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ABSTRACT 

 

Diabetic retinopathy (DR) is a retinal vascular disease associated with diabetes and it 

is one of the most common causes of blindness worldwide.  Diabetic patients 

regularly attend retinal screening in which digital retinal images are captured.  These 

images undergo thorough analysis by trained individuals, which can be a very time 

consuming and costly task due to the large diabetic population.  Therefore, this is a 

field that would greatly benefit from the introduction of automated detection 

systems.   

This project aims to automatically detect proliferative diabetic retinopathy (PDR), 

which is the most advanced stage of the disease and poses a high risk of severe visual 

impairment.  The hallmark of PDR is neovascularisation, the growth of abnormal new 

vessels.  Their tortuous, convoluted and obscure appearance can make them difficult 

to detect.  In this thesis, we present a methodology based on the novel approach of 

creating two different segmented vessel maps. Segmentation methods include a 

standard line operator approach and a novel modified line operator approach.  The 

former targets the accurate segmentation of new vessels and the latter targets the 

reduction of false responses to non-vessel edges.  Both generated binary vessel maps 

hold vital information which is processed separately using a dual classification 

framework.  Features are measured from each binary vessel map to produce two 

separate feature sets.  Independent classification is performed for each feature set 

using a support vector machine (SVM) classifier.  The system then combines these 

individual classification outcomes to produce a final decision.  The proposed 

methodology, using a dataset of 60 images, achieves a sensitivity of 100.00% and a 

specificity of 92.50% on a per image basis and a sensitivity of 87.93% and a specificity 

of 94.40% on a per patch basis. 

The thesis also presents an investigation into the search for the most suitable 

features for the classification of PDR.  This entails the expansion of the feature vector, 

followed by feature selection using a genetic algorithm based approach.  This 

provides an improvement in results, which now stand at a sensitivity and specificity 
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of 100.00% and 97.50% respectively on a per image basis and 91.38% and 96.00% 

respectively on a per patch basis.  A final extension to the project sees the framework 

of dual classification further explored, by comparing the results of dual SVM 

classification with dual ensemble classification.  The results of the dual ensemble 

approach are deemed inferior, achieving a sensitivity and specificity of 100.00% and 

95.00% respectively on a per image basis and 81.03% and 95.20% respectively on a 

per patch basis. 
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1 INTRODUCTION 

 

Diabetic Patients are required to attend regular eye screening appointments in which 

Diabetic retinopathy (DR), a retinal disorder, can be assessed.  From these 

appointments digital retinal images are captured, and these then undergo various 

stages of analysis (referred to as grading) by trained individuals.  This can be a very 

time consuming and costly task due to the large number of diabetic patients.  

Therefore this is a field that would greatly benefit from the introduction of 

automated detection systems [1].  Not only would its implementation be more cost 

effective, but the screening programme and the National Health Service (NHS) would 

benefit in numerous other ways.  Results would be produced more quickly, thus 

allowing patients to receive results as soon as possible hence minimising anxiety and 

also ensuring referrals to the hospital eye service are made according to time targets.  

Another benefit arises from the fact that human graders are subjective and can also 

become fatigued, whereas an automated system would provide consistent objective 

results. 

 

1.1 Aims, Objectives and Contribution to Knowledge 

 

This project involves the assessment and development of image processing 

techniques to analyse retinal images for the automated detection of diabetic 

retinopathy.  Two years experience the author gained from working for the NHS as a 

diabetic retinopathy screener/grader has provided knowledge which has been 

advantageous to this project. 

CHAPTER 
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The main goal of DR screening programmes is the early detection of the disease to 

allow for timely intervention.  However, DR is a disease of largely varying severity and 

patients attending screening may also present the later stages of the disease which 

need to be differentiated.  Therefore it is the responsibility of the trained individuals 

to correctly label images according to the severity of the disease to ensure the 

appropriate outcome is achieved.   

The literature so far shows that the vast majority of work has been performed on the 

automated detection of signs of early stage DR.  Importantly, this can be applied to 

perform classification of DR disease/no DR disease (explained in section 1.2.3).  The 

intention is that this can be used to remove all images without DR disease and 

therefore reduces the work load of images to be analysed by the trained individuals.  

Settling for automated systems that provide such a simple classification would 

provide only a small contribution to the analysis of retinal images.  The aim is to 

develop automated systems that can identify the specific stage of the disease and 

therefore take up even more of the work load.  The most important task of these 

systems will be the identification of the most advanced stage of the disease to ensure 

fast tracking for immediate attention as this stage poses the highest risk to loss of 

vision.  Unfortunately only a small amount of work has been conducted in this area 

within the retinal image analysis field. 

The main aim of this project will be the automated detection of proliferative diabetic 

retinopathy (PDR), which is the most advanced stage of the disease and is 

characterised by the presence of new vessels.   These new vessels can be extremely 

difficult to detect as they are often finer in calibre and are often more obscure, 

tortuous and convoluted than normal vessels.  The terms PDR and new vessels are 

used synonymously throughout this this report. 

The objectives of this project can be summarized as follows: 

 To develop and evaluate a methodology for the automated detection of PDR. 

 The main goal of the algorithm is the decision of whether new vessels are 

present or not in the image.  Results should meet the requirements for clinical 

integration, high specificity at maximum (100%) sensitivity. 
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 To assemble an image dataset for the evaluation of PDR detection.  This 

should contain a varied selection of images. 

 To characterise the appearance of new vessels and bring awareness of the 

importance of their detection.  These are aspects/areas that are not very well 

understood by the retinal image processing community. 

 To consider the quantification of new vessel growth as opposed to just the 

detection of their presence.  This would help ophthalmologist to track the 

disease, further helping in understanding the progression of the disease and 

the effects of treatment. 

The contribution to knowledge achieved from these objectives is: 

 A novel algorithm for the automated detection of PDR.  This will highlight the 

use of suitable image processing techniques and classification procedures for 

the detection of PDR. 

 Identification of a specific set of PDR characteristics useful for their detection, 

in the form of a tailored feature set used by a classifier. 

 

In this project, the main bulk of the methodology is based on the application of two 

different vessel segmentation approaches and dual classification.  A standard line 

operator and a novel modified line operator were used for vessel segmentation.  The 

latter, based on double sided thresholding, was designed to reduce false responses to 

non-vessel edges.  Both generated binary vessel maps held vital information which 

were processed separately.  This was achieved with a dual classification system, 

which is novel to retinal image analysis.  Local morphology features were measured 

from each binary vessel map to produce two separate feature sets.  Independent 

classification was performed for each feature set using a support vector machine 

(SVM) classifier.  These individual classification outcomes are then combined by the 

system to produce a final decision.   

This work is further extended by expanding the size of the feature sets, to include 

further morphology based features as well as intensity and gradient based features.  

This feature vector is fed into a genetic algorithm based feature selection approach 

with the objective of finding feature subsets and classifier parameters that improve 
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the performance of the classification.  A final extension to the project sees the 

classifier changed from the SVM to an ensemble system of bagged decision trees.  

This brings with it its own technique for feature selection. 

The remainder of this chapter will provide an overview of the mechanism of diabetic 

retinopathy and the screening process.  This is followed by a literature review and 

then three chapters detailing the methodology and evaluation.  The thesis ends with 

a final chapter of an overall discussion and conclusion. 

 

1.2 Pathology and Screening Overview 

Diabetes mellitus is a disorder of sugar metabolism caused by an impairment of 

insulin secretion and/or an insufficient action of insulin and hence is characterized by 

raised levels of glucose in the blood.  High blood glucose levels (hyperglycemia) can 

damage the vessels that supply blood to vital organs.  Diabetic retinopathy is the 

resultant disorder affecting the retinal vasculature, leading to progressive retinal 

damage that can end in loss to vision and blindness [2].  DR is recognized as the 

leading cause of blindness in the working-age population [3-5].  The problem is 

increasing in its scale, with diabetes having been identified as a significant growing 

global public health problem [6]; in fact in the United Kingdom three million people 

are estimated to have diabetes and this figure is expected to double in the next 15-30 

years.  171 million people were estimated to have diabetes worldwide in the year 

2000 and this figure is expected to rise to 366 million by the year 2030 [7].  

If DR is detected early enough, laser treatment can diminish visual loss [8-10].  Also at 

the incipient stage, intervention such as improvement of the blood glucose control 

can help reverse or prevent further progression of the DR [11].  Often there are no 

symptoms in the early stages of DR, therefore screening is imperative for 

identification.  Once DR is identified patients can be managed accordingly with the 

goal of the prevention of sight loss.   In 2000, the introduction of a systematic 

national screening programme based on digital photography was proposed [12] 

which meet the Wilson and Jungner criteria for a screening programme [13].  The 



 

5 
 

programme is now in operation in the United Kingdom with diabetic patients aged 12 

and above being invited at least annually for retinal screening using digital 

photography [14].   

The paragraphs above clearly state the impact of DR on the population and the 

reasons why screening is necessary.  Next, further details of the disease and the 

screening process shall be provided.  A brief pathology section that follows will first 

help to achieve a basic understanding of the structure of the retina, and then a 

description of the clinical features of DR will be provided.  This will be followed by a 

brief section detailing the tasks of a DR screening programme from the screening 

appointment to the manual analysis of images to the possible treatments.    

 

1.2.1 Pathology 

The retina is a complex multi-layered light sensitive tissue lining the inner surface of 

the eye. The retina contains millions of photoreceptors (rods and cones) that respond 

to focused light and converts it into electrical impulses.  These impulses travel along 

the optic nerve to the brain where they are turned into images.  The cross section of 

the human eye is shown in figure 1.1 which illustrates the location of the retina 

within the eye.  The particular details from this figure that appear on retinal images 

are the retinal blood vessels, optic disc, macula and fovea.  The macula occupies a 

substantial portion of the brain’s visual capacity due to its high proportion of cone 

cells which are responsible for colour, fine visual acuity and central vision.  The fovea 

is the central part of the macula and has the highest proportion of cone cells.  A 

structure important to PDR that is shown in this figure, although is not visible in 

retinal images, is the vitreous body.  This is an area found between the lens and 

retina which consists of vitreous humour which is a clear solution with a gel-like 

consistency.   

Figure 1.2 shows examples of retinal images from healthy retinas; the main 

anatomical features are also labelled.  This figure also illustrates some variations 

between the appearances of healthy retinas due to varying pigmentation for 
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different ethnicities and also the appearance of the tigroid pattern due to a thin 

retina making vessels from the choroid layer more visible.  A final image is included to 

illustrate areas of reflection associated with young patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Anatomy of the eye.  Image from www.biographixmedia.com. 

 

Diabetic retinopathy is a microangiopathy affecting the retinal vasculature caused by 

hyperglycemia.  The damage to the retinal blood vessels will cause blood and fluid to 

leak on the retina and forms features such as microaneurysms, haemorrhages, 

exudates, cotton wool spots and venous loops [15].  DR is a progressive disease; with 

progression the blockages and damage to blood vessels will cause areas of retinal 

ischaemia to develop.  In an attempt of revascularization the growth of new blood 

http://www.biographixmedia.com/


 

7 
 

vessels is triggered.  New vessels represent the advanced stages of DR, which poses a 

high risk of severe vision loss due to the new vessels’ fragile nature and possible 

extensive bleeding.  Below the significance and appearance of a few of the main 

features of DR will be described in more detail and corresponding images will be 

provided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Healthy retinas (A) Caucasian retina, (B) South-Asian retina, (C) tigroid retina, (D) 
reflections associated with young patients.  Images from [16]. 

 

Microaneurysms:  These are balloon-like structures on the sides of capillaries which 

arise due to the weakening of capillary walls.  As capillaries are not visible from 

conventional fundus images, microaneurysms appear like isolated red dots 
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unattached to any blood vessel.  They are often the first signs of DR that can be 

detected.  See figure 1.3(A). 

Haemorrhages:  Breakdown of the capillary walls results in the leakage of blood, 

which can take on various forms of size and shape depending on the retinal layer in 

which the vessels are located.  These different forms are referred to as dot, blot or 

flame haemorrhages.  See figure 1.3(B). 

Exudates:  Capillary breakdown can often result in the leakage of oedema.  The build-

up of oedema causes retinal thickening.  If this build up occurs at the macular it is 

referred to as macular oedema and it is the most common cause of visual impairment 

amongst diabetic patients and if clinically significant will require laser treatment to 

reduce the risk of visual loss [17].  Oedema is a clear fluid, therefore it is not visible 

on a standard 2D retinal image.  Exudates are the lipid residue from the oedema.  

They appear as waxy yellow lesions and take on various patterns including individual 

patches, tracking lines, rings (circinates) and macular stars.  See figure 1.3(C)-(D).  The 

detection of exudates at the macula acts as a marker for predicting the presence of 

macular oedema. 

New Vessels:  With the progression of capillary breakdown, areas of the retina can 

become ischemic and the growth of new vessels is triggered as an attempt of 

revascularization of the oxygen deprived tissue.  There are two types, new vessels on 

the optic disc (NVD) and new vessels elsewhere (NVE).  See figure 1.4.  They are very 

fragile and can easily rupture resulting in extensive haemorrhaging in the form of pre-

retinal and vitreous haemorrhages (see figure 1.5).  These types of haemorrhages 

occur due to the fact that new vessels tend to grow away from the retinal surface 

towards the vitreous.  Fibrous tissue can also develop around new vessels which can 

cause traction and lead to retinal detachment [2].  New vessels represent a high risk 

of severe loss of vision and laser treatment may be required to reduce this risk.  The 

appearance of new vessels is notoriously difficult to characterise due to their 

variation in form.  New vessels appear as unregulated growth appearing off or near a 

vein in the form of lacy networks which usually pass across the underlying veins and 

arteries.  Normally new vessels are restricted to small regions of the retina where 



 

9 
 

ischemia has developed.  If ischemia has become widespread across the image then it 

is also possible that the new vessels can span this larger region.  These tortuous and 

convoluted vessels are usually fine in calibre, although on rare occasions they can 

possess a large calibre in which their diameter is bigger than the vessel they 

originated from.   They can also often be extremely difficult to spot as they don’t 

always appear as dense networks, they may appear as small networks or loops when 

they initially develop.  New vessels can sometimes appear very faint and can be 

difficult to distinguish from the background.  As mentioned above, new vessels tend 

to grow away from the retinal surface.  This means they can appear out of the focal 

plane of the photograph, resulting in a very blurry and obscure appearance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: (A) Microaneurysms, (B) dot and blot haemorrhages, (C) exudates, (D) a ring of 
exudates (circinate).  Images from [17]. 
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Figure 1.4: (A) Mild NVE, (B) severe NVE, (C) severe NVE with associated fibrosis, (D) mild 
NVD, (E) severe NVD, (F) very severe NVD.  Images from [17]. 
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Figure 1.5: (A) Pre-retinal haemorrhage, (B) vitreous haemorrhage.  Images from [17]. 

 

There are many more features of DR and table 1.1 provides an exhaustive list as well 

as the stage of the disease they present.  Putting maculopathy to one side, 

progression of the disease increases with descent down the table.  As this disease is 

progressive, clearly a stage of DR can contain all the features of the previous stage.  

Background DR is the earliest stage of DR and is not a threat to vision.  Pre-

proliferative DR represents progressive retinal ischaemia, with the increased risk of 

the progression of neovascularisation (new vessels).  Proliferative DR is characterised 

by neovascularisation, it is the most advanced stage of the disease and can pose a 

high risk of severe loss of vision.  It can be seen from table 1.1 that there are features 

other than new vessels that fall under proliferative DR; however, it should be 

remembered that these other features occur due to the presence of new vessels.  

Maculopathy can occur at any stage of DR, although it is more likely to occur as the 

disease progresses.  The strict definition of maculopathy is the existence of any DR 

features at the macula, but is commonly reserved for vision-threatening macular 

oedema. 
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Table 1.1: Classification of diabetic retinopathy. 

Stage of retinopathy Features 

Background Microaneurysms. 

Dot and blot haemorrhages. 

Exudates. 

Pre-proliferative Multiple dot and blot haemorrhages. 

Cotton wool spots (CWS). 

Venous beading and loops. 

Intra-retinal microvascular abnormalities (IRMA). 

Proliferative New vessels elsewhere (NVE). 

New vessels at the disc (NVD). 

Pre-retinal/vitreous haemorrhage. 

Retinal detachment. 

Maculopathy Microaneurysms, haemorrhages, exudates at the macula. 

Macular oedema. 

 

 

1.2.2 Screening 

First a brief recap on the reason for DR screening shall be provided.  DR has adverse 

effects and has been shown to be a major cause of vision loss.  The disease responds 

best to treatment if it is detected at an early stage.  However, there are generally no 

symptoms at an early stage of DR and the disease is often well advanced before 

symptoms develop.  DR screening provides a detailed examination of the retina in 

order to detect early stage DR.  Patients that attend screening can also present later 

stages of the disease which need to be differentiated and labelled.  Once DR is 

identified patients can be managed accordingly with the goal of the prevention of 

sight loss.  Screening is easily implemented using digital photography, which is an 

acceptable and cost effective test.  Cost is actually a large factor and it has been 

shown that screening saves vision for a cost less than the disability payments 
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provided to people who would go blind in the absence of screening [1].  Screening is 

generally performed on an annual basis.  This section will cover some of the main 

stages that a DR screening programme performs.  This knowledge will be helpful 

when considering how automated detection systems are to be integrated into 

screening programmes. 

Before proceeding, it should be understood that screening programmes are run and 

managed separately to the ophthalmology department.  It is the purpose of the 

screening programme to monitor the condition of the patient’s retinas from the large 

diabetic population and only refer those that have vision threatening DR to the 

ophthalmology department for specialist care. 

The first stage of the appointment uses the Snellen chart (see figure 1.6(A)) to 

perform a visual acuity (VA) test which measures the sharpness of the patient’s 

vision.  VA measures are very important: for example they can be used to define 

maculopathy (table 1.2).  Next eye drops are instilled in order to achieve pupil 

dilation, which provides a clearer view of the retina.  Finally photographs are taken 

using a retinal camera, also known as a fundus camera.  The fundus refers to the 

region of the retina opposite to the lens and includes the optic disc, macula and 

posterior pole.  The camera produces a magnified view of the fundus using an optical 

design based on the principle of ophthalmoscopy.  Topcon is an established 

manufacturer of retinal cameras; figure 1.6(B) shows a typical model.  Photographs at 

two standard views are required per eye, the macular centred view and the optic disc 

centred view (see figure 1.7).  It is the task of the screener (photographer) to ensure 

that an adequate standard of photographs are captured.  This can be achieved by 

ensuring correct illumination of the retina (avoids dark images), correct lens focusing, 

and correct positioning within the retina.  Also camera artefacts need to be avoided 

by keeping the lens clean and regularly servicing the camera.  Another task of the 

screener is to briefly assess the images (not grading) and triage them according to 

severity of DR.  This is done by simply putting the images into either a red, amber or 

green queue awaiting grading (discussed next). 
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Figure 1.6: (A) Snellen test chart, (B) Topcon TRC NW8 retinal camera.  Images from 
dwp.gov.uk and topcon-medical.co.uk. 

 

 

 

 

  

 

 

 

Figure 1.7: (A) Macular centred view, (B) optic disc centred view.  Images from [2]. 

 

Once these retinal images are captured they then undergo thorough analysis in order 

to classify each image with a grade according to the stage of the disease.  This 

process is referred to as grading and is performed by trained individuals referred to 

as graders.  The UK National Screening Committee (NSC) have created strict grading 

guidelines (see table 1.2) which state the different features which constitute each 

stage of DR and each of these stages has been labelled with a grade (R0, M0, R1, M1, 

R2  and R3).  Figure 1.8 shows some examples of retinal images representing these 
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grades.  These grading guidelines are a more detailed version of table 1.1 in order to 

assist and standardise classification.  For each eye both R and M grades are awarded; 

for example, a left eye’s retina which displays pre-proliferative DR and maculopathy 

would be awarded a grade of R2M1.  There are other grades: P is selected when 

there is evidence of previous laser treatment from the appearance of laser scars and 

U is selected when no grade is obtainable.  There are various reasons why the grade 

U would be awarded, from poor quality photographs taken by the screener 

(discussed earlier), media opacities (e.g. cataracts and asteroids hyalosis) preventing 

a clear view of the retina and patients’ inability to comply (physical and mental 

disabilities).  When this occurs, the conventional screening process using a retinal 

camera is considered inadequate and the patient is booked in for a slit lamp bio-

microscopy examination. 
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Table 1.2: National Screening Committee (NSC) grading standards [14]. 
 

   Retinopathy (R) 

   R0 None 
 
   R1 Background  Microaneurysm(s) retinal haemorrhage(s) ± any exudate 

  not within the definition of maculopathy. 
 
   R2 Pre-proliferative  Venous beading.                                                                                                   

Venous loop or reduplication.                                                                      

Intraretinal microvascular abnormality (IRMA).                                  

Multiple deep, round or blot haemorrhages.                                                  

Cotton wool spots (CWS). 

   R3 Proliferative  New vessels on disc (NVD).                                                                             

New vessels elsewhere (NVE).                                                                                         

Pre-retinal or vitreous haemorrhage.                                                                         

Pre-retinal fibrosis ± tractional retinal detachment. 

   Maculopathy (M) 

   M0 None 

   M1 Maculopathy Exudate within 1 disc diameter (DD) of the centre of the 

fovea. Circinate or group of exudates within the macula.                     

Retinal thickening within 1DD of the centre of the fovea (if 

stereo available).                                                                                                                     

Any microaneurysm or haemorrhage within 1DD of the 

centre of the fovea only if associated with a best VA of ≤ 

6/12 (if no stereo). 

 
   Photocoagulation (P)  Evidence of focal/grid laser to macula.                                                       

Evidence of peripheral scatter laser. 

 
   Unclassifiable (U)   Unobtainable / ungradeable. 
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Figure 1.8:  Image examples of grades from the National Screening Committee (NSC), [14].  
(A) Normal retina with no DR - NSC grade R0.  (B) Background DR with microaneurysms, 

haemorrhages and exudates - NSC grade R1.  (C) Pre-proliferative DR with CWS, IRMA and 
multiple blot haemorrhages - NSC grade R2.  (D) Diabetic maculopathy with haemorrhages 
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and circinate/exudates - NSC grade M1.  (E)  Proliferative DR with new vessels at the optic 
disc (NVD) - NSC grade R3.  (F) Proliferative DR with pre-retinal and vitreous haemorrhages - 
NSC grade R3.  (G) Proliferative DR with fibrous proliferation - NSC grade R3.  (H) Evidence of 

previous laser therapy - NSC grade P. 

 

The grades awarded to patients will determine the next course of action.  If there is 

no threat to their vision then the patient will receive their next screening 

appointment in one year’s time (annual recall).  If the patient has vision-threatening 

DR, their grades would indicate that a referral to ophthalmology is required.  The 

grades that require referral also have an associated time target in which they must be 

seen by ophthalmology.  Time targets indicate the urgency of referral which 

correlates to the severity of the disease and therefore the risk to vision.  This 

information is provided in table 1.3.  An example is a patient whose retinal images 

contain new vessels, gets awarded a grade of R3 (proliferative DR) that signifies a 

high risk of severe loss of vision and therefore requires an urgent referral to the 

ophthalmology department with the time target of ideally being seen within 1 week 

from the date of screening.  Time targets are a very important factor, hence grading 

needs to be incorporated into automated detection systems if they are to be 

introduced into the clinical environment. 

Table 1.3: NSC DR grades and referral time targets [14]. 

Grade Outcome 

R0 (No DR) Annual recall 

R1 (Background DR) Annual recall 

M1 (Maculopathy) 
Routine referral, 70% within 13 weeks and 100% within 18 

weeks 

R2 (Pre-proliferative DR) Routine referral, 70% within 13 weeks and 100% within 18 

weeks 

R3 (Proliferative DR) Urgent referral, 95% within 1 week, 100% within 2 weeks 

 

Screening programmes are based on the concept of the detection of early stage DR to 

prevent the loss of vision.  From the description provided so far it should be evident 
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that this doesn’t so much apply to the earliest DR stage (R1) but more to detecting 

the vision threatening stages (M1,R2,R3) early enough to prevent loss of vision.  

However, the classification of the grade R1 still has huge importance; for example the 

presence of DR can be used to encourage patients into better control of their blood 

glucose level which can retard DR and therefore prevent vision-threatening DR from 

developing. 

It is also evident that DR grading is by no means a simple task.  The graders are skilled 

individuals who are able to essentially perform multi-level classification, identifying 

all different stages of DR.  Also when assessing retinal images other retinal conditions 

may be identified.  Therefore, graders are also trained to detect and refer various 

other non-DR lesions.  These include branch retinal vein occlusion (BRVO), central 

retinal vein occlusion (CRVO), retinal arterial occlusion, emboli, hypertensive 

retinopathy, macroaneurysms, cataracts, glaucoma, age-related macular 

degeneration (ARMD) and naevi.  Therefore, developing an automated system to 

mimic the performance of a human grader is a very complex task. 

The grading process is carried out under strict regulations.  The environment that 

graders work in is very important to ensure that grading is consistently accurate.    

This should be a darkened room to prevent glare on the computer screen which may 

interfere with images.  Grading should not be carried out in-between patients in a 

busy clinic as full attention to the task must be given; therefore grading laboratories 

are usually assigned and these should be kept as quiet as possible.  Graders regularly 

perform full 8 hour shifts of grading.  This type of environment can be difficult to 

work under (despite regular breaks) and graders can become easily fatigued which 

could result in a decrease in accuracy.  This is an aspect where automated systems 

show serious potential improvements as they can produce consistent and objective 

results.  Graders possess various image manipulation tools to aid their image analysis.  

These include magnification, intensity control, contrast control and red-free 

manipulation.  There is more than one stage of grading (discussed later), therefore 

the agreement between the stages of grading is regularly under review using the 

inter-grader report to ensure accuracy and consistency.  A minimum level of 82.5% 

agreement should be met, individual graders who don’t achieve this level will be 
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placed under review.  Also serious cases of under-grading will be reviewed by the 

lead clinician.  The most serious case is a grader under-grading a R3 image.  This could 

result in a patient either not being referred or missing their referral time target to the 

ophthalmology department and therefore, as a consequence, the patient could 

potentially completely lose their vision.    

As mentioned above, there is more than one stage of grading to ensure a high 

standard of accuracy and consistency (essentially quality control).  There are two 

different grading pathways [14] and these are shown in figure 1.9 and figure 1.10.  

Images are triaged by the screener immediately after capture and therefore enter the 

grading pathway according to severity.  We shall concentrate on pathway 2 as it is the 

most common employed of the two in the UK [14].  There are two main grading 

stages of this pathway, first a full disease grade and second a full disease grade 

performed by primary and secondary graders respectively.  The term full disease 

grade means that the grade should specifically state the stage of DR (using R and M 

grades) as opposed to just a disease/no disease grade.  Upon grading, the primary 

grader will send those images graded as R0M0 (no disease) straight through to the 

outcome of annual recall without the need to be sent to the secondary grader; this 

will remove the main bulk of images.  All images with a grade indicating disease are 

triaged (according to grade) and sent to the secondary grader.  The secondary grader 

performs grading blind to the results from the primary grader.  All grade agreements 

that require referral are triaged and sent to the ophthalmology department.  All 

agreements that do not require referral are marked for annual recall.  All 

disagreements are sent to arbitration (also known as tertiary grading) which is 

performed by the clinical lead that makes the final decision to decide the outcome; 

again those requiring referral get triaged.  At any stage of grading an image with an 

R3 grade can be urgently referred directly to ophthalmology without having to go 

through the whole grading pathway in order to prevent any possible delays.  It should 

be noted that triaging is performed at every stage of grading in order to ensure that 

time targets are met.   

Pathway 1 is exactly the same apart from the additional disease/no disease grading 

stage at the very start of the pathway where images without disease can be directly 
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marked as annual recall and therefore require no further grading.  Approximately 50-

70% of diabetic patients will present no DR; therefore this stage of grading will take a 

significant amount of the workload away from the primary grading stage.  This stage 

of grading is a much simpler task than the other stages and therefore is performed by 

individuals without the same knowledge/training and thus will be on a lower pay 

band.  However, these individuals should still have the ability to identify R3 cases and 

send them directly through to the ophthalmology department.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9: NSC grading pathway 1 [14]. 



 

22 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10: NSC grading pathway 2 [14]. 

 

Once patients are referred to ophthalmology they remain under their care until their 

condition becomes stable; at which point they can be referred back to the screening 

programme.  Whilst under the care of ophthalmology it may be a case of simply 

providing closer monitoring of the patients’ retina by specialists.  Various follow-up 

tests may be done to achieve a more detailed assessment such as fluorescein 

angiography or optical coherence tomography (OCT).   Treatment may be required 

and laser photocoagulation remains the main treatment for diabetic retinopathy.  For 

cases of proliferative DR where vessels are considered at risk of bleeding then pan-

retinal (scatter) photocoagulation may be required, which is the application of 
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hundreds (sometimes thousands) of small laser burns.  The aim is to destroy 

ischaemic areas: ischaemic stimulus is lessened and the new vessels can then regress.  

If the maculopathy grade has been shown to be caused by clinically significant 

macular oedema then laser photocoagulation may be required.  The aim is to target 

areas of leakage using focal laser burns or a grid of laser burns for areas of diffuse 

leakage.  This reduces leakage and improves reabsorption of retinal oedema.  Laser 

photocoagulation is unlikely to improve vision once it has decreased but it is effective 

in stabilizing vision.  Laser treatment can have serious side effects, and therefore 

careful consideration of the situation needs to be taken first.  Other treatments for 

DR include the intra-vitreal injection of drugs and vitrectomy surgery [17]. 

 

1.2.3 Automated Detection 

So far we have established that human graders can become easily fatigued leading to 

a decrease in accuracy, although there are many other weaknesses.  Despite having 

strict grading guidelines human graders are subjective, and therefore grades for a 

specific image can vary considerably amongst different graders.  Human graders are 

relatively slow and aim to grade images for approximately 60-80 patients a day.  

Backlogs of images are formed at each stage of grading and often it can take several 

days for an image to be graded and move on to the next grading stage.  Incidents 

such as a human grader taking sick leave can result in these backlogs becoming 

unacceptable in size.  The introduction of automated systems has the benefits of 

producing consistent and objective results.  They will reduce the workload for human 

graders and therefore provide a reduction in the cost of running the screening 

service.  As automated systems can process images quickly, operate 24 hours a day 

and run on multiple computers it is likely that backlogs will be minimal for the stages 

of grading that they perform.  This will increase the speed of the grading process, 

ensuring patient’s test results letters are sent out more quickly and most importantly 

time targets for referrals are met. 

It is clear from the pathology section that different DR features have their own 

distinct characteristics.  It is also clear that graders use strict guidelines to categorise 
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retinal images into the different DR stages.  How this knowledge is used to develop 

automated systems will be discussed in the literature review that follows.   

So how are automated systems to be introduced into the grading pathway?  The 

majority of DR automated detection research has gone into the detection of 

microaneurysms.  This provides the detection of early stage DR, but microaneurysms 

almost always appear to be present in any image containing DR regardless of the 

severity, and hence these algorithms also provide the classification of DR disease or 

no DR disease.  As mentioned earlier, approximately 50-70% of the images show no 

signs of DR.  Thus the classification system can be used to remove these and 

therefore significantly reduce the manual grading workload.  Large-scale audits of 

disease/no disease automated grading systems have shown the benefits they provide 

[18].   

Such disease/no disease automated systems would replace the initial stage from 

grading pathway 1, although it would be lacking in not having the ability to fast-track 

R3 images.   Such an inability would be a substantial problem if this initial stage took 

considerable time to perform.  This is not the case as this automated stage is fairly 

simple and is likely to process images very quickly; hence no images are likely to get 

held up in this stage as may be the case if performed by a human grader.  Therefore, 

R3 fast-tracking can instead commence from the first full disease grade stage without 

any real delay.  In simpler terms consider this stage as an almost instant filter 

removing no DR disease images prior to the first full disease grade and still retaining 

the initial triaging performed by the screener (photographer). 

The aim is for automated systems to have a much more substantial role in the 

grading pathway than that mentioned above and thus take on more of the workload.  

The target is to produce a full DR disease automated detection system.  Any system is 

unlikely to be sophisticated enough to take over the complete grading process and 

therefore human graders are always likely to remain in some context.  Also keeping 

more than one stage of grading is beneficial for quality control.  Therefore, a possible 

role will be to take over the first full disease grade (primary grader) from grading 

pathway 2.  To achieve this, the system must be capable of removing all images 
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without DR and the greater challenge of detecting and differentiating the stages of 

DR to allow for triaging to ensure time targets are met.  This will include the vital step 

of the detection of PDR (R3) for fast tracking (urgent referrals).   

The grading pathways generally stress the importance of the detection of R3 for fast-

tracking due to their high risk of severe vision loss.  This supports the efforts of this 

project into the detection of new vessels (PDR), which would be ideally integrated 

into a full DR disease automated detection system.   
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2 LITERATURE REVIEW 

 

The research field of retinal image analysis has attracted a lot of interest in the last 

couple of decades, with the automated detection of diabetic retinopathy having 

received a considerable share of this interest.  Landmark detection is also an area 

that has received considerable interest.  Landmarks consist of blood vessels, the optic 

disc and the fovea.  This section will start with a brief review of the automated 

segmentation of blood vessels.  Most DR detection methodologies use it as a 

prerequisite before identifying pathological entities, in particular new vessel 

detection methods.  A brief review of the main methodologies used to detect the 

main DR features (microaneurysms, haemorrhages and exudates) will be provided.  

This will be followed with a section providing a detailed account on the detection of 

new vessels (proliferative DR), which is the main focus of this project.  This chapter 

will end with a brief overview of the machine learning (classification, clustering, etc.) 

procedures that have been mentioned throughout this literature review. 

Most methodologies start by pre-processing the images.  The main pre-processing 

steps are applied to correct for poor illumination and poor contrast.  Poor 

illumination is often tackled with a technique called shade correction [19,20], 

whereby an image approximating the background is subtracted from the original 

image.  The background image is obtained with the application of a median filter 

whose size is significantly greater than the largest retinal feature.  Poor contrast is 

frequently tackled with contrast limited adaptive histogram equalisation (CLAHE) 

[21,22].  This is a technique for local contrast enhancement which is preferred to 

global contrast enhancement.  However, pre-processing can only correct up to a 

certain extent; therefore, it is the task of the screener (photographer) to ensure an 

CHAPTER 
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adequate standard of photographs are captured (detailed in section 1.2.2).   To avoid 

an overly lengthy literature review, pre-processing steps shall be omitted from 

further discussions, although a comparative evaluation of pre-processing steps for 

retinal analysis is provided by Youssif [23].   

It should be noted that the word “feature” will be used in two different contexts.  The 

word “feature” refers to those components that make up a feature set used for 

classification.  DR features on the other hand refer to pathological features such as 

microaneurysms and haemorrhages. 

 

2.1 Vessel Segmentation 

Some of the main attributes of vessels that are utilised in segmentation methods are 

their deep red colour, their contrast with the background, and their gradient at vessel 

edges.  They can be approximated as piecewise linear and their cross section 

intensity profile approximates a Gaussian function.  There are numerous methods 

reported in the literature, which can be generally categorised into the four main 

groups based on matched filtering, mathematical morphology, vessel tracking and 

machine learning.   Vessel segmentation methods can struggle to detect fine, faint 

and very tortuous vessels.  Vessel crossing and branching can complicate the profile 

model.  Vessels can show strong reflections along their centreline, which can further 

complicate the profile model.  Pathologies can also hamper accuracy, producing false 

positives.  Vessel segmentation methods are assessed on a per pixel basis.  Results 

will not be included in this section.  The following sections describe vessel 

segmentation techniques according to algorithm type. 

Matched filtering: Chaudhuri [24] first proposed the use of the matched filter for 

vessel segmentation and it has become one of the most popular techniques.  It made 

use of the fact that the cross section of the vessels can be approximated by a 

Gaussian function, in addition to the fact that vessels may be considered as piecewise 

linear segments.  Therefore the method used a two dimensional Gaussian filter; this 

differed from the standard isotropic Gaussian filter: instead a single Gaussian 
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function cross profile was repeated a number of times and stacked to make up the 

length of the filter (this gave the filter an aspect of linearity).  The length of the filter 

was set to a distance in which vessel segments were assumed to approximate 

linearity.  This filter, which resembled the shape of vessel segments, was convolved 

with the retinal image in order to “match” the blood vessel segments.  The filter was 

also rotated in order to detect vessels of different orientations.  This resulted in a 

vessel enhanced image, known as the matched filter response (MFR).  This was 

followed by a global threshold to produce a binary vessel map.  Al-Rawi [25] 

improved on the performance of the matched filter by using an optimization 

technique to automatically find the best filter parameters.  

Unfortunately, the matched filtering technique responds not only to vessels but also 

non-vessel edges.  The step edges created between exudates and the background 

cause the most nuisance.  A single global threshold applied to the MFR is not 

sufficient and can result in many false positives.  Therefore many modified matched 

filtering methods have been proposed.  Hoover [26] stated a piecewise threshold 

probing technique using the vessel structural information.  The algorithm probed the 

MFR and during each probe a set of criteria was used to determine the threshold for 

that region in order to segment vessels.  L.Zhang [27] used the fact that the peak 

point of the MFR for a vessel is considerably greater than its neighbouring points on 

both sides, whereas for non-vessel edges the MFR peak point is not much greater 

than its neighbours on both sides.  Therefore a double sided thresholding technique 

was proposed.  B.Zhang [28] applied the first order derivative of the Gaussian (FDOG) 

kernel, which produced a response map to help differentiate vessel from non-vessel.  

Whilst vessels and non-vessel edges both produced strong responses for the MFR, 

they differed for the mean of the FDOG response, with vessels being close to zero (at 

vessel centre) and the non-vessel edges, in contrast, were high.  The knowledge 

gained from the FDOG response was used to accordingly adjust the threshold of the 

standard MFR.  [27] and [28] both applied a multi-scale approach, where multiple 

scales of the Gaussian function were used to ensure vessels of varying widths were 

detected.   
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Unless otherwise stated, the methods in this literature review that used filters, 

wavelets and operators for vessel segmentation all had an aspect of linearity and all 

were applied in multiple orientations. 

Mathematical morphology:  Mendonca [29] used difference of offset Gaussian filters 

(first order derivative filter) for the extraction of vessel centrelines.  Then returning to 

the original pre-processed image, vessel enhancement was performed separately at 

different scales by using a modified top hat operator (morphological operator) with a 

disc structural element of increasing size used to enhance vessels with different 

widths.  At each scale a binary vessel map was produced by applying the double 

threshold operator to perform morphological reconstruction.  The final vessel 

segmentation was obtained using the vessel centrelines along with several binary 

vessel maps to perform iterative region-growing.  Fraz [30] proposed a modified 

version of Mendonca [29].  Here the vessel centrelines were detected using the first 

order derivative of the Gaussian kernel.  The significant alterations were after the top 

hat vessel enhanced image was obtained; bit plane slicing was used in which the sum 

of the higher order bit planes (containing the majority of visually significant data) 

were used to create a binary vessel map.  Again this was followed by a similar region-

growing procedure using the vessel centrelines and the binary vessel map. 

Vessel tracking: Cree [31] tracked vessels by fitting a two dimensional Gaussian 

model.  An initial vessel point had to be selected manually along with estimations of 

its width and orientation.  A small local region was cut out about this point and a 

matching width and orientation Gaussian model was fitted using the optimisation 

procedure of non-linear least squares.  Accurate measurements of vessel width and 

orientation were made from the fitted model.  A small step was made in the direction 

of the vessel and the previous measurements were used as estimates to make a new 

fit and so on.  Other approaches include a vessel tracking method based on using a 

probabilistic formulation [32] and a method based on multi-scale line tracking [33]. 

Machine learning: (Pixels classified as vessel or non-vessel).   

Supervised: Sinthanayothin [34] first applied principal component analysis (PCA) [35] 

to reduce the image to just structural detail (texture and uncorrelated noise 
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minimised).  The Canny edge detector was applied to the first principal component to 

measure edge strength.  Values from the first principal components and the edge 

strength were used as input data for a neural network classifier.  Staal [36] was based 

on the extraction of ridges which were used to produce image primitives in the form 

of line elements. These line elements were then used to partition the image into 

patches.  A k-nearest neighbour was used to classify pixels using a vector of 27 

features derived from properties of the patches and line elements.  Soares [37] 

created a feature vector for each pixel from the pixel’s intensity and from the 

response of applying a two dimensional Gabor wavelet at multiple scales and various 

orientations.  Pixel classification was performed with a Bayesian classifier in which 

class likelihoods were described as a linear combination of Gaussian functions.  Ricci 

[38] proposed the use of line operators which were based on calculating the pixel line 

strength from the evaluation of the average intensity value along lines passing 

through the target pixel at different orientations.  The average value of a short 

orthogonal line was also calculated to help reduce false positives.  These two values 

along with the pixel’s intensity value were used to construct a feature vector used by 

a support vector machine to perform classification.  Fraz [39] used an ensemble 

classifier of boosted and bagged decision trees with a feature vector based on 

gradient orientation analysis, morphological transformation, line strength measures 

and Gabor filter responses.  Marín [40] applied Hu moments to detect linear 

structures (vessels).  These are shape descriptors invariant to translation, rotation 

and scale.  The Hu moments along with grey-level values formed a 7-D feature vector 

used by a neural network classifier. 

Unsupervised: Tolias [41] proposed an unsupervised fuzzy algorithm for vessel 

tracking.  The method was based on a fuzzy C-means clustering algorithm finding the 

membership functions of the two linguistic values (vessel and non-vessel).  The 

proposed scheme used only intensity information, hence no assumptions for the 

shape of the vessels were made and no edge information was required (usually 

corrupted by noise).  Kande [42] improved the contrast of blood vessels against the 

background by applying matched filtering.  Labelling was implemented on the 

enhanced image using a spatially weighted fuzzy C-means clustering algorithm to 
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segment the vessels.  The spatial weighting element took into account that the 

spatial distributions of grey levels as image pixel intensities are not independent of 

each other. 

Studies have shown that vessel calibre relates to hypertension and cardiovascular 

disease [43].  The main driving force for accurate segmentation has been for the 

quantification of vessel calibre [44-46] allowing for cardiovascular studies.  Numerous 

other morphological features can be measured from the binary vessel map, such as 

tortuosity, branching angle and vessel density.  Thus, vessel segmentation also forms 

the backbone for many automated systems aimed at diagnosing ophthalmic disease.  

The simplest and most widely used tortuosity measure is simply the arc length over 

the chord length which was first proposed by Lotmar [47].  Numerous methodologies 

have been developed to assess these features [48], [49], [50] including Martinez-

Perez [51] which proposed various methods to quantify geometrical and topological 

properties.  Perez-Rovira [52] presented a software application called VAMPIRE, 

which brought together several recent methodologies.  As vessel segmentation is 

effectively the identification of anatomical landmarks, it has been applied to make 

image registration a much simpler task, whether it is to combine images from 

different modalities [53] or to assist in assessing the change in DR after a time 

interval. 

 

2.2 Microaneurysm and Haemorrhage Detection 

Attributes that help define microaneurysms are their red colour (similar to vessels), 

contrast with the background, circular shape and small size.  Hence microaneurysm 

detection methodology often ignores objects that deviate away from the classical 

description and as a result haemorrhages which are larger in size and can deviate to a 

great extent in shape (dot, blot and flame) are often overlooked.  Other algorithms 

on the other hand concentrate on the combined detection of both microaneurysms 

and haemorrhages (referred to together as red lesions) and hence are not too 

specific in regard to strict shape definitions.  This section does not include the 

detection of the much larger and more serious pre-retinal and vitreous 
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haemorrhages that constitute to PDR.  Note that performance assessment for red 

lesion detection was performed either on a per pixel, per candidate, per sub-image or 

per image basis.  Results will not be included in this section. 

There are various areas where detection systems will generally struggle.  

Microaneurysms can often have a very subtle appearance, possessing a very low 

contrast with the background.  Red lesions that appear very close to or attached to 

vessels can often be difficult to detect.  Also camera artifacts produce specks on the 

image which are very similar in appearance to microaneurysms and can easily 

produce false positives.  Pigment spots, which are common, can also easily be 

mistaken for microaneurysms or haemorrhages. 

As microaneurysms are the first signs of DR these algorithms aid in the detection of 

early stage DR.  Also microaneurysms almost always appear to be present in any 

image containing DR regardless of the severity, and hence these algorithms also 

provide the classification of DR disease or no DR disease.  As mentioned previously, 

such a classification can be used as a filter to remove all the images showing no signs 

of DR and therefore substantially reduce the workload for the human graders.  For 

this reason microaneurysm detection has received the vast majority of the research 

in the field of automated DR detection.   

Spencer [19] developed a microaneurysm detection method that has become the 

basis for many other methods.  The top hat operator using a linear structuring 

element was applied which first retained the vascular structure and then subtracted 

it from the original image to produce an image containing only circular objects.  This 

was followed by matched filtering using a 2-d Gaussian kernel (isotropic) to match 

the shape of the microaneurysms and then thresholding to produce a binary image 

containing microaneurysm candidates.  A region growing algorithm was performed 

which delineates each candidate allowing for shape and intensity analysis.  This 

allowed various measurements of the candidates to be taken such as size, perimeter, 

complexity, aspect-ratio and intensities, which were used to compute a manually 

derived classification.  Cree [54] improved the performance of this method by 

expanding the feature set to include 5 more features.  This comprised of 4 more 
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intensity features and the fifth new feature was the matched filter response.  Frame 

[55] investigated the use of different types of classification used for this method 

including machine learning approaches.  The manually derived classifier produced 

results that deemed it superior.  Despite this result, machine learning classification 

algorithms come to dominate this field due to ease of use, capability of handling very 

large data sets and their ability to recognize complex patterns.  Hipwell [56] 

successfully applied the method to normal retinal images as it had previously only 

been applied on fluorescein angiograms.   

The top hat operator is an important technique in the field of retinal image analysis, 

and therefore expansion on how it works in this context shall be provided.  It is a 

morphological operator that applies opening (erosion followed by dilation) using a 

structuring element.  For these methods a linear structuring element was used whose 

length was greater than the diameter of the largest red lesion, although not too long 

to ensure it was small enough to fit within all of the vessel structure.  Therefore after 

the opening, only objects that were able to fully contain the structuring element 

were retained.  To ensure all vasculature was retained the structuring element was 

applied in multiple orientations as vessels appear in many orientations.  The resultant 

images were combined to produce a single vessel image which was subtracted from 

the original image to produce an image containing only small objects. 

Niemeijer [20] developed a red lesion detection system also based on Spencer [19], 

but with extensive adaptations.  A new candidate extraction system based on pixel 

classification was proposed.  Pixels were classified as being foreground (red lesions 

and vessels) or background using a k-nearest neighbour (kNN) classifier with a feature 

vector containing Gaussian derivatives and pixel intensities.  Then connected 

component analysis was applied and objects smaller than a specific size were 

retained and hence the vascular structure was removed.  This new extraction system 

was run in conjunction with the existing extraction system based on the top hat 

operator and matched filtering to create a hybrid extraction system.  A kNN classifier 

was used for candidate classification using the existing feature set developed by 

Spencer [19] and Cree [54], along with several new features; amongst these were 

Gaussian derivatives and colour features. 
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Gardner [57] divided images into small sub-images of 20 x 20 and 30 x 30 pixels and 

then investigated the use of artificial neural networks with intensity values as inputs 

in order to label the sub-images as red lesions as well as exudates, vessels and normal 

background.  Sinthanayothin [58] developed an algorithm to detect red lesions (also 

exudates).  Blood vessels were removed using a neural network method, for which 

inputs were derived from principal component analysis and the edge detection of the 

first principal components.  A moat operator was applied to the image which had the 

effect of creating a trough (dip) around the red lesions, which resulted in the 

strengthening of their edges and hence aided the segmentation process.  Recursive 

region growing was performed to identify similar pixels within a region, in which the 

merged pixels were represented with their median intensity value and thresholding 

was performed to identify red lesions.  Zhang [59] applied multi-scale correlation 

filtering with Gaussian kernels to detect microaneurysm candidates.  A 31-d feature 

vector largely based on [19,20] was created and used to perform manually derived 

classification with the use of a discrimination table for the different features. 

Sopharak [60] applied the extended minima transform, which was a thresholding 

technique and was defined as the regional minima of the h-minima transform.  The h-

minima suppressed all intensity values that were less than or equal to a predefined 

threshold.  The regional minima were connected pixels with the same intensity value 

whose external boundary pixels all have a higher value.  The resultant was a binary 

image containing various white regions representing small dark objects and small 

vessel segments.  Previously detected exudates and vessels were removed to leave 

microaneurysm candidates and objects with a size smaller than a specific small size 

were classified as microaneurysms.  Sopharak [61] provided an extension to [60] with 

an 18-d feature vector, used by a naïve Bayes classifier to classify the pixels of the 

microaneurysm candidates.  Features were based on intensity, colour, size and 

shape. 
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2.3 Exudate Detection 

Attributes that characterise exudates are their colour (yellow), high intensity values, 

high contrast with background, and sharp edges.  Unfortunately they vary in size and 

shape.  They also vary greatly in their pattern of distribution, in which they can 

appear as individual patches, clusters, streaks (tracking lines) and large rings of 

multiple exudates (circinate).  Exudates are often referred to as bright lesions.  

Exudate detection can struggle in terms of the retinal feature of drusen providing 

false positives, this will be further explained later.  Note that performance 

assessment for exudate detection was performed either on a per pixel, per 

candidate, per sub-image or per image basis.  Results will not be included in this 

section. 

A considerable portion of exudate detection methods were based on the 

morphological reconstruction technique.  The idea was to perform a rough 

segmentation of exudates, which was likely to be all exudates accompanied by 

surrounding areas of retinal background.  The resultant was then subtracted from the 

original image to leave black empty regions in their place and this acted as the 

marker image.  The original image was used as the mask image.  Morphological 

reconstruction by dilation was performed and resulted in the black regions being 

filled by surrounding pixels, and hence these regions appeared as retinal background.  

The difference between the original image and the reconstructed image was 

thresholded and the result was exudate segmentation.  Walter [62] and Sopharak 

[63] applied this morphological reconstruction technique in which the initial rough 

segmentation was achieved by thresholding the local variance image, which was 

based on exudates being characterised by high contrast.  Sopharak [64] also applied 

the morphological reconstruction technique, although the initial rough segmentation 

was achieved from using fuzzy C-means clustering of pixels using the features of 

intensity, standard deviation of intensity, hue and number of edges. 

Osareh [65] used fuzzy C-means clustering of pixels to segment exudates according to 

their colour.  Further classification was then carried out using a neural network 

classifier with inputs consisting of 18 features of exudate candidates including size, 
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edge strength and various colour measurements.  Sopharak [66] demonstrated the 

superiority of a support vector machine classifier when compared to naive Bayes and 

nearest neighbour classifiers.  The investigation was based on 15 features.  There was 

no prior segmentation to detect candidates and instead features were measured on a 

per pixel basis.  These features included intensity, standard deviation of intensity, 

hue, number of edge pixels and difference of Gaussian filter responses. 

Drusen is a retinal feature that is very similar in appearance to exudates in terms of 

their yellow colour, size and shape, although they tend to possess a lower contrast 

with the background and have weaker edges.  Their presence generally doesn’t pose 

any risk and does not indicate DR, although there has been some interest in their 

detection as they may represent an early stage manifestation of age-related macular 

degeneration.  Duanggate [67] proposed a drusen detection algorithm based on a 

scale-space approach combined with feature-based analysis (colour, texture).  

However the importance of drusen in the context of DR lay in differentiating it from 

exudates and Niemeijer [68] proposed such a method.  Initially pixels were assigned a 

probability of being part of a bright lesion (exudates and drusen etc.) using the 

response to a set of Gaussian derivative filters and a kNN classifier.  Pixels with a high 

probability were grouped to form lesion pixel clusters.  These clusters were assigned 

a probability of being true bright lesions using a kNN classifier and various features 

including size and contrast.  Lesion pixel clusters with a high enough probability 

underwent a final classification which differentiated the type of bright lesion using a 

linear discriminate analysis classifier and features including number of red lesions and 

the probability for the cluster.  

 

2.4 New Vessel Detection 

So far the detection of microaneurysms/haemorrhages has been covered which 

enables the classification of early stage DR, as well as the classification of DR 

disease/no DR disease.  As mentioned previously, an automated detection system 

should strive to take on a more substantial role in the grading pathway than this 

simple classification.  Therefore the emphasis is now on the classification of the 
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severity of the disease, which will give the automated system the ability to triage and 

therefore take on a more substantial grading role (see section 1.2.3).  Exudate 

detection has been covered, which takes the first step to indicating a grade of DR 

showing a higher level of severity.  This section will cover the detection of 

proliferative DR (PDR), which is the highest severity of DR, possessing a high risk of 

severe loss of vision and hence patients need urgent referral (R3, 95% within 1 week, 

100% within 2 weeks [14]).  The grading pathways from figure 1.9 and 1.10 

emphasise the importance in detection and fast tracking R3 images.  Despite this 

there really only exists a few small pockets of research into its automated detection 

as its variability in appearance makes it an extremely difficult task to perform.  

Another reason for the lack of research is the fact that PDR makes up a low 

percentage of DR cases.  This fact to a person without the required medical 

knowledge may be wrongly perceived as a factor in its identification holding less 

significance.  Ultimately it is a problem that is not very well understood by the image 

processing community.  

As mentioned previously, PDR is characterised by the presence of new vessels.  

Therefore the terms PDR and new vessels are used synonymously throughout the 

literature and most methods (including this project) stating the detection of PDR are 

actually claiming to specifically detect new vessels.  In reality it is not as simple as 

this.  Yes, new vessels will always be present in a PDR case, although they may be 

obscured or completely hidden from view by features associated with new vessels 

such as pre-retinal haemorrhages, vitreous haemorrhages, fibrosis tissue and 

tractional retinal detachment.  These make up only a small percentage of cases, and 

therefore the main focus should remain on new vessel detection.  However, in the 

future, development of the detection of these other new vessel associated DR 

features is required to achieve a full PDR detection system.   

The majority of methodologies were only based on detecting networks of new vessels 

(new vessel regions).  These regions can be generally characterised by an increase in 

vessel segments, which appear in multiple orientations and also possess a tortuous 

nature.  Another form of characterisation was that new vessel regions could be 

deemed as possessing a more erratic pixel intensity distribution.  However, referring 
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back to their description in the pathology section (1.2.1), their variation in 

appearance makes them a very difficult task to detect. 

Results from the performance evaluations will be stated in this section.  The 

irregularity and obscurity of new vessels can make accurate individual pixel labelling 

by a human observer or automated systems an overly complex and unnecessary task.  

All methods work by classifying either vessel segments, local regions or entire images 

as containing the presence of new vessels.  From a clinical point of view performance 

measures for new vessel detection are best presented on a per image basis.  For the 

purpose of screening the main target is simply a yes or no on the presence of new 

vessels.  However, precision in terms of region delineation or segment classification 

can hold benefits in terms of quantifying the new vessel growth.  

The majority of new vessel detection methods can be split into two main categories, 

based on whether vessel segmentation was performed or not.  Those methods based 

on vessel segmentation were developed with the purpose of analysing the 

characteristics of the binary vessel map in search of abnormality.  The other category 

is methods based on extracting textural information from the images and therefore 

avoiding the difficulties that arise from vessel segmentation. 

The section will be categorised into the following sub-sections: PDR vessel 

segmentation, followed by the two main categories of segmented vessel map analysis 

and texture analysis, and ending with stage identification, other methods and 

performance comparisons.  Figure 2.1 and 2.2 offer a breakdown of the reviewed 

articles in this section in terms number of articles in each methodology category and 

the yearly decomposition of articles.  This section will end with a summary of the 

reviewed articles in the form of tables 2.2, 2.3, 2.4, and 2.5. 
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Figure 2.1: Categorization of reviewed articles in section 2.4 (New Vessel Detection). 

 

Figure 2.2: Yearly decomposition of review articles in section 2.4 (New Vessel Detection). 

 

2.4.1 PDR Vessel Segmentation 

One of the first steps of some PDR detection methods was vessel segmentation, with 

the intention to further analyse this vessel map in the search for the presence of new 

vessels.  Vessel segmentation methods operate in terms of detecting structure and 

linearity, hence the tortuous and irregular nature of new vessels and their often 

obscure appearance (out of focus) can make this a very problematic task.  The latter 
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point was a problem in respect to vessels being blurred into each other and therefore 

changing their appearance.  Also their low contrast with the background further adds 

to the problem.  Therefore if new vessel segments/regions were missing from the 

segmented vessel map then any further analysis was seriously jeopardised.  Another 

problematic task was the false segmentation of non-vessels.  There are only a few 

vessel segmentation methods that have been particularly designed for PDR detection 

and these shall be discussed next.   

Vessel segmentation methods based on detecting linear vessel segments also 

respond to non-vessel edges.  False positives caused by exudates can seriously hinder 

new vessel detection methods and therefore their reduction can assist in the 

performance of new vessel detection systems.  If falsely segmented, exudates can be 

very similar to new vessels in terms of possessing large local densities and large 

curved edges.  L.Zhang [27] proposed a method that put their main focus on tackling 

this particular problem, to provide an improved vessel segmentation method to be 

used as the initial step for PDR detection methods to provide an improved 

performance.  B.Zhang [28] developed a method that also put clear emphasis on the 

reduction of false positives caused by exudates, although the benefits to PDR 

detection are not stressed.  Both methods were based on Gaussian match filtering 

and have already been discussed in section 2.1. 

Akram [69] was another method offering improved vessel segmentation to be used 

for PDR detection.  The various angles and scales of a 2-dimensional Gabor wavelet 

were applied to achieve vessel enhancement.  This was followed by a multi-layered 

thresholding technique.  This worked by first applying an initial threshold and then 

performing thinning to produce a vessel skeleton.  The threshold was then iteratively 

lowered and with each iteration all those vessels which were connected to the 

vessels segmented from the previous iterations were kept.  Adaptive thresholding 

was further applied to improve segmentation accuracy.  This vessel segmentation 

method was reported to work well for the detection of faint and thin vessels and 

therefore had improved suitability for new vessel detection. 
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Ramlugun [22] described a small vessel extraction technique; the main contribution 

was the varying of the clip limit for contrast limited adaptive histogram equalization 

(CLAHE).  Large vessels were easily differentiated from the background due to their 

inherent high contrast, and therefore a low clip limit was applied.  For small vessels a 

high clip limit was applied because of their low contrast difference to the 

background.  This was followed by the use of Gabor filters for vessel enhancement, 

double-sided thresholding [27] and hysteresis thresholding. 

So far steps have been discussed to improve the segmentation of faint and fine 

vessels, as well as reducing false positives.  However, as already mentioned above, 

the main problem with vessel segmentation methods based on detecting linear 

vessel segments was that they will struggle with new vessels that are very tortuous 

and irregular in structure.  This issue doesn’t appear to be well addressed. A possible 

route of investigation would be to loosen/adjust the parameters of the detection 

system to increase sensitivity to new vessels.  An unfortunate consequence of this 

would be the increase in the segmentation of other DR lesions and general spurious 

objects.  This would worsen, the more the parameters are adjusted to accommodate 

for new vessels.  Therefore this area requires considerable further investigation. 

 

2.4.2 Segmented Vessel Map Analysis 

The following new vessel detection methods are categorised as those performing 

vessel segmentation.  The purpose of segmentation was the analysis of the 

segmented vessel map in search of abnormality (new vessels).   

The majority of papers in this section used conventional vessel segmentation 

techniques.  Hence they did not put emphasis on the fact that the segmentation 

should be designed for PDR detection, as documented in the previous section. 
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2.4.2.1   Morphological features 

The main set of characteristics explored from the segmented vessel map were based 

on morphology.  This is the study of form or structure and includes aspects such as 

area, perimeter, scale and orientations.  Characteristics based on intensity and 

gradient information were also useful to extract from the segmented vessel map to 

assist in analysis. 

Hassan [70] developed a method that essentially quantified the local vessel coverage 

as an indication of new vessels.  A standard Gaussian matched filtering approach was 

applied for vessel segmentation despite documented modified approaches showing 

improvements.  This was followed by various morphological operations and 

thresholding to produce a binary vessel map.  Next all red lesions and bright lesions 

(e.g. exudates) were removed using the compactness measure and this was followed 

by thinning to produce a vessel skeleton.  Local analysis was performed to detect the 

new vessels using a small square window of size 100 x 100 pixels which was used to 

scan across the image and at each stage the number of blood vessels and area of 

blood vessels within the box region was calculated.  A higher number for both of 

these would indicate new vessels.  The classification appears to be manually derived.  

Results showed a sensitivity of 63.9% and specificity of 89.4% on the detection of 

new vessels which was on a per pixel basis.  To clarify, pixels were not classified as 

belonging to new vessels but instead as belonging to new vessel regions.  Such pixels 

may just be retinal background or normal vessels; however they belonged to a region 

containing new vessels.  These results illustrated how well the method was capable 

of delineating the new vessel regions, which does have its advantages, for example, 

to identify the location and quantify the spread of new vessel growth.  The sensitivity 

result was low, although the obscurity of new vessel regions can make them 

extremely difficult to correctly delineate and therefore a high sensitivity was not 

viable.  Results on a per image basis would have been interesting from a clinical point 

of view, although these were not provided as the image data set used was created 

with only images containing new vessels.  Finally, as different parts of a normal retina 

can be quite varied in terms of how much vascular structure they contain, it would 
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suggest that the number and area of vessels within a region alone are not really 

sufficient for the classification of new vessels.  However used appropriately and in 

conjunction with other features, vessel coverage can still pose as a very strong aid in 

the detection of new vessels.  

Jelinek [71] developed an algorithm for new vessel detection which used the wavelet 

transform approach both for vessel segmentation and for the morphological 

characterization of new blood vessels.  Various angles and scales of a 2 dimensional 

Gabor wavelet were applied to achieve vessel segmentation.  Various post processing 

steps were applied to the vessel map including skeletonization.  Seven morphological 

features were then determined from the overall vessel skeleton.  Three of these were 

traditional features, which were area, perimeter and circularity.  The other four 

features were all obtained from the application of the derivatives of Gaussian 

wavelets to the vessel skeleton.  These were curvature, orientation entropy, 

continuous wavelet transform second moment (measure of dispersion) and 

correlation dimension (used to measure a type of fractal dimension).  A linear 

discriminant analysis was applied on the feature set for classification, reporting a 

sensitivity of 94% and a specificity of 82% for the detection of PDR (new vessels) on a 

per image basis.  The features used may all be indicative of new vessels, although 

they are all measured only on a global scale, and therefore the introduction of local 

analysis may aid in making this method more sensitive to new vessels.  Also it should 

be remembered that any method that was based on only the use of global features 

would mean that the identification of where the new vessel regions were located 

within the image was not possible.  A final point is that this method has the 

advantage of being applied to fluorescein angiograms which make the presence of 

new vessels much clearer due to higher contrast.  Producing this type of image 

requires the injection of a contrast agent to the vascular system and is therefore 

invasive and time consuming and is not suitable for the large scale screening process.   

Goatman [72] developed a method to detect new vessels on the optic disc using the 

combination of watershed lines and ridge strength to detect vessel segments and a 

comprehensive set of 15 features for the classification.  Vessel detection at the optic 

disc was aided by its bright background, which provided a high vessel to background 
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contrast.  Images were inverted and the watershed transform was applied which 

divided the image into regions based on a topographic map of image grey levels.  The 

dividing lines between regions are known as watershed lines (or ridges) and 

represented vessel centre lines.  All bifurcation pixels were removed to form vessel 

segments.  The nature of the watershed transform is to create closed regions 

connected by watershed lines, and as a result of this some of the segments were non-

vessels.  These were removed using the ridge strength calculation along with 

thresholding to remove the weaker ridges (segments).  The Gaussian filtered image 

(Gaussian function at a certain scale in accordance with vessel size) and various 

gradients (first and second order partial derivatives) were used to calculate ridge 

strength.  Various measurements taken from these vessel segments were used to 

derive a feature vector for each vessel segment containing 15 components which was 

used by a support vector machine for classification of segments as normal or 

abnormal.  Note that the feature set was not restricted to just aspects of the segment 

concerned, but also used aspects of the surrounding local vasculature.  The top 5 

features assisting the classification process were number of vessels, mean vessel wall 

gradient, normalized grey level, mean vessel width and mean ridge strength.  Other 

features included vessel density, gradient variation, segment length, direction and 3 

tortuosity measures amongst others.  It was deemed that classification on a per 

vessel segment basis was relatively poor, and therefore the outcome was used to 

assess per image detection performance.  An image labelled as containing new 

vessels required one or more segments to be classified as new vessels.  A sensitivity 

of 84.2% and a specificity of 85.9% were achieved on a per image basis for the 

detection of new vessels.   

Arputham [73] and Pavai [74] have both proposed alternations to Goatman [72], 

although this only entailed changing the method used for the initial detection of the 

optic disc.  Goatman [72] applied a method described in [75].  First the optic disc’s 

approximate location was obtained based on the confluence of major retinal vessels.  

This was then refined based on the circular edge of the optic disc, done using the 

Hough transform to identify circular forms within the image following gradient 

determination using the Sobel operator.   Arputham [73] applied a region-based 
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active contour model to segment the optic disc.  Pavai [74] performed optic disc 

segmentation using the texture descriptors of entropy, inertia and energy. 

Akram [76] built on the work undergone in [69] to produce a new vessel detection 

system.  The vessel segmentation method was identical with the use of Gabor 

wavelet, multi-layered thresholding and adaptive thresholding.  A 5-d feature set was 

formed for each vessel segment; this consisted of energy, mean gradient, standard 

deviation gradient, mean intensity and intensity variation.  These were mainly 

intensity and gradient based features used to characterise the vessel segment.  A 

Bayesian classifier was used for classification to define each vessel segment as 

healthy or unhealthy (new vessel).  A sensitivity of 98.93% and a specificity of 96.35% 

were reported on a per vessel segment basis.  Goatman [72] had already shown that 

per vessel segment classification generated a relatively poor performance (the 

outcome was used accordingly to generate adequate per image results).  Goatman, 

for each vessel segment, produced a rich feature set that not only described 

morphological, intensity and gradient aspects of the segment, but also described the 

morphology of the surrounding vasculature, which was still insufficient.  Akram 

produced a feature set containing only a few intensity and gradient based measures, 

with no real emphasis on morphology.  The feature set does not appear to contain 

sufficient information to distinguish new vessel segments, and therefore the good 

results that were reported are not what would be expected from such a feature set. 

Akram [77] further builds on prior work [69,76].  The feature set had been extended, 

which included the original intensity and gradient based features as well as an 

additional 5 features based on the morphology of the vessel segment and the 

surrounding vasculature.  Classification of vessel segments was performed using a 

multimodal m-Mediods based classifier.  Mediods are representative objects in a 

cluster whose average dissimilarity to all the objects in the cluster is minimal.  This 

classifier was a soft classification approach which caters for the presence of 

multimodal distributions, and therefore could deal with the complex, multimodal and 

overlapping nature of distributions of samples belonging to the two classes (new 

vessel and non-new vessel).  Results from several datasets were listed separately; this 
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included a sensitivity of 98% and a specificity of 97% on a per segment basis for their 

largest dataset.  A per image outcome with a sensitivity and specificity of 97% and 

92% respectively for images with NVD and 96% and 94% respectively for images with 

NVE was achieved. 

Saranya [78] created a feature vector that involved the use of Hu moments along 

with gradient, intensity and morphology based features for the detection of new 

vessels.  The top-hat and bottom-hat operators were applied for vessel 

enhancement, followed by fuzzy C-means clustering for vessel segmentation.  The 

feature vector was used to perform classification on a per segment basis using a K-

nearest neighbour classifier.  This outcome was used to give a per image 

performance of 96.25% and 89.65% for sensitivity and specificity respectively. 

Welikala [79] developed a methodology based on multi-scale matched filtering with 

emphasis on using two different sets of parameters to allow for the detection of new 

vessels.  Parameters were selected to first increase and then decrease the filters’ 

response to new vessels, followed by thresholding to produce two separate binary 

vessel maps.  The difference image resulted in most normal vasculature being 

removed and therefore leaving behind possible new vessels.  A 5-d feature set based 

on the local morphology of the vasculature was calculated using a small scanning 

window of size 151 x 151 pixels.  Classification was performed using a k-nearest 

neighbour classifier which achieved a sensitivity and specificity of 100% and 70% 

respectively on a per image basis. 

 

2.4.2.2   Fractal Analysis 

Fractals provide a method for describing natural objects that would be too complex 

for Euclidean geometry to describe.  Fractals are typically self-similar patterns, 

meaning upon magnification there are subsets that look like the whole figure.  This 

relationship can be represented by a single value called the fractal dimension, which 

is an index to magnification to describe at what factor the detail will be increased by.  

http://en.wikipedia.org/wiki/Fractal
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Unlike ordinary Euclidean dimensions that are integers, fractal dimensions are non-

integers.  The fractal dimension is used to quantify the complexity of the fractal 

pattern, which can be considered as expressing how thoroughly the pattern fills the 

space.  Hence an index of 1.7 would fill a 2-dimensional space more thoroughly than 

an index of 1.2.  Fractal analysis is a study of morphology; however it can also be 

considered as a measure of texture. 

Mainster [80] demonstrated that the retinal vasculature was a fractal and follows the 

theory of fractal geometry.  This was presumed as a rough approximation, as natural 

objects exhibit scaling symmetry only over a limited range of magnifications and also 

tend to be only roughly self-similar. This paper stated that fractal dimensions provide 

an insight into the relationship between vascular patterns and retinal disease. 

Daxer [81] applied fractal dimensions to characterise new vessels.  The idea was that 

the presence of new vessels resulted in the whole pattern’s convolutedness rising, 

hence filling the space more thoroughly and therefore possessing a higher fractal 

dimension.  It could also be considered that the retina’s fractal pattern would 

become upset at the local region containing new vessels.  Instead of automated 

vessel segmentation the vessels were manually traced out.  The density-density 

correlation function was used to calculate the fractal dimension.  This value was 

calculated for just the superior temporal quadrant as opposed to the whole retinal 

image.  The images assessed were just for a single patient at different stages in time, 

before new vessels, with new vessels and with the regression of new vessels.  The 

results showed a significant change in the fractal dimension at each stage, with 

measurements of 1.665 before new vessels, 1.794 with new vessels and 1.708 with 

the regression of new vessels.  Therefore this method was proposing the 

quantification of neovascularization, which could be used to evaluate the effect of 

treatment to PDR.  What was also interesting was that this paper opened the door to 

the possibility for fractal dimensions to be applied to the detection of new vessels. 

Karperien [82] applied fractal analysis for the detection of new vessels.  A technique 

using a 2-dimensional Gabor wavelet was applied to achieve vessel segmentation.  

Also the paper expanded out their investigation by looking not only at global fractal 
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dimension measures, but also a local measure.  The fractal dimension was calculated 

using the box counting method and the correlation dimension method to give two 

global measures.  A local measure known as the local connected fractal dimension 

was also measured, which was calculated just like the box counting method but on a 

smaller scale, with the box reaching a maximum of 10% of the image size.  A third 

global measure was used which was derived from the local measure by taking a mean 

across all pixels in the image.  The global fractal dimension measurements produced 

showed a significant difference between the new vessels and control cases, although 

this was only shown for one of their global measures.  A method of classification was 

not applied.  Next the local fractal dimension measure was applied to every vessel 

pixel and showed that an image with new vessels contained a higher frequency of 

pixels at higher fractal dimensions.  Again a method of classification was not applied.  

A further useful extension to this work would be to see a visual representation of 

how the local fractal dimension value varied across a single image containing new 

vessels, although unfortunately this was not included. This method was applied to 

fluorescein angiograms, which are not suitable for the large scale screening process. 

Both Daxer [81] and Karperien [82] have demonstrated a difference between the 

absence and presence of new vessels using fractal analysis.  The next step would be 

to apply this form of analysis to develop a new vessel detection system and to assess 

the level of results achieved.  Using just a global measure would be problematic as 

the normal retinal vasculature can vary enormously from person to person; Karperien 

[82] stated literature that has shown the majority of values range from 1.60 to 1.88.  

Therefore the presence of new vessels in a lot of cases possibly may not possess a 

fractal dimension high enough to be outside this range. The local measure may 

possess slightly more prospects for future development.  A possibly better approach 

to that already mentioned would be to calculate local region measures and assess 

them relative to the global measure.  Therefore, any local region measures 

significantly higher than the global measure would indicate new vessels.  It should 

not be presumed that for normal vasculature all local regions share the same fractal 

pattern as the whole; in fact many local regions may be empty and contain no detail.  

However, strategically placed local regions (normal) should theoretically possess the 
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same fractal pattern as the whole vasculature (normal).   Unfortunately the retinal 

vasculature is only a rough approximation of a fractal and this is even more evident 

when observing the local regions. 

 

2.4.3 Texture Analysis 

There are several methodologies to assess image texture and they can vary 

considerably, hence in this report the texture methods have been categorised 

separately.  These methods benefit from not requiring vessel segmentation and 

hence did not have to deal with difficulties associated with it for new vessel 

detection.  

2.4.3.1   Statistical Texture Analysis 

Image texture can be difficult to define, in fact there exist several different definitions 

of image texture attempted by researchers.  There may be no universally agreed 

upon definition; however, a definition that is widely accepted defines image texture 

as the spatial variation of pixel intensities. 

Frame [83] proposed the use of texture analysis for the detection of new vessels.  The 

retinal surface and its features were deemed to be more stochastic than regular and 

hence statistical texture analysis was used.  Information on the texture of a region is 

contained in the tone (pixel intensity) and structure (spatial relationship) of the 

pixels.  Local analysis was performed on each pixel using a small local box region 

around the pixel and 14 texture measures were calculated (e.g. variance, entropy and 

contrast).  Eight of these were first order statistical texture measures and the other 

six were second order statistical texture measures.  First order measures can 

sometimes be misleading as they are based solely on the grey level intensity 

histogram and hence possess no spatial relationship information.  Second order 

measures combat this problem as they are derived from the grey level co-occurrence 

matrix (GLCM), which is a tabulation of how often different combinations of pixel 

intensity values occur in a region according to a given direction and separation 
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distance.  Haralick [84],[85] first suggested the use of the GLCM, which has become 

one of the most widely used texture analysis techniques.  The idea was that texture 

measures can identify local regions in the image that exhibit the very irregular 

distribution of pixel intensities of a new vessel region.  Linear discriminant analysis 

used the 14-element feature vector to classify the pixel’s region as containing new 

vessels or not.  No results were provided by this paper, instead some images 

displaying the results of their method were presented.  However, the presentation of 

these images in their report is very poor in quality and hence makes it extremely 

difficult to make any visual assessment by the reader.  This paper has concluded that 

the detection of new vessels has yielded unconvincing results, although a statistical 

difference does exist.  A possible improvement would be to increase the size of the 

local box region, as a maximum of 8x8 pixels was used for an image of 1024x1024 

pixels, which seems insufficient to really capture the intensity variation that new 

vessel regions provide. 

Nithyaa [86] proposed the use of statistical texture features for the detection of new 

vessels at the optic disc.  No local box region/scanning window was used, as the 

texture analysis was performed only on the region local to the optic disc.  Features 

included standard deviation, entropy and skewness, which were measured from the 

grey level intensity histogram.  A neuro-fuzzy classifier (combination of neural 

networks and fuzzy logic) used a six element feature vector to perform classification.  

Sensitivity and specificity results were not stated.  The area under the ROC curve of 

0.947 was reported for the detection of new vessels on the optic disc on a per image 

basis.  Many details were not presented in this work and future publication will be 

required to clarify the technique. 

 

2.4.3.2   Spectral Texture Analysis 

The texture of retinal images can also be described by their frequency content.  

Measures can indicate coarseness/fineness as well as directionality.  These measures 
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can be used to characterise new vessel regions which contain vessels that are fine in 

calibre and possess multiple orientations.   

Agurto [87] utilized a multi-scale amplitude modulation frequency modulation (AM-

FM) method for the characterization of retinal structures.  The algorithm was applied 

on small 40 x 40 pixel image patches which contained the retinal structures of either 

microaneurysms, haemorrhages, exudates, new vessel, retinal background or vessels.  

A filter bank (array of band pass filters) was used to create the image at various 

frequency scales.  At each scale AM-FM demodulation was applied and from the 

components the instantaneous amplitude (IA) and instantaneous frequency (IF) were 

computed.  The modulus IF is a measurement of the local frequency content, local 

image intensity variations are reflected in the IA and also relative angles are 

estimated locally as deviations from the dominant neighbourhood angle.  For each 

image patch a cumulative distribution function (CDF) was produced for each of the 

three measures at each of the image scales, and these were used as the texture 

feature vector.  Significant differences were shown statistically using the 

Mahalanobis distance to compute the differences between extracted feature vectors 

of the different types of retinal structures.  Prior to this the dimensionality of the 

feature vectors was reduced using principal component analysis.   

Agurto [87] further demonstrated the use of these features to perform whole retinal 

image classification.  This involved the division of the image into small patches 

followed by the same extraction of features and the reduction of dimensionality 

(done for each patch).  Next k-means clustering was used to produce a single feature 

vector for the whole image and finally the use of partial least squares for 

classification.  Results for the classification of DR versus no DR showed a sensitivity of 

92% with a poor specificity of 54% (per image). A second whole retinal classification 

was shown for the detection of just advanced forms of DR (risk 3) that required 

urgent referral and produced a sensitivity and specificity of 100% and 88% 

respectively.  However, their description of risk 3 did not represent only PDR, it 

represented new vessels, significant macular oedema or a large amount 

microaneurysms/haemorrhages (greater than 15).  
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Agurto [88] extended their methodology based on AM-FM techniques to specifically 

detect NVD.  However, this now included the use of vessel segmentation as well as 

granulometry.  A sensitivity of 96% and a specificity of 83% were achieved on a per 

image basis. 

Vallabha [89] proposed the use of a Gabor filter bank for identification of vascular 

abnormalities in DR.  This method stated that its intentions were the detection of 

features such as venous beading and intra-retinal microvascular abnormality (IRMA) 

for classification as severe pre-proliferative DR.  These may not be new vessels, 

although they represent a very severe stage of pre-proliferative DR where the growth 

of new vessels is imminent.  The appearance of IRMA is very similar to that of new 

vessels, and therefore it is unlikely that any algorithm could differentiate them; 

therefore, the principles of this method can also apply to new vessel detection.  

Image patches of the retina of size 256 x 256 pixels were used.  These patches were 

filtered through a Gabor filter bank consisting of several filters tuned to specific 

scales (frequencies) and orientations.  Plots of energy versus orientation were 

produced for each scale.  Image patches containing vascular abnormalities contained 

fine vessels with multiple dominant orientations, and hence the plots (at finer scales) 

contained multiple peaks.  A classification method has yet to be applied. 

 

2.4.3.3   Combined Texture Analysis 

Vatanparast [90] compared the performance of six different texture based methods 

for the detection of neovascularisation.  This was a region-based method, with a 

window of size 128 x 128 pixels used to create local regions (patches). Texture 

information extracted from these patches includes GLCM, AM-FM, Gabor filters, 

Contourlet transform and local binary patterns.  Each of the six texture methods had 

its own feature set created and was evaluated separately.  A support vector machine 

with a linear kernel was used for classification of the patches.  The AM-FM technique 

produced the best results with a sensitivity of 99.62% and a specificity of 96.61% on a 

per patch basis. 
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Lee [91] proposed a new vessel detection method which combined statistical texture 

analysis, high order spectrum analysis (derived from the average Fourier spectrum 

signal) and fractal analysis.  However, vessel segmentation was required for multi-

fractal analysis (not for mono-fractal analysis).  Classification was performed using a 

logistic regression classifier to achieve a sensitivity of 96.3% and a specificity of 99.1% 

on a per image basis. 

 

2.4.4 Stage Identification 

Methods discussed so far were all capable of identifying new vessel regions through 

analysis of the specific characteristics that new vessel regions exhibit.  The methods 

in this section differ largely in terms of the main features that were used to assess the 

amount of all general DR pathology in the whole image as opposed to the type.  The 

general idea was that the greater the amount of DR pathology present, the more 

severe the stage of DR, with PDR being the most severe stage.  It should be noted 

that a large amount of DR pathology is only indicative and is by no means definitive of 

the presence of new vessels.  For instance, new vessels are triggered by retinal 

ischemia, although the haemorrhages and other features associated with the 

capillary breakdown are not always apparent in such abundance and may in fact have 

started to fade away.  Also new vessel growth may have been triggered only by a 

small restricted area having capillary breakdown and retinal ischemia.   

Acharya [92] applied measures from the GLCM as well as the run length matrix [93] 

which, like the GLCM, also provides higher order statistical texture measures.  The 

run length matrix contains information on the run of a particular grey-level, or grey-

level range, in a particular direction.  Examples of features are short run emphasis 

and long run emphasis.  A feature set consisting of 5 texture measures was used by a 

support vector machine classifier in order to classify images into one of 4 different 

classes of DR which were normal, pre-proliferative, proliferative and macular oedema 

(maculopathy).  A sensitivity of 98.9% and a specificity of 89.5% were reported on the 

correct class being achieved on a per image basis.  The method was similar to Frame 
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[83], although it differs in terms of the use of global statistical texture measures as 

opposed to local.  In this method no interest was taken in assessing local regions in 

search of these distinctive statistical measures that new vessels may exhibit.  For 

global measures it is more likely to be the case of assessing the overall contribution 

from the summation of all DR features present in the image and therefore aids to 

indicate the amount of DR pathology present as opposed to the type (as mentioned 

above).   

Anitha [94] used a statistical texture based feature set for multi-level pathology 

identification.  The identification of PDR was not covered by the method, although 

other pathologies characterising vessel abnormalities were covered such as central 

neo-vascularisation membrane.  This method differed in terms that its not detecting 

stages of DR, but instead it was detecting several different retinal pathologies. 

However, it was similar in that statistical texture measures were calculated globally.  

These extracted measures included energy, entropy and standard deviation.  The 

feature set provided the inputs for a Kohonen neural network to perform 

classification achieving a sensitivity of 96% and a specificity of 98% on the correct 

pathology being detected on a per image basis.  

The next three methods described all involved vessel segmentation, but the intention 

was to produce a binary map not containing only vasculature structure (including 

new vessels), but also other DR features such as microaneurysms and haemorrhages.   

Therefore, a simple feature like the area of the segmented map can be used to 

indicate the amount of pathology present.  All methods use global features. 

Nayak [95] had a feature set including the measures of vessel area and vessel 

perimeter of the binary map.  This binary map was achieved using several 

morphological openings using a diamond and disc structuring element in order to 

make the image less noisy and this was followed by thresholding.  The feature set 

was used by a neural network classifier in order to detect one of three different 

stages of DR including proliferative (new vessels), as well as normal and non-

proliferative.  A sensitivity of 90.32% and a specificity of 100% were reported for 

attaining the correct class on a per image basis.  A sensitivity of 90.91% was reported 
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for the detection of PDR on a per image basis, specificity was not stated.  The feature 

set included two other features of exudate area and contrast.  These features 

required their own steps of image processing of the original image.   

Yun [96] proposed a similar method to Nayak [95], with the binary map being 

achieved by the same method.  Six features were used which consisted of vessel area 

and perimeter for each: the red, green and blue layers.  Four stages of DR were 

identified using a neural network classifier, which included proliferative as well as 

normal, moderate non-proliferative and severe non-proliferative.  Results showed a 

sensitivity of 91.7% and a specificity of 100% on the correct class being achieved on a 

per image basis.  A sensitivity of 83% was reported for the detection of PDR on a per 

image basis, but no specificity was stated.   

Priya [97] included a feature set containing the area of the binary map along with the 

two statistical texture measures of mean and standard deviation (obtained prior to 

segmentation).  A Gaussian matched filtering approach was applied for vessel 

segmentation, although fuzzy C-means clustering was used to classify pixels as vessels 

or no vessels instead of the standard threshold approach.  This approach was stricter 

in its vessel segmentation than the two previous methods and therefore did not have 

the same level of inclusion of other DR features in its binary vessel map.  However, 

there still remained a sufficient inclusion to aid the classification process.  The feature 

set was fed into a support vector machine for classification into one of three different 

stages of DR including proliferative as well as normal and non-proliferative DR.  The 

results showed a sensitivity of 99.45% and a specificity of 100% for awarding the 

correct class on a per image basis.  A sensitivity of 98.93% was reported for the 

detection of PDR on a per image basis, but no specificity was stated.   

It is clear that the main features (with a couple of exceptions) used by these 

methods, along with the fact that they were calculated globally, means that were 

intended to define the general overall state of the image, in other words the amount 

of pathology present.  Some of the methods from the previous sections were based 

on using feature sets containing only global measures and were capable of 

specifically identifying images with new vessel regions.  An example is the curvature 
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of the entire retinal vasculature, which is a global feature used in a feature set by 

Jelinek [71] along with other global measures to specifically indicate the presence of 

new vessels.  Therefore it is clear that it is the type of features along with the fact 

that they are measured globally that defines the fact that only the indication of the 

amount of pathology is expected.   

It should also be noted that in this section there has been a strong emphasis that 

features measure the amount of pathology and the classification was performed in 

respect to that amount of pathology.  In reality the patterns and boundaries that the 

classifiers and their feature set found are likely to be more complex. 

 

2.4.5 Other Methods 

Patients attend DR screening appointments on a regular basis, and therefore 

screening programmes develop image libraries for each patient containing images 

from previous appointments.  Human graders often use these additional images to 

assess the change in the condition of the retina, which helps in their detection of DR.  

A few automated detection methods have also taken advantage of this fact.  

McRitchie [98] used image registration based on affine transformations and mutual 

information, followed by image subtraction for visualizing the changes which occur in 

retinal pathology over a one year interval.  However, this work only explored changes 

occurring due to microaneurysms, haemorrhages and exudates.  Amrutkar [99] 

proposed an image subtraction technique to detect new vessels, although a future 

publication will be required to clarify the technique and the results. 

There exist techniques developed from other research topics that are relevant to PDR 

detection.  Automated methods for the quantification of micro-vessel density within 

the inner surface of egg shells in order to study the angiogenesis in developing chick 

embryos is an active research field [100,101].  Measures included branching points, 

vessel length and GLCM textural information.  A system using edge contour analysis 

was presented by Zutis [102] for detecting abnormal retinal capillary regions, with 

the focus on telangiectasia. 
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2.4.6 Performance Comparisons 

Several publicly available retinal image databases exist (see table 2.1); these include 

the STARE database [26], the DRIVE database [36], the ARIA online database [103], 

the ImageRet database [104] and the MESSIDOR database [16].  In these databases 

each retinal image is also accompanied by an annotated image.  The term annotated 

refers to the labelling of a retinal image to provide a ground truth, whether it is the 

manual segmentation of vessels, the manual segmentation of lesions, marking the 

location of lesions or an overall image DR grade.  Therefore, this allows for the 

training and testing of algorithms, or just the testing for algorithms not using 

supervised machine learning.  Hence a database will be often divided into a training 

set and a testing set.  But most importantly these databases allow for performance 

comparisons.  Several algorithms being evaluated on the same database allows for 

direct comparisons of their performances to be made.  For example the DRIVE and 

STARE databases have become the standard databases for evaluating any vessel 

segmentation algorithm. 

Table 2.1: Publicly available retinal image databases. 

Database Year Retinal Images Annotations 

STARE [26] 2000 10 normal, 10 pathological Manual segmentation of 
vessels 

DRIVE [36] 2004 33 normal, 7 pathological Manual segmentation of 
vessels 

ARIA [103] 2006 61 normal, 151 pathological Vessel tracing, optic disc and 
fovea manually marked 

ImageRet [104] 2008 25 normal, 194 pathological Microaneurysms, 
haemorrhages and exudates 

manually marked  

MESSIDOR [16] 2008 1200 normal/pathological Diabetic retinopathy image 
grade 

 

Unfortunately there isn’t a standard database used for evaluating PDR detection 

systems.  This means that comparisons of different algorithms’ performances can be 

difficult to make.  New vessel detection systems perform evaluation using one of the 

following options.  Option 1 is to create a new vessel image dataset from one of the 
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public databases or a combination of public databases; however, new vessel images 

are scarce in these databases.  Option 2 is to create a new vessel dataset using 

images from a local hospital or a local screening programme.  Option 3 is the use of a 

combination of both public and local databases.   

Unfortunately there is a lack of new vessels images in the publicly available databases 

mentioned above; therefore the majority of reported methodologies adopted either 

option 2 or 3.  These local new vessel databases have not gone on to be released 

publicly due to the strict regulations and the lengthy procedure involved in gaining 

the required ethical approval.  Therefore, with no external access to such databases, 

it is difficult for us to know how challenging a task a local database presented to the 

methodology that it was used by.  This is in respect to whether or not the database 

contained a sufficient variety of new vessel formations, as well as a sufficient range of 

other clinical conditions.  From the details provided by the reported methodologies, it 

is evident that not enough emphasis was put on ensuring that the non-PDR images 

contained an adequate amount of images with other pathologies to accompany the 

images of healthy retinas.  

Generally, the reported methodologies performed evaluation using databases that 

contained a relatively low number of PDR images.  Hassan [70] used only 11 PDR 

images for evaluation, whilst Goatman [72] used 38 PDR images and 71 non-PDR 

images.  The majority of the reported methodologies performed evaluation using 

between 10 and 40 PDR images (see table 2.5). 

Akram [77] used four of the retinal public databases: DRIVE, STARE, ImageRet and 

MESSIDOR.  In total, they extracted a large number of non-PDR images as well as 52 

images with PDR from these databases to use for evaluation.  Such numbers of 

publicly available PDR images gives the potential to create a standard database for 

evaluating PDR detection.  However, the image file names/numbers that they used 

were not listed and we were unable to find the number of new vessel images they 

refer to.  
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As the field of PDR detection advances, a publicly available PDR database will be 

invaluable to help in the evaluation and direct comparison of different algorithms.  

This database would need to be sufficient in size.  Images with PDR are a lot more 

varied in appearance than most of the retinal image processing community are 

aware.  Therefore this database would need to provide a varied selection of PDR 

images to educate the researchers and to allow for more appropriate training and 

testing.  This varied selection would also include single new vessels, obscure new 

vessels and also cases of when new vessels are completely hidden from view by new 

vessel associated features (e.g. pre-retinal haemorrhage).  However, the database 

should be sub-divided to create a dataset in which all the PDR images include visible 

new vessel regions, as this will allow researchers to first accomplish tackling this task.  

This database would also need to provide normal images and a varied selection of 

other stages of DR.  

Table 2.2 lists all methods discussed in section 2.4.  Whilst these methods all relate to 

the detection of PDR, only a handful have proposed a completed system capable of 

such detection, and this is indicated by column 7 of the table 2.2.  The performance 

metrics listed are only those that apply to PDR detection.  Table 2.3 and table 2.4 list 

the performance measures of completed PDR systems.  Table 2.3 includes only those 

methods designed to specifically detect new vessels.  Table 2.4 includes the methods 

from section 2.4.4 which work along a very different principle to identify the stage of 

DR, which includes a stage for PDR.  Calculation of performance measures for the 

stage of DR identification is not a binary classification and is no longer a standard and 

simple task; therefore, there could be discrepancies in its calculation amongst the 

algorithms in table 2.4.  Finally, table 2.5 lists the database type and size used by the 

algorithms listed in table 2.3 and table 2.4. 
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Table 2.2: Categorization of methods from section 2.4. PDR = proliferative DR, SN = 
sensitivity, SP = specificity, Acc = accuracy, AUC = area under receiver operating characteristic 

(ROC) curve, PPV = positive predictive value. 

Algorithm Y

e

a 

r 

Title Type of   

Image 

Intended 

PDR 

Detect-

ion  

Type of  

PDR 

Detect-

ion 

Complete 

PDR 

Detection  

Perform

-ance   

Metrics 

Section 

L.Zhang        

[27] 
2

0

0

9 

A modified matched 

filter with double-sided 

thresholding for 

screening proliferative 

diabetic retinopathy 

Normal 

fundus 

images 

Yes - No - PDR vessel  

segment-

ation            

2.4.1 

B.Zhang       

[28] 

2

0

1

0 

Retinal vessel extraction 

by matched filter with 

first-order derivative of 

Gaussian 

Normal 

fundus 

images 

No - - - 

Akram          

[69] 
2

0

1

2 

Automated 

segmentation of blood 

vessels for detection of 

proliferative diabetic 

retinopathy 

Normal 

fundus 

images 

Yes - No - 

Ramlugun     

[22]   

2

0

1

2 

Small retinal vessels 

extraction towards 

proliferative diabetic 

retinopathy screening 

Normal 

fundus 

images 

Yes - No - 

Hassan         

[70] 

2

0

1

1 

Detection of 

Neovascularization in 

Diabetic Retinopathy 

Normal 

fundus 

images 

Yes NVE, 

NVD 

Yes SN, SP, 

AUC 

Segmented 

vessel map 

analysis              

2.4.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jelinek          

[71] 2

0

0

7 

Automated 

segmentation of retinal 

blood vessels and 

identification of 

proliferative diabetic 

retinopathy 

Fluorescein 

angiograms 

Yes NVE, 

NVD 

Yes SN, SP, 

AUC 

Goatman      

[72] 

2

0

1

1 

Detection of new vessels 

on the optic disc using 

retinal photographs 

Normal 

fundus 

images 

Yes NVD Yes SN, SP, 

AUC 

Arputham    

[73] 

2

0

1

2 

An Approach for the 

Detection of 

Proliferative Diabetic 

Retinopathy 

Normal 

fundus 

images 

Yes NVD Yes SN, SP 

Pavai            

[74] 

2

0

1

3 

Identification of 

proliferative diabetic 

retinopathy using 

texture segmentation 

Normal 

fundus 

images 

Yes NVD Yes SN, SP 

Akram          

[76] 

2

0

1

2 

Detection of 

neovascularization for 

screening of proliferative 

diabetic retinopathy 

Normal 

fundus 

images 

Yes NVE, 

NVD 

Yes SN, SP, 

PPV 

Akram          

[77] 
2

0

1

3 

Detection of 

neovascularization in 

retinal images using 

multivariate m-Mediods 

based classifier 

Normal 

fundus 

images 

Yes NVE, 

NVD 

Yes SN, SP, 

PPV, 

Acc, 

AUC 

Saranya       

[78] 

2

0

1

A novel approach for the 

detection of new vessels 

in the retinal images for 

Normal 

fundus 

images 

Yes NVE, 

NVD 

Yes SN, SP, 

Acc 
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2 screening diabetic 

retinopathy 

2.4.2 

 Welikala  

[79] 

2

0

1

3 

Differing matched filter 

responsivity for the 

detection of proliferative 

diabetic retinopathy 

Normal 

fundus 

images 

Yes NVE, 

NVD 

Yes SN, SP 

Mainster      

[80] 

1

9

9

0 

The Fractal Properties of 

Retinal Vessels: 

Embryological and 

Clinical Implications 

Fluorescein 

angiograms 

Yes NVE, 

NVD 

No - 

Daxer            

[81] 1

9

9

3 

Characterisation of the 

neovascularisation 

process in diabetic 

retinopathy by means of 

fractal geometry: 

diagnostic implications 

Normal 

fundus 

images 

Yes NVE, 

NVD 

No - 

Karperien     

[82] 

2

0

0

8 

Automated detection of 

proliferative retinopathy 

in clinical practice 

Fluorescein 

angiograms 

Yes NVE, 

NVD 

No - 

Frame          

[83] 

1

9

9

7 

Texture analysis of 

retinal 

neovascularisation 

Normal 

fundus 

images 

Yes NVE, 

NVD 

Yes Visual Texture 

analysis        

2.4.3 

Nithyaa        

[86] 
2

0

1

2 

Identification of the 

diabetic retinopathy by 

detecting new retinal 

vessel using fundus 

image 

Normal 

fundus 

images 

Yes NVD Yes AUC 

Agurto         

[87] 

2

0

1

0 

Multiscale AM-FM 

Methods for Diabetic 

Retinopathy Lesion 

Detection 

Normal 

fundus 

images 

Yes NVE, 

NVD 

Yes SN, SP, 

AUC 

Agurto         

[88] 2

0

1

2 

Detection of 

neovascularization in the 

optic disc using an AM-

FM representation, 

granulometry, and vessel 

segmentation 

Normal 

fundus 

images 

Yes NVD Yes SN, SP, 

AUC 

Vallabha      

[89] 

2

0

0

4 

Automated detection 

and classification of 

vascular abnormalities in 

diabetic retinopathy 

Normal 

fundus 

images 

Yes NVE, 

NVD 

No - 

Vatanparast 

[90] 
2

0

1

2 

A feasibility study on 

detection of 

neovascularization in 

retinal color images 

using texture 

Normal 

fundus 

images 

Yes NVE, 

NVD 

Yes SN, SP 

Lee               

[91] 2

0

1

3 

Detection of 

neovascularization based 

on fractal and texture 

analysis with interaction 

effects in diabetic 

retinopathy 

Normal 

fundus 

images 

Yes NVE, 

NVD 

Yes SN, SP, 

Acc, 

AUC 

Acharya       

[92] 
2

0

1

2 

An Integrated Index for 

the Identification of 

Diabetic Retinopathy 

Stages Using Texture 

Parameters 

Normal 

fundus 

images 

Yes Stage Yes Not 

stated 

Stage 

identification 

2.4.4 

 
Anitha          

[94] 

2

0

Automated multi-level 

pathology identification 

Normal 

fundus 

No - - - 
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1

2 

techniques for abnormal 

retinal images using 

artificial neural networks 

images 2.4.4 

Nayak           

[95] 

2

0

0

8 

Automated identification 

of diabetic retinopathy 

stages using digital 

fundus images 

Normal 

fundus 

images 

Yes Stage Yes SN 

Yun               

[96] 
2

0

0

8 

Identification of 

different stages of 

diabetic retinopathy 

using retinal optical 

images 

Normal 

fundus 

images 

Yes Stage Yes SN 

Priya             

[97] 

2

0

1

1 

Review of automated 

diagnosis of diabetic 

retinopathy using the 

support vector machine 

Normal 

fundus 

images 

Yes Stage Yes SN 

McRitchie 

[98] 
2

0

0

6 

Image registration and 

subtraction for the 

visualization of change in 

diabetic retinopathy 

screening 

Normal 

fundus 

images 

No - - - Other 

Methods  

2.4.5 

Amrutkar 

[99] 2

0

1

3 

An efficient approach for 

the detection of new 

vessels in PDR using 

image subtraction and 

exudates in SDR using 

blobs detection 

Normal 

fundus 

images 

Yes NVE, 

NVD 

Yes - 

Doukas 

[100] 
2

0

0

8 

Computer-supported 

angiogenesis 

quantification using 

image analysis and 

statistical averaging 

- No - - - 

De La Cruz 

[101] 
2

0

1

3 

Preliminary studies on 

vascular network 

quantification in chick 

chorioallantoic 

membrane images 

- No - - - 

Zutis     

[102] 2

0

1

3 

Towards automatic 

detection of abnormal 

retinal capillaries in 

ultra-widefield-of-view 

retinal angiographic 

exams 

Fluorescein 

angiograms 

No - - - 
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Table 2.3:  Performance measures for the identification of new vessels (proliferative DR). 

Algorithm                         Year SN  SP Acc AUC Level 

Hassan                                
[70] 

2011 63.90 89.40 - 0.7045 Pixel 

Jelinek                                
[71] 

2007 94.00 82.00 - 0.900 Image 

Goatman                           
[72] 

2011   84.2 85.9 - 0.911 Image 

Arputham                          
[73] 

2012 84.70 86.10 - - Image 

Pavai                                   
[74] 

2013 88.89 91.30 - - Image 

Akram                                
[76] 

2012 98.93 96.35 - - Segment 

Akram                                 
[77] 

2013 98.00 97.00 98.00 0.980 Segment 

Akram                                
[77] 

2013  96.00 94.00 0.95 - Image 

Saranya                              
[78] 

2012 96.25 89.65 96.53 - Image 

Welikala                               
[79] 

2013 100.00 70.00 - - Image 

Nithyaa                              
[86] 

2012 - - - 0.947 Image 

Agurto                                
[87] 

2010 100.00 88.00 - 0.980 Image 

Agurto                                
[88] 

2012 96.00 83.00 - 0.940 Image 

Vatanparast                      
[90] 

2012 99.62 96.61 - - Patch 

Lee                                      
[91] 

2013 96.30 99.10 98.50 0.993 Image 

 

Table 2.4: Performance measures for the identification of the stage of DR, which includes a 
stage for PDR.  SN, SP and AUC are for the correct stage of DR being identified.  PDR SN and 

PDR SP are specifically for the detection of the PDR stage.  All algorithms produce results on a 
per image basis. 

 

Algorithm Year Stages SN SP AUC PDR SN PDR SP 

Acharya                             
[92] 

2012 4 98.9 89.5 0.972 - - 

Nayak                                
[95] 

2008 3 90.32 100 - 90.91 - 

Yun                                     
[96] 

2008 4 91.7 100 - 83 - 

Priya                                  
[97] 

2011 3 99.45 100 - 98.93 - 
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A plot of the sensitivity and specificity of the completed PDR detection systems from 

the reviewed articles is illustrated in figure 2.3.  However, as stated above, 

comparison between these different methodologies is difficult to assess due to there 

being no standard database for evaluating the detection of PDR.  Figures 2.4-2.6 

illustrate how comparison difficulties are further extended by variations in respect to 

the type of image used, the type of PDR detection performed and the level selected 

for performance evaluation. 

 

Table 2.5:  Database type and size used by the algorithms listed in table 2.3 and table 2.4. 

Algorithm Year Database Images PDR images Non-PDR images 

Hassan                         
[70] 

2011 Combination of 
public + local 

11 11 0 

Jelinek                          
[71] 

2007 Local 27 16 11 

Goatman                     
[72] 

2011 Local 109 38 71 

Arputham                    
[73] 

2012 - - - - 

Pavai                            
[74] 

2013 Local - - - 

Akram                          
[76] 

2012 Public   
(ImageRet) 

20 10 10 

Akram                             
[77] 

2013 Combination of 
public 

503 52 451 

Saranya                        
[78] 

2012 Combination of 
public + local 

50 20 30 

Welikala             
[79] 

2013 Public 
(MESSIDOR) 

20 5 15 

Nithyaa                        
[86] 

2012 Local 150 100 50 

Agurto                          
[87] 

2010 Public            
(ETDRS [105])         

30 - - 

Agurto                          
[88] 

2012 Local 57 27 30 

Vatanparast                
[90] 

2012 Local 43 31 12 

Lee                                
[91] 

2013 Combination of 
public 

137 27 110 

Acharya                       
[92] 

2012 Public 
(MESSIDOR) 

180 - - 

Nayak                          
[95] 

2008 Local 140 - - 

Yun                               
[96] 

2008 Local 124 22 102 

Priya                            
[97] 

2011 Local - - - 
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Figure 2.3:  Sensitivity and specificity results of completed PDR detection methods reviewed 
in section 2.4. 
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Figure 2.4:  Type of images used by articles reviewed in section 2.4. 

 

Figure 2.5: Type of PDR detection performed by articles reviewed in section 2.4. 

 

Figure 2.6: Levels selected for performance evaluation used by articles reviewed in section 

2.4. 
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2.5 Machine Learning 

The main focus of this literature review has been to detail the various image 

processing techniques involved in the field of retinal image analysis.  The extraction 

of information/features has also been documented in detail.  However, machine 

learning techniques that the features were used by have only been mentioned in 

passing.  Therefore, this section will provide a brief overview of the main machine 

learning techniques used within this field.  Just for clarity, we shall start with a basic 

definition of machine learning. 

Machine learning is the construction and study of computer systems that can learn 

from data, and therefore act without explicitly programmed instructions.  There are 

several different categories of machine learning, including (but not limited to) 

supervised learning and unsupervised learning.  Classification is considered an 

instance of supervised learning, in which prior labelling information (achieved 

through training) is exploited to classify objects into known class labels.  The 

corresponding unsupervised procedure is known as clustering, in which no class 

labels and no training data is provided.  The goal of clustering is to unravel underlying 

similarities and group together similar objects.   

A brief description of several machine learning techniques used in the field of retinal 

image analysis is given below.  This includes the supervised learning techniques of the 

nearest neighbour classifier, the Bayes classifier, artificial neural networks and 

support vector machines, as well as the unsupervised learning technique of 

clustering. 

Nearest Neighbour Classifier [106]:  This is one of the simplest machine learning 

procedures that can be used for classification.  It classifies an object based on the 

class of its nearest neighbour within the vector space defined by the features.  A 

variant of the nearest neighbour algorithm is the k-nearest neighbour, where instead 

of finding just one nearest neighbour, k neighbours are found.  The majority class of 

these k nearest neighbours is the class label assigned to the object.   

http://en.wikipedia.org/wiki/Supervised_learning
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The Bayes classifier:  This uses the concept of probability to class objects.  The 

classifier employs the posterior probabilities to assign the class label to an object.  

These probabilities are calculated by employing the Bayes theorem [107] which 

involves the use of prior probability and conditional probability.  The naive Bayes 

classifier [108] simplifies matters by assuming the effect of a feature value on a given 

class is independent of the value of all other features in the feature vector.  

Artificial neural networks [109]:  This performs classification using networks of 

neurons based on the neural structure of the brain.  Neurons are also known as 

nodes.  The input to a node is weighted and summed and if this aggregate exceeds a 

threshold, the node outputs a signal which is sent as inputs to the next layer of nodes 

in the network.  The progression of signals throughout the network leads to an 

output which assigns the object a class label.  Training data is used to set the weights 

of the network. 

Support Vector Machines [110]:  Classification is performed by seeking a linear 

decision plane (hyperplane) that separates and creates the largest margin between 

two classes of objects.  If the classes are not linearly separable the data is mapped 

into a higher dimensional space, where the separating linear decision surface exists 

and it is determined.  The mapping is performed using a mathematical construction 

known as the kernel trick.  There exist numerous different kernel functions and the 

selection of the most appropriate is important in order to maximise performance. 

Clustering [111]:  This is the task of grouping together similar objects, such that 

objects in the same group are more similar to each other than to those in other 

groups.  Similarity is defined by the distance to the cluster centres in the vector space 

defined by the features.  The procedure is an iterative process, where it often starts 

with an initial guess for cluster centres, and the centres of clusters get updated as 

objects are removed or added to them.  Fuzzy C-means clustering is one of the more 

popular clustering algorithms.  It is an overlapping clustering algorithm, where 

objects are grouped into a predefined number of clusters and can belong to every 

cluster to a certain degree (soft partitioning).  



 

69 
 

Table 2.6:  The usage of machine learning techniques by articles reviewed in this chapter.   

 
Nearest 

Neighbour 
Classifier 

Bayes 
Classifier 

Artificial 
Neural 

Networks 

Support 
Vector 

Machines 
Clustering 

Vessels [36] [37] [34] [40] [38] [41] [42] 

Microaneurysms 
and 

haemorrhages 
[20] [61] [57]   

Exudates [68]   [66] [64] [65] 

New vessels [79] [78] [76] [94] [95] [96] 
[72] [73] [74] 
[90] [92] [97] 

[87] [97] 

 

The choice of which machine learning technique to use is a critical step in the 

development of detection algorithms.  Each technique has positives and negatives, 

and no one technique can be deemed to be superior in all cases.  In terms of accuracy 

the support vector machines generally outperform the rest, followed by artificial 

neural networks.  These two techniques also tend to be better at dealing with larger 

multi-dimensional feature vectors.  The Bayes classifier and nearest neighbour 

classifier are better at dealing with the danger of overfitting.  The Bayes classifier has 

an advantage in interpretability, as the acquired knowledge is transparent, whereas 

the nearest neighbour classifier, support vector machines and artificial neural 

networks are considered to be black boxes, as the acquired knowledge cannot be 

read in a comprehensible way.  A comparison of machine learning algorithms is 

provided by Kotsiantis [112]. 

Table 2.6 provides a summary of the five main machine learning technique used by 

articles reviewed in this chapter.  There are some methodologies that use more than 

one technique: Priya [97] uses fuzzy C-means clustering for vessel segmentation 

followed by support vector machines to classify the stage of DR.  There are also 

methodologies (not listed in table 2.6) that use manually derived classification: 

Spencer [19] uses such an approach for the detection of microaneurysms and Hassan 

[70] does so for the detection of new vessels.  Another approach which doesn’t fall 
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into the main categories of table 2.6 is the use of an ensemble classifier of boosted 

and bagged decision trees for the segmentation of vessels [39]. 

Support vector machines are the newest supervised machine learning technique 

[110] and have been gaining popularity due to their promising performance.  Aside 

from the qualities mentioned above, they have the ability to generate a good 

performance even with a small training set and they possess flexibility in modelling 

diverse sources of data.  Sopharak [66] demonstrated that the support vector 

machine classifier outperformed the naive Bayes classifier and the nearest neighbour 

classifier for the detection of exudates.  Table 2.6 shows the support vector machine 

to be the most popular technique for the detection of new vessels. 

 

2.6 Discussion and Conclusion 

This chapter provides a survey of the current retinal image analysis methods 

developed for the automated detection of diabetic retinopathy.  Vessel 

segmentation, as well as microaneurysm, haemorrhage and exudate detection are 

mature research fields.  In contrast, little work has done to detect PDR despite its 

clinical importance. 

The two main categories of PDR (new vessel) detection are segmented vessel map 

analysis and texture analysis, the former being the more popular, consisting of more 

published articles.  The former required PDR vessel segmentation as an early step.  

However, this can be a very problematic task due to the tortuous and irregular nature 

of new vessels and requires more attention from the research community.  Another 

significant problem with vessel segmentation are false positives caused by 

pathological lesions and camera artefacts.  Following segmentation, the vascular map 

was analysed using mainly morphological based features along with intensity and 

gradient based features.  Goatman [72] provided a comprehensive set of 15 features 

which were often reused by other articles.  Aside from these features, the fractal 
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dimension is a measure that has received some attention in describing the 

morphology of the vascular map in order to detect new vessels. 

Texture analysis benefits from not requiring vessel segmentation and hence does not 

have to deal with difficulties associated with it for new vessel detection.  These 

methods were mainly based on the use of the grey level co-occurrence matrix 

(GLCM) for statistical texture analysis or amplitude modulation frequency modulation 

(AM-FM) for spectral texture analysis.  Textural information can often be difficult to 

extract due to the lack of distinction that new vessels can exhibit.  

From tables 2.3-2.4 and figure 2.3 the methodologies by Akram [76,77], Vatanparast 

[90] and Lee [91] appear to be superior in performance in terms of achieving 

operating points with reasonably high sensitivities and specificities.  However, with 

no standard database for PDR detection evaluation, comparisons in performance can 

be difficult to make.  Therefore, progress in this field would benefit from a publicly 

available PDR database.  A range of machine learning techniques have been applied 

in the field of retinal image analysis, and table 2.6 shows that support vector 

machines is the most used technique for the detection of new vessels. 
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3 PROLIFERATIVE DIABETIC RETINOPATHY DETECTION USING A 

MODIFIED LINE OPERATOR AND DUAL SVM CLASSIFICATION 

 

This chapter describes an automated method for the detection of new vessels in 

retinal images.  Two vessel segmentation approaches were applied, using the 

standard line operator and a novel modified line operator.  The latter, based on 

double sided thresholding, was designed to reduce false responses to non-vessel 

edges.  Both generated binary vessel maps held vital information and were processed 

separately.  This was achieved with a dual classification system, which is novel to 

retinal image analysis.  Local morphology features were measured from each binary 

vessel map to produce two separate feature sets.  Independent classification was 

performed for each feature set using a support vector machine (SVM) classifier.  The 

system then combines these individual classification outcomes to produce a final 

decision.   

The main purpose of the novel application of using two segmentation approaches 

and dual classification in retinal image analysis is to detect new vessels whilst 

reducing false responses caused by other common retinal features. 

Work from this chapter was used to create the publication [113].  Results from this 

chapter do not correspond exactly to those reported in [113] due to a few alterations 

and additions to the methodology. 

 

 

CHAPTER 
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3.1 Methodology  

The proposed system was adapted from the general approach of the use of vessel 

segmentation followed by analysis of the segmented vessel map to detect new 

vessels as documented in the literature review (section 2.4.2). 

Extensive experimentation was undertaken in deriving the parameters and 

thresholds listed throughout the methodology.  These were empirically derived by 

means of visual inspection.  These parameters are relative to a retinal image size of 

1479 x 1479 pixels.   

 

3.1.1 Framework 

The architecture of this system is shown is figure 3.1.  Initial steps included spatial 

normalization to ensure the system’s robustness with respect to image resolution 

and pre-processing to enhance the vasculature.  Thereafter the system splits into two 

pathways for the two different vessel segmentation methods.  Straight vessel 

removal was applied to remove large sections of normal vasculature.  Structural 

analysis was applied to the resultant where local features associated with the 

morphology of the vasculature were measured.  Each pathway had its own feature 

set produced, using the same set of local features.  Independent classification was 

performed for each feature set using a linear support vector machine.  The system 

produced a final decision by combining the two individual classification outcomes in 

which regions of the retina were labelled as new vessels or non-new vessels.   
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Figure 3.1: System architecture. 

 

3.1.2 Pre-processing 

Retinal images often show light variations, poor contrast and noise.  This, along with 

the fact that new vessels tend to lack distinction meant that pre-processing was 

required.  The green channel exhibits the best vessel/background contrast while the 

red and blue tend to be very noisy.  Therefore the inverted green colour channel was 

used, where vessels appear brighter than the background.  A median filter with a 

kernel size of 3 x 3 pixels was applied to reduce salt and pepper noise.  Local contrast 

enhancement was achieved by applying contrast limited adaptive histogram 

equalisation (CLAHE) [21].  Shade correction was performed by subtracting an image 

approximating the background.  This approximation was obtained by applying a 

median filter with a 105 x 105 pixel size kernel.  This large size was chosen to ensure 

new vessel regions, as well as general structures, were preserved.  A morphological 

top-hat transformation was used to produce an image containing small circular 
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objects (microaneurysms) [19] which were then subtracted from the image.  The 

result of pre-processing is shown in figure 3.2.  Figure 3.3 draws attention to the new 

vessel regions within the pre-processed image from the previous figure. 

 

 

 

 

 

 

 

Figure 3.2: (A) Original image.  (B) Pre-processed image.   

 

 

 

 

 

 

 

 

 

Figure 3.3: Magnified new vessel regions from a pre-processed image (inverted back for 
better visualization). 

(A) (B) 
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3.1.3 Line Operator /Modified Line Operator 

The detection of linear structures has become a topic of significant importance in 

medical image analysis mainly due to the fact that vessels can be approximated as 

being piecewise linear.  Ricci [38] applied line operators to detect linear structures in 

retinal images having been inspired by a method [114] which applied a line operator 

to detect linear structures in mammographic images. 

 

Figure 3.4: Standard line operator at 3 different orientations. 

The standard line operator is illustrated in figure 3.4.  The average grey-level of the 

pixels lying on a line passing through the target pixel (𝑖, 𝑗) was calculated for multiple 

orientations.  The orientation giving the largest value was found and its value was 

denoted with 𝑳(𝑖, 𝑗).  The line strength of the pixel, 𝑺𝟏(𝑖, 𝑗),  is given by  

 𝑺𝟏(𝑖, 𝑗) = 𝑳(𝑖, 𝑗) − 𝑵(𝑖, 𝑗) (3.1) 

   

where 𝑵(𝑖, 𝑗) is the average grey-level of the similarly orientated neighbourhood.  

Conversely to [38], the whole of the line operator window was orientated as opposed 

to keeping a fixed window and orientating only the line.  At certain orientations, the 

line’s path could not be exactly matched by the pixel grid, thus line and region 

averages were found by interpolation.  Nearest neighbour interpolation was 

preferred due to its simplicity. 

The line strength was large if the winning line was aligned with a vessel.  In figure 

3.5(E)-(H), the line strength images corresponding to the images in figure 3.5(A)-(D) 
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are shown.  The line operator parameters of length 15 pixels and width 25 pixels 

were empirically derived to ensure an adequate response to new vessels was 

achieved (see appendix I).  The line operator was applied over 12 different 

orientations (angular resolution of 15ᵒ).  The square dimensions of the line operator 

from [38] did not have to be adhered to, the operator width was selected in 

accordance to vessel width and the operator length was selected to be relatively 

short as new vessels tend to be tortuous.  An empirically derived threshold, T1, was 

applied to the line strength image to produce segmentation of the vessels.  T1 was 

chosen to be relatively low to ensure that faint and obscure new vessel segments 

were retained.  Figure 3.5(I)-(L) shows the binary vessel maps corresponding to the 

images in figure 3.5(A)-(D).  The new vessels have been segmented with reasonable 

accuracy, thus meaning their properties could be adequately analysed.  Considering 

some simple properties of new vessels such as high local density and large 

curvatures, it is evident from figure 3.5 that new vessels were distinguishable from 

normal vasculature.  

A well-documented problem of vessel segmentation is that they respond not only to 

vessels but also to non-vessel edges.  Bright lesions cause the most misclassifications.  

Areas of glare or reflection artefact, which are common on retinal images of younger 

individuals, also cause false responses.  Figure 3.5(G)-(H) illustrates the strong line 

strength response to vessels as well as the edges of the bright lesions and figure 

3.5(K)-(L) shows that after thresholding both the vessels and the edges of the bright 

lesions were detected.  These false detections caused large local densities and large 

curvatures which were indistinguishable from new vessels. 
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Figure 3.5: (A)-(D) Original images.  (A) Retinal image with new vessels.  (B) New vessels, 
zoom-in image of (A).  (C) Retinal image with bright lesions.  (D) Bright lesions, zoom-in image 

of (C).  (E)-(H) Line strength maps corresponding to (A)-(D).  (I)-(L) Binary vessel maps 
corresponding to (A)-(D), standard line operator.  

 

A novel modified line operator was developed to reduce the false responses to non-

vessel edges, inspired by L.Zhang [27] where a matched filter with double sided 

thresholding was proposed.  Three modified line strength measures were derived,  

 𝑺𝟐(𝑖, 𝑗) = 𝑳(𝑖, 𝑗) − 𝑵𝑹(𝑖, 𝑗) (3.2) 

 𝑺𝟑(𝑖, 𝑗) = 𝑳(𝑖, 𝑗) − 𝑵𝑳(𝑖, 𝑗) (3.3) 

 𝑺𝟒(𝑖, 𝑗) = 𝑳(𝑖, 𝑗) − 𝑵𝑩(𝑖, 𝑗) (3.4) 

 

where 𝑵𝑹(𝑖, 𝑗) is the average grey-level of just the right side of the similarly 

orientated neighbourhood, 𝑵𝑳(𝑖, 𝑗) is the average grey-level of just the  left side of 

the similarly orientated neighbourhood and 𝑵𝑩(𝑖, 𝑗) is the median value of a large 

neighbourhood (not orientated).  Figure 3.6 illustrates these three measures.  The 

(E) (F) (G) (H) 

(I) (J) (K) 

(L) 

(A) (B) (C) (D) 
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operator parameters of length and width remained unchanged, the size of the large 

neighbourhood was set to 151 x 151 pixels.  An empirically derived threshold, T2, was 

applied to all 3 modified line strength measures and followed by the logical AND 

operator to define the pixel as a vessel. 

 

 

 

 

 

 

 

 

 

Figure 3.6: Modified line operator.  (A) Average grey-level of the right side, 𝑵𝑹(𝑖, 𝑗).  (B) 

Average grey-level of the left side, 𝑵𝑳(𝑖, 𝑗).  (C) Median value of a large neighbourhood, 

𝑵𝑩(𝑖, 𝑗). 

To simplify the explanation of the modifications, figure 3.7 shows a 1D cross section 

of a vessel (left of the trace) and a bright lesion (right of the trace) from a pre-

processed image.  The thresholding of the line strength done in the standard line 

operator approach was simply stating that 𝑳(𝑖, 𝑗) must be a value T1 greater than the 

grey-level average of the similarly orientated neighbourhood.  Looking at the trace it 

is clear that the vessel points are significantly greater than its local neighbourhood.  

Unfortunately, this is also this case for the edges of the bright lesion due to the large 

dip in value caused by the bright lesion.  This was the cause of the false responses 

from the standard approach.  The trace shows that the difference between the two 

cases is that vessels are significantly greater than their local neighbourhood on both 

sides, unlike non-vessel edges.  The first modification was that now 𝑳(𝑖, 𝑗) was 

(C) (B) 

(A) 
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required to be a value of T2 greater than the grey-level average of both the right and 

the left side of the similarly orientated neighbourhood, which rectified this problem.  

However, consider two bright lesions in close proximity.  The space in-between them 

is significantly greater than both sides.  We could distinguish this case by the fact that 

the pixel value of these points are likely to be similar to that of the retinal 

background.  The median value of a large neighbourhood was used to calculate the 

retinal background value.  Therefore the next modification was that 𝑳(𝑖, 𝑗) was 

required to be a value of T2 greater than the local retinal background value. 

 

 

 

 

 

 

 

 

 

Figure 3.7: Cross section of a vessel and a bright lesion. 

The binary vessel maps generated by the modified line operator approach are shown 

in figure 3.8.  The false responses caused by non-vessel edges were now significantly 

reduced to the extent that non vessel edges were distinguishable from new vessels. 

Unfortunately the segmentation of new vessel had become slightly degraded.  This is 

a trait of all vessel segmentation techniques: the more emphasis put on the reduction 

of non-vessel responses, the greater the risk of damage to the segmentation of the 

vessels.  This meant that new vessels were no longer so distinguishable from the 

normal vasculature.  
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Figure 3.8: Binary vessel maps corresponding to the images in figure 3.5(A)-(D), modified line 
operator. 

Both of the segmentation methods showed disadvantages and therefore neither 

method alone was suitable for the detection of new vessels.  However, each of the 

produced binary maps held vital information.  The standard approach provided the 

information to distinguish new vessel from normal vasculature and the modified 

approach provided information to distinguish new vessels from non-vessel edges.  

Extraction of information from both maps could be used effectively to detect new 

vessels, and therefore both segmentation methods were applied.  Further examples 

of the results from both segmentation methods are provided in figure 3.9.  

The segmented results shown in the figures so far also included an additional step to 

remove any falsely detected microaneurysms and haemorrhages, known as dark 

lesions.  The line operator parameters and the low threshold that were selected to 

ensure increased sensitivity to new vessels also caused an increased sensitivity to red 

lesions.  A simple measure of circularity (see equation 3.5) and area from the objects 

in the binary vessel map was used to distinguish dark lesions and other spurious 

objects in order to remove them. 

 

 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 4𝜋. 𝑎𝑟𝑒𝑎/𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2 (3.5) 
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Figure 3.9: (A) Normal vessels.  (B) New vessels.  (C) Exudates.  (D) Reflection artefacts.  (E)-

(H) Binary vessel map of (A)-(D) using the standard line operator.  (I)-(L) Binary vessel map of 

(A)-(D) using the modified line operator. 

 

3.1.4 Straight Vessel Removal 

Many sections of the normal vasculature possess high local densities, which occur at 

or near the optic disc, at bifurcation points and at crossover points (see figure 3.10).  

Therefore the claim that, from the binary vessel map, new vessels could be 

distinguished from the normal vasculature was only possible if large sections of the 

normal vasculature were first removed.  This was done using a novel technique 

proposed by Welikala [79], which involves the segmentation of the straight vessels.  

The standard line operator was applied as before, but the operator length was 

increased to an empirically derived length of 81 pixels (see appendix I).  The operator 

was no longer sensitive to the tortuous vessels and was instead only sensitive to 
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relatively straight vessels.  An empirically derived threshold, T3, was applied and the 

resultant straight vessel maps are shown figure 3.11(C)-(D). 

 

 

 

 

 

 

Figure 3.10: Segmented normal vasculature with high local densities.  (A) Optic disc.  (B)-(C) 
Bifurcation points and crossover points. 

 

The binary vessel maps from the standard and modified approach (from section 

3.1.3) were both skeletonised by means of morphological thinning, to ensure they 

were thinner than the straight vessel map.  Following this the straight vessel map was 

subtracted from each.  The following sections will describe how the binary vessel 

maps, which now contained only partial vasculature, were assessed for new vessels. 
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Figure 3.11: (A)-(B) Vessel maps created using the standard line operator with a length of 15 
pixels.  (C)-(D) Straight vessel maps corresponding to (A)-(B), created using standard line 

operator with a length of 81 pixels. 

 

3.1.5 Feature Extraction 

The design of this method is aimed at the classification of image regions that contain 

new vessels.  These image regions can be described as containing many vessel 

segments, which are closely spaced, appear in multiple orientations and possess a 

tortuous nature.  There was no intention in this work to identify individual new vessel 

pixels or segments.   

(B)

(C) (D)

(A)
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The binary vessel maps were converted into vessel segments prior to measurements 

of features.  The vasculature was a single pixel in thickness as skeletonization had 

been performed in the previous stage.  Vessel segments were created by removing 

bifurcation points which were pixels with more than two eight-way neighbours.  

Finally, small segments consisting of fewer than ten pixels were discarded. 

A sub-window of size 151 x 151 pixels was created in order to calculate local features 

associated with the morphology of the vasculature.  This sub-window was scanned 

through the image and at increments of 20 pixels (reduces overlapping), candidate 

pixels were selected.  At each candidate pixel position four features were calculated.  

The same set of features was measured from the binary vessel map from each of the 

standard and modified approaches to produce two separate feature sets for each 

candidate pixel. 

The description of the features is listed below.  The equations for these features are 

detailed in chapter 4, section 4.1.1.  The term segment refers to the skeletonised 

vessel segments.  All segments were labelled. 

1) Number of vessel pixels 

The sum of all segment pixels within the sub-window. 

2) Number of vessel segments 

The number of whole and partially included segments within the sub-window. 

3) Number of vessel orientations 

The end points of a segment were connected by a straight line.  The angle the 

line made with the x-axis that fell within the range -90ᵒ to 90ᵒ of the unit 

circle was calculated.  The calculated angle was accordingly dropped into one 

of eight bins, each representing a range of angles.  This was done for each 

segment within the sub-window and the number of non-empty bins 

represented the number of orientations. 
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4) Vessel density mean 

A segment was dilated with a disk structuring element with a radius of 20 

pixels.  The number of pixels from all segments within the dilated area was 

divided by the number of pixels within the segment to give its vessel density.  

This was done for each segment within the sub-window and the mean vessel 

density was calculated.   

 

3.1.6 Dual SVM Classification 

The conventional approach for classification is an individual classifier that uses a 

single feature set.  Ensemble based systems combine multiple classifiers in order to 

enhance the performance of the individual classifier.  Fraz [39] described a multiple 

classifier approach using bagging and boosting techniques, which used a single 

feature set.  Of more relevance to this work are the multiple classifier approaches 

that use multiple feature sets.  Polikar [115] describes an overview of multiple 

classifier systems.  This includes data fusion where the nature of features are 

different (heterogeneous features).  Therefore the features are separately grouped 

and separately classified, followed by the combination of the outcomes.  Chim [116] 

proposed a dual classification system that used two different feature sets.  The 

features could have been combined to produce a single feature set, but to achieve a 

better performance they were kept separate and independent classifications were 

performed which were then combined to produce a final decision.  

The proposed methodology adopted a dual classification approach.  All features were 

normalised so that each feature had zero mean and unit standard deviation.  

Independent classification was performed for each of the two feature sets using a 

support vector machine (SVM) classifier [110,117].  The optimal SVM kernel and 

parameters were determined by a cross-validation grid search, with the kernel types 

of linear, Gaussian radial basis function and polynomial being tested.  Each classifier 

independently labelled the candidate pixel as new vessels or non-new vessels.  The 

system produced a final decision by combining the outcomes.  The candidate pixel 
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achieved a new vessel label only when both classifications agreed on its identity 

being new vessels; otherwise it achieved a non-new vessel label.  When complete, all 

candidate pixels labelled as new vessels were morphologically dilated with a 

structuring element the size of the sub-window (used in feature extraction) to 

illustrate the new vessel regions. 

Whilst only two classes were used, new vessels and non-new vessels, both feature 

sets and their independent classification were not intended to distinguish the same 

two cases.  Classifier 1, associated with the feature set measured from the standard 

line operator approach, was intended to distinguish new vessels from normal vessels.  

Classifier 2, associated with the feature set measured from the modified line 

operator approach, was intended to distinguish new vessels from 

exudates/reflections.  Combining the outcomes then removed the false new vessel 

responses that each classifier made. 

Consider that there are three classes, new vessels, normal vessels and 

exudates/reflections.  Hence, a one-versus-one multiclass SVM has similarities to our 

approach as it is based on independent classifications between each of the classes.  

However, it would be disadvantaged as each classification would be made within a 

combined single feature space, whereas the dual approach used only the features 

relevant to each classification. 

To validate our dual classification system its performance was compared to the 

performance from a single SVM classification and a one-versus-one multiclass SVM 

classification.  Note that for both of these approaches the two feature sets have been 

combined to create a single feature set. 

SVM classification was adopted in this project as it is a state-of-the art method which 

is reported to possess a good generalization performance even with a small training 

set, has the ability to deal with high dimensional data and the flexibility in modelling 

diverse sources of data [117].  Section 2.5 states how SVM classification has gained in 

popularity due to its high performance accuracy and it has become the most popular 

technique for new vessel detection.  
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We end this subsection by briefly touching on the main principle of SVM 

classification.  SVMs seek a linear decision surface (hyperplane) that can separate 

classes of objects (solid red line in figure 3.12).  In a d-dimensional space, the 

hyperplane can be represented by 

 𝑤⃗⃗ ∙ 𝑥 + 𝑏 = 0 (3.6) 

were 𝑥  and 𝑤⃗⃗  are d-dimensional vectors,  𝑥  is the feature vector, 𝑤⃗⃗  is a weight vector 

and 𝑏 is a scalar.  Two classes are linearly separable if we can find 𝑤⃗⃗  and 𝑏 such that 

 𝑤⃗⃗ ∙ 𝑥 + 𝑏 > 0 (3.7) 

for all objects belonging to one class 

 𝑤⃗⃗ ∙ 𝑥 + 𝑏 < 0 (3.8) 

for all objects belonging to the other class. 

An infinite number of such hyperplanes may exist.  SVMs find the hyperplane that 

maximizes the distance (gap or margin) between the border-line objects (that are 

also called support vectors).  The two hyperplanes that pass through the support 

vectors (dashed black lines in figure 3.12) are parallel to 𝑤⃗⃗ ∙ 𝑥 + 𝑏 = 0, and therefore 

they will only differ in the scalar 𝑏 value.  After rescaling 𝑤⃗⃗  and 𝑏 by the same factor, 

the two hyperplanes are given by equations of the form  

 𝑤⃗⃗ ∙ 𝑥 + (𝑏 − 1) = 0 (3.9) 

 𝑤⃗⃗ ∙ 𝑥 + (𝑏 + 1) = 0 (3.10) 

 

Or equivalently 

 𝑤⃗⃗ ∙ 𝑥 + 𝑏 = +1 (3.11) 

 𝑤⃗⃗ ∙ 𝑥 + 𝑏 = −1 (3.12) 

   

and the distance (𝐷) between these two planes is given by formula in equation 3.13.  

Full details on how this is derived are provided by [118].  

 𝐷 = |𝑏1 − 𝑏2|/‖𝑤⃗⃗ ‖ (3.13) 
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Therefore 

 𝐷 = 2/‖𝑤⃗⃗ ‖ (3.14) 

Since we want to maximize the gap between the two planes, we want to 

minimize‖𝑤‖.  This is an optimization problem.   

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Illustration of SVMs.  Linear decision surface that can separate the two classes 
and has the largest gap between border-line objects.  Image adapted from [118]. 

 

If the classes are not linearly separable the SVM maps the data into a higher 

dimensional space known as the feature space, where the separating linear decision 

surface exists and it is determined (see figure 3.13).  The feature space results from a 

mathematical construction known as the kernel trick.  There are numerous different 

kernel functions.  Besides the standard linear kernel, the most popular kernel 

functions are Gaussian radial basis function kernel (rbf) and the polynomial kernel.  

The majority of kernels possess parameters which need to be selected.  Another 

parameter associated with SVMs is the soft margin parameter C to deal with noisy 

measurements and outliers.  Therefore, the effectiveness of SVMs depends on the 

𝑤⃗⃗ ∙ 𝑥 + 𝑏 = −1 
𝑤⃗⃗ ∙ 𝑥 + 𝑏 = 0 

𝑤⃗⃗ ∙ 𝑥 + 𝑏 = +1 

𝑥2 

𝑥1 
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selection of the kernel function, the kernel’s parameters and the soft margin 

parameter.  A grid search is the conventional approach for selecting the optimal SVM 

parameters, and as stated above this was used in our proposed method. 

 

 

 

 

 

 

 

Figure 3.13: Illustration of SVMs.  The kernel trick maps data into a higher 
dimensional space where a separating decision surface is found.  Images adapted 

from [118]. 

 

3.2 Experimental Evaluation 

3.2.1 Materials 

Due to the low prevalence of new vessels in the screening population, the proposed 

method was evaluated using images collected from two sources (public and local).  

These were the publicly available MESSIDOR retinal image database, provided by the 

Messidor program partners [16], and the St Thomas’ Hospital Ophthalmology 

Department.  A total of 60 images (see appendix II) were included in the dataset: 20 

with confirmed new vessels and a further 40 images without new vessels.  The image 

data from each source were as follows: 

1) MESSIDOR:  5 new vessel images, 20 normal images and 20 images with the 

large majority showing other DR pathology (mainly bright lesions) and the 

remainder showing strong reflection artefacts.  These images were acquired 

𝑥2 

𝑥1 

Decision surface 

kernel 
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from a colour video 3CCD camera on a Topcon TRC NW6 fundus camera with 

a 45 degree field of view (FOV) and an image resolution of 2240 x 1488 pixels. 

2) St Thomas’ Hospital:  15 new vessel images acquired with a Nikon D80 digital 

SLR camera on a Topcon TRC NW6 fundus camera with a 45 degree FOV and 

an image resolution of 2896 x 1944 pixels.  Ethical approval was obtained for 

the use of these images. 

Images were scaled to the same size using a spatial normalization technique 

proposed by [119] along with bicubic interpolation and anti-aliasing.  This was based 

on normalizing the FOV width, with the requirement that all images were captured 

with the same FOV angle.  All images were normalized to have a FOV width of 1379 

pixels.  This was followed by cropping to remove some of the surrounding black 

border to produce images of size 1479 x 1479 pixels. 

For training data, a specific selection of pixels was chosen from the dataset.  It can be 

convenient to refer to a pixel as an image patch, considering features were extracted 

using information from the local neighbourhood contained within the sub-window 

centred over the target pixel.  These image patches were labelled as either new 

vessels or non-new vessels by an ophthalmologist.  Separate training data was used 

for each classifier.  Classifier 1 was trained with 50 new vessel patches and 50 normal 

vessel patches.  Classifier 2 was trained with 50 new vessel patches and 50 patches 

made up of a variety of bright lesions, dark lesions and reflection artefacts.  Note that 

each new vessel patch correlated to a pixel selected in the centre of a new vessel 

region. 

Testing was performed across the whole of each retinal image, in terms of the 

classification process being performed at every candidate pixel location (increments 

of 20 pixels).  Because of the limited size of the dataset, splitting the data set to 

create separate training and testing sets was not suitable.  Instead, both the training 

and testing sets were created using the same selection of images (entire dataset).  

Evaluation in this manner would clearly cause over fitting of the model, and therefore 

the leave-one-out cross validation method [120] was applied.  This meant the 

classifiers were trained using all the selected patches from all the images except 
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those from the single test image, and this process was repeated for each image.  The 

feature value normalization was also recalculated each time, leaving out the test 

image. 

As mentioned above, the system made decisions on a pixel basis using information 

extracted from the local neighbourhood.  Therefore, in order to visualise these local 

neighbourhoods, all positive candidate pixels were then morphologically dilated with 

a structuring element the size of the sub-window used in feature extraction.  This 

resulted in the delineation of the new vessel regions.  This procedure is illustrated in 

figure 3.14.  However, the performance from a per image basis is more useful from a 

clinical point of view.  An image simply achieved a new vessel label if it contained any 

delineated regions.  Prior to this, all images had been labelled by an ophthalmologist 

using the same labels as before (new vessels and non-new vessels) but on a per 

image basis.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: (A) Positive candidate pixels marked in red, not visible without zoom.  (B)  Zoom-
in region of (A), each positive candidate pixels is indicated with a circle (for the purpose of 

visualization in this figure only).  (C) Positive candidate pixels are dilated with a square 

(A) (B) 

(C) (D) 
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structuring element of size 151 x 151.  Only the outline of the delineated region is retained.  
(D) Zoom-in region of (C). 

 

To get a more detailed insight into the system’s performance the obvious choice 

would be to also evaluate the performance of the delineation of new vessel regions.  

This involves assessing the outcome for every candidate pixel across all images.  

However, the performance of delineation was not evaluated and the reason why 

shall be discussed in section 3.3.  Instead, an alternative evaluation was achieved by 

performing testing on the selection of pixels used for training using the leave-one-out 

cross validation method.  A few additional pixels from outside the training data were 

also tested.  As stated above a pixel can be referred to by the term patch.  Therefore, 

we refer to this assessment as evaluation on a per patch basis. 

 

3.2.2 Performance Measures 

As mentioned above, the performance was separately assessed on a per image and 

per patch basis.  Any image or patch was classified as either new vessels or non-new 

vessels.  Consequently there are four outcomes, two classifications and two 

misclassifications which are defined in table 3.1(A).  The algorithm was evaluated in 

terms of sensitivity (SN), specificity (SP) and accuracy (Acc).  These are often used in 

machine learning and are measures of the quality of binary classification.  These 

metrics are defined in table 3.1(B). 

Table 3.1:  (A) New vessel classification.  (B) Performance measures for new vessel detection. 

 

 

Measure Description 

SN TP/(TP+FN) 

SP TN/(TN+FP) 

Acc (TP+TN)/(TP+FP+TN+FN) 

 New vessels 

present 

New vessels 

absent 

New vessels 

detected 

True positive 

(TP) 

False positive 

(FP) 

New vessels 

not detected 

False negative 

(FN) 

True negative 

(TN) 

(A) (B) 
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The use of the receiver operating characteristic (ROC) curve allows for the 

visualization of the performance of a binary classifier system, expressing the trade-off 

between increased detection and false alarms.  This was created by plotting the true 

positive rate (SN) versus the false positive rate (1-SP) at various threshold levels of 

the probability score of the classifier.  The SVM calculated a new vessel probability 

score using the distance to the decision boundary. 

With a dual classifier approach and therefore two probability scores, the creation of 

ROC curves was not a straight-forward task.  This problem was tackled by creating a 

3D ROC surface.  The majority of the literature relating to higher dimensional ROC 

analysis relates to multi-class analysis [121,122] and are not closely related to our 

work.  Of more relevance are studies that add a third axis which represents varying 

the threshold of an additional parameter [123].  To the best of our knowledge, there 

appears to be no available literature concerning ROC analysis for dual classifiers.   

The addition of a third axis to the conventional 2D ROC plot accommodates for 

varying the threshold of the probability score of the additional classifier that arises in 

the dual classification approach.  The resultant was a 3D ROC surface that explored all 

combinations of thresholds for the dual classification.  Figure 3.15 shows the 3D ROC 

surface representing performance of the proposed method on both a per image and 

per patch basis.   
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Figure 3.15: 3D ROC surfaces.  (A) Performance on a per image basis.  (B) Performance on a 
per patch basis.  The third axis is required to vary the threshold of the probability score of the 

additional classifier that arises in a dual classification approach. 

 

Information from this 3D ROC surface was extracted to create a 2D ROC curve.  For 

each false positive rate value its maximum true positive rate value was found by 

searching along the third axis of the 3D ROC surface.  From the 2D plot generated, 

the area under the curve (AUC) was extracted and used as a performance measure. 

The operating point that achieved the highest accuracy (known as maximum Acc) 

from ROC curve was selected as the optimal operating point.  However, this was only 

the case for per patch assessment.  For per image assessment it was evident that the 

algorithm could reach a sensitivity of 100% at a high specificity. This was important as 

from a clinical point of view a sensitivity of 100% was considered an essential 

requirement from a per image basis.  Maximum accuracy may not always equate to 

an operating point with a sensitivity of 100%.  Therefore an application specific 

performance measure was created for the per image basis, in which the operating 

point with the highest specificity at a sensitivity of 100% was selected as the optimal 

operating point. 

 

 

(A) (B) 
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3.2.3 Results 

The ROC curves for performance of the proposed method on a per image and per 

patch basis are depicted in figures 3.16(A)-(B).  The AUC value for the per image basis 

is 0.9693.  The optimal operating point according to the application specific 

performance measure is a sensitivity of 100.00% and a specificity of 92.50%.  For a 

per patch basis the AUC value is 0.9616.  The operating point with maximum accuracy 

of 92.35% gives a sensitivity of 87.93% and a specificity of 94.40%.  These results, 

along with the grid search determined optimal kernel and parameters, are presented in 

table 3.2.   

 

 

 

 

 

 

 

Figure 3.16:  ROC curves.  (A) Performance on a per image basis.  (B) Performance on a per 
patch basis. 

 

Table 3.2: Performance analysis of the proposed method. 

 

The performance of the proposed dual classification was assessed against single 

classification and multiclass classification, and the results are presented in table 3.3.  

Method Level SN SP Acc AUC Kernel Parameters 

Proposed 

Method  

Image 100.00 92.50 95.00 0.9693 Linear C=0.01 

Proposed 

Method  

Patch 87.93 94.40 92.35 0.9616 Linear C=1 

(A) (B) 
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The table also lists the SVM kernel type and SVM parameters selected to reach 

optimal performance for each classification method, determined using a grid search.  

The comparison of classification methods is assessed on a per image basis. 

 

Table 3.3: Comparison between single, multiclass and dual SVM classification on a per image 

basis. 

 Classification Method SN SP Kernel Parameters 

Single 100.00 87.50 Polynomial C=0.01, Order=2 

Multiclass 100.00 90.00 Linear C=0.01 

Dual 100.00 92.50 Linear C=0.01 

 

Examples of classified images are given in figure 3.18 and figure 3.19.  The number in 

the bottom right hand corner of the figures specifies the number of candidate pixels 

classified as new vessels.  For the purpose of visualisation, all positive pixels were 

then morphologically dilated with a structuring element the size of the sub-window 

used in feature extraction, and the resultant was the delineation of new vessel 

regions (indicated with a white boundary).  Images containing any candidate pixels 

classified as new vessels, and therefore any delineated regions are classified as new 

vessel images.  As stated earlier, the performance evaluation of delineation was not 

assessed.  However, figure 3.17 provides the manual delineation of new vessel 

regions marked by an ophthalmologist in order to allow for a visual comparison to 

the delineation shown in figure 3.18.  In addition to this, table 3.4 provides the 

number of candidate pixels classified as new vessels and the number of new vessel 

regions that have been successfully detected for each image in the dataset.  The 

image numbers in table 3.4 correspond to those listed in appendix II, in which images 

1-20 are PDR images and 21-40 are non-PDR images. 

Examples of classified patches are shown in figure 3.20.  This illustrates the 

classification performance on individual patches, which have later been assembled 

together to form a single image only for visualization purposes.  To elaborate, 



 

98 
 

patches on the left side of the white straight line represent new vessel patches and 

those on the right side represent non-new vessel patches.  White boxes indicate 

those patches that have been by classified with a new vessel label by the proposed 

method.  As stated previously, the term patch can be used to refer to a pixel.  

Therefore figure 3.20 essentially represents the classification of the central pixel of 

each image patch.   

Finally, table 3.5 restates the results along with the reported results from other new 

vessel detection methods.  Note that the performance on a per image basis is more 

useful from a clinical point of view.  

This methodology was implemented using Matlab R2013a on an Intel(R) core(TM)2 

Quad CPU Q9300 at 2.5 GHz. The Matlab Code took 450 seconds to process each 

image. 
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Figure 3.17:  Location and delineation of new vessel regions marked by an ophthalmologist. 

 

(A) (B) 

(C) (D) 

(E) (F) 
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Figure 3.18:  Results of the proposed system on a per image basis.  True positive images.                
(A)-(F) Corresponds to figures 3.17(A)-(F) respectively.   

 

(A)   61 (B)   60 

(C)   6 (D)   6 

(E)   57 (F) 147 
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Figure 3.19:  Results of the proposed system on a per image basis.  (A)-(F) True negative 
images.  (G)-(I) False positive images. 

 

 

 

 

 

(A)   0 (B)   0 (C)   0 

(D)   0 (E)   0 (F)   0 

(G)  12 (H) 253 (I)  50 
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Table 3.4: The number of candidate pixels classified as new vessels and the number of 
correctly detected new vessel regions during assessment on a per image basis. 

Image N0 Manually marked new 

vessel regions 

Candidate pixels classified as 

new vessels 

Correctly detected new 

vessel regions 

1 3 57 3 

2 4 155 4 

3 5 6 2 

4 7 314 4 

5 2 73 2 

6 3 140 1 

7 1 128 1 

8 2 61 2 

9 2 60 2 

10 3 34 1 

11 2 6 1 

12 5 234 3 

13 2 26 1 

14 2 77 2 

15 1 14 1 

16 3 167 2 

17 1 264 1 

18 3 212 2 

19 2 147 2 

20 3 172 2 

21 0 0 - 

22 0 0 - 

23 0 50 - 

24 0 0 - 

25 0 0 - 

26 0 0 - 

27 0 0 - 

28 0 0 - 

29 0 0 - 

30 0 0 - 

31 0 0 - 

32 0 0 - 

33 0 0 - 

34 0 0 - 

35 0 0 - 

36 0 0 - 

37 0 0 - 

38 0 0 - 

39 0 0 - 

40 0 0 - 

41 0 0 - 

42 0 0 - 

43 0 0 - 

44 0 0 - 

45 0 0 - 

46 0 0 - 

47 0 0 - 

48 0 0 - 

49 0 0 - 

50 0 0 - 

51 0 0 - 

52 0 0 - 

53 0 0 - 

54 0 0 - 

55 0 0 - 

56 0 253 - 

57 0 12 - 

58 0 0 - 

59 0 0 - 

60 0 0 - 
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Figure 3.20:  Results of the proposed system on a per patch basis.  (A) New vessel patches, 51 
TPs and 7 FNs out of 58 patches.  (B) Non-new vessel patches, 118 TNs and 7 FPs out of 125 
patches.  White boxes indicate patches classified with a new vessel label. 

 

Table 3.5: Reported results for new vessel detection methods. 

Algorithm                         SN  SP Acc AUC Level 

Hassan [70] 63.90 89.40 - 0.7045 Pixel 

Jelinek [71] 94.00 82.00 - 0.900 Image 

Goatman [72] 84.2 85.9 - 0.911 Image 

Arputham [73] 84.70 86.10 - - Image 

Pavai [74] 88.89 91.30 - - Image 

Akram [76] 98.93 96.35 - - Segment 

Akram [77] 98.00 97.00 98.00 0.980 Segment 

Akram [77]  96.00 94.00 95.00 - Image 

Saranya [78] 96.25 89.65 96.53 - Image 

Welikala [79] 100.00 70.00 - - Image 

Nithyaa [86] - - - 0.947 Image 

Agurto [87] 100.00 88.00 - 0.980 Image 

Agurto [88] 96.00 83.00 - 0.940 Image 

Vatanparast [90] 99.62 96.61 - - Patch 

Lee [91] 96.30 99.10 98.50 0.993 Image 

Proposed Method 100.00 92.50 95.00 0.9693 Image 

Proposed Method 87.93 94.40 92.35 0.9616 Patch 

(A) (B) 
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3.3 Discussion and Conclusion 

In this chapter we have presented an effective new vessel detection method based 

on a dual classification approach and a four-dimensional feature vector used to 

analyse the morphology of the local retinal vasculature. 

The main contribution of this method is the novel application of creating two 

different segmented vessel maps, along with a dual classification framework used to 

independently process information extracted from each of the maps.  The objective 

of this method is to detect new vessels whilst reducing false responses caused by 

bright lesions and other retinal features.  Segmentation methods include the 

standard line operator and a novel modified line operator.  The latter targets the 

reduction of false responses to non-vessel edges.  In addition, emphasis is put on 

ensuring new vessels are adequately segmented with the correct selection of 

parameters for vessel segmentation.  Another important point emphasised in this 

chapter, is that high vessel area alone is not enough to identify new vessels.  A more 

detailed analysis of the morphology of the vasculature is required as well as the 

removal of straight vessels. 

Table 3.3 compares the dual classification system’s performance against the 

performance from a single SVM classification and a one-versus-one multiclass SVM 

classification.  Note that for both the single and multiclass SVMs the two feature sets 

were combined to create a single feature set.  These results validate the dual 

classification framework, showing this process to be superior to the others. 

From the examples of classified images shown in figure 3.18 it is evident that the 

algorithm responds well to a variety of new vessel formations.  This includes both 

new vessels elsewhere (NVE) and new vessels at the optic disc (NVD), new vessels 

with associated fibrosis and obscure new vessels.  Also evident, from figures 3.19(A)-

(F), is the algorithm’s ability to avoid false responses despite the presence of bright 

lesions, dark lesions and reflection artefacts.  Figure 3.19(I) shows a false positive 

image caused by vessels from the layer beneath the retina (choroid) being visible.  

This is an unusual case because when vessels from this layer are visible they normally 

possess little contrast to the background and often have a wider calibre, and 
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therefore they do not get segmented.  Another cause of false responses are dilated 

capillaries known as intra-retinal microvascular abnormalities (IRMA), which are very 

difficult to differentiate from new vessels.  IRMA represents a stage of DR that 

indicates a high risk of the progression of new vessels.  A final area of difficultly 

concerns the spacing between bright lesions of close proximity.  The modified line 

operator was designed to tackle this problem and does so successfully for the 

majority of cases.  However, on rare occasions (see figure 3.19(H)) these areas appear 

significantly darker than the retinal background and therefore the modified line 

operator can struggle to avoid their segmentation.  

In 2002, studies from the UK [124,125] reported that the prevalence of PDR is 3.7% 

for patients with type 1 diabetes and 0.5% for patients with type 2 diabetes.  When 

taking into account the proportions of patients with each type of diabetes in the UK, 

an overall value of 0.82% can be derived.  Although the prevalence of PDR is low, the 

associated risk of the rapid onset of vision loss means it must be detected reliably.  In 

UK screening programmes it is considered a serious breach in protocol if an image 

with PDR is either missed or delayed in referral.  Therefore, the maximum sensitivity 

of 100.00% that our algorithm reaches on a per image basis whilst achieving a 

respectable specificity of 92.50% gives it potential for clinical application.  However, 

when considering the low prevalence of PDR, this specificity value is lacking.  The 

results indicate that if the algorithm is applied in screening programmes, for every 

correctly identified patient with PDR there would be approximately 9 incorrectly 

identified patients.  This calculation does not consider that the 40 non-PDR images 

from the dataset used to calculate specificity were chosen to make this dataset more 

challenging and is therefore not a true representative of a screening population. 

It should be noted that the proportion of PDR images to non-PDR images used in our 

dataset does not correspond to the prevalence of PDR in the population.  This is also 

the case for all methodologies in the current literature.  To match the PDR prevalence 

of 0.82%, the 20 PDR images in our dataset would have to be accompanied by 2439 

non-PDR images.  Theoretically this should not affect the sensitivity and specificity 

results, apart from the specificity now being measured against a larger and therefore 

more representative/varied selection of images.  However, the correct proportions of 
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images would mean the accuracy (Acc) result would be a more correct representation 

in respect to the population.  

The proposed method does achieve better performance metrics than most of the 

other published methods, as shown in table 3.5.  True comparisons are difficult to 

make as there exists variability in terms of their application.  Goatman [72] and 

Agurto [88] seek to detect only NVD.  Jelinek [71] applied their methods on 

fluorescein images as opposed to conventional retinal images.  Also the level 

(segment, image etc.) selected for performance evaluation varies amongst the 

reported methods.  More importantly there exist no standard datasets that have 

been used for testing.  Our particular dataset was not solely created from publicly 

available datasets due to their limited inclusion of images containing new vessels.  

Akram [77] created a dataset containing 52 images with new vessels from the four 

main publicly available retinal image databases.  However, the image file names used 

are not available and we were unable to find the number of new vessel images 

reported. 

Our algorithm’s reported optimal performance on each level (image and patch) does 

not correspond to the same operating point.  The reported per image performance of 

100.00% and 92.50% for sensitivity and specificity respectively corresponds to a per 

patch performance of 51.72% and 98.40% for sensitivity and specificity, respectively.  

This shows, for this per image performance, that the system puts no emphasis on 

detecting and correctly delineating all new vessels.  Instead, identifying any part of 

any new vessels in the image is sufficient to achieve a positive image label.  Figure 

3.18(D) illustrates how there is no requirement to identify all new vessels in the 

image, with only two out of the five new vessel networks being identified.  Figure 

3.17(D) shows the same image with the location of all five new vessel networks 

marked by an ophthalmologist.  Such an approach assists in obtaining a higher 

specificity.  Niemeijer [20] follows this same approach but in respect to dark lesion 

detection.  Such an approach may hold certain risks, although it is still a viable option 

for clinical application. The optimal performance for evaluation on a per patch basis is 

very different, with the emphasis to detect as many new vessel regions as possible 

(see figure 3.20). 
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The quantification of new vessel growth as opposed to just the detection of their 

presence was stated as a possible objective in section 1.1.  Quantification can be 

achieved through delineation.  Whilst our algorithm delineates new vessel regions to 

a certain degree, it was decided not to assess evaluation of its performance in these 

terms.  Striving to achieve a more complete delineation of new vessel regions would 

make the algorithm more susceptible to false positives.  Therefore, our main concern 

is the identification of new vessel regions as opposed to their accurate delineation, 

and thus our aim is to detect the centre of new vessel regions.  Hence all new vessel 

patches used for training correlated only to sub-windows directly centred over the 

middle of new vessel regions.  This is a more targeted approach which suits the 

clinical requirements for the identification of new vessels.  Hence, this is why 

evaluation on a per patch basis (testing on training patches using leave-one-out cross 

validation) was preferred to the evaluation of delineation to get a more detailed 

insight into the system’s performance than that provided by performance on a per 

image basis. 

Previously mentioned were other vessel segmentation methods [27,28] that 

specialize in the reduction of false responses caused by bright lesions.  However, the 

reduction has to achieve a more comprehensive level if they are to be successfully 

applied in PDR detection.  Our modified line operator achieves such required levels, 

particularly due to the additional step taken to resolve the false response caused by 

the space in-between bright lesions of close proximity.  Such a comprehensive level 

inevitably risks damage to the segmented vessels and therefore brought around the 

requirement of a dual system. 

Future developments should involve the extraction of further information regarding 

the morphology of the vasculature in order to create a higher dimensional feature 

set.  For example, our feature set lacked any tortuosity measures.  Such an important 

new vessel characteristic should be included.  Non-morphology based features should 

also be explored.  The next chapter (section 4.1.1) addresses these issues with the 

expansion of the feature vector.  Another intended development concerns vessel 

segmentation.  Currently a global threshold is applied, although a more sophisticated 
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approach such as adaptive thresholding or a supervised machine learning approach 

may yield better results.  

All existing PDR detection methods define new vessels as dense lacy networks of 

unregulated vessel growth.  This description does not match their appearance at their 

initial formation, when they can appear as loops or small networks.  These changes in 

the vasculature can be so subtle and it is likely that all existing methods, including our 

work, would fail in detecting such cases.  These cases must still receive urgent referral 

to a specialist, although they possess far less risk of a rapid onset of vision reduction 

in comparison to large regions of abnormal vessel growth.  Another difficultly of PDR 

detection, as mentioned in section 2.4, is caused by retinal features associated with 

new vessels which may on rare occasions obscure or completely hide them from 

view.  This includes pre-retinal and vitreous haemorrhages caused by the rupture of 

new vessels and tractional retinal detachment caused by fibrosis.  The dataset used 

for evaluation of our methodology is limited in such cases.  This is an issue also not 

fully addressed by other published methodologies.  This is a problem that will have to 

be tackled in the future; however, for now the main focus should remain on the 

detection of visible new vessels. 

To assist in the development of PDR detection algorithms it is vital that a large new 

vessel dataset becomes publicly available.  New vessel formations can vary greatly in 

appearance, and thus this should be represented in the dataset.  With a standard 

dataset, comparisons of published methods will be possible.   

In conclusion, this chapter has demonstrated an automated system that is capable of 

detecting the presence of new vessels whilst reducing false responses to bright 

lesions and other retinal features.  The proposal of introducing automated disease/no 

disease systems into DR screening programmes to reduce the manual grading 

workload has been considered.  The addition of PDR detection will greatly strengthen 

the proposal by ensuring images requiring urgent referrals are automatically 

prioritized.  
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4 FEATURE VECTOR EXPANSION AND GENETIC ALGORITHM BASED 

FEATURE SELECTION 

 

This chapter describes the exploration of features suitable for the classification of 

PDR and works as an extension to methodology detailed in the previous chapter.  The 

general framework remains very similar to that depicted in figure 3.1 and is shown in 

figure 4.1.  The feature extraction stage has been developed, with the expansion of 

the 4-D feature vector into a 21-D feature vector that includes morphology, gradient 

and intensity based features.  This is followed by feature selection using a genetic 

algorithm (GA) based approach with the objective of finding feature subsets that 

improve the performances of the classification.  In addition, the genetic algorithm is 

also used to search for the optimal SVM parameters.  Work from this chapter was 

used to contribute to the publication [126]. 
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Figure 4.1: System architecture. 

 

4.1 Methodology 

4.1.1 Feature Vector Expansion 

In the previous chapter a simple 4-D feature vector was built.  This was based on the 

description of new vessel regions as containing many vessel segments, which are 

closely packed and appear in multiple orientations.  However, there are other 

characteristics that can help to distinguish new vessels.  New vessels tend to appear 

finer in calibre, shorter in length and possess a tortuous nature.  New vessels also 

appear less homogeneous then normal vessels.  Therefore, additional features were 

created based on these characteristics.  Features were also pulled in from the current 

literature.  This formed a 21-D feature vector which contained morphology, intensity 

and gradient based features. 
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All features were measured from information extracted from the sub-window.  This 

sub-window was scanned through the image and at increments of 20 pixels, 

candidate pixels were selected.  At each candidate pixel position a 21-D feature 

vector was calculated.  This same set of features was measured for each of the 

pathways to produce two separate feature vectors for each candidate pixel.  Some 

features were designed specifically for a particular classification, but for simplicity 

both feature vectors remained identical. 

The description of the features is listed below.  The term segment refers to the 

skeletonised vessel segments.  All segments were labelled. 

 

1) Number of vessel pixels (𝒏𝒑) 

The sum of all segment pixels within the sub-window, 𝑛𝑝, is defined as 

 𝑛𝑝 = ∑ 1

𝑖∈𝑆𝑝

 (4.1) 

where 𝑆𝑝 is the set of segment pixels in the sub-window. 

 

2) Number of vessel segments (𝒏𝒔) 

The number of whole and partially included segments within the sub-window, 

𝑛𝑠, is defined as 

 𝑛𝑠 = ∑ 1

𝑖∈𝑆𝑠

 (4.2) 

where 𝑆𝑠 is the set of segments in the sub-window. 

 

3) Number of vessel orientations (𝒏𝒐𝒓) 

The end points of a segment were connected by a straight line.  The angle the 

line made with the x-axis that fell within the range -90ᵒ to 90ᵒ of the unit 
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circle was calculated.  The calculated angle was accordingly dropped into one 

of eight bins, each representing a range of angles.  This was done for each 

segment within the sub-window.  A non-empty bin was awarded the value of 

1, which is defined as 

 𝑏𝑖 = {
0
1
  ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑠𝑖𝑒

   𝑖𝑓 ∅
 (4.3) 

where 𝑏𝑖 is the 𝑖th bin.  The number of non-empty bins represented the 

number of orientations, 𝑛𝑜𝑟, which is defined as 

 
𝑛𝑜𝑟 = ∑𝑏𝑖

8

𝑖

 (4.4) 

 

4) Vessel density mean (𝒗𝒅𝒎) 

A segment was dilated with a disk structuring element with a radius of 20 

pixels.  The number of pixels from all segments within the dilated area was 

divided by the number of pixels within the segment to give its vessel density.  

This was done for each segment within the sub-window and the mean vessel 

density was calculated.  This is expressed through equations 4.5 to 4.8. 

The dilated segment, 𝐷, is defined as 

 𝐷 =  𝑣⨁ 𝐵                (4.5) 

where 𝑣 is a single segment and B is the structuring element.  The 

intersection, 𝐼, between 𝐷 and all segments in the sub-window, 𝑉, is defined 

as  

 𝐼 =  𝐷 ∩ 𝑉               (4.6) 

The number of pixels in 𝐼 divided by the number of pixels in the single 

segment, 𝑣, gives the vessel density, 𝑣𝑑, for that segment and is defined as 

 
𝑣𝑑 =  

∑ 1𝑖∈𝑆𝑝1

∑ 1𝑖∈𝑆𝑝2

⁄                (4.7) 
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where 𝑆𝑝1 is the set of pixels in  𝐼 and 𝑆𝑝2 is the set of pixels in 𝑣.  This was 

calculated for each segment within the sub-window.  The vessel density 

mean, 𝑣𝑑𝑚, is defined as 

 

𝑣𝑑𝑚 = (∑ 𝑣𝑑𝑖

𝑖∈𝑆𝑠

)/𝑛𝑠 (4.8) 

where 𝑣𝑑𝑖  is the vessel density of the 𝑖th segment. 

 

5) Tortuosity mean (𝑻𝒎) 

The tortuosity of each segment was calculated using the true length 

(measured with the chain code) divided by the Euclidean length.  The mean 

tortuosity, 𝑇𝑚, was calculated from all the segments within the sub-window, 

defined as 

 

𝑇𝑚 = (∑ 𝑡𝐿𝑖

𝑖∈𝑆𝑠

/𝑒𝐿𝑖)/𝑛𝑠 (4.9) 

where 𝑡𝐿𝑖  is the true length and 𝑒𝐿𝑖 is the Euclidean length of the 𝑖th 

segment.  Lengths were measured in pixels. 

 

6) Tortuosity max (𝑻𝒎𝒙) 

The maximum tortuosity, 𝑇𝑚𝑥, amongst all segments in the sub-window is 

defined as 

 𝑇𝑚𝑥 = max
𝑖∈𝑆𝑠

(𝑡𝐿𝑖/𝑒𝐿𝑖) (4.10) 
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7) Vessel length mean (𝒕𝑳𝒎) 

The mean true length of all segments within the sub-window, 𝑡𝐿𝑚, is defined 

as 

 

𝑡𝐿𝑚 = (∑ 𝑡𝐿𝑖

𝑖∈𝑆𝑠

)/𝑛𝑠 (4.11) 

 

8) Number of bifurcation points (𝒏𝒃𝒊) 

The number of bifurcation points removed within the sub-window when 

creating segments, 𝑛𝑏𝑖, is defined as   

 𝑛𝑏𝑖 = ∑ 1

𝑖∈𝑆𝑏𝑖

 (4.12) 

where 𝑆𝑏𝑖 is the set of bifurcation points removed from the sub-window. 

 

9) Grey level mean (𝑮𝑳𝒎) 

The mean grey level of all segment pixels within the sub-window, 𝐺𝐿𝑚, is 

defined as 

 

𝐺𝐿𝑚 = (∑ 𝑔𝑙𝑖
𝑖∈𝑆𝑝

)/𝑛𝑝 (4.13) 

 where 𝑔𝑙𝑖 is the grey level (pre-processed image) of the 𝑖th segment pixel. 

 

10) Grey level coefficient of variation (𝑮𝑳𝒄𝒗) 

The standard deviation of the grey level of all segments pixels within the sub-

window, 𝜎𝐺𝐿, is defined as 
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𝜎𝐺𝐿 = √

1

𝑛𝑝
∑(𝑔𝑙𝑖 − 𝐺𝐿𝑚)2

𝑖∈𝑆𝑝

 (4.14) 

The grey level coefficient of variation, 𝐺𝐿𝑐𝑣, is the ratio of the standard 

deviation, 𝜎𝐺𝐿, to the mean of the grey level of all segment pixels within the 

sub-window,𝐺𝐿𝑚, which is defined as 

 𝐺𝐿𝑐𝑣 = 𝜎𝐺𝐿/𝐺𝐿𝑚 (4.15) 

 

11) Gradient mean (𝑮𝒎) 

The gradient magnitude, 𝐺, calculated using the Sobel gradient operator, is 

defined as 

 
𝐺 = √𝐺𝑥

2 + 𝐺𝑦
2 (4.16) 

where 𝐺𝑥 and 𝐺𝑦 are the first derivatives achieved from convolution of the 

pre-processed image with the Sobel horizontal mask and vertical mask 

respectively.  The mean gradient magnitude along all segment pixels within 

the sub-window, 𝐺𝑚, is defined by 

 

𝐺𝑚 = (∑ 𝐺𝑖

𝑖∈𝑆𝑝

)/𝑛𝑝 (4.17) 

 where 𝐺𝑖 is the gradient of the 𝑖th segment pixel. 

 

12) Gradient coefficient of variation (𝑮𝒄𝒗) 

The standard deviation of the gradient of all segments pixels within the sub-

window, 𝜎𝐺, is defined as 

 
𝜎𝐺 = √

1

𝑛𝑝
∑(𝐺𝑖 − 𝐺𝑚)2

𝑖∈𝑆𝑝

 (4.18) 
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The gradient coefficient of variation, 𝐺𝑐𝑣, is the ratio of the standard 

deviation, 𝜎𝐺, to the mean of the gradient of all segment pixels within the 

sub-window, 𝐺𝑚, which is defined as 

 𝐺𝑐𝑣 = 𝜎𝐺/𝐺𝑚 (4.19) 

 

 

13) Line strength mean (𝑳𝑺𝒎) 

The mean line strength of all segment pixels within the sub-window, 𝐿𝑆𝑚, is 

defined as 

 

𝐿𝑆𝑚 = (∑ 𝐿𝑆𝑖

𝑖∈𝑆𝑝

)/𝑛𝑝 (4.20) 

where 𝐿𝑆𝑖 is the line strength of the 𝑖th segment pixel. 

 

14) Vessel width mean (𝑾𝒎) 

Skeletonization correlates to vessel centre lines.  The distance from a segment 

pixel to the closest boundary point of the vessel using the vessel map prior to 

skeletonization was measured.  This gives the half-width at that point which 

was then multiplied by 2 to achieve the full vessel width.  The mean vessel 

width, 𝑊𝑚, was calculated for all segment pixels within the sub-window, 

which is defined as 

 

𝑊𝑚 = (∑ 2ℎ𝑊𝑖

𝑖∈𝑆𝑝

)/𝑛𝑝 (4.21) 

where ℎ𝑊𝑖  is the vessel half-width of the 𝑖th segment pixel. 
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15) Vessel wall gradient mean (𝒘𝑮𝒎) 

As for the vessel width above, the closest boundary point was assumed to be 

the vessel wall.  The sum of all vessel wall pixels within the sub-window, 𝑛𝑤𝑝, 

is defined as 

 𝑛𝑤𝑝 = ∑ 1

𝑖∈𝑆𝑤𝑝

 (4.22) 

where 𝑆𝑤𝑝 is the set of wall pixels in the sub-window.  The mean gradient 

magnitude along all vessel wall pixels within the sub-window, 𝑤𝐺𝑚, is defined 

as 

 

𝑤𝐺𝑚 = ( ∑ 𝐺𝑖

𝑖∈𝑆𝑤𝑝

)/𝑛𝑤𝑝 (4.23) 

where 𝐺𝑖 is the gradient of the 𝑖th wall pixel. 

 

16) Vessel wall gradient  coefficient of variation (𝒘𝑮𝒄𝒗) 

The standard deviation of the vessel wall gradient along all vessel wall pixels 

within the sub-window, 𝜎𝑤𝐺, is defined as 

 
𝜎𝑤𝐺 = √

1

𝑛𝑤𝑝
∑ (𝐺𝑖 − 𝑤𝐺𝑚)2

𝑖∈𝑆𝑤𝑝

 (4.24) 

The vessel wall gradient coefficient of variation, 𝑤𝐺𝑐𝑣, is the ratio of the 

standard deviation, 𝜎𝑤𝐺, to the mean of the vessel wall gradient, 𝑤𝐺𝑚, along 

all vessel wall pixels within the sub-window, which is defined as 

 𝑤𝐺𝑐𝑣 = 𝜎𝑤𝐺/𝑤𝐺𝑚 (4.25) 
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17) Compactness (𝑪) 

The full binary vessel map prior to skeletonization and straight vessel removal 

was used.  Area (𝑎) and perimeter (𝑝) within the sub-window were measured 

and are defined by equations 4.26 and 4.27.  

 𝑎 = ∑ 1

𝑖∈𝑆𝑓𝑝

 (4.26) 

where 𝑆𝑓𝑝 is the set of full binary vessel map pixels in the sub-window. 

 𝑝 = ∑ 1

𝑖∈𝑆𝑝𝑝

 (4.27) 

where 𝑆𝑝𝑝 is the set of full binary vessel map perimeter pixels in the sub-

window. Compactness, 𝐶, is defined as 

 𝐶 = 4𝜋𝑎/𝑝2 (4.28) 

Circularity is also a measure of compactness, and hence this is the same 

measure as that from equation 3.5. 

 

18) Linkage (𝑳) 

The full binary vessel map prior to skeletonization and straight vessel removal 

was used.  The number of unconnected binary objects within the sub-window, 

𝑛𝑏, is defined as 

 𝑛𝑏 = ∑ 1

𝑖∈𝑆𝑏

 (4.29) 

where 𝑆𝑏 is the set of full binary vessel map objects in the sub-window.  The 

linkage, 𝐿, is defined by equation 4.30 in which vessel area (𝑎) is divided by 

the number of objects (𝑛𝑏) within the sub-window.  

 𝐿 = 𝑎/𝑛𝑏 (4.30) 
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19) Local grey level mean (𝑳𝑮𝑳𝒎) 

The sum of all pixels within the sub-window, 𝑛𝑎𝑝, is defined as 

 𝑛𝑎𝑝 = ∑ 1

𝑖∈𝑆𝑎𝑝

 (4.31) 

where 𝑆𝑎𝑝 is the set of all pixels in the sub-window.  The mean grey level of all 

pixels within the sub-window, 𝐿𝐺𝐿𝑚, is defined as 

 

𝐿𝐺𝐿𝑚 = ( ∑ 𝑔𝑙𝑖
𝑖∈𝑆𝑎𝑝

)/𝑛𝑎𝑝 (4.32) 

where 𝑔𝑙𝑖 is the grey level (pre-processed image) of the 𝑖th pixel. 

20) Local grey level max (𝑳𝑮𝑳𝒎𝒙) 

The maximum grey level amongst all pixels within the sub-window using the 

pre-processed image, 𝐿𝐺𝐿𝑚𝑥, is defined as 

 𝐿𝐺𝐿𝑚𝑥 = max
𝑖∈𝑆𝑎𝑝

(𝑔𝑙𝑖) (4.33) 

 

21) Local grey level variation (𝝈𝑳𝑮𝑳) 

The standard deviation of the grey level of all pixels within the sub-window 

using the pre-processed image, 𝜎𝐿𝐺𝐿, is defined as 

 
𝜎𝐿𝐺𝐿 = √

1

𝑛𝑎𝑝
∑ (𝑔𝑙𝑖 − 𝐿𝐺𝐿𝑚)2

𝑖∈𝑆𝑎𝑝

 (4.34) 

 

 

4.1.2 Genetic Algorithm Based Feature Selection and Parameter 

Optimization 

Feature selection is the process of selecting the smallest subset of features that is 

necessary for accurate prediction (classification or regression).  It achieves this by the 
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removal of redundant and irrelevant features.  Redundant features are those which 

provide no further information than the currently selected features, and irrelevant 

features provide no useful information in any context.  The benefits of feature 

selection are improving the classifier’s performance and providing a better 

understanding of the underlying process that generated the data [127].  Using a small 

number of features will also save significant computation time and builds models that 

generalise better for unseen data. 

An exhaustive search of all possible subsets of features to find the one which 

maximises the classifier’s performance is the simplest approach.  However, this 

approach is far too computationally expensive and is only suitable for the smallest of 

feature sets.  Filter methods are also simple, as well as computationally fast.  A 

statistical test is performed for individually ranking the features according to their 

relevance and low ranked features are then removed (filtered).  However they suffer 

from ignoring feature dependencies and also ignore interaction with the classifier.  

Wrapper methods do interact with the classifier, utilizing them to score feature 

subsets and also model feature dependencies.  Two of the most popular wrapper 

methods are greedy search strategies known as sequential forward selection and 

sequential backward selection.  Genetic algorithms can also be applied as a wrapper 

method and shall be discussed further later.  [128] provides a comprehensive review 

of feature selection techniques. 

Feature selection does not feature heavily in the retinal image analysis articles 

reviewed in chapter 2.  Goatman [72] applied a filter method to remove features 

according to their individual rank, which was performed using a statistical test known 

as the Wilcoxon rank sum test.  Staal [36] performed feature selection using the 

wrapper method of sequential forward selection.  Vatanparast [90] applied principal 

component analysis (PCA) [35] to reduce the dimensionality of the feature vector.  

However, this is not a method of feature selection; it was performed to avoid the 

disadvantage of high dimensionality. 

Before proceeding, it is worth recapping on the main principles of SVM classification.  

SVMs seek a linear decision surface that can separate classes of objects and has the 
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largest distance between border-line objects.  If the classes are not linearly separable 

the SVM maps the data into a higher dimensional space using the kernel trick, where 

the separating linear decision surface exists and can be determined.  There are 

numerous different kernel functions and the majority possess parameters which 

need to be selected.  The soft margin parameter 𝐶 is another parameter associated 

with SVMs and is used to deal with noisy measurements and outliers.  Therefore, the 

effectiveness of SVMs depends on the selection of the kernel function, the kernel 

parameters and the soft margin parameter 𝐶.  A grid search is the conventional 

approach for selecting the optimal SVM parameters. 

The feature subset selected influences the appropriate SVM parameters and vice 

versa [129].  To elaborate, each time a new feature subset is selected the input space 

is altered.  Therefore the SVM parameters have to be re-explored to find an optimal 

selection.  However, performing a grid search of SVM parameters each time a new 

feature subset is selected is a very time consuming task.  To solve this problem the 

methodology by Huang [130] was followed which used genetic algorithms to allow 

for the exploration of the optimal feature subset and SVM parameters to occur 

simultaneously.  The only requirement was the pre-selection of the kernel function 

type.  Another important factor which applies specifically to dual classification is that 

this approach allows for both feature vectors to be explored simultaneously. 

Genetic algorithms (GA) is a general adaptive optimization search methodology first 

presented by Bledsoe [131] and mathematically formalized by Holland [132], which 

takes inspiration from Darwin’s theory of evolution.  Each gene represents a variable 

and a sequence of genes is referred to as a chromosome.  Each chromosome may be 

a potential solution to the optimization problem.  A population of chromosomes is 

randomly initialized.  Chromosomes are evaluated for their quality according to a 

predefined fitness function.  A new population of chromosomes is produced by 

selecting high performing chromosomes (process known as selection) to produce 

offspring which retain many aspects of their parents.  These offspring are formed by 

using genetic operators: crossover and mutation.  Crossover is a mechanism for 

exchanging genes between two selected chromosomes to create new offspring.  

Mutation operates by modifying one or more components of a selected 
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chromosome.  Selection is then performed on the new population of chromosomes 

followed by the production of offspring.  Therefore, chromosomes are competing 

with each other and only the fittest survive, with the GA obtaining the chromosome 

providing the optimal or near-optimal solution after a series of iterative 

computations.  The GA was chosen in preference to a large variety of other 

optimization procedures due to its ability to deal with large search spaces efficiently.  

Therefore, convergence is more likely to avoid local sub-optimal solutions and find 

the global optimal solution. 

 

4.1.2.1   Genetic Operators 

The role of the genetic operators of selection, crossover and mutation are explained 

above.  There exists a variety of techniques for each of these operators which can be 

found documented by Sivanandam [133].  The techniques performed, which are 

detailed below, were roulette selection, single point crossover and uniform mutation.  

These were chosen as they are commonly used techniques, which are simple to 

implement and hence are very transparent.  Therefore, there remains further scope 

to perform comparative assessment in the performance of different operators for 

this task. 

Roulette selection chooses parents (high performing chromosomes) by simulating a 

roulette wheel, the size of each individual interval corresponds to the fitness function 

value of the associated individual chromosome.  For example, in figure 4.2 the sum of 

all the individual’s fitness function values make up the circumference of the roulette 

wheel.  This sum equates to the range [0, Sum].  The algorithm selects a random 

number in the range [0, Sum] and the individual whose interval spans this random 

number is selected.  Therefore, the probability of selection is equal to the interval’s 

size. 

 



 

123 
 

 

Figure 4.2: Roulette selection, shown for an example with a population of 10 chromosomes. 

 

The simplest form of crossover is that of single-point crossover.  Consider two parent 

chromosomes.  A random integer position is chosen between 1 and the number of 

genes (variables).  Genetic information is exchanged between the two parents about 

this point, resulting in two new offspring being produced.  Figure 4.3 illustrates the 

procedure.  The probability of crossover is set at 0.75. 

 

 

 

 

 

 

         Figure 4.3: Single point crossover.                                     Figure 4.4: Mutation. 

Uniform mutation has two steps.  First, the algorithm selects a fraction of the genes 

of an individual chromosome for mutation, where each gene has a low probability of 

being mutated. This probability rate is set at 0.01.  In the second step, each selected 

gene is replaced by a random number selected uniformly from the range for that 

Crossover point 

Offspring 2 

Offspring 1 

Parent 2 

Parent 1 

Mutation 
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entry.  Figure 4.4 illustrates the process of mutation where a single gene has been 

selected. 

 

4.1.2.2   Chromosome Design 

In the context of our optimization problem, each chromosome was comprised of 

three parts.  This was the feature subsets, the soft margin parameter 𝐶 and the 

kernel parameters.  These are each described in further detail below and figure 4.5 

displays the chromosome design. 

 

 

 

 

Figure 4.5: Chromosome design for the RBF kernel. 

 

Feature subsets:  

Two feature subsets were required, one for each classification in the dual process.  

The chromosome used 42 genes to represent the two sets of 21 features.  These 

genes were denoted with value ‘1’ to indicate the feature was selected or ‘0’ to 

indicate the feature was not selected.   

Soft margin parameter 𝑪: 

This was represented with a gene with an integer value ranging from 1-5 which 

corresponded to the 𝐶 values of 0.01, 0.1, 1, 10, 100. 

 

f1_1 f1_2 ………… f1_21 f2_1 f2_2 ………… f2_21 𝑪 𝜸 

Feature Subset, Classification 1 

Feature Subset, Classification 2 

Soft Margin Parameter 

Scaling Factor 



 

125 
 

Kernel parameters: 

The type of kernel parameters depend on the kernel function used, with kernel types 

of linear, Gaussian radial basis function (RBF) and polynomial being assessed.  The 

type of kernel function used was pre-selected.  No kernel parameters were required 

for the linear kernel.  For the RBF kernel the scaling factor (𝛾) was required and was 

represented by a gene with an integer value ranging from 1-5 which corresponded to 

𝛾 of 0.0001, 0.001, 0.01, 0.1, 1.  For the polynomial kernel the order of the 

polynomial was required and this was represented by a gene with an integer value 

ranging from 1-4 which corresponded to the order. 

It should be noted that 𝐶 and 𝛾 are continuous variables.  However, they have been 

represented by discrete values in order to simplify the optimization problem by the 

reduction of the search space. 

The SVM kernels that were chosen to be assessed, as well as the value range for the 

SVM parameters were based on a strategy for SVM model selection provided by 

Statniov [134].   

 

4.1.2.3   Fitness Function   

The optimal solution that the GA produced was a chromosome with the optimal 

feature subsets and SVM parameters that maximised the fitness function.  The 

criterion used to design the fitness function is shown in equation 4.35, with 𝑝 

representing the classification performance (units of percent) and 𝑛 representing the 

combined number of selected features from both feature sets.  Thus, a chromosome 

with a high classification performance and a small number of features produced a 

high fitness value.  An empirically derived scaling factor of 1/100 was applied to 𝑛 in 

order to ensure the main priority of the optimization procedure was on attaining a 

high classification performance, and hence a small number of features was a 

secondary matter.  A logical starting point in deriving the scaling factor value was to 

ensure the maximum variation of 𝑛 equated to a value just under the value of a 

single unit of 𝑝, and therefore initial investigations started with a scaling factor of 
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1/50.  Thereafter, the scaling factor was varied in increments and it was found that 

the scaling factor of 1/100 achieved the best outcome.  The classification 

performance was assessed from the final decision achieved from combining the two 

classification outcomes.  The measure used to quantify the classification performance 

shall be discussed in section 4.2.1. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑝 −
𝑛

100
                     (4.35) 

 

4.1.2.4   System Architecture for the Genetic Algorithm Based Approach 

A flow chart presenting the system’s architecture is provided in figure 4.6.  All 

features were normalised so that each feature had zero mean and unit standard 

deviation.  The kernel function type was pre-selected, and therefore this process was 

separately performed for the linear, RBF and polynomial kernel functions.  An 

explanation of the main steps follows: 

(1) Consider the box (from figure 4.6) labelled as population as the starting point.  

A population of chromosomes was randomly initialized.  Each chromosome 

comprised of a feature subset and SVM parameters. 

(2) All chromosomes in the population were each evaluated individually with the 

following procedure. The selected feature subset was used to accordingly 

alter the training and testing sets.  The training set along with the selected 

SVM parameters were used to train the SVM classifier, while the testing set 

was used to calculate the classification performance.  The chromosome was 

evaluated by the fitness function which was derived using the classification 

performance along with number of selected features. 

(3) The fitness functions of all chromosomes in the population were checked to 

see if the stopping criteria was reached.  The stopping criteria was set at the 

maximum possible fitness function (equates to 𝑝 = 100 and 𝑛 = 2).  If reached 

the process was ended, otherwise it proceeded to the genetic operations.  



 

127 
 

(4) The genetic operations produced the next generation (new population).  This 

was done by first selecting the elite chromosomes as parents, and then 

crossover and mutation were used to produce offspring (new population). 

Steps (2)-(4) were performed iteratively until the stopping criteria was met or the 

pre-set maximum number of generations was reached.   

The GA settings were chosen at a population size of 40 (initial population of 80), elite 

parent count of 2 and the number of generations of 10. 

The efficiency of GA is greatly dependent on the parameters selected.  There are 

several publications that state recommended standard parameter settings.  However, 

no recommended settings are truly universal; instead, parameters have to be 

generally tuned to specific problems.  Therefore, the GA parameter values stated 

above, as well as the crossover and mutation probabilities stated in section 4.1.2.1 

were achieved by starting with the standard values provided De Jong [135] and 

Grefenstette [136].  This was then followed by parameter tuning.  A limitation was 

the number of generations had to remain low due to time constraints, and this will be 

explained in the section 4.3. 
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Figure 4.6: Architecture of the GA based feature selection and SVM parameter selection 
system, based on [130]. 

 

4.2 Experimental Evaluation  

4.2.1 Materials and Performance Measures 

The materials and performance measures used for this chapter are identical to those 

detailed in the previous chapter (sections 3.2.1 and 3.2.2).  To summarize: 

 60 image dataset (new vessel images = 20, non-new vessel images = 40). 

 Leave-one-out cross validation. 

 Selection of pixels used for training data (selection remains identical). 

 Evaluation on a per image and per patch basis. 

 Performance metrics of sensitivity (SN), specificity (SP), accuracy (Acc), area 

under the ROC curve (AUC). 
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 3D ROC surface used to assess dual classification. 

 Per patch basis, optimal operating point = maximum accuracy. 

 Per image basis, optimal operating point = highest specificity at a sensitivity of 

100%. 

To clarify the GA based approach was applied separately to find the optimal feature 

subset and SVM parameters for each per image and per patch evaluation. 

The measures used to quantify 𝑝 (classification performance) for involvement in the 

fitness function (equation 4.35) used by the GA based approach are those stated 

above for the optimal operating point (maximum accuracy, highest specificity at a 

sensitivity of 100%). 

The evaluation procedures of leave-one-out cross validation, ROC analysis and the 

selection of the optimal operating point had to be performed for every single 

chromosome in the GA based approach. 

 

4.2.2 Results 

The Wilcoxon rank sum test, a statistical test, was used to infer the discrimination 

ability of the features.  This is done by assessing whether the median feature values 

for the two classes differ significantly.  This method of feature ranking does not 

interact with the classifiers.  All calculations for the Wilcoxon rank sum test are 

performed using only the training data, and therefore this is the ranking of features 

prior to classification.  Results for both classification pathways are shown in table 4.2, 

with a smaller p-value indicating better discrimination ability.  These calculations 

were not used for feature selection in this project, however they were performed to 

provide a useful insight. 
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Table 4.1: Summary of feature vector. 

Feature 
Number 

Feature Name Feature 
Number 

Feature Name 

1 Number of vessel pixels 12 Gradient coefficient of variation 

2 Number of vessel segments 13 Line strength mean 

3 Number of vessel orientations 14 Vessel width mean 

4 Vessel density mean 15 Vessel wall gradient mean 

5 Tortuosity mean 16 Vessel wall gradient  coefficient of 
variation 

6 Tortuosity max 17 Compactness 

7 Vessel length mean 18 Linkage 

8 Number of bifurcation points 19 Local grey level mean 

9 Grey level mean 20 Local grey level max 

10 Grey level coefficient of variation 21 Local grey level variation 

11 Gradient mean   

 

 

Table 4.2:  Performance of the 21 features for each classification pathway, assessed using the 
Wilcoxon rank sum test.  Listed in order of p-value, with the lowest value at the top of the 

table. 

 

Wilcoxon rank sum test 
Classification 1 Classification 2 

Feature p-value Feature p-value 
8 2.0889 x 10

-17
 2 4.3315 x 10

-16
 

2 2.1501 x 10
-17

 1 1.8680 x 10
-14

 

4 6.7195 x 10
-17

 3 7.1091 x 10
-14

 

1 1.4700 x 10
-16

 4 6.4934 x 10
-11

 

3 7.1501 x 10
-16

 17 1.3213 x 10
-11

 

17 7.2511 x 10
-14

 8 1.1658 x 10
-10

 

7 9.4306 x 10
-13

 19 6.8748 x 10
-8

 

14 1.8945 x 10
-12

 6 1.0735 x 10
-5

 

6 5.3935 x 10
-11

 16 3.3293 x 10
-4

 

16 2.6465 x 10
-10

 20 5.0906 x 10
-4

 

10 1.0324 x 10
-8

 7 0.0011 

11 8.1172 x 10
-7

 18 0.0018 

21 5.7432 x 10
-4

 10 0.0019 

13 0.0017 14 0.0060 

18 0.0030 13 0.0084 

12 0.0193 21 0.0122 

5 0.1030 9 0.0189 

9 0.3293 11 0.0204 

19 0.4340 5 0.1411 

15 0.7174 15 0.1938 

20 0.8066 12 0.3683 
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The features and SVM parameters selected for each classification that maximise the 

fitness function of the GA based system are shown in table 4.3.   The resulting ROC 

curves of the proposed system under these settings on a per image and per patch 

basis are depicted in figures 4.7(A)-(B).  The AUC value for the per image basis is 

0.9914.  The optimal operating point according to the application specific 

performance measure is a sensitivity of 100.00% and a specificity of 97.50%.  For a 

per patch basis the AUC value is 0.9600.  The operating point with maximum accuracy 

of 94.54% gives a sensitivity of 91.38% and a specificity of 96.00%.  Table 4.4 shows 

these results along with the reported results from other new vessel detection 

methods.   

Examples of classified images are given in figure 4.9 and figure 4.10.  Recall, the 

number in the bottom right hand corner of the figures specifies the number of 

candidate pixels classified as new vessels.  All positive pixels were then 

morphologically dilated with a structuring element the size of the sub-window used 

in feature extraction, and the resultant was the delineation of new vessel regions 

(indicated with a white boundary).  Any image containing any candidate pixels 

classified as new vessels, and therefore any delineated region is classified as a new 

vessel image.  As stated earlier, the performance evaluation of delineation was not 

assessed.  However, figure 4.8 provides the manual delineation of new vessel regions 

marked by an ophthalmologist in order to allow for a visual comparison to the 

delineation shown in figure 4.9.  In addition to this, table 4.5 provides the number of 

candidate pixels classified as new vessels and the number of new vessel regions that 

have been successfully detected for each image in the dataset.  The image numbers 

in table 4.5 correspond to those listed in appendix II, in which images 1-20 are PDR 

images and 21-40 are non-PDR images. 

Examples of classified patches are shown in figure 4.11, with patches on the left side 

of the white straight line representing new vessel patches and those on the right side 

representing non-new vessel patches.  White boxes indicate those patches that have 

been by classified with a new vessel label by the proposed method.  Note that the 

performance from a per image basis is more useful from a clinical point of view.  
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Table 4.3:  Features and SVM parameters selected for each classification by the GA based 

system. 

Level Classification Kernel SVM parameters Features 

Image 
1 RBF 𝐶=1, 𝛾=1 4,8,10,13,14,16,19 

2 RBF 𝐶=1, 𝛾=1 1,2,4,6,8,15,17 

Patch 
1 RBF 𝐶=10, 𝛾=1 2,3,4,7,9,10,14,16,20 

2 RBF 𝐶=10, 𝛾=1 1,6,7,14,16,20 

 

 

 

 

 

 

 

 

 

 

Figure 4.7:  ROC curves.  (A) Performance on a per image basis.  (B) Performance on a per 
patch basis. 

 

 

 

 

 

 

(B) (A) 
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Table 4.4:  Reported results for new vessel detection methods. 

 

 

 

 

 

Algorithm SN SP Acc AUC Level 

Hassan [70] 63.90 89.40 - 0.7045 Pixel 

Jelinek [71] 94.00 82.00 - 0.900 Image 

Goatman [72] 84.2 85.9 - 0.911 Image 

Arputham [73] 84.70 86.10 - - Image 

Pavai [74] 88.89 91.30 - - Image 

Akram [76] 98.93 96.35 - - Segment 

Akram [77] 98.00 97.00 98.00 0.980 Segment 

Akram [77] 96.00 94.00 0.95 - Image 

Saranya [78] 96.25 89.65 96.53 - Image 

Welikala [79] 100.00 70.00 - - Image 

Nithyaa [86] - - - 0.947 Image 

Agurto [87] 100.00 88.00 - 0.980 Image 

Agurto [88] 96.00 83.00 - 0.940 Image 

Vatanparast [90] 99.62 96.61 - - Patch 

Lee [91] 96.30 99.10 98.50 0.993 Image 

Chapter 3 100.00 92.50 95.00 0.9693 Image 

Chapter 3 87.93 94.40 92.35 0.9616 Patch 

Proposed 100.00 97.50 98.33 0.9914 Image 

Proposed 91.38 96.00 94.54 0.9600 Patch 
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Figure 4.8:  Location and delineation of new vessel regions marked by an ophthalmologist. 

(A) (B) 

(C) (D) 

(E) (F) 
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Figure 4.9:  Results of the proposed system on a per image basis.  True positive images.                   
(A)-(F) Correspond to figures 4.8(A)-(F) respectively.   

(A)  31 (B)  35 

(C)   7 (D)   4 

(E)  13 (F)   3 



 

136 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10:  Results of the proposed system on a per image basis.  (A)-(H) True negative 
images.   (I) False positive image. 

 

 

 

 

(A)   0 

(I)  16 (H)   0 (G)   0 

(F)   0 (E)   0 (D)   0 

(C)    0 (B)   0 
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Table 4.5: The number of candidate pixels classified as new vessels and the number of 
correctly detected new vessel regions during assessment on a per image basis. 

Image N0 Manually marked new 

vessel regions 

Candidate pixels classified as 

new vessels 

Correctly detected new 

vessel regions 

1 3 13 2 

2 4 59 3 

3 5 4 2 

4 7 83 5 

5 2 57 1 

6 3 45 2 

7 1 24 1 

8 2 31 2 

9 2 35 1 

10 3 12 1 

11 2 7 1 

12 5 124 3 

13 2 3 1 

14 2 8 1 

15 1 2 1 

16 3 106 1 

17 1 56 1 

18 3 98 2 

19 2 3 2 

20 3 60 1 

21 0 0 - 

22 0 0 - 

23 0 16 - 

24 0 0 - 

25 0 0 - 

26 0 0 - 

27 0 0 - 

28 0 0 - 

29 0 0 - 

30 0 0 - 

31 0 0 - 

32 0 0 - 

33 0 0 - 

34 0 0 - 

35 0 0 - 

36 0 0 - 

37 0 0 - 

38 0 0 - 

39 0 0 - 

40 0 0 - 

41 0 0 - 

42 0 0 - 

43 0 0 - 

44 0 0 - 

45 0 0 - 

46 0 0 - 

47 0 0 - 

48 0 0 - 

49 0 0 - 

50 0 0 - 

51 0 0 - 

52 0 0 - 

53 0 0 - 

54 0 0 - 

55 0 0 - 

56 0 0 - 

57 0 0 - 

58 0 0 - 

59 0 0 - 

60 0 0 - 
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Figure 4.11:  Results of the proposed system on a per patch basis.  (A) New vessel patches, 53 
TPs and 5 FNs out of 58 patches.  (B) Non new vessel patches, 120 TNs and 5 FPs out of 125 

patches.  White boxes indicate patches classified with a new vessel label. 

 

The MATLAB Code took 721 seconds on an Intel(R) core(TM)2 Quad CPU Q9300 at 2.5 

GHz to process each image using the full 21-D feature vectors.  This was reduced to 

527 seconds once the feature vectors had been reduced in dimensionality.  

 

4.3 Discussion and Conclusion 

In this chapter we have presented an extension to the dual classification new vessel 

detection method described in chapter 3, by including feature vector expansion and 

feature selection.  This involves the exploration of a 21-D feature vector which 

contained morphology, intensity and gradient based features. 

The first main contribution of this chapter is the creation of a large feature set in 

combination with the dual classification method.  The 21-D feature set looks at many 

different aspects in order to find suitable features for discrimination, and these 

include morphology, intensity and gradient based features.  The Wilcoxon test results 

in table 4.2 shows that morphology based features generally appear to have better 

(A) (B) 
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discrimination ability than the gradient and intensity based features.  The original 4 

morphology features from chapter 3, as well as the morphology features of 

compactness, number of bifurcation points and tortuosity max all possess good 

discrimination ability for both classifications.  Other features show particularly good 

discrimination ability for just a single classification; for example, features 19 and 20, 

which are based on the local grey levels, have a significantly better discriminating 

ability for classification 2 than for classification 1. 

The second main contribution of this chapter is the selection of features in 

combination with the dual classification method.  A small feature subset not only has 

the potential to improve the classifier’s performance, but is also better for 

generalization.  However, with feature selection, overfitting can still occur and some 

techniques are more prone than others.  The results from the Wilcoxon test were not 

used to apply a filter approach for feature selection as this approach ranks features 

individually and therefore ignores feature dependencies.  For example, after filtering 

only high rank features would remain and some of these features may be highly 

correlated.  Thus resulting in the possible inclusion of many redundant features and 

therefore failing to detect the most useful features.  Wrapper methods are more 

thorough at feature selection as they interact with the classifier and can model 

feature dependencies.  GA is a wrapper method, and therefore it has a better chance 

of finding the most useful features than the filter approach; however it is more at risk 

of overfitting.  GA is preferred to greedy search strategies (popular wrapper 

methods) as GA is less prone to local sub-optima.  The GA approach is also highly 

beneficial as it allows for SVM parameter selection to be incorporated. 

Another advantage of the GA approach is its ease of dealing with feature selection for 

two feature vectors.  It explores, using the final decision achieved from combining the 

two classification outcomes, both feature vectors simultaneously (each feature 

vector has its own combination of features).  An alternative would be to use a feature 

selection approach to explore each feature vector and its corresponding classifier 

separately.  However, this would include the limitation of only being able to use test 

data that the specific individual classifier was designed to discriminate. 
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Table 4.3 provides the selection achieved from this GA based approach.  The selected 

feature subsets are relatively small in size.  On a per image basis the feature subsets 

contained 7 features for each classification.  Feature subsets of 6 features and 9 

features are selected on a per patch basis.  The RBF kernel with a 𝛾 of 1 was selected 

on both levels (image and patch). 

From table 4.3, it is apparent that feature subsets contained a mix of features, but 

are more heavily orientated towards morphology based features.  Many of the 

features that were deemed to have a high discriminating ability by the Wilcoxon test 

have been excluded from the feature subset due to their redundancy.  Also it’s 

apparent that almost all features possessing a low discriminating ability by the 

Wilcoxon test have been excluded due to them being irrelevant.  However, each 

feature subset does still retain a couple of lower ranked features.  This was expected 

because features which are completely irrelevant individually can provide significant 

performance improvements when considered with other features.  

The proposed method does achieve better performance metrics than most of the 

other published methods, as shown in table 4.4.   However, as stated in chapter 3, 

comparisons are difficult to make as there exists variability in terms of their 

application and no standard datasets exist for testing.  The results in table 4.4 show 

the performance of the proposed system is superior to that of chapter 3, achieving a 

sensitivity of 100.00% and a specificity of 97.50% compared to a sensitivity of 

100.00% and a specificity of 92.50% on a per image basis.  The proposed method also 

achieves a maximum accuracy of 94.54% with a sensitivity of 91.38% and a specificity 

of 96.00% compared to a maximum accuracy of 92.35% with a sensitivity of 87.93% 

and a specificity of 94.40% for the method in chapter 3 on a per patch basis.  From 

the examples of classified images shown in figure 4.9 and figure 4.10 and the 

classified patches shown in figure 4.11 it is clear that the algorithm responds well to a 

range of new vessel formations and has the ability to avoid false responses despite 

the presence of other pathology (bright lesions, dark lesions etc.) and reflection 

artefacts.   
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The results that achieve maximum performance on each level (image and patch) do 

not correspond to the same operating point.  This was also documented in chapter 3.  

The reported per image performance of 100.00% and 97.50% for sensitivity and 

specificity, respectively, corresponds to a per patch performance of 31.03% and 

99.20% for sensitivity and specificity, respectively.  This illustrates that identifying any 

part of any new vessel region in the image is sufficient for the image to achieve a new 

vessel label.   

From figure 4.11 it is clear that the emphasis on a per patch basis is to detect as many 

new vessel patches as possible.  This further highlights how the process at the two 

levels (image and patch) differs.  The actual classification process in terms of SVM 

boundaries is designed to label pixels, and this equates to a patch level (recall a pixel 

can be referred to with the term patch).  Therefore, unlike on a per image basis, 

enhancing the results on a per patch basis is based on a direct enhancement of the 

SVM boundaries.  The fact that the features selected for the per image and per patch 

basis (table 4.3) vary significantly further suggests that the requirements for 

classification on each level differ significantly.  Evaluation on a per image basis may 

be appropriate for current clinical application; however, from a computer science 

point of view the development and evaluation from a per patch basis should guide 

future work. 

When comparing the figures for the results on a per patch basis from chapter 3 and 

chapter 4, it is apparent that the FNs and FPs patches of figure 4.11 are not a direct 

subset of the FNs and FPs patches in figure 3.20.  Four out of the five FNs from figure 

4.11 match those from figure 3.20 and four out of five FPs from figure 4.11 match 

those from figure 3.20.  Direct subsets of the FNs and FPs patches were not expected 

as the methodology in chapter 4 is not a straight forward extension to the 

methodology of chapter 3.  This is evident from table 4.3, in which the final feature 

vectors used in chapter 4 are not created by simply adding to those from chapter 3. 

Future developments of this method will include further exploration into the 

selection of SVM parameters.  Currently a single set of SVM parameters were 

selected by the GA based system for both classifications 1 and 2.  These are two 
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separate classifications with their own distinct feature sets, and therefore the 

optimal SVM parameters should be searched individually for each.  This should lead 

to further enhancement of the classifier’s performance.  This holds the risk of causing 

overfitting, whilst our current approach is better in terms of generalization.  Another 

aspect that needs attention is the number of generations.  This value needs to be set 

significantly higher to explore whether the fitness function could be further 

increased.  Current limitations restricting the number of generations are the 

computational expense of performing assessment by leave-one-out cross validation 

and the large amount of operating points to assess that arise from dual classification.  

Note that evaluation has to be performed for every single chromosome in the GA 

based approach.  These limitations were the reason why the optimization problem 

was simplified with the use of discrete values to represent continuous variables.  

This chapter provides a framework to demonstrate the use of GAs for feature and 

parameter selection.  However, there is potential to enhance the system’s 

performance through the further exploration of GA settings.  This ranges from the 

techniques used for selection, crossover and mutation to the rates used for crossover 

and mutation.   

In conclusion, this chapter has further enhanced the automated system that is 

capable of detecting the presence of new vessels whilst reducing false responses to 

bright lesions, dark lesions and reflection artefacts.  This involved the use of feature 

vector expansion followed by a genetic algorithm based approach to perform feature 

selection and SVM parameter selection. 
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5 PROLIFERATIVE DIABETIC RETINOPATHY DETECTION USING DUAL 

ENSEMBLE CLASSIFICATION 

 

This chapter further explores the framework of dual classification, which is now 

combined with an alternative classifier and feature selection technique in order to 

investigate if classification accuracy can be improved.  The SVM classification used in 

the previous chapters is replaced with a new supervised method for the detection of 

new vessels by using an ensemble classifier of boot strapped (bagged) decision trees.  

The classifier based on the boot strapped decision trees is a classic ensemble 

classifier, which has been broadly applied in many application areas of image analysis 

[39], but has not been utilized for detecting neovascularization.  An important feature 

of the bagged ensemble classifier is that the classification accuracy can be estimated 

during the training phase, without supplying the classifier with test data.  The 

importance of each feature in the classification can also be predicted during the 

training phase, and this information allows for a feature selection procedure to be 

performed.  Feature selection is performed on the same 21-D feature vector derived 

in chapter 4. 

The general framework remains very similar to that depicted in figure 3.1 and is 

shown in figure 5.1.  Work from this chapter was used to create the publication [137].  
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Figure 5.1: System architecture. 

 

5.1 Methodology 

5.1.1 Dual Ensemble Classification 

This follows the same mechanism of dual classification as described in the previous 

chapters, but SVM classification is replaced with ensemble classification.  Two 

separate 21-D feature vectors were produced.  All features were normalised so that 

each feature had zero mean and unit standard deviation.  Independent classification 

was performed for each feature vector using an ensemble system of bagged decision 

trees.  These two independent outcomes were then combined to a produce a final 

decision.  The classification worked on a pixel level.  When complete, all pixels 

labelled as new vessels were morphologically dilated with a structuring element the 

size of the sub-window to illustrate the new vessel regions. 
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5.1.2 Ensemble Classifier 

The process of consulting multiple experts or seeking multiple opinions ahead of final 

decision making is almost our second nature.  The wide-spread gains of such a 

procedure in automated decision making applications give rise to the ensemble 

classification framework. 

In ensemble classification [115], multiple classifiers and models are tactically 

generated and combined in order to give the solution to a machine learning problem, 

with a goal of obtaining better performance than could be obtained from any of the 

constituent classifiers/models.  This process is used to abbreviate the likelihood of 

inadequate or unfortunate selection while improving the performance of the 

classifier.  We use this strategy instinctively in our day to day activities, where we 

consider the opinion from several experts, evaluate and mingle their 

recommendations for establishing a well optimized and well-versed conclusion.  In 

the same manner, the ensemble methods utilize multiple classifiers/models to 

accomplish gain in classification performance by mixing/aggregating the outcomes 

from several weak learners into one high-class classifier, with the goal of reducing the 

variance and amplifying the confidence in the decision.  In this approach we used the 

decision trees as the classification model and the results of these weak learners were 

combined using Bootstrap aggregation, also known as bagging. 

Breiman’s bagging [138], also known as bootstrap aggregating, is among the most 

primitive ensemble methods, which is most perceptive and simplest to implement, 

with surprisingly fine results.  In bagging, the component classifiers (in this case the 

decision trees) are developed on the bootstrap replicas of the training dataset.  This 

is done by a random selection of “𝑁” training instances out of “𝑁” with replacement, 

where “𝑁” is the size of the training set.  Majority voting is used to combine the 

responses of the individual component classifiers (the decision trees).  The decision 

of the ensemble is the class chosen by most of the component classifiers.  

Traditionally, the component classifiers are of the same general form; for example, all 

hidden Markov model, all neural networks or all decision trees, which was the case in 

this work.  
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Given the original training set 𝑇, multiple sets of training data 𝑇𝑏 are created, where 

𝑏 = 1,2, … . . 𝐵, by randomly sampling 𝑇 with replacement.  “𝐵” is the number of 

component classifiers used in the ensemble system.  On average, each training set 𝑇𝑏 

only contains two-thirds of the original samples. The bagging algorithm as explained 

in [139] is illustrated below. 

Inputs for bagging algorithm 

 Training data 𝑇 = {𝑥1, 𝑥2, ……… , 𝑥𝑁}, where 𝑥𝑖 ∈ 𝑋 is the feature vector of 

the 𝑖th instance in the feature space 𝑋, provided with correct class labels 

𝑤𝑖 ∈ Ω = {𝑤1, …… ,𝑤𝐶} for a 𝐶-class problem.  N  is the size of the training 

set. 

 WeakLearn, (the weak learning algorithm).   

 The Integer 𝐵, specifies the total number of iterations. 

 

Do 𝑏 = 1 . . . .  𝐵 

1. Acquire the bootstrap sample 𝑇𝑏 by randomly choosing 𝑁 observations, 

with replacement, from the training set  𝑇. 

2. Call the routine WeakLearn with 𝑇𝑏 and obtain the hypothesis from the 

classifier 

ℎ𝑏: 𝑋 → Ω. 

3. Add ℎ𝑏 to the ensemble, 𝐸. 

End Do Loop 

 

Test the algorithm with simple majority voting  

Given the unlabelled data instance 𝑧 

1: Estimate the ensemble 𝐸 = {ℎ1, …… , ℎ𝐵} on 𝑧. 

2: Suppose the classifier ℎ𝑏 gives its vote to the class 𝑤𝑗 as, 

 

  𝑣𝑏,𝑗 = {
1
0
  ,

     otherwise

     if ℎ𝑏 picks class 𝑤𝑗 
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3: The total votes obtained by each of the classes are: 

 

𝑉𝑗 = ∑ 𝑣𝑏,𝑗  ,    𝑗 = 1,… , 𝐶.  

𝐵

𝑏=1

 

 

4: The final classification/label is the class that gains the majority of the 

votes. 

 

5.2 Experimental Evaluation 

5.2.1 Materials and Performance Measures 

The materials and performance measures used for this chapter are identical to those 

detailed in chapters 3.  To summarize: 

 60 image dataset (new vessel images = 20, non-new vessel images = 40). 

 Leave-one-out cross validation. 

 Selection of pixels used for training data (selection remains identical). 

 Evaluation on a per image and per patch basis. 

 Performance metrics of sensitivity (SN), specificity (SP), accuracy (Acc), area 

under the ROC curve (AUC). 

 3D ROC surface used to assess dual classification. 

 Per patch basis, optimal operating point = maximum accuracy. 

 Per image basis, optimal operating point = highest specificity at a sensitivity of 

100%. 

 

5.2.2 Ensemble Classifier Evaluation 

An important feature of the bagged ensemble is that the classification accuracy can 

be estimated during the training phase without supplying the test data.  Moreover, 

the importance of each feature in classification can also be predicted during the 

training phase.  The estimates of classification accuracy and the feature importance 

during the training of the classifier is a smart feature of bagging. 
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5.2.2.1   Out-of-Bag Classification Error 

In Bagging, the component classifiers (in this case the decision trees) were developed 

on the bootstrap replicas of the training dataset.  This was done by a random 

selection of 𝑁 training instances out of 𝑁 with replacement, where 𝑁 is the size of 

the training set.  The phenomenon of choosing the 𝑁 out of 𝑁 training instances with 

replacement leaves out 37% of instances on average for every component classifier in 

the ensemble.  The left-overs were called the out-of-bag (OOB) observations and 

were used in the estimation of the predictive power of the ensemble.  The OOB 

predicted responses were compared against the observed responses of all the 

training instances to estimate the average OOB error, which is an unbiased estimator 

of the true ensemble error.  Figure 5.2(A) and figure 5.2(B) show the plot of the OOB 

classification error computed for the classifiers comprised of 100 decision trees for 

each of the classifications respectively.  25 and 30 trees were the optimal choices for 

classification 1 and classification 2, respectively, as OOB classification error remained 

constant with further increase in the number of decision trees in the ensemble. 

 

 

 

 

 

 

 

Figure 5.2: Out-of-Bag classification error for (A) classification 1 and (B) classification 2. 

 

5.2.2.2   Feature Analysis 

For establishing the importance of each feature, the feature importance index was 

computed during the classifier training phase.  The OOB observations were used to 

determine the significance of each individual feature from the feature vector in the 

(A) (B) 



 

149 
 

classification.  In order to predict the feature importance, the OOB data was 

randomly permutated across one variable for all instances and the increase in OOB 

error due to this permutation was estimated.  This increase was directly proportional 

to the importance of the feature in the classification.  The larger the increase, the 

more important the feature was in the classification.  

 

Table 5.1: Summary of feature vector. 

Feature 
Number 

Feature Name Feature 
Number 

Feature Name 

1 Number of vessel pixels 12 Gradient coefficient of variation 

2 Number of vessel segments 13 Line strength mean 

3 Number of vessel orientations 14 Vessel width mean 

4 Vessel density mean 15 Vessel wall gradient mean 

5 Tortuosity mean 16 Vessel wall gradient  coefficient of 
variation 

6 Tortuosity max 17 Compactness 

7 Vessel length mean 18 Linkage 

8 Number of bifurcation points 19 Local grey level mean 

9 Grey level mean 20 Local grey level max 

10 Grey level coefficient of 
variation 

21 Local grey level variation 

11 Gradient mean   

 

 

Figure 5.3: Feature Importance Index, classification 1. 
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Figure 5.4: Feature Importance Index, classification 2. 

 

Figure 5.3 and figure 5.4 shows the graphs for feature importance index (FII) 

calculated from classifiers created with 100 decision trees.  The lowest ranked 

feature was removed (without return) from each feature vector simultaneously and 

the system’s performance was assessed from the final decision achieved from 

combining the two classification outcomes.  This procedure continued until there was 

any drop off in the optimal operating point, and the feature vectors prior to this drop 

off were chosen.  This resulted in 33% of the most significant features being kept for 

both feature vectors for evaluation on a per image basis and 24% of the most 

significant features were kept for both feature vectors for evaluation on a per patch 

basis.   

 

5.2.3 Results  

ROC curves of the proposed system for evaluation on a per image basis and per patch 

basis are depicted in figures 5.5(A)-(B).  These represent the performance using the 

feature vectors achieved from feature selection.  The features selected are shown in 

table 5.2.  The AUC value for the per image basis is 0.9505.  The optimal operating 

point according to the application specific performance measure is a sensitivity of 

100.00% and a specificity of 95.00%.  For a per patch basis the AUC value is 0.9308.  

The operating point with maximum accuracy of 90.71% gives a sensitivity of 81.03% 
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and a specificity of 95.20%.  Table 5.3 shows these results along with the reported 

results from other new vessel detection methods.  

Examples of classified images are given in figure 5.7 and figure 5.8.  Recall, the 

number in the bottom right hand corner of the figures specifies the number of 

candidate pixels classified as new vessels.  All positive pixels were then 

morphologically dilated with a structuring element the size of the sub-window used 

in feature extraction, and the resultant was the delineation of new vessel regions 

(indicated with a white boundary).  Any image containing any candidate pixels 

classified as new vessels, and therefore any delineated region is classified as a new 

vessel image.  As stated earlier, the performance evaluation of delineation was not 

assessed.  However, figure 5.6 provides the manual delineation of new vessel regions 

marked by an ophthalmologist in order to allow for a visual comparison to the 

delineation shown in figure 5.7.  In addition to this, table 5.4 provides the number of 

candidate pixels classified as new vessels and the number of new vessel regions that 

have been successfully detected for each image in the dataset.  The image numbers 

in table 5.4 correspond to those listed in appendix II, in which images 1-20 are PDR 

images and 21-40 are non-PDR images. 

The MATLAB Code took 683 seconds on an Intel(R) core(TM)2 Quad CPU Q9300 at 2.5 

GHz to process each image using the full 21-D feature vectors.  This was reduced to 

498 seconds once the feature vectors had been reduced in dimensionality.  
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Table 5.2:  Selected features.  

 

 

 

 

 

 

 

 

 

Figure 5.5:  ROC curves.  (A) Performance on a per image basis.  (B) Performance on a per 
patch basis. 

 

 

 

 

 

 

Level Classification Features 

Image 1 4, 2, 1, 8, 17, 3, 7 

2 2, 1, 3, 17, 8, 4, 19 

Patch 1 4, 2, 1, 8, 17 

2 2, 1, 3, 17, 8 

(A) (B) 



 

153 
 

 

 

 

Table 5.3:  Reported results for new vessel detection methods. 

 

 

 

 

 

 

Algorithm SN SP Acc AUC Level 

Hassan [70] 63.90 89.40 - 0.7045 Pixel 

Jelinek [71] 94.00 82.00 - 0.900 Image 

Goatman [72] 84.2 85.9 - 0.911 Image 

Arputham [73] 84.70 86.10 - - Image 

Pavai [74] 88.89 91.30 - - Image 

Akram [76] 98.93 96.35 - - Segment 

Akram [77] 98.00 97.00 98.00 0.980 Segment 

Akram [77] 96.00 94.00 0.95 - Image 

Saranya [78] 96.25 89.65 96.53 - Image 

Welikala [79] 100.00 70.00 - - Image 

Nithyaa [86] - - - 0.947 Image 

Agurto [87] 100.00 88.00 - 0.980 Image 

Agurto [88] 96.00 83.00 - 0.940 Image 

Vatanparast [90] 99.62 96.61 - - Patch 

Lee [91] 96.30 99.10 98.50 0.993 Image 

Chapter 3 100.00 92.50 95.00 0.9693 Image 

Chapter 3 87.93 94.40 92.35 0.9616 Patch 

Chapter 4 100.00 97.50 98.33 0.9914 Image 

Chapter 4 91.38 96.00 94.54 0.9600 Patch 

Proposed (21 features) 100.00 95.00 96.67 0.9734 Image 

Proposed (21 features) 79.31 95.20 90.16 0.9557 Patch 

Proposed (7 features) 100.00 95.00 96.67 0.9505 Image 

Proposed (5 features) 81.03 95.20 90.71 0.9308 Patch 
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Figure 5.6:  Location and delineation of new vessel regions marked by an ophthalmologist. 

 

(A) (B) 

(C) (D) 

(E) (F) 
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Figure 5.7:  Results of the proposed system on a per image basis.  True positive images.                   
(A)-(F) Corresponds to figures 5.6(A)-(F) respectively.   

(A)   32 (B)  60 

(F)   26 (E)   30 

(D)    1 (C)    3 
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Figure 5.8:  Results of the proposed system on a per image basis.  (A)-(G) True negative 
images.  (H)-(I) False positive images. 

 

 

 

 

(H) 

(A)   0 (B)   0 (C)   0 

(D)   0 

(G)   0 (I)  31 (H)  23 

(F)   0 (E)   0 
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Table 5.4: The number of candidate pixels classified as new vessels and the number of 
correctly detected new vessel regions during assessment on a per image basis. 

Image N0 Manually marked new 

vessel regions 

Candidate pixels classified as 

new vessels 

Correctly detected new 

vessel regions 

1 3 30 2 

2 4 30 2 

3 5 1 1 

4 7 165 3 

5 2 46 2 

6 3 62 1 

7 1 31 1 

8 2 32 2 

9 2 60 2 

10 3 23 1 

11 2 3 1 

12 5 157 3 

13 2 19 1 

14 2 37 1 

15 1 3 1 

16 3 60 1 

17 1 176 1 

18 3 133 2 

19 2 26 2 

20 3 148 2 

21 0 0 - 

22 0 0 - 

23 0 31 - 

24 0 0 - 

25 0 0 - 

26 0 0 - 

27 0 0 - 

28 0 0 - 

29 0 0 - 

30 0 0 - 

31 0 0 - 

32 0 0 - 

33 0 0 - 

34 0 0 - 

35 0 0 - 

36 0 0 - 

37 0 0 - 

38 0 0 - 

39 0 0 - 

40 0 0 - 

41 0 0 - 

42 0 0 - 

43 0 0 - 

44 0 0 - 

45 0 0 - 

46 0 0 - 

47 0 0 - 

48 0 0 - 

49 0 0 - 

50 0 0 - 

51 0 0 - 

52 0 0 - 

53 0 0 - 

54 0 0 - 

55 0 0 - 

56 0 23 - 

57 0 0 - 

58 0 0 - 

59 0 0 - 

60 0 0 - 
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5.3 Discussion and Conclusion 

In this chapter we have further investigated the dual classification new vessel 

detection method.  An alternate classifier and feature selection technique were 

applied in order to provide a comparison with the results from the previous chapter.  

This classifier has previously not been utilized for detecting neovascularization and 

was tested on the basis of its promising performance from other work in the field of 

retinal image analysis [39].  

The contribution of this chapter was the integration of ensemble classification which 

was compared to the support vector machine classification used in chapters 3 and 4.  

The ensemble method utilized multiple classifiers to accomplish gain in classification 

performance by mixing the outcomes from several weak learners into one high-class 

classifier.  Decision trees were used as the classification model and the results of 

these weak learners were combined using bootstrap aggregation (bagging).  A 

feature of the bagged ensemble was its ability to predict the importance of each 

feature during the training phase.  This was useful to identify the most relevant 

features, allowing for feature selection to be performed.  An advantage of this 

feature selection procedure was its ease of implementation in comparison to the GA 

based approach of chapter 4. 

From table 5.3 it is evident that the proposed method does achieve better 

performance metrics than most of the other published methods.  However, as stated 

in chapter 3 and 4, comparisons are difficult to make as there exists variability in 

terms of their application and no standard datasets exist for testing.  The results from 

table 5.3 show that the performance of the proposed system is inferior to that of 

chapter 4, achieving a sensitivity of 100.00% and a specificity of 95.00% compared to 

a sensitivity of 100.00% and a specificity of 97.50% on a per image basis.  Also, a 

maximum accuracy of 90.71% with a sensitivity of 81.03% and a specificity of 95.20% 

is achieved compared to a maximum accuracy of 94.54% with a sensitivity of 91.38% 

and a specificity of 96.00% on a per patch basis.  However, the performance of the 

proposed system is superior to that of chapter 3 on a per image basis, achieving a 

sensitivity of 100.00% and a specificity of 95.00% compared to a sensitivity of 
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100.00% and a specificity of 92.50%.  From the examples of classified images shown 

in figure 5.7 and figure 5.8 it is clear that the algorithm responds well to a range of 

new vessel formations and has the ability to avoid false responses despite the 

presence of bright lesions, dark lesions and reflection artefacts.  

Following feature selection using the feature importance index, the system’s 

performance on a per image basis remained the same with a sensitivity of 100.00% 

and a specificity of 95.00%.  On a per patch basis, feature selection provided a small 

improvement in performance with the maximum accuracy moving up from 90.16% to 

90.71%.  Therefore, feature selection did not provide significant improvements in 

respect to its main objective (classification performance).  However, the feature 

vectors were significantly reduced in dimensionality which in turns decreases the 

computational cost of feature generation, classifier training and classification.  On a 

per image basis more than 66% of features were removed from the 21-D feature 

vector, with only 7 features being retained for each feature vector.  This resulted in 

the removal of 27% of the computational time needed to process each image.  

However, the feature selection technique in chapter 4 resulted in similar reductions 

in computational time.  On a per patch basis more than 76% of the features were 

removed, retaining only 5 features for each feature vector. 

The feature importance index feature selection technique used in this chapter, like 

that of chapter 4, interacts with the classifier and models feature dependencies.  

However, unlike that of chapter 4, the selected features more closely correlate to 

those that would have been achieved by applying a filter approach to the Wilcoxon 

rank sum test results (see section 4.2.2).  The selected features are almost all 

morphological based features, whereas those selected in chapter 4 contained slightly 

more of a mixture of features. 

Whilst the performance of the proposed system is inferior to that of chapter 4, 

ensemble classification does show potential for use in new vessel detection.  Prior to 

feature selection, with use of the full 21-D feature vector, dual ensemble 

classification (chapter 5) achieved a sensitivity of 100% and a specificity of 95.00%, 

outperforming the dual SVM classification (chapter 4) which could only achieve a 
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sensitivity of 100.00% and a specificity of 82.50%.  This suggests that the ensemble 

classification is highly effective.  However, the proposed system of chapter 4 employs 

a superior feature selection technique which then allows it to overtake and 

outperform the proposed system of this chapter.   

Both feature selection techniques from chapters 4 (GA based approach) and this 

chapter (OOB feature importance index based approach) share similarities in their 

application.  These are: allowing both feature vectors to be altered simultaneously, 

where each feature vector has its own combination of features and assessment is 

performed using the final decision achieved from combining the two classification 

outcomes.  The difference is that the approach of chapter 4 is a lot more thorough in 

its exploration of the combinations of features.  The approach from chapter 5 is a lot 

more restricted in its exploration, where the number of features from both feature 

sets are fixed to be equal and supposedly weaker features are removed early on 

without any reconsideration. 

As extensively documented in chapter 3 and 4, the results that achieve maximum 

performance on each level (image and patch) do not correspond to the same 

operating point.  The reported per image performance of 100.00% and 95.00% for 

sensitivity and specificity, respectively, corresponds to a per patch performance of 

34.48% and 99.20% for sensitivity and specificity, respectively.  Therefore, the 

classification requirements on each level differ significantly.  This is further shown by 

the number of features being used at each level being different. 

Further developments of this method will involve the inclusion and evaluation of the 

boosting technique for comparison to our current methodology.  Boosting [140] also 

creates an ensemble of classifiers by re-sampling the data, which is then combined by 

majority voting, but it takes a different re-sampling approach than bagging.  Another 

aspect to be explored would be to assess whether the results of the dual ensemble 

classification could be improved with the use of the genetic algorithm based feature 

selection approach.  

In conclusion, this chapter has further justified the use of the algorithm’s framework 

incorporating the use of the SVM classifier and a genetic algorithm based feature 
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selection approach.  This was achieved by showing its performance to be superior to 

that of a framework with the incorporation of an alternative state-of-the-art 

classifier, ensemble classification of boot strapped decision trees. 
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6 DISCUSSION AND CONCLUSION 

 

In this thesis we have presented the development of a methodology designed for the 

automated detection of proliferative diabetic retinopathy (PDR).  This chapter 

includes the justification of the project, main contributions, results, final conclusions 

and future work.   

Diabetic retinopathy (DR) is a sight threatening disease.  The DR screening process 

allows for the early detection of the disease and therefore allows for timely 

intervention in order to prevent vision loss.  The integration of automated detection 

systems has numerous benefits including significantly reducing the manual grading 

workload and helping towards ensuring time targets are met for referrals.  The 

grading pathways (figures 1.9 and 1.10) stress the importance of the detection of R3 

(PDR) for fast tracking due to their high risk of severe loss of vision.  Therefore, if 

automated systems are to take on a substantial role in the grading pathway then they 

must be capable of detecting PDR.  This supports the efforts of this project into the 

automated detection of new vessels (PDR), which is a research area that hasn’t 

received the attention it deserves. 

From the literature review and initial investigations, the best course of action was to 

build a framework based on vessel segmentation tailored towards PDR, followed by 

analysing the characteristics of the segmented binary vessel map in search of 

abnormality.  This approach was followed, but with the novelty of creating two 

different segmented vessel maps, which works towards the objective of detecting 

new vessels whilst reducing false responses caused by bright lesions and other retinal 

features.  Segmentation methods included a standard line operator approach and a 

CHAPTER 
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novel modified line operator approach.  The former targeted accurate segmentation 

of new vessels and the latter targeted the reduction of false responses to non-vessel 

edges.  Each segmented map held vital information, and therefore both maps were 

used in the detection of new vessels.  The performance of the algorithm was shown 

to be superior when the information extracted from each of these two maps were 

processed separately using a dual SVM classification framework as opposed to single 

SVM classification and multiclass SVM classification.  SVM classification has gained in 

popularity in the field due to its high performance accuracy and was therefore chosen 

as the classification technique of preference. 

When extracting information from the segmented vessels maps in the form of local 

characteristics, it was evident that high vessel area alone was not enough to identify 

new vessels.  A more detailed analysis of the local characteristics of the vasculature 

was required as well as the removal of straight vessels.  This led to the initial creation 

of a 4-d feature vector to be used by the SVM classifiers, which was later expanded to 

a 21-d feature vector which included morphology, intensity and gradient based 

features.  Feature vector reduction was performed in order to enhance the 

performance of the system as well as save on computation time.  This was performed 

by using a genetic algorithm (GA) based feature selection approach which was very 

thorough in its search for the optimum feature subsets and also had the capability of 

optimising the parameters of the SVM classifiers.  This GA based approach also had 

the advantage of being able to thoroughly explore both feature vectors 

simultaneously.  Following feature selection, the derived feature subsets were heavily 

orientated towards morphology based features. 

The proposed methodology achieves a good standard of results for the detection of 

new vessels, in which it responds well to a variety of new vessel formations and has 

the ability to avoid false responses despite the presence of bright lesions, dark lesions 

and reflection artefacts.  The dual SVM classification framework that used a 4-d 

feature vector (chapter 3) achieves sensitivity of 100.00% and a specificity of 92.50% 

on a per image basis.  For a per patch basis, it achieves a maximum accuracy of 

92.35% that corresponds to a sensitivity of 87.93% and a specificity of 94.40%.  The 

results were improved upon with the incorporation of a 21-d feature vector along 
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with the GA based feature selection approach (chapter 4).  Results now stand at a 

sensitivity of 100.00% and a specificity of 97.50% on a per image basis.  On a per 

patch basis, a maximum accuracy of 94.54% that corresponds to a sensitivity of 

91.38% and a specificity of 96.00% was achieved.  The performance on a per image 

basis is more useful from a clinical point of view.   

A dual ensemble classification framework was created to investigate if the 

performance achieved by the dual SVM classification framework could be improved 

upon.  The ensemble classifier was based on boot strapped decision trees, which has 

the ability to predict feature importance, and therefore facilitates an easy to 

implement feature selection procedure.  The results were shown to be inferior to 

those achieved by dual SVM classification, achieving a sensitivity of 100.00% and a 

specificity of 95.00% on a per image basis.  On a per patch basis, a maximum accuracy 

of 90.71% with a sensitivity of 81.03% and a specificity of 95.20% was achieved.  

Ensemble classification does show potential for use in the detection of new vessels; 

however, it lacked in overall performance as the associated feature selection 

procedure was not as thorough as the GA based feature selection approach. 

The results of the proposed system (dual SVM classification and GA based feature 

selection, chapter 4) achieves better performance metrics than those reported by 

other published new vessel detection methods, besides Vatanparast [90] and Lee 

[91].  However, true comparisons are difficult to make as there exist no standard 

datasets for testing.  Therefore, with each reported methodology creating its own 

dataset, it is difficult to know how challenging a task that dataset provides.  The 

dataset used to evaluate our proposed system was created from a public and local 

source.  It was created to be a challenging dataset, containing a large amount of 

other pathology in the non-new vessel images in order to demonstrate the 

capabilities of the proposed algorithm in avoiding false responses and it also 

contained a varied selection of new vessel images.  Akram [77] used four publicly 

available retinal image databases to create a dataset containing 52 new vessel 

images.  Such numbers of publicly available images gives the potential to create a 

standard database for evaluating PDR detection.  Our intention was to evaluate our 

proposed system on this dataset to enable a comparison against the results of Akram 
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[77].  However, this was not possible as the image file names used are not available 

(not listed, and the authors were unresponsive over email) and we were unable to 

find the number of new vessel images that were reported.  As the field of PDR 

detection advances, a publicly available PDR dataset will be invaluable as it could be 

used as a standard dataset which would help in the evaluation and direct comparison 

of different algorithms.  The requirements of such a database are detailed in section 

2.4.6. 

Following on from the paragraph above, further reasons why true comparisons are 

difficult to make is that there exists variability in terms of the application of the 

methodologies.  Our proposed system aims to detect both NVE and NVD, whereas 

Goatman [72], Arputham [73], Pavai [74], Nithyaa [86] and Agurto [88] aim only to 

detect NVD.  Our proposed system is applied to conventional retinal images, whereas 

Jelinek [71] applied their method to fluorescein images, taking advantage of their 

higher contrast.  The level at which performance evaluation is carried out also varies.  

Our proposed system has been evaluated on a patch and image level, whereas 

Hassan [70] has been evaluated on a pixel level and Akram [76] on a segment level.  

There remain a few reported methods [77,78,87,90,91] that are similar to our 

proposed system in terms of these aspects.  The source codes relating to these 

algorithms have not been made public by the authors, and therefore we were unable 

to apply these methods to our dataset, which would have enabled true comparisons 

to be made.  Alternatively, recreating these methodologies in order to be tested on 

our dataset was an option.  However, the high level of complexity of these particular 

methodologies combined with the incomplete information regarding parameter 

settings would make this a substantial task with no guarantees of achieving 

performances that would accurately represent the reported methods.  None of the 

reviewed articles on new vessel detection provide such comparisons.  Therefore, like 

the rest of the field, we await the release of a publicly available new vessel dataset.   

The dual classification framework requires the two independent classification 

outcomes to be combined in order to achieve a final decision.  The approach taken is 

that both probability scores are separately thresholded and the sample is awarded a 

new vessel label only when both classifications agree on its identity being new 
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vessels.  An alternative would be to combine the two probability scores into a single 

score and then threshold this in order to achieve the label of the sample.  This 

approach wasn’t taken as bright lesions and reflection artefacts may possess a low 

probability of being new vessels from classification 2, but they can receive a very high 

probability from classification 1; therefore, the latter would sway a combined score 

towards achieving an incorrect new vessel label. 

The novel modified line operator plays a significant role in the proposed method.  It is 

a vessel segmentation approach that is targeted at the reduction of false responses 

to non-vessel edges such as those caused by bright lesions.  An alternative approach 

would be to remove bright lesions and reflection artefacts prior to the application of 

vessel segmentation.  Niemeijer [20], in a method designed to detect red lesions, 

removes all bright lesions by removing all pixels above a specific value following 

shade correction.   Aside from bright lesions and reflection artefacts, this will also 

remove fibrosis (fibrous tissue associated with new vessels) and the optic disc.  

Alternatively, the use of a specific exudate detection method [62-66,68] could be 

applied to target just the removal of exudates.  However, the removal of image 

content in these alternatives could jeopardise the contrast and general appearance of 

vessels and therefore is avoided by vessel segmentation methods. 

With a strong framework established any future developments would include further 

exploration into elements used by the framework as opposed to changing the actual 

framework.  This includes further expansion of the feature vector and further 

comparative work into the integration of alternative classifiers.  The GA based feature 

selection approach has shown its superiority in comparison to the feature selection 

approach associated with the ensemble classifier.  However, it is possible that the 

results achieved by the GA based approach can be further enhanced.  The GA based 

approach currently searches for a single set of SVM parameters for both 

classifications 1 and 2, when in fact the system performance could potentially be 

enhanced if the search is altered to find two sets of SVM parameters (one for each 

classification).  Also the GA based approach, due to time constraints, is currently 

limited by the number of generations being set at 10.  This should be ideally set at a 

value over 10,000, allowing more opportunity for the solution to evolve.  This can be 
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achieved by increasing the computational efficiency of our proposed system, as well 

as performing evaluation on a larger dataset and thereby removing the need for 

leave-one-out cross validation. 

A difficult dilemma is deciding whether evaluation on a per image or patch basis 

should lead future work.  Requirements on each level differ significantly, to the 

extent that different feature subsets are preferred for each level.  Evaluation on a per 

image basis may be currently more useful from a clinical point of view.  However, this 

level of evaluation puts no emphasis on identifying all new vessel regions within the 

image and instead identifying any part of any new vessel region in the image is 

sufficient to achieve a positive image label.  This strategy may be effective as it keeps 

specificity high, although it brings with it a certain level of risk.  The ideal scenario 

would be the identification of all new vessel regions within the image.  With this in 

mind, evaluation on a per patch basis should guide future work, as on a patch level 

the emphasis is to detect as many new vessel patches as possible.  The optimum per 

patch performance currently stands at a sensitivity of 91.38% and a specificity of 

96.00%; remember this does not correspond to the optimum per image performance.  

Striving to maintain this high sensitivity whilst getting the specificity to reach above 

99.00% would be a suitable goal for future work.  A per patch performance of this 

capability would mean the system would be capable of achieving a similar optimum 

per image performance to what it currently does (sensitivity = 100.00%, specificity = 

97.50%), coupled with the possibility of almost all of the new vessel regions being 

identified within the images. 

Our final goal is to develop an interactive retinal image analysis software tool 

focusing on the detection of PDR for use in screening programmes allowing for PDR 

images to be fast tracked to ophthalmology.  This could be combined with a basic 

microaneurysm detection strategy allowing for the classification of DR disease/no DR 

disease.  Our PDR detection system prevents bright lesions (exudates) from being 

mistakenly identified as new vessels.  However, exudates can be significant in their 

own right, particularly as they can indicate possible clinically significant macular 

oedema.  Therefore, exudates also require referral (less urgent), and for this reason 
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the potential software could also include exudate detection.  Ideally the software 

would be a full DR disease detection system detecting all DR grades. 

Prior to considering a software tool, the computational efficiency of the system 

would have to be improved.  Currently the MATLAB code takes 527 seconds on 

average to process each image on an Intel(R) core(TM)2 Quad CPU Q9300 at 2.5 GHz.  

The MATLAB code was written with the intention to be used for research purposes 

only, and therefore there remains a large scope for improvements in computational 

efficiency.  

The results of the proposed system indicate a good potential for clinical application, 

with a sensitivity of 100.00% and a specificity of 97.50% on a per image basis.  

Theoretically, these results should be maintained if the system is tested on a large 

population.  However, such testing is essentially if the system is to be validated for 

clinical application.  Even though the dataset used in this project was carefully 

selected to include a range of challenging cases, a large population may highlight 

various other overlooked challenging cases. 

In conclusion, this thesis has demonstrated a PDR automated detection system that is 

capable of detecting the presence of new vessels whilst reducing false responses to 

bright lesions, dark lesions and reflection artefacts.  PDR detection is a vital 

requirement if automated systems are to take on a substantial role in the grading 

pathway for diabetic retinopathy screening. 
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APPENDIX I: LINE OPERATOR PARAMETERS 

This section provides a brief insight into how visual inspection was used to empirically 

derive the parameters of the line operator.  The descriptions below correspond to 

the following pages which contain multiple line strength images (including a zoom-in 

new vessel region) for a single retinal image.  Parameters are relative to a retinal 

image size of 1479 x 1479 pixels. 

Line operator width: Chosen in accordance with vessel calibre.  New vessels are 

predominantly small/medium in calibre, therefore an operator width of 25 pixels was 

chosen in accordance.  An operator width below 25 pixels tends to enhance noise and 

incorrectly cause two separate strong responses for medium/large vessels.  An 

operator width above 25 pixels tends to struggle when vessels are closely clustered. 

Line operator length: Chosen in accordance with vessel length.  New vessels tend to 

be relatively short and tortuous in nature.  An operator length of 15 pixels was 

chosen in accordance.  An operator length below 15 pixels tends to be sensitive to 

noise.  An operator length above 15 pixels tends to struggle with enhancing tortuous 

vessels. 

Line operator length (straight vessel removal): An operator length of 81 pixels was 

chosen in order to enhance only relatively straight vessels.  An operator length below 

81 pixels still retains some sensitivity to tortuous vessels.  An operator length above 

81 pixels has a reduction in sensitivity to straight vessels.  
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LINE OPERATOR WIDTH 

Optimal width = 25 pixels.  A pre-fixed length of 15 pixels is used for these examples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Width = 13 pixels Width = 19 pixels 

Width = 25 pixels Width = 31 pixels 

Width = 37 pixels Width = 43 pixels 
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LINE OPERATOR LENGTH 

Optimal length = 15 pixels.  A pre-fixed width of 25 pixels is used for these examples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Length = 5 pixels Length = 10 pixels 

Length = 15 pixels Length = 20 pixels 

Length = 25 pixels Length = 30 pixels 
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LINE OPERATOR LENGTH (STRAIGHT VESSEL REMOVAL) 

Optimal length = 81 pixels.  A pre-fixed width of 25 pixels is used for these examples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Length = 51 pixels Length = 66 pixels 

Length = 81 pixels Length = 96 pixels 

Length = 111 pixels Length = 126 pixels 
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APPENDIX II: DATASET 

Retinal image database 

New vessel images, 1-20: 

Images contain new vessels elsewhere (NVE) and new vessels at the optic disc (NVD).   

Non new vessel images, 21-60: 

21-40: Normal images.  

41-60: Images containing bright lesions, dark lesions and reflection artefacts. 
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APPENDIX III: MANUAL DELINEATION 

Location and delineation of new vessel regions within the 20 new vessel images; 

marked by an ophthalmologist.  Shown on pre-processed images for better 

visualization. 
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