Investigation of Tracking Processes

Applicable to Adjacent
Non-overlapping RGB-D Sensors

Kingston
University
London

Author: Emilio .J. Alimazan
Director of Studies: Professor Graeme A. Jones

Digital Imaging Research Centre
Faculty of Science, Engineering and Computing
Kingston University

Penrhyn Road, Kingston-upon-Thames

KT1 2EE. London, U.K.

This Thesis is being submitted in partial fulfilment of the requirements of
Kingston University for the Degree of
Doctor of Philosophy (Ph.D.)
October 2014



1. External Examiner: Dr. Antouio Sanz Montemayor
Departamento de Ciencias de la Computacion

Grupo GAVAB - Linea CAPO

Universidad Rey Juan Carlos

C/Tulipdn, S/N,

28933 - Méstoles - MADRID

SPAIN

2. Internal Examiner: Professor Tim Ellis

School of Computing and Information Systems (CIS)
Faculty of Science, Engineering and Computing
Kingston University London

Penrhyn Road, Kingston-upon-Thames,

London, KT1 2EE,

United Kingdom

Day of the defence: 26/09/2014.

Signature from Chair of Ph.D. committee:

Digital Imaging Research Centre (DIRC)

Faculty of Science, Engineering and Computing (SEC)
School of Computing and Information Systems (CIS)
Kingston University London

Penrhyn Road, Kingston-upon-Thames

London, KT1 2EE

United Kingdom



Declaration

This report is submitted as requirement for a Ph.D. Degree in the School of Com-
puting and Information Systems (Faculty of Science, Engineering and Computing)
at Kingston University. It is substantially the result of my own work except where

explicitly indicated in the text.

No portion of the work referred to in this report has been submitted in support of
an application for another degree or qualification of this or any other UK or foreign

examination board, university or other institute of learning.

The thesis work was conducted from July 2011 to August 2014 under the supervision
of Professor Graeme A. Jones in the Digital Imaging Research Centre (DIRC) of

Kingston University in London.

Kingston-upon-Thames, London, United Kingdom.

i



Copyright Statement

. The author of this thesis (including any appendices and/or schedules to this
thesis) owns any copyright and rights in it (the “Copyright”) and he has given to
Kingston University certain rights to use such Copyright for any administrative,

promotional, educational and/or teaching purposes.

2. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate, in
accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

3. The ownership of certain Copyright, patents, designs, trade marks and other
intellectual property (the “Intellectual Property”) and any reproductions of
copyright works, for example graphs and tables (“Reproductions”), which may be
described in this thesis, may not be owned by the author and may be owned by
third parties. Such Intellectual Property and Reproductions cannot and must not
be made available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

4. The report may be freely copied and distributed provided the source is explicitly
acknowledged and copies are not made or distributed for profit or commercial
advantage, and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission.

5. Further information on the conditions under which disclosure, publication, ex-
ploitation and commercialisation of this thesis, the Copyright and any Intellectual
Property and/or Reproductions described in it may take place is available in the
University IP Policy, in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations and in The University’s
policy on presentation of Theses.

1l



Abstract

The work presented in this thesis provides a framework for monitoring wide area
indoor spaces built from multiple Microsoft Kinect sensors. A large field of coverage
is achieved by placing the sensors in a non-overlapping configuration to reduce the
interference between the projected structured patterns. A novel procedure is proposed
for estimating the geowmetric calibration between sensors that enables a conimon repre-
sentation for all data by providing many corresponding planes in the view volume of
each sensor using a “paddle”.

Within this framework, an investigation is conducted of different depth-based spaces
for people detection and tracking purposes. Kinect v.1 sensors bring a multitude of
benefits to surveillance applications, mainly for occlusion reasoning. However, this sensor
has important limitations in terms of resolution, noise and range. In particular, data
becomes more scattered with distance along the optical axis of the camera resulting in
non-homogencous representations throughout the range. Furthermore, when considering
the aggregated view, each camera produces a different orientation of data. The polar
coordinate space representation of the common ground plane is proposed that mitigates
these limitations and effectively aggregates the data from all sensors.

The use of discriminative appearance models is a chief aspect in order to properly
distinguish people from cach other, especially where the density of people is high. A
multi-part appearance model is presented in this work — the chromogram — which
combines colour with the height dimension offering high discriminative capabilities
especially during occlusions periods.

A critical stage for multi-target tracking systeins is establishing the correct associa-
tion between targets and measurements; also known as the data association problem.
In this context, the data association stage is investigated by evaluating different well
known data association methodologies. An alternative tracking approach which does
not require a data association process is also analysed — the Mean-Shift tracker. A
modified version of the Mean-Shift tracker is proposed for tracking on the ground plane
that integrates the use of chromograms that reduces distractions from the background
and other targets.

A new challenging dataset is proposed for the evaluation of multi-target tracking algo-
rithms. The tracking methodologies proposed in this work are compared quantitatively

in this framework.
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Chapter 1

Introduction

Visual surveillance applications are used for monitoring private and public spaces with
a wide range of purposes such as identification and prevention of illegal behaviours,
facilitating crimes investigations, traflic control, monitoring of patients, homeland
security applications, etc.

These systems proved their effectiveness after the Boston marathon bombing of 2013
where the suspects were identified by inspecting the CCTV footage. This incident also
revealed the necessity of more intelligent systems capable of detecting threats in real
time. Nowadays, a growing need for public security has lead governments and private
companies worldwide to invest in the development of more sophisticated surveillance
systems. The UK government announced in carly 2014 an investment of £1.1bn on
high-tech surveillance systems. The US government is currently spending $3.7bn on
the development of drones for frontier control. The Danish government has invested
DKK 15 million in surveillance solutions to automatically interpret and describe video
(Milestone XProtect© 2014)[1].

Visual surveillance applications are present in a wide range of applications in socicty.
Last year Panasonic released a multi-camera in-car system to aid police officers that
starts recording when a relevant incident is detected. In the retail and marketing sector
an emerging trend is to analyse in-store customer behaviour for video analytic and
statistics. The low-cost airline company Easyjet is developping drones to inspect its fleet
of Airbus aircrafts. The drones will be used to scan and assess Easyjet planes and report
damage back to engineers. Recently Shanghai airport has installed a network of almost
2000 fixed and PTZ cameras for access control, fire detection and luggage handling
system. Furthermore, the farming sector is starting to use cameras for monitoring daily
operations and watch over feed lanes.

Surveillance applications normally rely on traditional intensity-based cameras. How-
ever, these are highly sensitive to illumination conditions and occlusions, and therefore
the use of sophisticated algorithms is required in order to mitigate these effects. Another

possibility to address these problematic situations is the use of alternative sensors. Since
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(a) Hover drone with an integrated camera.  (b) Unmanned Aerial Vehicle (UAV) from the
UIK armed force.
Figure 1.1: The use of drones and UAVs have great potential for surveillance tasks such
as traffic control. monitoring of farms or frontier control. However, there are still much
controversy with their use in public spaces due to the lack of regulations and issues
related to violation of personal privacy. Fig (a)!, Fig (b) °.

the release of the affordable Kinect sensor by Microsoft, the use of RGB-D cameras has
bhecome very popular especially in the rescarch community. Apart from colour, these
sensors also provide with depth information which is robust to illumination conditions
and highly valuable for identifying and resolving occlusions. RGB-D sensors offer the
possibility of monitoring crowded indoor environments such as airports, train stations,
shopping centres, ete. Additionally, since they do not require an external light sonrce
they can be used in dark environments. There are, however some issues associated with
these sensors in terms of limited range, resolution and noise that restrict their use to a
certain type of applications. Researchers have not investigated in much detail the use
of RGB-D sensors bevond their operating range of up to 4-5 m. In this context. this
project provides an opportunity to advance the use of RGB-D sensors in the field of
visual surveillance.

The present work have plenty of applications in real world scenarios. In particular
for monitoring wide area indoor spaces such as airports, museums or parking lots.
Additionally, it could be applied for night surveillance - e.g. monitoring of patients at

night or in offices outside their opening hours.

1.1 Aims and objectives

In this work an investigation will be conducted on the use of multiple RGB-D cameras

for detection and tracking people in large indoor spaces, which is expected to provide

I'Photography by: Don McCullough, Title: “Drone and Moon”
ht t[Js:;’;’\\'\\'\\',Iiic'kl'.nuu,f'piml 0s/6G9214385QN04/

2photography by: UK Ministry of Defence, Title: “Watchkeeper Air System™
https://www flickr.com/photos/defenceimages/
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Figure 1.2: CCTV cameras in Victoria Station, London (UK)'. The city of London
has one of the lli}_’,]l(‘.‘i! number of CCTV cameras of any l'il_\' in the world. Tt has been
estimated that on average an individual may be recorded by more than 300 cameras in
a single day.

multiple benefits to the field of visual surveillance. The following are the main objectives

of the thesis:

e The capabilities and limitations of RGB-D sensors will be analysed in terms of
maximum range, depth resolution, accuracy and interferences produced between
sensors. This study will allow the design of an optimal configuration of multiple

RGB-D sensors for monitoring wide area indoor spaces.

e In order to use efficiently the data from multiple cameras. a calibration methodol-

oev will be proposed to enable a common representation for the data.
o

e The depth dimension will be explored aiming to obtain an optimal space that
effectively aggregates the data from all sensors, mitigates the main limitations
of RGB-D cameras, and allows people segmentations beyond the depth sensor

npt'l'nlillg range.

e Target tracking methodologies will be investigated to be used in complex situations
with multiple people and occlusions. The depth dimension will be introduced to

provide an optimal tracking space that minimizes the number of ocelusions.

IPhotography by: Antonio Martinez. Title: “Ultimo dia”
https:/ /www.flickr.com/photos /poper
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e An important objective will be to produce a discriminative depth-based appearance
model that effectively distinguishes people from one another. Such a model will
be studied in the context of multi-target tracking particularly during occlusion

situations.

e The design of a new and challenging dataset will be investigated aiming to serve
as a suitable platform for the evaluation of people segmentation and tracking
algorithms. In order to produce a functional and comprehensive dataset an
analysis will be conducted to identify the most relevant situations in multi-target

tracking.

1.2 Issues

There are specific issues that will need to be considered in this project.

The Microsoft Kinect sensors presents important limitations in terms of resolution
and noise that restrict their operating range to 4-5 metres. Due to the nature of the
depth sensor based on triangulation the amount of noise increases with distance. Effects
such as blurring, pixelation and quantization are expected to introduce additional
inaccuracies in the results. Additionally, the depth resolution decrecases with distance
which means that the gaps between contiguous depth values increase. These issues
complicate the use of depth data beyond the operating range of the sensor.

Another critical issue related to the Kinect sensor is the fact that it cannot be used
effectively outdoors in presence of direct sunlight or in combination with more Kinect
sensors, namely when all sensors work on the same scene simultaneously. The Kinect
sensor 18 in essence a structured light sensor, and in short it works by projecting a
fixed infra-red (IR) pattern of dots onto the scene which is captured by an IR camera.
The depth of each dot is estimated by comparison with the corresponding dot in a
pre-loaded pattern captured at a known distance. When there are external sources of IR
light projecting onto the same scene (i.e. sunlight, other sensors), the sensor struggles
to identify its own dots resulting in arcas with no depth estimation or erroncous values.

An additional issue common to all visual surveillance systems are occlusions. This
is probably one of the biggest challenges to resolve in detection and tracking scenarios.
Occlusions can be classified as partial occlusion when only some areas of the target
get occluded, or total occlusion when the target disappears completely fromn the scene.
They can also be static or dynamic depending on whether the target got occeluded by
an element from the scene or by other targets, even by the target itself due to rotations
or pose changes. The correct identification of targets during and after occlusions is
highly difficult to resolve since the appearance of targets inevitably changes.

The colour camera of the Kinect is affected by classical issues related to illumination
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conditions. In particular, illumination changes affect directly the appearance model of
targets resulting on possibly incorrect identification of targets. This eflect is even more
noticeable when multiple cameras are employed, where each camera has its own shutter
configuration at each time step yielding different colour representations. Furthermore,
effects like shadows or cluttered backgrounds could interfere with the targets’ appearance
model.

A final issue refers to the design of a suitable evaluation [ramework that allows
the effective assessment of the algorithms presented in this work. It will require the
design of a dataset that covers the challenging situations intended to solve and the

identification of the relevant failure modes of the system.

1.3 Contributions
The main contributions of this thesis are:

e A semi-automatic calibration procedure that estimates the geometric transforma-
tions between pairs of non-overlapping range sensors. The proposed calibration
methodology uses corresponding planes to derive constraints on rotation and

translation.

e A depth-based polar coordinate space representation that mitigates iimportant
limitations of RGB-D sensors in terms of range, resolution and noise. It also
aggregates effectively the data from all sensors allowing segimentations of peo-
ple beyond the operating range of the sensor while minimizing the number of

occlusions.

e Presenting a discriminative new multi-part target appearance model = the “chro-
mogram” — which combines the height dimension in the 3D space with colour
information. This model is especially intended to serve effectively during occlu-

sions.

o A challenging dataset recorded from three non-overlapping RGB-D sensors is
presented. Furthermore, the ground truth annotations, relevant failure modes and
evaluation metrics are included for a comprehensive evaluation of multi-target

tracking algorithms.

1.3.1 Publications to date

o E. J. Almazan and G. A. Jones. Tracking People Across Multiple Non-Overlapping
RGB-D Sensors. In Computer Vision and Pattern Recognition Workshops
(CVPRW), 2013 IEEE Conference on. IEEE, 2013, pp. 831-837.

9,
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e E. J. Almazin and G. A. Jones. Multiple Non-Overlapping RGB-D Sensors for
Tracking People. In Robotics: Science and Systems, 2013.

e Submitted for a conference workshop: E. J. Almmazin and G. A. Jones. A Depth-
based Polar Coordinate System for People Segmentation and ‘Tracking with
Multiple RGB-D Sensors. In IEEE ISMAR 2014 Workshop on Tracking Methods
& Applications 2014.

1.4 Structure of the thesis

This section presents a brief outline of the thesis.

In chapter 2 a review of the state of the art in visual surveillance systems is
conducted with especial consideration to detection and tracking methodologies. In
particular it is described the necessity of solving the data association problem and the
use of discriminative appearance models for multi-target tracking environiments. Some
of the most recent configurations of multi-camera systems for surveillance purposes are
discussed along with popular performance evaluation metrics for detection and tracking
applications.

Chapter 3 presents the surveillance framework proposed in this work. First, the
RGB-D sensor is analysed individually to assess its capabilities in terms of resolution,
noise and maximum range. Second, the design of a non-overlapping configuration
of cameras is presented aiming to maximize the field of coverage and minimize the
interference between IR sensors. Finally, it is introduced a novel semi-automatic
procedure for the calibration of multiple non-overlapping range cameras that enables a
cominon representation for all data.

In chapter 4 the depth dimension is explored in the context of people segmentation.
Three alternative depth-based spaces are presented with the main objectives of effectively
aggregating the data from all sensors and reducing the number of occlusions. A novel
space is introduced that mitigates the main limitations of RGB-D sensors in terms of
resolution and noise allowing segmentations beyond the operating range of the sensor.

Two fundamentally different tracking methodologics are explored in chapter 5 —
the Kalman filter and the Mean-Shift tracker. The Kaliman filter is studied from
the perspective of data association where different methodologics are presented. The
Mean-Shift approach is discussed and its main limitations in multi-target tracking
environments are identified. Some important enhancements are proposed to increase
its performance. Additionally, a discriminative appearance model that combines the
absolute height of the target and colour information is presented. This model is
especially intended to be effective during occlusions and robust to changes in targets’

scale.
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The apparatus for the evaluation of multi-target trackers is presented in chapter
6. A challenging dataset for segmentation and multi-target tracking is produced along
with the ground truth annotations. A study is conducted to identify the relevant failure

modes of the system and a set of metrics is discussed to provide meaningful evaluation.

The two trackers methodologies introduced in chapter 5 are assessed and compared
quantitatively within the proposed evaluation framework.

The final chapter presents a discussion on the main contributions and achievements

of this thesis, combined with some conclusions and suggested future research direction.

A B 18 S o pt <y b e e e



Chapter 2
Literature Review

Typically, CCTV surveillance systems are used offline in courts as proof to incriminate
people, or for online inspections by operators at central monitoring locations. The
efficiency of the system then relies upon the operator, who is required to concentrate
on monitors for long periods of time, a tedious task highly prone to distractions. The
increasing computer power has allowed computer vision techniques to be applied on
the footage obtained by CCTV systems. Nowadays, visual surveillance tends towards
more intelligent systems where relevant situations c.g. illegal behaviours are detected
automatically in real time [2, 3].

There is now an extensive line of rescarch in the use of alternative sensors such
as range scnsors [1, 5], especially since the release of the affordable RGB-D Kinect©
camera by Microsoft. These sensors allow the exploration of different modalitics that
aim to address some of the challenges in video surveillance such as occlusions, varying
illumination conditions or shadows.

In general the classical pipeline of video surveillance applications consists of fore-
ground segmentation, data association, tracking and in some cases event detection or
action recognition modules. When multiple cameras are employed, a prior step for
calibration should be perforied to allow the integration of data from all caineras. The
stage at which the integration is applied varies depending on the system as depicted in
figure 2.1 where two common locations to performm the fusion are shown.

This chapter covers the review of the most relevant aspects and methodologies
of video surveillance applications. In section 2.1 some of the most popular people
segmentation techniques based on foreground detection are discussed. Multi-target
tracking techniques are presented in section 2.2. Section 2.3 covers different multi-
camera environments along with calibration techniques. In section 2.4 is discussed the

performance evaluation of people detection and multi-target trackers.
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Figure 2.1: Pipeline of a video surveillance application. It includes common locations
where the fusion of data from the cameras is performed.

Ficure 2.2: Control room'. Operators spend long hours looking at surveillance monitors.
a tedious task prone to distractions.

2.1 Background Subtraction for People
Segmentation
People segmentation is commonly approached in surveillance applications by means of

foreeround detection techniques. These are in general based on background subtraction,

!]l]illhlﬂ_]-‘i'll_\' by: 1‘51111 (;‘Illltl‘:l[ll. [.I]l']l'l "“Ulll & Doc”

h“l’“: www. flickr.com ]rii-1[|s~ corbould
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where the current image is compared with a background model aiming to detect the
differences which are identified as foreground regions. This process is normally [ollowed
by a step of refinement to reduce noise and group foreground pixels in connected
compounents or blobs — see figure 2.3. In tracking systemns people segmentation is used
for the automatic initialization of tracks and in many approaches is used as well during
the actual tracking of targets. It increases the speed and accuracy of tracking since the

scarch space is reduced.

PEOPLE SEGMENTATION \
Noise
removal

Figure 2.3: Pcople segmentation pipeline.

Small
comp.
rejection

Connected
components

Background
subtraction

In the literature, a huge variety of background subtraction approaches can be found.
The simplest methods assume static backgrounds [6-8]. The majority of these techniques
model the background pixel-wise using simple models such as using the frame before,
to more advanced methods that use a number of static background images taken at
the beginning of the sequence. Lo and Velastin [9] compute the median of the first N
frames. Wren et al. [10] proposed a very effective way to handle illumination changes

by modelling the background pixels with single Gaussians.

Dynamic backgrounds

The aforementioned techniques will fail in scenarios with systematic background move-
ments e.g. waving trees, snow, ete. Friedman and Russell [11] presented a traffic
surveillance application that models the scene with three different Gaussians; one for
the road, one for the shadows and one for the cars. Based on this idea Stauffer and
Grimson [12] proposed a general approach using a mixture of K Gaussians (MOG)
to model the background. Elgammal et al. [13] relaxed the Gaussian constraint by
presenting a non-parametric model using Kernel Density Estimators (KDE). Oliver et
al. [14] proposed a method where the background is modelled in the eigenspace. Li et
al. [15] use a Bayesian decision rule for background and foreground classification. Kim
et al. [16] introduced another non-parametric method with limited memory require-
ments known as the codebook algorithm. Additionally, the presence of shadows can be

particularly problematic and most authors try to mitigate their effect by using different

10
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colour space less sensitive to brightness changes, such as chromaticity [6, 10, 17] or the
Hue-Saturation-Value (HSV) colour space [18].

All these methods are considered standard solutions and even though most of them
were proposed more than a decade ago, they are still widely used nowadays with minor
variations [19-22]. Although they are specifically designed to address issues such as
illumination changes, shadows and dynawmic backgrounds, some authors have considered
combining different features to increase the performance e.g. colour, texture or edges
to obtain more reliable results [23-26]. Other approaches contemplate representations
not ouly at a pixel level but at a region and frame level as well [27-29]. Using different

model levels, problems like light switching can be handled more accurately.

Depth-based models

The use of information such as texture or edges is still dependent on the data captured
by intensity-based cameras, which means that they are sensitive to the same issues as
colour-based models (shadows, illumination changes, etc.). Some authors have explored
the usce of alternative sensors such as Time-of-Flight cameras, stereo systems or RGB-D
cameras trying to mitigate these problems [30-34]. Depth is a powerful feature for
background subtraction since it has been proven to be invariant to illumination changes
and shadows [35-37]. However, depth on its own has some limitations. For instance
it fails to segment people that are at the same distance to the background or people
at the same depth. In addition, when the segimentation is integrated into a tracking

system the identification of people using just depth is problematic.

In summary, the final selection of the background model mainly depends on the
application itself and the type of scene. Simple models such as the frame before or the
first frame of the sequence [8, 9] might be enough in controlled environments i.e. scenes
without illumination changes or background movements. However, other situations
such as outdoor scenes with the presence of wind and illumination changes require more
sophisticated approaches [12, 13] or even the use of alternative sensors (e.g. RGB-D,
Time-of-Flight).

2.2 People tracking
Tracking people consists of identifying consistently people over time. Algorithms for
tracking are widely used in video surveillance applications for monitoring public spaces

[38]. detection and identification of illegal behiaviours [39] and even in the sport industry

for tracking players and tactical analysis [10)].

11
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2.2.1 Tracking methodologies

Generally, tracking methodologies rely on the availability of target detections at every
time step which are integrated over time to form complete tracks. The motion and
appearance model of targets are used to assist in the integration stage. Kalman filters
and particle filters are by far the most popular tracking algorithms. Additionally, it is
important to mention a recent tracking methodology proposed by Zdenck ot al. [11]
called Tracking-Learning-Detection, which has become very popular in recent years.
The main novelty of this technique is the online learning stage that increases the

performance of the detector over time.

Kalman Filter

The Kalman filter was proposed initially in 1960 by R. E. Kalman [42] as a recursive
solution to the discrete data linear filtering problem. Since then, the method has been
the subject of numerous investigations due to its great potential and computational
cfficiency. In particular it is widely used in the context of visual surveillance for tracking
people. The method estimates recursively the state of a person (e.g. location, velocity,
acceleration, etc.) using a two stage procedure: prediction of the state, and update given
the current observation of the person (obtained from the sensor and the segmentation
module). The prediction stage employs a motion model that is built upon the history
of the target, and the observation refers to the segmentation produced by the people
segmentation module at each time step. Additionally, it provides mechanisms to allow
certain degree of inaccuracy or noise in the models and observations. Kalman filter is
commonly referred to as the “optimal” solution to the state estimation problem in the
sense that minimizes the mean square error of the estimated parameters, but only when
some conditions are satisfied.

The Kalman filter assumes the target state is a Gaussian distribution, the motion
model, and the measurement model? are linear, and the inaccuracies of the motion
model and the inevitably noise of the measurements can be modelled with Gaussian
distributions. In case any of these conditions are not completely satisfied, some authors
have proposed different alternatives. The Extended Kalman Filter (EKF), also known
as the non-linear version of the Kalman filter, presents a solution for Gaussian non-linear
systems. It approximates the non-linear functions using the Taylor’s expansion. EKF is
especially aimed for systems that can be easily lincarised (i.c. near linear), and it will
probably diverge for highly non-linear models. EKF is being widely used in surveillance
applications [43, 44] and a comprehensive analysis of the technique can be found on the
work of Ribeiro [45] and Welch and Bishop [46].

To overcome the limitations of EKF, Julier and Uhlmann [17] proposed the Unscented

2The measurement model is used to transform the state into the measurement space.
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Kalman Filter (UKF), which is a method designed to handle highly non-linear systems.
UKF uses a deterministic approach using samples to obtain the mean and the covariance
of the probability density function. A set of samples called “sigma points” are chosen
near the mean and are propagated through the non-linear function. The mean and the
covariance are recovered in the new sample distribution and Kalman filter is applied
normally [48].

EKF and UKF still assume the distributions are Gaussian. For those systems where
these constraints are not satisfied there is fortunately another tool for state estimation -

the particle filter.

Particle filter

The Particle filter was introduced in 1993 by Gordon et al. [49], where it was first called
bootstrap filter. It is considered a generalization of the Kalman filter since it can be
applied to any system e.g. non-Gaussian, non-linear. It was used first in a computer
vision application by Isard and Blake [50)].

The concept of particle filters is to represent the state density of a particular target
using a population of samples randomly distributed through the feature space, where the
samples represent hypothetical states of the target. This allows an accurate definition
of the state distribution as long as enough samples are used. The samples are weighted
according to their similarity with the observations received at every time step. In the
original paper the particles were updated using a scheme known as Sequential Important
Sampling (SIS) based on the motion model and the observations. Further extensions to
the original method have been proposed such as the Sampling Importance Resampling
(SIR) [51], where at every iteration samples with low weight are replaced avoiding the
problem of “sampling impoverishment”.

Particle filters are widely used in computer vision applications, in particular in
video surveillance systems [52-58]. A further discussion of particle filters is given by

Auralampalam et al. [59].

People appearance modelling

Building reliable appearance models is a real challenge in particular for visual surveillance
applications due to factors such as illumination changes, occlusions and variation of
target poses and orientations. In particular, when tracking people across cameras with
non-overlapping views the illumination and appearance of the person might change
significantly from camera to camera. The use of discriminative models is essential in
multi-target systems for the correct distinction between targets.

Over the years researchers have proposed a wide range of appearance models that

aiin to deal with these situations. In general appearance models can be classified
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between local and global models. Local models capture the local structure of the target
and are characterized for being partly robust to illumination changes, partial occlusions
and orientation and pose variations such as HOG [60] or SIFT features [61]. However
they are normally expensive to compute and might require e prior: knowledge of the
target and a number of samples for training the models [62, 63]. Local features therefore
are not normally considered for fast tracking algorithms. On the other hand, global
models are simpler and [aster to compute but they are more sensitive to illumination
and orientation changes, and occlusions. Two of the most popular models within this
latter category are templates and histogras.

Templates are structures constructed using directly the raw information of the pixels
within the boundaries of the object. They are simple representations that preserve the
spatial structure of the target along with their intensity [64-00]. Nonetheless, templates
present major problems in varying illumination conditions when targets undergo pose
or orientation changes and during occlusions. Many authors have proposed different
enhancements by introducing additional information such as edges or texture [67, 68]
or even for dealing with scale changes [0Y)].

Histograms arc very popular representations that capture the distribution informa-
tion of the objects. They are widely used in visual surveillance [70, 71} since, unlike
templates, can handle scale and orientation changes. However, they are mainly criticized
for not preserving the spatial structure of the object. In the literature, histograins have
been extended by many authors to mitigate this problem with the use of multi-part
histograms {36, 72-74]. The data is divided spatially in regions to improve the dis-
criminative capability of the model as well as make it more suitable for dealing with
occlusions. Wren et al. [10] proposed one of the first multi-part histograms, where
regions of similar colour within a person were modelled with different Gaussians e.g
legs, torso, head, hands, etc. An interesting approach was proposed by Birchfield and
Rangarajan [75] who introduced the so-called “spatiograms” which are structures that
augment the standard single cue histogram with the spatial distribution of pixels in
each bin.

More recently, the use of 3D data is being used to construct more robust models.
Muiioz-Salinas et al. [5] build histograms using the data from the torso, which is
approximated in the 3D space. Alternatively, Spinello and Arras [76] propose a local
feature that uses histograms of oriented depths inspired by the well known HOG

descriptors [G0].

Data association

In visual tracking applications data association is the process that assigns the correct

measurement to every target at every time step. It uses the similarity between ap-
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pearance models of targets and measurements aiming to maximize the total similarity
of all associations. This is a key stage in tracking since it is directly related to the
target update process. In single target trackers when ouly one target is considered data
assoclation is trivial. It is also a relatively easy problem in multi-target trackers when
the targets are well separated. The problem becomes complicated when multiple targets
are spatially close, occluded, or in the presence of spurious nieasurements.

To simplify the process, it is common practice to reduce the space of scarch by
analysing only those measurenents that are within a region of high probability of
containing the correct measurement (i.e. nearby the target) known as a “gate”. However,
there are still periods of ambiguity when more than one measurement fall within this
region and data association still needs to be addressed.

The data association problem has been studied since the early years of visual tracking
and it is interesting to note that the early methodologies are still in use nowadays with
little modification. The different approaclies can be classified between single-hypothesis

and multiple-hypothesis techniques.

Single hypothesis

Single-hypothesis techniques refer to those approaches that produce a single set of
associations at every time step. They are normally preferred for their simplicity and
practicality in real scenarios. The simplest method within this category is the Nearest
Neighbour Standard Filter (NNSF). This method chooses the best association for each
target with a single scan without considering a global solution. The simplest NN ap-
proach is not normally used for multi-target environments since it allows a measurement
to be associated with multiple targets. The Iterative Nearest Neighbowr (INN) is more
suitable for multi-target tracking scenarios where the solution is constrained to forbid
multiple associations. The INN is a simple methodology which is easy to implement
and does not require much computational load. It has a complexity of O(n)*. However,
it performs poorly in dense target situations since the solution depends on the order of
target association, and it may result in one target stealing other target’s measurcment
[77-79]. A slightly variation of the INN is the Suboptimal Nearest Neighbour (SNN)
which does not rely on the order of association, instead searches sequentially for the best
possible single association, the one that returns the highest similarity between target
and measurement. The SNN has a complexity of O(n?) and in many situations achieves
high performance despite the fact that it does not seck specifically for an optimal
solution that maximises the total similarity [80-82]. A technique that guarantees an
optimal solution is the Global Nearest Neighbour (GNN). This technique is the most

widely used NNSF technique and, unlike the aforementioned methods, achieves an

3 = min(Ny, Ny,) and N; and N,, are the number of targets and measurements respectively
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optimal solution at every time step. The fastest implementation of GNN was proposed
by Munkres [33] with a polynomial complexity of O(n?) [S0, 81, 84-8(].

An alternative approach within the single-hypothesis category is the Joint Prob-
abilistic Data Association Filter (JPDAF) proposed by Fortinann, Bar-Shalom and
Scheffe [87, 88]. JPDAF is conceptually different to the NNSF approach since it allows
multiple associations assuming that the real measurement may not be the closest one
and that cvery association is possible with some probability. Conscequently, targets are
updated using a weighted combination of all possible associations. JPDAF is specifically
designed to deal with noisy enviromments where spurious measurements are frequent.
One limitation of the standard JPDAF is the assumption of a fixed and known number
of targets. Schulz [89] proposed a sammple-based version of JPDAF that relaxes this

constraint.

Multiple hypothesis

Multiple-hypothesis techniques, on the other hand, return a set of possibilities at every
time step and the solution is delayed until more information is available. They reach the
correct solution with high probability at the expense of an increase in the computational
load. The Multi-hypothesis tracker (MHTY) [90, 91] is the most popular. It computes
all possibilities at every time step including the termination and initialization of new
tracks. MHT is commonly represented as a tree where each node indicates a different
hypothesis®. The tree grows exponentially expanding each current hypothesis with a
new set of hypotheses every time a new set of measurements is received. As expected
MHT is expensive in terms of memory and computational time and therefore to make
it practical requires of optimal implementations [R(, 92] as well as approximation
techniques. Common approximations are clustering [90], merging of tracks [93] and
pruning techniques using Murty’s algorithm [94, 95] to keep the K best hypothesis in
polynomial time [96, 97].

Split and merged measurements

An important consideration during the data association process is the presence of
split and merged measurements which are frequent in real surveillance scenarios. Split
measurements arise due to partial occlusions while merged measurements appear as a
conscquence of the limited resolution of the sensor when several objects are in close
proximity. From the data association perspective it is critical to identify and manage
these situations. In the literature different approximations can be found in this regard.
Joo and Chellappa [95] identify these special cases based on the area of measurements.

Bose et al. [98] used the nummber of measurements in the gate area. If more than

4 An hypothesis consists of a set of feasible associations
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one measurement fall within the gate of a single target it is assumed split, and if a
measurement falls in the intersection of two gates it is labelled as a merged measurement.
Once they are identified, one possibility is to join back together split measurements
and decompose merged measurements [95, 99]. Alternatively, they can be maintained
as split and merged measurements with continued estimation of their state until they

are detected as single measurements again [98§].

2.2.2 Alternative tracking methodologies

There is another type of tracking algorithms that do not rely on the detections made
at every time step and therefore do not require to solve the data association problemn.
Instead the appearance model of the targets is constructed i the first frame (automat-
ically or manually) and the subsequent frames are searched looking for the location
more similar to the model. These trackers are some time referred to as data-driven
trackers since they only use the data obtained from the images at every time step
without the aid of almost any high level information. Two cominon approaches are

template tracking and the more sophisticated Mean-Shift tracker.

Template tracking

Template tracking is considered as one of the simplest approximations for tracking.
Targets are modelled with the raw pixel-wise intensitics of the arca defined by the
target. The search for the model in the current frame usually starts from the last
estimated position or is predicted with a motion model. It continues by matching the
template with nearby location looking for the position that produces the best match.
Typical matching methods are the sum of squared differences (SSD) or cross-correlation
[100, 101).

Although this algorithm may be a good approximation in some restricted situations,
it presents major weaknesses in real environments. It is particularly ineffective in
situations of illumination changes, rotations or variations in scale of the target. It
also presents problems when tracking multiple people with similar appearance. More
practical implementations incorporate mechanisms to deal with these situations, for
instance a common practice is to update the model at every time step. Nguyen et al.
[69] present a warping method that allows scale changes. Beymer and Konolige [102]
use a template based on the disparity information from a stereo system, which is less

affected by changes in the illumination conditions.
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Mean-Shift tracking

The Mean-Shift tracker is the most popular alternative within this category. The
search for the model is performed in an optiinal way by a gradient ascent procedure
i.e. Mean-Shift. The Mean-Shift tracker is also known as a kernel histogram tracker
because it makes use of a kernel to weight the pixels for building the appearance model
i.c. pixels closer to the object centre are weighted heavier, It was originally used in
computer vision for tracking purposes by Comaniciu, Ramesh and Meer [70]. The
Mean-Shift tracker has become a popular tracking method in the last decade as it is
efficient computationally and easy to implement. However, it presents the following
limitations. First, it does not consider properly the change in the object’s scale or
rotation. Sccond, it is highly sensitive to similar backgrounds and interferences produced
by nearby targets. Third, in the original implementation the appearance of the object
is modelled with a simple single-cue colour histogram, which is normally criticised for
not being very discriminative.

Most of the extensions of the Mean-Shift tracker proposed in the literature aim to
address these issues. To reduce the distractions fromn the background some authors
applied a previous background subtraction which additionally speeds up the tracking
process since less data is considered [103, 104]. In order to increase the performance of
the tracker alternative appearance models are suggested such as multi-part histograms
where colour is combined with some spatial information {75, 105-108]. Regarding the
scale change, some methods adapt the kernel size and orientation using the expectation
maximisation algorithm [(Y, 71] or alternatively the moments of the distributions
[109, 110].

The Mean-Shift tracker is also commonly combined with other techniques such as
in Comaniciu, Ramesh and Meer [111] where the Kalman filter is used to reduce the
number of iterations, or in the paper presented by Li [112] where Mean-Shift is used to
improve the data association process in a Kalman filter tracker. Alternatively, it has

been combined with the particle filter method to reduce the number of particles {113].

2.3 Multi-camera environments

The reduction in the price of sensors and the increase in the computational power
of modern computers have allowed the incorporation of additional cameras to aid in
computer vision applications. In particular, for surveillance systems, multiple sensors
are used to reduce the number of occlusions [74, 114] and to increase the area monitored
by the system [115, 116].

In order to use the information from all cameras in an efficient way, it is normally

required to perform a prior calibration process to estimate the relative position of the
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cameras with respect to a common coordinate system (CS). The calibration involves
the estimation of the geometric transformations i.e. rotation and translation, between

all cameras and the reference CS.

2.3.1 Calibration of multiple overlapping cameras

The use of multiple overlapping cameras in surveillance scenarios is used to reduce
the nunber of occlusions. The external calibration of cameras facilitates the correct
identification of targets in each camera. For traditional RGB systems a multitude of
methods have been proposed that involve the use of corresponding features between
cameras to estimate the transformations by error minimization [117, 118]. For close
range scenes, it is common to use a chessboard pattern viewable by all sensors where the
corners are detected in all views. Alternatively, for more complex scenarios where the
cameras are so far that it is difficult to detect the corners of the chessboard, Svoboda
et al. [119] proposed a system where a moving bright spot, viewed by all cameras in a
dark scene, was used to create the correspondences. Lee et al. [115] instead track a
common person in all cameras using the position of the person over time for creating
point correspondences. Renno et al. [120] presented a calibration methodology where
the image to ground plane homography was estimated by accumulation of tracks.

For multiple range sensors, and in particular for structured light sensors such as
the Kinect camera, the configuration of the system is more challenging since each
sensor emits a fixed infra-red (IR) pattern at the same wavelength. Therefore cach
sensor can see another sensor’s pattern superimposed on its own and will have problems
distinguishing the two. Different approaches have been proposed to address this issue.
One of the most popular methods was presented by Butler et al. [121], where a
mechanical system was used to vibrate a Kinect sensor. Since the IR projector and
IR camera of the Kinect vibrate at the same frequency, its own IR pattern is detected
normally while the IR patterns from other sensors are blurred avoiding interferences
(122, 123]. Another approach is to use a time slot schedule for each sensor. Since the
deactivation of sensors by software is relatively slow, Schroder et al. [124] used an
external shutter for time multiplexing. A more sophisticated system was presented by
Faion et al. [125] with the development of an internal shutter. Alternatively, a cheaper
solution was presented by Maimone and Fuchs [126] with a software solution to fill the
holes produced by the interferences.

The calibration of multiple overlapping RGB-D sensors normally requires the use of
special calibration grids, such as using a chessboard where the black squares are covered
by IR deflected material [127], or with a planar calibration grid with retro-reflective dots
[128]. Once the point correspondences are established, standard calibration procedures

are used [117, 118]. A more practical approach but less accurate for the external
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calibration of multiple Kinect caimmeras is to estimate first the external relations between
RGB cameras using standard procedures [11&8] and then use the depth-RGB registration
provided by the Kinect driver [120].

2.3.2 Calibration of multiple non-overlapping cameras

Systems built from non-overlapping cameras aim to monitor large areas where each
sensor covers a different region of the scene. When the cameras are highly separated
and there are large unobserved regions the external calibration of cameras is not
normally required, since it cannot directly assist in the association of targets across
cameras. In these situations it is common to use re-identification techniques based on
the appearance model of the targets [129-131]. When the intermediate unobserved
regions are small, some authors estimate the trajectory of targets in those areas to
lelp in the re-identification task [132] and even to estimate the calibration parameters
[133]. Makris et al. [134] proposed a methodology that learns the topology of the
cameras using temporal correlation of objects moving across adjacent cameras. For more
restrictive scenarios of close range scenes, Kumar et al. [135] presented an interesting
calibration method that allows all nou-overlapping sensors to see the same calibration

grid with the use of wmirrors.

2.4 Performance evaluation

The performance evaluation of algorithms in particular for surveillance systems is a
crucial stage to determine the progress during the development stage and to obtain
quantitative comparisons with other reported work.

The evaluation of detection and tracking applications is a complicated process that

in general involves the following three aspects:
1. Designing a suitable dataset.
2. Producing ground truth annotations for the datasct.

3. Defining a proper set of metrics that allows a meaningful evaluation of the

algorith.
4. Setting the optimal values for the evaluation parameters.

2.4.1 Ground truth and dataset

To evaluate the performance of an algorithi a common approach is to compare the

algorithin’s results with those considered ideal, also known as ground truth. Producing
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accurate ground truth annotations is surprisingly challenging. The process for generating
ground truth involves the annotation (e.g. bounding boxes, ellipses) of the objects
in every frame of the sequence which is a highly tedious task, especially with long
sequences and when many objects are present. For some evaluations the task is even more
gruesome as pixel-level accuracy is required [38, 136]. Normally the human annotations
are assumed to be the perfect values. However they contain many ambiguities since
the process is error prone and often requires subjective interpretations of the scene. It
is surprising the variability on the annotations depending on the annotator [137, 138].
Additionally, there are complex situations that are difficult to interpret such as occlusions,
objects partially cropped by the image edges, objects on pictures (e.g. ad-boards),
reflections in mirrors, etc. To assist in the process there are available several semi-
automatic tools such as VIPER-GT [139] or VATIC [140] that offer interpolation tools
to avoid the need to annotate every single frame. Some authors have considered the
creation of synthetic datasets to avoid the ground truth annotation altogether [141].
Ideally, the datasets should be comprehensive enough to cover a wide range of chal-
lenging situations e.g. weather conditions, illumination variations, dynamic backgrounds,
occlusions, ete. as discussed by Ellis {142] or more recently in the study of Motwani
[143]. For RGB multi-target tracking systems some of the most popular and widely
used datasets are PETS [144], i-LIDS [145], CAVIAR [146] or ETISEO [147]. Recently,
with the increasing use of RGB-D sensors for surveillance purposes, new datasets have
arisen. However, the majority of the RGB-D datasets publicly available are specific for
identification of objects [148, 119] and human activity recognition [150, 151]. There are
still very few for evaluation of multi-target tracking systems. One is recently published
by Munaro and Menegatti [86] called Kinect Tracking Precision (KTP), which is a
dataset acquired from a mobile robot platform. Alternatively Spinello and Arras {70]
made available a dataset recorded from static RGB-D cameras for people tracking

purposes.

2.4.2 Evaluation metrics

Ground truth-based metrics are in general computed from the classical true positives
(TPs), false negatives (FNs), true negatives (TNs) and false positives (FPs). Some of the
most well known metrics used for evaluation of detection and tracking algorithms are
true positive rate ﬁ%ﬁ, false positive rate Ti%'v' and specificity %\’,—P However,
as it was cleverly identified in the work of Lazarevic-McManus et al. [152] the TNs
cannot be computed for object-based systens and therefore popular evaluation metrics
such as the ROC curve cannot be applied.

Metrics can be classified as global or local. Global metrics present a single value

to assess the overall performance of the algorithin which is convenient for comparison
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purposes. A popular global metric is the CLEAR MO metric [153] which comprises two
metrics: MOTP for the evaluation of object detections based on the spatial overlapping
between ground truth and detected objects, and MOTA which accounts for the spatial
and temporal overlapping between ground truth and detected tracks. The VACE metric
[154] is widely used as well as a global metric where FPs, FNs, ID-switches and track
fragmentations are combined in a single value.

Other authors prefer the use of local metrics to obtain a more comprehensive
evaluation of the algorithm. Local metrics are especially useful to identify problems
during the development stage of the algorithm, or to determine the strengths and
weaknesses of a particular algorithm [153, 155, 156]. Smith et al. [157] proposed a total
of nine different metrics divided between detection and tracking purposes. Black et al.
[141] included a metric for the evaluation of occlusions (Occlusion Success Rate) which
is very convenient for multi-target systems.

Additionally there are some authors that define periods of time or even objects
that will not be considered for evaluation since they are out of the scope of the
algorithin purpose. For example the segmentation of individuals within a group or
during occlusions as in the work of Kasturi et al. [154] where they define the so-called
“Don’t care frames” and “Don’t care objects”.

It is worth mentioning the study conducted by Milan et al. [138] where it was noted
the variability of results obtained with different implementations of the same set of
metrics. The authors also stated that for assuring fair comparisons between tracking
algorithms they all should use the same object segmentation module since tracking

algorithms rely heavily on the performance of the segmentations.

2.4.3 Evaluation parameters

Special consideration should be given to the evaluation parameters which affect dra-
matically the measured performance. For detection and tracking algorithms these
parameters are used for establishing the required mapping between the ground truth
and the output of the algorithm — see figure 2.4.

The evaluation parameters for detection algorithms could refer to the spatial thresh-
old used to defline the mapping with the ground truth, which is normally computed
based on the spatial overlapping between bounding boxes [157-159] or the Euclidean
distance between centroids. For tracking algorithms a double threshold is usually
required to account for the spatial and temporal overlapping of tracks [155, 150].

Similarly to the data association stage during the actual tracking, the ground truth

mapping can allow multiple mappings with one ground truth object [LH6, 1567, 160] or

>Diagram copy from the original work of Lazarevic-McManus et al. [152] with the consent of the
authors.
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Figure 2.4: Performance evaluation®.

only permit single mappings using methodologies such as the nearest neighbour [160]

or the Hungarian algorithm [153, 161, 162].

Ideally, the evaluation parameters should not favour any technique with respect to

others. Some authors propose to include the evaluation parameters in the optimization

process of a few well known algorithm and use those as standard values for the evaluation

of the rest of algorithms [152].
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Chapter 3

Multi RGB-D Sensor Monitoring
System

3.1 Introduction

RGB-D cameras are sensors that produce intensity images as well as depth data. These
sensors are widely used in the computer vision community since Microsoft released
the Kinect© camera in November 2010. This sensor was a revolution as it provides
reasonably accurate depth data at an affordable price. Afterwards similar sensors were
developed sucl as the Xtion Pro Live camera or the second version of Kinect released
in July 2014. In particular, for video surveillance applications the use of RGB-D
cameras brings at least two major benefits with respect to classical intensity-based
systems in the visual surveillance context: they are robust to illunination changes even
allowing the monitoring of dark environments; and the cffectiveness for identifying and
solving occlusions, which are considered nowadays one of the major challenges in video
surveillance.

In this work a multi-sensor device built from non-overlapping RGB-D cameras will
be proposed. The system is intended for monitoring wide indoor spaces which maxinises
the area covered. In order to attain an optimal design an analysis of the capabilitics
and limitations of the RGB-D sensor will be conducted. The system will need to
be calibrated to allow the data from all the RGB-D cameras to be represented in a
common coordinate system. The calibration of non-overlapping sensors is a challenging
problem and some approaches have been proposed in the past to solve it. However,
they tend to be highly complex such as the one proposed by Anjumn N. et al. [133]
based on trajectory estimation of moving objects during the unobserved regious, or
the mirror based method introduced by Kumar R. K. et al. [135] were the sensors
see the calibration grid through a mirror. Another approach that requires the relative

location of the cameras to be fixed was presented by Lébraly P. et al. [163] where

24



CHAPTER 3. MULTI RGB-D SENSOR MONITORING SYSTEM

the calibration parameters are computed by manoeuvring the system through a static
scene and estimating the trajectories of the cameras. In this work a novel and simple
plane-based calibration methodology is proposed for the calibration of non-overlapping
RGB-D sensors.

The remainder of this chapter is organized as follows: In section 3.2 a detailed
analysis of the Kinect sensor is presented along the proposed configuration of the
combined device. The methodology employed for the calibration of the non-overlapping
cameras is described in section 3.3. In section 3.4 the potential issues of the system are

identified, and finally section 3.5 provides some conclusions for the chapter.

3.2 System geometry and design

In this section the configuration of a multi-sensor device proposed for surveillance and
monitoring purposes is presented. This device is composed of three RGB-D sensors,
namely Microsoft Kinect® cameras, which are set in a non-overlapping fashion to
maximize the covered area and minimize the interferences produced between sensors.
The use of the Kinect sensor brings many advantages to surveillance applications
especially for detecting and solving occlusions. However, these sensors have limited
range and can only be used in indoor environments. In addition, the depth accuracy and
resolution decrease with distance. A comprehensive analysis of these issues is required

in order to take appropriate measures and obtain the best performance of the sensors.

3.2.1 RGB-D sensors: The Microsoft Kinect

Microsoft's Ninect® sensor! is a laser-based depth sensor which generates a depth
image enabling the 3D locations of points within a room to be located as well as the
colour information about these points — essentially a 3D camera.

The affordable price of this camera in comparison with other range sensors has
revolutionized the research community. In particular in surveillance applications it has
become very popular since it addresses the main challenges of classical intensity-based

systems: occlusions and illumination changes.

3.2.1.1 Kinect device: Capabilities

The Kinect device features an infra-red (IR) projector and a monochrome CMOS camera
with an IR-pass filter that produces images at approximately 30 frames per second. The
original resolution of the sensor is 1280 x 960 pixels which is downsampled to 640 x 480

pixels due to limitations on the USB bandwidth. The spatial resolution at 2 m is 3 mm

n this work the Microsoft’s Kinect© sensor refers to the first version of the sensor designed for
the Xbox.
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in the horizontal and vertical axes and 1 cm along the depth dimension. The field of
view is 58 and 45 degrees on the horizontal and vertical axis respectively. Although the
operating range goes from 0.5 to 4 metres, it produces depth data up to 9.7 metres.
Further details can be found in the studies produced by Khoshelham and Elberink [164]
and Andersen et al. [165].

Additionally, the Kinect device also has a RGB camera and a multi-array microphone.
The RGB camera delivers the three basic color components (red, green and blue) at a
frequency of 30 Hz with a resolution of 640 x 480 pixels. Regarding the multi-array
microphone, it allows voices to be localized in the 3D space and ambient noise to be

rejected.

3.2.1.2 Depth estimation

The IR projector sends out a fixed pattern of light and dark speckles (figure 3.1) and
depth is calculated by triangulation using a reference pre-recorded IR pattern at a
known distance. It works as a structured light sensor. The depth of each IR speckle is
estimated based on their displacement with respect to their corresponding point in the
pre-loaded pattern. At this stage an operation of cross-correlation is performed between
the current and recorded pattern to yield a map of disparities. In figure 3.22 the depth
2, of the point k& is calculated based on the disparity d between the projection onto the
image plane of k, and its corresponding point in the pre-loaded pattern O, using similar

triangles as follows:

D _ zn—2
b N 20
d D
f Zk
where 2, can be obtained:
R Thd (3.1)

These sensors bring many advantages to numerous computer vision applications.
However it is iimportant to be aware of their limitations in order to maximize their
performance. They cannot be used in outdoor environments as the sunlight interferes
with the IR pattern. The same situation occurs when used in combination with others
IR sensors [167). In addition, they have limited range and resolution especially heyond
the operating range. Due to the nature of any sensor based on triangulation, the error

increases with distance. The next section outlines some of these issues in order to

2Image taken from the work of Khoshelham [166].
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Figure 3.1: Infra-red image from Kinect sensor.
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Figure 3.2: Kinect triangulation.
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produce a suitable configuration of the multi-sensor device envisaged in this work.

3.2.1.3 Kinect sensor: Accuracy analysis

A theoretical analysis regarding the Kinect error and resolution can be found in the
literature in different studies [164, 165, 16G8]. A series of experiments have been conducted

to validate these analyses.

Resolution

The resolution of a depth sensor can be defined as the minimum gap between contiguous
depth values, which is produced during the quantization process. Due to the nature of
the sensor this gap increases with distance, where larger gaps indicates lower resolutions.
To evaluate the actual resolution of the sensor a simple experiment was performed.
Samples from a plane perpendicular to the camera axis were taken at different distances.
Specifically, the Kinect was mounted on top of a wheeled trolley and the plane was
recorded while the trolley was pushed away from it. The range of recording went from
0.5 metres to 4.5 metres — see figure 3.3. To actually calculate the depth resolution,
at each distance the values collected from the plane were sorted according to their
depth values, and the minimuimn difference between two adjacent values was taken as
the resolution at that distance. Equation 3.2 defines a quadratic function that models

the depth resolution of the sensor.

£(d) = 2.6d* 4 0.6d — 0.2 (3.2)

This model is intended to be used in future stages of this work in particular during
the segmentation stage to mitigate the effects of the degradation on the depth resolution

and allow segmentations beyond the operating range of the sensor - see section 4.4,

Depth error

Duc to cffects like blurring?, pixelation* and quantization® the depth value of a particular
point in the scene varies within a certain range of nearby values. This is normally
considered the residual error and is affected by the resolution. Using the same set up
as in the previous experiment the depth error is computed with the standard deviation
at different distances. The errors and the fitted function (equation 3.3 ) are plotted in
figure 3.4. The increasing gaps between contiguous values aflect directly this error as it

is illustrated in figure 3.5.

Blurring appears when the light ray of one point affects more than one pixel on the sensor
4D alization (s produc L S L )
Pixelization is produced when considering that the projection of a point in the image lays on the
centre of the pixel of the sensor. .
5 . . . . IR . . . . .
5QQuantization refers to the process that converts the continuous signal capture by the sensor to
discrete values. A
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Depth resolution vs Distance
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Figure 3.3: Depth resolution of the Kinect with respect to distance.
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Figure 3.4: Depth error (standard deviation of samples from the same plane).

o(d) = 0.0024d* (3.3)

This model will be applied in this work during a background subtraction process in
a future stage to define a depth-based threshold to differentiate foreground pixels. — sce

section 4.2.1.1.

3.2.2 Proposed design

A device that combines three Kinect sensors in a non-overlapping configuration is
proposed as shown in figure 3.6. The benefits of this design are two fold. First it allows
wider areas to be monitored since the field of view (FOV) of the overall device is the
ageregation of the FOVs of the three sensors. Sceond. this configuration avoids the

possible IR interferences between sensors. These interferences have been identified in
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Figure 3.5: Distribution of depth values from a plane capture at four different distances.

previous works (121, 167] and are produced when several Kinects project simultancously

their IR pattern onto the same region of the scene leading to failures during the point

correlation stage.
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(a) Front view

(b) Top view

Figure 3.6: Design of the multi Kinect device

The device is mounted on top of a tripod at approximately 2.20 metres high as
shown in figure 3.7. The main reason for locating the device in a high location is to
minimize the number of occlusions, both static and dynamic. The approximate area
covered by the device is 220 m?, limited in depth by the Kinect range. Note that there

exists a blind spot just below the device, which depends on the tilt angle of the cameras.

3.2.3 Issues

The main challenge of the proposed configuration is the external calibration of non-
overlapping sensors. which requires the estimation of the geometric transformations
hetween the sensors coordinate systems (CSs) and a common CS. As opposed to systems
with overlapping cameras FOVs, in this configuration standard calibration approaches
based on corresponding points cannot be employved [119, 123]. In the next section a

novel plane-based calibration procedure for non-overlapping range sensors is described.

3.3 System calibration

In multi-camera systems a proper external calibration between sensors is essential in
order to manage the data efficiently. This process aims to represent the data from the

three Kinects in one reference CS.
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Figure 3.7: Tripod and camera mounting set up.

The data captured by each Kinect sensor generates 3D positions within some local
('S. Calibration between two sensors produces the geometric transformation (rotation
and translation) between the CSs of both sensors. For simplicity in this work the
reference CS of the combined device was established on the middle Kineet CS and

therefore, only two calibrations are required as shown in figure 3.8.

Caliiration Calibration

N

Figure 3.8: Multi calibration required for the whole device

In order to estimate the transformation between two sensors. common features are
required. Generally. stereo calibration techniques use a set of corresponding common
points in both sensors and obtain the best transformation by error minimization
techniques [lii!l]. However. in the configuration proposed, the physical set up of the
sensors does not allow the use of corresponding points as their FOVs do not overlap.

A novel calibration technique has been developed to enable the 3D data from
different devices to be represented within one CS for the whole monitoring space. The
calibration technique presented exploits the depth capability of the Kinect by using

planes as common features.
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3.3.1 Plane detection

Planes are used for the calibration process and thus must be identified and detected in
the images. A plane is detected by a fitting process using a set of 3D points. in a way
that the distance from the points to the plane is minimized i.e the plane that best fits

the set of points given as shown in figure 3.9.

Figure 3.9: Plane fitting

The fitting process uses the plane equation Ax + By + C' = z which can be represented

with matrices as follows:

(1)

QT
Il
w
S

If equation 3.4 is generalized for a set of points, the following system is obtained:

ry oy 1 2
ry Yo |1 a
L2 H2 ~2
B | =
Cn
Tn Yn 1 Zn

which is a system of the form Ma = z, where a is the plane coefficient matrix [A, B, CJ*

and can be calculated as follows a = M~ 'z.
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As described, planes are detected in images from a sct of 3D points, which are easily

obtained using the depth information provided by the Kinect sensor.

3.3.2 Rotation estimation

The rotation between a pair of Kinects is estimated by using the normal vectors of
corresponding planes®. The process of estimating the rotation is based on the idea that
the transformation between two normal vectors can be represented by a rotation - see
figure 3.10. At this point it is important to recall the alternative plane representation
n,« +nyy +n,z = d, where [z, ny, 11;] is the normal of the plane, [z, v, z]T is a point in
the plane, and d the distance of the plane to the origin of the CS. Therefore, it is required
to compute the normal coordinates from the plane cocfficients [A, B, C] obtained during
the plane detection process. Note that the plane equation Az + By + C = z is derived

from the normal plane equation n,x + nyy + n,2 = d as follows:

Nk + nyY + 1,2 =d

n,T+nyy —d=—-mn,z
Ny n d
n, 0, T,
where
n,
A= -2 3.0
. (3.5)
n, 0
B=--2 (3.6)
1,
d
C=— (3.7)
n;

In order to recover [ny, Ty, n,] from (A, B, C] the normal vector is constrained to be
a unit vector, i.e. /n2 + nyE +n2 = 1. Finally using this constraint and equations 3.5
and 3.6 the normal vector of the plane is calculated as 7t = [A, B, —1]. Note that this is

not a unit vector.

5The expression “corresponding planes” denotes in this context the same plane represented in
different CSs
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Figure 3.10: Corresponding normal vectors

The rotation between two CSs in three dimensions is represented by a square 3x3

matrix R which must meet the following properties:
e RT = R7! (i.e. R is orthogonal).
o det(R) = 1.
o ||R:3]| = 1. where i denotes a column of R (i.e. the columns of R are unit vectors).

The rotation matrix is calculated following the method described by Sorkine [169]
which guarantees that all these properties are hold. The steps to calculate the rotation

matrix using a set of corresponding normals are summarized as follows:

1. Organize the corresponding normals in two matrices (a matrix for each camera)

Ny ”.r,‘.! == Ngm
Ni= Nyl Nyo =+ Nym
Neyp MNao 0 Ny
Nei Neg “=* Ml
No=| my, npy -+ M an
n, ”f:.'.! ”JI:.m

where m is the nmumber of corresponding normals.
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2. Calculate the singular value decomposition (SVD) of the product of both matrices
SI;D(;N‘.IJ'\;:{) — UE";T.

3. Obtain the rotation matrix as follows:
ikafe 0

R=V-| 01 0 .Ut
0 0 det(VUT)

Further details of the technique can be found in the original paper [169].

3.3.3 Translation estimation

Based on the rotation obtained, the translation is estimated by error minimization
using a set of corresponding points. How these points are obtained is the key innovation
of the method.

For a plane detected in the first CS, a unique point can be identified as the point
on the plane closest to the origin, i.e. x = dii. This point undergoes an as yet unknown
translation X’ = dn + t, to be represented in the second CS. A graphical model is shown

in figure 3.11.

Plane (reference CS)

Plane (local CS) t

Local Coordinate System Reference
(Rotated) Coordinate System

Figure 3.11: Translation estimation using a pair of corresponding point

Since this translated point must lie on the second plane, a constraint on the

translation ¢ can be obtained as follows:

o (di+t)=d
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i -t=d -d@@ -n) (3.8)

where d and d’ are the distances of the plane to both CS origins (local and reference),
i and fi’ denote the normal vectors of the plane in both CSs, and t represents the
translation vector [tz t,, tz]T between the two CSs. Equation (3.8) can be generalized

for every planc as follows:

=
—
~—

“1,)

N oy Al oA
n, - t= dm - dm (um ' I-lm)

which can be represented using matrices as follows:

Nt=D (3.9)

where N is a matrix that groups all the normals n}.,, in rows, t is the translation matrix
[te,ty,t:]", and D is a column matrix in which every position is the scalar resulted
from the second part of the equation (3.8). Finally the translation can be obtained as

follows:

t=N"'D (3.10)

To illustrate the effect of the calibration a plan view representation of a scene

captured from the three Kinects is presented before and after calibration in figure 3.12.
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(¢) Calibrated plan view image from the three Kinects

Figure 3.12: Calibration of points from the three Kinects into a common representation
(plan view).

3.3.4 Calibration tool

A calibration tool has been built in order to create as many corresponding planes as
required.

The estimation of the rotation and translation is based on error minimization.
The rotation estimation uses corresponding normal vectors of planes and to estimate
the translation corresponding points in the planes are used. The accuracy of these
techniques depends mainly upon the number of corresponding features used so that

the more corresponding planes. the more accurate the calibration will be. However,
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frequent scenarios do not contain many connmon planes (e.g. floor. ceiling, walls, tables).
exhibiting at best 4 or 5 common planes.

In order to increase the number of common planes, and therefore improve the
accuracy., a calibration tool has been built. This tool allows the creation of common
planes between a pair of cameras. The tool consists of a pole of 1.7 m length. with two
boards of 32 x 18 em attached at both edges of the pole in a way that both boards
belong to the same plane - see figure 3.13. The distance between their centroids is 1687

111111.

Figure 3.13: Calibration tool for creating corresponding planes - the “paddle”.

The idea is that each board is viewed and detected in a separate camera at the
same time. Therefore, a pair of corresponding planes is obtained as shown in figure
3.14. in which the normal of each plane is represented with a red line and the area of
the detected plane with a white rectangle (the blue rectangle denotes an initialization

area).

Figure 3.14: Pair of corresponding planes detected in the calibration process

The calibration procedure consists of holding the paddle in front of the two sensors,
allowing each board to be viewed by a different sensor. An initialization volume is
defined in the centre of the field of view at two metres from the camera as illustrated
in figure 3.15. A colour filtered is :l[)]l]il'(l to remove data that does not llt'ltlnf_“ to the
board. The remaining data is fitted into a plane using equation 3.4. The planes in the
subsequent frames are obtained by considering a neighbour volume around the fitted

plane in the previous frame.
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Figure 3.15: Frustum of the Kinect depth sensor. The plane initialization volume is red
shaded

3.4 Issues

The calibration of the system does not only refer to the external transformations between
cameras. There are two additional calibrations that need to be considered: the internal
calibration of each camera to compute the intrinsic parameters i.e. focal length(f),
principal point (éo. jo) and lens distortion coefficients (ky, ks, ...); and the calibration
that models the transformation between the IR camera and the RGB camera, which is
required to align the two images.

This work uses the default parameters provided by the framework OpenNI” [170].
The rigid transformation between the RGB and the IR camera unfortunately are not
available as they are encrypted in the code. The default intrinsic parameters are

summarized in table 3.1.

f | 574 (pixels)
Jo 320
i 240

Table 3.1: Kinect depth sensor default intrinsic parameters.

These parameters are reasonably accurate and for the purpose of this work they are
acceptable. Although the lens distortion model is not considered, the Kinect features
low-distortion lenses (|k;| = 0.1) and even at the edges of the image the displacement is
not more than a few pixels [171]. However, if more accurate results were required (e.g.

action recognition applications) a manual calibration should be performed [118, 172].

In order to obtain accurate calibration results it is important to ensure that every
pair of corresponding planes are coplanar. Within this context, two sources of errors

were identified associated to the plane detection stage.

e Asynchronization of views: The paddle orientation changes during the moment of

TThe framework OpenNI is not longer available since it was acquired by Apple Ine.
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capture of the two sensors. This problematic situation is mitigated by moving

the paddle slowly and steady.

e Misalignment of the paddle: Small errors during the assembly of the paddle
produce differences in the orientation of the two boards. In addition, envirommnental
issues such as humidity or heat yield little misalignments of the bhoards. This
situation is addressed by estimating the angle between the two boards in a previous

stage and correcting that error angle during the actual capture of the planes.

3.5 Discussion

A multi-sensor device built from non-overlapping RGB-D cameras, namely the Microsoft
Kinect© sensor, is proposed for monitoring wide area indoor spaces.

The Kinect sensor has been independently analysed in terms of resolution, range
and noise, with the objective of maximising the efficiency of the combined device. The
proposed design aims to maximise the area covered as well as minimize the interferences
between sensors.

For the calibration of the system a novel plane-based procedure is presented for non-
overlapping range sensors that allows the data from the three Kinects to be represented
in a common CS. The proposed calibration methodology uses corresponding planes to
derive constraints on rotation and translation, in particular the rotation is computed
from the normal vectors and the translation by using a special point in the planes i.e. the
closer point to the origin of the reference CS. A calibration tool was presented to allow
the generation of many corresponding planes between a pair of adjacent non-overlapping
cameras. Using a plane fitting approach planes were effectively extracted {rom the
range data.

The internal calibration of the sensors and the estimation of the transformation
between the IR and RGB cameras was not necessary as the default parameters provided
by the framework were accurate enough for the purpose of the system. However, if

more accurate results are required a manual calibration should be performed.
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Chapter 4

People Segmentation

4.1 Introduction

Segmenting people in video sequences is used in a wide range of applications such as in
robotic environments, intelligent cars or for counting people purposes. It is also a key
component in higher level systems such as tracking or activity recognition applications.

The scgmentation of people is normally implemented on the image plane or intensity
image produced by conventional RGB cameras [103, 103, 173]. Many issues are associ-
ated with this space such as cluttered backgrounds, illumination changes, shadows and
occlusions, which make this space very challenging to work with.

In the past significant effort was employed in the development of sophisticated
algorithms that try to overcome these problems [12, 17, 18, 17'1]. Howcever, in recent
years, with the incorporation of alternative sensors and configurations the cffort is
focused on the exploration of alternative spaces that minimize or eliminate the effect
of these issues. For example, the use of multiple cameras aids in managing occlusions
[5, 79, 175, 176]. Alternatively, more advanced sensors such as lasers or RGB-D
cameras have allowed researchers to investigate the depth dimension and the 3D space.
[4, 36, 175, 177-179)

The main objective of this chapter is to propose and evaluate alternative spaces in
the context of people segmentation. Three different spaces are presented in this work.
First, the typical image plane enhanced with depth to aid in the identification and
resolution of occlusions. This space is referred in this work as the Image Plane Space
(IPS). Second, a space built over the ground plane that aggregates the data from the
three cameras that form the system and is named the Map of Activity (MoA). Third a
space constructed over the polar coordinate system (CS).

The remainder of the chapter is organised as follows. In the next section the Inage
Plane Space along with the seginentation process in this space are explained. In section

4.3, the Map of Activity and how it is built from the aggregation of data from the
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three sensors is described. In addition, the main limitations of this space are identified.
Section 4.4 offers a comprehensive analysis of the Remapped Polar Space and the
segmentation methodology employed. Finally, in section 4.5 the different spaces are

evaluated and discussed.

4.2 Image Plane Space

The Image Plane Space (IPS), as defined in this work, refers to the two dimensional
digital image returned by the sensor. The IPS is a discrete space where each position
i.e. pixel, is identified by the horizontal and vertical coordinates with respect to the
origin, which is usually located at the top-left corner of the image. For depth sensors
each pixel stores a depth value instead of a value of intensity.

Depth information is a powerful feature to use for segmenting objects. Unlike
intensity data, depth is robust to illumination changes, shadows and clutter backgrounds.
Nevertheless, the use of depth data has some limitations associated related to resolution
and noise that need to be considered in order to get optimal results.

Most of the IPS segmentation technicques proposed in the literature are conceived to
be used with intensity images although they can be extrapolated to depth. In this work
an approach based on foreground segimentation with depth data is followed for detecting
people. This segmentation is applied independently on each depth IPS of the three
sensors, and requires a final process to fuse the results into a common representation.

This section describes in detail the proposed technique for segmenting people in the
depth IPS. In addition the process for aggregating the results into a common view is
presented. Next, the critical issues related to the process and the use of depth data are
identified and analysed. Finally, the special measures taken to minimize the effect of

these issues are described.

4.2.1 People segmentation

The techuique presented in this work for segmenting people in the IPS comprises of the

following two stages:

1. Foreground segmentation. In this stage moving pixels are detected in each 1PS

independently applying a background subtraction technique.

2. People detection. Foreground pixels are grouped in connected components, which
first, are filtered to remove noisy components and then analysed to detect occluded

people.
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4.2.1.1 Foreground segmentation

A very well known technique for segmenting foreground objects in video sequences is
background subtraction. Its simplicity and high computational speed make it very
popular among researchers within the video surveillance community. The foreground
points of a given image are obtained by performing a pixel-wise comparison with a
background model of the scene. Those pixels that differ more than a certain threshold
with respect to this background are labelled as foreground.

In the literature a huge variety of background subtraction techniques can be found.
The majority of these are designed to be used with intensity images, e.g. RGB or
grayscale. Important issues that must be considered in these scenarios are shadows,
illumination changes and cluttered background. To deal with these issues, sophisticated
modifications of the basic technique have been proposed such as the Gaussian Mixture
Model [12] or the Kernel Density Estimation [13)].

The use of depth data presents at this stage a major advantage with respect to
intensity data. Depth is robust to all the aforementioned critical issues, and therefore the
use of sophisticated techniques to deal with theimn is not necessary. High performances
in detecting foreground objects using depth are achieved by using basic background
subtractions techniques [4, 36] .

The proposed approach in this work uses the depth data captured by the Kinect
sensor to perform a basic background subtraction. The implemented algorithin described
below is composed of three sub-stages: background modelling, model maintenance and

foreground labelling.

e Background modelling. At this stage a representation of the background is built.
This representation should only contain the static clements of the scene. In order
to get an accurate representation, an initialization period of time free-of-people
at the beginning of the sequence is required. A pixel-wise model is built using the
depth median value from the whole initialization period as proposed by Lo and
Velastin [9]. This approach is robust to possible outliers during the initialization

period — see section 4.2.2 for related issues.

e Model Maintenance. This stage plays an important role when working with
intensity images as illumination changes are comnon in real situations. On the
contrary, depth data is not affected by light variations and therefore, there is no
need of gradual updates of the background. A depth model, however may still
experience sudden changes when objects of the background are moved or taken

out of the scene.

The per-pixel model maintenance process proposed uses a selective updating rate

based on the foreground and background regions obtained at each time step.
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Bixi1=aR e+ (1 — )B4 (4.1)

where By and R are the it" pixels of the background model and the current
depth image at time k respectively, and « is the learning rate, which has different
values for background and foreground pixels. The background regions of the
model are updated with a slow rate in case background objects are moved since
gradual changes are not expected. On the other hand, the setting of the updating
rate for foreground regions is more complex and must be analysed in further detail.

Two possible situations that generate foreground regions are identified:

— Background movement. When a background object is reallocated within the
scene yields two foreground regions; the region where the object used to be,

and the region where the object is currently located.

— Foreground movement. For instance, a person walking in the scene. That
person generates one foreground region, which belongs to the current position

of the person.

Both situations lead to foreground regions, although the former is considered
as a false foreground. Each of these requires different updating rates. In the
first scenario, it will be desirable to update the model quickly, so the foreground
regions become part of the model faster. In the second situation, the updating
rate should be low in order to avoid the inclusion of the person in the model. The
main problem comes from the difficulty of discriminating these two situations,
which requires higher level interpretations of the scene. The updating rate o
in this implementation was selected experimentally as a trade off between both

situations as follows:

0.05 ,if I, ¢ background
Y =
0.005 , else.

e Foreground labelling. The foreground detection process refers to the method used
for discriminating foreground objects from the background. It is the final step and
defines the output of the background subtraction — see figure 4.1. The foreground

detection is performed pixel-wise using a threshold as follows:

|Rix — Bix| > 7(Bix)
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CURRENT DEPTH IMAGE DEPTH BACKGROUND MODE]

OUTPUT BACKGROUND SUBTRACTION

Figure 4.1: Depth-based background subtraction with adaptive threshold

where 7(-) is a threshold function of depth which has been computed from the
analysis of the residual error of the depth sensor described in section 3.2.1.3.
Specifically 7(+) is defined with three standard deviations of the residual error

(equation 3.3) covering 99.7 % of the depth variation.

7(d) = 0.0073d* (4.2)

There is a possible failure mode when a person is closer to the background than the
threshold used. In those cases the persoll will not be detected. These situations
are hard to resolve using uniquely depth data. A possible approximation would

be to include extra information such as colour or texture.

The segmented foreground pixels are used in the next step to recover the blobs that
represent |)l‘u])llu

4.2.1.2 Blob detection

Classical pipeline

The classical procedure for segmenting people after the foreground pixels have been
detected is to apply a connected components to group pixels in blobs and then filter out
small components assuming they are produced by noise. In general, the identification
and analysis of occlusions is deferred to subsequent stages where more information is

available i.e. appearance models.
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Extended pipeline: occlusion reasoning

Since depth information is available, it is proposed to include and additional module to

the pipeline in order to identify and solve occlusions — see diagram 4.2
CLASSICAL PIPELINE { Extended
| Module |
I |
prt e ST : ==
/" Foreground \\ - “ Connected - { R \‘“\ﬁ "1 Occlusion
|’\ Segmentation / (\\ Components ) \ Elltcting 72 : reasoning I
e — = o ! o -
| ——— e e e e ™ | e ™

Figure 4.2: Classical people segmentation pipeline with an extended post-processing

IIliJllll]l' 1O :wul\'t‘ (}(‘('l]lhi:i!lh,

The occlusion reasoning module consists of segmenting multiple people projected into
a single component (referred here to as a merged component). These situations normally
occur during occlusions where a more distant person becomes partially occluded by a
closer person as illustrated in figure 4.3. Solving merged components is one of the most

challenging issues for people segmentation, especially when only RGB information is

g m

(a) RGB image of a particular (b) Foreground image. Binary (¢) After the connected compo-
instant in a video sequence. image where the foreground nents and filtering steps the seg-

available.

points are represented in white mentation produces three blobs,

and the backeround in black.

Figure 4.3: Example of a situation where two people are connected in the image plane

in a me ;'_r;fn’ component.

In this work. occlusion reasoning is approached by using the depth information of
the points in the merged component. The intuition is to throw all depth data from the
component into a one dimensional histogram expecting the data from different people
that are connected in the image plane to become separated in the depth dimension.

The process involves the following steps:

|. Detection of the number of people in the component. In principle, the

number of people included in a merged component is unknown. Using the depth
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histogram this number can be estimated by counting the number of peaks. In
order to identify these peaks, a threshold (equation 4.3) has been set empirically
based on training samples, where each sample represents the number of pixels
of a detected component at a particular distance i.c. arca of the component

see figure 4.4. Note that the threshold is set much lower than the actual fitted
function, this is because in the depth histogram all data from the component
will be distributed across a range of values. As expected the number of pixels
of closer components is higher since they cover larger arcas of the camera FOV
and decreases in an exponential-like function with distance. Two remarks can
be made regarding the plot of figure 4.4, First, there is a significant amount of
samples at close distances with lower values than should be expected. This is dne
to the edge effect where close people are not fully covered by the field of view
of the camera. Second, there is a noticeable wide range of values produced by
components at the same depth. This is produced by the fact that the samples
are obtained from a variety of different components such as merged components
that produce higher values, or partially occluded components which yields lower

values.

Toeak (d) = 3300¢0-0006d (4.3)

50000 — —

Samples |

——y = 33792 " 990 (fitted func.) |

4000} + | =y = 3300 %% (peak threshold) ||

£ 3000 !
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2 2000
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% 000
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Figure 4.4: Data fitting on a set of training samples where each sample represents the
number of points of a component at a particular distance.

Following the example introduced in figure 4.3, the peaks' of the three components
in the depth dimension are identified as shown in figure 4.5, where one of them is
a merged component formed by two people (two peaks on the histogram). The

detection of peaks only returns the number of people and their approximated

1A set of connected bins in the depth histogram that surpass the threshold are referred as one peak
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t|<‘|1||1 ]nihlli(lll. I|it' [Jll_\'hi{'.'ll extent of c';lt'll Persornl in the :u[ll[!uln‘ltl will be

computed in the next step.
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Figure 4.5: Peak detection on the depth dimension. The left histogram shows two
peaks. which indicates that the component contains two people.

2. Classification of the points of the component. Ounce the number of people

involved in a merged component is known. all points in the component are then

classified according to the nearest peak in the depth dimension - see figure 1.0,

V'

Pixel
classification

DD

TN

Figure 4.6: Pixel classification

3. Filter small components. The area of the components is calculated and small

components are filtered out using equation 4.4 (fitted function from figure 1.1).

Tivoa(d) = 3300 0-0000d (4.4)
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Figure 4.7: Depth image characterized with colours. Null values are represented in
white. The red rectangle defines an area with a shadow region

4.2.2 Issues

The following issues associated with the background modelling and occlusion reasoning

stages have been identified.

Foreground segmentation: background modelling

When building the model of the background the following problems need to be considered:

Null regions. These are areas where the sensor has not been able to recover any

depth information. Three possible reasons are associated with this problem:

e Objects whose texture or colour reflect the IR light with less intensity e.g. black
colours reflect the infra-red light with low intensity. If they are far from the

amera the resulted noise increases.

e Infra-red interference: Infra-red light from different sources affects the estimation
of depth. These sensors calculate the depth based on a correlation of points
between the current infra-red image and a pre-recorded pattern as explained in
section 3.2.1.2. If infra-red light from a different source interferes in the current
image, the correlation of many points will be impossible resulting in null values at
those points. For example, they cannot be used outdoors as the sunlight contains

infra-red light, or in conjunction with other similar sensors on the same scene.

e Shadow regions. Any object in the scene generates a shadow. The shadow region
is larger when the object is closer to the sensor. The reason comes from the fact

that the IR camera and the IR projector have different FOVs? (see figure 4.7).

2The IR camera and the IR projector are separated by a baseline of 7.5 em approx. There is an
area behind any object where the IR light does not reach, as it is blocked by the object itself. However,
this area is captured by the IR camera, leading to regions with no depth information or shadows.



CHAPTER 4. PEOPLE SEGMENTATION

Image formation noise. This noise refers to the residual error produced by
effects like blurring, pixelation or quantization. A detailed analysis of this crror is
conducted in section 3.2.1.3 where some experiments were undertaken to model this

noise with a quadratic function of depth.

Infra-red laser errors (edges). Minimal variations on the position of the laser
projector, illumination factors or even tiny fluctuations on the temperature of the laser
lead the IR beam to impact in a slightly different spot. When the impact location
is located at the edge of an object these variations canse the laser to impact on a
completely different object as illustrated in figure 1.8, This effect results in completely

different depth values for a particular pixel.

T S —

Projection |/

infra-red

Infra-red

Sensor Laser

Figure 4.8: Depth error produced at the edges of objects

People detection: occlusion reasoning

Two main reasons of failure have been identified when re-solving occlusions. First.,
when the people involved in a merged component are spatially close. they cannot
be discriminated in the depth dimension. they produce one single peak. Figure 1.9
illustrates this situation where a merged component is composed of three people, two
of them are shaking hands which means they are mostly at the same distance and
therefore the system fails to segment them, and the third person who is approximately
2 metres behind. is correctly identified.

The second problem is related to the resolution and noise of the Kinect sensor. At
farther distances these factors might lead to one person producing two peaks in the

depth histogram. Figure 4.10 illustrates this sitnation.
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Figure 4.9: Merged component formed by three people. Two of them are not distin
onished because they are located at the same distance as it is shown in the histogram.
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Figure 4.10: Single component which is misinterpreted by the system as being formed
bv two people.

4.2.3 Discussion

In this section a process for segmenting people using depth data in the 1PS for each
sensor has been described. This process is based on a foregronnd segmentation approach
followed by a people detection step.

The use of depth information for detecting foreground pixels has many advantages in
comparison to intensity data. Shadows, illumination changes and cluttered backgrounds,
are all eritical issues in intensity images which are avoided by using depth data. However,

there are some issues associated with depth sensors that have been identified such as

r o
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pixels with noisy depth values, regions where the depth could not be estimated, or
the fact that the depth resolution decreases with distance. All these issues have been
considered and measures to mitigate these results were taken.

The resulting foreground points are connected and filtered to yield a set of people
blobs, one for each camera. In classical intensity-based systems, solving occlusions is
one of the biggest challenges i.e. blobs that comnprise two or more people. In this work
occlusion situations are approached using the depth information. The intuition is that
people that are connected in the image plane become well separated along the depth
dimension. However, this approach is also associated with some issues. For instance
when people are spatially close (e.g. hand shaking or path crossing), depth information
is not enough to discriminate them. In addition, occlusions are difficult to solve at
farther distances where the resolution is low and the noise is high. In the next section
an alternative space is presented that aims to reduce the effect of these issues during

the occlusion reasoning step.

4.3 Map of Activity

As seen in the previous section, segmenting in the IPS requires a dedicated process based
on depth to discriminate connected people i.e. occlusions. This process is associated
with some issues when people are at similar distances or at farther distances where the
noise is higher and the resolution is lower. In this section an alternative space that
handles occlusions naturally is presented, which is referred to as the Map of Activity
(MoA). This space can be thought as a top-down view representation where the depth
is explicitly represented. To motivate the use of the MoA with respect to the 1PS, a
visual comparison of an occlusion in the two spaces is displayed in figure 4.11. Unlike
the IPS, in the MoA the occlusion is clearly distinguished.
The MoA is built in two steps:

1. Aggregation of data: The foreground pixels from the three cameras are projected
into the 3D space, and then transformed (using the calibration parameters) into

a single point cloud.

2. Projection of data: The aggregated point cloud is projected orthogonally onto

the ground plane where a 2D histogram accumulating the points is built.

In this section, the process for building the MoA is described, and then some relevant

issues are identified regarding the people segmentation task in this space.
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(a) IPS (b) Map of Activity

Ficure 4.11: Comparison between IPS and MoA with an example of a partial occlusion
in both spaces.

4.3.1 Aggregation of data

The aggregation of data is the first step towards the construction of the MoA. where
the data from the three sensors is projected into a common CS. This step involves the

following two sub-steps:

[. Point back-projection: Using the projective equations 4.5 the foreground pixels
obtained in each camera are projected into the three dimensional space. The
result is three clouds of 3D points, each of them represented with respect to their
camera CS (left-handed CS).

A ==0=J) ¥=-7F(—i) (4.5)

where ¢ and j are the pixel coordinates with respect to the digital image CS, i
and jo represent the origin of the image plane. X', Y and Z are the 3D coordinates
of the points in the space with respect to the camera CS, and f is the focal length

of the camera expressed in pixels.

9. Point cloud fusion: The three point clouds are transformed using the extrinsic
paranieters obtained in the calibration process (see section 3.3) into a common
C'S. For convenience, the middle sensor CS has been assiened as the reference.
Therefore, the transformation is only applied to the data from the two outer

SECLSOTS.

The full process of data aggregation is illustrated in figure 1.12.
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Figure 4.12: Aggregation of data from the three sensors
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Point Cloud

2D Histogrom

Figure 4.13: 3D foreground points projecting into the ground plane, yielding a 2D
histogram of accumulations.

4.3.2 Accumulation of evidence

The aggregated point cloud obtained in the previous step is now projected onto the
ground plane over which a 2D histogram is built where each bin stores the accumulation
of evidence in that location — see figure 4.13. The bin where a point projects is calculated

using the coordinates X and Z of the point as follows.

X —Mx
U= ———
b_\'
(4.0)
v = < MZ
) bz

where u € R and v € R refer to the bin where the 3D point projects. The variables
My and My are the minimum range of the aggregated FOV in the horizontal and
depth axes respectively. Finally, bx and by define the width and height of the bin in
the grid. The histogram is delimited by the range of the combined field of views (FOVs)
of the three sensors as depicted in figure 4.14. In this work the minimum range towards
the horizontal axis (My) was set to —11000 mm., and in the depth axis (My) to 0
mm. The size of the bins were chosen empirically to 20 x 20 mm. The dimensions
of the histogram in terms of number of bins was 1100 x 500. An example is given in
figure 4.15 where the histogram has been converted into a binary image for visualization
purposes. This histogram of accumulations is referred in this work as Map of Activity
(MoA). In the next section it is assessed whether the MoA is suitable for segmenting

people or not.

4.3.3 People segmentation on the MoA: Issues

The MoA is a simple structure where the information from the three sensors is rep-
resented in a way where partial occlusions are clearly distinguished. However, the

following issues have been identified that complicate the people segmentation task.

56



CHAPTER 4. PEOPLE SEGMENTATION

< 22 m >
A f '
I r
LB
f "
I '
S8
I [} tof
/ - / ;
= P sl esccceceicaceceeaaaa. facmadlootoad. 4
: | (F
V4 L}
P JII H
10 m. / '
s | i
/ i :
Z 17 '
| \ /1 )
- ] ) —— :
TSt / { ;

Figure 4.14: 2D histogram that covers the aggregated field of views from the three

SeI11SOrs.

KINECT 1 KINECT 2 KINECT 3

Figure 4.15: Map of Activity built upon the foreground points detected on the three
image planes of the sensors. Note that for the purpose of visualization this is a binary

image instead of an image of accumulations.
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e Non-homogeneous blobs: Points belonging to people project into the MoA forming
blobs. Despite the relatively constant size of people, these blobs vary their
orientation, width and height throughout the MoA - see figure 4.15. The variation
of height (i.e. the depth dimension of the MoA) is an issue related to the depth
resolution of the sensor; as the resolution decreases with distance, the gaps between
the projected points in the MoA increase, generating larger and more scattered
blobs (see figure 4.16). The variation in width (i.e. horizontal dimension of the
MoA) is mainly associated with the different orientations of people with respect
to the camera e.g. sideways, perpendicular. The non-homogeneity of blobs may
result in problems during the smoothing stage as fixed size kernels would not be
appropriate. Ideally, in these situation the size of the kernel should vary with

respect to the distance.

...

i v

——
——
-—
-

Figure 4.16: Projection of points from a person into the MoA at different distances.
Projected points from closer people have higher density than projections form farther
distances.

e Varying blob orientations: Blobs in the MoA can be found with three different
orientations depending on the camera they are captured from. The reason of this
behaviour is associated with the geometry of the cameras and their directions.
The points of a blob are scattered along the optical axis of the camera from which
they are obtained (see the coloured arrows in figure 4.17). As before this issue
affects the smoothing step during the segmentation process, different orientations

of kernels should be considered.

These problematic situations make the MoA a less appropriate space for segmenting
people. In section 4.4 an alternative space is presented that aims to overcome these

difficulties.

4.3.4 Discussion

In this section a common representation (MoA) for the data from the three sensors was
described. The MoA is a top-down view of the scene where the foreground objects from

the three sensors are projected. The MoA is built in two stages:
3 2t
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Figure 4.17: Three different orientations of blobs in the MoA. one for each of the three
cameras

1. Aggregation of data. The foreground pixels from the three cameras are first

projected into the 3D space, and then transformed into a common 3D CS.

o

Accumulation of evidence. The aggregated 3D point cloud is projected into an

accumulated histogram defined over the ground plane.

One of the main advantages of this space with respect to the IPS is that partial
occlusions are easier to detect as depth is explicitly represented. However, a major issue
has been identified associated with the segmenting process in the MoA. The projected
blobs have varying sizes and orientations. This issue is associated with the decreasing
depth resolution, orientation of people with respect to the camera, and the fact that the
three sensors yield blobs orientated in three different ways depending on the camera
they are capture from. The segmentation of non-homogeneous blobs requires in general
the use of adaptive kernels, where the size of the kernel changes with distance.

An alternative space is presented in the next section that aims to solve or at least

minimize the effect of the problem identified above.

4.4 Remapped Polar Space

The Remapped Polar Space (RPS) is an alternative space designed to solve some of the
issues that arise in the MoA. Rather than using a Cartesian CS, the points are projected
into a polar CS which immediately reduces the problem of different orientations of
blobs. In addition, the varying blobs size is mitigated using a mapping function on
its radial dimension that aims to normalize the blob height throughout its range. The

RPS is built according to the following two steps:

e Cartesian to Polar CS: The aggregated point cloud, which is represented in the
Cartesian CS, is transformed to the polar CS where the problem of different blob

orientations is diminished.

e Remapping: A transformation is applied directly on the range dimension of the

polar CS which aims to reduce the issue of different heights in the projected blobs.
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(X.2)

Figure 4.18: Polar CS representation

The RPS is discretised in a 2D histogram ol accumulation of evidence (equivalent
to the MoA representation), where the segmentation process is applied. The process
followed to segment people is equivalent to the one described in the IPS in section
4.2.1.2, with some subtle differences according to the particularities of the space.

This section, first describes the process of building the RPS. Then, the procedure
followed for segmenting people as well as some of the issues that still affect the RPS

are presented.

4.4.1 Cartesian to Polar CS

The first stage to build the RPS is to transform the aggregated point cloud from the
Cartesian CS to the polar CS. This transformation aims to normalize the different
orientations of the blobs. The polar CS is built over a two dimensional space where the
data is represented by a distance p and an angle 6 as shown in figure 4.18. Transforming
data from the Cartesian CS to the polar CS is obtained by the following two non-linear

equations:

p=vX2+22 tanf = —%- (4.7)

where Z > 0. Figure 4.19 captures a particular instant of a sequence in both, the
Cartesian CS (MoA) and the polar CS; so they can be compared visually.

Although the issue of different blob orientations is addressed in the polar CS, there is
still the problem of the size variability. Blobs at farther ranges appear larger than closer
blobs. This situation is partially solved by applying a new transformation referred to in

this document as remapping, which is explained in detail in the following subsection.
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Figure 4.19: Two different representations of the same data: Polar CS and Map of
Activity.

4.4.2 Remapping

The remapping is a transformation applied to the p dimension of the polar CS to obtain
a representation where the radial size of the blobs is homogeneous. This representation
is referred in this document as the Remapped Polar Space (RPS).

The intuition behind the remapping is to compress larger blobs at farther distances
and stretch smaller blobs at closer distances, bringing a constant blob height throughout
the range. At this point it is important to be reminded that the degradation on the
depth resolution (see section 3.2.1.3) is the primary reason for the different heights of
the blobs. Therefore, the remapping is derived from equation 3.2 which models the
depth resolution of the sensor.

The calculation of the remapping function f(p) is obtained from the following

equality that ensures a constant height of the blobs throughout the whole range:

J

where £p) is a function capturing the variation of depth resolution with respect to the

range p. % is the derivative of the mapping function, and C' defines a constant height
= &

for the blobs. The derivative can be obtained re-arranging the terms as follows:

J C
Ti = (4.9)
dp r)

If ' is set to 1, the derivative of the transformation is just the inverse of the depth

resolution function:

ar I 1
dp  &p)  2.6p2+0.6p—0.2

(4.10)
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Figure 4.20: Plot of the mapping function f(p)

where the quadratic in the denominator was estimated in section 3.2.1.3. Finally. the

remapping function is obtained by integration (see figure 4.21)

1
He)= / 5602+ 0.6p— 027
(4.11)

= 0.6 * (log(b — 26p) — log(11 + 26p)) + constant

The constant is set to 0.5, so the resulting range is always positive. In addition, the
function is multiplied by a scale factor S = 20 to normalize the range between 0 and 10
metres.

Using the remapping function 4.11 all data from the polar CS is transformed into the
new space (RPS) yielding a two dimensional (6, p') set of points, where the coordinate
g derives from the p coordinate of the polar CS.

In order to work in the RPS the data is discretised and represented in a 2D histogram
of accumulations equivalent to the MoA histogram (section 4.3.2). In this case the
dimension of the histogram is 500 x 180 bins, where the vertical axis represents the
remapped range and the horizontal axis defines the angle, and the bin size is set to
2 em x 1 degree in the remapped range and angle dimensions respectively. A visual
comparison in both spaces, polar CS and RPS is presented in figure 4.21%, Tt also shows
two enlarged regions in both representations. The region with the more distant blob is
slightly more compressed than its equivalent in the polar CS. On the other hand, the

closer blob is expanded in the RPS with respect to the same blob in the polar CS.

3For visualization purposes the two images are converted into binary images.
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Figure 4.21: People representation in both, the polar CS and in the RPS.
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Figure 4.22: Classical people segmentation pipeline: Smoothing, Thresholding, Con-
nected Component and Filtering.

4.4.3 People segmentation on the RPS

The main objective of this chapter is to study and compare the performance of different
spaces applied to the people segmentation problem. In order to get a fair comparison, the
process of segmenting people should be similar in every space i.e. only the space changes.
Therefore the classical segmentation pipeline used in the IPS (with some particularities
associated with the RPS) is used. This pipeline includes smoothing, thresholding (using
a low threshold). connected components and filtering of components (using a high
threshold). The thresholding and filtering stages perform a similar role to hysteresis
thresholding as proposed by Canny [180]. Figure 4.22 depicts this segmentation pipeline.

These are described below.

e Smoothing: This step aims to reduce the noise and eliminate the gaps within
blobs by applving a convolution to the RPS image with a 2D Gaussian kernel.

[t is important to use an appropriate size for the kernel to avoid under or
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Figure 4.23: Stages of the people segmentation process in the RPS.

over segmentation. Ideally, the size of the kernel should have the size of the
typical person blob in the RPS. Although the extent of the blobs is normalized
by remapping, other particularities, as explained later in this section, affect
the dimension of the blobs. In this work the size of the kernel was estimated

empirically as 11 x 25 pixels (sigma 2 x 4 pixels) — see figure 4.23.

e Thresholding (low threshold): The purpose of this process is to reduce the majority
of the noise in the image, and prepare the data [or the next step — see figure
4.23(c). This thresholding is performed pixel-wise and it is designed to remove
small isolated noise peaks. The threshold varies with p’ and it has been modelled
using a set of samples taken from a training sequence. Connected components are
extracted from the training sequence and the amount of evidence accumulated
on the centre bin of cach component is plotted on figure 4.24(a). The centre bin
is assumed to contain the higher value of the component. As expected, samples
taken from closer distances contain more accumulation of evidence than more
distant samples’. This behaviour can be approximated with a linear function
within this particular range i.e. 0.5 m to 10 m. The threshold for eliminating
noise is set empirically lower than the fitted function to avoid filtering out hins
that belong to actual people (equation 4.12). There is also a minimum threshold
(TLow:min = 100) to be used where the threshold function does not apply i.e. from

0 metres approx.

ANot considering the edge effect produced at closer distances i.e. 0.5 m to 2.5 m
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Figure 4.24: Number of projections per pixel. Data points collected experimentally
from a training video sequence.

TLou‘(,“!) — _15,0’ + 9500 (-1]2)

e Connected components: This operation segments blobs of connected points within
the binary RPS representation. Foreground points that are spatially 8-connected

in the RPS are grouped into the same blob.

e Filtering of components (high threshold): Similarly to the hysteresis threshold
[180], components that do not possess any bin with an evidence value higher
than a certain threshold are filtered out — see figure 4.23(d). This threshold is
computed by lowering the fitted function (computed in the previous threshold
stage) three standard deviations to cover most of the data® - see figure 4.24(h).
As in the thresholding stage a minimum value is used were the threshold function

does not apply from 7 metres approx. (Tuigh:min = 200).

Taigh(p') = —1.5p" + 11500 (4.13)

4.4.4 Issues

The different orientations of people with respect to the camera affects the size of the
blobs as well. For instance. the blob of a person who is sideways to the sensor is wider

along the angular dimension and shorter along the radial dimension. On the contrary.

5The training samples were projected onto the perpendicular line to the fitted function. The
variance was computed from the Gaussian distribution of points in this one dimensional space.
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if the person is perpendicular to the image plane of the sensor, the blob will appear
narrower and larger. This is not a specific issue related to the RPS but is a general
effect that is present in every space.

Additionally, the segimentation in the RPS requires more computational time (26%
of the total time is spent building the RPS histogram). The mapping of all data from
the Cartesian CS to the RPS comprises a set of expensive non-linear transformations

that must be performed point-wise.

4.4.5 Discussion

In this section an alternative space (RPS) has been presented that aims to solve the
issues of different orientations and dimensions of the projected blobs that affect the
MoA.

Firstly, the problem of different orientations is solved by representing the data in
the polar CS. The second issue, varying dimensions, is approached by remapping the
radial dimension of the polar CS into an alternative space where the radial width of
objects is made homogencous. This mapping is derived from the inverse of the depth
resolution function of the sensor.

In a similar fashion to the MoA, the RPS is overlaid by a histogram where each
bin stores the number of projections. Based on this RPS histogram, the people
segmentation is applied following the traditional pipeline: smoothing, thresholding,
connected components and filtering,.

There are still some outstanding issues such as people with different orientations
that yield varying blob sizes and the expensive computational requirements for building
the RPS histogram.

4.5 Performance evaluation

In this scction the Image Plane Space and the Remapped Polar Space are evaluated
and compared with a particular focus on their impact on the performance of the
seguientation process.

People segmentation can be used for different tasks such as counting people, tracking,
action recognition, etc. Each application has its own requirements. For instance an
application that recognizes people actions may require highly accurate results in terms
of spatial location and it may not need to detect people who are farther away. This
work, on the other hand, aims to monitor larger spaces where one of the requirements
is to detect every person in the scene even if they are distant from the sensor. The
spatial accuracy is not a priority in this case.

To facilitate the evaluation, the results obtained from the systemn are compared
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using a dataset and a ground truth. This ground truth has been manually annotated
in the MoA and therefore the segmentations produced in the IPPS and RPS must be
transformed into the MoA.

The first two following subsections discuss the relevant failure modes and the chosen
metrics. In addition, the parameters involved in the evaluation are identified. Next, the
processes for projecting the IPS and RPS segmentations into the MoA are described.
After the results obtained from the two spaces are presented, a discussion is conducted

based on the results obtained.

4.5.1 Failure modes

The failure modes of a system refers to a hopefully small discrete set of categories of
situations where the output of the algorithm is different to what it is expected. Some
failures are more relevant than others depending on the application. For that reason it
is important to identify the relevant failure modes for each application, in order that the
evaluation provides meaningful results. For this application the following two failure

modes are identified:

e Misdetection of people: The algorithm fails to segment a person in the scene.
Normally this situation occurs when the person is partially occluded or because
the depth signal is noisy and there is not enough evidence to support the presence

of a person.

e Falsely detected people: The system incorrectly seginents a person in a location
where in fact there is no person. Noisy environments and incorrect foreground

segmentations are normally the responsible for these situations.

The former failure mode is often approached by lowering the threshold of the
segmentations, so that less evidence is required to support the presence of a person.
However, such a measure typically results in the second failure mode in which noise is
incorrectly detected as people.

The failure modes are evaluated on a common dataset for the two different spaces,
IPS and RPS. This dataset and its corresponding ground truth arc explained in detailed

in section 4.5.4.

4.5.2 Metrics

Once the failure modes have been identified the next step is to decide on a set of
suitable metrics that account for the failure modes. The computation of the metrics
requires a prior step where the ground truth is mapped to the system detections (SD)

i.e. detections produced by the system. This mapping consists of associating the ground
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truth annotations with the SDs at each frame. It is performed based on the degree
of overlap between ground truth and SD, which is measured by the Bhattacharyya
coefficient (B.). A ground truth annotation at a particular frame is mapped onto a SD
if their degree of overlap is higher than a certain threshold (7,). (For this evaluation
the threshold was estimated empirically to 0.6).

This mapping between ground truth and SD allows the computation of the number
of true positives (TP), false positives (I') and false negatives (FN). TPs refer to the
numnber of correctly detected people in the whole sequence, FPs are the number of
incorrect detections made by the system, and FNs define the number of people that
were not detected by the system.

Based on these values the performance of the system is represented by precision (P)
and recall (R) = see equations 4.14. These are simple metrics that cover the failure
modes described in section 4.5.1. In addition, the popular Fl-score is used to present a

single value to describe the overall performance of the systew.

TP
T TP+ FP
(4.14)

TP

R= —«——
TP+ FN

The Fl-score — the harmonic mean of precision and recall - is defined as follows:

_2xPxR

F = 15
1 P+ R (4.15)

4.5.3 Projection of detections to MoA

The performance evaluation of the system is estimated by comparing the results obtained
with a given ground truth which represents the ideal result. In the dataset used for this
evaluation the ground truth was manually extracted on the Map of Activity (MoA).
This means that the segmentations obtained in the IPS and in the RPS need to be

transformed into the MoA in order to be compared with this ground truth.

Projecting IPS detections into MoA

The extracted blobs in the IPS are represented as two dimensional Gaussian PDFs,

where the mean and covariance represent the centroid and physical extent of the person
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(a) Left sensor. (b) Middle sensor. (¢) Right sensor.

Figure 4.25: People segmentation in the IPS of the three Kinect sensors.

in the image plane respectively — see figure 4.25 where the ellipses are computed from

the covariance matrix. The process for transforming these detections into the MoA

consists of the following steps:

Projection into the 3D CS of the camera. All pixels of every detected blob are

projected into each corresponding 3D camera CS using equations 4.5.

Tilt correction. The tilt angle of the cameras is corrected since this angle is known.
The objective is to represent the data in a 3D CS where the Y axis is orthogonal

to the ground plane.

Computation of Gaussian parameters. The 3D points of each blob are modelled

as 3D Gaussian distributions p ~ N(u, X)

9 2 )
Fex O Ury Oz
= i 2 2 2 d
p=\1 iy | = a5y 0 ay; (4.16)
2 92 ]
/R U5y Uy 6%

Transformation of PDFs into a common CS. Using the calibration parameters (R

and t) obtained in section 3.3 the mean and covariance are transformed as follows:

pe=Ru+t, Z,=RTER (4.17)
Projection of PDFs into the MoA. The parameters of the 3D Gaussian PDF of

each blob are projected into the 2D ground plane MoA. The mean . is mapped

using equation 4.6, and the covariance L. is projected as follows

Tiod = PEPT (4.18)

where P?*3 is the projective matrix derived from equation 4.6 as follows:
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Figure 4.26: People segmentations in the IPS and transformed into the MoA.

& D
P=| b (4.19)
0 0 ﬁ

Figure 4.26 illustrates a particular instant of a video sequence with the detections

represented as ellipses in both spaces, IPS and MoA.

Projecting RPS detections to MoA

The extracted blobs in the Remapped Polar Space are modelled with 2D Gaussian
distributions in the same way as in the case of the IPS, where the mean and covariance
represent the centroid and scatter of points of a person in the RPS respectively - see
figure 4.27. The process of transforming the PDF from the RPS to the MoA is illustrated

in figure 4.28 and can be described in the following four steps:

1. RPS(histogram) to RPS. The RPS(histogram) refers to the discrete representa-
tion where the segmentation is performed and the RPS defines the continuous
Remapped Polar Space. The transformation of the 2D Gaussian from one space
to the other is simplified by considering that the angle dimension remains equal
and the covariance matrix is diagonal. Therefore. the process is reduced to the
transformation of the mean range y1,;  and the propagation of the variance range

o as follows:

'
Phist
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(a) RGB images. (h) RPS.

Figure 4.27: People segmentation in the Remapped Polar Space.
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Figure 4.28: Transformation from RPS(histogram) to MoA.
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Bt = Myl Spy Oy = 0y Sy (4.20)
— 2 _ 2 )
Fe = Moy, Oo = 00;.1'51

where s, is the down-sampling factor and defines the level of accuracy in the

transforination.

2. RPS to Polar CS. In the second transformation the considerations taken in step 1
can be applied as well i.e. angle remains equal and diagonal covariance matrix.
The mean in the polar CS p, is estimated from a look up table, which was built
during the mapping of points into the RPS to avoid the need to invert equation
4.11 (p, = lut(p,)). Note here that if the exact range is not found in the table
its mapping is interpolated from the nearest values in the table. The propagation
of the variance is derived for the derivative of the remapping function 4.11 as

follows:

N 2
2 df
oy =0, (—) (4.21)
dp
Hp
where 03, and aZ are the variances of the range in the RPS and in the polar CS
respectively; and (%) defines the partial derivative of the remapping function
Hyp

of equation 4.10 evaluated at the mean p,. From this transformation the variance

in the polar CS can be obtained as follows:
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o?,

2 4 -
o, = ——5F 4.22
dp Lut(p )

3. Step 3: Polar CS to Cartesian CS. The third transformation is defined with the

following non-linear functions:

X =pcosh, Z=psinb (4.23)

The mean in the polar CS ppes = [#1,, p1]7 is transformed directly using equations
4.23 to the mean in the Cartesian CS precs = [px, pz]T. The propagation of the
covariance Yyes requires the use of linear approximations of equations 4.23, which
are computed using the first order termn of the Taylor expansion (evaluated at the

mean fipes) i.e. the Jacobian matrix.

2
Ypes = [ % ) } (4.24)

ECCS = J(#pc’-s)zpcs'](upcs)’r (425)

where J(fpcs) is the Jacobian matrix evaluated at gy and is defined as:

J
J(um)=[ X] (4.26)
Jz
where
dX dX
Jx = |=—, = = [cosf, —psin )
dp’ db 107
]_dZdZ_[_e 050] (4.27)
2=\ W T sinf, pcos

4. Step 4: Cartesian CS to MoA. The final transformation refers to the mapping
into the ground plane MoA. The mean ipro4 = [ftu, ] is obtained from equation

4.6, and the covariance ¥, is computed as follows:

Eoa = PreaXeart P (4.28)
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Figure 4.29: Detections in the RPS transformed into the MoA.
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where P is the projective matrix derived from equation 4.6 as follows:
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Figure 4.29 shows the detection of people on the RPS and the transformed version

in the MoA.

4.5.4 Benchmark dataset and ground truth

Since the release of the Microsoft Kinect different indoor datasets have been created for
different types of indoor applications. Most of them are aimed at object recognition
tasks [148, 149] and human activity recognition [150, 151]. Few datasets have been
found for the evaluation of people segmentation and tracking systems. One of them
was recently published by Munaro and Menegatti [S0] called Kinect Tracking Precision
(KTP). which is a dataset acquired from a mobile robot platform. To the author’s best
knowledge the only RGB-D dataset recorded from static RGB-D cameras for people
segmentation and tracking purposes is the one presented by Spinello and Arras [70].
In their dataset three vertically mounted Kinects are located in a non-overlapping
configuration at approximately 1.5 metres high. Although this dataset is close to the

purposes of this project, it does not fulfil some essential requirements:

e The location of the sensors must be at a high location. e.g. 2 metres or higher, so

the number of occlusions is minimized.
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e The cameras should be mounted horizontally to maximize the area covered”.

e The configuration of the scene should allow the capture of data at its maximum

range. 10 metres approximately.

Therefore. a new data set is proposed that aims to satisfy the aforementioned
requirements. A set of video sequences was recorded in one of the labs of Kingston
University. Three Kinects were horizontally placed in a non-overlapping adjacent
configuration, where the area covered was maximised. They were located half way along
the largest wall of the room at approximately 2.20 metres high. The area covered by

i o 9 " . o
the whole system is around 220 m=. See figure 4.30.

(b) Left camera. (¢) Middle camera. (d) Right camera.

Figure 4.30: Configuration of the cameras in the lab and the actual views of the three

Kinects.

Two sequences of 1000 frames each were captured. One is used for the training of
parameters of the algorithm i.e. threshold values. while the other is used for the actual
evaluation of the svstem. The sequences were recorded using the “.oni” format provided
by the OpenNI framework. This format combines the colour and depth information.
The colour data is stored in a 640x480 array of 8 bit. 3 channel. The depth information
is presented in a 640x480 array where each position contains a value between 500 and
9700 mun.

6The Kineet depth sensor features an angular field of view of 57° horizontally and 43? vertically.
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(a) Plot of the interaction periods in the test se-(b) Plot of the number of people present at each
quence frame during the whole sequence

Figure 4.31: Description of the test video sequence in terms of periods of interactions
hetween people and number of people present in the scene.

Up to 15 people appear in the evaluation and training sequence walking in a casual
way along the aisles of the lab. Figure 4.31(b) describes the sequence in terms of the
number of people present at each frame of the video. The actors leave and re-enter
the scene multiple times as a consequence of the limited range of the Kinect sensor.
The dataset comprises approximately 140 different people interactions where most of
them are short-lived consisting on path crossing between people. There are as well
occasional handshaking and grouping interactions with direction and motion changes
after it. Figure 4.31(a) plots the frequency and duration of periods where two or more
people are part of an interaction. Due to the layout and structure of the scene there
are multiple partial static occlusions when people walk behind desks and computers.

These sequences were manually annotated with bounding boxes in the Map of
Activity using the open source tool VATIC". The ground truth annotations can be
defined as the ideal values that any algorithm aims for. These annotations have to be
as objective as possible and not being biased by any other process. In general, human
annotations are considered the perfect values, however the results can be subject to
minor errors related to the subjective interpretation of the annotator. Moreover, ground
truth annotation is a highly tedious and monotonous task where the annotator might
get distracted or reduce their concentration at some point, resulting in the introduction
of additional errors in the ground truth data. To slightly alleviate the task, the tool
VATIC features a linear interpolation capability, so that annotations do not have to be
recovered in every single frame; the annotator can just accept the interpolation results.
Nevertheless, this is subject to some errors as well, as the annotations might get biased

towards the interpolation tool.

-

Thttp://web.mit.edu/vondrick /vatic/
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Although there are several sources of errors involved in the generation of the ground
truth, for the purpose of this evaluation the ground truth is assumed to be error-free.

The actual annotation of the ground truth in this work counsists of two stages. First,
the bounding boxes are drawn on the MoA by a hluman operator aided with the tool
VATIC. Second, the data contained within the bounding boxes are modelled with
two-dimensional Gaussian PDF's where the dimensions represent the horizontal and
vertical axis of the MoA.

The procedure for annotation follows three rules:
e The bounding box should have the minimum size to cover the whole person.

e During occlusion periods only the visible part is annotated. Note here, that when
two or more people are involved in an interaction the process of estimating the
litnits of cach target is quite difficult and might lead to some small accuracy errors

in the annotation data.

e When a person leaves the scene and later on re-enters; that person is annotated

as a different person.

Those bounding boxes that are spatially connected on the MoA are flagged as
merged measuremnents. Note that the spatial detection of the people involved in a

merged measurement is out of the scope of this evaluation.

4.5.5 Results

Table 4.1 presents the evaluation of the people segmentation in the two spaces, 1PS
and RPS. For the IPS evaluation two versions are compared, the classical approach of
intensity-based systemns and the extended version with the occlusion reasoning module
(described in section 4.2.1.2).

[ Space/Mctric || Precision | Recall | F1-Score |

IPS (classical) 0.5 0.67 0.57
IPS (extended) 0.78 0.83 0.8
RPS 0.95 (.84 (.89

Table 4.1: Performance evaluation of the people segmentation process applied to three
different spaces.

Not surprisingly, the evaluation indicates a significant improvement when the
extended IPS version is used. The reason is two fold; first, since the classical version
does not detect individual people within a merged component the number of false
negatives is higher; and second the PDF of a merged component does not match the

ground truth PDF's yielding an increase in the number of false positives too.
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FP distribution (IPS (ext.) vs RPS)
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Figure 4.32: Distribution of FPs along the depth dimension in the IPS and RPS

More significantly. the third row of table 4.1 reveals that the RPS outperforms
the use of IPS. From this. it can be inferred that occlusion reasoning performed on
the ground plane is more effective than in the image plane. It also suggests that the
measures taken to mitigate the noise and the decreasing resolution at farther distances
are effective. This improvement is presented visually in figure 4.32 with the distribution
of FPs obtained in the RPS and in the IPS along the depth dimension. As expected
the number of FPs obtained in the IPS increases beyond the operating range of the
Kinect sensor. The results obtained in the RPS shows the reliability of the remapping
operation. The low values of FPs obtained at 9 metres can be associated with the

structure of the scene.

4.6 Discussion

In this section three different spaces have been presented in the context of people seg-
mentation: the Image Plane Space (IPS), the Map of Activity (MoA) and the Remapped
Polar Space (RPS). All three exploit in different degrees the depth information provided
by the Kinect sensor. The objective of this chapter was to compare the three spaces in
the context of people segmentation and identify their weaknesses and strengths. To
ensure a fair comparison the people segmentation methodology applied on the three
spaces follows the same pipeline: foreground detection. noise filtering. smoothing and
connected components (but with variations according to the particularities of the space).

The first space proposed was the Image Plane Space (IPS) which is defined as the

=3
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two dimensional digital image produced by the sensor. This space has been widely used
over the years for people segmentation with intensity images. Occlusions are the most
challenging issue in this space and normally additional information is required for its
resolution. In this project an extension to the classical approach has been proposed to
deal with occlusions by employing the available depth dimension.

The second space is the Map of Activity (MoA) which is constructed over the ground
plane, and serves as a common representation for the data from the three Kinects that
constitute the system. Since depth is explicitly represented, the occlusion reasoning is
handled naturally. However two important issues were identified in this space. First
the blobs projected onto the MoA become increasingly scattered with distance as
the depth resolution decreases i.e. varying blob dimensions. Second this scattering
occurs along the optical axis of cach camera yielding three different orientations of
blobs (depending on the camera they were captured from). These issues impact in
particular the simoothing stage of the segimentation process as different kernel sizes and
orientations would be required.

Finally, a Remapped Polar Space (RPS) is proposed as an alternative space, and
aims to solve the issucs identified in the NMoA. The problem of different orientations is
automatically solved by transforming the data into a polar representation. In addition,
the effect of varying blob dimensions is mitigated by the use of a remapping operation
derived from the resolution function, which aims to normalize the dimension of the
blobs.

The evaluation is conducted only on the IPS and RPS which are considered fun-
damentally different since the RPS is an improved version of the MoA. The results
are presented using the precision, recall and Fl-score metrics which cover the relevant
failure modes identified for this application: misdetections of people and falsely detected
people.

The results show that the occlusion reasoning approach applied to the IPS is effective
as the performance increases significantly with respect to the classical approach. The
use of the RPS, however, represents a significant increase in performance over the use
of the IPS. This suggests first that the ground plane is more discriminative for solving
occlusions, and second that the actions taken to address the noise and the decreasing

resolution of the data are effective.
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Chapter 5

Study of Multi-target Tracking
Methodologies

5.1 Introduction

Tracking multiple people in crowded scenes is a real challenge inainly because of the
number of dynamic occlusions produced between people. It is particularly difficult to
correctly re-stablish identities of people after an occlusion. Different methodologies
have been proposed in the past to address these situations. However this remains an
active research topic.

Traditional approaches use a module for segimenting targets at every time step and
rely on a data association process to correctly link the mecasurements over time. In
this context the performance of the data association stage is of the highest importance
especially during occlusion situations where the targets’ appearance inevitably change.
Popular examples of this type of approaches are the Kahnan filter and particle filters
[5, 56].

Alternative tracking methodologies exist that do not rely on a data association
process. The Mean-Shift algorithm is a popular approach within this category. It is
mainly used for single target tracking as it is gencrally highly sensitive to distractions
from nearby targets. However, in the past few years some authors have proposed
modifications to the original method aiming to make it more suitable for multi-target
environments [103, 104}.

A chief aspect regardless the tracking algorithm is the model used to describe the
appearance of targets. This model should be sufficient discriminant to distinguish people
from one another especially during complex situations such as occlusions, illumination
changes or variations in the target scale.

In this chapter a traditional tracking methodology, namely the Kalman filter, and

the alternative mean-shit approach will be explored in the context of multi-target
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tracking. Using the depth dimension provided by the Kinect sensor some enhancements
will be proposed to improve the performance specifically during occlusions. Additionally
a discriminative appearance model built from the 3D space and the colour dimension
will be presented to assist during the tracking process.

The remainder of this chapter is organized as follows. Secction 5.2 presents a
traditional tracking methodology based on Kalman filter. In particular different data
association methodologies are discussed and the new appearance model is proposed. In
section 5.3 the Mean-Shift approach is introduced along with some modifications to
increase the performance in multi-targets environments. The content of the chapter is

discussed in section 5.4.

5.2 Data association strategies applied to tracking

Tracking using the Kalman filter applied to segmented object observations is the most
common technique used in visual surveillance systems[181]. It requires a segmentation
module to provide people detections at every time step and a data association process
to correctly link the detections from frame to frame.

In this context the tracking of a target consists of a recursive process where at every
frame its location is predicted using a motion model and then updated with the latest
observation. The appearance models of the target and the current observations are
compared to find the observation whose model is the most similar to the target’s model.
In single target tracking when only one observation is detected the association is trivial.
However, in multi-target environments the correct solution might become extremely
complicated to attain especially in certain situations. For example when targets are in
close proximity and have similar appearance, during occlusions when targets disappear
temporarily or when spurious observations are detected. This problem has been studied
by many authors in the past [86, 88, 91]. However, it is still an unresolved problem. In
this work the data association problem is investigated further and a new appearance
model is presented, which aims to mitigate some of the uncertaintios of the data

association process and improve the performance during occlusion situations.

5.2.1 Tracking methodology

In general, the process for tracking people in video sequences consists of labelling people
consistently throughout the sequence. It is approached from a recursive perspective
with two stages: prediction of the people states from the previous time, and the update
of these predictions with the latest measurements. This is commonly known as the
estimation problem.

In the context of people tracking two different spaces can be distinguished: the state
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space where people are described in terms of location, velocity, acceleration, ete, and
the measurement space where observations are represented, normally only with the
location. A target moves across the state space over time according to the following

function:

te = f(tk—1, Uk—1) (5.1)

where £ € R™ is the vector of n, dimensions that defines the target state at time k,
f(+) is the motion model that predicts the current target state from the last estimation
tx—1, and vg_; is a noise signal used to cover any mismodeling issue or unforeseen
disturbances. The prediction t; is updated with the last measurement by converting it

from the state space to the measurement space as follows:

my = h(ty, wg) (5.2)

where my € R" is the measurement vector, i(-) is the measurement model that
converts the target state ¢y into the measurement space, and wy, is the measurcinent

noise introduced to cover for thie noise of the sensor.

Kalman filter

The Kalman Filter (KF) [42] provides an optimal solution to the estimation problem
assuming the target state is Gaussian (¢ ~ N(g,, £;)). This assumption implies that

the following statements must be true:
e The motion model f(tg_1,vx—1) is a linear function
e The measurement model h(ty, wy) is a linear function.

e The motion model noise (vg_1) and the measurement noise (wy) are normally
distributed.

Given these considerations the prediction and update stages are:
1. Prediction: The target state is predicted from the last state estimation using the
system model as follows:
fir = Fgp-1, Yk =FE e FT + @ (5.3)

where fi; ; and X x are the predicted mean and covariance of the target at time
k, F € R"*" is the matrix that defines the linear motion model, and ® is the
covariance of the motion model uncertainty, which covers for minor violations of

the linearity assumption.
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t m
State PREDICTION Measurement
V. —

Figure 5.1: Recursive cycle of Kalman Filter: Prediction and Update

2. Update: The predicted mean and covariance at time k are updated using the
latest measurcment 7y as follows:
A ~ o - T
Mok = foke + Kk(mk - H[.l,t‘k), Zt,k = Et,k - I\kSkl\k (54)

where H € R"=*"= is the matrix that defines the linear measurement model, Hfi, k
is the predicted measurement, my — Hf, . is often referred as innovation, and Sk

is the covariance of the innovation or total uncertainty, which is defined as:
Sp=HY  HT + A (5.5)
where A is the covariance of the measurement model noise, and I{; is the Kalman
gain which is defined as follows:
- s 7 -1 .

The Kalman gain is used to weight the contribution of the measurement niy to
the final estimation k. Its value depends on the uncertainty of the prediction

(£44) with respect to the total uncertainty (Sk).
The recursive process of Kaliman filter is illustrated in figure (5.1).

5.2.1.1 Design decisions

The most relevant design decisions of the tracker concern the selection of the track-

ing space, the state and measurement space, the motion model of people and the

measurement model.

Tracking space

The tracking space refers to the coordinate system used to represent the physical

location of the targets of interest, and in which the tracking takes place. The selection
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of a proper tracking space is essential for achieving high performance in tracking. Three
different spaces are considered for tracking in this work: lmage Plane Space (1PS),
Remapped Polar Space (RPS), and the ground plane Map of Activity (MoA). These are
the same spaces that were presented in chapter 4 and where evaluated throughout in the
context of people segmentation. In the tracking stage, however, such a comprehensive
study is not intended. In this section a brief discussion is conducted about the potential
performance of the three spaces in the context of a multi-camera multi-target tracking
system. The objective of this discussion is to motivate the selection of a suitable tracking

space.

Image Plane Space. The IPS is described in detailed in section 4.2, From the
three spaces proposed, the IPS has been widely used for tracking people in typical
CCTV systems. A multitude of methodologies have been proposed over the years
applied to this space [79, 112, 173]. However, for the multi-camera system proposed
in this work this space presents the following major disadvantage: re-identification of
targets across cameras. For example, when people move from camera to camera ideally
their ID should be consistent independently of the camera they were captured from.
A solution to this problematic situation would require an external association module.
As will be discussed later in the chapter (section 5.2.3), the association problem is not

trivial in this context.

Remapped Polar Space. The RPS as described in section 4.4, is a very conve-
nient space for segmenting people, mainly because the size and orientations of targets
are homogeneous throughout the space. In the context of tracking systems, it solves the
problem of re-identification of targets as the views from the three sensors are aggregated
in a common view. However, tracking in a polar CS is not convenient in general, because
the motion of people is not linear in the polar system, and therefore more complex

tracking solutions are required.

Map of Activity. In section 4.3 the MoA is presented and evaluated in the
context of people segmentation. This space was not recommended for segmentation
purposes, since target blobs in the MoA are represented with different orientations
and varying dimensions. Nevertheless, for tracking purposes this space addresses the

problems encounter in the other two spaces.

e The MoA is a common representation for the data from the three sensors. There-
fore the problem of re-identification that appears in the IPS does not arise

here.

e The motion of people in the MoA can be assumed to be linear, which allows the

use of optimal trackers such as Kalman Filter.
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Based on this analysis, the MoA is considered more suitable than the IPS and the
RPS for tracking multiple people in a multi-camera system.
This analysis was not intended to be exhaustive as the discussion presented in

chapter 4 as its only purpose was to justify the use of the MoA for tracking.

State and measurement space

The state of a person is represented in four dimensions t = (u,v,,v)7, where (u,v)
are the two dimensional coordinates that define the location of the person on the MoA,
and (u,v) is the velocity in both directions. The measurement space is defined with the

two dimensions of the MoA m = (u,v)T.

Motion model

In general, it can be assumed that the motion of people walking has constant velocity
i.e. no acceleration. Therefore, using the kinematic equations, the motion model of a

persou is defined as:

10 At 0
01 0 At

F= (5.7)
0 0 0
00 0 1

Using the prediction equation 5.3 the state of a person at the current time is

predicted from the state at the previous time and the motion model as follows:

U 0 At 0O Uk 1 U1 + wAt

’U.k _ 01 0 At uk._l _ | ek —.f—'i)At (5.8)
U 00 1 0 U u

v 00 0 1 v v

Measurement model

The measurement model refers to the tunction that converts the target state space into

the target measurement space and is defined with the matrix H € R?** ag follows:
1 0 00
H = (5.9)
0100

85



CHAPTER 5. STUDY OF MULTI-TARGET TRACKING METHODOLOGIES

A target state is described in the measurement space as:

"
uk \ _ 1000 Uk (5.10)
Uk 0100 i '

D

This model is used in equation 5.4 during the update stage of KFE.

5.2.1.2 Implementation details: Initialization of targets

When a new target is identified from a detected measurement, the following parameters

are initialized:
e Target state, t = (u,v,u,0)7.
e Uncertainty of the target state, ;.
e Motion model uncertainty, .

e Measurement model uncertainty, A.

Target state

The spatial location of the target state (u,v) is initialized with the location of the
associated measurement m. The two dimensions of velocity (@, ?) are completely

unknown and they are assuined zero.

My

M,
Linit =

(5.11)

Uncertainty of the target state

The initial uncertainty of the target location is approximated using the 2 x 2 scattered
matrix ¥,, that defines the physical extent of the measurement m. Regarding the
uncertainty in velocity an initial value of o, is used. Note that this uncertainty will
increase every time when adding the motion model uncertainty at the prediction stage

(equation 5.3).
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E"l

Et,init =

(5.12)

where g, has been computed from an empirical value of 0.1 m/At, which in the MoA
yields a standard deviation of 5 bins/At since the bin size is 0.2 x 0.2 m.
Motion model uncertainty

The uncertainty of the motion model is set with a constant value a,,, for the location
uncertainty and o, for the velocity uncertainty that guarantee the recovery of the

system in situations where the model differs from the actual motion of the target.

¢ = (5.13)
where the constant value o, has been obtained from an estimated uncertainty of 15
cm, which is approximately 50 bins variance in the MoA.

Measurement model uncertainty

The measurement uncertainty is defined over the two dimensions of the MoA as follows

2 2
o, O,
Apton = 9 u; (5.14)
uv U'U

In order to account for the different orientations of measurements in the MoA, Aasoa
is computed from the uncertainty in the polar CS A,.;. The study conducted in section
3.2.1.3, reveals that the accuracy of the Kinect depth sensor decreases with range — see
equation 3.3 and figure 3.5. Therefore, each person has a different uncertainty value
depending on the distance of that person. The procedure to compute the uncertainty

of a particular measurement consists of the following steps:

1. The range p, and angle 8, of the measurement are computed.

2. The variance in the range dimension 0?, is determined from equation 3.3 evaluated

at pm.
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3. The angle variance o2 is set with a constant value, since the accuracy does not

vary as a function of the angle. At this point the covariance matrix in the polar

CS has the following form:

2
og 0

A=
pes 9
0 o .

(5.15)
where gy was set empirically to 7 degrees, which corresponds to 7 bins in the RPS
i.e. 1 bin in the RPS accounts for 1 degree.

4. The uncertainty in the polar CS Ape is transformed into the MoA with the

following geometric transformation:

mn

Anton = Ro, Ao 1), (5.16)

where Ry, is the rotation matrix computed at the measurcment angle 8,

cos(8,,) —sin(f,,)

Ry, = .
sin(f,,) cos(6,,)

5.2.1.3 Issues: The need for data association

The Kalman Filter assumes that the measurement used during the updating stage is
correct. This assumption is challenging to ensure, especially in multi-target tracking
applications such as the one proposed in this work. The Kalman filter is not responsible
for the correct association of measurements as is illustrated in figure 5.2 where the data
association module is located outside the Kalman Filter.

The data association module receives at every time step a set of targets and
measurements of unknown origin. The similarity! between targets and measurements is
computed based on their appearance models obtaining a matrix known as “similarity
matrix” that relates targets (rows) with measurements (columns). The objective is,
using this matrix, to find the set of disjoint associations that maximizes the overall
similarity. At this stage the appearance model employed to describe targets and
measurcments is decisive for the success of the association process. In the next section

two different appearance models are explored.

5.2.2 Appearance modelling

Appearance models are used during the data association stage to compare targets and

measurements. For visual tracking the appearance model employed to describe people

I Alternatively it could compute the dissimilarity or cost of association.
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Figure 5.2: Recursive cycle of Kalman Filter: Prediction, Data Association and Update.
Note that T and M refer to the set of targets and measurements.

should be capable to readily distinguish one person from another. Moreover, they
should facilitate mechanisms for updating and comparison with other people’s models.

[n this section two appearance models of increasing complexity are analysed.

5.2.2.1 Spatial appearance model

The spatial appearance model of a target is built over the same dimensions of the

tracking space i.e. NMoA. No colour information is used, only the physical extent.

Model construction

The spatial model of a target is defined with a probability density function (PDF),
which is built using the projections of the target points. The PDF is modelled with a
Gaussian distribution, where the mean refers to the centroid of the projections, and the
covariance defines the physical extent of the target in the tracking space — see figure 5.3.

At this point it is essential to differentiate between the target state used in the
Kalman filter and the spatial model of the target. Both are defined with a Gaussian
distribution to define their location in the tracking space. and both share the same
mean position. However. their covariances are conceptually and physically different. As
just described, the covariance of the spatial model refers to the physical extent of the
points that conform the target, while the covariance of the target state refers to the

uncertainty of the mean position.
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Hm
Ly

Figure 5.3: Spatial appearance model of a measurement. The RGB representation
of the target is displayed in the most left image, followed by its segmentation in the
IPS and the projection of all its constituent points into the MoA. Besides, the MoA
projection is enlarged to present the spatial model of the measurement (mean and
covariance of the projections distribution).

Model update

This model requires to be constantly updated at every time step since the person moves
through the tracking space. The update process consists of replacing the target model
with the associated measurement model and propagate the mean via the prediction
equation of Kalman filter (5.3). Note here that the target might not get associated with
any measurement at a particular time. In this case the spatial model only undergoes

the prediction of the mean, maintaining the same covariance.

Similarity function

The similarity between two spatial models can be estimated by the distance between
their Gaussian distributions. In this work the Bhattacharyya distance is used to assess
the similarity between the two models.

The Bhattacharyya distance is a popular measure that generates a value not only in
terms of the separation of means but also with respect to their shapes. The general

equation for continuous PDFs is as follows:

Dg(t.m) = /1 — p(t,m) (H.18)

where t and m are the Gaussian PDFs of a target and a measurement respectively, and

p(t,m) is the similarity measure between them defined as
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p(t,m) =/\/t(:r),m(:n)d:r, (5.19)

The closed form of the Bhattacharyya distance for two multivariate Gaussian distribu-
tions t ~ N(p¢, X)) and m ~ N(p4y, £),) is defined as:

m

1 T 1 |Z|
t =3 — Hm E] - Pm a T .
Dg(t,m) 8(#: fom) (e — 1 )+210g( |2£||>3$”|) (5.20)
where
>4+
= —-—-‘z (5.21)

Dpg € [0,00) is converted into a similarity value normalized between 0 and 1, where 1

indicates maximum similarity as follows:
S(t,m) = ¢~Pulbm) (5.22)

5.2.2.2 Multi-part height and colour model: Chromograms

To achieve more discriminative results, a multi-part model defined on the height in the
3D space and colour dimensions is proposed in this section. The target is represented
in four dimensions: three dimensions for colour: red, green and blue (R,G,B); and one
dimension for the absolute height (h) of the person. The colour information is retrieved
from the RGB camera, and the height from the vertical dimension of the target 3D
points. It is especially intended to handle occlusion situations and being robust to scale

changes. This model is referred to in this work as a chromogram.

Model construction

Chrouograms consist of a histogram over the height dimension augmented with colour
inforination. The histogram is binned in n equal ranges of height, and each bin stores
the number of person’s 3D points that fall in that range. In addition, each bin is
associated with the colour distribution of its constituent points, which is modelled with
a three dimensional Gaussian PDF (R,G,B) defined with the mean and the covariance
— see figure 5.4. Chromograms can be thought of as representations that lie half-way
between templates [182, 183] and histograms [111, 184]. They combine the advantages
of templates maintaining some spatial information (height), and keep, at the same
time, the computational requirements low by using a histogram structure. The concept

and name of the model are inspired by the work of Birchficld and Rangarajan {79
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Height
RGB 3D+RGB Histngram RGB PDF

Figure 5.4: Chromogram of a person. From left to right: 2D RGB representation of the
person; 3D RGB distribution of the person’s points; Height histogram with 8 bins of 25
cm. each. (each bin is coloured with the mean of the RGB distribution at that bin):
Three-dimensional Gaussian distribution in the colour space (mean and covariance) of
bin fifth. Note that for visual purposes only the colour PDF of one bin is represented.

where they proposed “spatiograms”. Their structure is similar to the one presented
here. however the histogram is computed over the colour dimension instead, and is
augmented with a spatial PDF. Chromograms are expected to be more effective in the
presence of occlusions since the division is made on the height dimension. The size
of the divisions was set empirically to 25 cm. with a total of 8 bins as a compromise

between resolution and computational load.

Model update

Changes are expected in the appearance of people during the sequence, especially when
they move between cameras. To cope with these changes and avoid loosing tracks. the
targets” chromograms must be updated.

A target’s chromogram is updated bin-wise with the associated measurement’s
chromogram every 10 frames following a simple rule; each bin of the target’s chromogram
(i.e. height and colour Gaussian PDF) is replaced by the measurement’s bin provided
that the measurement’s chromogram contains data in that bin. In other words. if the
measurement does not have any points within the height range of the bin. it is assumed

to be temporally occluded and therefore should not be used for updating the target.

Similarity function

The similarity between two chromograms is computed using the metric proposed by
Conaire et al. [I185]. Originally the metric was intended for spatiograms. However it

can be easily adapted for chromograms. Using the original terminology, the similarity
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between a target and a measurement chromogram ¢t = {n,¢ ~ N(p,X)} and m =

{n',¢' ~ N(',3')} is calculated from the Bhattacharyya coefficient as follows:

B
p(t,m) = Z/ \/P(d)z|”"b)P(7tb)p(</)H'Hj,)p(n{,)dw
b;l
Z l\/ (m0)p(ry) / \/P (b |rn)p(B|ny) (LL]
b=1

Following the original paper [185], cquation 5.23 can be simplified yicelding to the

following closed form:

o

pltm) = 3 \/rorty [87r|2b2b| N 1, 2 (z,,+z;,))] (5.24)

b=1
where p(t,m) € [0, 1], where 1 indicates maximum similarity, and N (uu; g, 2(Zp + 3}))
is the probability of p;, with respect to the Gaussian PDF N(u}, 2(2, + £})).

Issue with chromograms

A failure mode has been identified regarding the use of chromograms. When a merged
measurement is detected, the chromogram of each target involved is compared with
the cliromogram of the merged measurement. This comparison results inevitably in low
similarity and erroneous association. As a solution, a mechanism that switches between
chromograms and spatial models is proposed. When a merged measurement is detected,
the similarities between the targets involved and the measurement are computed using
only the spatial models. This results in high similarity values, and assures the targets
will be associated with the merged measurement. Once the merged measurement splits,
the similarities are computed again using chromograms. Note the fact that as both
similarities, spatial model and chromograms, return normalized values between 0 and

1, the switch between models does not affect the association process.

5.2.2.3 Qualitative results

Some qualitative results are presented here which illustrate some failure modes that
have been identified for both appearance models.

As expected the spatial model exhibits a poor capacity for discrimination when
people are in close proximity. Figure 5.5 presents a case study where two people shake
hands, they become merged and then they split again. In this case the spatial model
fails to disambiguate the conflict after the merged measurement.

The same case is evaluated using chromograms where it is solved correctly as

presented in figure 5.6.
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Frames MoA
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Similarity Matrix
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Figure 5.5: Key frames of an interaction between two target
incorrectly using the spatial model.

s. The interaction is resolved
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Figure 5.6: Key frames of an interaction between two targets
correctly using chromograms.
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Finally, although chromograms present in general good performance in dense target
spaces, they fail with some probability when targets have similar appearance. Figure
5.7 illustrates a situation were the use of chromograms does not discriminate correctly

two people wearing similar colours.

5.2.3 Data association

In the previous section two different appearance models were described. In this section
those models will be studied in the context of the data association probleni.

Multi-target tracking applications require an intermediate process to associate the
measurements available at any given time with the active tracks, which is known as
the data association problem. The associated measurement will be used to update the
target estimation (equation 5.4). Solving the data association problew is not trivial,
especially in highly dense target envirommnents, when the number of targets is unknown
and variable over time, when spurious measurements are present in the scene, or when
there are temporary disappearances of targets due to occlusion. Further uncertainties
could appear if split and merged measurements are considered.

Solving the data association requires the comparison between targets and measure-

ments with a function based on the appearance model of targets and measurements:

sij = P(ti,my) (5.25)

it target model and the j* measurement model according

where ¢(t;, mj) compares the
to the similarity function of the appearance model. Both, the appearance model and
the comparative function determine the capacity of the system to discriminate targets,
and therefore the performance on the data association process.

Using equation 5.25 a similarity matrix (V) is built, which relates all measurements
(columnns) with all targets (rows) - see equation 5.26. The objective is to obtain from

this matrix a set of associations where the sum of all similarities is maximised.

measurement (j)

1 2 3 --- N,
. 1)
( 81,1 S1,2 S1.3 : SI.N," \
S21 S22 S23 1 Sam 2 (5.20)
U=1 s51 s32 33 : Sam 3 p target (i)
\ SNt,l SNQ,2 SNh3 ; SNt'Nm / Nl)
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(a) Frame 779. Target 38 and 43 are similar. Each target

produces an independent measurement, my and mo respectively
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(b) Frame 782. Targets 38 and 43 produce a single merged
measurement. Note that appearance similarity between a target
and a merged measurement does not produce discriminative

results. Instead spatial similarity is considered during the merge
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(¢) Frame 786. Targets 38 and 43 split from the merged
Data association based on chromograms fails
due to the high similarity between targets appearance.

measurement.

Figure 5.17:

7: Sequence of two similar-looking targets crossing each other

The interaction
is incorrectly resolved using chromograms.
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For some applications the process can be simplified if the following two classical

assumptions are made:
e A measurement is generated by one target maximum.
e A target can generate maximum one measurement.

However, in real applications due to limitations in the resolution and quality of
the sensors these assumptions do not necessarily hold. In fact, when tracking multiple
people in an indoor scene, the following two situations happen with relatively high

frequency:

o Merged measurements: These measurements are produced when two or more

targets are so close that only one measurement is produced for both of them.

e Split measurements: Due to partial occlusions a target produces more than one

measurement.

A complex situation arises after a merged measurement, when the targets involved
separate and the resultant measurements have to be re-associated with their original
targets. As these situations are very common in the scenarios envisaged in this work,
they are especially treated (see section 5.2.3.5) and independently evaluated.

Under these uncertain conditions, the complexity of the process grows exponentially
with the number of targets and measurements involved, therefore approximations need
to be considered. One of the most common approaches is to define areas with high
probabilities of finding the true measurement for the correspouding target, these regions

are often referred to as gates.

Gates

In the tracking context, gates are employed to reduce the number of possible combina-
tions between targets and measurements. For every target an area around its predicted
measurement is defined and only measurements within that area are considered as
possible associations (sce figure 5.8). The gate arca is defined on the MoA based on the

square of the Mahalanobis distance as follows:

TSy < v (5.27)

where S is the innovation uncertainty (equation 5.5), v is the spatial threshold that

defines the gate volume, and v is the innovation term as follows:

v =1m — 1 (5.28)
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ioure H.8: Gate area i > ] g Y CTOSS is the predicted measurement; the
Figure 5.8: Gate area in the MoA. The cross (X) is the predicted urement; tl
stars (*) are the available measurements; and the shaded region defines the gate.

where m is the position of the measurement, and my, is the predicted measurement of
the target at time k — see equation 5.2.

The threshold ~ is defined from the “chi-squared” tables, since the Mahalanobis
distance of samples drawn from a Gaussian distribution are chi-squared distributed,
with n. degrees of freedom.

Using gates, the similarity matrix ¥ can be now constructed as follows:

-1 if measurement j is outside the gate of target i.
3
Y(t;,m;) otherwise.

It is important to notice a potential problem that can arise with gates. When a
target is not associated with any measurement (temporally occluded), its uncertainty
(and associated gate) starts growing. As a consequence, measurements from nearby
targets fall within this large gate occasionally leading to erroneous associations.

To reduce the effect of large gates, one possibility is to limit the maximum size of
the gate. Another possibility is to introduce ordering within the association process,
prioritising targets with smaller covariances.

Although the use of gates reduces the number of possible combinations, ambiguous
situations can still arise. For instance, when two or more measurements fall within the
same gating area, or when a single measurement falls in the intersection of two different

gates. For those situations association techniques are still required.

Choosing a data association methodology

The problem of data association has received considerable attention in the community
and sophisticated techniques such as the joint probabilistic data association filter

(JPDAF) [88, 186] and the multi hypothesis tracking (MHT) [90] have been studied
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and extended over the years. However these methodologies present some limitations
that make them not suitable for this work.

JPDAF was particularly designed to handle noisy enviromments with spurious
measurements, which is not the case in the environment proposed. The seginentation
module presented in section 4.4 produces indeed very few spurious measurements.
Moreover, JPDAF assuines a known and constant number of targets. NH'I is considered
the best solution to the data association problem since it explores and maintains all
hypotheses. MHT inevitably requires a high computational load and even with the use
of approximation techniques (e.g. pruning, clustering) the approach struggles to meet
real-time requirements. Furthermore, MHT is a batch method, which means that in the
presence of conflicts the decision is delayed in time until more information is available.

A more appropriate data association method for this project is the nearest neighbour
standard filter (NNSF). The NNSF is computationally efficient, takes decisions at every
timme step and its performance has been proven satisfactory in a range of problems
[82, 84]. Three variations of increasing complexity of the NNSF are explored in this

project.

5.2.3.1 Iterative Nearest Neighbour

Iterative Nearest Neighbour (INN) is one of the simplest methodologies for solving the
problem of data association. It is a derivation from the simple nearest neighbour that
prohibits a target being associated with multiple measurements [4, 77]. This technique
is executed sequentially considering one target at a time.

The procedure consists of the following steps:

1. Build the similarity matrix between targets and measurements — see equation
5.29.

2. Establish an order in which the targets will be associated, ¢.g. randomn order,

largest first, nearest to the depth sensor first, etc, and choose the first target.

3. Search in the matrix along the corresponding row for the most similar measure-

ment.

4. Eliminate the associated measurement from the similarity matrix (the entire

column) to ensure the measurement cannot be associated with another target.

(1]

If there are still targets available, choose the next target and go back to step 3,

otherwise finish the process.

This approach works reasonably well when targets are quite separate from each other.

In addition, it requires low computational time and resources. However, when targets
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Frames Similarity Matrix
I E 1y mz
382 § ! to 0.52 0
i i ty 0 0.99
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354 : . to 0.01
E’ i t | 098
i ; mi m:z
390 § ': to 0 0.55
t1 0.68 0

Figure 5.9: Three key frames of an interaction between two targets which is incorrectly
resolved using INN. Note that the thinner ellipse of target 1 at frame 384 indicates that
the target is being unassociated. The association result at frame 384 is erroncous due
to the chosen order in which the two targets are associated (¢, first and then ¢,).

get close this approach does not perform well, mainly because it is highly dependent on
the order in which the targets are associated. Figure 5.9 presents a case of study where
this technique actually fails. In this example two targets ({5 and ¢;) get involved in an
interaction. to is more distant and at some point it gets occluded by ¢, not producing
any measurement. In addition. as the two targets are very close, the measurement
produced by falls within the gate of both, allowing the measurement to get associated
with either of them. #; is first evaluated and becomes incorrectly associated with the
measurement, leaving #; unassociated. Figure 5.10 shows a hypothetical situation where
INN would obtain a non-optimal solution. These cases reveal a clear limitation of the
methodology. which is the dependency on the order of association. The performance of
INN could improve if a meaningful order of associations is chosen. For example, in this
case it could compute first closer targets, assuming they are less likely to be occluded
by others.

In the next section a more advanced algorithm for association is presented, which

aims to cover the identified weakness of INN.
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m, Similarity Matrix (INN)

t 0 0.8 0.6 0
t2 0 0.9 0 0.2

Figure 5.10: Hypothetical situation of 2 targets (¢; and t,) and 4 measurements (my,
ms, my and my). The INN is applied to solve the data association problem obtaining
a non-optimal result r = {[t;,my], [t2, m4]}. The optimal solution in this case is
' = {[t1, m3). [t2, m2]} where the total similarity is higher.

5.2.3.2 Suboptimal Nearest Neighbour

The Suboptimal Nearest Neighbour (SNN) is a data association technique that is
commonly used in early tracking literature [80-82]. It is considered suboptimal because
it does not explicitly recover a global solution i.e. maximize the total similarity of all
associations.

The procedure consists of the following steps:

1. Create the similarity matrix between targets and measurements at the current

time using equation 5.29.

o

Choose the highest similarity value in the matrix and create the association

between the target (row) and measurement (column) involved.

3. Remove the associated target row and measurement column from the similarity

matrix.
4. If there are still targets available go back to step 2, otherwise finish the process.

In general, SNN outperforms INN because it is not dependent on the order of
the targets. For comparison purposes the same case of study presented in figure 5.9
is analysed again using the SNN method instead (see figure 5.11). This time the
interaction is correctly resolved.

However, SNN does not always achieve the correct result primarily because a global
solution is not explicitly sought, i.e. it does not aim to maximize the similarity of all
associations. SNN is expected to fail in situations such as the one depicted in figure

5:12.
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Similarity Matrix
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| 099 | o0
o
384 t; 0.06
tz 0.99
m, mz
386 ty 0 0.92
t: 0.99 0

Figure 5.11: Three key frames of an interaction between two targets, which is correctly
resolved using SNN.

m, Similarity Matrix (SNN)

my mz ms my

t1 0 0.8 0.2 0

Figure 5.12: Hypothetical situation of 2 targets (¢, and t,) and 4 measurements (.
mo. ma and my). The SNN is applied to solve the data association problem obtaining
L ’ . r P g . % . =
a non-optimal result r = {[t;.m3]. [ta.mo]}. The optimal solution in this case is

r' = {[t:. mo). [ta.my]} where the total similarity is higher.
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a-l

Similarity Matrix (GNN)

ma mz ms my

t 0 0.8 0.2 0
t2 0 0.9 0 0.8

Figure 5.13: Hypothetical situation of 2 targets (¢, and ty) and 4 measurements (my,
mo. my and my). The GNN is applied to solve the data association problem obtaining
a optimal result r = {[t;.my]. [t2.m4]} where the total similarity is higher.

5.2.3.3 Global Nearest Neighbour

The Global Nearest Neighbour (GNN) is an approach to the data association problem
that uses the similarities from all targets and measurements to construct a global
solution. which is considered optimal. This solution is based on the popular Hungarian
algorithm [83, 81, 187] that solves the assignment problem in polynomial time without
the need of an exhaustive search. Given the similarity matrix ¥ of equation 5.26, GNN

finds the set of associations that maximizes the total similarity as follows:

arg min 8; iTi 5.30)
J ]

where N; and N, are the total number of targets and measurements respectively: and
7 defines the set of associations, which applies the restriction that a target can only be

associated with a single measurement and vice-versa (equation 5.31):

.'\"( J\rm
E Tij = E €T = 1: {5.31)
i J

In general, GNN requires more computational time than SNN. However with the
improved implementation proposed by Munkres [83], and depending on the cardinality
of targets and measurements, the approach achieves similar execution times.

Figure 5.13 presents a hypothetical situation where GNN finds the optimal solution.

2The implementation of Munkres improves the performance of the algorithm achieving a complexity

of order O(n*)
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5.2.3.4 Initialization and termination of tracks

The methodologies presented here (INN, SNN and GNN) do not explicitly handle the
initialization and termination of tracks and therefore additional actions need to be
taken. Firstly, the identification of potential new tracks is determined attending to the
number of tracks and detected measurements at cach tine step. I general, when a
new target enters the scene, the number of detected measurements is larger than the
nunber of targets, signalling an unassociated measurement. which is considered as a
potential new track. The opposite occurs when a target leaves the scene, the nunber of
measurements is smaller than the number of targets, and therefore one target is left
unassociated, which is labelled as a potential finished track. These potential new and

finished tracks are analysed independently:

e A potential new track is promoted to actual track if during a certain amount of
time exists evidence to support it. In other words, in order to initialize a new
track, the target should be associated with measurements for a minimun period
of time. The objective of this action is to reduce the number of false new tracks

caused by noise measurements.

e A potential terminated track is terminated if it is not associated with any mea-
surement for a certain period of time. This action reduces the number of falsely

terminated tracks that are just temporally occluded.

The time span threshold considered for the initialization and finalization of tracks

was defined empirically to 1.5 seconds.

5.2.3.5 Issues: Interaction Periods

Interaction Periods (IP) refer to those situations where two or more people produce a
single merged measurement on the MoA due to their spatial closeness. These periods are
normally the result of events such as grouping, handshakes or even just path crossing.
After the merged measurement the system is expected to correctly re-identify the targets,
i.e. the targets ID after the merged measurement should be consistent with their I1Ds
before the merge. This re-identification represents an important challenge for the
data association module. Note that for the purpose of this project the independent
segmentation of targets during a merged measurernent is not necessary.

The proposed process for handling interaction periods consists of the following steps:

1. Detection of merged measurements. A dedicated module has been implemented

to identify these special measurements based on area and proximity of targets
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2. Multiple associations. The data association module needs to be adapted to allow
the targets involved in the interaction to be associated with their common (inerge)

measurenent

3. Targets’ state estimation (update and prediction). Targets are predicted normally.

However for the update stage, different policies can be adopted.

e Normal update. The targets involved update their position with the merged
measurcrent. This approach is suitable for long-lasting merges such as
grouping where the motion of the targets changes during the merge.

e Non-update: The targets motion is not updated with the merged measurement

aiming to preserve the motion model of the targets. This approach to

updating is recommended for short interactions such as path crossing events.

4. Continue to step 1 and repeat the entire process until the targets involved in the
interaction split. At this point the data association and target cstimation are

applied normally.

This process is independent from the association methodology and the object
modelling used. Nonetheless, its performance velies highly on a correct detection of
merged measurements at step 1. This detector module is described in further detail

next.

Merged measurement detector

The merged measurement detector is an external module responsible for the recognition
of measurements produced by more than one target. These measurements appear when
people get spatially close and their projections on the ground plane become connected
in a single blob.

The identification of merged measurements is based on two features: area of the
measurement and number of close targets. A measurement is labelled as a merge if it
satisfies the two following requirements: its area is larger than a defined threshold and

more than one tracked target are in close proximity.

Area restriction. The idea of filtering measurements by area is motivated by
the assumption that in general, merged measurements are larger than single-target
measurements. This filtering is performed in the RPS, where the areas of the blobs over
the entire range of the space are more homogencous than in any other space.

The optimal value for the threshold is learned using a training dataset® and its

3The training dataset is the same dataset used to adjust the parameters for the people detection
algorithm.
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Figure 5.14: Distribution of the areas of merged measurements and single-target measure-
ments in the RPS. The samples have been manually labelled from a training sequence
on the RPS. In each frame of the sequence the detected measurements (connected
components) were annotated with their area and category — i.e. merged or single.

corresponding ground truth of merged measurements’. Figure 5.14 plots the distribution
of the measurement areas labelled by category i.e. single-target and merged measurement.
From the plot, it is clear that the two classes are completely inseparable using only
the area. In addition, the number of samples of merged measurements is significantly
smaller than the number of samples from the other class i.e. only 0.03% of the samples
are merged measurements. In order to select an appropriate threshold an empirical
approximation based on the popular ROC curve is employed — see figure 5.15. The
ROC curve is a visual way to compare the performance of an algorithm for different
parameter values. It is represented in a two dimensional plot where the vertical axis

g . = TP i S L : &
defines the true positive rate (PR = 7575 ) and the horizontal axis represents the

false positive rate (FPR = %] The idea is to plot the results for a set of different
area thresholds and fit a curve to the data. The optimal values are on the most top-left

part of the curve, where the ratio between TPR and FPR is maximum.

Proximity of targets. Once a measurement has been defined as larger than the
threshold, the next step is to identify the number of nearby targets. If it has more than

one. then it is considered a merge.

1The merged measurement ground truth was manually created by an operator. Every merged
. - . . . . 2
measurement was labelled and stored in a file along with its area in the RPS (pixels?)
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Figure 5.15: ROC curve that presents the evaluation for detecting merged measurements

with different area thresholds. The optimal value is identified as the point of the curve
. 9 . . .

closest to the top-left corner (115 pixels®). Note, that the axis are in different scales.

The process followed is similar to the idea of the gates used during the data
association stage. The search window in this case is estimated using the scatter matrix
of the measurement in the RPS. If more than one target’s predicted position falls within

this search area, the measurement is labelled as a merge.

Evaluating the merged measurement detector

The merged measurement module has been independently assessed on the same dataset
used for the evaluation of people segmentation - see section 4.5.4. The ground truth
in this case identifies the merged measurements and the single measurements in the

sequence. To evaluate the performance of the system the following metrics are computed:

e True Positives: number of merged measurements correctly identified as merged.
e False Positives: number of single measurements incorrectly labelled as merged.

e True Negatives: number of single measurements correctly labelled as single.

False Negatives: number of merged measurements incorrectly labelled as single.

Fl-score: harmonic mean of precision and recall.
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Table 5.1 presents a comparison of the performance of the merged measurement
detector described in section 5.2.3.5 using first only the area filter, and second, using

the combined filter: area and proximity of targets.

| Features || TP | TN | FP | FN | Fl-score |
Area 109 | 3338 | 363 5 0.37
Area+Proximity || 84 | 3681 [ 10 | 30 0.8

Table 5.1: Comparison of the performance evaluation of the merged measurement
detector using only the area filter and the combination of arca and proximity of targets.

As expected, the overall performance of the combined filter outperforms the area
filter. However, it is interesting the fact that the number of FNs is lower in the area-
based filter. A possible explanation is that when two targets start to approach and
before the merged measurement takes place, the more distant target gets occluded by
the closer target. The trajectory of the occluded target starts to diverge because it relies
only on predictions. When the merged measurement actually occurs the diverged target
fall outside the measurement search window. As a conscquence the targets proximity
filter does not hold and the measurement is not identified as a merge.

Failures of the meryed measuremment detector may result in the loss of people in
subsequent stages. In particular, the direct consequence of the FPs is that a target’s
model and location will not be updated with the measurement (depending on the
update policy during merged measurements). Equivalently, FNs yiclds only one target
to be associated with the merged measurement, leaving the rest of the targets involved
unassociated or forced to “steal” somebody else’s measurement. Although, the combined
filter increases the number of FN by a factor of 6, the number of FP are reduced by a

factor of approximately 35, which clearly justifies the use of the combined filter.

Modifying the data association algorithm

The data association methodologies introduced in sections 5.2.3.1, 5.2.3.2 and 5.2.3.3
do not allow multiple targets to be associated with the same measurement. Therefore,
when a merged measurement occurs one or more of the targets involved will not be
appropriately associated.

In order to manage these situations an ad-hoc solution is proposed to allow measure-
ments, in this case merged measurements, to be associated with all the targets involved.

The process consists of the following steps:

1. Extend the similarity matrix ¥ by duplicating the columns that belong to merged
measurements. The number of duplications is set by the nunber of targets within

the proximity gate.

2. Execute the data association algorithm using the extended similarity matrix ¥’
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m

Figure 5.16: Two targets yield a merged measurement, m.

3. Identify all targets associated with the duplicated columns and associate them

with the corresponding measurement.

The situation illustrated in figure 5.16 presents an example involving a merged
measurement. The process proposed vields the followings similarity matrix (W) and
extended similarity matrix (V).

P

™m Mo ms
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—1 P(ta,m2) ¥(ta,m3) ¢(t2,m2) /| t,

V=

when the data association algorithm is applied on V', targets ¢, and t, will be associated
with measurements ms and mi, respectively.
A thorough evaluation of the multi-target tracking system discussed in this section

is presented in chapter 6.

5.3 The Mean-Shift algorithm applied to tracking

In this section an alternative tracking approach is presented - the Mean-Shift algorithm.

This algorithm was first applied for tracking purposes by Comaniciu, Ramesh and Meer
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[70]. Unlike typical tracking methodologies such as Kalman filter and particle filters,
the Mean-Shift approach does not need to perform any data association, which is an
important source of errors as argued in section 5.2.3. For that reason the Mean-Shift
approach appears as a promising alternative to the multi-target tracking problem.

The Mean-Shift algorithm is normally classified as a data-driven methodology, since
it does not segment objects but rather use only the information retrieved from the
data itsclf to build the target model. Mean-Shift tracks a given target by searching for
its model in every image of the sequence. Rather than applying an exhaustive search,
the frame is efficiently searched towards the direction of the similarity gradient in the
tracking space.

The Mean-Shift tracker is considered a computationally efficient method. However it
is frequently associated with some limitations especially in multi-target environments. It
is easily affected by the inclusion of background data into the model or the interferences
produced by similar targets during interaction periods. Targets are modelled using
histograms which have less discriminative power since the spatial information is dis-
carded. The standard Mean-Shift does not support changes in the scale and orientation
of the targets over time. In addition, it does not provide mechanisms for the automatic
initialization of new targets. Due to these limitations the Mean-Shift algorithm is not
normally used for tracking multiple targets. Nonetheless, many authors have proposed
different approximations to overcome these issues. For example, Gao and Liu [103] ap-
plied a previous background subtraction operation to reduce the number of distractions.
Beyan and Temizel [104] used a people segmentation module to allow the automatic
initialization of new targets. Leichte et al. [188] improved the appearance model by
using multiple color histograms from different views. In this work some modifications

are introduced into the Mean-Shift algorithm to address the aforementioned weaknesses.

5.3.1 The standard Mean-Shift approach

Mean-Shift is a non parametric method for climbing density gradients. It is a versatile
technique that can be applied in segmentation, clustering or for tracking among other
computer vision tasks. The method was initially proposed by Fukunaga [18Y], but
it was not used for computer vision tasks until late 90’s. Mean-Shift was originally
proposed for tracking purposes by Comaniciu et al. [70] and it has been widely used
since then.

The Mean-Shift tracker is presented in this work as an alternative approach to the
common and widely used tracking methodology outlined in section 5.2.1. The most
relevant feature of the Mean-Shift tracker for the current study is that it does not
require data association. The objective here is to evaluate Mean-Shift as an alternative

“data association-free” tracker in multi target environments and to compare the results
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with those that need a data association module i.e. Kalman Filter.
A model of the target is built in the initial frame and Mean-Shift searches the image
in an optimal way looking for the location of maximum similarity with the target model.

The outline of the algorithm is described next using the notation of the original paper:

Target model. When the object first appears in the scene it is initialized by
building a colour histogram appearance model ¢ = {Gu}u=y . Where meis the total
m ~

number of bins which sum to unity. i.e. Y. §, = 1. Each bins defines the targoet

probability for that particular colour range.

1
iz k(1)

where {x;}i=1..n are the pixel locations of the target; k is a spatial-kernel profile that

du = CZ k(||z:|?)8[b(z;) —u], C= (5.32)

weights more highly pixels closer to the centre position; b(-) : R?> = R is a function
that associates a pixel with its corresponding histogram bin with regard to its colour
information; d is the Kronecker delta function; and C is a normalization term that
makes the summation of all bins equal to one. The only restriction regarding the kernel

is that it must be convex and monotonically decreasing [70].

Candidate model. In the next fraine the search for the target starts from the

previous location yy. At that position a candidate model is constructed in a similar

fashion p(yo) = {Pu(¥0) }u=1..m

nh 1
p" = Ch k ( n Yo —r
Z (IE

where I is the bandwidth that defines the size of the candidate i.e. window size;

Yo — T
h

2
) ob(r;) —u], Cp= (5.33)

{;}iz1..n, ave the candidate pixels; and C), is the normalization constant. Candidate

and target models are compared using the Bhattacharyya coefficient.

m

plB0), @) =D V/PulW0) G (5.34)

u=1

The objective is to find a candidate in the current image frame that minimizes the
Bhattacharyya coefficient
arg min p[p(y), 4]
y
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Mode seeking. This global target search strategy is optimized using the Mcan-
Shift algorithm that seeks iteratively the mode of a probability distribution along the
density gradient direction. This distribution has been previously computed from the
target’s colour histogram. This approach requires the computation of the pixels weights
within a search window {w;}i=1. 4,, which are obtained based on their probability of

belonging to the target model as follows:

m ~

) = ri) — Qu 5.35
w; ;5[1)( u] 5o (5.35)

Then, the new location y* is located at the mode of this probability space, which is

obtained via Mean-Shift equation 5.36:

o (125 )
Yt = N (5.36)
2t wig (“%‘H)

where g(-) = —K'(-).

If the magnitude of the Mean-Shift vector (¥ = y* — yg) is higher than a certain
threshold, then the centre is updated to the new position yy « y* and the process
is repeated. Otherwise the search finishes and the new target position at the current
frame is set at yo, which represents a local maximum of the PDF.

Although the Mean-Shift tracker is considered to be efficient and robust, there are a
number of limitations that reduce its performance on certain situations especially when

tracking multiple targets. Those limitations are described next.

5.3.1.1 Limitations of Mean-Shift in multi-target environments

The Mean-Shift tracker was originally designed for single target tracking and its use in

multi-target environments is limited due to the following issues:

e It is highly sensitive to distractions produced by other targets during interaction
periods or from the background. This issue is normally associated to the fact that
rigid primitives e.g. bounding box are used to delimit non-rigid targets e.g people,

allowing the inclusion of outliers in the target model.

e The appearance model is not discriminative enough to distinguish people from one
another in complex situations. The majority of the Mean-Shift implementations
found in the literature as well as in the original paper, model the target with a
colour histogram, which is sometimes simplified to a 1D histogram. Histograms
are in general very convenient structures to work with due to their simplicity, fast
computation and especially because they are robust to rotations and non-rigid

transformations. Nonetheless, they are frequently criticized for not preserving
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the spatial dimension of the data, which implies a lower discriminative capability
[74, 75).

e The original Mean-Shift approach does not provide with adequate mechanisins to
deal with changes in the scale of targets. The authors offered an ad-hoc solution
far from being ideal. They try three different bandwidth sizes and choose the
one that fits the model best. This is an iimportant issue particularly in visual
surveillance applications where targets usually move throughout the whole field

of view varying their size in the projected image.

e It does not provide with mechanisms for the automatic initialization and termina-
tion of tracks. In real surveillance scenarios this is a chief aspect since in general

the number of targets is unknown and varies unpredictably over time.

In the next section is presented an enhanced Mean-Shift tracker that aims to deal

with all these limitations.

5.3.2 Enhanced Mean-Shift algorithm

In this section the modifications introduced to the original Mean-Shift implementation

are presented, which aim to address the aforementioned limitations.

Chromogram appearance model

One of the main weaknesses of the standard Mean-Shift tracker is the use of a poor
discriminative model, namely a 1-dimensional histogram. One of the enhancements
proposed is the use of the chromogram appearance model as presented in section 5.2.2.2.
Many authors noted this weakness before and different models have been introduced in
the past. Leichter et al. [188] uses a combination of multiple colour histograms taken
from different views. Zhang et al. [190] learn a model based on SURF features. However,
most of these models are complex to compute and evaluate. Chromograms on the other
hand are simple models based on a histogram structure, but also discriminative and
effective during occlusions situations since they are constructed with adjacent parts. In
addition, unlike most of the models built on the image plane [70, 75], chromograms are

robust to changes in scale.

Clearing target data after evaluation

The main challenge of applying Mean-Shift in a multi target environment is the
interference produced by other targets especially during interaction periods i.e. data
that belongs to one person is used in the tracking of other people due to their proximity.

As a consequence multiple targets end up following the same person. In the literature
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some authors perform foreground object extraction, which requires an additional stage
for data association. In the work of Beyan and Temizel [104] occlusions, merges and
splits are resolved through a data association process. In this work a completely
data association-free tracking methodology is presented. To handle these problematic
situations the pixels of a person are removed from the tracking space just after being
evaluated, so the pixels of that person cannot distract the rest of the pcople. Using this
approximation the order in which people are evaluated is critical. A meaningful order
has been established giving priority to people closer to the cameras since they are less
likely to be occluded. Figure 5.17 illustrates the tracking order for a particular frame

in a video sequence where 8 people are involved.

Tracking space over the ground plane: MoA

Unlike the majority of Mean-Shift tracker implementations that define the tracking
space on the image plane [113, 188}, in this work the plan view MoA is employed
instead since it has been shown (section 4.5) to be more effective for solving occlusions.
Typically, cach pixel of the image plane is weighted with the probability obtained
from the histogram appearance model according to the colour or each pixel [70]. This
operation is known as “histogram backprojection”. This process has been adapted to
be used in the plan view MoA. Since multiple points might contribute to the same
position in the MoA, the probability of each position pasoa(u,v) is computed as the

suin of the probabilities of all the points that project in that location as follows.

Paroa(u,v) = Zp(wi(h))p(wi(C)Iwi(h)) (5.37)

where {;}i=1_n are all points that project into the same location (u,v) in the MoA;
p(x;(h)) is the probability of the i*" point in the height dimension of the chromogram;
and p(x;(c)|2i(h)) is the conditional probability of the point colour given its height.
This probability is computed using the colour Gaussian PDF (N(j1, X)) associated
with the chromogram bin of the pixel height.

To speed up the process, in the actual implementation only an area around the
last person position is considered. The dimension of this area is set dynamically every
frame to be 50% larger than the estimation size of the last person location. This region

should cover any possible displacement of the target from the last time step.

Background exclusion

To further improve the performance of Mean-Shift the background pixels are removed
from the scene and only the foreground pixels, which are assumed to belong to people,

are considered. A foreground segmentation is performed at cach time step using
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Figure 5.17: Instant of the execution of the Mean-Shift tracker with 8 people involved.
The partial results are presented for each evaluation starting from the closer person.
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the depth-based background subtraction implementation described in section 4.2.1.1.
The objective of this measure is two fold: first, to mitigate the interlerence added by
background data during tracking; and second, to increase the computational speed as the
nuwnber of pixels to cousider is smaller and less iterations are required to converge. The
same approximation has been used in other works [103, 104] , however they use intensity
images which require sophisticated techniques to deal with illumination conditions such

as shadows or gradual illumination changes.

Automatic adaptive kernel size

The projections of targets into the MoA vary their sizes with the range as it was
reported in section 4.3.3. In order to handle these variations the CAMSHIFT algorithin
[110] is employed®. This technique follows the same methodology of Mean-Shift with
an additional step at the end after the mode of the distribution is found. At this step
the size and orientation of the kernel is estimated using the moments of the underlying
distribution. Although CAMSHIFT was originally designed for face tracking, it has
been used in other contexts as well and can serve as a good approximation for tracking

people in the MoA.

Initialization of tracks

Another limitation of the Mean-Shift tracker in surveillance environnents with multiple
targets is the lack of a mechanism for initializing new tracks. In this implementation
the people segmentation methodology presented in chapter 4 is ciployed to identify
new people. This module is exccuted at every frame after all active targets have been
evaluated. Therefore, only the data that has not been associated with any target is

used for the detection of new people.

Termination of tracks

Regarding the identification of terminated tracks a similar procedure to the one presented
in section 5.2.3.4 is employed. There is a time threshold where the target is still active
even if no evidence for its existence is found. This measure allows recovery from
temporarily occluded targets. A target does not produce evidence of existence when
the area of the kernel returned by CAMSHIFT is smaller than a certain threshold
Torea- This threshold was set experimentally to 100 pixels? which corresponds to an
area approximately of 400 ¢rn? and it was estimated using the projected area of an

occluded person at 1 m. from the camera.

5In this work is used the CAMSHIFT implementation version included in the computer vision
framework OpenCV 2.4.

116



CHAPTER 5. STUDY OF MULTI-TARGET TRACKING METHODOLOGIES

Summary of the proposed algorithm.

To summarize, the proposed approach cousists of the following steps:

1. Sort targets by distance. A list of targets is created where targets closer to the

camera are located first.

2. Track first target in the list. Using the target chromogram the tracking space is
weighted (equation 5.37) and the CAMSHIFT tracker is applied.

3. All samples that belong to the current target are removed from the tracking space.

4. If there are more targets left in the list go back to step 2, otherwise continue to

step 5.

Identify and remove terminated targets. If a target is lost for more than a

.C'\

maximum period of time it is eliminated from the list of targets.

6. Detect new people in the scene. The people segmentation module is executed

with the remaining data after the tracking of all targets.

The results of the evaluation of this enhanced version of Mean-Shift are presented

in the next chapter.

5.4 Discussion

In this chapter two different tracking methodologies have been investigated in the context
of multi-target tracking. The standard approach based on object segmentations and
data association, namely the Kalman filter, and the Mean-Shift method, an alternative

“data association-free” tracker.

Tracking with data association: the Kalman filter

A chief aspect of the Kalman filter in multi-target environments is the selection of
the correct measurement for the update of each target. This requires an additional
module to evaluate and identify the best set of associations between measurements and
targets at each time step. This issue is known as the data association problem. The
objective is to find the set of disjoint associations that maximizes the total similarity
between targets and measurements, which is computed based on the comparison of
their appearance models.

Two different appearance models were presented in this chapter. First a simple
spatial model defined with the mean location and area of a person in the MoA . This

model is easy to implement and fast to compute but does not discriminate between people
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effectively in dense target spaces. To overcome this limitation a more sophisticated model
was presented, the so-called chromogram. A chromogram is a novel appearance model
that combines the absolute height dimension in the 3D space and the colour dimension.
It is constructed in a multi-part fashion structure particularly useful during partial
occlusion situations allowing only the observable parts to be considered. Furthermore,
it is robust to changes in scale since it uses the absolute height of targets.

Data association is not a trivial process especially in dense target situations. The
problem becomes even harder to solve when the number of targets is unknown, spurious
measurements are present in the scene, temporal occlusions are frequent and splits
or merged measuremnents are considered. The problem of data association has been
studied in this chapter by exploring three well known methodologies each of increasing
complexity: Iterative Nearest Neighbour (INN), Sub-optimal Nearest Neighbour (SNN)
and Global Nearest Neighbour (GNN). The first is widely used because of its simplicity
and high speed execution, but is highly dependent on the order of association. SNN is

independent of ordering but does not explicitly seek a global solution, unlike GNN.

Alternative tracker: the Mean-Shift approach

The Mean-Shift technique for tracking is considered as an alternative tracker to the
traditional tracking methodologies based on data association c.g. Kalman filter. In this
work a novel approximation of the Mean-Shift tracker has been presented aiming to
increase the performance when tracking multiple targets.

The Mean-Shift tracker as originally proposed by Comaniciu et al. [70] weights
the tracking space using the current image and the target model and searches this
space for the location of maximum similarity with the target. This scarch is performed
in an optimal way using the Mean-Shift gradient ascent methodology. Although this
technique has become very popular in recent years because it is easy to implement and
computationally efficient, the following limitations are associated with it:

e It is in general rather sensitive to the interferences produced by background data

and similar targets, in particular during interaction periods.

e Targets arc modelled with colour histograms, which arce robust structures against
rotations and non-rigid transformations. However, they lack of spatial information
which make thein less discriminative in cluttered backgrounds or when multiple

targets are nearby.

e Uniquely the translational motion is computed. It does not account for changes

in scale or orientation.

e The tracking space is built over the image plane where occlusions are difficult to

solve.
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e It does not provide a mechanism for the automatic initialization of new targets.

The approach proposed enhanced the standard Mean-Shift tracker to overcome these
Pl

limitations. The modifications introduced are the followings:

e The chromogram structure presented in section 5.2.2.2 is employed to model
the appearance of people. This model is highly discriminative minimizing the

distractions produced from nearby targets or from the background.

e The data belonging to a target is removed from the tracking space once that
target has been evaluated. This measure reduces the interference produced by
nearby targets. However it requires a meaningful order of evaluation. Considering
that people closer to the camera are less likely to be occluded, they are evaluated
first.

e The tracking space is built over the ground plane MoA with the objective of

increasing the performance during occlusion situations.

e The background data is removed from the scene at every time step before the
evaluation of the targets. This measures avoid possible interferences of the
background with the tracking process and speed up the computations since less

data is considered.

e An automatic process to adapt the kernel size at each time step is employed to
handle scale changes of targets in the tracking space. In particular it is cmployed
CAMSHIFT, an approach proposed by Bradsky [110] that computes the scale

and orientation of the target based on the moments of the distributions.

e The people segmentation module presented in chapter 4 is employed for the
initialization of new targets at every time step. This module is executed after all

current targets have been evaluated so only the remaining data is analysed.

The proposed approach takes “hard” decisions to determine the origin of the
pixels giving priority to those targets closer to the camera, which might lead to
incorrect solutions occasionally. A possible line of investigation would be to compute
the probabilities of the pixels with respect to each target and assign each pixel to the
target with higher probability. Another alternative could be to weight the contributions

of the individual pixels with targets using their probabilities in a “soft” way.
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Chapter 6

Performance Evaluation:
Multi-target Tracking

The evaluation of an algorithm is not only important to compare the results with
other people’s works, but also to assess progress during its development. This chapter
describes in detail the procedure followed for the evaluation of the tracking methodologics
presented chapter 5.

The first stage is the design of a dataset and ground truth to serve as a platform for
the evaluation. Ideally, the dataset should cover the challenge situations the algorithin is
expected to address. For example, in this project the dataset should contain occlusions
and interactions between people. The ground truth is considered the perfect solution
which all algorithins should aimn for. The generation of the ground truth for a tracking
application normally requires the manual annotation of all targets throughout the
sequence by a human operator. This is a highly tedious task which is error prone in
part because of the subjective interpretation needed by the annotator and also by the
likely reduction in the concentration of the operator after a long time repeating the
same task.

The second stage entails the identification of the relevant failure modes of the
systemn. Depending on the application the failure modes will be different. For instance
an application that counts people is more interested in getting the right number of
people in each moment rather than the accuracy in their location. Next, a set of
metrics needs to be defined to cover all detected failure modes. These metrics should
be comprehensive enough to allow the identification of weaknesses and strengths of
the algorithms, which is useful during the development stage to assess the progress.
Ideally, they should be combined to generate a single global metric to describe the
overall performance which simplifies the comparison between different approaches.

This chapter first presents in section 6.1 a study is conducted to identify relevant
failure modes in multi-target tracking environments and a set of metrics is proposed 1o

provide meaningful evaluations. Section 6.2 describes the evaluation parameters. The

120



CHAPTER 6. PERFORMANCE EVALUATION: MULTI-TARGET TRACKING

tracking methodologies presented in chapter 5 are evaluated and compared quantitatively

in sections 6.3 and 6.4. Finally, in section 6.5 the conclusions are presented.

6.1 Failure modes and evaluation metrics

As defined in section 4.5.1, the failure modes of a system refers to the situations where
the outcome of the algorithm differs from what is expected; in this case the ground
truth. The failure modes are application dependent. As an example, for a system that
counts people the inaccuracies in the location of people is not a relevant issue. What
is important is to obtain the correct number of people in the scene. On the contrary,
location inaccuracies might be relevant for an action recognition system. The proper
identification of the relevant failure modes in a particular application is a critical step

in order to define meaningful metrics for its evaluation.

Failure modes

The two following failure modes have been identified as the most relevant failures for

the proposed application:

o Cardinality errors. Due to noisy and inaccurate data, discrepancies occur in the
number of tracks detected by the System (STs) with respect to the number of
Ground truth Tracks (GTs). These errors occur because one or several G'I's were
not detected by the system (e.g. the target was distant or highly occluded), or
because detected STs do not actually belong to any existing GT (e.g. spurious

measurenients).

e Label inconsistency. When people get into physical interactions of any kind (e.g.
grouping, hand shaking, path crossing) they become spatially close and the proper
identification of the targets involved becomes harder to resolve. These situations
are likely to produce different labels for the same target before and after the
interaction. Note that the possible inconsistency of labels during the interaction
(i.e. merged measurement) is out of the scope of this evaluation. Figure 6.1 depicts
the most common scenarios where label inconsistency occurs during Interaction
Periods (1P).

By no means do the aforementioned errors cover the totality of failures that can
arise in a multi-target tracking system. However, they define the problematic situations
that are intended to be tackled in this work.
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(b) Failure mode 2: GT 2 changes its ID after the IP.
Note that this failure mode is equivalent to the failure
mode where the GT 1 changes its ID instead.

maeais STOA
A

STC
S STD

(¢) Failure mode 3: Both, GT 1 and GT 2 change their
IDs after the IP.

Figure 6.1: Failure modes during an Interaction Period.
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Evaluation metrics

Throughout the years different metrics have been proposed aiming to standardize
the way multi-target trackers are evaluated. Authors tend to use the most suitable
metrics for the evaluation of their algorithm and in many cases they come up with new
additional metrics that better describe the particularities or novelties of their approach.
Thercfore, there does not exist a sct of standard metrics for evaluating multi-target
tracking systems. For this evaluation, the popular set of metrics proposed by Yin et al.
[156] are used since they provide suitable metrics for assessing the failure modes just
identified.

As a prior step to the computation of the metrics GTs are mapped with STs
based on temporal and spatial overlapping. In the original paper the spatial overlap
A(GT;x, ST; ) at frame k between the j* GT and i** ST is defined as:

A(GTiy, ST, = ArealGlix N1 ST;)
, ” Avea(GT,,, U ST} ;)

where Area(GT; N ST;y) and Area(GT;x U ST)x) refer to the intersection and union

region respectively between the bounding boxes of GT; and ST} at time k. For this

(6.1)

work, the computation has been slightly modified since the GT and ST are represented
by Gaussian PDFs. The Bhattacharyya coeflicient has been used instead to obtain a
value of spatial overlapping as it was done for the people segimentation evaluation in
section 4.5.2.

The temporal overlapping is defined as follows:

_ Length(GT; N ST;)
Length(GT; U STj)

where Length(GT; N ST;) and Length(GT; U ST}) are the temporal intersection and

union respectively between the life span of GT; and STj.

T(GT;, ST)) (6.2)

In the original paper nine different metrics are presented, two for the accuracy of
detections at frame level and seven for the consistency of trajectories at track l;-‘V(~‘1
Not all of them are relevant for this project and therefore only the following sub-sct of

metrics are adopted:
1. Correct Detected Tracks (CDT): A GT is identified as a CD'T if it has sufficient

spatial and temporal overlap with at least one ST that has sufficient spatial and

temporal overlap.

Sket AGTi, STa)

T(Gﬂasn) 2 Tt, N 2 Ta

(6.3)

where 7, and 7, are predefined temporal and spatial thresholds respectively, and

N refers to the number of frames that have both GT; and ST}
3
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This metric is an indicator of high performance and therefore is expected to return

large values.
2. False Alarm Tracks (FAT): A ST is regarded as a FAT if it docs not have enough

temporal or spatial overlap with any GT.

ket AGT, STi) _
N Tﬂ.

T(ST,,GT}) < 7, (6.4)

The evaluation of this metric should report low values to indicate good perfor-

mance.
3. Track Detection Failure (TDF): A GT is considered a TDF if it does not have

temporal and spatial overlap with any ST.

S AGT ik, STix)
N < Ta

71(G7111‘~S”Ij[) < Tt, (65)

As with the previous metric TDE are expected to be as low as possible to guarantee

high performance.

4. ID Change (IDC): This metric counts the number of label changes for G'T's. The
actual implementation of this metric, unlike the one proposed by the authors, is
computed with respect to GTs instead of STs. In addition, since IDCs mainly
occur when targets are spatially close, they are evaluated specifically at the
Interaction Periods (IPs) — see section 5.2.3.5. For evaluation purposes an IP is

defined over three sub-periods (see figure 6.2):

e Before merged measurement. This consists of a predefined number of frames

before the merged measurement is detected.
o Merged measurement. Lasts as long as the merged measurement is detected.

o After merged measurement. This consists of a predefined number of frames

after the actual merged measurcment is detected.

An IDC is counted during an IP when a GT is mapped with a particular ST
before the merged measurement occurs and is mapped with a different ST after
the merged measuremnent. Note that the evaluation during the actual merged
measurement period is out of the scope of this project. For example, attending to
the cases of study depicted in figure 6.1, in the first and third case (figures 6.1(a)
and 6.1(c) ) two ID changes are counted, and only one ID change is computed in

the second case (figure 6.1(b)).

Low values of IDCs indicates a good performance of the algoritlim especially in

the resolution of occlusions.
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[l Before Merge Measurement
m Merge Measurement
Bl After Merge Measurement

Figure 6.2: Sub-periods in an IP.

For more details about these metrics the reader is referred to the original paper
[156].

An additional metric is presented that combines the results of CDT, FAT and TDF
into a single global result. This metric is the Fl-score, which was presented in section
1.5.2 and aims to ease the comparison between different algorithims by representing with
one value the overall performance of the system. The Fl-score values are normalized

between 0 and 1 where 1 indicates the ideal performance.

6.2 Evaluation parameters

This section covers the relevant decisions taken for the actual implementation of the
metrics. which allow the reader to replicate the results presented in section 6.3.

Regarding the estimation of the spatial overlap between GTs and STs defined in
equation 6.1, the methodology used depends on the primitives employed to delimit the
physical extent of the target. — e.g. bounding boxes, ellipses, PDFs. Unlike the original
paper, in this work the physical extent of a target is represented with a Gaussian PDF,
and therefore a slightly different approach is considered. The spatial overlap in this
implementation is based on the Bhattacharyya coefficient (see equation 5.22), and the
spatial threshold is set to 0.4.

The temporal overlap is calculated as in the original paper with a threshold set to
0.5.

In this implementation, a GT is only allowed to be mapped to a maximum of one ST.
When multiple STs satisfy the spatial and temporal overlap conditions for a particular
GT. the mapping is performed using a majority based rule i.e. the GT is mapped to
the ST that meets the spatial condition for the largest amount of time.

Finally. for the evaluation of IDCs during interaction periods, the frame span that
defines the periods before and after a merged measurement is set arbitrarily to 10 frames.
In each period an independent GT mapping is performed following the majority based

rule. An IDC is accounted if the STs mapped in both periods are different.
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6.3 Evaluation of data association strategies

The tracking methodology described in section 5.2 is evaluated wit regard to the

following aspects:

e Object modelling. Two different models have been proposed; the spatial model

and the chromograis — see section 5.2.2.

e Data association mecthodology. Three techniques of increasing sophistication
have been presented: Iterative Nearest Neighbour (INN), Suboptimal Ncarest
Neighbour (SNN) and Global Nearest Neighbour (GNN) - see section 5.2.3.

o Update strategy during merged measurements. When a merged measurement is
detected the targets involved can update their location with the merged measure-
ment or not. If the update is skipped, the target estimation relies exclusively on
the motion model of the target previous to the merged measurcment — sce scetion

5.2.3.5.

Additionally, a dummy algorithm has been implemented that performs the data
association randomly and is used to serve as a benchmark for the rest of approaches.
This algorithm is referred to as Version 0 and it is independent of the object model
employed.

In sections 6.3.1, 6.3.2 and 6.3.3 a detailed analysis of the results is given attending
to the three aforementioned aspects. These results have been obtained using the dataset
presented in section 4.5.4. For completeness the full set of results are presented in

section 6.3.4.

6.3.1 Choosing an object model: Spatial vs Chromogram

The first analysis conducted aims to compare the two models proposed: the simple
model based only on spatial features and the more discriminative model that combines
3D height and colour dimensions, the so-called chiromograms. The two evaluations are
conducted using the INN data association methodology and a normal update strategy
during occlusions. Table 6.1 presents the results for both appearance models along with

the results of Version 0.

CDT | TDF | FAT || Fl-score || IDC
Version () 23 22 48 0.4 69

Spatial Model 25 20 41 0.45 67

Chromogram 33 12 35 0.58 37

“able 6.1: Object model evaluation results (1).
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A visual comparison is given in figure 6.3 where only the two most representative

metrics are shown: the Fl-score that derives from CDT, TDF and FAT, and the IDC

to allow an independent evaluation of the algorithm during interaction periods.
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Figure 6.3: Spatial model vs Chromogram model. (INN, normal update).

These results indicate a clear improvement in the overall performance of chromograms

over spatial models especially in terms of IDC, in fact the spatial model is only slightly

better than Version 0. These results are not particularly surprising since chromograms

provide with specific mechanisms for dealing with occlusions situations by using only

the observable parts. Additionally, the fact that they are built over the absolute height

dimension of the 3D space makes them robust to changes in scale.

Interestingly, this increment in the performance is even more significant when used

along with SNN or GNN. which reveals that discriminative models are more relevant

when used in combination with a sophisticated data association method. Table 6.2

presents the results obtained with the SNN methodology and a normal update strategy.

B CDT | TDF | FAT || Fl-score || IDC |
Version () 23 22 48 0.4 69
Spatial Model | 28 [ 17 [ 34 || o052 | 57
Chromogram I-l() D 19 l_l.T_T_ 0| l_l'}_

Table 6.2: Object model evaluation results (11).

Attending to the Fl-score and IDC metrics figure 6.4 shows a visual comparison of

both appearance models.
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Figure 6.4: Spatial model vs Chromogram model. (SNN, normal update).

6.3.2 Choosing a data association methodology: INN, SNN,
GNN

The evaluation of three data association approaches is presented in this section in
detail. These are the simple Iterative Nearest Neighbour which relies heavily in the
association order; the more advanced Suboptimal Nearest Neighbour; and the optimal
Global Nearest Neighbour method. For this evaluation the chromogram appearance
model is used with a normal update strategy during occlusions. Table 6.3 presents the

results obtained for the three data association methods and Version (.

CDT | TDF | FAT || Fi-score || IDC
Version () 23 22 48 ll.il_ ) li!_i_
INN 33 [12 [ 35 [ os8 | 37
| sNN [ 40 [ 5 [ 19 om |15
GNN | 40 | 5 | 19 0.77 15

Table 6.3: Data association evaluation.
A closer look is presented in figure 6.5 where the Fl-score is used to compare the

global performance of the three methods and the IDC metric is used to assess their

performance specifically during interaction periods.
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Figure 6.5: INN vs SNN vs GNN. (Chromogram, normal update).

The results of the Fl-score metric reveal a significant increase in the overall per-
formance of the two more sophisticated methods, SNN and GNN with respect to the
simpler INN. INN still outperforms Version 0 by a factor of 1.5. Regarding the number
of IDCs. INN reduces them by half with respect to Version 0. GNN and SNN obtained
about 2.4 times less number of IDCs than INN. An interesting result is the fact that SNN
and GNN behave similarly. A possible explanation might be that for these evaluation

parameters the sub-optimal results obtained with SNN happen to be the optimal.

6.3.3 Choosing the update strategy during occlusions:
Normal update vs Non-update

A final discussion refers to the update strategy followed during merged measurements.
Two possible options are presented: normal update where targets update their position
with the merged measurement or non-update. For this evaluation chromograms are
used as appearance models and the GNN methodology is employed to resolve the
data association problem. Table 6.4 presents the results obtained for the two update

strategies and Version 0.

[ CDT | TDF | FAT || Fl-score || IDC

Version 0 o3| |52z i 48 0.4 | 69
:__\'m'mu] update 40 ) 19 0.77 15
L.\'ml-up(lmc R T

Table 6.4: Update strategy evaluation (I).
Figure 6.6 presents the visual comparison of the overall performance with the

Fl-score and the more detailed evaluation during interaction periods with the IDC

metric.
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Figure 6.6: Update vs Non-Update strategy during mergings. (Chromogram, GNN)

The Fl-score results show a similar performance between the two update strategies
improving Version 0 by a factor of 2 approximately. Both strategies obtain comparable
numbers of IDCs which is not surprising since the similarity between chromograms does
not employ location features. Furthermore the numbers of IDCs are reduced abont
seven times with respect to Version 0.

An additional evaluation was conducted to assess the performance of the spatial
model with respect to the update strategy utilized. Table 6.5 presents the comparison
hetween the two update strategies using the spatial model and the GNN data association

method.

CDT | TDF | FAT || Fi-score || IDC

| Version 0 23 1|29 || 48 0.4 69
Normal update Py 18 35 0.5 60
Non-update 41 4 21 0.77 20

Table 6.5: Update strategy evaluation (II).

It is interesting the significant improvement when the non-update strategy is com-
bined with spatial models as illustrated in figure 6.7. The overall evaluation is presented
with the Fl-score and IDCs show the specific performance of the algorithm during

occlusions.
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Figure 6.7: Update vs Non-Update strategy during mergings. (Spatial model, GNN)
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These results suggest that spatial models, which in general are considered poor
discriminative models when targets are close, are in fact adequate models when combined
with a non-update strategy during merged measurements. However, this interpretation
must be taken with caution as it depends on the accuracy of the targets™ motion model.
If during a merged measurement the targets involved modify their velocity or direction,
the motion model prior to the merged measurement is not longer accurate and relying
on it results inevitably in failures. As an example, figure 6.8 presents a situation where
two targets become merged and the motion model of one of them changes. The two
update strategies are compared during this scenario using different appearance models.
The first approach utilizes the spatial model, INN for data association and a non-update
strategy during the occlusion. The second approach uses the chromogram appearance
model. GNN and a normal update strategy. As expected the first approach fails to
resolve the occlusion since it relies on the motion model of the target. The second
approach. on the other hand, succeeds because it does not use any motion estimation and
relies exclusively on the performance of chromograms, highly discriminative appearance

models.

6.3.4 Complete set of evaluation results

In this section the results obtained from all the evaluations conducted are presented. For
visual purposes the results are divided in three tables. Table 6.6 include the benchmark
results obtained with the Version 0 algorithm. Table 6.7 presents the results obtained
with a normal update strategy during occlusions. Finally tableG.8 shows the evalnations

with a non-update strategy during occlusions.

I CDT | TDF | FAT | F1-Score

D¢ |
69 |

Version () 23 22 48 0.40

— | e—

Table 6.6: Results obtained from a random process of associations (Version 0).
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Figure 6.8: Three key frames of an interaction period between two targets, Top row:
Non-update strategy combined with spatial models and INN. This approach fails as the
motion of one of the targets slightly changes during the interaction. Middle row: Colour
images of the key frames of t he interaction. Bottom row: Update strategy combined
with chromograms and GNN. In this case the association is resolved successfully.
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CDT | TDF | FAT || Fl-score || IDC
INN 25 20 41 0.45 07
Spatial Model | SNN 28 17 31 0.52 h7
GNN 27 18 35 0.5 60
INN 33 12 35 (.08 37

Normal Update

Chromogram | SNN 40 5 19 0.77 15
GNN 40 5 19 0.77 15

Table 6.7: Sct of results for a normal update strategy during occlusions.,

CDT | TDF | FAT || Fl-score || IDC
INN 37 8 29 0.67 28
Spatial Model | SNN 41 4 21 0.77 20
GNN 41 4 21 0.77 20
INN 35 10 35 0.61 41
Chromogram | SNN 40 5 24 0.73 18
GNN 43 2 18 0.81 12

Non-Update

Table 6.8: Set of results for a non-update strategy during occlusions.

6.4 Evaluation of the enhanced Mean-Shift
methodology

In this section the Mean-Shift approach for multi-target tracking proposed in section 5.3.2
is evaluated quantitatively. In addition, it is compared with the tracking methodology
based on Kalman filter described in section 5.2; in particular with the version that
obtained the best results in the evaluation of section 6.3 i.e. KF with the Global Nearest
Neighbour for data association and the chromogram appearance model. The results are

summarized in table 6.9.

CDT | TDF | FAT | F1-Score || IDC
Enhanced Mean-Shift 30 9 105 0.39 35
KF + GNN + Chromogram 43 2 18 0.81 12

Table 6.9: Performance evaluation of the enhanced version of the Mean-Shift approach
and the tracking methodology based on Kalman filter, GNN and chromograms

A closer detail of the most significant results is presented in figure 6.9.
With regard to the number of CDT, the results of Mean-Shift are comparable with

those obtained with the traditional tracker based on KF and data association. In terms
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Figure 6.9: Performance evaluation in terms of CDT, FAT and IDC
Mean-Shift algorithm and KF-based tracking with GNN and chromograms.

Enhanced

of IDCs. Mean-Shift obtains more than double the number produced by the traditional
approach. The more significant result is obtained with the number of FATs. The
Mean-Shift approach is especially poor in the large amount of false alarms that are
produced. A possible explanation for this behaviour may be the inaccuracy of the
people dimension estimated by CAMSHIFT. It is been observed that the estimations
are slightly smaller than the actual extension of people in MoA. This results in regions
of people data falling outside the estimation area which are not removed from the
feature space and, as a consequence, being detected as new people. Figure 6.10 shows
an example of this behaviour in a particular instant of the video sequence.

A possible solution to this situation is to explore different approaches for computing
the size of the estimation such as the SOAMST algorithm [109], or the method proposed
by Zivkovic and Krose [T1] based on the EM algorithm. Alternatively, a restriction
could be added to the location where new people are detected which prevents the
creation of new targets at the edges of the MoA. However, more research on this issue

needs to be undertaken.

6.5 Discussion

In this section the different tracking methodologies presented in chapter 5 were evaluated
quantitatively. For this evaluation a dataset was specifically created which consists
of two video sequences: one for training (i.e. parameters setting) and another for the
actual evaluation. They were recorded from a set of three Kinect sensors strategically
mounted on a non-overlapping configuration at a high location. The content of the

videos consists of people walking in a lab with constant interactions e.g. path crossing,.
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Figure 6.10: CAMSHIFT estimates a smaller region for target 51 leading the remaining
points to be detected as a new target.

The dataset was manually annotated with bounding boxes by a human operator and
the assistance of the semi-automatic tool VATIC. Using these annotations the final
ground truth was generated by modelling the data within the bounding boxes with
Gaussian PDFs.

A proper evaluation requires the identification of the relevant failure modes for cach
application. In the proposed system two main failure modes were recognized: cardinality
errors that occur when the number of ground truth tracks differs from the number of
tracks detected by the system; and the inconsistency of labels that happens during
interaction periods. For the assessment of these failure modes some of the metrics
pm])osml by Yin et al. [1313] were employed.

First it was evaluated the performance of the tracking methodology based on Kalman
filter and data association. Three relevant aspects were specifically considered: the
object model; the data association methodology: and the update strategy during merged
measurements. As expected, discriminative models such as chromograms perform better
than simple models based solely on spatial features. In particular the difference is more
significant when used in conjunction with an optimal data association technique. The
multi-part structure of chromograms combined with the absolute height dimension in
the 3D space have been proven successful for resolving occlusions. The performance

of the simple data association method INN is not surprisingly outperformed by the
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more sophisticated approaches SNN and GNN. It is interesting to note the fact that
the outcome of SNN is comparable to the results obtained with GNN. This suggests
that for this particular configuration and design, the sub-optimal association coincides
with an optimal. Lastly, the results revealed that the update strategy during merged
measurements is in general irrelevant when the object model does not contain location
features. However, when spatial models are used the performance increases significantly
as long as targets do not modify their motion during merged mcaswrenients.

Second, the enhanced Mean-Shift algorithim for tracking was evaluated and the
results were compared with those obtained with the traditional approach based on
Kalman filter and data association; in particular with the version that combines GNN
for data association and chromograms for modelling people since it was proven to be
the best combination. The results revealed an inferior performance of the Mean-Shift
approach with respect to the traditional tracker especially in the number of FATs.
The reason could be attributed to a systematic underestimation in the size of targets.
It is concluded that further enhancements need to be introduced in the Mean-Shift
approach in order to achieve comparable results to those obtained with traditional

tracking methodologices.
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Chapter 7

Conclusions and Future Work

7.1 QOutcome

This thesis ained to investigate the use of the popular Kinect RGB-D sensor for
surveillance purposes. A framework was proposed for the integration of multiple non-
overlapping RGB-D cameras to allow the monitoring of large area indoor spaces. New
techniques were developed that fully exploit the capabilities of RGB-D sensors. This
study advanced towards new workspaces that are expected to serve as the basis for

further study within the research community.

7.2 Contributions

In this section the main contributions of this work are summarized.

7 2.1 Calibration of non-overlapping RGB-D cameras

The surveillance framework proposed in this work is formed by three non-overlapping
Microsoft Kinect© sensors. This configuration maximizes the area covered and mini-
mizes the interference between sensors. To efficiently use the data [rom all sensors it is

required to calibrate the sensors with respect to a common coordinate system.

7.2.1.1 Issues

The external calibration of non-overlapping cameras is always a challenging task,
especially because standard procedures based on corresponding points cannot be applied.
Additionally, issues related to the depth resolution and noise of the depth sensor
inevitably result in inaccurate calibration parameters. Finally, a reference coordinate
system for the entire device should be chosen carefully to allow simple calibration

procedures and serve as a useful representation for segmentation and tracking tasks.
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7.2.1.2 Solutions

A novel plane-based procedure is proposed for the calibration of non-overlapping RGB-D
sensors. The method uses corresponding planes to derive coustraints on rotation and
translation. The normal vector of the planes are used to estimate the rotations, while
the translation is computed by using the closest point of the planes to the origin of the
reference CS. In order to obtain many corresponding planes between pairs of adjacent
non-overlapping cameras a calibration tool was presented — the “paddle”. This tool
features two coplanar boards attached to both ends of a pole to be detected by adjacent
cameras simultaneously. Using a plane fitting approach planes were effectively extracted
from the range data. Finally, for practical reasons the middle Kinect CS was selected

as the reference CS which minimizes the required number of calibrations.

7.2.1.3 Outstanding problems

The proposed solution for the calibration of non-overlapping range cameras requires some
manual intervention for holding the paddle in diffevent positions in front of the cameras.
Ideally, the procedure would be fully automatic. A possible line of investigation is the
use of accumulation of trajectories to estimate automatically the geometric calibration

between sensors.

7.2.2 Depth-based polar coordinate system for people

segmentation

For segmenting people in the proposed framework it requires the use of a conmmon
representation that aggregates the data from all sensors. Different depth-based spaces
have been explored in order to obtain a representation that achieves high performances

in the context of people segmentation, especially during occlusion situations.

7.2.2.1 Issues

Due to the nature of RGB-D sensors based on triangulation the depth resolution
decreases with distance while the amount of noise increases. These issues result in
people data appearing increasingly scattered with distance along the optical axis of
the camera. Furthermore, when considering the aggregated view from all sensors, cach

camera produces a different orientation of data.

7.2.2.2 Solutions

A depth-based polar coordinate system is proposed to effectively aggregate the data
from all sensors — Remapped Polar Space (RPS). In this space the problem of different

orientations is automatically solved by transforming the data into a polar representation
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In addition, the effect of increasing scattering of data with distance is mitigated by the
use of a remapping operation. This operation compresses distant data and enlarges
closer data resulting in a homogeneous representation of data throughout the range.
The proposed space allows segmentations of people at distances beyond thie operating

range of the sensor.

7.2.2.3 Outstanding problems

The RPS involves an increase of approximately 26% on the computation time. The
mapping of all data from the 3D Cartesian CS to the RPS comprises a set of non-linear
transformations that must be performed point-wise. A future version could consider a
parallelized implementation in order to speed up the process.

For tracking purposes the RPS presents some limitations since the motion of people
cannot be assumed linear. This entails the use of more complex tracking algorithms

such as particle filters, which in general are computationally intensive.

7.2.3 Chromogram appearance models

Traditional tracking methodologies rely on the correct identification of observations
over time (i.e. data association). In this context it is required the use of appearance

models that can effectively distinguish people from each other.

7.2.3.1 Issues

The issues related to appearance models are associated with variations in the target,
representation over time. Several problematic situations that produce changes on the

targets’ appearance are identified:

e Occlusions: The correct identification of people during and after occlusions is
a real challenge since their appearance inevitably change. Occlusions are very

frequent in situations of high density of people.

o Illumination changes: Appearance models based on colour information are highly
sensitive to illumination conditions, e.g. weather, switching on/off lights, cte.
Additionally, in multi-camera systems the specific configuration of cach camera

e.g. camera shutter, results in different colour representations.

e Scale changes: When appearance models are built over the image plane people

scale varies according to the distance to the camera.
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7.2.3.2 Solutions

A novel discriminative multi-part appearance model was presented that combines the
height from the 3D space and colour information. It was specifically designed to be
effective in the presence of occlusions, the multi-part structure allows only the observable
parts to be considered. It is also robust to changes in scale since it is built from the

absolute height of targets.

7.2.3.3 Outstanding problems

Chromograms have proven to serve well in dense target situations. However they
generally fail to distinguish people dressed in similar colours. It would be interesting to

assess the effect of using extra information such as texture.

7.2.4 RGB-D dataset for people segmentation and multi-target

tracking

For the evaluation and comparison of the different algorithms presented in this work it

is required the use of a benchmark dataset.

7.2.4.1 Issues

The design of a proper evaluation platform for multi-target tracking algorithms is a
highly complex task. First, it requires the design of a suitable datasct c.g. definition
of routes and behaviour of actors, type of interactions, etc. Second, to produce the
ground truth annotations, which is in general subject to different interpretations and
requires the definition of certain rules e.g. how to annotate occluded people, what label
assigned to people re-entering the scene, etc. Third, the identification of the relevant
failure modes of the application. Finally, the definition of a set of metrics that provides

meaningful evaluation.

7.2.4.2 Solutions

A new dataset was presented for the evaluation of people segmentation and tracking
algorithms. This datasct was recorded with the combined device proposed in this
work covering an area of approximately 220 m?. Up to 15 people appear in the
evaluation sequence performing normal behaviours such as walking through the scene in
a casual way and showing frequent short-lived interactions between them. It comprises
approximately 140 different people interactions where occlusions, dynamic and static,
are highly frequent. The dataset was manually annotated with bounding hoxes by
» human operator and the assist of the semi-automatic tool VATIC. Two rclcvu‘n‘t

failure modes were identified in the context of multi-target tracking: cardinality errors
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that occur when the number of ground truth tracks differs from the munber of tracks
detected by the system; and the inconsistency of labels frequently during occlusions.
For the assessment of these failure modes some of the metrics proposed by Yin et al.

[156] were employed along with the Fl-score metric.

7.2.4.3 Outstanding problems

The majority of occlusions appearing on the dataset are reduced to brief interactions
such as handshaking or path crossing. A future extension should include new scenarios
with more challenging occlusions such as grouping of people, changes of directions and

velocity, etc.

7 2.5 Additional contributions

In this section some additional contributions that were proposed to assist in the progress

of this work are presented.

7.2.5.1 Enhanced Mean-Shift algorithm for tracking

A modified version of the Mean-Shift tracker was proposed aiming to improve the
performance in multi-target tracking environments. The main modifications are, first,
the integration with chromograin appearance models to increase the discriminative
capacity during occlusions. Second, the use of a ground plane tracking space to minimize
occlusions. Third, the segmentation of foreground data to reduce distractions from the
background. Finally, the use of a priority-based target evaluation strategy to minimize
the interferences between targets.

In the proposed version, targets closer to the camera have priority for using pixels
located in the intersection area with other targets which might lead to incorrect solutions
occasionally. A possible line of investigation would be to use the probabilities for the
pixels with respect to cach target. For instance a pixel is used with the target with
highest probability. Alternatively, it could be used in a soft way by weighting the
contribution of the individual pixels with targets using their probabilitics. To reduce
the inevitable increase in the computation time, parallelized implementations could be

considered.

7 2.5.2 Depth-based foreground detection

A depth-based background subtraction approach is proposed for foreground segmentation
that mitigates the low resolution and increasing noise introduced by RGB-D sensors

at far distances. The main contribution in this context is the use of an adaptive
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depth threshold derived from a characterization of the error. This approach effectively
segments foreground data while minimizing the noise.

A failure mode has been identified in the proposed method. When a person is near
the background, that person will not be detected if the depth difference between the
person and the background is smaller than the threshold used at that distance. A
natural progression of this work would be the use of additional information such as

colour to assist in the segmentation at critical regions of the scenc.

7.2.5.3 Merged measurement detector

A detector of merged measurements is proposed in this work, which is a module
responsible for the recognition of measurements produced by more than one target.
These measurements appear when people are in close proximity and the sensor, due
to its limnited resolution, cannot separate their signals yielding a single measurement
that combines them all. The correct detection of these measurcments is of critical
importance since the results obtained from this module are used by the tracker to apply
different update strategies, depending on whether the measurement is merged or not.

The proposed approach labels a measurement as a merge if it satisfies the two
following requirements: its area is larger than a defined threshold and more than one
tracked target are in close proximity.

It has been identified a significant failure mode that produces a certain nunber of
false negatives. The reason seems to be the misdetection of partially occluded people
during interaction periods. As a consequence the target proximity requirement is not,
satisfied. Future research might explore a soft approach where instead of making a hard
decision whether a measurement is merged or not, it could return probabilities to he
used for weighting the subsequent actions accordingly. Another possibility could be to
take special actions when these situations are likely to occur; for instance by lowering

the detection threshold in that region to reduce the probability of misdetections.
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