quality. These include a Business Process Integrator, which is
responsible for monitoring the interoperability and business process components
integration. Another role is Business Process Tester, which is responsible for testing the
overall business processes and validating them against their functional and non-
functional requirements. An automated composite testing approach in a simulated
environment is described [9] by Bartolini et al. The approach is called Service-Oriented
Coverage Testing (SOCT) and is composed of a service provider called (TCov) which sits
between the integrator and the service provider. TCov monitors test execution, and
provides results to the service integrator through a published web service testing
interface. An approach using an automated online test tool is introduced by Dustdar et al.
[82] for testing SOA and Component-Based Distributed systems. The work presents a real
life prototype called SITT (Service Integration Test Tool). SITT is designed in such a way
that it can also be used for monitoring SOA endpoints by using test daemons. Bertolin
[10] presented the PUPPET environment for the automatic generation of stubs. The tools
simulate the behaviour of the external services, which invoke a service under test

environment. The approach implements knowledge modelling techniques to generate

37

test cases from the functional specification, and from the SLA of the composed services.
Zhu [45] discusses the testability of SOA just before the invocation while the SOA
components are in the operational environment. The author proposes the creation of a
Testing Service (Automating Test Services), which can be either provided by the same
vendor of the functional services, or by a third party (an external Test Service).

A model-driven testing approach is presented by Lee [120] based on an MDA reference
model (Model Driven Architecture). The author proposes the implementation of a
business-centric SOA test framework, for testing SOA systems based on an MDA
reference model in a business-centric way. A test harness (called BOSET) is presented to
simulate business process functionality, so that it behaves as a BPM (Business Process
Management) method, and thus simultaneously tests the overall system performance.
Here, the test harness can execute business process, perform tests and create metric
values concurrently. Another approach which is also regarded as adaptive SOA testing is
the Data-Driven test using an ontology reasoning approach. This approach specifies
precisely the data that will be exchanged among service entities, in order to design test
scenarios in a methodical way. Offutt et al. [67] presented a knowledge modelling
technique for testing the interaction betv;/een pairs of web services using a Data
Perturbation approach. The technique is based on modifying values in the captured
requested messages, then sending the messages to the service consumers, and obtaining
the test results by analysing the values in the responded messages. Another Data-Driven
test tool called WS-TAXI [19] has been developed to provide a framework for generating
web service test suites. In this framework, the testers combine test coverage provided by

a SoapUl tool with WS-TAXI to generate data-driven test cases based on the XML schema.

38

An agent-based approach was proposed by Lennon [59]; the approach uses agents to
determine the different elements of composite web services, and to ensure they are
complying with the overall clients’ SLAs. The author considers these agents as a form of
middleware between clients and service providers. Moreover, Taranti et al. [71] proposed
using a MAS for testing SOA systems. In this research, the agents are deployed as
external testing simulators, which act as providers and as consumers within the SOA
system. These simulators were developed to test the critical functionalities and qualities
of ship monitoring systems in order to improve safety and security at sea. The system is
used as an interface for the integration testing phase, and also to obtain performance
metrics for validating non-functional requirements of the system. The system was
developed by the Brazilian Navy. Lazarou et al. [99] highlighted the research which covers
the deployment of software agents to support software testing. The authors concluded
that the proposed work is theoretical, and there is an important need for tools to be
developed to verify and validate SOA systems, mainly through the use of test agents. The
authors add that current approaches have researched the prototype levels, and
implementing a richer variety of test agents is advisable. In particular, a highly significant
approach would be to employ deeper intelligence techniques, e.g. machine learning,

consecutively as this will enhance agent capabilities.

3.3.1.3 Testing Based on SOA Systems Standards

These are the frameworks and approaches which can handle the testability of SOA
systems, according to architecture industrial standards, e.g. the Open Group, OASIS and
OMG standards organizations. These frameworks require understanding of the various

emerging standards from W3C for testing SOA systems, from the perspectives of service

39

provider, consumer, and services registry (UDDI). The most important of these emerging
standards concerned with the service composition, are the Web Ontology Language for
Services (OWLS), the Choreography, and the Orchestration standards [115]. Web service
orchestration is defined as a specification which aims to standardise integration logic and
long-running processes across web service systems. Some popular open source products,
such as SoapUl, JUnit and TestMaker, can be used for testing orchestration of services
which are involved in the communications between business services and application
services [120]. A framework utilising architecture industrial standards is presented by Dai
et al. [42]. The framework uses model checking for web service compositions, which is
based on the BPELAWS standard. Another piece of research on testing service
composition is presented by Bucchiarone et al. [17]. The work highlights the status of
testing techniques using standard approaches for web service composition, and discusses
strategies for doing integration testing from orchestrations and similarly from a
choreography perspective. Canfora and Penta [36],[38] addressed the challenges of SOA
testing from the perspective of applying an non-traditional testing approach. The authors
discussed testing a service discovery feature, focusing on run-time discovery of services in
open environments, with late binding availability. The authors propose combining testing
and monitoring as an alternative method of traditional testing for SOA systems. They
propose testing the SOA system by continuous self-checking and monitoring of the
services during execution time, while using complementary roles for testing and run-time
monitoring. Bertolino et al. [11] also suggested active auditing and testing of the services
by the web services registry. Dung Cao et al. [28] propose a passive system testing

approach for verifying observable traces of messages sequences between web services

40

providers and consumers using set of real-timed constraints. Passive testing is usually
used as a monitoring technique for detecting and reporting system errors when active
testing method cannot be performed. Active testing allows testers to interact directly and
find problems with the system under test [28], while passive testing is better suited as a
troubleshooting approach to identify source of problems on a web services site after they

have occurred [3].

3.3.2 Current SOA Testability Summary and Evaluation

Having navigated through many SOA testing approaches in the literature which involved
manual and automated testing methods, these approaches can be defined as a
combination of unit, integration, system and regression testing. The test cases and
criteria can be established, and updated according to test beds. Test cases are
constructed manually based on testers’ familiarity and experience of the SOA system
under test, or generated automatically from source code, or using Model-Driven
Architecture (MDA) testing [119],[9]. Many of these approaches and tools are applied
over SOA systems in typical simulated environments [10],[73],[99],[94],[119]. Other
online testing and monitoring approaches are presented along with other SOA testing
approaches [9],[76]. The approaches propose testing the SOA system in relation to
dynamic binding compositions at run time. This is done by the continuous self-checking
of SOA systems, and monitoring the services during execution time, while using
complementary roles for testing and run-time monitoring, in the process of testing the
overall SOA systems.

Testing SOA systems is attempting to be a more automated and self-managed process

[30]. Various automated approaches have been proposed and developed, which can

41

support the generation of test cases from system specifications based on web service
ontology languages [27),[114]). The test cases and criteria can be established, and
updated according to test beds. Test cases are generally created from service
specifications, service contracts, or service log files, and also from user inputs. Test cases
are generated also from communication messages and events between services and
clients in a typical SOA architecture, and via typical simulated test environments.
Moreover, industry and software engineering have not kept up with the emerging SOA
standards and protocols, most importantly for dealing with run-time services’
trustworthiness, and overall quality assurance [58],[{115],[41],[56),[25].

Moreover, several frameworks utilised automated testing using the MAS techniques in
the development and testing phases. The agents can create and execute different test
types in each phase of the software life cycle. Several frameworks cooperate as multi-
agents working together in parallel in order to minimise testing resources, time and costs.
The multi-agent can perform positive testing to verify the required functionalities, and
they can perform negative testing to ensure the robustness of the systems by using
specified inputs from internal sources or invocation. However, most of these MAS test
systems are used as typical simulators in traditional user-defined test environments.
These simulators are easy to use although they ultimately fail to capture most of the SOA
real-time environment characteristics [113). Moreover, simulating the behaviour of
external SOA services to invoke a service manually under a test lab, or in vitro [22] is not a
valid test due to the essential idea that there are simply too many possible SOA system
configurations and options to test in variant client environments, ultimately this requires

wide test environment scenarios.

42

Additionally, testing SOA systems’ lack of sophisticated tools provide better testability
knowledge and deeper intelligence, this includes MAS, or any other automated system
[59]. These systems need to be implemented in realistic and automated testing
approaches with the ability to apply the testability knowledge about SOA system under
test within accurate and specified test environments, and generate test cases and analyse
the outcome as measured by effective testability criteria.

Thus, as testing SOA systems is more sophisticated than traditional testing methods,
which is basically because SOA systems are distributed applications with numerous run-
time behaviours, and using testing automation tools implemented in traditional
simulated environments cannot accommodate the fundamental characteristic of the
dynamicity and adaptability of SOA systems.

Moreover, the ideal approach to enabling an effective testability degree of SOA systems
should be based on combining test simulators as offline testing with online testing and
monitoring for validating and verifying the system, and service’s trustworthiness. The
system under test can be supported by realistic, controlled, and intellectual capabilities of
MAS frameworks. MAS will enable full automated offline-online testing, and monitoring
systems which are more practical and accurate than manual testing. MAS supported by
intelligent reliability can play a key role in solving much of the automation, monitoring

and quality assurance problems, because they can support proper tests and early defect

leak detection.

3.4 Conclusion
This chapter reports several investigations into means of improving the testability of SOA

systems. Nevertheless, many of the approaches and tools do not provide support for

43

input or output (test oracles) data selection, for which they still rely on the human
tester’s intervention.

Moreover, up to now, most of the research into SOA systems testing is still theoretically
based on formal methods, such as model checking and FSM (Finite State Machine) testing
methods. Furthermore, most reséarch into SOA systems test execution and verification
reported in the literature comes from low-level techniques and implementation details.

In addition, industry and academia have not kept up with the emerging SOA system
standards and protocols, most significantly with those for dealing with run-time service

trustworthiness and overall quality assurance.

Thus, some research dealing with run-time testing is available for exploitation, though its
transformation to support industry is a difficult, if not impractical task. A salient point in
the literature on automated MAS and other automated testing systems is the lack of
sophisticated tools that would provide SOA systems testability with deeper levels of
intelligence and prudence. In general, such tools and approaches could automatically
derive skeletons of SOA systems test cases and provide support for their execution with
continuous monitoring in real-time environments and result analysis. In the next chapter,
the proposed framework which will address many of the testability issues in SOA will be

presented.

44

Chapter 4 - An Intelligent Framework for SOA
Testability

4.1 Introduction

Based on the results of the analysis and substantive problems of the current testability
state of SOA systems in Chapter 2, there is a general acknowledgement that the concept
is limited due to a lack of observation and control of the testing processes. Furthermore,
based on facts from the literature review in Chapter 3, where an evaluation was
presented, it was observed that a numerous SOA testing approaches, frameworks, and
tools are proposed to bring structured solutions for improve SOA testability. However,
the existing approaches and frameworks are still considered inadequate to satisfy the
need for improving the testability of SOA systems. For that reason, these approaches and
frameworks are still theoretical and their transformation to support the industry is a
difficult, if not impractical task. Thus, this chapter proposes an automated and
systematic monitoring SOA system testability framework supported by the ML technique
and based on the knowledge discovery and data mining of protocols and standard
requirements and test coverage analysis. The framework provides a practical solution to
the testability problems in SOA systems by automatically establishing testability links
between the prerequisites of intelligent knowledge of SOA testability and the system
under test requirement and test coverage analysis.

This chapter describes the proposed framework for SOA system testability which aims to
combine existing computational techniques and methods for resolving the problems of
testability. The chapter starts by presenting a suitable approach for improving testability

in the context of integration of ML in the testability in which the new approach has

45

evolved. The implemented framework‘ is described together with all the required
modules and functional flow processes within the prototype framework. Finally, the

findings are summarised in the conclusion.

4.2 SOA Testability Status Recapitulation

The proposed framework acknowledges the use of offline-online testing and monitoring
to meet the lack of the SOA system'’s testability factors and improve the testability degree
of SOA systems. The proposed approach also acknowledges that the use of automated
and systematic testing software has now become a vital in the software industry.
Consequently, employing the intelligent reliability approach can be a very useful part of
SOA automated testing systems and would increase SOA testability.

However, the proposed framework approach also acknowledges the fact that systematic
requirements based on the functional and non-functional testing approach of SOA
systems are widely unexplored [53],[108],[41],[56],[114],[49].

The proposed framework approach also acknowledges the fact that SOA standards and
protocols define various aspects of standards and protocols, such as WS-* Architecture
which consists of a collection of such which are open standards specifications, for
example the transport protocol, document types, security requirements and
transactional properties. Hence, in order to guarantee interoperability and QoS between
SOA service providers and consumers, organisations that play certain roles in
collaboration have to support these standards or protocol specifications. If a standard or
a protocol specification does not cover certain aspects, these organisations have to agree

on them in order to achieve interoperability and QoS of their applications.

46

Moreover, with SOA, consistent monitoring of testing processes is required, this includes
input-out data, and subsequent analysis of test results to determine causes of the defects
and recommend solutions. Such a testing approach requires testability knowledge across
all heterogeneous environments and across all SOA services providers and consumers, so
that a proper fix can be applied to the SOA system under test.

For this reason, the proposed framework enables overall SOA nature and principles to be
determined, which can then be identified based on a requirement of SOA standards and
protocol. The proposed framework provides a practical solution to the problems by
automatically establishing testability links between prerequisites of SOA testability,
requirements coverage, test case coverage, dynamic testing and test monitoring, and test
coverage analysis. It is of interest to note that the focus of this research work is analysing
and improving testing systems as actual and applicable deliverables for the industry, and
accordingly increasing the testability of systems based on SOA principles, rather than

theoretical refinement of SOA testability design or testing processes.

4.3 Framework Conceptual Design

The conceptual design of the proposed framework is to utilise automation while using
two defect detection techniques: the dynamic and static analysis techniques and a
combination of both. Control and observation within testing processes are initiated by
using a static analysis technique to evaluate the system under test specifications
according to the WS-* Architecture. As pointed out in previous section, adapting WS-*
Architecture is considered the key enabler for deploying web services in the industry. By
adapting WS-* Architecture, the industry will also be able to adhere to the principles of

SOA. These principles give SOA systems an explicit goal of defining the modular

47

technology stack for supporting and resolving the communication and collaboration
between different parties within SOA implementations. The framework provides defect
finding using directed test generation based on learning properties from test cycles and
monitoring outputs. The process is supported by a Learning and Decision Making (LDM)
module for learning, reasoning and decision-making process (see Figure 4.1). The LDM
utilises knowledge about the SOA system under test and problem domains, and produces
the appropriate KB feedback for the requested modules within the system. The static test
and dynamic test analysis techniques can be performed in numerous ways based on the
properties of the service under test and on service specification. For example, a static
test analysis can be used to verify service specifications through web service interfaces
like WSDL, PBEL, and BPMN documents, whereas general dynamic testing analysis aims to
identify general defects in the entire system. The dynamic testing will be performed by
running test agents as simulators of service clients for consuming the SOA services. Test
procedures will be described in test case scenarios which define the system'’s input-

output and run-time environment settings.

48

Core
Features
Service

Characteristics E -I

Applications

"

Composition

Service
Inventory
Container
Service
Provider
Boundary

Figure 4.1. An overview conceptual design diagram of the proposed framework
architecture

The system properties learned from the LDM module are fed into the test case
generation system. The tests from this system are executed and their outputs added to
the testing data database. Each test cycle uses the LDM KB feedback as a guide to explore
new test inputs that were not explored in the previous iterations. As the test cases are
executed and the outputs added to the testing data database, the coverage of the tests is
enhanced, and test cases which are expected to expose defects in the system are
increased. However, many errors may still remain in the system that needs to be exposed
by formulating appropriate test cases for run-time properties, for example service

composition testing. As compensation for this, run-time operational monitoring explores

49

the paths and input data values that have not been covered by testing cycles. This can
support automated testing and early defect leak detection, and expose these remaining
defects. Also it effectively handles positive and negative tests during test executions, and
during run-time operational conditions. In general, using KB feedback from LDM module

will support the learning and decision making concept, and will be able to produce

effective quality level testing.

4.3.1 Functional Requirements Specification
This section highlights the functional requirements and relationships between different

modules in the proposed approach. Figure 4.2 illustrates the functional requirements

specification of the proposed architecture.

50

Web Services
Log files

8-

| BPEL

WS Policy
Definition

XML
Schema

@ WSDL

L LIVHLOQDBLH

(MAS)

Multi-Agent System .

—

D Data
E Intemal Storage

—_——p Aclion
Intemal Data Flow
p External Data Fy

—

.=

Figure 4.2. An overall view of the function relationships among the modules of the

Web Services
Specification
Documents

Web Services Specifications

framework

51

—

Monitoring
Administration MA
SR ..-—Peﬂorm—é— & —6—“”0"“—" module
J SAA Pfocli—uoo
Update
! b —&,
. '-4”“ Historical s'm’
= & 6'4; o e amad /S
ey | a8 Evaluation
Perform Farl'fonn 1)als
l Perform Web sarvices Logs
: Tow
Test Cases PR e A
AT Test Execution Learning :
‘Generation | I | ; — Analysis
adtie —] module i | Decision Making [module
I Web Sermcals Specifications
Produce | | Produce l Produce d‘“a Proc uce
Test Cases | l
Data | I / Spodﬂcation /]
Update Issl-:x'::u.lunl Updnte
‘ SCRNANOS | I <
- Knowledge- Web Services
TestCases | | | T |— | Based |4 — Specification
Metadata Storae Metadata Metadata
Slomee ‘Storage Storage
l —— —— ~—KB Feedback—— —— 1] p—— KB Feedback
Legend \

As mentioned in Section 4.2, a static test analysis can be used to verify service
specifications through web service interfaces, for example WSDL specifications. The
system analysis module employs system analysis agent (SAA) to perform static analysis on
service specifications, SAA analyses the SOA system to determine system properties and
behaviour by extracting the required data from WSDL structure. KB feedback will be
provided by the Learning and Decision Making Agent (LDMA) using a form of ML
algorithm. A decision-tree learning algorithm can be used for data mining the properties
and behaviours of the web service under test, and for populating the data set and
validating the discovered patterns. The decision tree learning algorithm classifies the
properties and the behaviour of the web service according to mapping and matching to
WS-* Architecture in an attempt to find possible requirement mismatches of the web
service properties and behaviours, which will allow for achieving and maintaining
adherence to SOA principles.

The system properties and behaviour obtained from the system analysis process will be
saved in the service metadata database. This data can then be used to generate test case
abstractions through the test case generation process. The test case generation module
employs a Test Case Generation Agent (TCGA) to generate baseline test cases, runtime
environments and execution scripts which are supported by intelligent learning and
decision making from the LDM module. The LDM module combines learning, reasoning,
and decision- making capabilities to explore web service characteristics, i.e. input-output
properties and parameters, QoS elements, and other operation conditions and
behaviours. Additionally, the defects and inconsistent execution patterns that were

captured during test cycles could form learning facts or premises in the intelligent

52

learning and decision-making process through the LDM module. LDM module processes
functional requirements and test coverage criteria by verifying and analysing the results
of test executions, and makes decisions that correspond to it and the targeted test
environment, these tests which will cause the service under test exercises positive or
negative behaviours.

The Test Execution module will deploy Test Execution Agents (TEAs) to carry out test
simulation tasks. The test execution tasks could include for example, service invocation
under given a simulation task by a test scenario. Test Execution module then performs
test result analysis and inputs the results in metadata database. LDM then analyses the
output data obtained from test execution procedures, and verify the condition of the test
cases determining whether the test cases have met the initial test objectives. Otherwise,
new test cases need to be generated, targeting the service under test to exercise the
behaviours which are outside the executed test cases. The test outputs at the end of each
test cycle will be joined to the earlier data inputs in the metadata database, this data will
be used by the LDM module in the process of exploring and exposing advance defects.
The LDM module provides automated KB feedback as a guide to explore the test outputs
that were obtained from the test cycles. Hence, this concept supports the
implementation of the intelligent automated testing and defect detection approach.

The Monitoring module deploys Monitoring Agent (MA) to perform operational
monitoring. This process will allow for learning useful facts from operational monitoring,
and exposing the errors which may still remain in the service under test through offline
testing, for example, run-time service composition by service consumers within live

heterogeneous environments. MA monitors web service log files in real-time, and checks

53

for the errors caused by the interaction between service requester and web service
provider. MA then will transform these errors to a specific format and then save them in
the historical database. The error logs in the historical database then can be used by the
LDM module as defect logs for analysis whether the different components of the web
service have met the requirements of the run-time operational standards. These defects
then may need to be exposed by the creation of appropriate new test cases. This process
effectively handles positive and negative tests during online operational conditions.

On the other hand, the administration module uses the administration agent (AA) to
control certain aspects of test agents’ allocation, schedules, and administration such as,
MAS executions and synchronisation in real-time conditions. AA administrates and
o.bserves the simulation tasks in real-time and makes the MAS environment controllable
and flexible. AA also will help the modularity, scalability, and interactivity between the
test agents, through administration in a distributed MAS environment.

The subsequent sub-sections provide a description of each module in the proposed
approach, which can to be read in connection with the accompanying module’s flowchart

diagram.

4.3.1.1 System Analysis (SA) Module

The System Analysis module systematically captures and classifies the core functional and
QoS standards and specifications of the web services under test. The captured data will
then be used in the process of generating test cases, and in the processes of test
verification and validation. Furthermore, as mentioned previously, the focus of this
research is on including the WS-* Architecture within the testing process, to specifically

enable effective automated testing and increase the testability of SOA systems. The

54

System Analysis module analyses the web services specifications using the WSDL and
possible BPEL and BPMN documents. These XML files can be used to define the necessary
standards and the protocol implementation requirements by means of a formal contract
between the web services consumer and the web services under test. Figure 4.3
describes the cross-functional and data flow within the system analysis processes. The
flowchart diagram exemplifies the technical details of the activities of the underlying

design of this module.

Web services
specifications
WSDL,I’'BEL,SLA

ML ML
Classifier Classifier
19X | b
Process flow o
Data Mow
Process flow Process flow
\ |__
= ML classification ML classification of
Web services of WSDL static WSD1
specifications | o ..o [— analysis in Process flo ${ implementation
parsing relation to WS-* static analysis
(§1] (2) 3)
ata flow
v Data flow Process flow
Fa" Fa
v [
ML classification of = . - ML classification of
.QoS system ¢ - 2 § . Process core system
requirement coverage p— Cow — - e] requirement
analysis B coverage analysis
(5) T ML T ML “)
Classifier Classifier
System ¥ N
Metadata reguirement cs 20
dalabase Data flow & coverage Data flow
analysis data

System requirements mismatch

Figure 4.3. Functional process flowchart of the system analysis module
The System Analysis Agent (SAA) activates by receiving an Agent Communication

Language (ACL) message with “start SA” content from AA.

55

Accordingly, the SAA first parses the available WSDL and BPEL documents and transforms
them into a structured DOM (Document Object Model) tree (see Step 1 in Figure 4.3).
Subsequently , the WSDL Static classifier (see step 2 in figure 4.3)—a machine-learning
classifier and an implementation part of LDM module is used to generate SOA web
services under formal test requirement and specifications data according to the core
functional and non-functional (QoS) standards and specifications within the web services
protocol stack.

Next in Step 3 in Figure 4.3, another machine-learning classifier of the LDM module—the
WSDL Implementation Static classifier is implemented to support SAA and generates the
conventional core implementation parameters and variables of web services under test
such as, operating methods, agreement binding, message types, service description,
service publication and discovery based on core functional standards and specifications in
the WS-* Architecture. Generally, this data is required to achieve successful invocations
and interactions between web service providers and consumers.

Next in Step 4 in Figure 4.3, another machine-learning classifier of the LDM module to
support SAA, the System Requirement-Coverage classifier uses the outcome of data
mining process knowledge from previous steps to define and classify a structural
machine-learned requirement-coverage metric. The metric will be then used to guide the
test-data generation and to derive a test suite. The System Requirement-Coverage
classifier process data mining to identify and assess the core functional characteristics of
the web services under test. The Requirement-Coverage classifier uses a mismatch
checklist to identify the possible requirements mismatches of the service core

components according to the WS-* Architecture. Thus, the SAA with the support of LDM

56

module will determine if the system under test requirements is valid according to
outcome of the data mining of the core requirement-coverage analysis.

Similarly, in Step 5 in Figure 4.3, the QoS System Requirement-Coverage classifier
generates QoS requirement-coverage analysis metrics as structural and machine-learned
coverage criteria of the web services under test, and according to the non-functional-QoS
standards and specifications within the WS-* Architecture. The QoS System Requirement-
Coverage classifier uses the outcome of the data mining process by the WSDL Static
classifier (Step 2 - Figure 4.3) which contains the mapping references of the QoS for web
services under test specifications to the QoS protocols and standards within the WS-*
Architecture. This includes messaging, addressing, security, reliability, transactions and
so on. These protocols and standards support simple and complex QoS requirement
message and behaviour patterns between web services provider and consumer. For
example, if a web service being tested is advertising QoS as WS-Policy assertions then a
set of behaviours concerning those properties can be used in conjunction with the web
services provider and the consumer messaging communication patterns.

Accordingly, a training dataset is used to set a classification model of the possible QoS
classification for each specified QoS protocols and standards within the web services
protocols stack. Each class then set to tuple—sample data patterns which are assumed to
belong to each QoS class mapped to syntaxes, semantic and rule are provided in the
training dataset. A predictive machine-learning algorithm—the J48 decision-tree classifier
[61), is used to learn the training dataset, modelling a classifier model for the QoS System
Requirement-Coverage classifier. Eventually, the QoS System Requirement-Coverage

classifier searches for syntaxes of the QoS behaviour properties and values for the

57

possible QoS data mining. The process of data mining determines the setting of the web
services client’s test-harness environment that will be needed in the test case generation

and test-execution of each operation.

4.3.1.2 Test Cases Generation (TCG) Module

The Test Cases Generation module generates systematic automated test cases supported
by the machine-learning method. The generated test cases range from a formal test
cycle process to scheduled ad-hoc test cases. The process of test case generation adapts
the static reasoning analysis technique based on system input-output and QoS properties
obtained from the web services under test specification data mining tasks from the
former system analysis process. The test cases generation module covers all the
combinations of the WSDL elements by performing the systematic generation of black-
box test cases. For this reason, the approach applies the Category Partition (CP)
technique [97] to the WSDL. CP provides an approach to identify the relevant input-
output parameters and QoS conditions and enables their values to be combined into
datasets of categories and partitions. Once these datasets are available, a machine-
learning algorithm is used to learn the rules that relate to the generating sets of
(category, choice, and constraints). The indicated constraints will be produced using the
Equivalent Classification Partitioning (ECP) technique [65], which can then be used for
generating abstract test cases. Practically, the identifying individual operation of the web
services under test can be carried out separately. Figure 4.4 illustrates a flowchart

diagram of the cross-functional and data flow of the Test Cases Generation module.

58

System
requirement
el
pmccss

Process llow

v

ML system

requirement

analysis &

requirement-
coverage data

Data flow

Test
database

Data flow /

" Apply lme!esf;
inputs & Oracles

Data MNow

Test data
Cateyury
Partitioning
(1p

ML classifier

%

ML classifier

Process flow

l'es! case [rames
lﬂl etfmhnn

/

Frocess
Now

No

N

Generate true test
inputs & Oracle- lest
execulion cycle

(7

Data flow Pm('e'lm flow Data flow
ML test data
Eqjuaivalent Class
Partitioning ——Process flow——w
2)
Data flow

ML test dala QoS
Equivalent Class
Partitioning
[&]}

Process Mow

|

Test case
pencialion

(£ 1]

|

Process (low

Irocess
flow

QoS test case
generalion
(5

Generale lest
execution cycle

(6)

Process
[llow

Figure 4.4. Functional process and data flow flowchart diagram of the Test Cases
Generation module

The underlying idea of using these techniques is to develop a systematic and automated

static analysis and structural formal specification-based test cases generation approach,

by using a MAS. On the other hand, the Learning and Decision Making module can

produce correct classification decisions based on training datasets to capture new data

tests.

Initially, the test case generation starts with the CP procedure (Step 1 in Figure 4.4) by

capturing and identifying the data from the results of data mining of the core and QoS

requirements specification of the web services under test, which already is saved in the

metadata database. For each of the web services® WSDL, the process identifies and

59

classifies the web services data into categories of operations, input-output data type
properties, and QoS characteristic values. The possible default-explicit input-output data
type properties are further constrained by restrictions called XML facets, which are used
to define the acceptable values of the XML elements and attributes [116]. The possible
WSDL data-type input-output facets can be classified into input and output equivalent
value ranges using the ECP technique (Step 2 and 3 in Figure 4.4). The different
combinations of input data classifications are selected and arranged into test sequences.
The Test Cases Generation module then writes abstract frames of the test core and QoS
test cases (Step 4 and 5 in Figure 4.4) including the data result from CP and ECP
processes. Finally, the Test Cases Generation module transforms test case frames into
XML test-execution scenarios (Step 6 and 7 in Figure 4.4), adding the actual input test
values, expected result (Test Oracles), the test ID, and the test cycle number. For the
actual input test and oracles values, two approaches are adopted: (a) values can be
picked from an associated test inputs-oracles table, or (b) generated randomly according
to the input value conditions that are derived from the ECP step. The generating test-
execution XML files can include test inputs and oracles manually as required by the user.
Accordingly, the Test Cases Generation module configured as “Apply true oracle?” option
(see Figure 4.4) for including true test inputs and oracle assertions (the exact values of
expected test results). The true test inputs and oracle values are specified in the
test_inputs_oracles table in the metadata database. Hence, the XML test case files are
updated with the exact value assertions by the “Generate true test inputs & oracle- test

execution cycle” (Step 7 in Figure 4.4). The true test inputs and oracles are determined

60

by manual analysis. Actually, this is the only manual effort required during the testing

process.

4.3.1.3 Test Execution (TE) Module

The Test-Execution module utilises TEAs for serving as entities which are capable of
carrying out automated testing processes. The process includes test execution simulation
tasks, performing server response analysis, and feeding the test executions results into
the test database. The test simulation tasks could be for example, exploring inconsistent
execution conditions based on run-time monitoring events, or scheduled test harness to
demonstrate defect finding in accordance with the SOA principles. The typical objectives
of a test harness are; (1) to automate the testing process, (2) to execute the test suites,
and (3) to generate the associated test execution results logging.

TEAs simulate test service consumers and execute tests according to inputs, outputs, and
service behaviour test data through the test cases. TEAs behave as service invocation
stimuli either based on test case formation or based on run-time operational events,
which are received from the administration module. The test simulation outputs at the
end of each test cycle will be joined to the earlier inputs in the test database, which will
be used by the LDM module in the learning, reasoning, and decision-making processes
within the monitoring process. Figure 4.5 demonstrates the workflow of the activities

within the test execution module.

61

Parse/extract/
filter data from
Tesll:‘.ase;d I Test case execution
genera.lwsr: e XML files
proce: (1)
i Process flow
Process flow Data fiow l
Test case Perform tes!
> frames XML execution
/ files (2)
Process fiow
Test. Perform QoS tast
axecution rocess flow execution
data 3
(3)
Data flow Parse/extract/

filter data from
test execution
response SOAP
message
(4)

Test_execution
data <&
table

l¢————Process flow

Figure 4.5. Functional process and data flowchart of TE module
As mentioned earlier, the LDMA also searches for any applicable QoS behaviours
mapping the data to the web services protocol stack, this data is included in the XML test
cases as part of the headers, which are afterward used by the TEAs for test-harness
implantation which include test environment setup, test-execution, and test-execution
response report of the web services test client. Through Step 1 in Figure 4.5, the TEA
parses and identifies the test data in the test execution XML file; the data includes the
web services name, the target name space, the end-point URL, the port name, the
operation to be tested, the unique Test ID, the HTTP and the request test message body
content which includes the test inputs parameters. Moreover, the identified test data
includes the environment settings, which are required for implementing the test harness
of the web services test client or consumer at the time of creation of the SOAP message

communication dispatcher.

62

Through Step 2 and Step 3 in Figure 4.5, TEA is ready to initiate the dynamic testing
processes in order to validate the system and QoS requirements. The TEA executes XML
test-execution files using the unique test ID to identify and match test execution results
for each test execution simulation task. Simultaneously, the TEA waits for the web
services response message send from the web services under test in real-time. The TEA
generates test execution reports, by transforming the SOAP message to a data string for
parsing and extracting the test response data (Step 4 in Figure 4.5). The response data
includes the Test ID, the response Body, and the message content result. The TEA
updates the test_execation_data table in the test database with the test execution result
for each case according to its unique test ID number. The test simulation outputs at the
end of each test cycle are used by the LDM module in the learning, reasoning, and
decision making process, throughout the test validation procedure within the monitoring

process in the next stage.

4.3.1.4 Learning and Decision Making (LDM) Module

The Learning and Decision Making module makes use of LDMA to combine learning,
reasoning, and decision-making abilities in generating test-case scenarios and exploring
the properties of the test-harness implementation, such as test-execution environment
and the test-execution results for the web services tested. Predictive machine-
learning algorithms and implementation parts of the Weka system [61] are used to learn
the datasets that relate to the web services protocol stack. The learning system is trained
with the training datasets using classifiers.

As mentioned in Sub-sections 4.3.1.1 and 4.3.1.2, the LDMA classifies and maps data

properties and values of methods, input-output data-type of the web services under test,

63

and any core functional standard and specification, for example the web services name,
the target name space, the end-point URL, the port name, the operation to be tested, the
output method name, the output expected data-type name, and the output element
type. Also, the LDMA searches for QoS behaviour properties and values in the web
services specification metadata database, mapping service specifications to the web
services protocol stack, from which new test-execution environment classification cases
may be predicted. The TEAs use this data to set the test-execution environment of the
web services test client or consumer when the SOAP message communication dispatcher
is created and the web services are invoked. Additionally, the LDM module verifies and
analyses the test-execution results, and obtains the decisions corresponding to the web
services protocol stack, realised from the web services specifications. Defects and
inconsistent test-execution patterns could arise from the facts or premises of the testing
process. The LDMA will have access to the test database, which contains defective data,
tracking logs, system properties, and QoS characteristics of the web services under test,
according to the web services protocols stack which includes messaging, addressing,
security, reliability, transactions, metadata exchange, etc.

In general, the feedback from the LDMA will support the learning and decision making
concept, and will be capable of producing effective quality-level testing. In accordance
with the expected test outputs, the LDMA can analyse the output data of test executions
of the baseline test cases, classify their condition, and determine whether they have
meet the test objectives. If not, the generation of the new test cycle is targeted to cause
the system to execute the re-testing process. Figure 4.6 shows the activity diagram of the

LDMA supporting classification and data mining of other modules in the framework.

64

System Analysis module Learning & Decision Making module

Monitoring module
0 @<)

. s » Start Monitoring Agent
suﬂzy’;:&'}n"”“ Aget Start Learnirg and Decision Agent “StartMA”
St "Startl DMA ~
Analyse l Monitor
Learn

@tl system sprcificdiuD
| Read server log
Grigp,rr data mining process
(Trigger data mining pm(ess})

@menu system & QoS requirement

enecrales monitoring statistical reparts

S—
A

Make decisions) .
Trigger data mining process
Trigger data mining pmua—

(Cenenlc Knowl:dge based [eedbacg

‘ System & QoS cuwugeana]}ri@ l Generate test results .llulyii.b
— e

Test Cases Generation module

Start Test Cases Generation Agent
“SantTCGA™
~

Generale test cases
(Gmmte test data CP!‘ECB
e

Trigger data miniag pm:ch‘

—
@cmute test cases coverage analysis

-

o

@cmnle test case frames)

(rrlggcr data miniag pmctsb—

Figure 4.6. The activity diagram of the LDMA supporting classification and data mining
of other module in the framework

65

4.3.1.5 Monitoring Module

The system Monitor module deploys MA to monitor the web services in the real-time
environment. MA monitors and checks service log file for messages occurring throughout
interactions between service requesters and the web service under test in active status,
MA then reports these messages and transforms them to types of customised messages
which can be used by the LDM module, it then saves these messages in the
System_Historical_Data database. This data will be considered as observed learning
inputs at a monitoring period. The LDM module will analyse and judge whether the
components of service meet the requirement of the system operational standards,
otherwise it will need to expose new test experiences and extra maintenance effort to be

directed. Figure 4.7 shows a flowchart of the monitoring module.

Test Execution
model

process

Monitoring Web .
L I"rocess (low—— historicalweb | process flow, 1 e; wr;:]m
' services logging —| logging analysis
W i
Process flow
ML classifier h 4
Test invocation
Data flow | "X log a:';:l ysis
System_ *
Hislorical da Process
ta database flow
v I
1 Test invocation ML test coverage
Data flow log analysis & test analysis fp————T"rocess flow
coverage analysis (E1]

Figure 4.7. A flowchart diagram of the Monitoring module

66

The monitoring process includes run-time operational monitoring of the web services log
file for messages and logs sent between the web services test client and web services in
real-time (see Step 1 in Figure 4.7). The MA generates monitoring analysis and statistical
reports, including Test ID, Message 1D, HTTP Request and Response Body, message
content, etc. (see Step 2 and Step 3 in Figure 4.7). The MA updates the
System_Historical_Data database with the new results test invocation analysis for further
test coverage analyses. The results of the testing data metrics become an input for the
trained machine-learning classifier. Using the J48 decision-tree classifier, a new classifier
model is trained with the training dataset to validate against the testing dataset (see Step
4 in Figure 4.7). According to the testing results, the LDM module will judge whether the
test executions of the test cases meet the expected results and requirements of the QoS

system’s operational standards.

4.3.1.6 Administration Module

The TEAs will be required to run as scheduled test harness executions, or as concurrent
multi-agent executions which make the simulation tasks for a number of test executions
within distributed environments. As a result, TEAs may need further instruction from AA
in order to execute test cases properly. AA extended the proposed approach
infrastructure to run-time infrastructure which supports agents’ allocation, schedules,
interaction, and synchronisation. AA sends task events based on formal test cases or on
given test conditions captured though system monitoring log files which are already
saved in the System_Historical_Data database. The AA passes the external events as
discrete monitoring events and once an event comes from the monitoring agent, the

administration agent will put the event into its waiting queue in the metadata database.

67

The events in the waiting queue will processed depending on the test task allocation
procedure, i.e. if the allocation task procedure is formed as an multi-agent task
simulation, any incoming event can be processed as long as there is enough resource, if
the system is formed as a single-agent simulation, an incoming event can be only
processed until no one else is using the processing resource and so on. Figure 4.8
illustrates the sequence workflow diagram of the events between system administration

module and others module in the framework.

68

Adminiitration Agent System Ana ysis Agent " Learning & Decision Making Tesi Cases Generatio

LDM agent is Tinished
——
____________ v~i

Start QoS system requirement coverage classifier

— 2,1
Refersh iystem_analysis_kb tables
(—————----——-——qe)
LDM classification error - P)
e = e = = —— — ,"

Invalid cowe systermn requirement error |oR} :{,
2 — i — —— — — — — — —— —

fgent Agent Test Execution Agent Manitoring Agent
] | | T
L | 1
Start SAA | |
Sa agent is finished '§'~; | :
[Refreat Systerm Analrss tables ,j : |
'S_M_Paf;B eror ¢ - I |
et R (OR} I I
Start WSDL Static classifier l
s |
LDM agent is finished "‘.}\ |
€ T Refenhssamapwspstables | \," |
Start WSDL Implementation Stabic clasdfier \\ |
LDM agent is finished PQ"":‘S‘\ |
P o e s Y -1 EA f |
Start system requirement toverage clasiifier " "(|
|
|
|
|
|
I
|
|
|

—
Start Test Cases Gm{ation Agent

| Starttesi category pamitions classif er
LDM agent is finished —\‘ DM agent i linished

k— mEh W IWmaTE | [T = —)
o = = e == — = = { Slart test equivalence class pantitions clissifier

A]
i
LDM agent is finished LDM agent & finished
¢ s o T obis —_—— e ——)|
e — e = K111 test QOS equivalence class partitions classitier

LOM agent is finished DM agent i« fnished
= = Ml BT — — | ———— — ——
e = = — ——— — Start test cases coverage analysis clasilfier

———— — ——— — ———— —— —— — —— — —— — — — — — — — — — — — — — — — —

LDOM agent is tinished DM agent s tinished
("-thuhlasl_m_cmrqe_lb we— | T T T T T T —
e LDM Agent error
ho— '___tom_-_.__.___)-n_,__‘
TCG agentis finished «)
(.—————————T—cé-:‘ir—terr-or--——-—_—'— '--.y‘

———— — —— — — — e e —— o — —— —) —
= l;ian Test Execution Agent [OR} |E

| TE agent[s) s finished

emmmm——— T T Tremgenterr T T T T

e

I Start Monitoring Agent

F______._...-_..-...—.—.-—.————_——__—.—-_-...—.-—-.—.--———-—-—-————-————————-l

Start LOMM Classifier
LDM agent is finished TCG agent it finished

o e e e | e e e e e e)

Refersh test_invocation_analyiis table

Figure 4.8. The sequence workflow diagram of the events between system administration
module and other modules in the framework

69

4.4 Conclusion

This chapter started by presenting a suitable approach for improving SOA testability, in
the context of integrating the machine learning in the SOA testing on which the new
framework has evolved. Then, the design of a new framework for SOA testability is
described which aims to combine existing computational techniques and methods for
resolving the problems of SOA testability. Then, aspects of the implementation of the
machine-learning SOA testing framework are elaborated with detailed descriptions
together with all the required modules and functional flow processes within the
framework.

In summary, in this chapter, the many aspects of the new framework for SOA testability
were considered. The approach provides a practical solution based on a functional
prototype to resolve the testability problems in SOA by automatically establishing
testability links between the prerequisites of intelligent knowledge of SOA testability and
system under test requirement and test coverage analysis. A suitable approach was
presented for improving SOA testability, in the context of integration of machine-
learning in the SOA testability on which the new framework has evolved. The chapter
presented the design and implementation of an automatic machine-learning framework
by means of a functional prototype implementation. The framework realises the
advantages of the MAS approach supported by intelligent reliability, such as preferences,
with purely SOA principles and a standard-based approach using the web services
protocol stack. This is essential to increase the QoS and level of deployment within both

academic and industry sectors.

70

The underlying idea of using these techniques is to develop an automated testing cases
generation module that applies a structural machine-learned core and QoS requirements
based specification—an automated black-box test cases generation process by using MAS
technique. On the other hand, machine-learned data mining process produces correct
classification decisions based on the training dataset applied upon new classification
cases. Then, an intelligent test case-coverage analysis supported by machine-learning
method is applied to determine that the test suite satisfies the coverage criteria
according to the core and QoS requirements specification of the web services under test.
An empirical evaluation of the functional prototype of the framework using practical
examples based on the quantitative data analysis of cost-effectiveness will be carried out
in Chapter 5, in order to evaluate and prove that significant saving in time and effort and
can be achieved by employing the developed framework.

Moreover, a practical case study will be presented in Chapter 6 to test and evaluate the
functional prototype of the framework by using it in a real-life business situation. It is
also to present the possible integration of the framework architecture in the current SOA
computing infrastructure, with aims of confirming the suitability of the proposed

architecture within industries, or companies and their strategies.

71

Chapter 5 - Framework Evaluation

5.1 Introduction

According to the Capability Maturity Model (CMM) by the Software Engineering Institute
(SEl), in order to assess and improve the IT architecture, all CMM compliant organizations
that have reached the specific level of maturity (Level-4 and above) must have
Information Technology (IT) architecture defined, managed, and all quality and
performance metrics captured, measured and associated with the IT architecture [39].
Within this context, the primary objective of studying cost-effectiveness metrics of
software testing techniques used by frameworks or tools could lead to measuring,
comparing and evaluating which lead in order to improve software testing techniques
and practices.

An analytical evaluation study has been carried out in order to evaluate cost-
effectiveness of the proposed framework exclusively by using the following key factor;
test cost, defect detection effectiveness and cost-effectiveness measurements within the
testing phase. All of these are considered as primary factors which can produce concrete
structures of test framework. The result helps to define high quality degrees of
frameworks in a cost-effective manner. However, though intuitively, the empirical
analysis of test cost and defect-detection rates are considered the primary parameters
for measuring cost-effectiveness of a testing technique, still they consider proportional
measures since there are other validity assessment factors. These validity factors can be
utilised for cost-effectiveness by comparison with other SOA test frameworks and tools.
For example, practically in relation to internal validity factor, the degree level of

automation for a testing technique could be determined by comparing it to current

72

innovative research, or typically comparing it to similar open source and commercial
tools. However, depending of the choice made, the results which are obtained from the
assessment could in realistic situations represent a lower bound in suboptimal if there is
no representative technology or available tools to match the specific level which is
encountered in the compared testing techniques. The following subsections will provide
analytical evaluation descriptions of the practical evaluation study of the functions of
each core module in the proposed framework. Then, in the following sections and sub-
sections, the proposed framework will be empirically evaluated and compared to other

frameworks and tools for testing SOA systems.

5.2 System Analysis Example

The System Analysis module first generates web services under test requirements and
specifications by parsing the WSDL document and transforms them into a structured
DOM (Document Object Model) tree. The WSDL data is generated by all data tags
according to standard XML syntax in the WSDL document. This includes filtering the main
WSDL’s tags-sections which are: the wsdl:definitions, the wsdl:types, the wsdl:message,
the wsdl:portType, the wsdl:binding, and the wsdl:service tags which are generated
based on core functional standards and specifications in the Web Services Protocols
stack. The WSDL data included in these six tags-sections is filtered and the extracted data
for each section is inserted correspondingly in six tables (named as WSDL extract tables)
within the metadata database. Figure 5.1 shows a screenshot of the six WSDL extract
tables including the extracted WSDL data following the System Analysis module parsing

process.

73

e —— _ WSDL XML parsing
‘Binding info_ | PortType info | Typesinfo | Service info | Message info | Definitions info | BPEL

| defintions | _binding | __operation input Body o

3 | definitions | definitions _ | binding type="ns.. |bindig type=TnsS._|operation name="gefTickerPrice- 5 binding ype=1ns StockTickerPrice” bind
2 l binding typ |binding t_p:De_=:T.nS' binaing type="ns'S operation name="getTickerPrice” s n'mcm'g type="tns StockTickerPnce™ dind
3 | binding typ ,blr‘}ﬂ!anr'ﬂe:_ms [pincing type="ns'S_ joperation name="getlastUpdated” binding type="ns StockTickerPrice” bind
1 | pinding typBinding type="tns: | |operation name="getLaslUpdated”

5 | binding typ | binding type=1tns | |operation name="getChange" soap

6 |pinding type="1ns: | |\operation name="getChange" soap

7 |pinding type=Tins |

8 |Binding type="tns. |

9 | bingding type="1ns |

10 I |pinding type=Tns. |

11 |Dinding type="tns

12 I |binding type="ns

Figure 5.1. A screenshot of the WSDL extract tables of the SAA parsing process

The WSDL Static classification model learns from the training dataset, which greatly
depends on the training data patterns which are presented in the dataset. Considering
that the web services protocol stack elements can provide the core functional and QoS
training dataset for the WSDL Static classifier, the training data patterns are investigated
according to the classification of the technical role and characteristics of the standards
and protocols of the web services protocol stack in the extended SOA design layers in
Sub-section 2.4.3.1. Each element in the web services protocol stack in the extended SOA
design layers is labelled as a categorical class within the training dataset. Each class is
then set to tuple—sample data patterns which are assumed to belong to each class, as
determined by the class label attribute and rule. Then, the classification algorithm
discovers knowledge from the training dataset and constructs a classification model and
can be evaluated using the evaluation module. The WSDL Static classifier uses a Naive
Bayes classification method [94], which is a simple probabilistic classifier based on Bayes’
theorem with strong independence assumption for text mining.

The WSDL Static classifier then performs WSDL text mining of the web services core and
QoS protocols and standards which are searched and captured from the WSDL extract
data, which new classification cases may be predicted according to their relationship to

core and QoS element within the web services protocol stack. The result of classification

74

is saved in a specific table (named as WSDL_TO_WSPS) as references for mapping core
and QoS services specifications to web services protocol stack. Subsequently, the
outcome of the above data mining is used in the validation and verification processes
which include defining core and QoS requirement-coverage metrics as structural
coverage criteria, the structural coverage metrics will be used to guide the test-data
generation and to derive a test suite including test execution environments. The test
suite will be used during dynamic testing implementation, and then during test
operational monitoring and test coverage metrics during the verification stage.

In order to train and build a classification model, the WSDL Implementation Static
classifier is trained by data patterns semantics which are investigated and mapped
according to the syntaxes in the generic SOA design layers as in Section 2.4.1.1. The
generic SOA design layers provide the core functional standards and protocols to achieve
a successful invocation and interaction implementation between web service providers
and consumers. Hence, these data patterns provide a data set of the request and
response messages exchange, the service data, and the signatures of its operations which
they need to be extracted from the WSDL elements.

Each element in the web services protocol stack in the extended SOA design layers is
labelled as a categorical class within the training dataset. Each class then set to tuple—
sample data patterns which are assumed to belong to each class, as determined by the
class label attribute and rule. These core functional standards and protocols requirement
syntaxes can be discovered and extracted from the six WSDL's sections tags which are
following : (1) <definitions> the root WSDL element which declare the namespaces used

in the document, (2) <types> element which contains the data types which will be

75

transmitted, (3) <message> element which contains the information about the messages
which will be transmitted , (4) <portType> element which contains the information about
the operations that will be supported, (5) <binding> element which contains the
information about the means which the messages be transmitted on, and the <service>
element which contains the information about the location— URL address of the service.
Then, the training data patterns semantics are classified and mapped to the syntaxes of
the core functional standards and protocols within the generic SOA design layers.

This data is required to achieve successful invocations and interactions between web
service providers and consumers. Collectively, this data is considered the core functional
and non-functional (QoS) testing resources of the formal requirement specifications of
the web services under test. Accordingly, in order to train and build the classification
model of the WSDL Implementation Static classifier, the semantics of the trained data
patterns are investigated and mapped according to the syntaxes of the core functional
standards and protocols in the WS-* Architecture design layers which provide the core
functional standards and protocols to achieve a successful invocation and interaction
implementation between web services providers and consumers. Table 5.1 lists the
applicable core functional standards and protocols syntaxes of the web services
implementation, which are used in the training data patterns. Table 5.1 also lists the

technical roles and the mapped WSDL tags syntaxes and attributes for each of the core

functional standards and protocols.

76

targetNamespace | Definition Must be the root element | <wsdl:definitions "targetNamespace="
url Declare the namespaces name="targetNamespace=""/>
used in the document
Name of the Service Define the name of the <wsdl:service name=""> "service name="
service service
Where the Service Defines the end points (i.e. | <wsdlsoap:address "address location="
service is address) of web service location=""/>
located?
Port name(s) Service Defines one or more <wsdl:port binding=""/> "port binding="
binding ports
How messages Binding Defines transmission <wsdl:soap:binding "binding transport="
will be media (e.g. HTTP, FTP and | transport=""/>
transmitted? SMTP)
Message style Binding Defines Message format <wsdl:binding transport="" "binding style="
type (e.g. SOAP, REST, style=""/>
XML-RPC)
What is PortType Defines the operation < wsdl:PortType input "input="
operation in- input elements to form a wsaw:Action=""/>
put(s)? complete one-way or
round-trip operation
What is PortType Defines the operation < wsdl:PortType output "output =" =
operation out- output elements to form a | wsaw:Action =""/>
put(s)? complete one-way or
round-trip operation
What is message | Message Defines the name of the < wsdl:Message message "message name="
name? request/response name= ""/>
messages
What is PortType Defines the name of the < wsdl: PortType operation "operation name="
operation name? service operation name=""/>
What are Message Define the message part < wsdl:Message part “part name=""
message part names elements name=""/>
names?
What are Message Defines the message part | < wsdl:Message part name="" | "part element="
message part elements element=""/>
elements?
What are simple | Types Defines the simple data < wsdl: Types element name "element name="
datatype names? type names used by the =""f>
web service provider and
consumer
What are Types Defines the complexdata | < wsdl: Types complexType “complextype name="
complex type names used by the name=""/>
datatype names? web service provider and
consumer
What is data type | Types Defines the data type < wsdl: Types complexType "element type="
value(s)? values used by the web name="" type ="" />
service provider and
consumer

Table 5.1. List of core requirement assertions and applicable training data patterns of
WS-* Architecture

Accordingly, the WS-* Architecture elements provide the core functional training dataset
for a machine-learning classifier. Each WS-* Architecture element is labelled as a class
within the training dataset. Each class is then set to sample data patterns associated with
each class and with a predicted classification rule which is determined by the class label

attributes and rule. Using @ machine-learning classifier, the LDM module learns from the

77

training dataset, which greatly depends on the training dataset size. A Naive Bayes
classifier [94]—a simple probabilistic classifier based on Bayes’ theorem with strong
independence assumption for text mining —is used as the WSDL Implementation Static
classifier for learning and classification of the WSDL data to the WS-* Architecture
elements. The classification algorithm discovers knowledge from the training dataset and
constructs a classification model and can be evaluated usiné the evaluation module.
According to the data mapping patterns from the 5.1 table, the WSDL Implementation
Static classifier is trained and a training dataset is built.

The WSDL Implementation Static classifier then processes data mining analysis by
extracting and classifying the grammar rules, properties abstractions, and concrete
elements of the web service under test from the WSDL extract tables in the metadata
database. The interest is including the web services name, the target name space, the
end-point URL, the port name, the operation to be tested, the output method name, the
output expected data-type name, and the output element type. The WSDL
Implementation Static classifier then saves the outcome of the data mining process for
further use during the validation and verification processes, which include the core SOA
principle, standard requirement-coverage, and test coverage measurement analysis.

The WSDL Static classifier then performs WSDL text mining of the web services core and
QoS protocols and standards which are searched and captured from the WSDL extract
data, which new classification cases may be predicted according to their relationship to
core and QoS element within the web services protocol stack. The result of classification
is saved in a specific table (named as WSDL_TO_Implement) as references for mapping

core and QoS service specifications to web services protocol stack. Subsequently, the

78

outcome of above data mine is used in the validation and verification processes which
includes defining core and QoS requirement-coverage metrics as structural coverage
criteria, the structural coverage metrics will be used to guide the test-data generation
and to derive a test suite including test execution environments. The test suite will be
used during dynamic testing implementation, and then during test operational
monitoring and test coverage metrics during the verification stage.

Next another machine-learning classifier of the LDM model to support SAA, the System
Requirement-Coverage classifier uses outcome of knowledge of data mining process from
previous steps to define and classify a structural machine-learned requirement-coverage
metric. The metric will be then used to guide the test-data generation and to derive a test
suite. The System Requirement-Coverage classifier process data mining to identify and
assess the core functional characteristics of the web services under test. The
Requirement-Coverage classifier uses a mismatch checklist to identify the possible
requirement mismatches of the service core components according to the web services
protocol stack. Thus, the SAA with the support of the LDM model will determine if the
system under test requirements is valid according to outcome of the data mining of the
core requirement-coverage analysis. Figure 5.2 shows a highlighted section of the
decision tree structure of the training dataset evaluation of the WSDL Implementation
Static classifier, which is based on core functional standard and specification

requirement-coverage.

79

rL‘;J Prefuse tree [System requirement covrage classification tree graph] —— - - -

i it RO AR b missing_part (1.0)

=2 =7

elementname (1.0)

R - oo

types_what_simple_dalatype_names missing_elementname (1.0)

=2 =7

complexTypename (1.0) tfes WM siple clatatype e

= complexTypename 1= complexTypename

ypa_vakies missing_complexTypename (1.0)

=7 =7

elementtype (1.0) types_whal _dati_type_values

= glementtype = elementtype

valid_system_requirement (1.0) missing_elementtype (1.0)

Figure 5.2. A highlighted section of the decision tree structure of the training

dataset evaluation of the WSDL Implementation Sztatic classifier

Similarly, the QoS System Requirement-Coverage classifier generates QoS requirement-

coverage analysis metrics as structural and machine-learned coverage criteria of the web

services under test, and according to the non-functional—QoS standards and

specifications within the web services protocol stack. The QoS System Requirement-

Coverage classifier uses the outcome of data mining process by the WSDL Static classifier

which is saved in WSDL_TO_WSPS table in the metadata database, the table contains the

mapping references of the QoS for web services under test specifications to the QoS

protocols and standards within the web services protocols stack. This includes messaging,

80

addressing, security, reliability, transactions, and so on. These protocols and standards
support simple and complex QoS requirement message and behaviour patterns between
web service provider and consumer. For example, if a web service being tested is
advertising QoS as WS-Policy assertions then a set of behaviours concerning those
properties can be used in conjunction with the web services provider and the consumer
messaging communication patterns.

Accordingly, a training dataset is used to set a classification model of the possible QoS
classification for each specified QoS protocol and standard within the web services
protocols stack. Each class then set to tuple—sample data patterns which are assumed to
belong to each QoS class mapped to syntaxes, semantic, and rule are provided in the
training dataset. A predictive machine-learning algorithm—the J48 decision-tree classifier
is used to learn the training dataset, modelling a classifier mode! for the QoS System
Requirement-Coverage classifier.

Eventually, the QoS System Requirement-Coverage classifier searches for syntaxes of the
QoS behaviour properties and values from the WSDL_TO_WSPS table for the possible
QoS data mining. The process of the data mining determines the setting of the web
services client’s test-harness environment that will be needed in the test case generation
and test-execution of each operation.

An example of data mining by QoS System Requirement-Coverage is the knowledge
discovery of the QoS semantics, such as the WS-Policy assertions mapped as QoS
protocols and standards in the web services protocol stack, from which new QoS
requirement-coverage classification cases may be predicted. A decision tree structure of

training datasets is built-up for further data mining of the new classification cases of WS-

81

Policy assertions. Figure 5.3 shows a highlighted section of the structure of the decision
tree from the training QoS assertions dataset based on QoS protocols and standards in
the web services protocols stack, which is based on QoS standard and specification

requirement-coverage.

r@ Prefuse tree lgos'symmm_qﬁi'm&é:tfof_age dm'_ﬁm"ﬁﬁ “.;,,'g‘mm';'f" - - = :I‘ . q

policyAssertionName]
=7 =2
policyAssertionType FGICYARSSINONCALEGONV)

- =2

missing_policyAssertionCategory (1.0) EIGSPAISMELSINSMELSITCIEHEY
;i =na 1= no
FORVASEIIBACATEGEIN QoSParameterValue _efficiency
= availabiity [=avalabiity)
missing_avaiabiityType (1.0) BElEVARRSILONCALEGONVY

= capacty 1= capacty

missing_capacityType (1.0) missing_efficiency Type (1.0)

Figure 5.3. A highlighted section of the decision tree structure the training QoS
assertions dataset

The QoS data-mining outcome is then used to guide the test-data generation and to

derive a test suite including test execution environments.

82

5.3 Test Generation Example
5.3.1 Test data Category Partitioning
Initially, the test cases generation starts with the CP procedure by capturing and
identifying the data from results of data mining of the core and QoS requirements
specification of the web services under test, which is saved in the metadata database.
The CP procedure decomposes the data into categories of operations, input-output
parameter properties, and core and QoS characteristic values. These categories are then
identified into partitions of choices of parameter types (a choice is a specific test input
and output parameter type or value for a category). For example, choices for primitive
parameter types can be selected from primitive data types of programming languages,
for example, integer, character, and string. The example below demonstrates the steps of
the approach.
Example: web services operation; find city temperature using Java primitive data type as
input-output parameters:

1. Classify the web services operations into categories using the CP technique, as

shown in figure 5.4:

Category Category Category

operation operation Core/ QoS standard
find_aty_temp find_aty_temp

Input: city_name Output: aty_temp <wsdl:*>

Figure 5.4. The result set of classifying the web services operations into categories

2. Partition the categories into choices, as shown in Figure 5.5:

Tnput: Gty_name Outpuf‘ qty_tm <wsdl:*>

Type: string Type: integer <wsdl:services
Length: Length: integer <wsdl :binding»
m:;:j cngth <wsdlimessage.»
minLength swidlitypes:>

Figure 5.5. The result set of partitioning the categories into choices

83

5.3.2 Equivalence Class Partitioning

The Test Cases Generation module uses ECP procedures to produce equivalence class
partitions for partitions of choices for input-output test data. In essence, most
programming languages provide values for primitive types which can be mapped to
represent most of the input-output XML data type conditions values (constraints). Table
5.2 contains examples of mapping input-output facet XML data types to the constant

value of the Java primitive data types [24].

String enumeration Integer. MAX_VALUE

length Integer. MIN_VALUE
maxLength
minLength
whutespace
pattern
Double enumeration minlnclusive Double. MAX_VALUE
munExclusive maxInclusive Double. MIN_VALUE
maxExclusive
whitespace
pattern

Table 5.2. Examples of mapping xml data types to Java primitive data type
(Note: The String class in Java programming language keeps track of the number of
characters in the array within integer data type range [101]). Taking that into
consideration, the input parameters and QoS conditions values (constraints) can be
combined as partitions of data as training datasets for machine-learning classifications.
Once the training dataset is available, a machine-learning algorithm is used to learn the
classification’s rules that relate to generating data sets of category, choice, and
constraints-classifications-rules. The Test Case Generation module uses the Naive Bayes
classifier to produce equivalence class partitions from the test data which is produced

from CP step , which consists of a set of operation names, data types of input-output,

84

constraints (conditions) which are determined among the choices of CP, the example
below demonstrates the steps of the ECP approach:

1. Determine the constraints among the choices using the ECP technique according
to the following rules [40]: (a) if the input condition specifies a range of values,
then define at minimum one valid and two invalid equivalence classes, (b) if the
input condition requires a specific value, then define one valid and one invalid
equivalence class, (c) if the input condition specifies a member of a set, then
define one valid and one invalid equivalence class. We then include any applicable

core functional and QoS standard specification, by implementing CP techniques.

Table 5.3 demonstrates the result set of the ECP step.

stning>mteger MAX_VALUE, minvahd Invalid error <wsdl:service>

output wsdlservice:name
wsdl:address
wsdl:port:binding:name
intger. MIN_VALUE=>stning>= Vahd <wsdl:service/ >
integer. MAN_VALUE,valhd output <wsdl ‘binding >
wsdlbinding:name
wsdlbinding:transport
wsdl:operation:name

stung<mnteger. MIN_VALUE, invalid Invalid error <wsdl :binding / >
output =wsdl:message>
wsdl:operation:name
wsdLlinput
wsdloutput

<wsdl:message />
<wsdlitypes>
Element:name:type
<wsdl:itypes/>

Table 5.3. The result set of the ECP step
2. With the test case generation approach identified, develop a list of test cases
frames based on possible inputs and expected outcome for the find city
temperature web services method using Java primitive data type as test inputs.
The ECP step generates test input values using Strong Normal Equivalence Class
Testing methods [40], which uses Cartesian Products for possible input values for
each of the input parameters. In Cartesian products, every unit of a group is
paired with every unit of every other group. Thus, all combinations of the inputs

across all groups are obtained. Hence, the ECP method promotes a design test

85

which ensures completeness and non-redundancy of test case generation. For the
find city temperature method which has one input parameter with three input
values, taking into consideration the special case conditions of the input values of
the parameter, e.g., lower boundary, upper boundary and zero inputs for each
web service method, 6 (6”n) test cases are generated. Table 5.4 shows the 6 test

cases which are identified.

[Conasting of one test case wath test input greater than the upper bound im‘xlt!

1

2 [Conashng of one test case wath test input below lowerbound Invahd
3 Konasting of one tast case with test input for correct number of input value Vahd
4 [Conastng of one test case wath test input of value of the upper boundary \ahd
5 [Conmshng of one test case wath test input of value of the lower boundary Vahd
6§ [Conashing of one test case with test input of valus of zero Vahd

Table 5.4. The list of test cases for the find city temperature web services method

3. The Test Case Generation module then writes XML abstract frames of the test
core and QoS test cases, including the test data result from CP and ECP processes.
These XML abstract frames also include the web services name, the target name
space, the end-point URL, the port name, the operation to be tested, the output
method name, the output expected data type, the output element type, the test
validity, the test type, and any applicable test environment and QoS condition
values.

4. Once the abstract test case frames have been defined, the Test Case Generation
module will automatically transform test case frames into XML test-execution
scenarios, adding for each test case the actual input test values, the expected

result, the test ID, and the test cycle number.

86

5.4 Test Execution Example

As mentioned earlier, the LDM module also searches for any applicable QoS behaviours
mapping the data to WS-* Architecture. This data is also included in the test cases as part
of the headers, which are afterward used by the Test-Execution module for test-harness
implementation which include systematic automated test environment setup, test-
execution, and test-execution response reports of the web services test client. For
example, if a web service being tested is advertising WS-Addressing protocol assertions,
then the QoS web services rules in the SOAP header description according to WS-
Addressing specification are applied. The WS-Addressing specification outlines a set of
End Point References (EPR) and Message Addressing Properties (MAP), as well as a set of
behaviours concerning those properties which can be used in conjunction with web
service provider and consumer communications to support simple and complex message
patterns in both asynchronous and synchronous communication types [105]. Table 5.5
list WS-Addressing protocol assertions and applicable mapping web services, as well as

consumers’ communications rules.

LY ssmg None twsamAction None e serice v essmg hea must not be
disabled expected used by the sender or recerver
Wo-Addressing weam Addressmg Addressable service The service capable of accepting
enabled connections on anetwork endpomt.

the wsa:ReplyTo refersto an
addressable endpomt
W5-Addressing wsp:Optional Service requures VW o- wsa'Reply o refers to an addressable
required Addressing endpoint is required and wsa:Action
property is required by the receiver
ynchronous AnonymousResponse Synchronous service The service required WS5-Addressing
required and required the use of anonymous
response EPRs
Asynchronous NonAnonymousResponse Asynchronous Service requires \W>-Addressing and
required service requires the use of nonanonymous
response EPRs
Request-Resporse | InputwiamAction + output | two-way messaging Service 15 expected to carry on
message wsam:Action service Request and Response messages
and requires the use of Request and
Response messages MAPs
“way message | Inputwsam:Action only One-way messaging Service 15 not expected to send SOAP
service Response and requires the use of
Requestmessages MAPs

Table 5.5. WS-Addressing protocol assertions communications rules mapping

87

According to the data and mapping rules, the LDM module determines the setting of the
web service client’s test-harness environment that will be needed in the test-execution of
each operation. A dataset can be used as a training set, according to the QoS standards
and protocols advertised by the web services under test. A predictive machine-
learning algorithm, the J48 decision-tree classifier [61], is used to learn rule pairs
(category, choice) that relate to the web services, modelling input properties to output-
domain equivalence classes according to the discovered WS-Addressing XML Infoset in
the web services under test WSDL. Figure 5.6 shows a section of the decision tree
structure from the training QoS WS-Addressing dataset. The LDM module searches for
QoS Infoset values in a specific table in the web services specification metadata database,
from which new QoS classification cases may be predicted, mapping the QoS
implementation of web services to communication types between the test consumers of
the web services under test. The Test-Execution module uses these settings to implement
the test harness of the web services test client at the time of creation of the SOAP

message asynchronous or synchronous communication dispatcher.

88

r@ Prefuse tree [QoS system W*Mm teegraph]] =

SN Y] [t (e

- =2

=nol t=no
DOICYASEEIUBACAtEGEN] QosParameterValue_efficiency
= avalabdity I=avalabity
missing_avaiabiityType (1.0) polYASSSItiGACategoY)
= capacty I=Tcapacky

missing_capacityType (1.0) missing_efficlency Type (1,0)

= = = = ———

Figure 5.6. A section of the structure of the decision tree from training QoS WS-
Addressing dataset

A web services prototype is developed as a proof of concept to test the invocation of web
service operations according to the test execution environment of the QoS WS-
Addressing protocol. The web services under test provide live stock information through
web service operations: ticker last price, ticker price change, and last change date. The
web services implement WS-Addressing, and in accordance with that, the WS-Addressing
XML Infoset appears in the WSDL. Figure 5.7 shows the applicable WS-Addressing

protocol properties in StockTickerPrice.wsdl.

89

<7xml version="10" encoding="UTF-E* 1>

<l Fubilishe A htp yax-ws, dev, java.ner, El's yspajon ie Netro/l.1 (brasches/2.1-8718
>
<l=- Gansratea by JAE-8S BI at nety AX-RT. eV, 4. I8t, FliE ver A Em——

>
- ¢definitions xmins: wsu="http://docs oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility- 1.0.xsd" «mns: wsp="http: - .
umins:wspl_2="http://schemas.xmisoap.org/ws/2004/09/policy* mlr.s'wsm:"rﬂtp:ﬁwww.w‘;.urql;!]U?/US/addre-sshpg!::ri;ili?: gl
umins: wsaw="http:/ /www.w3.0rg/2006/05/addressing/wsdl* xmins.soap="http://schemas xmisoap.org/wsdl/soep/* mmins: tns="http://pkg/*
smins: xsd="http:/ /wwwe.w3.0rg/2001/XMLSchema* kmins="http:/ /schemas.xmisoap.org/wsdl/* targetNamespace:'hltp:}[pkg}' name;'sfngtﬂmrﬂﬁmﬁ
- ewep Policy wmins: wsapw 3c="http:/ /www.w3.0rg/2006/05 /addressing/wsdl* wsu.1d="StockTickerPricePortBinding_Wsaw_Addressing_Policy-
stockTickerPricePortBinding WSAM_Addressing_Policy-StockTickerPricePortBinding WSAM_Addressing Policy’>
<wsapw3t:Usingaddressing /> N
- ¢wsam: Addressing>
- ewsp:Pohcy>
<wsam: NonAnonymousResponses />
[«wsp: Policy>
¢/wsam: Addressing>
¢/wsp.Policy>
- <lypes>
- ¢usd:schemas
<wsd mport namespace="http://pkg/* scremalocaton="http://osos:8080/StockTicker/StockTickerPrice?xsd=1" />
¢/usd: schema>
<ftypes>
- ¢message name="ping">
<part name="parameters’ element="tns:ping' />
¢/message>
- ¢message name="getTickerPrice’>
<part name="parameters’ element="tns:getTickerPrice" />
</message>
- ¢message name="getTickerPriceResponse'>
<part name="parameters" elament="tns:getTickerPriceResponse' />

Figure 5.7. WS-Addressing protocol properties in StockTickerPrice.wsdl file
The LDM module makes a decision based on training datasets, by capturing the specific
QoS WS-Addressing protocol data retrieved from the web services specification metadata
database, and on the basis of this the test-harness environment is predicted. The figure
shows that the test-harness environment data is included in the test cases as part of the

headers. Figure 5.8 specifies the test execution environment header in the Test Case.xm|

file.

90

- <S:Envelipe xmins:S="http:/ /schemas.xmlisoap.org/soap/envelope/* xmins: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/*>
- <S:Hezder>
<5 umins="8erviceName">TickerPriceW8</s>
<s ¥mins="targetNamespace >http://pkg/</s>
<s wninz="endpointUrl*>http://osos:8080/StockTicker/TickerPriceWS</s>
<5 ymins="portName">TickerPriceWSPort</s>
<5 xminzs="soapActionUri*>http://pkg/TickerPriceWS /TickerPriceRequest</s>
nins="test case frame no*>2¢/s>
“test type'>core</s>
*operation to be tested">TickerPrice</s>
="input test execution dataType'>string</s>
<5 xmins="test validity*>valid</s>
<5 ymins="output method name'>getChangeResponse</s>
<5 wmins="output expected dataname®>return xs:element minOccurs=0</s>

<5 ¥mins="output elementType*>string</s>

<5 xmins="expected result*>17.8<¢/s>

<5 wmins="test1D">b3a69970-0cf9-47f3-90ch-e2688d54fcf3</s>
ming=" nn*slc/sy

<5 wmins="WE Addressng'>NonAnonymousRes_Msg_Exchg</s>
b?ﬂﬁﬁb
- <5:Body>
- ¢ns2 TickerPrice xmins:nsZ="http://pkg/">
<symbol>ibm</symbol>
</ns2: TickerPrice>
</S:Body>
</S:Envelope>

Figure 5.8. Specifying test-execution environment data in the Test Case.xml
Supporting both polling and call-back mechanisms when calling web services
asynchronously, the Test-Execution module and Monitoring module implement the test-
harness for web services under test, sets the input parameters in the SOAP Body, and

executes the test case systematically.

5.5 Test Monitoring Example

The Monitoring module performs run-time operational monitoring of the web services
log file for messages and logs sent between the web services test client and web services
in real-time. The Monitoring module generates monitoring statistical reports, the Test-
Execution module initiates the dynamic testing process by executing the XML test-
execution files using the unique test ID to identify, match, and update the test execution
result for each test execution simulation task. Simultaneously, the Test-Execution module
waits for the response messages sent from the web services under test in real-time. The

Test-Execution module generates a test execution report, by transforming the SOAP

91

message to string of data for parsing and extracting the test response data. The response
data includes the Test ID, the response Body, and the message content result. The Test-
Execution module updates the test_execution_data table in the test database with the
test execution result for each case according to its unique test ID number. The test
simulation outputs at the end of each test cycle are used within the monitoring process
with support of LDM module for test validation in the next stage by Monitoring module.

The Monitoring module then reports these messages and transforms them to sort of
customised message data which can be used by the LDM module and then saves this data
in the System_Historical_Data database. This data is considered the final observational
learning inputs throughout the monitoring process. Eventually, the LDM module analyses
and judges whether the components of the web services under test have met the
requirements and the system operational standards, otherwise it needs to expose new
test experiences and proper debugging efforts to be directed. The results of the testing
data metrics become an input for the trained machine-learning classifier. Using the
148 decision-tree classifier, a new classifier module is trained with the training dataset to
validate against the testing dataset. Figure 5.9 shows a section of structure of the

decision tree from the system invocation monitoring training dataset.

92

Tiee Vhem
ML
510 el e
e it 1 L o — T ——— ST
i et0 (10 w0) epeced st
—) sext” 2kr) '_-'lu'-'.'-.-'._ . ST
eeLoe sl) DRLeBRLAND iyt oce pe e eecnd et
____ v} W)W] B] 0 N e ;

M, . ol . e e-‘.:-:_'h‘r-:s'l;_-:.
sechek 10l (1 st case, check 00 st case_JesLce_10 ORI ORALIOSURID) ey pesut FOCK a5t e s case_epiced pesd

B st

m,m:n_m ot

i s "5'.'-:_-'h'r-‘5‘-'._"v
W-‘f“‘- hestorcal_sensce_mest Techeci_achal_resul_in rerun_les!_case_acal_resu (1 0
e e s eSS
- gt ’-..-“‘ - o ‘-‘-'_‘—-
hp_respense heskoncal_semce_message
“’.“""‘ - ;1--'.\;_uttl1',-'_:_".
checi b respomse (10) - 1 ssporse recheck_sevee_log rern_lest_Case_Nistorical_senice_message (1.0)
st e Bty it

= gy eele 35 %60

T 1 ri-!_%}!::«ee_.‘-‘-(

N :cﬂ_‘tm Hrse il
L LU C U

Figure 5.9. A section of the structure of the decision-tree resulting from system
invocation monitoring training dataset

The LDM module analyses the test results in the historical database in order to judge
whether the test executions of the test cases meet the expected results and

requirements of the QoS system’s operational standards. The LDM module then feeds

the analysis of the results to the test database.

5.6 Empirical Framework Evaluation
As mentioned in the introduction section of this chapter, the cost-effectiveness matrices

deal with capturing, defining, monitoring, and analysing software testing techniques and

93

practices exclusively by using certain key factors within the testing phase [78]. These
factors are considered essential for producing concrete structures of software test
techniques which could prescribe their quality levels in a cost-effective manner. These
key factors are as follows [16],[79],[70]:

1. The total effort spent on the testing phase (test cost).

2. The total defects captured at test phase (defect detection effectiveness).

3. The defect detection effectiveness which is computed against test suite size (test
cost) to obtain the cost-effectiveness or test-efficiency ratio (defect detection
rate/test cost).

Since all the testing technique structures are, to various extents, based on heuristics and
simplifying assumptions [16],[79], the cost-effectiveness of various techniques cannot be
systemically assessed and compared. Hence, it is natural to utilize empirical analysis in
order to compare and improve software testing techniques and practices. Thus, in the
following sections and subsections, the proposed framework will be empirically evaluated

comparing it against other frameworks and tools

5.7 Defect Detection and Coverage Metrics

5.7.1 Test Completeness Measurement

In order to demonstrate that the test suite which was generated by the proposed
framework satisfies the coverage criteria according to the requirements of the web
services under test, test cases were generated using a white-box (unit testing) testing
tool. The JUnit tool [54] was employed to generate and execute unit tests for the same
source code, of the web services under test, used by the proposed framework for

generating test cases by the Test Cases Generation module. The generated Unit Test

94

Cases (UTC) include the same combination of input test data, method calls, and expected
outputs which are used during the test-case generation through the proposed
framework. Then, the CodeCover tool [23] (an open source instrumentation tool which is
integrated into JUnit) was used to independently gauge the coverage level achieved by a
test suite through instrumenting the source code. Thus, the code coverage metrics can be
generated for each unit test case providing the percentage of code that is covered by the
unit test case, i.e. the proportion of requirements that have been satisfied [16],[26]. The
CodeCover too! supports statement (instruction) coverage, branch coverage, line
coverage, complexity coverage, and method coverage. For implementing the test
coverage measurement, the calculator web services test suite generated by the proposed
framework is employed. The test suite is composed of test cases for testing the web
service methods of the calculator web services, with two input parameters of Integer
type and one output of Long type for each method. Having two input parameters, and six
different values for each parameter for the four methods (Add, Subtract, Multiply, Divide)
of the calculator web services. Using the Cartesian product (as exemplified in section
5.3.2), every test input of a unit test case is paired with every test input of every other
unit test case. Appropriately, all combinations of the test inputs across all unit tests are
obtained, 144 (672)*4 of test cases are identified and generated. Then, the JUnit tool
was employed to execute the test suite. Accordingly, by using the CodeCover tool to
generate the coverage rate percentages covered by each unit test; various coverage
percentage values are generated for 144 unit test cases for the calculator web services.

The graph in Figure 5.10 summarizes the results of the source code instrumentation.

95

100.0% 1
00% +——
00%
700% -
800% 1
00% |
0% +—
QC“{. : oy e ————— T T — :_w
UTC UIC UIC UIC UIC UIC UIC UIC UIC Urc vure (oovesed
112 1325 2638 P31 R6: 6577 B0 91105 104116 117-129 130-148

Code Covenge %

Figure 5.10. Code coverage measurement for calculator web services
As the unit test case is iterated (1-144), the code coverage was found to be improving,
reaching 100% coverage, for all, i.e. for instruction, branch, line, complexity, and methods
coverage percentage values. Hence, this result can attain full coverage criteria according

to web services under test requirement.

5.7.2 Defect Detection Effectiveness Measurement

In order to measure the second factor of cost-effectiveness -the defect detection
effectiveness- the mutation score [122] can be used to measure the effectiveness of a
test set in terms of its ability to detect defects, which gives an indication of the defect

detection effectiveness of the test suite.

5.7.2.1 Defect Seeding

Mutation testing is performed by selecting a set of mutation operators and then applying
them as manually seeded defects (or mutants) to the source code of the web services
under test, one at a time for each applicable piece or block of the source code. The
outputs from the running test suite are then compared against the web services under
test. If the test suite is able to detect the change, (i.e. one of the tests fails its positive

testing) then the mutant is said to have been killed (detected) and the test suite is

96

successful. When all mutants have been killed, the saved test case is comprised of the
test suite, which could be used to test the web services. There are three kinds of
mutation operators available, namely statement-level operators, method-level operators
and class-level operators [77]. For our mutation testing, the statement level operators
are chosen for measuring the mutation score, because this involves the creation of a
traditional set of code-line-level mutants for the web services being tested. Mutation
operators for method and class-level mutation testing focus instead on testing object-
oriented specific features, for example inheritance, polymorphism, dynamic binding, and
encapsulation. Moreover, the seeded defects in our mutation testing should include an
adequate number of mutations (or defect) types that cover the unit test cases, based on
the “selective mutation” operator set introduced by Mothra [25]. Table 5.6 shows seven

mutation types were chosen for selective mutation operator set.

v anthmehcoperator (-, -, 7, ', =,
ca] Connector Keplacement lodity logcal operator (&&, T7)
TR ~[Relabonal Cperator Replacement Todify relational operatar (5, <, >=, <=, ==, '=)
tement Analyss jinvert the condibion statement.
eturn Statement Keplacement t/retumn ditterent vanable attnbutes
Vanable Keplacement t/return difterent integer value
TOI Tnary Operator Inserion t/return different Boclean value (true, false)

Table 5.6. Selective mutation types from Mothra Mutant Operators
The seven mutation types that we have been selected and then applied as 18 manual
seeded defects, some of different types while others of the same type, to the source code
of the calculator web services one at a time. After running the unit test suite, the killed
mutants (detected defects) metric of the test suite was constructed, and the defect
detection rate of the test set was measured according to the mutation score. The

mutation score takes real values between 0.0 and 1.0, where 1.0 is the best score

97

possible, meaning that this particular test set can kill all the non-equivalent mutants
(there are some mutants that can never be killed because they always produce the same
output as the original program, these mutants are called (Equivalent Mutants). Such a
test set is said to be 100% mutation adequate to measure the rate of defect detection of
the test suite [56]. The graph in the Figure 5.11 summarizes the mutation-detection
effectiveness of the generated test suite by the proposed framework for the (Add)
method of the calculator web services. The graph illustrates that the test approach
adapted by the proposed framework is capable of finding all defects of all the selective
mutation types with 100% mutation score. The horizontal axis signifies the mutants,
while the vertical axis signifies the percentage of the test cases which detected the
mutants, for example, defect 1 was found by 19.4% of the test cases while defect 10 was
found by 36.10%, still all defects were found. The area under the curve represents the

mutation-detection ratio, which shows the detected defects over the life of the test suite.

100% . = —

90%
80%
70%
0% -
50%
40%
30%

Test Cases %

20%
10%

I- s » - i
SIS LIPS
&

& @F @€

Figure 5.11. Defect detection ratio for calculator web services test suite
Table 5.7 shows mutation testing metrics for the (Add) method of the calculator web

services corresponding to the graph - Figure 5.11.

98

120314151617 81010[11{12 113114115 {16117 18110 120121 {22123 2425126 |27 [26 (29 |30'| 31|32 | 33 |34 |35 |36
'MIAOR T x|x]|x X |x % 1?{:*, v
etatl LG b 5 ol e i ol okl $ N 3030% 15
wacti LR x| X Y x|e]x]x x| X X X I 10% EJ
i ROR | < X X B BEBEE BE X X % 38105 1
afatS RO [« X x BB ERE | . . X R 3
factb ROR | Y X s < Ix X 8% |8
fadTROR | ¢ ¥ t t 1 |x X x 2500% |
Detedts LAC < v IOGEOOE ¢ . H050% 5
D) Roi X i« X vl T x|« * % W% 01
Sfactl] S\ x] [efs] I« s L] [x]e]« : X] ¢ T TS
Defact]] 34N » % N 1110% 111
[Defact1] RER 3 | A (8 1110% 113
Defactl3 53 x] [xfx]e e 119
Detactli S13 x] Ixfx}< T IVE
ofact§ LI [< X ! JEIEIEE Ylele] Jefe]e X s < % |19
Srat1L0l © X v ofefe]x [HEE HEE X X X 1940% 154
Mafact], UCT | x X% x|x e le]x X|x|x t % v]x 3 E v 5E30% i)
.,‘-;'N:l%L'C'l w el slexie]e e e el |eI=c|c|ci<icix|=xyi<|xQPe|«x|cf<[x]x 100:00% 213

Table 5.7. Defect detection metrics for the generated mutation testing
The results in table 5.7 indicate that mutation-detection effectiveness is ranges between
19 and 100% presented in UTC Coverage % column. The Defect Types column signifies the
mutants, while the numbers are shown in Detected Defects column which signifies the

number of detected defects.

5.8 Cost-effectiveness Measurements

In order to measure the cost-effectiveness of the test approach which is adapted by the
proposed framework, the defect detection effectiveness was calculated and plotted
against the test suite size (test cost) [16]. The resulting graph is presented in Figure 5.12,
where the horizontal axis represents the test suite size or test cost, while the vertical axes
represent the detected defect rates (UTC Coverage % column—Table 5.7). The figure
shows the cost-effectiveness line which illustrates as the test suite size increases (first
row in green—Table 5.7), the number of detected defects increase (last row in red- Table

5.7), which provides evidence of the defect detection adequacy criteria. The graph also

99

illustrates the defect detection effectiveness line of the test execution cycles, as more
mutants (defects) of different mutation types are found when new mutants are injected
with zero undetected defects. This provides in-process evaluation of the actual test suite
effectiveness at detecting defects [74]. Furthermore, the figure shows the confidence
proportion of defect detection around the cost-effectiveness line, which provides a
further insight into the dependence of defect detection probability on the test suite
coverage, as very often, many adequate test suites can be found for a given coverage
criterion [16]. The fit of the defect detection to the test-case coverage demonstrates that
the proposed framework is consistent which indicates high cost-effectiveness from the
perspective of the test coverage.

Many of the cost-effectiveness parameters and measures depend on other validity
factors that were not addressed in this empirical analysis, and which could reflect on the
confidence given to the study outcomes. These factors ensure that any cost-effectiveness
comparison among test techniques is unbiased. The following subsections discuss the
different types of threats to the validity of evaluating the cost-effectiveness of the

proposed framework.

100

Unit Test Cases

P S L U o R T L g P

A A A A A A e AR A A Qe A
NN A VON W VW ~ ~ N A s

B T S S R T

AL A A A e
~ ~ N S W e ~ ~ -~ ~ A ~ ~ ~ s

. T I ="
A A A A a \,\u\:\\.f A ‘:\;

g

i
|
|
|
|

.

Derect detection effectivenesslins

Il
i

|
|
|

T AT R

i,
»

A RIE R Attt

\

3t

260H

I

g
_ =
Flatr

T

\

\‘\

Cost-affachvanass line =

|
|

BRSO N

3%

I [Testsuifesizeincease) | -

: .

i

(=1}

Figure 5.12. Analysis of test cost-effectiveness

5.9 Threat to Construct Validity

One threat applicable to construct validity is related to the effort required or the test cost
when the required resource is machine or human time for test-case generation, test-
execution, and collecting and logging the test result, the test cost can be measured in
terms of actual time is needed to generate and execute a test case. In order to address
this validity issue, the overall test cost is calculated, the proposed framework was used
and compared against other open-source and commercial tools for SOA testing. The test
cost is estimated by measuring the actual time required to generate and execute a test
case along with the steps presented by the proposed framework, they were then
manually compared against generated ones, by mimicking a human tester using the other
benchmark open source and commercial tools for testing SOA for SOA testing. In

particular, this evaluation, one test case is used for testing the addition method (add) of

101

Bl

Rt it S

the calculator web services and the result of the comparison is collected for the
generation and execution test case with a test input of value of the upper boundary.
Figures 5.13, 5.14, and 5.15 show the result of the comparison of the test task expended
by the proposed framework for generating and executing a test case for the addition
method (add) of the calculator web services with four leading and comprehensive SOA
test tools, namely HP Service Test [46], SoapUl, Soapsonar, and Parasoft SOAtest. In the
graphs, the vertical axis shows the SOA test tool or framework, while the horizontal axis
shows the work-time consumed (total actual time in seconds) in the test-case generation
and in the test-harness implementation which includes test environment setup, test-
execution, and test-execution response of each test case by the SOA test tools. The
results demonstrated reduced testing effort (test cost) using the proposed framework as
compared with other SOA test tools. The actual results show that the proposed
framework clearly required the lowest amount of time of these SOA test tools—7.9
seconds for generating and executing a test case for a single web services method per
test cycle. Other SOA test tools required significantly more time than the proposed
framework—on average 47.5 seconds for generating and executing a test case for a single

web services method per test cycle.

Test case generation effort in time
(Second)

m Proposed Prototype
® HP Service Test
Framework/tool | W SoapUl

| @ Soapsonar

M Parasoft SOAtest

0 20 40 60

Figure 5.13. A comparison of test-case generation cost

102

Test case execuation effort in time
(Second)

i m Proposed Prototype
| HP Service Test
Framework/tool

= SoapUl

B Soapsonar

] [

_ [W Parasoft SOAtest
5 10 15 20

(=]

Figure 5.14. A comparison of test-case execution cost

Test-case execution response time
(Second)

® Proposed Prototype

T i |
|

Framework/tool = SoapUl

B Soapsonar

/W Parasoft SOAtest

0 0.2 0.4 0.6 0.8 1 1.2
Figure 5.15. A comparison of test-case execution response time

Computing infrastructure: the evaluation is conducted on two computers with Processor
Intel(R) Core(TM) i3 CPU M 370 @ 2.40GHz, 2399 Mhz, 2 Core(s), 4 Logical Processor(s) at

3.2GHz, 4GB of RAM, running Windows 7, XP.

5.9.1 Threats to Internal Validity (Degree Level of Automation)

A relevant internal validity factor is related to the degree level of automation of the
proposed framework for testing SOA. This validity issue could be determined by
comparing it against other open source and commercial tools, according to test

automation validity factors [16]. Figure 5.16 shows a comparison graph which tracks the

103

degree level of test automation metrics of the proposed framework and other benchmark

open source and commercial tools for SOA testing.

Test automation
validity scale
None: 0
Low: 2
Medium: 4

High: 6

Parasoft T
SOAtest C SoapUl) —
HP Service p d
Test ropose
Prototype
= Requirement coverage QoS coverage
m Test case generation Test harness-testability
m Test execution Test diagnosis and monitoring

Figure 5.16. A comparison of level of automation of the proposed framework against
other benchmark open-source and commercial tools

5.9.2 Threat to External Validity (Supporting Industrial Practices)

There are several external validity threats which limit the ability to generalize the design
and implementation of the proposed framework according to industrial practices for SOA
testing, e.g. WS-* Architecture implementation [51], [S5]. These external validity issues
can be resolved by properly addressing and implementing them in the proposed
framework, and also using them as comparison factors for cost-effectiveness
measurement against similar frameworks and techniques from the literature. Figure 5.17
shows a comparison graph which covers and captures the level of implementation of

these factors in the proposed framework and in other similar frameworks and techniques

from the literature.

104

Industrial practices factors

Proposed

183]

[19]

Industrial practices
factors references

W Support ws-* protocol
stack

M Support full automation
component testing

m Support public interface
(WSDL) (Black box testing)

® Support full life cycle

B Support run-time
monitoring

@ Support machine learning

Industrial
practices
implementation
validity scale
Yes: 5
No: 1
Low: 2
Medium: 3
High: 4

1 Support heterogeneous
distributed enviroment

"m Prototype availability

Industrial practices implementation level

Figure 5.17. A comparison of level of automation of the proposed framework against
other benchmark open-source and commercial tools

5.10 Cost-Effectiveness Evaluation Summary

After detailed presentations of individual modules of the framework together with
working examples, an empirical analysis was carried out in order to evaluate the cost-
effectiveness of the proposed framework by using key factors such as test cost, defect
detection effectiveness, and cost-effectiveness measurements. A measure for the first
key factor, the test cost, was conducted to evaluate the test suite completeness
generated by the proposed framework as a measure for the test cost. The test suite
completeness result has shown full code coverage by the test suite which implies that the
test suite generated by the proposed framework has a high degree of test cost-
effectiveness with requirement specification traceability. An internal validity factor for
test cost evaluation has been addressed through a practical comparison of the proposed

framework against four leading and comprehensive open source and commercial SOA

105

test tools: HP Service Test, SoapUl, Soapsonar, and Parasoft SOAtest. The results
demonstrated reduced testing effort (test cost) using the proposed framework as
compared with other SOA test tools. The actual results show that the proposed
framework clearly required the lowest amount of time of these SOA test tools. The
degree level of automation, another internal validity issue, was also established and
determined through empirical comparison of the proposed framework against the other
SOA test tools according to the automation validity factors. The results verified that the
proposed framework attains good automation in comparison to other SOA test tools.

An external validity factor which could limit the ability to generalize the proposed
framework for supporting SOA industry practices is also determined through an empirical
comparison of the level of implementation of these factors in the proposed framework
against similar frameworks and techniques from the literature; the results show that the
highest level of implementation of these characteristics is in the proposed framework, in
comparison to other frameworks from the literature. This verifies that the proposed
framework implements and supports the standards and protocols that make it more
transparent and applicable in the implementation of SOA systems according to industry
practices. Another practical evaluation carried out to measure the second principal key
factor, defect detection effectiveness, has shown that the test approach adapted by the
proposed framework is efficient and capable of finding all injected mutant types with
100% mutation score, which indicates a high degree of defect detection. A
conclusive measure of the cost-effectiveness of the proposed framework was computed
and provided evidence of high adequacy test suite for a given coverage criterion, high

defect detection adequacy criteria and high degree of cost-effectiveness. All tests based

106

on core functional and QoS system requirements were executed. The test oracles which

are based on data-type references are fully automated.

107

Chapter 6 - Industrial Case Study

6.1 Introduction

In this chapter, the proposed framework detailed in Chapter 4 and 5 is evaluated through
an industrial case study. The chapter presents an evaluation of the effectiveness of the
proposed framework by practical and systematic implementation on a generic business
use case within different industry sectors. The industry case study is designed and
implemented as a prototype system based on a business use case of a SOA web services
environment. The environment deployed the majority of the predominant WS-*
Architecture specifications such as WS-Transactions, WS-Security, WS-Chorography, WS-
BPEL and other standards and specifications. The implemented case study of the SOA
web services prototype systemis designed to generalize and increase the scale of
supporting business activities and the context of usage of standardised industry protocol
within the web services protocol layers. The evaluation aims to reach additional
conclusions for the potential improvement of SOA testability on each possible industry
usage situation.

In this chapter, Section 6.2 revisits and reviews the use of SOA in industry; Section 6.3
describes the setup of the case study. The evaluation of the case study using the
proposed framework is conducted in Section 6.4. Finally, we discuss the evaluation

results and threats to validity in Section 6.5.

6.2 Scope
Due to the fact that SOA web services are often seen as the foundation of a new

generation of Business-to-Business (B2B) and Business-To-Business Integration (B2Bi)

108

they are considered the key mechanisms for enterprises to gain competitive advantage.
Furthermore, web services are becoming truly pervasive by taking the full benefits of the
rich capacities of WS-* Architecture such as transaction, security, choreography

and

orchestration standard and specifications. Hence, much of SOA implementations are
becoming collaborations of choreography and orchestration of services. Each web

service will provide some large or small functions for the businesses’ needs, and the
majority of businesses will be able to simply choreograph and orchestrate how these
services communicate. Given this wide spectrum of SOA web service implementation
within industry sectors, and the relative novelty of the field (i.e. the testing and test
analysis of SOA web services), this chapter will attempt to conceiVe a case study that
addresses the different aspects of the field as fully as possible, and according to the
literature review on market and industry demand.

An advanced SOA web services system prototype deployment is proposed for integrating
security, choreography, and orchestrating standards and specifications in the testing
cycle, starting at the choreography level and showing how the requirements map through
the different levels of web services protocol stack layer abstractions (see Section 2.3.4.1).
Abstract domain-level models are linked to their technical implementation and show how
requirements are realized through prototype components in a target architecture based
on a web service protocol stack framework. In the following section, the scenario case
motivated by testing implementation from security to transaction is implemented, to
choreograph and orchestrate. The machine-learning module is deployed together with all

the required modules within the framework as proposed in Chapter 4.

109

6.3 SOA in Industry Segments

Based on existing reports from a number of credible sources ,such as the Gartner reports
[37], regarding the popularity of SOA we can conclude that SOA is at the centre of the
technologies used to implement e-business. Moving forward, SOA markets are
dominated by business process analysis and workflow products. The fact that budgets
are in place that pay for existing integration functionality, drives market growth for SOA
[87]. SOA automates many business processes in a manner not accomplished by custom
coding. Furthermore, SOA offers improved efficiency and significantly lower costs for
integrating systems and implementing supply chain efficiencies, thus providing a market
driving force. The increased importance of SOA ensures that web services will be widely
used, affecting virtually all types of development tools and runtime middleware. Web

services are one of important factors affecting middleware markets.

6.3.1 Web Service Protocol Stack Industry Implementation

WS-* Architecture provides end-to-end testing of all three layers: the service layer,
service composition and coordination layer, business process and collaboration layer.
The major specifications for defining business processes on the business process and
collaboration layer, are the WS-BPEL, the WS-CDL , and BPM (Business Process Modeling)
built on WSDL which are drawing the most interest from the industry [87]. Business
Processes Languages allow for establishing metadata business protocol specifications.
This metadata intends to establish a common understanding of the meaning, by
specifying syntax and semantics of the data exchanges. These business processes are
graphs of activities that carry out meaningful business operations. Examples are

purchasing an airline ticket, managing inventory in a warehouse, and ordering furniture

110

for a home or office. Long-running transactions, such as tracking an order to fulfilment or

supporting collaborative planning and forecasting are also business processes.

In order to implement a business process using web service technology the flow of a
business process to a set of web service interactions need to be mapped. Services will
happen dynamically at runtime, heralding a new era of Business-to-Business integration
over the Internet. B2B and B2Bi describe electronic commerce, or e-commerce,
transactions between businesses (as opposed to between businesses and consumers).

Businesses that engage in electronic commerce transactions are called trading partners,

and can include retailers, manufacturers, suppliers, and marketplaces.

6.3.2 Enabling Business Process Layer

Companies implementing business process solutions in the context of scalability and
enterprise wide solution sets are achieving significant competitive advantages and
improvements in productivity. Areas of demand include financial services, customer
relationship management, e-government, and e-business. The WS-* Architecture is seen
as an enabling technology for a broader use of web services in B2Bi {111]. Although, the
second-generation web services specifications using WS-* Architecture are able to
provide comprehensive QoS support, interoperability is still one of the core requirements
for B2Bi which wuse requirements cannot be met by all WS-* Architecture

implementations [87].

6.4 SOA Architecture Use Case Implementation
The SOA architecture used a case prototype implementation, consisting of web services

of an online stock trading system, as shown in Figure 6.1. The online stock trading web

11

services system, covering stock-buy-sell business activities, is used in this case study
prototype in order to further illustrate and evaluate the framework testing technique.
The online stock trading web services system in this practical use case, consists of web
services components, each of these web services components implement a web service
interface and multiple simulation client web service, residing in different locations. All
web services under group testing are implemented with the same hardware and software
specifications. Table 6.1 lists the core functional and QoS system requirements
specifications of the online stock trading web services according to WS-* Architecture

specifications.

Authentication A uthenTicaTion WSDL Using symmetric encryption based on a single secret key
web service hweb service WS- known only to the partes involved in an exchange of messages
RelableMessaging |between a chent and a server .Using 5y Mmetric @ncryption,
WS-Security WS-5ecureConvermation builds on both WS-5ecurity and another standard,
WS-Pohcy WS-Trust. WsS-Trust itself builds on WS-Security, defining an interface
WS-Addressing for a web, service that issues and works with security tokens.
S UbSCr iption Account WS -Chorography BPMNZ.O Using choreography Service COMpostion, partcipants
Management service WS5DL Play expected messaging behaviour 1 in terms of the sequencing and
web service WS-ReliableMessapng|WS-Chorography timing of the messages that they can consume and produce as peer-to-peer|
[In principie) WS-Security INteracuions.
service Ws-Policy
WS5-Addressing
[Transaction WSDL Using transaction protocol, partcipants, to Coor dinate in an interoperable
jweb service WS- manner between heterogeneous transactions infrastructures.
AtomicTr ansaction
WS-Security
Buy-Sel-Stock Ws-Policy
web service WS-Addressing

|Coor dinator service WS -Coor dina tion Manages the transactional state (CoOr dination context) and enables
Web services and chents to register as partcipants

A ctivation service WS-coor dination Enables activate transactions and create

coor dination contexts. Once created, the coor dination

contexts are passed to the traniaction Service.

Registration service WS-coor dination Enables an application to register as a parucipant

User IPBEL service PBEL Using orchestration web service, which specifies an executabie process
Account WSDL that involves message exchanges n interoperable manner between
Management WS-Security heterogeneous infrastructures.
web service W S-Policy

WS-Addressing

Table 6.1. Online stock trading web services system components according to WS-*
Architecture

The proposed practical use case is a web services Business-to-Business (B2B) one covering
secure transaction characteristics with business process solutions based on SOA. The
idea is to define adequacy criteria to test SOA web services. This specification has value

in state-full secure e-commerce systems, especially in the B2B world, where services are

112

invoked dynamically according to the result of the previous invocation. The web services

offer online stock trading web services and client web services that can access these

functions individually. The online stock trading web services system-testing environment

shows in Figure 6.1.

PEMNZ O
(WS CDL)

PREL

Learning and
Decision J:'\‘)'
Making &
module

\“} @
]

. | T | s =
it

Stored Data
environment according to

-
WS * Architecture specifications Test Execution cases g

Online Stack Trading web services

System components

Figure 6.1. Online stock trading web services system-testing environment

6.4.1 Online Stock Trading Process

In a typical client’s stock trading requests from online stock trading web services, the flow

of information is as follows:

1.

Login: clients communicate with the authentication web service using reliable
messaging (WS ReliableMessaging) with security mechanisms (WS-Security), and
using addressing location (WS-Addressing) within collection of QoS policy (WS-
Policy) protocols, which requires the use of Secure Conversation. Secure

Conversation enables a consumer and provider to establish a shared security

113

context when a multiple-message-exchange sequence is first initiated [39]. The
web service verifies that the client is a valid account holder. If the condition is
met, the authentication web service sends back an authentication confirmation,
including a symmetric key established via username and password using HTTPS.
Using username authentication security mechanism with a symmetric key
signature message level will protect application integrity and confidentiality. For
this mechanism, the client does not possess any certificate or key of its own, but
instead sends its username/password for authentication. The client shares a
secret key with the server. The shared, symmetric key is generated at runtime
and encrypted using the service's certificate. The web service client must provide
a username and password in addition to specifying the certificate of the web
service. To specify the certificate, the client must specify the location and alias to
be used of the “truststore” file and its password to identifying the server's
certificate [68). Further information about the IP address and port number to
connect to the actual Account Management web service will be sent along with an
issued symmetric signature key and session token that identifies the user’s unique
session. The online stock trading web services authenticate a user with a
symmetric signature key, and use a session token to keep track of the user.

. User account: web service clients can communicate with the User Account
Management web service at the IP address and port number returned in Step 1.
For each SOAP request, the User Account Management web service will respond

with information about the client’s account, including current positions and

buying power as well as currently open orders. In addition, the service respond

114

can include portfolio user activities such as Orders, Trades, and a Trade Summary.
Once the clients account has been approved and funded, clients will be able to
send successful request to the Stock Quote web services.

. Stock Quoting: web service clients can retrieve stock quotes, users can direct-
access trading for options, futures, forex, stocks, bonds and funds. Before users
receive real-time data, the user must request it from the Subscription Account
Management service and retrieve user market data subscriptions. Once the user
receives the subscriptions data, the user can add ticker symbols to the stock quote
service list. Subscriptions to which they are not subscribed will be sent as delayed
data real-time subscription if allowed by the exchange. The ticker is then added
to the live stock quote service watch list. A web service client can send requests
to the web service and the service responses with live stock quotes.

. Sending Orders: web service clients can send orders on the tickers that are
currently the focus of users’ portfolios to the Buy-Sell-Stock web service. By
default, the Order entries are parts of user accounts, which also include the watch
lists. Web service clients will be able to send request to the Buy-Sell-Stock web
service to get live orders, cancel, or complete order requests. In the stock trading
process, users may submit, “put” orders, which mean that the clients want to sell
stock. Users “buy” orders, which mean that they want to buy stock. The Buy-Sell-
Stock web service matches put requests and registers them as successful trades,
all request messages must be accompanied by the session key provided to the
client in Step 1. The Buy-Sell-Stock web service sends a back order or cancels

confirmations, or execution or cancellation reports to the client.

115

6.4.2 Initiating the Proposed Framework

In order to initiate the testing process of online stock trading web services under test by
the proposed framework, the System Analysing Agent (SAA) is activated by receiving an
Agent Communication Language (ACL) message with “start SAA” text that initiates the

proposed framework.

6.4.3 Initialising Testing the Implemented WS-* Architecture

The SAA retrieves the core functional and QoS system requirements after SAA parsing the
WSDL, PBEL, and BPMN 2.0 files. SAA performs data mining supported by machine-
learning classifiers from the Learning and Decision Making module and generates the
conventional core implementation parameters and variables of Online Stock Trading web
services under test, such as, operating methods, agreement binding, message types,
service description, service publication and discovery based on core functional standards
and specifications in the WS-* Architecture. This data is required to achieve successful
test case generation, invocations and interactions between Online Stock Trading web
services and services consumers. The Test Execution module which uses TEAs, and the
Monitoring module implement the test-harness for Online Stock Trading web services
under test, set the input test oracles in the SOAP Body, and execute and monitor the
execution of the test case systematically. Simultaneously, machine-learning classifiers
from the Learning and Decision Making module support the framewrok modules in real-

time. The TEAs carry out further instructions from AA in order to execute tests cases

properly.

116

6.4.3.1 Testing WS-ReliableMessaging, Security, and Addressing

The Authentication web service uses reliable messaging (WS-ReliableMessaging), a
security mechanism (WS-Security), and addressing location (WS-Addressing) when
collecting QoS policies (WS-Policy) assertions. These QoS policies assertions make
mapping environment rules of the Authentication web service protocols during test cases

generation and test invocations as shown in Table 6.2.

lkwsrmp RMAssertion> WSsDL The web service specifies a

<wsp Policy> W5-Policy policy assertionthat specifies
<wsrmp DeliveryAssurance> WS-ReliableMessaging that WS-ReliableMessaging
Authentication <wsp Policy> protocol must be used when
webservice <wsrmp InOrder/> sending messages
</wsp Policy>
</wsrmp:DeliveryAssurance>
</wsp.Policy>

</wsrmp RMAssertion>
<wsam Addressing/>

</wsp Policy>
L sp SignedEncryptedSupporting Tokens> WS5-Policy The web service specifies a
<wsp Policy> WS-Security policy that includes WS-
<sp:UsernameToken SecurityPolicy requires that
sp.Include Token="http://docs.oasis- the token is both signed and
open.org/ws-sx/ws- encrypted

securitypolicy/200702/IncludeToken/Alw
aysToRecipient™>
<wsp Policy>
<sp.WssUsernameTokenl0/>
</wspPolicy>
</sp:UsernameToken>
</wsp Policy>
k /sp:SignedEncryptedSupporting Tokens >

Table 6.2. Authentication web service environment protocol assertions communications
rules mapping

The LDM module makes a decision based on training datasets according to mapping rules
in Table 6.2, and preforms data mining by capturing the specific QoS: the WS-Security,
WS-Addressing, and WS-Policy protocols data retrieved from the Authentication web
services requirement specification in the metadata database, and on that basis the test-
harness environment is predicted. Taking WS-Security protocols as an example for
making machine-learning test-harness decisions based on training datasets, WS-Security
seeks to encapsulate the security interactions described above within a set of SOAP

Headers. WS-Security handles credential management and defines a special

117

element, UsernameToken, to pass the username and password to the Authentication
web service. WS-Security also provides a place to provide binary authentication tokens
such as Kerberos Tickets and X.509 Certifications BinarySecurityToken [85]. Figure 6.2
shows a section of structure of the decision tree from the WS-Security test execution

environment training dataset.

Emcmmmvm 16:43:30 - trees J48 [QoSWS-RefiableMessaging) olB8
Tree View

e

Figure 6.2. A section of the structure of the decision tree from training dataset for the
WS-Security test execution environment

Figure 6.3 shows the test-harness environment setup data which is generated as part of
the input parameters and header in the SOAP Body in the test cases, which are

systematically executed accordingly as the test case execution scenarios.

118

<mmi version="1.0"7>
<5 Envelape «mins: SOAP ENY ="htipt/ /schemas.xmisoap.org/soap/envelope/” xmins:S="hip:/ /schemas.xmisoap.org/soap/envelope /">
<5 Header>
<5 ETIS

‘ServiceName " >STWebService</s>

<§ »mins="largetNamespace " >hitp: / /pkg/ </s>

<5 vming = "endpointUd” > http:/ flocalhost: 8080/ LoginAuthenicationWs /LoginAuthenicationWs < s>
<5 vmins="portName” > LoginAuthenicationWsPort < /s>

<5 vrins="soapActionUrl” >hitp:/ fpkg/LoginAuthenicationWs/ AddLoginRequest < s>
<s xming="lest case frame no">2</s>

<s xmins="test type">core</s>

<5 xmins="operation to be tested” >addCustomer</s>

<s yins="Input test execution dataType™>int</s>

<s xmins="test validity >valid</s>

<5 vming="output method name” >GetSessionld</s>

<5 vmns="outpul expected dataname”>return xs:element minOccurs=0 xs:element</s>
<5 ¥ s="output elementType”>string</s>

<5 xming="expected resull”>return string</s>

¢s xmins="test Input element name *>custld</s>

<5 wmins="Qos environment">AnonymousRes_Msg_Exchg</s>

<5 wnins="test1D" >testExecutionlD</5>

<5 winins="lest cycle no”>testExecutionCycleNo< /s>

<S:Secunty>
<§:Keylnfo>
<S:Security TokenReference>
3 S la="Signature >
dinfo>
<5 TrustStore peeraiass xws-security-server” storepass="osy" Iype="IKS" locaticn = "C:\glassfish3\glassfish\domains\d .
\config\cacerts.jks" S.visibility ="private”/> -

Figure 6.3. A test harness setup scenario for authentication web services

6.4.3.2 Testing Choreography (WS-CDL)

The Subscription Account Management web service uses reliable messaging (WS-
ReliableMessaging) with WS-Chorography, and uses addressing location (WS-Addressing)
within the collection of QoS policies (WS-Policy) protocols. In WS-Chorography, protocol
participants use a multistep process to complete a collaborative SOAP request between
multiple-participants. Choreography is a kind of process that focuses on how participants
coordinate their interactions through the exchange of messages. At the beginning of the
choreography, a web services’ client uses the session key returned from
the Authentication web service to request from the Subscription Account Management
web service to retrieve a ticker subscribing data. WS-Chorography describes interactions
between peers without describing how those peers do their business internally. Using
BPMN2.0 the process is a graph of flow elements, which are a set of activities, events,

gateways and sequence flow. Choreographies represent sets of tasks performed by

119

participants. A Process describes a sequence or flow of Activities in an organization with

the objective of carrying out work. The BPMN2.0 processes of the Subscription Account

Management web service are shown in Figure 6.4.

Retreve markel data subscnplions

imtﬂw account m

Eswm Subscrpteny

e
L | Rencuent Ticker guote

e

————

e

Add a ticker to the stock quots

Choreography Task 4 ———]
1

Stock quote senice

Stock quote serace

&

Delayed vubscobe data
\

Figure 6.4. The BPMN2.0 processes of the subscription account management web

service

The core of a choreography task is depending on the element of choreography, which

specifies a set of peer-to-peer interactions. A package can contain one or more

choreography assertions, one being the root for all other assertions. These assertions can

be mapped as communications rules as shown in Table.6.3.

120

Subscription
Account
Management
web service

<bpmn2:choreographyTask id="ChoreographyTask_2"
name="Retrieve market data subscriptions"
initiatingParticipantRef="_Participant_4">

<bpmn2:incoming>SequenceFlow_5</bpmn2:incoming>
<bpmn2:outgoing>SequenceFlow_13</bpmn2:outgoing>
<bpmn2:participantRef>_Participant_4</bpmn2:participantRef>
<bpmn2:participantRef>_Participant_5</bpmn2:participantRef>
«bpmn2:messageFlowRef>MessageFlow_4</bpmn2:messageFlow
Ref>
<bpmn2:messageFlowRef>MessageFlow_5</bpmn2:messageFlow
Ref>

</bpmn2:choreographyTask><bpmn2:message id="Message_1"
itemRef="ItemDefinition_1" name="Request User
subscriptions"/>
<bpmn2:itemDefinition
id="ItemDefinition_1" structureRef="ns1_StockTickerPrice"[>
<bpmn2:interface id="_Interface_3"
implementationRef="ns1:StockTickerPrice"
name="StockTickerPrice">
<bpmn2:operation id="_Operation_3"
implementationRef="ns1:getTickerPrice"
name="getTickerPrice">
<bpmn2:inMessageRef>_Message_4</bpmn2:inMessageRef>
<bpmn2:outMessageRef>_Message_5</bpmn2:outMessageRef>

BPMN2.0

WSDL
WS-Chorography

WS-
ReliableMessaging (In
principle) service
WS-Addressing
WS-Policy

horeography Task
efines messages
etween the two
articipants in the
ask by using
onnectors,

ateways, or events,
can create a
sequence flow
between multiple
choreography tasks
to represent decision
controls and
sequence flow of the
tasks.

Table 6.3. Subscription account management web service environment protocol
assertions communications rules mapping

Using the BPMN2.0 process, rules mapping to transform communication rules from

BPMN2.0 to WS-CDL and to WSDL [5] are set (as shown in Table.6.4).

Information Type Types |schema X5D)
Varable Element
Mesiee Exchange Message
Input/output
action=regquest
and
output action=respond.
Service
Parvoipant Role Type operaton
Participant PortType
MessageFiow Relavonship Type type
Choreography Choreography interface
ChoreographyTask Interacton Operaton
ExCiusiveGateway work Unit _
InmermedateThrowbvert | Interaction Operation
EndEvent FinalgerBlock e
—— Sequence ———
EventBasedGateway Choice i

Table 6.4. Transforming and mapping from BPMN to WS-CDL and to WSDL

The LDM module makes a data mining decision based on training datasets as in Table 6.4.

Thus, it captures the specific core choreographies assertions of the choreography task,

121

which specifies a set of peer-to-peer interactions, and on the basis of this the test-
harness environment is predicted and requests to the Subscription Account Management
web service is established, then a subscribed ticker data can be retrieved automatically
and systematically.

6.4.3.3 Testing Web Services Atomic Transaction and WS

Coordination

The Buy-Sell-Stock web service uses WS-AtomicTransaction, WS-Coordination, and uses
addressing location (WS-Addressing) in collecting QoS policies’ (WS-Policy) protocols. The
QoS policies assertions can be mapped as communications rules as shown in Table 6.5. To
begin an atomic transaction, the web service client firstly locates a WSCoordination
coordinator web service that supports WS-Transaction within Buy-Sell-Stock web service.
Once located, the client sends a WS-Coordination “CreateCoordinationContext” message
to the activation service specifying “http://schemas.xmlsoap.org/ws/2002/08/wstx” as its
coordination type and will recveive an appropriate WS-Transaction context from the
activation service. The response to the “CreateCoordinationContext” message, the
transaction context has its CoordinationType element set to the WS-Atomic Transaction
namespace “http://schemas.xmlsoap.org/ws/2004/10/wsaf” and also contain a reference to
the atomic transaction coordinator endpoint within the Buy-Sell-Stock web service (the
WS-Coordination registration service) where participants can be enlisted. After obtaining
a transaction context from the coordinator, the client then proceeds to interact with a
Buy-Sell-Stock web service to accomplish its business-level work. With each invocation of
a Buy-Sell-Stock web service, the client add requests the transaction context into a SOAP

header block, such that the each invocation is implicitly scoped by the transaction.

122

Buy-Sell-Stock
web service

<wsp:All>
<wsat:ATAssertion wsp:Optional="true"
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

wsp:ExactlyOne> WSDL The web service specifies a policy expression

WS-
AtomicTransaction
WS-Policy

containing the Atomic Transaction policy
assertion.

< portType=>
<wsdl:portType
name="ActivationCoordinatorPortType">
<wsdl:operation
name="CreateCoordinationContext">
<wsdl:input
message="wscoor:CreateCoordinationContext"/>
</wsdl:operation=>
</wsdl:portType>
<portType>
<wsdl:portType
name="ActivationRequesterPortType">
<wsdl:operation
name="CreateCoordinationContextResponse’>
<wsdl:input
message="wscoor:CreateCoordinationContextRespon
se' /> </wsdl:operation>
<wsdl:operation name="Error">
<wsdl:input message="wscoor:Error"/>
</wsdl:operation=>
</wsdl:portType>

‘Ws-Coordination
Activation Service

The web service defines a single port declaring
CreateCoordinationContext operation.

The operation takes an input to specifying the
details of the transaction to be created; It
returns an output containing the details of the
newly created transaction context: the
transaction identifier, coordination type, and
registration service URL.

<portType>
<wsdl:portType
name="RegistrationCoordinatorPortType">
<wsdl:operation name="Register">
<wsdl:input message="wscoor:Register"/>
</wsdl:operation>
</wsdl:portType>
<|-- Registration Requester portType Declaration -->
<wsdl:portType
name="RegistrationRequesterPortType">
<wsdl:operation name="RegisterResponse">
<wsdl:input
message="wscoor:RegisterResponse”/>
</wsdl:operation>
<wsdl:operation name="Error">
<wsdl:input message="wscoor:Error"/>
</wsdl:operation>
</wsdl:portType>x

WS5-Coordination
Registration Service

The web service defines registration service
message targets the CoordinationContext, and
provides the name of the protocol it wants to
register for and the Participant service's
EndpointReference,

The RegisterResponse message provides the
AtomicTransaction service's
EndpointReference.

communications rules mapping

6.4.3.4 Testing Orchestration (WS-BPEL)

Table 6.5. Buy-Sell-Stock web service environment protocol assertions

The User Account Management web service uses the BPEL web services to control the

activities of the User Account Management web service via scopes, structured and basic

activities. Unlike BPMN2.0, using BPEL, the SOAP request begins with business logic of

application learning the method and parameters to call web services methods. Also, each

activity allows for nesting of other activities.

123

6.5 Test Effort Measurement

Test effort or the test cost measurement is carried out to estimate cost in time and
machine resources for test-case generation, test-execution, and collecting and logging
the test result. The test cost is estimated by measuring the actual time required to
generate and execute test cases along the test steps presented as break down parts of
the functional modules used by the proposed framework, in particular, for evaluating the
test cost for testing ClientsLogin method of the Authentication web service. Test cost in
time is collected for the generation test case with test input of values as outlined in Table
6.6, including test harness setup which is described in Table 6.2, while applying the
assertions communications rules for mapping establishing authentication web service

invocation, this includes symmetric key information with username and password using

HTTPS.

6.5.1 Test Case Generation Result

The Test Case Generation module captures and identifies the data from the results of
data mining of the core and the QoS requirements specification of the online stock
trading web services system by implementing the CP and ECP procedure as proposed in
Section 5.3.1 and 5.3.2. The result of test cases generation of the online stock trading

web services methods is shown in Table 6.6.

124

Authentication web

WS5-ReliableMessaging, WS-Security WS-

ClientsLogin method with 2 inputs 64
service Adadressing , and WS-Policy protocols parameter with 6 input values
(2°6) =1
Account Management | WS-BPEL GetUserPortfolio 256
web service GetBuyingPower
GetOpenOrders
AddFund
Subscription Account WS-ReliableMessaging, WS-Chorography, | GetsTickerSubscription 64
Managementweb WS-Addressing , and WS-Policy
service
Buy-Sell-Stock web WS-AtomicTransaction, WS GetliveOrder 384
service Coordination, WS-Addressing, and W5- GetCancelOrder
Policy GetCompleteQOrder
PutOrder
BuyOrder
GetReport

Table 6.6. Test case generation result for online stock trading web services methods

6.5.2 Test Effort Result

Figures 6.5 and Figures 6.6 show the results of the testing task expended by the proposed

framework on generating test cases of the Authentication web service. In the graphs, the

vertical axis shows the breakdown of the functional modules used by the proposed

framework, while the horizontal axis shows the work-time consumed (total actual time in

seconds) in the test-case generation, in the test-harness implementation, which includes

test environment setup, and test execution cases generation. The results demonstrated

testing effort (test cost) using the proposed framework. The actual results show that the

proposed framework required approximately 20.67 seconds for System Analysis and Test

Cases Generating steps for all test cases for the Authentication web service per test cycle.

125

System Analysis Test Effort in Time (Second)

Web service specification parsing (SAA) m 11.806

g ML WSDL static classification (LDMA) I 3.967

S MLWSDL implementation classification (LDMA) | 1.125

g ML Core req coverage classification (LDMA) 0.797

; ML QoS req coverage classification (LDMA) | (0.36

g ML Test data CP (LDMA) | 0.266

g ML Test data ECP (LDMA) | 32 7

2 ML QoS Test data ECP (LDMA) I 23
Total test cost W 18.882

Figure 6.5. Test cost results of testing task for system analysis step of the

authentication web service

-'5' Test Case Generation Effort in Time (Second)

5

g Test case frames generation (TCGA) (IEEEG_G_G—G_—_—_—_—_—GN 0.984

> Test execuation cycle generation (TCGA) (IS 0.797

§ Total test cost (G 1.781

w

&

s

Figure 6.6. Test cost results of testing task for test case generation step of the
authentication web service

6.5.3 Experimental Setup

The use case prototype is built with Java 7.0 (Java SDK 1.7) and Maven 3.0, it is designed
to be run on a Glassfish server Platform. The computer used to run the use case is
configured as follows: Intel Core i3 2.4 GHz with 6GB RAM, Windows 7 Professional,

NetBeans 7.4.0, and MySQL 5.2. The proposed framework ran against the use case

prototype web services on the same environment.

126

6.5.4 Computer Resource Test Cost

A resource usage measurement is carried out to see how much computer resource tests
cost in the running agents of the proposed framework. The Computer Performance
Monitoring application is used to measure CPU and memory usages aspects according to
selected counters of the computer resources specifically to measure: Processor Usage In
Time (CPU), Committed Bytes of In Use (Memory), and Available Bytes In Use (Memory)
of the proposed framework computer resource usage for testing Authentication web
service use case. The result of the machine test cost is shown in Figure 6.7. The figure
displays CPU and memory usages of testing task for System Analysis step which shows
the process which used by the testing agents consuming maximum 23.3% of processor
time for a duration of 1.4 seconds and with an average of 1.5 % during the process of

testing the Authentication web service.

CPU and memory usage by proposed framework

100 == = - - - - - o o s e e e =

MM

0 y L T
16:27:55 16:28:25 16:28:55 16:20:25 16:20:34

Last [0.000 Avuage[1576 Minimum 0.000
Maximum | 23375 Durat‘ronl—Tw

Show Color Scale Counter Instan... | Parent | Object
Iv 10 % Committed BytesIn Use --- — Memo!
2

v —1 [} Available Bytes s = Memory

Figure 6.7. CPU and memory test cost results of testing task for system analysis step of
the authentication web service

127

The result of the machine test cost for the Test Case Generation step is shown in Figure
6.8 which displays CPU and memory usages of the testing task. The figure shows the
process which is used by the testing agents consuming with maximum 50% for a duration

of 1.4 second during the process of the testing task of Authentication web service.

CPU and memory usage by proposed framework

100
T M o
0 - R S —n
20:26:35 20:21:.05 20:27:35 20:28:05 20:28:14
Last 2546,522464 Average 2582002033 Minimum | 2542923776
Maximum | 2,630,844,416 Duration 1:40
Show Color Scale Counter Instan... Parent Object
v 1.0 % Committed Bytes In Use mez === Memory

Figure 6.8. CPU and memory test cost results of testing task for test case generation
step of the authentication web service

6.5.5 Test Effectiveness Measurement

Another practical evaluation is carried out to measure the test effectiveness of the test
approach adapted by the proposed framework. The test effectiveness measurement is
conducted by measuring and evaluating the cost-effectiveness of the authentication web
service test suite. The cost-effectiveness was evaluated by computing the test suite (test
cost) for a given coverage criterion against the defect detection adequacy criteria. The
tests cases were based on core functional and QoS system requirements, and the test
oracles were based on data-type references. In the following subsections, the test

effectiveness of proposed framework will be empirically evaluated.

128

6.5.5.1 Test Coverage Evaluation

A test coverage analysis was carried out to evaluate the coverage level achieved by the
Authentication web service method source code. This analysis was conductedin a
very similar fashion to that of the empirical test coverage evaluation in Chapter 5. The
test coverage analysis is implemented by generating unit test suite and instrumenting the
code source, the JUnit unit testing tool is used to generate the Unit Test Cases (UTC)
which includes the same combination of input test data, methods calls, and expected
outputs which are used during test-case generation through the proposed framework. As
mentioned earlier in Chapter 5, the CodeCover tool is used to instrument and gauge the
coverage level achieved by a test suite for each unit test case, which provides the
percentage of the proportion of requirements that have been satisfied for statement
(instruction) coverage, branch coverage, line coverage, complexity coverage, and method
coverage .Using Cartesian product (as exemplified in Section 5.3.2), every test input of a
unit test case is paired with every test input of every other unit test case. The
Authentication web service is composed of test cases for testing with two input
parameters of a String. Thus, all combinations of the test inputs across all unit tests are
obtained, 36 (672)*1 of test cases are identified and generated. The JUnit tool was
employed to execute the test suite, accordingly, by using the CodeCover tool to generate
the coverage rate percentages covered by each unit test. The graph in Figure 6.9

summarises the result of test suite coverage.

129

100% +— —
90%
80%

= |@struction

overed
70% -+

ranch

60% covered

50% -+

tine

40% covered

Complexity
covered

30%

Code coverage %

20% -
10% |
0%

e e thod
covered

Tc 1

Tco

ch

Teg

Ics

}‘ca

Tcy

J"c-a

?‘c-s
ey o
Tey 2
T‘cz 2
Tc_! 3
?‘QI >
Tc Is
?’c-l A
?cl >
?‘ci. 8
ez 9
J‘c‘,o
ey 7
e 2
Tc 23
Tc, 2q
Tco 5
Tc s
Ue) >
i"c_?s
rf)y
rc30
Tcz 7
Tes 2
ch 3
?‘cj"
?‘Ca 5
Tcs, "

Unit test case

Figure 6.9. The result of the test suite coverage
The graph in Figure 6.9 shows that as TEA executed the 36 unit test cases one by one, the
code coverage is improved, reaching 100% coverage, for all, i.e. for instruction, branch,
line, complexity and method coverage percentage value. This result is consistent with
earlier result obtained through the empirical test coverage evaluation that conducted in
Chapter 5. Hence, the result of this test coverage evaluation demonstrates full test

coverage criteria according to the Authentication web service system requirements.

6.5.5.2 Defect Detection Effectiveness Measurement Evaluation

A mutation-detection effectiveness measurement is carried out to evaluate the defect
detection level which is achieved by the Authentication web service test suite. Figure 6.10
summarizes in a graph the mutation-detection effectiveness of the generated test suite
by the proposed framework. The horizontal axis signifies applied mutant types, while the
vertical axis signifies the percentage of the test cases which detected the mutants. The

graph illustrates that the test approach adapted by the proposed framework is capable of

130

finding all defects of the selective mutation types which are applied on the

Authentication web service system requirement with 100% mutation score.

Figure 6.10. Defect detection ratio for authentication web service test suite

6.5.6 Cost-Effectiveness Measurement Evaluation

The cost effectiveness measurement was calculated and plotted against the test suite size
(test cost). The approach is adapted by calculating and plotting the defect detection
effectiveness against the test cost. The resulting graph is presented in Figure 6.11, where
the horizontal axis represents the test suite size or test cost, while the vertical axis
represents the detected defect rates. The figure shows the cost-effectiveness line which
illustrates as the test suite size increases, the number of detected defects which provide
evidence of the defect detection adequacy criteria, this indicates that the actual test suite
cost effectiveness at detecting defects. The result of the cost effectiveness measurement
demonstrates that the proposed framework is consistent which indicates high cost-

effectiveness from the perspective of the test coverage.

131

14

o 12 ~4 5 s ——
e
s 1
et
2 49
S
Lt 6’
]
© a -
o
2.
0 — — — — — e —

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
Test suit size

Figure 6.11. Cost-effectiveness measurement of the authentication web service test
suite

6.6 Conclusion

An online stock trading use case is developed and used as a prototype system by means
of a proof-of-concept implementation for testing systems based on SOA testing using the
proposed framework solution. The proposed framework is utilised on a larger scale as an
approach for improving the cost-effectiveness of various testing stages. The framework is
extended to support test oracle generation from web services business process
XML languages, Business Process Execution Language (BPEL), and Web Services
Choreography Description Language (WS-Choreography) using BPMN2.0 processes. The
test cases generated from this specification will drastically reduce the time it takes to
generate test cases and test the SOA based applications and will improve the Return of
Investment (ROI). This specification addresses all kinds of collaborations, especially
dynamically invoked and freely interacting different types of web services components.
The specifications implemented are in state-full e-commerce system, in the B2B world,

where services are invoked dynamically according to the result of the previous

132

invocation. The evaluation demonstrated the benefits of the proposed framework as an
automated framework with low cost associated which gives confidence to the research
outcomes. Furthermore, the evaluation analysis showed that the proposed framework
can support automated QoS test generation and execution with high-test coverage for

advanced and complex SOA implementation within industry sectors.

133

Chapter 7 - Conclusion and Future Work

7.1 Conclusion

SOA has become popular and gained significant attention and support from major
companies in computing. However, testing the implementation of systems based on SOA
such as web services has become a major issue, as the task of testing is made more
complex by the specific characteristics of these systems. The primary aims and
contributions of this thesis are the design, implementation, and evaluation of a new
automatic machine-learning framework by means of a proof-of concept implementation
for testing system based on SOA. The work which was carried out to achieve these aims,
as well as the results of the work, was reported in the previous chapters of this thesis. In
this section the achievements and conclusions, which have been previously drawn, will be
summarised.

The research began with a thorough investigation into the testability problem of SOA
based systems which has become a major issue, in particular the systematic validation
and testing of SOA components. The investigation is considered a necessary
prerequisite to support intelligent learning of SOA component testability which facilitates
test environment knowledge acquisition and helps SOA component test engineers and
users to obtain high testability design knowledge of functional and non-functional
requirements so that component test criteria is easily scoped and effective testing
accomplished.

The thesis then conducted a thorough investigation and evaluation of the existing
contributions presented in the literature. The investigation started by discussing and

comparing the SOA testing frameworks and tools, sharing common aspects, and

134

evaluating their approaches into a means of improving the testability of systems based on
SOA, as well as their deficiencies and shortcomings with respect to current testability
issues which are due to specific SOA characteristics. The actual outcome of the
investigation and evaluation from the literature has appealed to reconsider and redesign
the current traditional and automated testing approaches, and to invent new testing
approaches and frameworks. For that matter, the thesis has investigated a suitable
approach with test coverage strategies in order to specify how it is implemented with
different type of approaches, methods, and computational techniques and to provide a
practical solution of testing these systems. Hence, the thesis highlighted a suitable and
ideal approach to enabling an effective testability degree of SOA systems based on
combining automated test simulators as systematic offline testing with online testing and
monitoring for validating and verifying the core system and service’s trustworthiness,
based on protocols and standard requirements and test creation and execution coverage
analysis. Moreover, the thesis highlighted a suitable machine-learning approach which
can automatically derive skeletons of SOA test cases and provide support for their
execution and result analysis.

The identified testability issues of SOA based system have been addressed in this thesis
by designing, developing, and implementing an automated and systematic testing and
monitoring framework as a functional prototype and as actual deliverable for the
industry. The framework is supported by MAS and Machine Learning techniques and
based on knowledge discovery and data mining of protocols and standard requirements
based on web service protocol stack and test coverage analysis. The functional prototype

provides a practical solution to the testability problems in SOA systems by automatically

135

establishing testability links between the prerequisites of intelligent knowledge of SOA
testability and system under test requirement and test coverage analysis.

The design of the functional prototype aimed to combine existing computational
techniques and methods for resolving the problems of SOA testability and to improve
testing systems using top-down testing approach which creates necessary inputs and
output required from high-level system specifications based on WS-* Architecture for
each method in each service within SOA system ,and then invoke the method which
enables an effective testability degree based on combining automation machine-learning
with test cases generation and monitoring their execution and resulting analysis.
Moreover, the aspects of the design and implementation of the functional prototype of
the machine-learning SOA testing framework was elaborated and demonstrated together
with all the required functional modules and functional flow processes within the
framework.

Furthermore, the novel framework on which it has evolved has demonstrated the
advantages of utilising the MAS approach supported by intelligent reliability, such as
preferences, with purely SOA principles and a standard-based approach using the web
services protocol stack. The identified approach is considered essential to increase the
QoS and level of deployment within both academic and industry sectors. In addition, the
proposed framework has demonstrated a suitable level of achievement of using different
type of methods and computational techniques to develop an automated testing case
generation module supported by the LDM module to apply a structural machine-learned
technique and to process knowledge discovery and data mining of the core and QoS

requirements based specification and then automats black-box test cases generation

136

supported by MAS technique. In addition, the proposed framework has demonstrated
that the machine-learned data mining method produces correct classification decisions
based on different type training datasets which applied upon new classification cases.
Furthermore, the framework has demonstrated a suitable level of achievement of
developing an automated and intelligent test case-coverage analysis supported by
machine-learning methods applied to determine if the generated test suite satisfies the
coverage criteria according to the core and QoS requirements specification of the web
services under test. Moreover, the novel framework has demonstrated achieving the
processing test execution simulation tasks using MAS agents as test simulators and by
performing offline testing with online testing and monitoring for validating and verifying
server response analysis, and feeding the test executions results into a test database.
The identified test execution data include the environment settings, which are required
for implementing the test harness of the test client at the time of creation of the SOAP
message communication dispatcher. The test simulation outputs were used by the LDM
module in the learning, reasoning, and decision making process, throughout the test
validation procedure within the monitoring process. The novel framework also has
demonstrated intelligent analysis achievement of using the feedback from the LDM
module to support the learning and decision making concept and produce effective
quality-level testing in accordance with the expected test outputs. The proposed
framework demonstrated that the LDM module supported by machine-learning classifiers
can be trained and then classify the output data of test executions of the baseline test
cases, then classify the condition of the test cases, and determine whether the test cases

have meet the test objectives.

137

After detailed presentations of individual modules of the novel framework on which it
has evolved and in order to exemplify the practical solution and prove the testability
aspects were considered, the thesis has presented the individual modules of the
framework together with working examples using practical SOA web services prototypes
example implementations. The example implementation results have provided analytical
evaluation descriptions of the effective practical evaluation study of the functions of each
of the core modules in the proposed framework.

Furthermore, an extensive empirical evaluation of the framework’s functional prototype
using practical examples based on the quantitative data analysis of cost-effectiveness was
carried out, in order to evaluate and prove that significant savings in time and effort and
can be achieved by employing the developed framework. The empirical evaluation of the
proposed framework is conducted by comparing it to leading commercial and open
source benchmark frameworks and tools for testing SOA systems by using key factors
such as test cost, defect detection effectiveness and cost-effectiveness measurements.
The test cost carried out as a measure for the test cost and to evaluate the test suite
completeness generated by the proposed framework. The test suite completeness result
has shown full code coverage by the test suite. This implies that the test suite generated
by the proposed framework has a high degree of test cost-effectiveness traced to the
requirement specification of the SOA system under test. Moreover, an internal validity
factor for test cost evaluation was established and determined through a practical
comparison of the proposed framework against leading and comprehensive open source
and commercial SOA test tools. The results demonstrated reduced test costs using the

proposed framework compared with other SOA test frameworks and tools. The actual

138

results showed that the proposed framework positively required the lowest amount of
time of these SOA test tools. In addition, another internal validity factor which is the
degree level of automation, was also established and determined through empirical
comparison of the proposed framework against the other SOA test tools according to the
automation validity factors. The results showed that the proposed framework could
achieve a good degree of automation in comparison to other SOA test tools.

Moreover, an external validity factor which could limit the ability to generalise the
proposed framework for supporting SOA industry practices was also determined through
an empirical comparison of the level of implementation of these factors against similar
frameworks and tools from the literature. The results showed that the highest level of
implementation of these characteristics was achieved by the proposed framework in
comparison to other frameworks from the literature. This verifies respectively that the
proposed framework implements and supports the standards and protocols that make it
more transparent and applicable in the implementation according to industry practices.
Additionally, another practical evaluation carried out to measure another key factor, the
defect detection effectiveness which has showed that the test approach adapted by the
proposed framework is efficient and capable of finding all injected mutant types with
100% mutation score, which indicates a high degree of defect detection. A final measure
of the cost-effectiveness of the proposed framework was computed. The empirical
analyses of the cost-effectiveness of the proposed framework has shown that the
proposed framework is effective at a much lower test cost than other SOA test tools. The
evaluation demonstrated the benefits of the proposed framework as an automated

framework, compared to the cost associated with others which gives credence to the

139

research outcomes. Furthermore, the evaluation analysis showed that the proposed
framework can support automated QoS test generation and execution with high test
coverage and defect detection levels, as compared with other frameworks from the
literature.

Finally, a use case study conducted experimentally to evaluation effectiveness of the
proposed framework by practical and systematic implementation on a generic and
complex business use case within industry sectors. The implementation involved an
Online Stock Trading web services system which was designed and developed as a
prototype for the SOA web services environment implementation for testing systems
based on using the proposed framework solution. The use case environment has
deployed the majority of the predominant web services protocol stack WS-* Architecture
specifications such as WS-Transactions, WS-Security, WS-Chorography, WS-BPEL and
other standards and specifications. The deployed WS-* Architecture specifications
addressed all kind of collaborations, especially dynamically invoked and freely interacting
different types of web services components. The specifications implemented are in state-
full e-commerce system, in the B2B world, where services are invoked dynamically
according to the result of the previous invocation. The evaluation demonstrated the
benefits of proposed framework as an automated framework with low cost associated
which gives confidence to the research outcomes. Furthermore, the evaluation analysis
showed that the proposed framework can support automated QoS test generation and
execution with high-test coverage for advance SOA implementation within industry

sectors.

140

7.2 Future Work

In this section, suggestions are given about how the work presented in this thesis can be
further elaborated. The future work can be classified into a three key areas of
improvement.

The first improvement for future work is related to the System Analysis process for
supporting system requirements based on the web service protocol stack and test
coverage analysis of the proposed framework, which to the fact that the current
implementation of the system analysis stage does not support function knowledge and
constraints based on SOA service method’s functional requirement. Such constraints
should ideally be expressed as business rules. Business rule knowledge can be derived
from business logic e.g. (Integrity Rules—e.g. received request data validation rule, or
Derivation Rules—e.g. price calculation rule, Reaction Rules—e.g. action rules for
checking if flights where found otherwise skip) which can be used to evaluate the
business rules of a SOA services. One of the most important facts about business rules is
that they are declarative statements, they specify what has to be done and not how it is
to be done. The framework will be extended to support test function knowledge and
constraint generation from web services business processes XML languages, such as
Business Process Execution Language (PBEL) and Web Services Choreography Description
Language (WS-Choreography). This can be achieved by using structural machine-learning
technique, to process knowledge discovery of business logics which are embedded inside
PBEL or BPMN documents of SOA systems, this can be investigated and integrated into

the data mining process of the SOA services under test.

141

The second improvement for future work is related to LDM module in the learning,
reasoning, and decision-making process, throughout the test cases generation. The fact
that the current implementation of the machine learning classification method of
generation test oracles cannot learn what input or output properties are potentially of
interest as true oracles, but only which ones matter once they are defined as primitive
type values provided by programming languages which are produced by the ECP method
for partitions of choices of the input-output of test data. In other words, without some
additional guidance, the learning algorithm is unlikely to find the precise conditions under
which test oracles in the test cases. This guidance comes in the form of choices or
constraints, as acquired by CP and ECP methods from business logics. As previously
described in the first improvement, once the initial knowledge from data mining of the
business logics are transformed into abstract test oracles in the generated test cases.

The third improvement is related to the second stage of the SOA testing process in the
proposed framework, as the current implementation of the test case generation stage
does not support setting test cases update rules. These rules are in turn analysed using
LDM module in the learning, reasoning, and decision-making to determine potential
improvements of the test suite e.g. redundant test cases, need for additional test cases
as well as improvements of the CP and ECP methods , e.g. need to add a category or
choices. The result from the analysis will evaluate the effectiveness of the test suites and
CP and ECP methods specifications created and trained by a LDM module classifier. The
machine learning iterative process can improve the CP and ECP methods specifications to
a level that is equivalent to what an expert system would likely produce improvement

cycles. The resulting test suites will be more effective in terms of defect detection.

142

Finally, the fourth suggested improvement for future work is related to the general SOA
testing process of the proposed framework. The framework will be extended to support
Reverse Engineering Modeling of the specific SOA system under test. In practice, the
system specification is used to identify the test cases. In this case, the test specification
has to be either reverse-engineered or created from high-level system specifications, for
example the WSDL document. To enable reverse engineering to learn and conclude the
SOA system under test specifications, the output domain of the generated test suite of
the SOA system has to thoroughly exercise a draft model of the SOA system under test
according to various core functional, QoS test environments and coverage metrics form
the test suite to produce a contract of SOA services specification, e.g. WSDL document.
The resulting WSDL document is fed then into framework testing process which
automatically generates a test suite. The generated test suite thoroughly exercises the
test model by comparing the outputs produced by the SOA system under test and the
model on the tests in the test suite. The deviations in the behaviour of the model from
the SOA services specification under test are readily detectable and can be used to guide
the user in refining the model to ensure that it correctly captures the behaviour of the

SOA system.

143

References

[1] Abbas Tarhini, Hacéne Fouchal, and Nashat Mansour. 2005. A simple approach for testing web
service based applications. In Proceedings of the 5th international conference on Innovative
Internet Community Systems (IICS'05), Alain Bui, Marc Bui, Thomas Béhme, and Herwig Unger
(Eds.). Springer-Verlag, Berlin, Heidelberg, 134-146. DOI=10.1007/11749776_12
http://dx.doi.org/10.1007/11749776_12.

[2] Aberdeen group: SOA and Web Services Testing: How Different Can It Be?, August 2007.
Retrieved from: http://www.aberdeen.com/Aberdeen-Library/4117/RA-soa-web-
services.aspx.

[3] Active vs. Passive Web Performance Monitoring. Retrieved from: https://www.dotcom-
monitor.com/release-active-vs-passive-web-performance-monitoring.aspx.

[4] Agitar:http://www.agitar.com.

[5] Alahmari,S., A design framework for identifying optimum services using choreography and
model transformation.2012).University of Southampton, Faculty of Applied Science, Doctoral
Thesis.

[6] AppLabs.com :Approach to Testing SOA Applications.
App_WhitePaper_Approach_to_SOA_1v04, Available from
:http://www.docstoc.com/docs/4248918/Approach-to-Testing-SOA-Applications,2007.

[7] Architecture Maturity Models, 2006 , TOGAF- the Open Group,

http://pubs.opengroup.org/architecture/togaf8 doc/arch/chap27.html.

[8] Ariba, International Business Machines Corporation, Microsoft. Retrieved from:
http://www.w3.0org/TR/wsdl.

[9] Bartolini, A.Bertolino, S.Elbaum and E.Marchetti, “Whitening SOA Testing,” Proc. 7th joint
meeting of the European Software Engineering.

[10] Bertolino, A. 2009. Approaches to testing service-oriented software systems. in Proceedings
of the 1st international Workshop on Quality of Service-Oriented Software Systems
(Amsterdam, The Netherlands, August 24-28, 2009). QUASOSS ‘09. ACM, New York, NY
Bertolino, A. 2009. Approaches to testing service-oriented software systems. In Proceedings
of the 1st international Workshop on Quality of Service-Oriented Software Systems
(Amsterdam, The Netherlands, August 24-28, 2009). QUASOSS ‘09. ACM, New York, NY.

[11] Bertolino, A., L. Frantzen, A. Polini and J. Tretmans, Audition of web services for testing
conformance to open specified protocols, in: R. Reussner, J. Stafford and C. Szyperski,
editors, Architecting Systems with Trustworthy Components, number 3938 in LNCS (2006).M.
Young, The Technical Writer's Handbook: Univ. Science, 1989.

[12] Bertolino, A.Angelis, G. DeFrantzen, L.Polini, A.Suzuki., K, Model-Based Generation of
Testbeds for Web Services, Testing of Software and Communicating Systems : 20th IFIP TC
6/WG 6.1 International Conference, TestCom 2008 8th International Workshop, FATES 2008
Tokyo, Japan, June 10-13, 2008 Proceedings.

[13] Bloomberg,J., “Principles of SOA”. Retrieved
from:http://adtmag.com/articles/2003/02/28/principles-of-soa.aspx, 1105media.com
02/28/2003.

(14] Borland SilkPerformer SOA edition:http://www.borland.com/us/products/silk/silkperformer.

[15] Bozkurt, M., Harman, M. and Hassoun, Y. (2013), Testing and verification in service- oriented
architecture: a survey. Softw. Test. Verif. Reliab., 23: 261-313. doi: 10.1002/stvr.1470.

(16] Briand, L.C.; , “A Critical Analysis of Empirical Research in Software Testing, “ Empirical
Software Engineering and Measurement, 2007. ESEM 2007. First International Symposium
on, vol., no., pp.1-8, 20-21 Sept. 2007.

144

[17] Bucchiarone, A.,Melgratti, H., Severoni, F.: Testing service composition. In Proceedings of the
8th Argentine Symposium on Software Engineering (ASSE’07). (2007).

[18] Canfora, G.; Di Penta, M.;, “Testing services and service-centric systems: challenges and
opportunities, ” IT Professional , vol.8, no.2, pp.10-17, March-April 2006 doi:
10.1109/MITP.2006.51.

[19] Cesare Bartolini, Antonia Bertolino, Eda Marchetti, Andrea Polini, "WS-TAXI: A WSDL-based
Testing Tool for Web Services," Software Testing, Verification, and Validation, 2008
International Conference on, pp. 326-335, 2009 International Conference on Software
Testing Verification and Validation, 2009.

[20] Chan, W. K., Cheung, S. C., and Leung, K. R. 2005. Towards a Metamorphic Testing
Methodology for Service-Oriented Software Applications. In Proceedings of the Fifth
international Conference on Quality Software (September 19 - 20, 2005). QSIC. IEEE
Computer Society, Washington, DC, 470-476. DOI= http://dx.doi.org/10.1109/QSIC.2005.67.

[21] Chatterjee, J., Testability, StickyMinds.com. Retrieved
from:http://www.stickyminds.com/sitewide.asp?Object!d=8077&Function=edetail&ObjectTy
pe=ART, 2010.

[22] Chu, M., Murphy, C., and Kaiser, G. 2008. Distributed In Vivo Testing of Software
Applications. In Proceedings of the 2008 international Conference on Software Testing,
Verification, and Validation (April 09 - 11, 2008). ICST. IEEE Computer Society, Washington,
DC, 509-512. DOI= http://dx.doi.org/10.1109/ICST.2008.13.

[23] CodeCover: http://codecover.org/.

[24] Constant Field Values, Java 2 Platform Standard Edition 5.0 API Specification. Retrieved
from:http://download.oracle.com/javase/1.5.0/docs/api/constant values.html.

[25] Demillo, R.A., Guind.S, king, K.N., Mccrackn, W,.M., And Offutt, A, .J.1988. An extended
overview of the Mothra software testing environment. In Proceedings of the 2" Workshop
on Software Testing, Verification, and Analysis {Banff, Alberta, Canada, July).lEEE Computer
Society Press, Los Alamitos, Calif., 142-151.

[26] Developing Cost-effective Model-based Techniques for GUI Testing, Xie, Q., University of
Maryland, College Park, ISBN 9780542961168,
http://books.google.ie/books?id=t2wkmdNGWQAC, 2006, University of Maryland, College
Park.

[27] DoD Towards Software”, Wipro IT Business. Retrieved from:
http://www.wipro.com/wiproforms/thankyou.aspx?ReturnUrl=/datadocs/whitepaper/wipro
_soa_testing.pdf,2009.

[28] Dung Cao, Richard Castanet, Patrick Felix, Kevin Chiew. An Approach to Automated Runtime

[29] Eclipse documentation Archived Release, from:
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.jst.ws.doc.user%2Fconcepts%2F
cws.html

[30] El Yamany, H.F.; Capretz, M.A.M,; Capretz, L.F.;, "A Multi-Agent Framework for Testing
Distributed Systems," Computer Software and Applications Conference, 2006. COMPSAC '06.
30th Annual International , vol.2, no., pp.151-156, 17-21 Sept. 2006
doi: 10.1109/COMPSAC.2006.98
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4020160&isnumber=4020
118.

[31) Eler, M.M.; Delamaro, M.E.; Masiero, P.C., "Using structural testing information to support
monitoring activities," Service Oriented System Engineering (SOSE), 2011 |EEE 6th
International Symposium on, vol., no., pp.25,30, 12-14 Dec. 2011 doi:
10.1109/S0OSE.2011.6139089.

[32] Erl,T.,”What Is SOA”. Retrieved from:http://www.whatissoa.com/p9.php.SOA Systems inc,
2009.

145

[33] Extended Web Services Standards Business Process Automation,
http://www.eti.pg.gda.pl/katedry/kask/dydaktyka/Automatyzacja_procesow_biznesowych/
APB2011/wWSStackAPB.pdf.

[34] Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai, and Sanjiva Weerawarana. 2003.
The next step in Web services. Commun. ACM 46, 10 (October 2003), 29-34.
DOI=10.1145/944217.944234 http://doi.acm.org/10.1145/944217.944234.

[35] Freedman, R.S,"Testability of software components," Software Engineering, |IEEE
Transactions on, vol.17, no.6, pp.553-564.1991
doi: 10.1109/32.87281.

[36] G. Canfora and M. Di Penta. SOA: testing and self-checking. In Proceedings of the
International Workshop on Web Services: Modeling and Testing (WSMaTe2006), pages 3-12.
Palermo, Italy, 2006.

[37] Gartner, Inc http://www.gartner.com/technology/home.jsp.

[38] Gerardo Canfora and Massimiliano Penta. 2009. Service-Oriented Architectures Testing: A
Survey. In Software Engineering, Andrea Lucia and Filomena Ferrucci (Eds.). Lecture Notes In
Computer Science, Vol. 5413. Springer-Verlag, Berlin, Heidelberg.

[39] GlassFish.Metro Security Mechanism Configuration Options. Retrieved from:
https://metro.java.net/2.0/guide/Security_Mechanism_Configuration_Options.html.

[40] Glenford J. Myers: The art of software testing (2.ed.). Wiley 2004, isbn 978-0-471-46912-4,
pp. I-XV, 1-234.

[41] Greiler.M, Gross.H-G, Naser.K Runtime Integration and Testing for Highly Dynamic Service
Oriented ICT Solutions-An Industry Challenges Report.

[42] Guilan Dai, Xiaoying Bai, Chongchong Zhao, "A Framework for Model Checking Web Service
Compositions Based on BPELAWS," icebe, pp.165-172, IEEE International Conference on e-
Business Engineering (ICEBE'07), 2007.

[43] Harris. T, SOA Test Methodology, Torry Harris Business Solutions. Retrieved from:
http://www.thbs.com/white_papers.html,2007.

[44] Heather Kreger. Web Services Conceptual Architecture (WSCA 1.0). 2001. Retrieved from:
http://www.cs.uoi.gr/~pitoura/courses/ds04_gr/webt.pdf.

[45] Hong Zhu, “A Framework for Service-Oriented Testing of Web Services, ” compsac, vol. 2,
pp.145-150, 30th Annual International Computer Software and Applications Conference
(COMPSAC'06), 2006 Oxford Booker University .Oxford.UK, 2008.

[46] HP Service Test :http://www8.hp.com/us/en/software-
solutions/software.html?compURI=1173796#.UPrnKCfZbuy.

http://www.zapthink.com/2005/08/24/what-belongs-in-a-service-contract/.

[47] 1BM Corporation, Web services overview. 2005. Retrieved from:
http://publib.boulder.ibm.com/infocenter/rtnlhelp/v6rOm0/index.jsp?topic=%2Fcom.ibm.et
ools.webservice.doc%2Fconcepts%2Fcws.htmi.

(48] Ingki, K.; Ari, 1.; Sozer, H., "A Survey of Software Testing in the Cloud," Software Security and
Reliability Companion (SERE-C), 2012 IEEE Sixth International Conference on, vol., no.,
pp.18,23, 20-22 June 2012 doi: 10.1109/SERE-C.2012.32.

[49] J.Gao. Component Testability and Component Testing Challenges. In International Workshop
on Component-Based Software Engineering. 2000.

[50] jBlitz:http://www.clanproductions.com/jblitz/.

[51] Johannes Ryser, Stefan Berner, and Martin Glinz. 1999. On the State of the Art in
Requirements-Based Validation and Test Of software. Technical Report. University of Zurich.

[52] Jones, S, "Toward an acceptable definition of service [service-oriented
architecture},” Software, IEEE , vol.22, no.3, pp. 87- 93, 2005
doi:10.1109/MS.2005.80.

[53] José Garcia-Fanjul, Marcos Palacios-Gutiérrez, Javier Tuya-Gonzélez, and Claudio de la Riva-
Alvarez: Methods for testing Web Service Compositions, Experiences and Advances in

146

Software Quality, CEPIS, Volume: 2009, Issue V, 2009.

[54] JUnit:http://www.junit.org.

[55] K. ZieliEski, T. Szmuc: Software engineering: evolution and emerging technologies,
Amsterdam.lOS Press, (2005).

[56] K.Adamopoulos, M. Harman, and R. M. Hierons, “How to overcome the equivalent mutant
problem and achieve tailored selective mutation using co-evolution, ” in Genetic and
Evolutionary Computation Conference (GECCO), 2004, pp. 1338-1349.

[57] Kajko-Mattsson, M.; Lewis, G.A.; Smith, D.B.; , "A Framework for Roles for Development,
Evolution and Maintenance of SOA-Based Systems," Systems Development in SOA
Environments, 2007. SDSOA '07: ICSE Workshops 2007. international Workshop on, vol,, no.,
pp.7-7, 20-26 May 2007 doi: 10.1109/SDSOA.2007.1.

[58] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison Wesley,
Reading, Mass., 1998.

[59] Lennon, R. 2005. Optimisation of service provision for composite web services. In Companion
To the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (San Diego, CA, USA, October 16-20, 2005). OOPSLA ‘05. ACM,
New York, NY, 216- 17.DOI=http://doi.acm.org/10.1145/1094855.1094942.

[60] LISA:http://www.itko.com/.

[61] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, lan H.
Witten (2009); The WEKA Data Mining Software: An Update; SIGKDD Explorations, Volume
11, Issue 1.

[62] Michael Papazoglou. Web Services: Principles and Technology. PrenticeHall, 1 edition,
September 2007.

[63] Microsoft Application Architecture Guide, 2nd Edition. Retrieved from:
http://msdn.microsoft.com/en-us/library/ee658098.aspx#WhatlsSoftwareArchitecture.

[64] Mike P. Papazoglou, Willem-Jan van den Heuvel: Service oriented architectures: approaches,
technologies and research issues. VLDB J. 16(3): 389-415 (2007).

[65] Mousavi,M.,Equivalence Class Testing, Eindhoven University of Technology,The Netherlands,
pp,2013,retrieved from :http://www.win.tue.nl/~*mousavi/21W65/2.pdf.

[66]) Nguyen, C.D., Marchetto, A., Tonella, P., "Challenges in Audit Testing of Web Services,"
Software Testing, Verification and Validation Workshops (ICSTW), 2011.

[67] Offutt, Xu: Generating Test Cases for Web Services Using Data Perturbation. Fairfax, VA. TAV-
WEB Proceedings/ACM SIGSOFT SEN P1 Volume 29 Number 5, 2004.

[68] Oracle Corporation. HTTP Binding Component User's Guide. 2010.Retrieved from:
http://docs.oracle.com/cd/E19182-01/821-0830/gggsrv/index.html.

[69] Oracle, April 2012, The Java EE 6 Tutorial. Retrieved from:
http://docs.oracle.com/javaee/6/tutorial/doc/gigsx.html.

[70] P. G. Frankl and O. lakounenko, “Further Empirical Studies of test Effectiveness, ” Proc. 6th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, Orlando
(FL, USA), pp. 153-162, November 1-5, 1998.

[71] P.Taranti, C.J.P.D. Lucena, and R. Choren, “An Industry Use Case: Testing SOA Systems with
MAS Simulators,” in Proc. MALLOW, 2009.

[72] Papazoglou, M., 2005."Extending the service-oriented architecture,"Open Access
publications from Tilburg University urn:nbn:nl:ui:12-3969166, Tilburg University.

[73] Parasoft SOAtest:http://parasoft.com.

[74] Perry, William E., Effective Methods for Software Testing, Wiley- QED Information Sciences,
Inc., John Wiley & Sons, Inc., New York, NY, 1995,ISBN #0-471-06097-
principle,.http://trese.cs.utwente.nl/taosad/separation_of_concerns.htm.,

[75] PushToTest TESTMAKER: http://www.pushtotest.com.

[76] Qusay H. Mahmoud, Service-Oriented Architecture {SOA) and Web Services: The Road to
Enterprise Application Integration (EAI), Oracle, April 2005.Retrieved from

147

:http://java.sun.com/developer/technicalArticles/WebServices/soa/.

[77] R.Jeevarathinam and A.S. Thanamani, "Test Case Generation using Mutation Operators and
Fault Classification,” presented at CoRR, 2010.

[78) Raimund Kirner and Susanne Kandl. Test Coverage Analysis and Preservation for
Requirements-Based Testing of Safety-Critical Systems. 2008. Retrieved from:http://ercim-
news.ercim.org/content/view/456/699/.

[79] Rakesh Kumar, Deepali Gupta, Metrics and Heuristics in Software Engineering, GICST (2010)
Volume 10 Issue 15: 23-26. Category: D.2.8,D.4.8,1.2.8

[80] ROCHA, Camila Ribeiro and MARTINS, Eliane. A method for model based test harness
generation for component testing. J. Braz. Comp. Soc. [online]. 2008, vol.14, n.1, pp. 7-23.
ISSN 0104-6500. http://dx.doi.org/10.1007/BF03192549.

[81] S. Paydar and M. Kahani, "An Agent-Based Framework for Automated Testing of Web-Based
Systems,"Journal of Software Engineering and Applications, Vol. 4 No. 2, 2011, pp. 86-94.
doi: 10.4236/jsea.2011.42010.

[82) Schahram Dustdar, Stephan Haslinger, Object-Oriented and Internet-Based Technologies,
Chapter Title: Testing of Service-Oriented Architectures—A Practical Approach, PP 55-65,
2004.

[83] Schieferdecker, Stepien: Automated Testing of XML/SOAP based Web Services.Retrieved
from:: http://www.site.uottawa.ca/~bernard/TestingWebServices.pdf.

[84] Schmelzer,R. What Belongs in a Service Contract. 2005. Retrieved from:

[85] Seely,S.,Microsoft. Understanding WS-Security. 2002.Retrieved
from:http://msdn.microsoft.com/en-us/library/ms977327.aspx#understw_topic3.

[86] Service-Oriented Architecture, Wikipedia. Retrieved from:
http://en.wikipedia.org/wiki/Service-oriented_architecture,2010.

[87] Services Oriented Architecture (SOA) Infrastructure Market Shares, Market Strategy, and
Market Forecasts.Retrieved from:
ftp://ftp.software.ibm.com/software/soa/pdf/Service_Oriented_Architecture_SOA_Infrastru
cture_all.pdf.

[88] Sharma, A.; Hellmann, T.D.; Maurer, F., "Testing of web services - A systematic mapping,”
Services (SERVICES), 2012 IEEE Eighth World Congress on , vol., no., pp.346,352, 24-29 June
2012 doi: 10.1109/SERVICES.2012.21.

[89] SOA Alliance, Group of SOA Practitioners, SOA Blueprint— Reference Architecture V1.1,,
Available
from:http://www.soablueprint.com/whitepapers/SOAReferenceArchitectureReformatted.pd
f, 2006.

[90] SOA fundamentals in a nutshell: Prepare to become an IBM Certified SOA Associate:
Mohamed I. Mabrouk.

[91) SoapUI-WebService:Testing: http://www.soapui.org.

[92] Stefan Jungmayr: Improving testability of object-oriented systems.ISBN 3-89825-781-9.

Retrieved from: http://www.dissertation.de/index.php3?active_document=/FDP/sj929.pdf.
[93) Tekinerdogan,B .Separation of concerns. Retrieved from:

[94] Text classification and Naive Bayes, Cambridge University Pres. 2008.Retrieved from:
http://nlp.stanford.edu/IR-book/html/htmledition/text-classification-and-naive-bayes-
1.html.

[95] Tsai, W. T., Gao, J., Wei, X,, and Chen, Y. 2006. Testability of Software in Service-Oriented
Architecture. In Proceedings of the 30th Annual international Computer Software and
Applications Conference, Volume 02 (September 17-21, 2006). COMPSAC. IEEE Computer
Society, Washington, DC, USA.

[96] Tsai, W.T.; Xinyu Zhou; Yinong Chen; Xiaoying Bai; , "On Testing and Evaluating Service-
Oriented Software," Computer , vol.41, no.8, pp.40-46, Aug. 2008 doi:
10.1109/MC.2008.304.

148

[97] Using machine learning to refine Category-Partition test specifications and test suites
Original Research Article Information and Software Technology, Volume 51, Issue 11,
November 2003, Pages 1551-1564 Lionel C. Briand, Yvan Labiche, Zaheer Bawar and Nadia
Traldi Spido.

[98] Valecha ,G. ,Testability:Test Before Testing!, CodeProject, 2011. Retrieved from:
http://www.codeproject.com/Articles/275631/Testability-Test-before-Testing.

[99] Vasilios S. Lazarou, Spyridon K. Gardikiotis and Nicos Malevris (2008). Agent Systems in
Software Engineering, Tools in Artificial Intelligence, Paula Fritzsche (Ed.), ISBN: 978-953-
7619-03-9, InTech, Austria.Retrieved from:
http://sciyo.com/articles/show/title/agent_systems_in_software_engineering.

[100] Verification for Timed Systems: Applications to Web Services. Journal of Software,2012, 7
(6), pp.1338-1350.

[101] Vmware, vFabric 5 Documentation Center, Data Types, Retrieved from:
http://pubs.vmware.com/vfabric5/index.jsp?topic=/com.vmware.vfabric.sqlfire.1.0/referenc
e/language_ref/ref-data-types.html.

[102] Voas, J.M.; Miller, KW., "Improving the software development process using testability
research,” Software Reliability Engineering, 1992. Proceedings., Third International
Symposium on, vol., no., pp.114,121, 7-10 Oct 1992 .doi: 10.1109/ISSRE.1992.285852.

[103] W. T. Tsai et al. Scenario-based web service testing with distributed agents. IEICE
Transaction on Information and System, E86-D(10):2130~2144, 2003.

[104] Wang, Hongbing, et al. "Web services: problems and future directions." Web Semantics:

Science, Services and Agents on the World Wide Web 1.3 (2004): 309-320.

[105] Web Services Addressing 1.0 - Core, M. Gudgin, M. Hadley, and T. Rogers, Editors. World
Wide Web Consortium, 9 May 2006. Available at http://www.w3.org/TR/ws-addr-core.

[106] Web Services Architecture, W3C Working Draft .2002.(Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio
University).Retrieved from: http://www.w3.org/TR/2002/WD-ws-arch-20021114/.

[107] Website Load Test - JBlitz Professional 5.1, Clan Productions Limited, Retrieved
from:http://www.clanproductions.com/jblitz/,2010.

[108] Wei-Tek Tsai, Yinong Chen, and Ray Paul. 2005. Specification-Based Verification and
Validation of Web Services and Service-Oriented Operating Systems. In Proceedings of the
10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems
(WORDS ‘05). IEEE Computer Society, Washington, DC, USA.

[109] What is TTCN-3?, ETSI CTl, available from: http://www.ttcn-3.0org/WhatisT3.htm,2009.

[110] Wieland, Matthias, et al. "Institut fir Architektur von Anwendungssystemen."Retrieved

from: ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/TR-2008-09/TR-
2008-09.pdf. ‘

[111] Wirtz, Guido. "Distributed Systems Group." (2009).Retrieved from:
https://opus4mig.kobv.de/opus4-bamberg/files/249/BBWIAI87Schwalbfinal2.pdf

[112) Ws-soa granularity, 2012. Retrieved from:
http://www.ibm.com/developerworks/webservices/library/ws-soa-granularity/#resources.

[113] Xiang Li, Jinpeng Huai, Xudong Liu, Jin Zeng, Zicheng Huang, “SOArMetrics: A Toolkit for
Testing and Evaluating SOA Middleware, ” services, pp.163-170, 2009 Congress on Services
1, 2009.

[114] Xiaoying Bai; Dezheng Xu; Guilan Dai; Wei-Tek Tsai; Yinong Chen; , “Dynamic Reconfigurable
Testing of Service-Oriented Architecture, ” Computer Software and Applications
Conference, 2007. COMPSAC 2007. 31st Annual International, vol.1, no., pp.368-378, 24-27
July 2007
doi: 10.1109/COMPSAC.2007.106.

[115] Xiaoying Bai; Guilan Dai; Dezheng Xu; Wei-Tek Tsai; , “A multi-agent based framework for
collaborative testing on Web services, ” Software Technologies for Future Embedded and

149

Ubiquitous Systems, 2006 and the 2006 Second International Workshop on Collaborative
Computing, Integration, and Assurance. SEUS 2006/WCCIA 2006. The Fourth IEEE
Workshop on, vol., no., pp.6 pp., 27-28 April 2006 doi: 10.1109/SEUS-WCCIA.2006.7.

[116] XSD restriction/Fascets, W3Schools.com. Retrieved
from:http://www.w3schools.com/schema_facets.asp.

[117] Y.Prasanth, V.Sarika, D.Santhosh Anuhya, Y.Vineela, A. Ajay Babu . "Framework for
Testing Web Services Through SOA (Service Oriented Architecture)". International Journal
of Engineering Trends and Technology (IJETT). V3(2):103-109 Mar-Apr 2012, ISSN:2231-
5381

[118] Ying-Dar Lina, Chi-Heng Choua, Yuan-Cheng Lai, Tse-Yau Huang, Simon Chung, Jui-Tsun
Hunga and Frank C. Line, "Test coverage optimization for large code problems," Journal of
Systems and Software archive, Vol. 85,No. 1,pp.16-27, 2011.

[119] Yoon, H., Ji, E,, and Choi, B. 2008. Building test steps for SOA service orchestration in web
service testing tools. In Proceedings of the 2nd international Conference on Ubiquitous
information Management and Communication (Suwon, Korea, January 31 - February 01,
2008). ICUIMC '08. ACM, New York.

[120] Youngkon Lee, “2-Layered SOA Test Framework Based on Event-Simulating Proxy, ¥ ncm,
pp.1479-1484, 2009 Fifth International Joint Conference on INC, IMS and IDC, 2009.

[121] Yu Qi, David Kung and Eric Wong, “"An Agent-based Data-Flow Testing Approach for Web
Applications," Journal of Information and Software Technology, July 2006.

[122] Yue Jia; Harman, M.; “An Analysis and Survey of the Development of Mutation Testing
” Software Engineering, IEEE Transactions on , vol.37, no.5, pp.649-678, Sept.-Oct. 2011.

[123] Yunus, Mallal :SOA Testing using Black, White and Gray Box Techniques. Crosscheck
Networks.

[124] Yunus,M., Mallal,R., “Watch your SOA Testing Blind Spots”, Crosscheck Networks. Retrieved

from:http://www.softwaremag.com/pdfs/whitepapers/Crosscheck_wp2.pdf?CFiD=306793
47&CFTOKEN=35280601.

150

