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Abstract 

The work presented in this thesis provides a framework for monitoring wide area 

indoor spaces built from multiple Microsoft Kinect sellsors. A large field of covera.ge 

is achieved by placing the sensors in a non-overlappillg configuration to reduce the 

interference between the projected structured pattcl'lls. A novel procedure is proposed 

for estimating the geometric calibratioll between sensors that enables a COllllIlon repre­

sentation for all data by providing many corresponding planes in the view volume of 

each sensor using a "paddle". 

Within this framewOl'k, an invest.igatioll is conducted of different depth-based spaces 

for people detection and tracking purposes. Kinect v.l sensors bring (1, lIlultitude of 

benefits to surveillance applicatiolls, lllainly for occlusion reasoning. However, this sensor 

has important limitations ill terms of resolutioll, noise and range. In particular, data 

becomes more scattered with distance along the optical axis of the camera resultillg in 

non-homogeneous representations throughout the range. Furt.hermore, when cOllsidering 

the aggregated view, each camera produces a different orientation of data. The polar 

coordinate space representation of the COlllIllon ground plane is propos(~d that lllitigates 

these limitations and effectively aggregates the data from a.ll sensors. 

The use of discrimina.tive appearance models is a chief aspect in order to properly 

distinguish people from each other, especially wlwl'e the density of people is high. A 

multi-part appearance model is presented ill this work - the chromogram - which 

combines colour with the height dimension oH'ering high discriminative capabiliti(~s 

especially during occlusiolls periods. 

A critical stage for multi-target tracking systems is establishing the correct associa­

tion between targets and Illea,,"mremcllts; a.lso kllOWll as the data a.',soeiatioll problelll. 

In this context, the data association stage is investigated by evaluating different well 

known data association methodologies. An altel'llative tracking approach which does 

not require a data a..c;;sociation process is also analysed - the Mean-Shift tracker. A 

modified version of the Mean-Shift tracker is proposed for tracking 011 the ground plane 

that integrates the use of chrolIlogralIls that reduces distractions from the background 

and other targets. 

A new challenging dataset is proposed for the evaluation of multi-target tracking algo­

rithms. The tracking methodologies proposed in this work are compared quantitatively 

in this framework. 
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Chapter 1 

Introduction 

Visual surveillance applications are used for monitoring private and puulic spaces with 

a wide range of purposes such as identification and prevention of illegal behaviours, 

facilitating crimes investigations, traffic control, monitoring of patients, homeland 

security applications, etc. 

These systems proved their effectiveness afier the Boston marathon uombillg of 2013 

where the suspects were identified by inspecting the CCTV footage. This incident also 

revealed the necessity of more intelligent systems capable of detecting threats in real 

time. Nowadays, a growing need for public security has lead governments and private 

companies worldwide to invest in the development of more sophisticated surveillance 

systems. The UK government announced in early 2014 an inwstmcnt of £1.11>n on 

high-tech surveillance systems. The US government is currently spending $3.7bn OIl 

the development of drones for frontier control. The Danish government has invested 

DKK 15 million in surveillance solutions to automatically interpret and describe video 

(l\Iilestone XProtect@ 2014)[1]. 

Visual surveillance applications are present in a wide nlllg(~ of applications in society. 

La.c;t year Panasonic released a multi-camera in-car system to aid police officers that 

starts recording when a relevant incident is detected. In the retail and lllarketing sedor 

an emerging trend is to analyse in-store customer behaviour for video analytic and 

statistics. The low-cost airline company Easy jet is developping drones to inspect its fleet 

of Airbus aircmfts. The drones will be used to scan and assess Easyjd planes anti report 

damage uack to engineers. Recently Shanghai airport has installed a network of almost 

2000 fixed and PTZ cameras for access control, fire detection and luggage handling 

system. Furthermore, the farming sector is starting to use cameras for monitoring daily 

operations and watch over feed lanes. 

Surveillance applications normally rely OIl traditiollal iutcllHity-baHed camcra . ..,;. How­

ever, these are highly sensitive to illumination conditions and occlusions, and therefore 

the use of sophisticated algorithms is required in order to mitigate these effects. Another 

possibility to address these problematic situations is the use of alternative sensors. Since 
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CHAPTER 1. INTRODUCTION 

(a) Hoyer drone with an integratcd camera.. (b) Ulllll<l lllled Aeri al V('llicle ( AV) frolll 11 1(' 
UI< a rllH'cI forcC'. 

Figure 1.1: The use of drones a nd UAYs havc grcat pole llt ia l for s lIrVeil\ c1 1l("(' t ilsks such 

as t raffi c con trol. monitoring of fa rms or fro ntier contro l. lIowevC'l", th en ' H )"(' s t ill 111 ll("h 
ontrover y with t heir u sc in public spaces cluc to (.11 (' lack o f r('g lil <lt.io ll s cwel ISS I)( 'S 

related to violation of per onal privacy. Fig (a) I I Fig (b) 2 . 

the release of t he afforda ble Kincct scnsor by Microsoft , t he lI SC of n ~ I -D nl lll(' )"(1S hns 

becom e very popular esp ecially in t he re eareh cOllll1luni ty. Apart froJll ('010 \11" , t I)('s(' 

sensors a lso provide with depth information which is roh ust to illlli llilint i0 11 ("o lHlit iOI1 S 

and highly valuable for identify ing and rcsolvillg occl lls io llS. n ,13-1 SCJI SorS o!rcr til(' 

pos ibili ty of monitoring crowded indoor envirolllllCJlt s such HS nir port s, tmill stntio ll s, 

shopping centres, etc . Additiona lly, sincc they do 110t require nil ex t {'l" Il HI li g llt SO Ill"("{' 

they can be used in dark environment. There arc . howcv(,l" SO Ul C iSS II ('S nss()(" il1tcd wit h 

t h ese sen or in t erm of limited range, reso lution a nd J1 0 isc t hnl res t ric! (heir us{' to <l 

cer tain typc of a pplica tions . Researcher have not illvcstiga tee! ill 11ll1 ("11 <lvl H il ( 11 (' II S(' 

of RGB-D sensors beyond t heir operating r a nge of lip to 4-5 111. III (hi s ("O llt ('x t , lids 

project provides a n opportuni ty to advan ce t he usc of RGB-D s(' nsors ill t IH' fi e ld o f 

visua l surveillance. 

The pre en t work have p lenty of applications in real world SCCllnrios . III pmliclilm 

for monitoring wide area indoor sp ace sucll as a irports, lllIIS(' lIl11S or pnrkillg lo (s. 

Additionally, it could be applied for nigbt surveill ance e.g . IlI OIl i (ori Ilg o r pn ( i(' 1l ISH I 

night or in offices outside their op ening hours . 

1.1 Aims and objectives 

In this wor}, a n invest iga t ion will be concluctpcl o n the lI SC' of llllill ipJ<- n ,13- Cfl IlH' J"i\S 

for d etection a nd tracking people in large i ll cl oor spaces, w hich is ('x l)('c l ('<I t () prov ide 

1 PllOtogra pliy by: Don lIIcCull ugh. T itle: "Drone al1d 1\100 11" 
https: //www.flickLcom/ pliotos/ G921.J.385C))N04/ 

2Pl lOtogra pliy by : UK l\ lillistry of Defence, T it le: , .\~ Ta t c lik('(' I )t' r Air SYSI(,lll " 
ht tps://\\"ww.Hickr .com/ photos/ c1cfcllccill1 ages/ 
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Figure 1.2: CCTV cam eras in Victoria Station , London (U I< ) 1. The city of London 
has one of t he highe t number of CCTV cameras of any cit.y in t.he' world. It hHS ])e'011 
estimated that on average an individu al may be recorded by 1110rc t.hew 300 (,H 11)(' r<1 S in 
a single day. 

multiple benefits to the field of visual smveilla ll ce. Thc following a rc thc lll a ill object ives 

of the thesis : 

• The capabilities and limit ations of RGB-D . en ors will b analysed ill terms of 

m aximum range, depth resolution, acc;ura y and illt,erferell C'cs prociucccl I)('I-wec]) 

sensor. This study will allow the de ign of an opt.imal configura t ion of l1111ltiple 

RGB-D sensors for monitoring wide area indoor. paces . 

• In order to use efficiently the data from mult.ipl e cameras , a ccdibrat.iol1 llJdlloclol­

ogy will be proposed to enable a common repres Ilt at.ion for thc elAta. 

• The depth dimension will be explored aiming to obtai]) an op t inw l spac(' that. 

effectively aggrega t e the d ata from all sen ors . mitiga te'S the lllail! lilJlitations 

of RGB-D cam eras, and allow p eople segm entations bcyond the depth sensor 

operating range . 

• Target tracking met hodologies will be investiga t.ed to be uscd in complex situatiolls 

wit h multiple people and occlusions. The clepth climension will 1)(' int rod uC'eei to 

provicle an optimal trHcking space tha t minimize ' the 1111JlJ lw]' of occ:l usioJls. 

) Photogra phy by: Antonio ~ Ia r tfn('z . Title: "Ultimo elia" 
http. :/ / \\'\\'w.Aickr.coll1 / photos/ poper 
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• An important objective will be to produce a discriminative depth-based appeunlllce 

model that effectively distinguishes people from onc another. Such a lllodel will 

be studied in the context of multi-target tracking particularly during occlusioll 

situations . 

• The design of a new and challenging data .. <;et will he investigated aiming to serve 

as a suitable platform for the evaluation of people seglllclltatiou ami tracking 

algorithms. In order to produce a functional and comprehensive dataset an 

analysis will be conducted to identify the most relevant situations ill lUulti-target 

tracking. 

1.2 Issues 

There are specific issues that will lleed to be considered iu this project. 

The Microsoft Kinect sensors presents important limitations in tenns of resolution 

and noise that restrict their operating range to 4-5 llwtres. Due to the nature of the 

depth sensor based on triangulation the aIllount of lIoise increases with distallce. Effects 

such as blurring, pixelation and quantization are expected to introduce additional 

inaccuracies ill the results. Additionally, the depth resolutioll decreases with distance 

which llleallS that the gaps between contiguous depth values increase. Tlws(~ isslws 

complicate the use of depth data beyond the operating range of the scnsor. 

Another critical issue related to the Kined se11sor is the fact that it caunot he uspd 

effectively outdoors in presence of direct sunlight or in combination with more Kinect 

sensors, namely when all sensors work on the sallle scone simultaneously. The Kinect 

sensor is ill essence a structured light sensor, aud in short it works hy pro.i(~ct.ing a 

fixed infra-red (IR) pattern of dots onto the scene which is captured by au IR camera. 

The depth of each dot is estilllated by comparison with the correspoll<iiug (lot in a 

pre-loaded pattern captured at a known distance. When there are external sources of IR 

light projecting onto the Sallle sceue (Le. sunlight, other sensors), the sensor struggles 

t.o identify it.s own dots resulting in areas with no dept.h est.imat ion or t'lTOIH'OUS values. 

An additional issue conllllon to all visual surveillance systems aro occlusions. This 

is probably oue of the biggest challenges to resolve in eletectiou auel trackiug scenarios. 

Occlusions can be classified as partial occlusion when only some areas of the target 

get occluded, or total occlusion when the target disappears completely from the scene. 

They can also be static or dynamic dppen<iing on wlwtll<'r the target got ()cdlHl<~tl hy 

an element from the scene or by other targets, even by the target itself due to rotations 

or pose changes. The correct identification of targets during and after occlusions is 

highly difficult to resolve since the appearance of targets inevitably changes. 

The colour camera of the Killect is affected by classical issues related to illumination 
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conditions. In particular, illumination changes affect directly the appearance 1llOdd of 

targets resulting on possibly incorrect identification of targets. This effed iH even more 

noticeable when multiple cameras are employed, where each cautera lw.") its OWIl shutter 

configuration at each time step yielding differellt colour n\r)l·cS(~ututious. Furth(\nllOn~, 

effects like shadows or cluttered backgrounds could interfere with the targets' app(~nrance 

model. 

A fiual issue refers to the design of a suit.able evaluat.ion framework t.hat allows 

the effective assessment of the algorithms presented in this work. It will require the 

design of a dataset that covers the challenging situatiolls iutende<l to solve and the 

identification of the relevant failure modes of the systelll. 

1.3 Contributions 

The main contributions of this thesis are: 

• A semi-automatic calibratioll procedure that estimates the geometric trallsforma­

tions between pairs of non-overlapping range sensors. The proposed calihration 

methodology uses corresponding planes to derive constra.ints on rota.tion and 

translation. 

• A depth-based polar coordinate space n~pwsentation that lllitiga.t(~s important 

limitations of RGB-D sensors in terms of range, resolution and noise. It a.lso 

aggregates eH·ectively the data from all sensors allowing seguwntations of pm­

pIe beyond the operating range of the sensor while minimizing the lllllllber of 

occlusions. 

• Presenting a discriminative new multi-part target appeanmc(~ Illodd - tlw "chm­

mogram" - which combines the height dimension ill the 3D space with colour 

information. This model is especially intended to serve effedively during occlu­

sions. 

• A challenging dataset recorded from three non-overlapping RGB-D sensors is 

presented. Furthermore, the ground truth annotations, rdevant failure nH)(h~s awl 

evaluation metrics me included for a comprehensive evaluation of multi-target 

tracking algorithms. 

1.3.1 Publications to date 

• E. J. Almazan and G. A. Jones. 'fracking People Across Multiple NOll-Overlapping 

RGB-D Sensors. In Computer Vision and Pattern Recognition Workshops 

(CVPRW), 2013 IEEE Conference on. IEEE, 2013, pp. 831-837. 
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• E. J. Almazan and C. A. Joncs. !vlultiple Non-Overlapping HGI3-D Sensors for 

Tracking People. In Robotics: Science and Systems, 201:t 

• Submitted for a conference workshop: E. J. AhnHzelu Hnd G. A. JOlH'S. A Oepth­

based Polar Coordillate System for People Seglll(~lItatioll aJl(1 'lhl.ckillg with 

Multiple RGB-D Sensors. In IEEE ISMAIl 2014 Workshop on Trackillg Methods 

& Applications 2014. 

1.4 Structure of the thesis 

This section presents a brief outline of the thesis. 

In chapter 2 a review of the state of tlw art ill visual sUl'veillallcP systems is 

conducted with especial consideration to detection and tracking lllethodologi('s. In 

particular it is described the necessity of solving the data association problelll and the 

use of discriminative appearance models for lllulti-target tracking (mviroIllllcnts. Some 

of the most recent configurations of multi-camera SyStcIlls for survcillancc purposes are 

discussed along with popular performance evaluatioll metrics for detectioll alld tracking 

applications. 

Chapter 3 presents the surveillance framework proposed in this work. First, the 

RGB-D scnsor is analysed individually to ass(~ss it.s capabilit.ies in t.erms of resolution, 

noise and maximum range. Secolld, the design of a. lloll-overlappillg configuration 

of cameras is presented aiming to maxilllize the field of coverage and minilllil',c the 

interference between IR sensors. Finally, it is introduced a novd semi-autolllatic 

procedure for the calibration of llluitiple non-overlapping rallg(~ cameras that enables a 

common representation for all data. 

In chapter 4 the depth dilllension is explored in the context of people seguwuta.tiou. 

Three alternative depth-based spaces are presented with the lIlain objectives of effectively 

aggregating the data from all sensors and reducing the number of occlusions. A novel 

space is introduced that mitigates the lllain limitations of RGI3-D sensors in tenus of 

resolution and noise allowing segmentations beyolld tlw opera.t.ing range of Uw sensor, 

Two funda.mentally different tracking lllethodologies are explored iu chapter 5 -

the Kallllan filter and the :Mean-Shift tracker. The Kalman filter is studh~<l from 

the perspective of data association where different methodologies are pn~sellted. The 

Mean-Shift approach is discussed aud its main limitations in multi-target trackiug 

environments are identified. Sonw important (~llha.llc(~lllellts a.n~ proposed to il1cwas(~ 

its performance. Additionally, a discriminative a.ppea.rance model that combines the 

absolute height of the target aud colour information is presented. This lllodel is 

especially intended to he effective during occlusions a.nd robust to changes in ta.rgets' 

scale. 
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The apparatus for the evaluation of lllUlt i-target traclwrs is presented in chapter 

0. A challenging dataset for segnH'utation and llllllti-target tracking is prodm:('d along 

with the ground truth annotations. A study is conducted to idcntify t lIP relcvant failure 

modes of the systelll awl a sd of llletrics is discussml to provide llwlluingful evaluation. 

The two trackers methodologies introduced in chapter G are assessed and cOlllpared 

quautitatively within the proposed evaluation framework. 

The final chapt er pn~s(~nts a disclll'sion on t.1w lllaiu ('outrihul ious awl achicv('llH'u1.l' 

of this thesis, cOlllbined with some condusiollS and suggested future l'()semTh directioll. 
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Chapter 2 

Literature Review 

Typically, CCTV surveillance SystcUIS are used oHiine in courts a.s proof to incrilllinate 

peoplp, or for online insp(~diolls by operators at c(,lltral mOllitorillg locations. The 

efficiency of the system then relies upon the operator, who is requircd to concentrate 

011 monitors for long periods of tilllc, a tedious task highly prollC to distractiolls. The 

increasing computer power has allowed computer viHion techniques to be applietl on 

the footage obtained by CCTV systems. Nowadays, visual surveillallce teuds towards 

more intelligent systems where relevant situations e.g. illegal behaviours are detected 

automatically iu real time [2, :J]. 
There is now an extensive liue of research in the use of alternative sensors such 

as range HCnSOl'H [:1, ill, especially sinn~ the rdeH.'';(~ of Uw af[onlabl<~ RUB-O ]( ined.@ 

camera by Microsoft. These sensors allow the eXI)loratioll of tlifferellt modalities that 

aim to atldress some of the challenges in vidt'o surveillance such as occlusions, varying 

illumination conditions or shadows. 

In general the classical pipeline of vitleo surveillance applications consists of fore­

ground scgmcntatioll, data association, t.racking and in some cases event detection or 

action recognition modules. When Illultiple cameras are employed, a prior step for 

calibration should be performed to allow the integratioll of data from all C<.llIwras. The 

stage at which the integration is applied varies depending on the system as depicted in 

figure 2.1 whore two COllllllon locations to perform the fusion are showll. 

This chapter covers the review of tlw lllost reh~wllJt H!-ipects and nwth()d()logit~s 

of video surveillance a.pplications. In spction 2.1 some of the lllost populnr people 

segmentation techniques based ou fOl'Pgrounu tlet(~ctioll are discussed. :Multi-target 

tracking techniques are presented ill section 2.2. Section 2.3 covers different lllulti­

camera envirOIllIleuts aloug with calibration techniques. In section 2.4 is discussed the 

performance evaluation of people ddectioll and lllUlti-targd trackers. 
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Camera 1 

Camera n 

• 
• 
• 
• 

Potential data fusion 

• 

• 
• 
• 
• 

Potential data fusion 

• 

• 
• 
• 
• 

Figure 2.1: Pipeline of a video surveillance application. It inclllClr comlllon loca tions 
where the fusion of data from the cameras is performed. 

Figure 2.2: Control room ]. Operator pend long hours looking at urveill ancC' monitors. 
a tedious task prone to di tractions. 

2.1 Background Subtraction for People 

Segmentation 

People egmentation is commonly approached in surveillance application by means of 

foreground detection to hniques. These are in general based on ]m.ckgrollllcl Sli btractioll, 

I Photogra phy by: P a ul Gorbould. Title: "Bold 6.:- DoC'" 
https: //W\\·\\' .Aickr .com/ photos/ gorbould / 
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where the current image is compared with a lJackground model aiming to detect the 

differences which are identified as foreground regions. This process is normally followed 

by a step of refinement to reduce noise and group foreground pixels in cOIlnected 

components or blobs - see figure 2.3. In tracking systems people segmentation is used 

for the automatic initialization of tracks and in many approaches is used as well during 

the actual tracking of targets. It increases the speed and accuracy of tracking since the 

search span~ is reduced. 

PEOPLE SEGMENTATION 

Figure 2.3: People s(~gnwntation pipdine. 

In the literature, a huge variety of lJackground subtraction approaches can be found. 

The simplest methods assume static backgrounds [G-8]. The majority of these techniques 

model the background pixel-wise using simple models such as using the frame before, 

to lllore culvanced methods that use a number of static background images taken at 

the beginning of the sequence. Lo and Velastin [9] compute the median of the first N 

frames. Wren et a1. [10] proposed a very eH"ective way to handle illumination changes 

by modelling the background pixels with single Gaussialls. 

Dynamic backgrounds 

The aforementioned techniques will fail in scenarios with systematic background move­

ment.s e.g. waving trees, SllOW, etc. Friedman and Russell [11] prescllte<l a traffic 

surveillance application that models the scelle with three different Gaussians; one for 

the road, one for the shadows and one for the cars. Ba...,ed 011 this idea StauH"er and 

Grimson [12] proposed a general approach using a mixture of K Gaussians (MOG) 

to Illodel the background. Elgamlllal et al. [l~~] relaxed the Gaussian constraint by 

presenting a nOll-parametric model using Kernel Density Est.imators (KDE). Oliver d 

a1. [14] proposed a method where the background is modelled in the eigenspace. Li et 

a1. [171] use a Bayesian decision rule for background and foreground classification. Kim 

et a1. [1 G] introduced another nOll-parametric method with limited memory requin .. '­

mellts known as the codebook algorithm. Additionally, the presence of shadows can be 

particularly problematic aIHl most. authors try to mitigate the'ir df(~ct by using; different 
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colour space less sensitive to brightness changes, such as chromaticity [ti, 10, 17] or the 

Hue-Saturation-Value (HSV) colour space [18]. 

All these methods are considered standard solutions awl even though most of thelll 

were proposed more than a decade ago, they are still widely used nowadays with lllinor 

variations [10-22]. Although they are specifically designed to address issues such as 

illumination changes, shadows and dynamic backgrounds, some authors have cOllsidered 

combining different fea.tures to increase the performHuce e.g. colour, texture or e<ig(!s 

to obtain more reliable results [2J-2u]. Other approaches contemplate represeutations 

not only at a pixel level but at a regioll and frame level as well [27-29]. Using different 

model levels, problems like light switching can be handled more accurately. 

Depth-based models 

The use of information such as texture or edges is still dependent 011 the data captured 

by intensity-based cameras, which means that they are sensitive to the same issues as 

colour-based models (shadows, illumination changes, etc.). Some authors have explored 

the use of alternative sensors such as Timc'-of: .. Flight ClUlleras, stereo systems or RGI3-D 

cameras trying to mitigate these problems [:~;()-J'l]. Depth is a powerful feature for 

background subtraction since it has been proven to be invariant to illumination changes 

and shadows [3G-:37]. However, depth on its own has some limitations. For instance 

it fails to segment people that are at the same distance to the background or people 

at the salIle depth. In addition, when the seglllentation is illtegrated illto a trackillg 

system the identification of people using just depth is problematic. 

In sUIIlmary, the final selection of the background model mainly depends on the 

application itself and the type of scene. Simple models such as the frame bpfore or the 

first frame of the sequence [8, 9] might be enough in controlled environments i.e. srelles 

without illumination changes or background movements. However, other situations 

such as outdoor scenes with the presence of wind and illuminat.ion changes require lllOrt! 

sophisticated approaches [12, 1::1] or even the use of alternative sensors (e.g. RGB-D, 

Time-of-Flight). 

2.2 People tracking 

Tracking people consists of identifying consistently people over time. Algorithms for 

tracking are widely used in video surveillance applications for monitoring public spaces 

[:38]. detection and identification of illegal behaviours [::19] and even in the sport industry 

for tracking players and tactical analysis [!O]. 
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2.2.1 Tracking methodologies 

Generally, tracking methodologies rely on the availability of target detections at every 

time step which are integrated over tillle to form colllplete tracks. The motion and 

appearance model of targets are used to assist in the integration stage. Kalman filters 

and particle filters are by far the most popular tracking algorithllls. Additionally, it is 

important to mention a recent tracking methodology proposed by Z<l(~lwk et a1. ['11] 

called Tracking-Learning-Detedion, which has becollle very popular in recent years. 

The main novelty of this technique is the online leaming stage that increases the 

performance of the detector over time. 

Kalman Filter 

The Kalman filter was proposed initially in 19(jO by R. E. Kalman [42] as a recursive 

solution to the discrete data linear filtering problem. Since then, the method has been 

the subject of numerous investigations due to its great potential and computational 

efficiency. In particular it is widely used in tlw COllt()xt of visual surVt'illa.nc(~ for tracking 

people. The method estimates recursively the state of a person (e.g. location, velocity, 

acceleration, etc.) using a two stage procedure: prediction of the state, and update given 

the current observation of the person (obtained from the sensor and the segmentation 

module). The prediction stage employs a Illotion Illodel that is built upon tlw history 

of the target, anel the observation refers to the seglllentation produced by the people 

segmentation module at each time step. Additionally, it provides mechanisms to allow 

certain degree of inaccuracy or noise in the models and observations. Kalman filter is 

commonly referred to as the "optimal" solution to the state estimation problem in the 

sense that minimizes the mean square error of the estimated parameters, but only when 

some conditions are satisfied. 

The Kalman filter a.<;sumes the target state is a Gaussian distribution, the motion 

Illodel, and the measurement lIlodel2 are linear, and the inaccuracies of the motion 

model and the inevitably noise of the measurements can be modelled with Gaussian 

distributions. In case any of these conditions are not completely satisfied, some authors 

have proposed different alternatives. The Extended Kalman Filter (EKF), also known ., 

as the non-linear version of the Kalman filter, presents a solution for Gaussian non-linear 

systems. It approximates the nOll-linear functions using the Taylor's expansion. EKF is 

especially aimed for systems tha.t can be ea.sily linearised (i.e. ncar linear), a.nd it will 

probably diverge for highly non-linear lllodeis. EKF is being widely used ill surveillance 

applicatiolls [4:~, 44] and a comprehensive analysis of the tecllllique can be found 011 the 

work of Ribeiro [45] and Welch and Bishop [4G]. 
To overcome the limitations of EKF, Julier and Uhlmann [,17] proposed the Unscented 

21'he lIl{'aSUf{,IIll'ut mo<i1'1 is USl'ri to trallsform th!' state into thl' IIWa..'lUH'III!'nt span'. 
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Kalman Filter (UKF), which is a method designed to handle highly non-linear systems. 

UKF uses a deterministic approach using samples to oiJtain the mean and the covariance 

of the probability density function. A set of samples called "sigma points" are chosen 

near the mean and are propagated through the nOll-linear function. The mean and the 

covariance are recovered in the new sample distribution and Kalman filter is applied 

normally [48]. 

EKF and UKF still a.ssume the distributions arc Gaussian. l:<'or those systems where 

these constraints are not satisfied there is fortunately another tool for state estimation -

the particle filter. 

Particle filter 

The Particle filter was introduced in 1993 by Gordon et a1. [49], where it was first called 

bootstrap filter. It is considered a generalization of the Kallllan filter since it can be 

applied to any system e.g. non-Gaussian, non-linear. It was used first in a computer 

vision application by Isard and Blake [~)()]. 

The concept of particle filtl~rs is to n~presellt the state density of a particular t.arget 

using a population of samples randolllly distributed through the feature space, where the 

samples represent hypothetical states of the target. This allows an accurate definition 

of the state distribution as long as enough samples are used. The samples are weighted 

according to their similarity with the observations received at every time step. In the 

original paper the particlcs were updated using a schelllc known as Sequential Important 

Sampling (SIS) based on the motion model and the observations. Further extensions to 

the original lllethod have been proposed such as the Sampling Importance Resampliug 

(SIR) [51], where at every iteration samples with low weight are replaced avoiding the 

problem of "sampling impoverishment". 

Particle filters are widely used in computer vision applications, ill particular in 

video surveillance systems [52-58]. A further discussion of particle filters is given by 

Auralalllpalalll et al. [5~)]. 

People appearance modelling 

Building reliable appearance models is a real challenge in particular for visual surveillance 

applications due to factors such as illumination changes, occlusions aud variation of 

target poses and orientations. In particular, when tracking people across cameras with 

nOll-overlapping views the illumination and appearance of the person lllight cha.nge 

significantly from camera to camera. The use of discriminative models is essential ill 

multi-target systems for the correct distinction between targets. 

Over the years researchers have proposed a wide range of appearance models that 

aim to dea.l with these situations. In general appearance models can be cla.',sified 
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between local aud global models. Local models capture the local structure of the target 

and are characterized for being partly robust to illumination changes, partial occlusions 

and orientation and pose variations such as HOG [GO] or SIFT features [GI]. However 

they are normally expensive to compute and might require a prior·i knowledge of the 

target and a number of samples for training the mouels [G2, G::I]. Local feat mes therefore 

are not normally considered for fast tracking algorithms. On the other hand, global 

models arc simpler and faster to compute b11t tlwy are lllon~ stmsitive to illulllinatioll 

and orientation changes, and occlusions. Two of the lllost popular models within this 

latter category are templates and histograms. 

Templates are structures constructed using directly the raw information of the pixels 

within the boundaries of the object. They are simple representations that preserve the 

spat ial structure of the target along with their intensity [G4-(jli]. Nonetheless, templates 

present lllajor problems in varying illulllination conditions when targets undergo pose 

or orientation changes and during occlusions. l\lauy authors have proposed different 

enhancements by introducing additional iuformation such as edges or texture [G7, li8] 

or even for dealing with scale changes [G!)]. 
Histugrams are very popular represcntrltions that captuw the distribution iufonna­

tion of the objects. They are widely used in visual surveillance [70, 71] since, unlike 

templates, can handle scale and orientation changes. However, they are mainly criticized 

for not preserving the spatial structure of the object. In the literature, histograms have 

been extended by Illany authors to mitigate this problem with the use of multi-part 

histograms [:\G, 72-74]. The data is divided spatially in regions to improve the dis­

criminative capability of the model as well as make it more suitable for dealing with 

occlusions. \Vrell et al. [10] proposed one of the first lllulti-part histograms, where 

regions of similar colour within a person were Illodelled with different Gaussians e.g 

legs, torso, head, hands, etc. An interesting approach was proposed by Birchfield and 

Rangarajan [7S] who introduced the so-called "spatiograms" which are structures that 

augment the standard single cue histogram with the spatial distribution of pixels in 

each bin. 

More recently, the use of 3D data is being used to construct more robust models. 

MUllOz-SalillHs et al. [5] build histograms using the data from the torso, which is 

approximated in the ~{D space. Alternatively, Spinello and AlTas [7G] propose a local 

feature that uses histograms of oriented depths inspired by the well known HOG 

descri pt ors [(iO]. 

Data association 

In visual tracking applications data association is the process that assigns the correct 

measurement to every target at every time step. It uses the similarity between ap-
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pearance models of targets and measurements aiming to maximize the total similarity 

of aU associations. This is a key stage in tracking since it is directly related to the 

target update process. In single target trackers when only one target is considered data 

association is trivial. It is also a relatively easy problem in multi-target trackers when 

the targets are well separated. The problem becomes complicated when multiple targets 

are spatially close, occluded, or in the presence of spurious measurements. 

To simplify the process, it is conllllOn pract.ice to reduce t.he space of s(~arch hy 

analysing only those measurements that are withiu a region of high probability of 

containing the correct measurement (i.e. nearby the target) known as a "gate". However, 

there are still periods of ambiguity when more than one measurement fall within this 

region and data association still needs to be addressed. 

The data association problem has been studied since t.he early years of visual tracking 

and it is interesting to note that the early methodologies are still in use nowadays with 

little modification. The different approaches can be classified betweell single-hypothesis 

and multiple-hypothesis techniques. 

Single hypothesis 

Single-hypothesis techniques refer to those approaches that produce a single set of 

associations at every time step. They are normally preferred for their simplicity and 

practicality ill real scenarios. The simplest method within this category is the Nearest 

Neighbour Standard Filter (NNSF). This method chooses the best a.ssociation for each 

target with a single scan without considering a global solution. The simplest NN ap­

proach is not normally used for multi-target environments since it allows a measurement 

to be associated with multiple targets. The Iterative Nearest Neighbour (INN) is more 

suitable for multi-target tracking scenarios where the solution is constraiued to forbid 

multiple associations. The INN is a simple methodology which is easy to implelllent 

and does not require much computational load. It has a complexity of O(nrl. However, 

it performs poorly in dense ta.rget situations since the solution depends on the order of 

target association, and it lllay result in one target stealing ot.her target's nwasurcnwnt 

[77-79]. A slightly variation of the INN is the Suboptilllal Nearest Neighbour (SNN) 

which does not rely on the order of association, instead searches sequentially for the best 

possible single association, the one that returns the highest similarity between target 

and measurement. The SNN has a complexity of O(n2 ) and in lllany situations achieves 

high performance despite the fact that it does not seek specifically for an optimal 

solution tha.t ma.ximises the total similarity [80-~2]. A technique tha.t gU(l.rantees a.n 

optimal solution is the Global Nearest Keighbour (GNN). This technique is the IIlost 

widely used NNSF technique and, unlike the aforementioned methods, achieves an 

3" == 1TI ill( Nt, N m ) and Nt and N", are the nIlIllI)('r of targets and. 1llI'aSlln'm('nts respl'ctivl'ly 
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optimal solution at every time step. The fastest implemeutation of GNN was proposed 

by Munkres [R:~] with a polynomial complexity of O(n:i) [.sO, .sl, .s4-.sG]. 
An altemative approach within the single-hypothesis category is the Joint Prob­

abilistic Data Association Filter (JPDAF) proposed by Fortmanu, Bar-Shalom and 

Scheffe [87, 88J. JPDAF is conceptually different to the NNSF approach since it allows 

Illultiple associations assuming that the real measurement Illay not be the closest one 

and that every association is possible with some probability. Consequently. targets are 

updated using a weighted combination of all possible associatiolls. JPDAF is specifically 

designed to deal with noisy environments where spurious measuremeuts are frequent. 

One limitation of the standard JPDAF is the assumption of a fixed and known number 

of targets. Schulz [8!)J proposed a sample-based version of JPDAF that relaxes this 

constraint. 

Multiple hypothesis 

Multiple-hypothesis techniques, on the other hand, return a set of possibilities at every 

time step and the solutioll is (ldayed until more information is available. Tlwy reach tlw 

correct solution with high probability at the expense of an increase in the computational 

load. The l\lulti-hypothesis tracker (MHT) [90, 91] is the most popular. It cOlllPutes 

all possibilities at every time step including the termination and initialization of new 

tracks. MHT is cOIllIIlonly represented as a tree where each node indicates a different 

bypotbesis4. The tree grows exponentially expanding each current hypothesis with a 

new set of hypotheses every time a new set of measurements is received. As expected 

MHT is expensive in terms of memory and computational time and therefore to make 

it practical requires of optimal implementations [80, 92] as well as approximation 

techniques. COlllIllon approximations are clustering [!IO], merging of tracks [9:3J and 

pruning techniques using Murty's algorithm [~)4, 9;)] to keep the K best hypothesis in 

polynomial time [go, 97]. 

Split and merged measurements 

Au important consideration during the data association process is the presence of 

split and merged measurements which are frequent in real surveillance scenarios. Split 

measurements arise due to partial occlusions while rner:ged measurements appear as a 

consequence of the limited resolution of the sensor when s('V(~ral objects are in dose 

proxilllity. From the data association perspective it is critica.l to identify and ma.na.ge 

these situations. In the literature different approximations can be fouud in this regard . 

.100 and Chellappa [!)!jJ identify these special cases based on the area of measurements. 

Bose et al. [98] used the number of measurelllents in the gate area. If more than 

4 An hypothesis ('ollsists of a s('t of kasibIP associations 
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one measurement fall within the gate of a single target it is assumed split, and if a 

mem;urement falls in the intersection of two gates it is labelled as a merged measurement. 

Once they are identified, one possibility is to join back together split measurements 

and decompose merged measurements [<)[) , 99J. Alternatively, they can be llluintained 

as split and merged measurements with continued estimation of tlwir state until they 

are detected as single measurements again [98J. 

2.2.2 Alternative tracking methodologies 

There is another type of tracking algorithms that do not rely on the detections made 

at every time step and therefore do not require to solve the data association problem. 

Instead the appearance model of the targets is COllst.ructeel in the first frame (autolllat­

ically or manually) and the subsequent frames are searched looking for the location 

more similar to the Illodel. These trackers are some time referred to as datu-driven 

trackers since they only use the data obtained from the images at every time step 

without the aid of almost allY high level information. Two COIIllllon approaches are 

telllplat<~ tracking and tlw lllore sophisticate(l Meau-Shift. tracker. 

Template tracking 

Template tracking is considered as one of the simplest approximations for tracking. 

Targets are modelled with the raw pixel-wise iutensities of the area defincd by thc 

target. The search for the model in the current frame usually starts from the last 

estimated position or is predicted with a motion model. It continues by matching the 

template with nearby location looking for the position that produces the best match. 

Typical matching methods are the sum of squared differences (SSD) or cross-correlation 

[WO, 101 J. 
Although this algorithm may be a good approximation in some restricted situations, 

it presents major weaknesses in real environments. It is particularly ineffective in 

situations of illumination changes, rotations or variations ill scale of the target. It 

also presents problems when tracking multiple people with similar appearance. More 

practical implementations incorporate mechanisms to deal with these situations, for 

instance a COlllmon practice is to update the model at every time step. Nguyen et al. 

[G9] present a warping method that allows scale changes. Beymer and KOllolige [102J 

use a template based on the disparity information from a stereo system, which is less 

affected by changes in the illumination conditions. 
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Mean-Shift tracking 

The Mean-Shift tracker is the most popular alternative within this category. The 

search for the model is performed in an optimal way by a gradient ascent procedure 

i.e. Mean-Shift. The Mean-Shift tracker is also known a.') a kernel histogram tracker 

because it makes use of a kernel to weight the pixels for building the appearance Ulodel 

i.e. pixels closer to the object centre are weightecl hea.vier. It was originally used in 

computer vision for tracking purposes by Cornaniciu, Rarnesh awl Meer [iO]. The 

Mean-Shift tracker has become a popular tracking method in the last decade as it is 

efficient computationally and easy to implement. However, it presents the following 

limitations. First, it does not consider properly the change in the object's scale or 

rotatioll. Second, it is highly sensitive to similar backgrounds and int()l"ferl~nccs produced 

by nea.rby targets. Third, in the origina.l implementation the appearance of the object 

is modelled with a silllple single-cue colour histogram, which is norlllally criticised for 

not being very discriminative. 

~Iost of the extensions of the Mean-Shift tracker proposed in the literature aim to 

address these issues. To reduce the distractions from the background some authors 

applied a previous background subtraction which additionally speeds up the tracking 

process since less data is considered [1O~~, 104]. In order to increase the performance of 

the tracker alternative appearance models are suggested such as multi-part histograms 

where colour is combined with some spatial information [7G, lOS-lOS]. Regarding the 

scale chunge, SOUle methods adapt the kernel size and orientation using the expectation 

maximisation algorithm [G!), 71] or alternatively the moments of the distributions 

[109, 11 0]. 

The Mean-Shift tracker is also commonly combined with other techniques such m; 

in ComHniciu, Rarnesh and Meer [111] where the Kalman filter is used to reduce the 

nUlllber of iterations, or in the paper presented by Li [112] where Mean-Shift is used to 

improve the data association process in a Kalman filter tracker. Alternatively, it has 

been combined with the particle filter method to reduce the number of particles [11 ~~]. 

2.3 Multi-camera environments 

The reduction in the price of sensors and the increase in the computational power 

of modern computers have allowed the incorporation of additional call1eras to aid in 

computer vision applications. In particular, for surveillance systems, multiple sensors 

are used to reduce the number of occlusions [79, 114] and to increase the area monitored 

by the system [113, l1(i]. 

In order to use the information from all cameras in an efficient way, it is normally 

required to perform a prior calibration process to estimate the relative position of the 
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cameras with respect to a COllllllon coordinate system (CS). The calibration involves 

the estimation of the geometric transformations i.e. rotation and translation, between 

all cameras and the reference es. 

2.3.1 Calibration of multiple overlapping cameras 

The use of multiple overlapping cameras in surveillance scena.rios is llscd to reduce 

the number of occlusions. The external calibration of cameras facilitates the correct 

identification of targets in each camera. For traditional llGB systems a lIlultitude of 

methods have heen proposed that involve the use of corresponding features between 

cameras to estimate the transforlllations by error minimization [117, 118]. For close 

range scenes, it is COllllllon to use a chessboard pattern vicwable by all S(~llS()rS where the 

corners are detected in all views. Alteruatively, for more cOIllplex scenarios where the 

cameras are so far that it is difficult to detect the corners of the chessboard, Svoboda 

et a1. [119] proposed a system where a moving bright spot, viewed by all cameras in a 

dark scene, was used to create the correspondences. Lee et a1. [1] f)l instead track a 

common person in all call1eras using the position of the person over tilllc for creating 

point correspondences. Renno et a1. [120] presented a calibration lllethodology where 

the image to ground plane homography was estimated by accunlUlation of tracks. 

For multiple range sensors, and in particular for structured light sensors such as 

the Kinect camera, the configuration of the system is more challenging since each 

sensor emits a fixed infra-red (Ill) pattern at the sanw wavelength. Therefore each 

sensor can see another sensor's pattern superimposed on its own and will have proLlems 

distinguishing the two. Different approaches have been proposed to address this issue. 

One of the most popular methods was presented by Butler et al. [121], where a 

mechanical system was used to vibrate a Killect sensor. Since the IR projector and 

IR camera of the Kined vibrate at the same frequency, its own III pattern is detected 

normally while the IR patterns from other sensors are blurred avoidhig interferences 

[122, 123]. Another approach is to use a time slot schedule for each spnsor. Since the 

deactivation of sensors by software is relatively slow, Schroder et a1. [1:21] used an 

external shutter for time multiplexing. A more sophisticated system was presented by 

Faioll et a1. [12[,] with the development of all internal shutter. Alternatively, a cheaper 

solution was presented by l\Iaimone and Fuchs [120] with a software solution to fill the 

holes produced uy the iuterferences. 

The caliLration of multiple overlapping RGB-D sensors normally requires the use of 

special calibmtioll grids, such as using a chessboard where the Llack squares are covered 

by IR deflected material [127], or with a planar calibration grid with retro-reflective dots 

[121'S]. Once the point correspondences are established, standard calibration procedures 

are used [117, 118]. A lllore practical approach but less accurate for the external 
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calibration of multiple Killect camera .. '" is to estimate first the external relations between 

RGB cameras using standard procedures [ll~] and then use the depth-RGB registration 

provided by the Killect driver [12(j]. 

2.3.2 Calibration of multiple non-overlapping cameras 

Systems huilt from non-overlapping cameras aim to monitor large areas where each 

sensor covers a different region of the scene. When the CHmen.lS are highly separated 

and there are large unobserved regions the external calibration of cameras is not 

normally required, since it cannot directly assist in the association of targets across 

cameras. In these situations it is comIllon to use re-identification techniques based on 

the appearance model of the targets [12!)-l:U]. When the intermedia tc ullobserved 

regions are small, some authors estimate the trajectory of targets in those areas to 

help in the re-idelltification task [I32] and even to estimate the calibration parameters 

[133]. Makris et a1. [134] proposed a methodology that learns the topology of the 

cameras using temporal correlation of objects moving across adjacent cameras. For more 

restrictive scenarios of dose range scenes, Kuma.r et a1. [1:lf)] presented an interest.ing 

calibration method that allows all nOll-overlapping sensors to see the same calibration 

grid with the use of mirrors. 

2.4 Performance evaluation 

The performance evaluation of algorithms in particular for surveillance systems is a 

crucial stage to determine the progress ciuring the development stag(~ and to obtain 

quantitative comparisons with other reported work. 

The evaluation of detection and tracking applications is a complicated process that 

in general involves the following three aspects: 

1. Designing a suitable dataset. 

2. Producing ground truth aunotations for the data,set. 

3. Defining a proper set of metrics that allows a meaningful evaluation of the 

algorithlll. 

4. Setting the optimal values for the evaluation parameters. 

2.4.1 Ground truth and dataset 

To evaluate the performallce of an algorithlll a COlllmon approach is to compare the 

algorithm's results with those considered ideal, also known as ground truth. Producing 
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accurate ground truth annotations is surprisingly challenging. The process for generating 

ground truth involves the annotation (e.g. bOllnding boxes, ellipses) of the objects 

in every frame of the sequence which is a highly tedious taf.,k, especially with long 

sequences and when IIlany objects are present. 1<or some evaluations the task is even more 

gruesome as pixel-level accuracy is required [~~8, 13G]. Normally the human annotations 

are assumed to be the perfect values. However they contain Illany ambiguities since 

the process is error prone and often requires subjective interpretations of the sccne. It 

is surprising the variability 011 the annotations depending on the annotator [1 :n, 138]. 

Additionally, there are complex situations that are difficult to interpret such as occlusions, 

objects partially cropped by the image edges, objects on pictures (e.g. ad-boards), 

reflections in mirrors, etc. To assist ill the process there are available several semi­

automatic tools such as ViPEH-GT [1:10] or VATIC [140j that offer interpolation tools 

to avoid the need to anllotate every single frame. Some authors have considered the 

creation of synthetic datasets to avoid the ground truth annotation altogether [l.H]. 
Ideally, the datasets should be comprehensive enough to cover a wide range of c:hal­

lenging situations e.g. weather (;Qnditiolls, illumination variations, dynamic backgrounds, 

occlusions, etc:. as discllssed by Ellis [1 :12] or more recently in the study of Motwa.ni 

[143]. For RGB multi-target tracking systems some of the most popular and widely 

used datasets are PETS [144], i-LIDS [145], CAVIAR [14G] or ETISEO [1(17]. Recently, 

with the increasing use of RGB-D sensors for surveillance purposes, new datasets have 

arisen. However, the majority of the RGB-D datasets publicly available are specific for 

identification of ohjects [14~, U!)] and human activity recognition [iSO, Ifll]. There r1re 

still very few for evaluation of multi-target tracking systems. One is rec:entiy published 

by Munaro and l\Ienegatti [oG] called Kinect Tracking Precision (KTP), which is a 

dataset acquired from a mobile robot platform. Alternatively Spinello and AlTas [iG] 
Illade available a dataset recorded from static RGB-D cameras for people tracking 

purposes. 

2.4.2 Evaluation metrics 

Ground truth-based metrics are ill general computed from the classical true positives 

(TPs), false negatives (FNs), true negatives (TNs) and false positives (FPs). Some of the 

most well known metrics used for evaluation of detection and tracking algorithms are 

't' t TP f I 't' t FP d 'fi't TN H true POSI Ive ra e TP+FN' a se POSI Ive rae FP+TN an specl Cl y TN+FP' owever, 

as it was cleverly identified in the work of Lazarevic-McManus et a1. [1;'2] the TNs 

canllot be computed for object-based systems and therefore popular evaluation rnetrics 

such as the ROC curve canllot be applied. 

Metrics can be classified as global or local. Global metrics present a single value 

to assess the overall performance of the algorithm which is convenient for comparison 
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purposes. A popular global metric is the CLEAR MOT llletric [Lf):I] which cOlllprises two 

metric:::;: MaTI' for the evaluation of ohject detections based on the spatial overlapping 

between ground truth and detected objects, and l\10TA which accounts for the spatial 

and temporal overlapping between ground truth and detected tracks. The VACE metric 

[154] is widely used as well as a global metric where FPs, FNs, ID-swit<.:hes and track 

fragmentations are combined in a sillgle value. 

Other authors prefer the use of local metrics to obtain a more comprdwnHive 

evaluation of the algorithm. Local metrks are especially useful to identify probleIlls 

during the development stage of the algorithm, or to determine the strengths and 

weaknesses of a particular algorithm [1 rd, V')G, l [)G]. Smith et a1. [157] proposed a total 

of nine different Illetrics divided between detection and tracking purposes. Black et a1. 

[141] included a metric for tiw evaluation of occlusions (Occlusioll Success Rate) which 

is very cOIlvenient for lllulti-target systems. 

Additionally there are some authors that define periods of time or even objects 

that will not be considered for evaluation since they are out of the scope of the 

algorithm purpose. For example the segmentation of individuals within a group 01' 

durillg occlusions as in the work of Kasturi et al. [I ;,:I] when~ they define the so-called 

"Don't care frames" and "Don't care objects". 

It is worth mentioning the study conducted by l\Iilan et a1. [I:{~] where it was noted 

the variability of results obtained with different implementations of the same set of 

metrics. The authors also stated that for assuring fair cOlllparisolls between tracking 

algorithms they all should use the same ohject segmentation module sinc(~ tracking 

algorithms rely heavily on the performance of the segmentations. 

2.4.3 Evaluation parameters 

Special consideration should be given to the evaluation parameters which afl'ed dra­

matically the lllea .. mred performance. For detection and tracking algorithms these 

parameters are used for establishing the required mapping between the ground truth 

and the output of the algorithm - see figure 2.4. 

The evaluation parameters for detection algorithllls could refer to the spatial thresh­

old used to define the mapping with the ground truth, which is normally computed 

based on the spatial overlapping between bounding boxes [1[)7-15!)] or the Euclidean 

distance between centroids. For tracking algorithms a double threshold is usually 

required to account for the spatial and temporal overlapping of tracks [trIG, IGG]. 

Similarly to the data association stage during the actual tracking, the ground truth 

mapping call allow lllultiple mappings with one ground truth object [L;)/i, ]f,7, HiO] or 

5Diagram copy from the original work of Lazarevic-~IcMallus et al. [1.'):2J with the consent of the 
authors. 
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only penllit single mappings using methodologies such as the nearest neighbour [WO] 

or the Hungarian algorithm [lG:~, l(j 1, lG~]. 

Ideally, the evaluation parameters should not favour any technique with respect to 

others. Some authors propose to include the evaluation parameters ill the optimization 

process of a few well known algorithm and use those as standard values for the evaluation 

of the rest of algorithms [152]. 



Chapter 3 

Multi RGB-D Sensor Monitoring 

System 

3.1 Introduction 

RGB-D cameras are sensors that produce intensity images as well as depth data. These 

sensors are widely used in the computer vision cOlllmunity since Microsoft released 

the Kinect© camera ill November 2010. This sensor was a revolution as it provides 

reasonably accurate depth data at an affordable price. Afterwards similar sensors were 

developed such as the Xtion Pro Live call1era or the second version of Kinect released 

in July 2014. In particular, for video surveillance applications tlw use of RGB-D 

cameras brings at least two major benefits with respect to classical intensity-based 

systems in the visual surveillance context: they are robust to illulllination changes even 

allowing the monitoring of dark environments; and the dfedivclwSS for identi(yillg and 

solving occlusions, which are considered nowadays one of the major challenges ill video 

surveillance. 

In this work a multi-sensor device built from non-overlapping RGB-D cameras will 

be proposed. The system is intended for monitoring wide indoor spaces which maximises 

the area covered. In order to attain an optimal design an analysis of the capahiliti<~s 

and limitations of the RGB-D sensor will be conducted. The system will need to 

be calibrated to allow the data frolll all the RGB-D cameras to be represented in a 

common coordinate system. The calibration of non-overlapping sensors is a challenging 

problem aud some approaches have been proposed in the past to solve it. However, 

they tend to be highly complex such as the OlW proposed by AlljUlll N. et ai. [l:l:l] 
based on trajectory estiIllation of moving objects during the unobserved regions, or 

the mirror based method introduced by Kumar R. K. ct a1. [I :Jfl] were the sensors 

see the calibration grid through a mirror. Another approach that requires the relative 

location of the cameras to be fixed was presented by Lebraly P. et al. [1 t>:J] where 
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the calibration parameters are computed by manoeuvring the system through a static 

scene and estimating the trajectories of the cameras. In this work a novel and simple 

plane-based calibration methodology is proposed for the calibration of nOll-overlapping 

RGB-D sensors. 

The remainder of this chapter is organized as follows: In section :3.2 a detailed 

analysis of the Kinect sensor is presented along the proposed configuration of the 

comhined device. The methodology employed for the calibrat.ion of the llOll-()Vl~rlappillg; 

cameras is described in section 3.3. III section 3.4 the potelltial issues of the system are 

identified, and finally section :~.5 provides some conclusions for the chapter. 

3.2 System geometry and design 

In this section the configuration of a multi-sensor device proposed for surveillance and 

monitoring purposes is presented. This device is composed of three RGB-D sensors, 

namely IVIicrosoft Ki1lect© cameras, which are set ill a uon-overlapping fashion to 

maximize the covered area and minimize the interferences produced between sensors. 

The use of the Killect seHsor brings Illany advantages to surveillance applications 

especially for detecting and solving occlusions. However, these sensors have lilllited 

range and can only be used in indoor environments. In addition, the depth accuracy and 

resolution decrease with distance. A comprehensive analysis of these issues is required 

in order to take appropriate measures and obtain the best performance of the sensors. 

3.2.1 RGB-D sensors: The Microsoft Kinect 

Microsoft's /\inect© sensor' is a laser-based depth sensor which gellcrates a depth 

image enabling the 3D locations of POillts withiu a room to be located as well as the 

colour information about these points - essentially a 3D camera. 

The affordable price of this camera in comparison with other rallge sensors has 

rcv()luti()lli~ed the research community. In part icular in surveillance applications it has 

become very popular since it addresses the main challenges of classical intellsity-based 

systems: occlusions and illumination changes. 

3.2.1.1 Kinect device: Capabilities 

The Kinect device features an infra-red (IR) projector and a monochrome Cl\IOS camera 

with an IR-pass filter that produces images at approximately 30 frames per second. The 

original resolution of the sensor is 1280 x gGO pixels which is downsampled to G40 x 480 

pixels due to limitations 011 the USB bandwidth. The spatial resolution at 2 III is :3 IllIIl 

lIn this work the Microsoft's J( inect© sensor refers to the first version of the sensor designed for 
the Xbox. 
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in the horizontal and vertical axes and 1 eIll along the depth dimension. The field of 

view is 58 and 45 degrees on the horizontal and vertical axis respectively. Although the 

operating range goes from 0.5 to 4 metres, it produces depth data up to 9.7 Uletres. 

Further details can be found in the studies produced by Khoshelhalll and Elberink [I (i.1] 

and Andersen et al. [lUS]. 

Additionally, the Kinect device also has a ROB call1era and a multi-array lllicrophone. 

The RGB camera delivers the three basic color components (red, green and blue) at a 

frequency of 30 Hz with a resolution of 640 x 480 pixels. Rcganlillg the lllulti-aITay 

microphone, it allows voices to be localized in the 3D space and ambient noise to be 

rejected. 

3.2.1.2 Depth estimation 

The IR projector sends out a fixed pattern of light and dark speckles (figure 3.1) and 

depth is calculated by triangulation using a reference pre-recorded IR pattern at a 

known distance. It works as a structured light sensor. The depth of each IR speckle is 

estimated based on their displacement with respect to their corresponding point in the 

pre-loaded pattern. At this stage an operation of cross-correlation is performed between 

the current and recorded pattern to yield a lllap of disparities. In figure 3.22 the depth 

Zk of the point k is calculated oClsed on the disparity d between the projection onto the 

image plane of k, and its corresponding point in the pre-loaded pattern 0, using silllilar 

triangles as follows: 

D Zo - Zk 
- -
b 20 

d D 
- -
f Zk 

where Zk can be obtained: 

20 
(3.1) Zk = 

1 + Elld t
'
, 

These sensors bring many advantages to nUlllerous computer vision applications. 

However it is important to be aware of their limitations in order to maximize their 

performance. They cannot be used in outdoor environments as the sunlight interferes 

with the IR pattern. The sallle situation occurs when used in combination with others 

III sensors [Hii]. In addition, they have limited range and resolut ion especially beyond 

the operating range. Due to the nature of any sensor based 011 triangulation, the error 

increases with distance. The next section outlines some of these issues in order to 

:.!lmage taken from the work of Khoshelham [Hifi]. 
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Figure 3.1: Infra-red im age from Kincct sensor. 

o Reference plane 
°T 

I 

I 

I 

Object plane 

! 
I 

Zo i 
I 
I 

IZ. 

I 

It 
I 

1 
L (laser projector) 

~'d-~ ~""" '-" " '---'-b" " " "-"""'--"'---" " 1 

F igur 3.2: Kine t t ri angulat ion. 
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produce a suitable configuration of the multi-seusor device ellvisag(~<l ill this work. 

3.2.1.3 Kinect sensor: Accuracy analysis 

A theoretical analysis regarding the Killed error and resolution can 1)(:' fouud ill tlw 

literature in different studies [104, lUG, lOeS]. A series of experillwnts have heml ('olldllded 

to validate these analyses. 

Resolution 

The resolution of a depth sensor can be defined as the miuilllulll gap hetweeu contiguous 

depth values, which is prodm:ed during the qUHutilmt.ioll process. Due t.o t.he nat.ure of 

the sensor this gap increases with distance, where larger gnps indica.tes !OW()l' l'OHolutions. 

To evaluate the actual resolution of the sensor a simple experillwllt was p('rforIlwd. 

Samples from a plane perpendicular to the camera axis were taken at different distances. 

Specifically, the Killed was mounted 011 top of a wIlt-ded trolley awl tlw plnnp was 

recorded while the trolley was pushed away from it. Tlw range of reconlillg wt'nt frolll 

0.5 metres to 4.5 metres - see figure 3.3. To actually ca.lculate tlw depth WHolutioll, 

at each distance the values collected froIll the plane wen~ sorted according to their 

depth values, and the minimulll difference between two adjacent values was taken as 

the resolution at that distance. Equation 3.2 defines a quadratic fuuction that lllodels 

the depth resolution of the senSOL 

~(d) = 2.Gd2 + O.Gd - 0.2 (3.2) 

This model is intended to be used in future stages of this work ill particular (luring 

the segmentation stage to mitigate the effects of the degradation on the depth wsolution 

and allow segmelltations beyond the operating range of the sellsor - see sedioll 4.4. 

Depth error 

Due to effects like blurring:\ pixdatio1l4 and quanti/mtion fi t.lw dept.h vahw of a. pa.rt.icular 

point in the scene varies within a certain range of nearby values. This is norlllally 

considered the residual error and is affected by the resolution. USillg the sallie sd up 

as in the previous experiment the depth error is computed with the standard deviation 

at different distances. The errors and the fitted fUllction (equation 3.~J ) HI'(' plotted ill 

figure :3.4. The illcrea~il\g gaps between contiguous values affect din~ctly this ('ITOI' as it 

is illustrated in figure 3.G. 

3Blurring appears when the light ray of one point aIreds lllore than one pixel 011 the Sl'IlS0J'. 
4Pixeiization is produced when considering that till' projection of a point ill the imagl' luys 011 the 

centre of the pixel of t.he seusor. 
5Quantizatioll rders to the process that COllverts the contiuuous signal tapiun' hy till' Sl'IlSor til 

discrete values. 

28 



CHAPTER 3. M ULTI RGB-D SENSOR MONITORING SYSTEM 

c 
.Q 

~ 40 
en 
Q) 

a: 
~ 

0.20 
Q) 

o 

Depth resolution vs Distance 

• Data 

- y=2.6i + 0.6x -0.2 

O~~-------L------~------~ 

234 
Distance (m.) 

Figure 3.3: Depth resolu t ion of the Kinect with re peet to di ta ll . 
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Figure 3.4: Depth error (standard deviation of samples frolll the sallle plane). 

(J(d ) = O.0024d2 (3.3) 

This model will be applied in this work during a background ubt raction procc:-;s ill 

a future stage to define a depth-ba ed threshold to differentiat for groulld pixels. ('e 

section 4.2 .1. 1. 

3.2.2 Proposed design 

A device that combines three Kinect sensors in a non-overlappillg configuration i 

proposed as shown in figure 3.6. The benefits of thi de ign are two fold . F ir t it a llow:-; 

wider areas to be moni tored since the field of view (FOY) of the overall device is t.he 

aggregat ion of the FOYs of the three sensors. Sceond , this cOllfiguratioll avoi I . t he 

possible IR interferences between e11sors. These interferellces have bcclI idcnt ified ill 
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Figure 3.5: Distribut ion of depth values from a plane capture at four d ifferent. dista n e . 

previous works [121 , 167] and are produced when several Kinect. project sil1lui taIlcoLl iy 

t heir IR pattern onto the same region of the cene leading to failures during t he point 

correlation stage. 
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(a) Fro nt viC'w 

(b) Top view 

Figure 3.6: Design of the multi Kinect dcvice 

The device is mounted 011 top of a tripod FIt approximat ly 2.20 metres high a' 

shown in fi gure 3.7. The main rea 0 11 f r locating the device ill a high loca tion is to 

minimize the number of occlusions, both static and dynamic. The approxilllate area 

covered by the device is 220 m 2
, limi ted in depth by th Kinect range. Note t.hat there 

exists a blind spot just below the devicc, which depends on the til t. angl of t.he cameras. 

3 .2 .3 Issues 

The main challenge of the proposed configuration i the ex ternal calibratioll of 11 0 11-

overlapping sensors, which requires the estimation of the geometric transformations 

between the sen ors coordinate sy tem (CSs) and a commoll CS . As opposed to systems 

with overlapping cameras FOYs, in thi configuration stand ard calibrat.ion approHches 

ba ed on corresponding points canllot be employed [1 El , 12:3]. In the next section a 

novel plane-based calibration proc dure for llon-overlapping range, en or is described. 

3 .3 Sy stem calibration 

In multi-camera systems a proper external calibration between sensor is es ential ill 

order to manage the data efficiently. Thi proces aim to repre'sC'nt the data from the' 

three Kinccts in one reference CS. 
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Figur 3.7: Tripod and camera mounting set up. 

The data captured by each Kinect sensor generates 3D positions within some local 

CS. Calibration between two sensor produces the g ometric tra nsformation (rotation 

and translation) between the CSs of both sensors. For simplicity ill t.his work the 

reference CS of t he combined device wa stablished 011 the middle Killec t and 

therefore, only two calibrations are required as shown in fi gure 3. 

Figure 3.8: Multi calibration required for the whole device 

In order to e timate the transformation between two sensors, common features arc 

required. Generally. stereo calibration t chniques use a set of corre ponding common 

points in both sen ors aud obtain the b st transformation by error minimization 

t echniques [109]. However. in t he onfiguration proposed , the physi al set up of the 

sen or does not allow the u e of corresponding points as their FOV do not overlap . 

A novel calibration technique has been developed to nable the 3D data from 

diHerent device to be repre ented within one for the whole monitorillg space. The 

calibration technique presented exploits the depth capability of the IGncct by using 

plane a C0111mon feature . 
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3.3.1 Plane detection 

Planes are used for t he calibration process and t. hus must be identified and detect.ed in 

the images. A plane is detected by a fitting process llsing a et of 3D point , in a way 

that the distance from the points to the plane i minimi zed i. e the plane thClt. best fit. 

the set of point given as shown in figure 3.9 . 

.... 
•• 
• 

"' 4'" 
• ... ....... , 
• 

Figure 3.9: Plane fitting 

The fitt ing process uses t he plane equation Ax + By + C = z which can be represented 

with matrices as follows: 

(3.4) 

If equa.tion 3.4 is genera.li zed for a set of points, the following system is obtained: 

xn Yn 1 

which is a system of the form AI ~ = ~, where ~ i t he plane coefficient matrix [A , B , CjT 

and can be calculated as follows ~ = .NJ- I ~ . 
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As described, planes are detected in images from a set of 3D points, which are easily 

obtained using the depth information provided by the Kined sensor. 

3.3.2 Rotation estimation 

The rotation between a pair of Kinects is estimated by using tlw normal vectors of 

corresponding planesu. The process of estimating the rotation is based 011 the idea that 

the transformation between two normal vectors can be represented by a rotation- see 

figure 3.10. At this point it is important to recall the alternative plane representation 

nxx + nyY + TLzZ = d, where lux, ny, 1Lz ] is the normal of the plane, [x, Y, ZIT is a point in 

the plane, and d the distance of the plane to the origin of the es. Therefore, it is required 

to compute the normal coordinates frolll the plane coefficients [A, B, C] obtained during 

the plane detection process. Note that the plane equation Ax + By + C = z is derived 

from the nOrInal plane equation nxx + nyY + 1t z Z = d as follows: 

where 

llxX + nyY + TLzZ = d 

'Tt.I;:r + nyY - d = -1l z Z 

1lx lly tl 
- -:r - -Y + - = Z 

n z 'n z n z 

(3.5) 

(3.G) 

(3.7) 

In order to recover lux, ny, TLz] from [A, B, C] the normal vector is constrained to be 

a unit vector. i.e. Jn~ + n~ + n~ = 1. Finally using this constraint and equations 3.S 

and 3.G the normal vector of the plane is calculated as it = [A, B, -1]. Note that this is 

not a unit vector. 

6The expression "corresponding planes" denotes in this (;Olltext the same plane represented ill 
different CSs 
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Figure 3.10: Corre ponding normal vector 

The rotation b tween two CS in three dimen ion 

matrix R which mu t meet the following properties: 

• RT = R - 1 (i.e. R i orthogonal). 

• d t(R) = 1. 

repre (mt d by a quare 3x3 

• 11 ~ :311 = 1. "here i denotes a column of R (i.e. t he column of R are unit vector ) . 

The rotation matrix i calculated foll wing the method described by SOl'kine [j em] 

,.yhich guarant e that all these propertie are hold. The tep to calculate the rotation 

ma trix using a t of corresponding normals are ummariz d a follow : 

1. Organize the orresponding normal in two matrice (a matrix for each camera) 

ex" 
1/.x,2 r/ X,TTt ) J= ny,J n y ,2 r/y ,m 

n z, l n z ,2 n Z,7n 

C' 
I I 

) x. J r/ x, 2 r/ X. 711 

}\ 2 = 17~ , 1 I I 
r/y ,2 n y ,711 

I I 
r/ z, J r/ ;;,2 r/ z ,m 

where m i ' the number of corn:>. ponding normals. 
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2. Calculate the singular value decomposit ion (SVD) of the product of both matrices 

SVD (N1Ni) = U~VT . 

3. Obtain the rotation matrix as follows: 

( 

1 0 

R= V · 0 1 

o 0 
) · U

T 

Further details of the technique can be found in the original paper [169]. 

3.3.3 Translation estimation 

Based on the rotation obtained , the translation is estimated by error minimization 

using a set of corresponding points . How these points are obtained is the key innovation 

of the method. 

For a plane detected in the first CS, a unique point can be identified as the point 

on the plane closest to t he origin, i.e. X = dfJ . This point undergoes an as yet unknown 

translation X' = dfJ + t, to be represented in the second CS. A graphical model is shown 

in figure 3.11 . 

Plane (local C5) t 

oordinate System 
(Rotated) 

il(d.n+f)=d' 

Reference 
Coordinate System 

Figure 3.11: Translation estimation using a pair of corresponding point 

Since this t ranslated point must lie on t he second plane, a constraint on the 

t ranslation t can be obtained as follows: 

fJ' (dfJ + t) = d' 
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~'t i' I(A'~) U ._=( -(, li'U (3.8) 

where d and d' are the distances of the plane to both CS origins (local awl refcwnce), 

II and il' denote the normal vectors of the plane ill both ess, and t. represents the 

translation vector [tx, ty , tz]T between the two ess. Equation (~~.8) can be generalized 

for every plane as follows: 

~'t d' 1 (~' ') u·· = . - (I' 11·' 11 -I - 1 -I-I 

Therefore, the following system of equations is obtained for rn plaues: 

~, t d' 1 ( ~ I ~) lim . - = "fit - (In lim· Um 

which can he represented using matrices as follows: 

Nt= D (3.9) 

where N is a matrix that groups all the 110rmals n;:m in rows, 1 is the translation matI-Lx 

[tx, t y , tzj1', and D is a colullln matrix ill which every position is the sca.la.r resulted 

from the second part of the equation (3.8). Finally the translation can he obtained as 

follows: 

(3.10) 

To illustrate the effect of the calibratioll a plan view represelltation of a scelle 

captured from the three Kinects is presented before and after calibration in figure 3.12. 
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(a) RGB images from the t hree I<inects (left, middle a nd right) 

(b) Plan view images from the three Kinects (left , middle and right) 

(c) Calibrated plan view image from the three I<inects 

Figure 3.12: Calibration of points from the three Kinects into a ommon repre entat ion 
(plan view). 

3.3.4 Calibration tool 

A calibration tool has been built in order to create as many corresponding planes as 

required . 

The estimation of the rotation and translation is based 0 11 error lllinill1izatioll . 

The rotation estimation uses corresponding normal vectors of plancs and to estimate 

t he t ranslation corresponding points in the planes are u ed. T he accuracy of the e 

t echniques depends mainly upon the number of corresponding featm es used so t.hat. 

t he more corresponding planes, the more accurate t he calibrat.ioll will be. Howcver , 

3 
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frequent sccnarios do not contain ma ny comlllon pla lles (c.g. Hom. ceiling. ,,"aIls. tnbks). 

exhi bit ing at be. t .J or 5 COHlmon planes. 

In order to increase the number of COllllllon planes, and thercfo!"e improve' (he 

accuracy. a calibra tion tool has b een built. This tool allow!') the T('a tioll of COllllllOlI 

planes between a pair of cameras . The tool consists of a pole of 1.7 III length. with (wo 

b oards of 32 x 1 C'lll att ached a t b oth ed res of the pole ill a way (llHt both bOH!"ds 

belong to t he . ame plane see figure 3.13. The clistFU1 c(' ])(' t\\'C(, 11 t hcir c(,lltroicls is lG 7 

mm. 

Figure 3.13: Calibration tool for reating corresponding plan the "paddl " . 

The idea i tha t each b oard i vi wed and dete ted in a s p ara te camera a t the 

same time . Therefore, a pair of corre pondi1lg planes is obt ain d as shown in fi gurc 

3.1-1 , in which t he normal of each plane i represented with a !"cd line' and the arCH of 

t he det ect ed plane wi th a white rectangle (the blue rectangle denotes an ini tializRt ioll 

area) . 

Figur 3.14: Pair of corresponding planes det cted in the calibra tion proc s 

The calibrat ion proced ure consi t of holding the pac\dl in front of th two en. or . 

allowing each board to b e vie\\"ed by a different sensor. An initializa tion volume is 

defined ill t h(' ccnt!"e of t he field of vie\\ a t two metres from th C' camera as illllstra tcd 

in fi gurc 3.F . A colour filt er d is applied to rC'1110ve dat a tha t doC's llOt belong to (he 

board . T he remaining data i fit ted into a plane using equa tion 3.1. The planes in (he 

ubsequ nt framcs are obtained b:--" CO il ide-ring a neighbour volumc around the fitt ed 

plauE' in t 1)(' pn'yiou ' frame. 
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Figure 3.15: Frustum of the Kinect depth sensor. The plane initialization volume is red 
shaded 

3.4 Issues 

The calibration of the system does not only refer to the external transformations betwe n 

cameras . There are two additional calibrations that need to be considered : the internal 

calibration of each camera to compute the intrinsic parameters i.e. focal length(J) , 

principal point (io,jo) and lens distortion coefficients (kl ' k2' ... ); and the calibration 

that models t he transformation between the IR camera and the RGB camera, which is 

required to align the two images . 

This work uses the defaul t parameters provided by the framework OpenNI 7 [170]. 

The rigid transformation between the RGB and the IR camera unfortunately are not 

available as they are encrypted in the code. The default intrinsic parameters are 

summarized in table 3.1. 

f 574 (pixels) 

Jo 320 

io 240 

Table 3.1: Kinect depth sensor default intrinsic parameters. 

These parameters are reasonably accurate and for the purpose of this work they are 

acceptable. Although the lens distortion model is not considered , the Kinect features 

low-distort ion lenses (lk11 ~ 0.1) and even at the edges of the image the displacement is 

not more than a few pixels [171]. However , if more accurate result were required (e.g. 

action recognition applications) a manual ·calibration should be performed [118, 172]. 

In order to obtain accurate calibration results it is important to ensure that every 

pair of corresponding planes are coplanar. \\!it hin this context, two sources of errors 

were identified associated to the plane detection stage . 

• Asynchronization of views: The paddle orientation changes during the moment of 

7The framework OpenNI is not longer available since it was acquired by Apple Inc. 
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capture of the two sensors. This problematic situation is mitigated by moving 

the paddle slowly and steady . 

• Misalignment of the paddle: Small errors during the assembly of the paddle 

produce differences in the orientation of the two boards. In addition, envirolllllelltal 

issues such as humidity or heat yield little misalignments of the hoards. This 

situation is addressed by estimating the angle between the two boards in a previous 

stage and correcting that error angle during the actual capture of the planes. 

3.5 Discussion 

A llluiti-sensor device built from non-overlapping RGB-D cameras, namely the lVIicro::;oft 

/(inect@ sensor, is proposed for monitoring wide area indoor spaces. 

The Kinect sensor has been independently analysed in terms of resolution, range 

and noise, with the objective of maximising the efficiency of the combined device. The 

proposed design aims to maximise the area covered as well as minimize the interferences 

between sensors. 

For the calibration of the system a novel plane-bnsed procedure is presented for 11011-

overlapping range sensors that allows the data from the three Kinects to be represented 

in a COllllllon es. The proposed calibration methodology uses corresponding planes to 

derive constraints on rotation and transla.tion, in particular the rotation is computed 

from the normal vectors and the translation by using a special point in the planes i.e. the 

closer point to the origin of the reference es. A calibration tool was presented to allow 

the generation of Ulany corresponding planes between a pair of adjacent non-overlapping 

cameras. Using a plane fitting approach planes were effectively extra('ted frolll the 

range data. 

The internal calibration of the sensors and the estimation of the transforlllation 

between the IR and RCB cameras was not necessary as the default parameters provided 

by the fralllework were accurate enough for the purpose of the system. However, if 

lIlore accurate results are required a mauual calibration should he performed. 
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Chapter 4 

People Segmentation 

4.1 Introduction 

Segmenting people in video sequences is used in a wide range of applications such as in 

robotic environments, intelligent cars or for counting people purposes. It is also a key 

component in higher level systems such as trackillg or activity recognition applications. 

The segment.ation of people is normally illlplemcnted on the image plane or intensity 

ima.ge produced by cOllventiona.l RGB cameras [10;.~, 10:1, 1 n]. 1\la11Y issues a.re associ­

ated with this space such as cluttered backgrounds, illumination changes, shadows and 

occlusions, which make this space very challenging to work with. 

In the past significant effort was employed in the development of sophisticated 

algorithms that try to overCOllle these prohlems [12, 17, l~, 17-1]. However, in recent 

years, with the incorporation of alternative sensors and configurations the effort is 

focused 011 the exploration of alternative spaces that Illinimize or eliminate the effect 

of these issues. For example, the use of multiple cameras aids in managing occlusions 

[S, 79, liS, liG]. Alternatively, more advanced sensors such as lasers or RGB-D 

camerClli have allowed researchers to investigate the depth dimellsion and the 3D space. 

[4, :JG, l7G, 177-17!)] 

The main objective of this chapter is to propose and evaluate alternative spaces in 

the context of people segmentation. Three different spaces are presented in this work. 

First, the typical image plane enhanced with depth to aid in the identification and 

resolution of occlusions. This space is referred in this work as the Image Plane Space 

(IPS). Second, a space built over the ground plane that aggregates the data fro111 the 

three cameras that form the system and is nameu the I\Iap of Activity (~IoA). Third a 

space constructed over the polar coordinate system (CS). 

The remainder of the chapter is orga.nised as follows. In the next sectioll the Illlage 

Plane Space along with the seglllentation process in this space are explained. In section 

4.3, the Map of Activity anu how it is built from the aggregation of data from the 
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three sensors is described. In addition, the main limitatiolls of this space are identified. 

Section 4.4 offers a comprehensive analysiH of the Remapped Polar Space and the 

segIllentation methodology employed. Finally, in section 4.5 the different spaces are 

evaluated and discussed. 

4.2 Image Plane Space 

The Image Plane Space (IPS), as defined in this work, refers to the two dimensional 

digital image returned by the sensor. The IPS is a discrete space where each position 

i.e. pixel, is identified by the horizontal and vertical coordina.tes with respect to the 

origin, which is usually located at the top-left comer of the image. For depth sensors 

each pixel stores a depth value instead of a value of intensity. 

Depth information is a powerful feature to use for segmenting objects. Unlike 

intensity data, depth is robust to illumination changes, shadows and dutter backgrounds. 

Nevertheless, the use of depth data has some limitations associated related to resolution 

and noise that need to be considered in order to get optimal results. 

Ivlost of the IPS segmentation techniques proposed in the literature are conceived to 

be used with intensity images although they call be extrapolated to depth. In this work 

an approach based 011 foreground segmentation with depth data is folluwed for detecting 

people. This segmentation is applied independently on each depth IPS of the three 

sensors, and requires a final process to fuse the results into a com mOll representation. 

This section describes in detail the proposed technique for segmenting people in the 

depth IPS. In addition the process for aggregating the results into a common view is 

presented. Next, the critical issues relat.ed to the process and t.hc' use of d(Vt.h dat.a are 

identified and analysed. Finally, the special measures taken to lllinilllize the effect of 

t.hese issues are described. 

4.2.1 People segmentation 

The techuique presented in this work for segmenting people ill the IPS cOlllprises of the 

following two stages: 

1. Foreground segmentation. In this stage moving pixels are detected in each IPS 

independently applying a background subtraction technique. 

2. People detection. Foreground pixels are grouped ill conllected cornponeuts, which 

first, are filtered to remove noisy components and then analysed to detect occluded 

people. 
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4.2.1.1 Foreground segmentation 

A very well known technique for segmcnting foreground objects ill video seqtWIWes is 

background subtraction. Its simplicity and high computational speed make it very 

popular among researchers within the video surveillance cOlllmunity. The foreground 

points of a given image are obtained by performing a pixel-wise cOlllparison with a 

background model of the scene. Those pixels that differ more thall 11 eertaill threshold 

with respect to this background arc labelled as foregroulld. 

In the literature a huge variety of background subtraction techniques can be fouud. 

The majority of these are designed to be used with intensity images, e.g. RGI3 or 

grayscale. Important issues that must be cOllsidered in these scellarios arc shadows, 

illuminatioll changes and cluttered hackground. To deal with these issues, sophisticated 

modifications of the basic technique ha.ve been proposed such as the Gaussian Mixture 

Model [12] or the Kernel Density Estimation [l~~]. 

The use of depth data presents at this stage a major advantage with respect to 

intensity data. Depth is robust to all the aforementioned critical issues, and therefore the 

use of sophisticated techniques to deal with them is not necessary. High performances 

in detecting foreground objects using depth a.re achieved by using basic background 

subtractions techniques [4, :.Hj] . 
The proposed approach in this work uses the depth data captured by the Kined 

sensor to perform a basic background subtraction. The implemented algorithlll described 

below is composed of three sub-stages: backgroulld lllodelling, model maintellance and 

foreground labelling. 

• Background modelling. At this stage a representation of the background is built. 

This representatioll should only contain tIw static dements of the Se()lH~. In onkr 

to get an accurate representation, an initialization period of time free-of-people 

at the beginning of the sequence is required. A pixel-wise model is built using the 

depth median value from the whole initialization period as proposed by Lo and 

Velastin [9]. This approach is robust to possible outliers during the initialization 

period - see section 4.2.2 for related issues . 

• l\lodel l\laintenance. This stage plays all illlPortant role when working with 

intensity images as illumination changes are COIllmon in real situations. On the 

contrary, depth data is not affected by light variations and therefore, there is no 

need of gradual updates of the background. A depth Illodel, however lllay still 

experience sudden chang(~s when oh.i(~cts of the background are moved or taken 

out of the scene. 

The per-pixel model maintenance process proposed uses a selective updating rate 

based on the foreground and background regions obtained at each tillle step. 
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( 4.1) 

where Bi,k and Ri,k are the ith pixels of the background modd and the current 

depth image at time k respectively, and 0' is the learning rate, which has different 

values for background and foreground pixels. The background H'gions of the 

model are updated with a slow rate in case background objects are moved since 

gradual changes are not expected. On the other hand, the setting of the updating 

rate for foreground regions is more complex aud lllust be aIwlysed ill further detail. 

Two possible situations that generate foreground regions are identified: 

- Background movelllent. When a background object is reallocated within the 

sccne yields two foreground regions; t.he region where tlw object used t.o be, 

and the region where the object is currently located. 

Foreground movement. For instance, a person walking in the scene. That 

person generates OIle foreground region, which belongs to the current position 

of Lhe person. 

Both situations lead to foreground regions, although the fonner is considered 

as a false foreground. Each of these requires different updating rates. In the 

first scenario, it will be desirable to update the model quickly, so the foreground 

regions become part of the model faster. In the second situation, the updating 

rate should be low in order to avoid the iuclusion of t.he person in the lllodel. The 

main problem comes from the difficulty of discriminating these two situatiolls, 

which requires higher level interpretations of the scene. The updating rate 0' 

in this implementation was selected experimentally as a trade off between both 

situations as follows: 

0.05 , if It ¢ background 

0.005 , else. 

• Foreground labelling. The foreground detection process refers to the method used 

for discriminating foreground objects from the background. It is the final step and 

defines the output of the background subtraction - see figure 4.1. The foreground 

detection is perforllled pixel-wise using a threshold as follows: 
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CURRENT DEPTH IMAGE 

Figurc 4.1: Depth-bascd background sub traction with C1 dapt ivc tlueshold 

where TO is a threshold [ullction of dep th which has been COlllPlltC(\ [rom tlt(' 

analysis of t he resid ual error of the dcpth scnsor described in sec ti on 3.2. 1.3. 

Specifically T(') is defined with three standard clcvint,iow.;; of th e 1'es i<l lI al ('rror 

(equation 3.3) covering 99.7 % of the depth va ri ation. 

T(d) = O.0073d2 (4 .2) 

There is a possible failure mode when a person i cIo er to the b;1('kgro llnd thall the 

t hreshold used. In those case the person will not be dctrdce! . T hese si(lIations 

are hard to resolvc using uniquely depth dat a . A possible approx imatioll wOllld 

be to include extra information such as colour or texture. 

T he segmented foregrou nd pixels are used in the n xt tep to rccover L1H' blobs t hHt 

represent people. 

4 .2.1.2 Blob detection 

Classical pipeline 

T he classical procedure for segmcnting people aftcr the foregro und pixels IH\ve bee11 

detected is to apply a connected components to group pixe ls in blobs nnd t 11 m fi lter out 

small components assumi ng they arc prod Heed by 11oise. III gClIerFl I, the icl ellt ifica Lion 

and analysis of occlusion ' is defcrrcd to subsequent stFlges where more iJlfonn ntioll is 

availa ble i .e. a ppcaranC'c models. 
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Extended pipe line: occlusion reasoning 

Since dcp th information is aVi-l il abk, it. is propos('d ( 0 il l<' lll<iC ;\I }( I rl d<ii(i oll nl 111 0<iul c ( 0 

t he pipeline in order to idell tif'y a ne! solve O('C I11 Sio llS s(,C' di ngrnlll L1. 2. 

Foreground 
Segmentation 

CLASSICAL PIPELINE 

Connected 
Components 

Extended 
Modu le 

F igure 4 .2: Classical p eople segmenta ti on pipdillC wiLh (\]1 <'x t (,llcl <'c\ p os (,-pro('('ss illg 

module to solve ocelu ions. 

The occlusion reasoning mod ule consists 0 (' segmcnt i ll g III 11 I ti pk p('ople projcc( ('d i Ilt () 

a single component (referred here to as a m C1:r;ea component ). These' s itua tions norlll a ll 'y 

OCC llI' dlll'ill g occlusions where a more clis tmll, p erson h (,C0I11 CS pmtiHIl 'y ocdud('d by C1 

closer person a illust mted in fi gure .J. .3. Solv ing 1I/,('7ged ('o7ll ]Joue7Iis is OIl(' o r (h (' Ill os t 

ch a llenging issues for p eople seglll('nta t ion , esp ('cia ll 'y wll cn onl 'y n B illfoJ'lll a tio ll is 

ava ilable . 

(a) llGB image of a pa r ticula r (b ) Foregro ulld illlage . Bill a ry (c) Aft(']' tile c01111ccted (,O I11pO­
in tant in a video sequencE'. ima 'e wbere t he for gr lind Il Cllts a ile! filt e ring ~ teps til c scg­

point are repre n ted in white l11 cnta l iOIl produces Lilrce blobs. 
a nd t he backgro und in black. 

Figure 4.3: Example of R situation where two p ople arc C'0J1l1ectecl ill t he image pl a lle 
in a merged component. 

In this work , occlusion reasoning is approach ed b'y lls ing the depth illforlll a ti oll of 

t he points in the me7:r;ed compon nt. The ill t lli t.i n is to t. hro\\· all c1 ('p t h da t.a from t-he 

component into a 0 110 d im ell. ional histogram cxp('d ing t he cl at.n from differcn t. p ('oplc 

tha t are connected in the im age plall e t.o b e '01l1e sep a ra tcd ill t.Jw depth dilllCIlSioll . 

T he p roces involves the following steps: 

1. Detection of the number of p opl ll1 the component . III principle , the 

number of people incll1ded in a me7:qcd compo'lL _1/.t is unlmowll. sillg tlle dept h 
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histogram t his lllunber ca.Jl be est.im ated by count ing t.h Illlmber of peaks . In 

order to identify these peak , a threshold (eqn ation ':1 .3) lI as beel1 set cmpirically 

based on training sample. , where each saIllpl rcpresellts the Illlmber of pixels 

of a detected component at a pa rt icular d ist.aJl ce i. e . a rca of t he C'OIllPOlleJl t. 

see figure 4.4. Note that the threshold i et mil It lower t lI an t. lle act. IIHI fitted 

function , this is because in the depth histogram all data from t. 1I C01l1POJlCJJ t 

will be distributed across a range of values. As expe ted t he 1l1l111ber of pixels 

of closer components is higher since t hey over larger areas of the call1era FOY 

and decreases in all exponent ial-like function with di tanc . Two relllarks all 

be made regarding t he plot of fig ure 4.4 . F irst , there is a 'igJlifi cH l1 t amOllll t of 

samples at close distances wit h lower val lies t han shollld be expected. T his i d ue 

to the edge efl'ect where close p eople are not fully covered by t he fi eld of view 

of the camera. Second , t here is a noticeable wide range of value pI' duced by 

components at t he same d pth. This is prochl ed by t he fact that t it \ amples 

are obtained from a variety of difl'erent compollellts such as m erg d omponent 

that produce higher values, or partially occluded component· which yi Ids lower 

values. 

(/) 

c 
'0 
Cl. 

1000 

Tpeak(d) = 3300e-o.0006cl 

4000 5000 6000 7000 8000 9000 10000 
Depth (mm.) 

(4.3) 

Figure 4.4: Data fitting on a set of training ample where each ample represents t he 
number of points of a component at a particular distance. 

Following the example introd uced in fi gure 4.3 , t It e peak I of t It three omponent 

in the depth dimension are identified as shown in figure 4.5 , where one of them i 

a m erged component formed by two p eople (two peaks on t he histogram). T he 

detection of peaks only retUrIlS the number of p eople l'llId t heir approxim ated 

J A set of connected bins in the depth hi togram t hat surpass the t hre hold arc referred a olle peak 
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------------------------------------------------------------------ -

depth p ositioJl , thc' phys icil l C'x t en t of (,Hcll perso ll JII t 11(' COlIll )O IH' llt will be 

COlllj)ll tee! ill the ll ext step. 

~,~----------------, ~r------------------' 

2500 

' 500 

.000 

500 

2000 81XJO 1(I)()Q 

Figure 4.5 : Peak detect ion on the cl epth cliu1C'l1Sioll . T he left hi stogram shows two 
peak , which indicates tbat the omponent cOll tains two p eople. 

2. Classification of th points of th compon nt . One (be llumber of people 

involved in a merged component i knowll , all POillts ill the COlllPOllCJI( nrc t']lClI 

classified a cording to the nearest peak ill t he dep th dimellsion sec fi gure .J .G . 

Pixel 
classification 

Figure 4.6 : Pixel cIa sificat ion 

3. Filter small components . T he area of t he component s is n dClll Htecl alld small 

components are filtered out u illg equat ion <4 • .J (fi tted fllllction frolll fi gure LJ. ~J ) . 

To reo (d) = 3300r - O.OOO(ir/ (4A) 
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Figure 4. 7: Depth image chara teriz d with colom s. 1111 vaJlles ar rcprcscllt.' I III 
white. The red rectangle define an area with a shR.dow r gion 

4.2.2 Issues 

The foIlowing i sues associated with t il background mod Ilillg and on;llIsioll reas ollillg 

stages have been identified. 

Foreground segmentation: background modelling 

\iVhen building the model of the background thc following probl In n cd to be consider d: 

Null regions. The e are areas where t he elisor has not be n able to recov-r any 

depth information. Three po sible reasons arc a sociated with thi problem: 

• Objects who e texture or colour refl ect th IR light with lcs in tcn ity e.g. black 

colours reflect the infra-red light with low inten ity. If they are far from the 

camera the resulted noise increa e . 

• Infra-red interference: Infra-red light from different sources a ft"ect the e t imation 

of depth. These sensors calculate the depth based on a correla tion of points 

between the current infra-red image and a pre-recorded pattem as explained in 

section 3.2.1.2. If infra-red light from a different source interfere in t.he current 

image, the correlation of many point wiIl be impossible resul t ing in null values at 

those point . For example, t hey cannot be u ed outdoors as the sunlight contain 

infra-red light, or in conjunction with other similar ensor on the same scene. 

• Shadow regions. Any object in the ene generates a hadow. The shadow region 

is larger when the object is 10 er to the sen or. The rea on comes from the fact 

that the IR camera and the IR proje tor have differcut FOY 2 ( ec fi gure 4.7). 

2The IR cam era and the IR projector are eparated by a baselin of 7.5 cm approx . There i all 

area behind a llY object where the IR light does Ilot reach, a it is blocked by t he object it If. Howe\ er, 
this area is captured by the IR camera, leading to regions with no dept h illfonllation or shadows. 
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Image form a tion nOIse . T hi s 1lOis(' ]"efe]"s to til e rC's icill HI erro r prodll ('(~d by 

effects like b lurring. p ixd a ti oll or (11l<lllli za t iOIl . A ci (' t Hil ed H1I HI.vs is or t his e rror is 

condll c t ed in sect ioll 3.2 .1.3 where SOlllC <'X])(']"i111('1It s \V('],(' 111l(1 <' rt n k('Jl to 11l ()d (~ 1 thi s 

noise with a qURclrRtic [llJld ioll of ckptll. 

Infra-re d laser e rrors (e dges). 1'. 1illill l<11 vminti o lls 0 .11 th e' p os iti o ll or the l a~(' ]" 

projector , illumination factors o r eve ll tillY fill ct lli-]t iOll s Oil t 11(' t (' lllpNa t lilT or t he' las{'l' 

lead the IR b eam to impact ill a s li ght Iy diffe rc nt sp ot . \;\/ 11<' 11 t h(' ililpac t IO(,H t ion 

is locat.ed at the edgc of a n object til <'s(' VHr.iHtiollS ('(\ II S(' t.il (, la se r tO illlPHC t. Oil <l 

completely cli ffC' l'C' l1 t objcct. as illust rat('d ill figu1'C' ~J. H . T his <'frc(' t n s id t s ill ('o ll1ple te ly 

c1iH'eren t depth values [01' a pmticllim' pixel. 

Projection 

F igure 4.8: Dep t h en ol' prod\1 ccd at the ed ges of objer\.s 

People detection: occlusion reasoning 

T wo m ain reasons of fa ilure have b een identi fi d wh ell Ie-solv ing occlusio ns . F irs t , 

w hen t he people involved in a m rged component arc sp Rti a ll y d ost" they CH llno t­

b e discriminated in t he d ep t h dimension . t.h ey procluce Oll C' s illgle p eak. F ig u]"c ~1. 9 

illustra.tes this it.ua tion where a m e1ged component is composed of t l1]'cc ])cop](' , t.wo 

of t h em are sh akillg ha lld which m eRns t.hey ar e m os tly at. th e sa111C dis t a llce a llel 

t herefore t he sy tem fail to segment t h tl1 , a nd t he t. hird person \V h is a pprox ill1 Htely 

2 metres b ehind . i correctly id n t ified . 

T he second problem i relat.ed to t.he resolu t. ion and noise of t. 11e l\:illCd .'ensor. At 

far t h er distance t hese factors migh t lend t o 0 1lC' p erS011 p rod1l cing two p ea ks ill t.h e 

dep th histogram. F igur · -LI0 illustrates thi s sit uat. ioll. 
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F igure 4 .9: Jlle1:qed compon ent forIlled by I' hn'c pC'ople. Two or I h(, lll (1]'(' 11 01 di s l ill ­

guishecl because they cll'e Iota t ed a t I hC' SH Jl1 (' d is t HJH'(' <1S i I is s howlI i II I he hi s logrHlI1. 
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Figure 4.10: Single component which is mi interpreted by I he 'yS \Clll H ' being fonll ed 

by two people . 

4 .2.3 Discussion 

In t his se tiOll a process for segm ellting p eople \l sillg dept.h c1ata ill Ihe IP for each 

sensor ha been des ribed. This proce s is ba. eel all a foreground scgm III'at ion approHch 

followed by a people detection tep. 

The usc of depth information for detect ing for gro und pixels has lllHlly advHntages ill 

com parison to intensity c1 a t a. Shadows, illumin at ioll changes alld cllltt('L'('cl b 'Kkgl'ollncis, 

are a ll critical issues ill intens ity ima 'cs which ,He avoidcd by lI s ing dept.h cl ntn. How('vcr , 

there are s01l1e iSS11 es associat ed with depth Se'llSorS Iha l h ave' 1)('(' ]] idelllified s uch as 
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pixels with noisy depth values, regions where the depth could Hot be estiUlated, or 

the fact that the depth resolution decreases with distance. All these issU(~s have been 

considered and mea.sures to mitigate these results were takcll. 

The resulting foreground points are connect(·~d and filtered to yield a set of people 

blobs, one for each camera. In classical intensity-based systems, solving occlusions is 

one of the biggest challenges i.e. blobs that cOlIlprise two or lllore people. In this work 

occlusion situations are approached using the dept.h informat.ion. The int.uition is t.ha.t. 

people that are cOllnected in the image plane become well separated along the depth 

dimension. However, this approach is also associated with some issues. For instance 

when people are spatially dose (e.g. hand shaking or path crossing), depth information 

is not enough to discriminate them. In addition, occlusions are difficult to solve at 

farther dist ances where the resolut ion is low and tlw llOis(~ is high. In tlw llext section 

an alternative space is presented that aims to reduce the effect of these issues during 

the occlusion reasolling step. 

4.3 Map of Activity 

As seell ill the previous section, segmenting in the IPS requires a dedicated process based 

on depth to discriminate connected people i.e. occlusions. This process is a .. <.;sociate<i 

with some issues when people are at similar distances or at farther distances where the 

noise is higher and the resolution is lower. In this section all altel'llative space that 

handles occlusions naturally is presented, which is referred to as the Map of Activity 

(MoA). This space can be thought as a top-down view representation where the depth 

is explicitly represented. To motivate tlw llse of tlw MoA with respect t.o Uw IPS, a 

visual comparison of all occlusion in the two spaces is displayed in figure 4.11. Unlike 

the IPS, in the ~loA the occlusion is clearly distinguished. 

The MoA is built in two steps: 

1. Aggregation of data: The foreground pixels from the three cameras are projected 

into the 3D space, alld then trallsformed (USillg the calibration parametl'l"s) illto 

a single point cloud. 

2. Projection of data: The aggregated point cloud is projectpd orthogonally onto 

the ground plane where a 2D histogram acculllulating the points is built. 

In this section, the process for building the ~IoA is described, and then SOllle relevant 

issues are identified regarding the people segmentation task in this space. 
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(a) IPS (b) l\ lap of A(" t ivit y 

Figure 4.11: eompari on between IPS and t-.IoA wit h a ll xH.mple of a pnrt ia l occl1 ls ioll 
in both paces. 

4.3 .1 Aggregation of data 

The aggrega tion of data is t he first st ep towards the constructioll of t.he l\loA , wh('I"(' 

t he data from the three sensors is projected into a common S. T his step involves th e 

following two u b- tep : 

1. Point back-proj ction: Using t he proj ectiv equation ' .,1.5 the foregrollnd pixels 

obtained in each camera are projec tec1 into t he three dimensional spacC'. T he 

resul t is three clouds of 3D point , each of th 111 rcpro ntcd with respect to their 

camera es (left-handed eS). 

.5) 

where i and] are the pixel coordinates with r spe t t.o the digital image , IU 

and ]0 repre ent the origin of t.he image plane, X, Y and Z arc the 3D cooreli nMes 

of t he point in the pace wi th respect to the camera e ,anel f is the foca l leJlgt h 

of the camera expressed in pixels. 

2. Point cloud fusion: The three point louds arc transformecl Ilsing t11 \ extrinsic 

parameters obtained in the ca libration proces (see sect ion 3.3) illto a com 111 011 

es . For convenience, the middle sensor C has been assignc I {IS tb e reference . 

T herefore, the t ransformat ion is only applied to the data from cite two OIli er 

ensors. 

The full process of data aggregation is illustratecl in figure -.1.12 . 
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Figure 4.12: Aggregation of da ta from the three sen or 
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Figure 4.13: 3D foreground points projecting into t he ground plane, yield ing a 2D 
histogram of accumulations. 

4.3.2 Accumulation of evidence 

The aggregated point cloud obtained in the previous step is now proj cted onto the 

ground plane over which a 2D histogram i built where each bin tores the accumulation 

of evidence in that location - see figure 4.13. The bin where a point projects is calculated 

using the coordinates X and Z of the point as follows. 

X -Mx 
U= 

bx 
(4.6) 

Z - M z 
v= 

bz 

where U E R and v E R refer to the bin where t he 3D point projects . The variables 

M x and M z are the minimum range of the aggregated FOV in the horizontal and 

depth axes respectively. Finally, bx and bz define the widt h and height of the bin in 

the grid . The histogram is delimited by the range of the combined field of views (FOVs) 

of t he t hree sensors as depicted in figure 4.14. In this work the minimum range toward 

the horizontal axis (M x) was set to - 11000 mm. , and in th d pth axis (M z) to a 
mm. The size of the bins were cho en empirically to 20 x 20 mm. The dimensions 

of the histogram in terms of number of bins was 1100 x 500. An exam ple is given in 

figure 4. 15 where the histogram has been converted into a binary image for visualization 

purposes. This histogram of accumulations is referred in this work as Map of Activity 

(MoA). In t he next section it is assessed whether the !foA is suitable for segmenting 

people or not . 

4.3.3 People segmentation on the MoA: Issues 

The MoA is a imple structure where the information from the three sensors is rep­

resented in a way where partial occlusiOl lS are clearly distinguished . However , the 

following issues have b en identified that complicate the people segmentation ta k. 
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Figure 4. 14: 2D histogram t hat cover the aggregated field of views from the t.hree 
sensor. 

KINECTI KINECT2 KlNECT 3 

. ..;. . 
' .. ,'f# . - , 

~ 
"'" " t- .... -.-

Figure 4.15: ~Iap of Act ivity built upon the foregroullCl point.s let cteel a ll the three 
image planes of the en or . Not that for the pur-po 'e of vi ualizat ion thi is a binary 
image instead of an image of accumulation . 
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• Non-homogeneou blobs: Points belonging to people project in to the loA forming 

blobs. Despite the relatively constant size of people, t hese blobs vary their 

orientation, width and height t hroughout t he MoA - e figure 4.1 5. 1 h variat ion 

of height (i.e . the depth dimension of t he MoA) is an issue related to t.he depth 

resolu t ion of t he ensor; as the resolu t ion decrea e with d istance, th gap betweell 

the projected points in t he MoA increas · , generating larger and lllorc scatter d 

blobs ( ee figure 4.16) . The variation in width (i.e. horizollta l (limell iOll of t he 

MoA) is mainly a ociated with the d ifi"eren t orientation of people wit h 1"e pect 

to t he camera .g. sideways, perpendicular. T he non-homogeneity of b lobs may 

resul t in problems d uring t he smoothing stage as fixed ize kernel would not be 

appropriate . Ideally, in t he e situation the size of the kernel should vary wit h 

respect to the di tance. 

=2m. =4m. ::6 m. =9m . 

... . 

Figure 4. 16: P rojection of points from a per on into t he MoA at d ifi"erent distan es . 
Projected points from closer people have higher density than projections form far ther 
distances . 

• Varying blob orientations: Blobs in t he MoA can be found wit h t hree d ifi"er nt 

orientation depending on t he camera they are captured from. The reason of t his 

b ehaviour is asso iated wit h the geometry of t he cameras and their directions. 

The points of a blob are scattered along t he optical axis of t he camera from which 

t hey are obtained ( ee t he coloured arrows in figure 4. 17). As before this issue 

afi"ects the smoothing step during the segmentation proce s, different orientations 

of kernels should be considered. 

These problematic sit uations make t he MoA a less appropriate space for segmenting 

people. In section 4.4 an alternative pace is p resented t hat aims to over ome t he e 

d ifficul t ies . 

4.3.4 Discussion 

In t his ection a common representation (MoA) for t he data from the t hre en or wa.s 

described . T he lVloA is a top-down view of the sene where the foreground object fr0111 

the t hree en ors a re projected . T h IIoA is buil t in two tage: 
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Figure 4.17: Three different orientations of blobs in the MoA , one for each of the three 
camera 

1. Aggregation of data. The foreground pixel from the three cameras are firs t 

projected into the 3D space, and then t ransformed into a common 3D CS. 

2. Accumulation of evidence. The aggregated 3D point cloud is projected into an 

accumulated histogram defined over the ground plane. 

One of the main advantages of this space with respect to the IPS is that partial 

occlusions are easier to detect as depth is explicitly represented. However, a major issue 

has been ident ified associated with the segmenting process in the MoA. The projected 

blobs have varying sizes and orientations. This issue is associated with the decreasing 

depth resolu tion, orientation of people with respect to the camera, and the fact that the 

three sensors yield blobs orientated in three different ways depending on the camera 

they are capture from. The segmentation of non-homogeneous blobs requires in general 

the use of adaptive kernels, where the size of the kernel changes with distance. 

An alternative space is presented in the next section that aims to solve or at least 

minimize the effect of the problem identified above. 

4.4 Remapped Polar Space 

The Remapped Polar Space (RPS) is an alternative space designed to solve 0111e of the 

issues that arise in the MoA. Rather than using a Cartesian CS, the points are projected 

into a polar CS which immediately reduces the problem of different orientations of 

blobs. In addition , the varying blobs size is mitigated using a mapping function on 

its radial dimension that aims to normalize the blob height throughou t its range. The 

RPS is built according to the following two steps: 

• Cartesian to Polar CS: The aggregated point cloud , which is represented in the 

Cartesian CS, is t ransformed to the polar CS where the problem of different blob 

orientations is diminished . 

• Remapping: A transformation is applied directly on the range dimension of the 

polar CS which aims to reduce the issue of different heights in the projected blob. 
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Figure 4.18: Polm CS representation 

The RPS is <liscretiseu ill a 2D histogram of accumulation of evidellce (equivalent 

to the MoA representation), where the segmentation process is applied. The process 

followed to segment people is equivalent to the Olle described ill the IPS ill section 

4.2.1.2, with some subtle differences according to the particularities of the space. 

This sectioll, first describes the process of lmildillg the RPS. Then, the procedure 

followeu for segmcnting people as well as somc of the issues that still afFect the RPS 

are presented. 

4.4.1 Cartesian to Polar CS 

The first stage to build the RPS is to transforlll the aggregate<l point doud from the 

Cartesian CS to the polar CS. This transformation aims to normalize the differellt 

orientations of the blobs. The polar CS is built over a two dimensiollal space where the 

data is represented by a distance {J and an allgle 0 as shown ill figure 4.18. Tralliifol'luing 

data from the Cartesian CS to the polur CS is obtained by the followillg two lloll-linear 

equatiolls: 

Z 
tunO = -

X 
(4.7) 

where Z 2: O. Figure 4.19 captures (;1, particular iustallt of a. sequence ill both , the 

Cartesian CS (?\iIoA) and the polar CS, so they can be cOIllpared visually. 

Although the issue of different blob orientations is addressed in the polar CS, there is 

still the problem of the size variability. Blobs at farther ranges appear larger thall closer 

blobs. This situatioll is partia.lly sol vell by applyillg a llew trHllsfonnatioll referred to ill 

this documellt as remapping, which is expla.ined in detail ill the following subsectioll. 
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(a) Polar CS 
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Figure 4.19: Two different representations of the same data: Polar CS and Map of 
Activity. 

4.4.2 R emapping 

The remapping is a transformation applied to the p dimension of the polar CS to obtain 

a representation where the radial size of the blobs is homogeneou . This repre entat ion 

is referred in this document as the Remapped Polar Space (RPS). 

The intuit ion behind the remapping is to compress larger blobs at farther eli tances 

and stretch smaller blobs at closer distances, bringing a constant blob height throughou t 

the range. At this point it is important to be reminded that the degradation on the 

depth resolution (see section 3.2. l.3) is the primary reason for the different height of 

the blobs. Therefore, the remapping is derived from equation 3.2 which models the 

depth re olu tion of the sensor. 

The calculat ion of the remapping function f(p) is obtained from the following 

equality that ensures a constant height of the blobs throughout the whole rang 

(4.8) 

\\ here E,(p) is a function capturing t he variation of depth resolution with respect to the 

range p, * is the derivative of the mapping function, and C defines a constant height 

for the blobs. The derivative can be obtained re-arranging the term as follow : 

(4.9) 

If C i set to 1, the derivative of t he transformation is just the illverse of the depth 

resolution function: 

8f 1 1 

8p E,(p) 2.6p2 + 0.6p - 0.2 
( 4.10) 
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Figure 4.20: Plot of the mapping function f(p) 

where the quadratic in the denominator was estimated in section 3.2.1.3. Finally, th 

remapping funct ion is obtained by integration (see figure 4.21) 

(4.11) 

= 0.6 * (log(5 - 26p) - log(l1 + 26p)) + constant 

The constant is set to 0.5 , so the resulting range is always positive. In addition, the 

function is multiplied by a scale factor 5 = 20 to normalize the range between 0 and 10 

metres. 

Using the remapping function 4.11 all data from the polar es is transformed into the 

new space (RPS) yielding a two dimensional (fJ, pi) set of points, where the coordinate 

pi derives from the p coordinate of the polar es. 
In order to work in the RPS the data is discretised and represented in a 2D histogram 

of accumulations equivalent to the MoA histogram (section 4.3.2) . In this case the 

dimension of the histogram is 500 x 180 bins, where the vertical axis represents the 

remapped range and the horizontal axis defines the angle, and the bin size is set to 

2 em x 1 degree in the remapped range and angle dimen ions respectively. A visual 

comparison in both spaces , polar es and RPS is presented in figure 4.213. It also show 

two enlarged regions in both repre entations. Th region with the more distant blob is 

slightly more compressed than it equivalent in t he polar es. On the other hand , the 

closer blob i expanded in the RPS with respect to the same blob in the polar es. 
3For visualization purposes the two images are converted into binary images. 
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Figure 4.21: People representation in both the polar CS and in the RPS. 
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Figure 4.22: Classical people segmentation pipeline: Smoothing, Thresholding, Con­
nected Component and Filtering. 

4.4.3 P eople segmentation on the RPS 

The main objective of this chapter is to study and compare the performance of different 

spaces applied to the people segmentation problem. In order to get a fair compari on, the 

process of segmenting people should be similar in every space i. e. only the space changes. 

Therefore the classical segmentation pipeline u ed in the IPS (with om particuiaritie 

associated with the RPS) is used. This pipeline includes moothing, thresholding (u ing 

a low threshold), connected components and filtering of components (using a high 

threshold). The t hre holding and filtering stages perform a similar role to hysteresis 

thresholding as propo d by Canny [1 OJ. Figure 4.22 depict this egll1entation pipeline. 

These are described below . 

• Smoothing: This tep aim to reduce the noise and eliminate the gap. within 

blob by applying a onvolu t ion to the RPS image with a 2D Gaus ian kernel. 

It is important to use an appropriate ize for the kernel to avoid under or 
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(a) Original (binary) (b) Sllloothed (c.;) T bresilokled (d) Filtered 

Figure 4.23: Stages of the people segmentation process in the RPS . 

over segmentation. Ideally, the size of the kernel should have the size of the 

typical person blob ill the RPS. Alt.hough the extent of the blobs is nounali:l.e< l 

by relllappiug, other particularities, as expluined la.ter in this sectioH, affect 

the dimension of the blobs. In this work the size of the kernel was estilllated 

empirica.lly as 11 x 25 pixels (sigma 2 x 4 pixels) - see fi gure 4.23 . 

• Thresholding (low threshold): The purpose of this process is to reduce the ruajority 

of t.he uoise ill t he image, a.nd prepare the data [or the next stup - see figure 

4.23( c). This thresholding is perforIlled pixel-wise and it is designed to remove 

slllall isolated noise peaks. The threshold varies with pi and it hus been modelled 

using a set of samples taken from a training sequence. Connected components are 

extracted from the trailling sequence and the alllount of evidellce acculllulated 

Oil t he centre bin of each cOllll)()llent is plotted Oil li gure i1.24(a). The centre uill 

is assumed to contain the higher value of the component. As expected, salllples 

taken from closer distances contain more accuIIlulatioll of evidence Ulan more 

distant samplesl\. This behaviour can be approximated with a. linear function 

within this particular range i.e. 0.5 III to 10 Ill . The threshold for elimina.ting 

noise is set empirically lower thall the fitted hlllctioll to avoid lilterillg out bins 

that belong to actual people (equation 4. 12). There is also a minimum threshold 

(7Low:rnin = 100) to ue used where the threshold fUllction does llot apply i. e. frolll 

(j metres approx. 

4Not cOllsider ing t il(' edge effect produced at clos()J" distallces i.f'. O.fi HI to 2.fi 111 
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Figure 4.24: Number of projections per pixel. Data points collected experimentally 
from a training video sequence. 

TLow(P' ) = - 1.5p' + 9500 ( 4.12) 

• Connected components: This operation segments blobs of connected points within 

the binary RPS representation. Foreground points that are spatially 8-connected 

in the RPS are grouped into the same blob . 

• Filtering of components (high t hreshold): Similarly to the hysteresis t hreshold 

[1 0], components t hat do not possess any bin with an evidence value higher 

than a certain t hreshold are filtered out - see figure 4.23(d) . This threshold is 

computed by lowering t he fi tted function (computed in the previous t hreshold 

stage) three standard deviations to cover most of the data5 
- see figure 4.24(b) . 

As in the thresholding stage a minimum value is used were the t hreshold function 

does not apply from 7 metres approx . (THigh:min = 200). 

THigh(p' ) = - 1.5p' + 11500 (4 .13) 

4.4.4 Issues 

T he different orientations of people with respect to t he camera affects t he size of the 

blob as well. For instanc 1 the blob of a person who is sideways to the sen or is wider 

along the angular climen ion and shorter along the radial dimellsion. On the contrary, 

5Tbe training amples were projected onto t he perpendi ular line to the fi tted fun ction. T he 
va riance was com put d from t he Gaussian distri bution of points in t his one dimensional space. 
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if the person is perpendicular to the image plane of the sensor, the blob will appear 

narrower and larger. This is not a specific issue related to the RPS but is a general 

effect that is present ill every space. 

Additionally, the segmentation in the RPS requires more computational time (2(j% 

of the total time is spent building the RPS histogram). The mapping of all data from 

the Cartesian CS to the RPS comprises a set of expensive uon-linear tmllsforIllutiollS 

that must be performed point-wise. 

4.4.5 Discussion 

III this section an alternative space (RPS) has been presented that aims to solve the 

issues of different orientations and dimensions of the projected hlobs that. afl'<~ct the 

MoA. 

Firstly, the problem of different orientations is solved by representing the data in 

the polar CS. The second issue, varying dimensions, is approached by remapping the 

radial dimension of the polar CS into an alternativ<~ space where the radial width of 

objects is made homogeneous. This ma.pping is derived frolll the invprs(~ of the d(~pth 

resolution fuuction of the sensor. 

In a similar fashion to the MoA, the RPS is overlaid by a histogram where each 

bin stores the number of projections. Based on this RPS histogram, the people 

segmentation is applied following the traditional pipeline: smoothing, thresholding, 

cOlllH'cted compOlwnts and filtering. 

There are still some outstanding issues such as people with different orientations 

that yield varying blob sizes and the expensive cOIllPutational requirements for building 

the RPS histogram. 

4.5 Performance evaluation 

In this section the Image Plane Space and the Remapped Polar Space aw evaluated 

and compared with a particular focus on their impact 011 the performance of the 

segmentation process. 

People segmentation can be used for different tasks such as counting people, tracking, 

action recognition, etc. Each application has its own requirelllents. For instance an 

application that rec()gni~es people actiow; lllay require highly accurate results ill tmllls 

of spatial location and it may not need to detect people who are farther away. This 

work, on the other hand, aillls to monitor larger spaces where one of the requirelllents 

is to detect every person in the scene even if they are distant from the sensor. The 

spatial accuracy is not a priority in this case. 

To facilitate tht, evaluation, the results obtaiued frolll the system are compared 
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using a dataset and a ground truth. This ground truth has been manually annotated 

in the MoA and therefore the segmentations produced in the IPS and RPS must be 

transformed into the MoA. 

The first two following subsections discuss the relevant failure lllodes and the chosen 

rnetrics. In addition, the parameters involved in the evaluation are identiI1ed. Next, the 

processes for projecting the IPS and RPS segmentations into the l\IoA are described. 

After the results obtained from the two spaces art' presented, a discllssion is conduct,ed 

based on the results obtained. 

4.5.1 Failure modes 

The failure modes of a system refers to a hopefully small (liserde set of categories of 

situations where the output of the algorithm is different to what it is expected. Some 

failures are lllore relevant than others depending ou the applicatiou. For that reason it 

is important to identify the relevant failure modes for each application, iu order that the 

evaluation provides meaningful results. For this application the following two failure 

modes are identified: 

• Misdetection of people: The algorithm fails to segment a person in the scene. 

Normally this situation occurs when the person is partially occluded or because 

the depth signal is noisy and there is not euough evidence to support the presence 

of a perSOIl. 

• Falsely detected people: The system incorrectly segments a perSOll ill a location 

where in fact there is no person. Noisy environments and incorrect foreground 

segmentations are normally the responsible for these situations. 

The fonner failure mode is often approached by lowering the threshold of the 

segmentations, so that less evidence is required to support the presence of a person. 

However, such a measure typically results in the second failure mode in which noise is 

incorrectly detected as people. 

The failure modes are evaluated OIl a common dataset for the two different spaces, 

IPS and RPS. This dataset and its corresponding ground truth are explain(~d in detailed 

in section 4.5.4. 

4.5.2 Metrics 

Once the failure modes have been identified the next step is to decide on a set of 

suitable metrics that account for the failure modes. The cOlllPutation of the metrics 

requires a prior step where the ground truth is mapped to the system detections (SD) 

i.e. detections produced by the system. This mapping consists of associating the ground 
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truth annotations with the SDs at each frame. It is performed based on the degree 

of overlap between ground truth and SD, which is measured by the Bhattacharyya 

coefficient (Be). A ground truth aUllotation at a particular frallle is mapped outo a SD 

if their degree of overlap is higher than a certain threshold (To). (For this evaluation 

the threshold was estimated empirically to D.G). 

This mapping between ground truth and SD allows the computation of the nUlllber 

of tIlW positives (TP), false posit.ives (FP) and false negat.ives (FN). TPs refer to tlw 

number of correctly detected people in the whole sequence, FPs are the Humber of 

incorrect detections made by the system, and FNs define the number of people that 

were not detected by the system. 

Based on these values the performance of the system is represented by precision (P) 

and recall (R) - s(~e equations 4.14. Thes(~ are simple metric!) that cover the failure 

modes described in section 4.5.l. In addition, the popular F1-score is used to present a 

single value to describe the overall performance of the system. 

P= TP 
TP+FP 

(4.14) 

R= TP 
TP+FN 

The F1-score - the harlllonic mean of precision and recall- is defined as follows: 

( 4.15) 

4.5.3 Projection of detections to MoA 

The performance evaluation of the system is estimated by cOlllparing the results obtained 

with a given ground truth which represents the ideal result. III the dataset used for this 

evaluation the ground truth was manually extracted on the Map of Activity (l\loA). 

This means that the segmentations obtained ill the IPS and in the RPS need to be 

transformed int.o the MoA ill ord(~r to be c()lllpan~d wit.h this ground truth. 

Projecting IPS detections into MoA 

The extracted blobs ill the IPS are represented as two dimensional Gaussian PDFs, 

where the mean and covariance represent the centroid and physical extent of the perSOll 
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(a) Left sensor. (b) Middle sensor. (c) Right sensor. 

Figure 4.25: People segmentation in the IPS of the three Kinect sensors. 

in the image plane respectively - see figure 4.25 where the ellipses are computed from 

the covariance matrix . The process for transforming these detections into the MoA 

consists of the following steps: 

1. Projection into the 3D CS of the camera. All pixels of every detected blob are 

projected into each corresponding 3D camera CS using equations 4.5. 

2. Tilt correction. The tilt angle of the cameras is corrected since this angle is known. 

The objective is to represent the data in a 3D CS where the Y axis is orthogonal 

to the ground plane. 

3. Computation of Gaussian parameters. The 3D points of each blob are modelled 

as 3D Gaussian distributions p '"" N(J-l,~) 

( 4.16) 

4. Transformation of PDFs into a common CS. Using the calibration parameters (R 
and t) obtained in section 3.3 the mean and covariance are transformed as follows: 

( 4.17) 

5. Projection of PDFs into t he MoA. The parameters of the 3D Gaussian PDF of 

each blob are projected into t he 2D ground plane MoA. The mean J-lc is mapped 

using equation 4.6, and the covariance ~c is projected as follows 

(4.18) 

where p 2 X3 i the projective matrix derived from equation 4.6 as follows: 
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Figure 4.26: P ople segmentations in the IPS and transformed into the MoA. 

( 4.19) 

Figure 4.26 illustrates a particular instant of a video sequence with the detections 

represented as ellipses in both spaces, IPS and MoA. 

Projecting RPS detections to MoA 

The extracted blobs in the Remapped Polar Space are modelled with 2D Gaus ian 

distribution in t he ame way as in the case of the IPS, where the mean and covariance 

represent the centroid and scatter of points of a person in the RPS respectively - see 

fi gure 4.27. The proce s of transforming the PDF from the RPS to the MoA i illu trated 

in figure 4.2 and can be described in the following four steps: 

1. RPS (histogTam) to RPS . The RPS(histogr am) refers to the discrete representa­

tion where the segmentation is performed and t he RPS define the continuou 

Remapped Polar Space. The tran formation of the 2D Gau ian from one space 

to the other is implified by consid ring tha t the angle dimension remains equal 

and the ovariance matrix is diagonal. Therefore, the process is reduced to the 

transformat ion of the mean range {l p' . and the prol)ag·ation of the variance range 
lu s t 

(Jp' a fo llow: 
111 L 
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(a) RGB image. (b) RPS. 

Figure 4.27: People segmentation in the Remapped Polar Space. 
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Figure 4.28: Transforlllation froIll RPS(histognuu) to l\IoA. 

2 2 2 
CTpl = (Tp, -"pI 

2 2 
ao' = ao' 

hisl 

It.l~r (4.20) 

where sp' is the down-sampling factor and defines the level of accuracy ill the 

transforlIlation. 

2. RPS to Polar es. In the second transformation the considerations taken in step 1 

can be applied as well i.e. angle remains equal and diagonal covariance matrix. 

The mean in the polar CS Jlp is estimated from a look up table, which was built 

during the mapping of points into the RPS to avoid the need to invert equation 

4.11 (p'p = lut(/lp'))' Note here that if the exact rauge is not found in the table 

its mapping is interpolated from the nearest values ill the table. The propagation 

of the variance is derived for the derivative of the remapping fUllction 4.11 as 

follows: 

2 2 (df )2 
aI" = a p d 

p 1'" 
(4.21) 

where a;1 and a~ are the variances of the rallge in the RPS and in the polar CS 

respectively; and (~) defines the pa.rtial derivative of the remapping function 
/lp 

of equation 4.10 evaluated at the mean /lp. From this transformation the varia.nce 

in the polar es can be obtained as follows: 
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(4.22) 

3. Step 3: Polar CS to Cartesian CS. The third transforlllation is defilH'd with the 

following non-linear functions: 

x = p cos (), Z = p sin () ( 4.23) 

The mean in the polar CS Ppes = [Jl,,, p.o]T is transforme<.l <.lirectly using equations 

4.23 to the mean in the Cartesian CS P,ccs = [/LX,f./.Z]T. The propagatiou of the 

covariance ~pc.:.s requires the use of linear approximatiolls of equat.iolls 4.:2:!, which 

are computed using the first or<.ler term of the Taylor eX'pansioll (evaluate<.l at the 

mean ILpcs) i.e. the Jacobian matrix. 

(4.24) 

(4.25 ) 

where J(/1pcs) is the Jacobian matrix eyuluute<.l at f./.pcs un<.l is <.lefinc<.l as: 

(4.2G) 

where 

[dX dXl 
Jx = dp' d() = [cos 0, -psin OJ 

[
dZ dZl .J z = dp) dO = [sin 0, p cos OJ 

(4.27) 

4. Step 4: Cartesian CS to MoA. The final transformation refers to the mapping 

into the grouud plaue MoA. The mean IlMoA = [Jilt) ILv] is obtaiued from equation 

4.G, and the covariance E MuA is computed as follows: 

(4.28) 
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Figure 4.29: Detections in the RPS transformed into the MoA. 
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where P;:C/ is the projective matrix derived from equation 4.6 as fo llows: 

Pred = ( 4.29) 

Figure 4.29 shows the detect ion of people on the RPS and the transformed version 

in the MoA. 

4.5.4 Benchmark dataset and ground truth 

Since the release of the Microsoft Kinect different indoor datasets have been created for 

different types of indoor applications. Most of them are aimed at object recognitioll 

t asks [14 , 149] and human activity recognition [150, 151]. Few datasets have beell 

found for the evaluation of people segmentation and tracking ystems. One of them 

was recent ly published by Munaro and Menegatti [ G] called Kinect Tracking Precision 

(KTP), which is a dataset acquired from a mobile robot platform. To the author 's best 

knowledge the only RGB-D dataset recorded from st atic RGB-D cam eras for people 

segmentation and tracking purposes is the one presented by Spinello and Arras [7G]. 
In their dataset three vertically mounted Kinects are located in a non-overlapping 

configuration at approximately 1.5 metres high . Although this dataset is close to the 

purposes of this project , it does not fulfil some essential requirements: 

• The location of the sensors must be at a high location . e.g. 2 metre or higher, so 

the number of occlusions is minimized. 
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• The cameras. bould be mOllnted hori zollt nlly to Ill Rxillli z(' the HI,(,,1 coVC]'('d(i . 

• The configurat ion of the s('cne shon1cl allow the capture of data <1 t it s Ill Hxillllllll 

range. 10 met res approximately. 

Thereforc . a new dat a se t is proposed that aims to satisfy tlt(' afOI'('1I1cllt iOlled 

requirements . A set of video equellces was rccorded ill O ll(' or tile I<lbs of I": iIl !!,s t011 

University. Three Kinects were horizollt.ally placcd ill a 1I01l-ov('rlappillg adjac('llt 

configuration. where t.he area covered was max ill1ised. Tiley \\'Cl'(' lo C'nt cd il nlf' WH,\' alollg 

the larg st. wall of the room at approximately 2.20 Il1dres higll. T he HJ'(' <1 ('ov(' I'('d b.y 

the \\'hole -y tem is around 220 1l1
2

. ee fi gure .J.' O. 

(a) Diagra m of the la b where the re o rdings took place. 

(b) Left camera . (c) ~ 1iddlc ca me ra. (d) Right ca mera. 

Figure 4.30: Configuration of the cameras in th lab and the a tU (11 views of the three 
Kinect . 

Two eq l1 ences of 1000 frame each were captured. OIlC is llsed for the tminillg of 

parameter of the algori thm i.e. thre hold value, while the other is 11. cd for the n('( ual 

valu at ion of the ystem. The eqllellce. were rccorded u ing the ·'.olJi" formnt provi leel 

by the OpcnNI frame\\'ork . This format combines the coloIlL' allel dept h illfol'llHlLioll . 

The colour data is tor d in a 640x.J 0 array of ) bit , :3 ci1 a lll1l'1. T Il(' depth informatioll 

is presented in a 640x4 0 array where each p siholl ('on tains a vallie betwecll 500 <mel 

9700 Ullll . 

GT he I-:i llecl dept h sensor feat ures all a ngula r fie ld of "iew o f 57° ho ri zont a ll y a nd ..j :~ o \'(' rt ira ll.\'. 
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Interaction Periods vs Frames 
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(a) P lot of the interaction periods in the test se-( b) P lot of the number of pc pic present at each 
quence frame dur ing the whole sequence 

Figure 4.31: Description of the test video sequence in terms of periods of in teractions 
between people and number of people present in the scene. 

Up to 15 people appear in the evaluation and training sequen e walking in a casual 

way along the aisles of the lab. Figure 4.31 (b) describe the sequence in terms of the 

number of people present at each frame of the video. The actor leavc alld re-cnter 

the scene multiple times as a consequence of the limited rallge of the Kine t sen or. 

The dataset comprises approximately 140 different peopl interactions whcre most of 

them are short-lived consisting on path crossing between people. Thcre are a well 

occasional handshaking and grouping interactions with direction and motion changes 

after it. Figure 4.31(a) plots the frequency and duration of periods where two or more 

people are part of an interaction. Due to the layout and structure of the cene there 

are multiple partial static occlusions when people walk behind desks and computers. 

These sequences were manually annotated with bounding boxes in the Map of 

Activity using the open source tool VATIC7
. The ground truth annotations can be 

defined as the ideal values that any algorithm aims for. Th e annotation have to be 

as objective as possible and not being biased by any other process. In general, human 

annotations are considered t he perfect values, however the results can be subje t to 

minor errors related to the subjective interpretation of the annotator. Moreover, ground 

truth annotation is a highly tedious and monotonou task where the annotator might 

get distracted or reduce their concentration at some point , re ult ing in the introduction 

of additional errors in the ground truth data . To slight ly alleviate the task, the tool 

VATIC features a linear interpolation capability, so that annotation do not have to be 

recovered in every ingle frame; the annotator can ju t ac ept the interpolation result. 

Nevertheless, this is subject to some error as well , as the annotation might get bia ed 

towards the interpolation tool. 

7htt p://web.ll1 it.eciu / voncirick/ vatic/ 
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Although there are several sources of errors involveu ill the g()nemtion of the ground 

truth, for the purpose of this evaluation the ground truth is assumed to be error-free. 

The actual anllotation of the ground truth ill this work consists of two stages. First, 

the bounding boxes are drawn on the I\IoA by a human operator aided with til(' tool 

VATIC. Second, the data contained within the bounding boxes are moddled with 

two-dimensional Gaussian PDFs where the dimensions represmlt tlw horizontal and 

vertical axis of the MoA. 

The procedure for annotation follows three rules: 

• The bounding box should have the minimuIll size to cover the whole perSOll. 

• During occlusion periods only the visible part is annotateu. Note here, that when 

two or more people are involved in an interaction the process of estimating the 

limits of each target is quitl~ difficult, and might lead to SOUle slllall accuracy errors 

in the annotation data. 

• When a person leaves the scene and later au re-cuters; that perSOIl is anllotated 

as a different person. 

Those bounding boxes that are spatially connected on the MoA are flagged as 

merged measurements. Note that the spatial detection of the people involved in It 

merged measurement is out of the scope of this evaluatioll. 

4.5.5 Results 

Table 4.1 presents the evaluation of the people s(~glllentat.i()n in tIw t.wo Spa.l'CS, IPS 

and RPS. For the IPS evaluation two versions are compared, the classical approach of 

intensity-based systems and the extended version with tlw occlusion rea.'lOlling lllodule 

(described in section 4.2.1.2). 

I Space/l'vIetric II Precision I Recall I Fl-Score I 
IPS (classical) 0.5 0.u7 0.57 
IPS (extended) 0.78 0.83 0.8 

RPS 0.!)5 0.84 O.S!) 

Table 4.1: Performance evaluation of the people seglllentation process applied to three 
different spaces. 

Not :mrprisillgly, the evaluation indicates a signillcallt illlProvement WhPIl the 

extended IPS version is used. The reason is two fold; first, since tho classical version 

does not detect individual people within a mcr:qed component tlw muuber of false 

negatives is higher; and second the PDF of a rnerqed compoupnt does not match the 

ground truth PDFs yielding an increase in the number of false positives too. 
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FP distribution (IPS (ex!.) vs RPS) 
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Figure 4.32: Distribution of FPs along the depth dimen ion in th IPS and RPS 

More significant ly, the third row of table 4. 1 reveals that the RPS outperforms 

the use of IPS. From this, it can be inferred that occlusion reasoning performed on 

t he ground plane is more effective than in the image plane. It a]so ugg ts that. th 

measures taken to mit igate the noise and the decreasing resolu t ion at farther distances 

are effect ive. This improvement is presented visually in figure 4.32 with the di tribu tion 

of FPs obtained in the RPS and in the IPS along the depth dimension. As exp -cted 

the number of FPs obtained in the IPS increa es beyond t he operating range of the 

Kinect sensor. The result obtained in the RPS shows the reliability of the remapping 

operation. The low values of FPs obtained at 9 metres an be associated with the 

t ructure of the scene. 

4.6 Discussion 

In this se t ion three different space have been pre ented in th context of people eg­

mentation: the Image Plane Space (IPS), the Map of Activity (MoA) and the Remapped 

Polar Space (RPS). All three exploit in different degrees t.he depth inform ation provided 

by the Kinect sensor. The objective of this chapter was to compare the three space in 

the context of people segmentation and ident ify their wealme ses and strengt.hs. To 

en ure a fair comparison the peopl segmentation methodology applied on the three 

paces follow the same pipeline: foreground detection , noise filt ering, smoothing and 

onnected component (but with variations according to the part icu!ari tie of the space). 

The first pace propos d was the Image Plane Space (IPS) which i defined a. the 
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two dimensional uigital image produced by the sensor. This space has been widely used 

over the years for people segmentation with intensity images. Occlusions are the most 

challenging issue in this space and normally additional information is n~quired for its 

resolution. In this project an extension to the classical approach 1m,,:; been proposed to 

deal with occlusions by employing the available depth dimension. 

The second space is the Map of Activity (MoA) which is constructed over the ground 

plane, amI serves as a COllllllon representation for the datH. frolll the thn~(~ KilWd s t.hat 

constitute the system. Since depth is explicitly represented, the occlusiou rel:lsouillg is 

handled naturally. However two import aut issues were identified in this space. First 

the blobs projected onto the MoA become increasingly scattered with distance as 

the depth resolution decreases i.e. varying blob dimensions. Serund this scattering 

occurs along the optical axis of each camera yielding tllr<~c difr(~nmt orientations of 

blobs (depending OIl the call1era they were captured from). These issues impact in 

particular the smoothing stage of the segmentation process as different kemel sizes and 

orientations would be required. 

Finally, a Remapped Polar Space (RPS) is proposed as all alternative space, and 

aims to solve the issues identified in the i\IoA. The problem of different orientations is 

automatically solved by transforming the data into a polar representation. In addition, 

the effect of varying blob dimensions is mitigated by the use of a remapping operation 

derived from the resolution function, which aims to normalize the dimension of the 

blobs. 

The evaluation is conducted only OIl the IPS and RPS which an~ cOllsi(ll~n~(l hlll­

damentally different since the RPS is an improved version of the MoA. Tlw results 

are presented using the precision, recall and Fl-score llletrics which cover the relevant 

failure modes identified for this application: misdetedions of people and falsely detected 

people. 

The results show that the occlusion reasolling approaeh applied to the IPS is effedive 

as the performance increa.':les significantly with respect to the classical approach. The 

use of the RPS, however, represents a significant increase in performance oyer the use 

of the IPS. This suggests first that the ground plane is more discriminative for solving 

occlusions, and second that the actions taken to address the noise and the decreasing 

resolution of the data are effective. 
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Chapter 5 

Study of Multi-target Tracking 

Methodologies 

5 .1 Introduction 

1hlcking IIlultiple people in crowded scenes is a real challenge mainly because of the 

number of dynamic occlusions produced between people. It is particularly difficult to 

correctly re-stablish identities of people after an occlusion. Different methodologies 

have been proposed in the past to address these situations. However this remains an 

active research topic. 

Traditional approaches use a module for segmenting targets at every time skp and 

rely on a data association process to correctly link the measurPIllcnts over time. In 

this context the performance of the data association stage is of the highest illlportance 

especially during occlusion situations where t.he targets' appearance illevitably ('hange. 

Popular examples of this type of approaches are the Kalman filter and particle filters 

[fl, [l()]. 

Alternative tracking methodologies exist that do not rely on a data association 

process. The l\Iean-Shift algorithm is a popular approach within this category. It is 

mainly used for single target tracking as it is g(~nerHlly highly sensitive to distractions 

from nearby targets. However, in the past few years some authors have proposed 

modifications to the original method aillling to make it more suitable for multi-target 

environments [1()~~, 104]. 

A chief aspect regardless the tracking algorithlll is the model used to descriue the 

appearance of targets. This model should be sufficient discriminant to distinguish people 

from one another especially during complex situations such a.', occlusions, ililuuillatioll 

changes or variations in the target scale. 

In this chapter a traditional tracking methodology, namely the Kalman filter, and 

the alternative meau-shit approach will be explored in the context of lllulti-target 
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tracking. Using the depth dimension provided by the Kined sensor some enhancements 

will be proposed to improve the performance specifically during occlusions. Additionally 

a discriminative appearance model built frolll the 3D space and the colour dilllcnsioll 

will be presented to assist during the tracking process. 

The remainder of this chapter is organized as follows. Sectioll G.2 presents a. 

traditional tracking methodology based 011 Kalman filter. In particular diUen~nt data 

association methodologies are discussed awl tlw new <tppeanlllCC lllodd is prop()s(~d. In 

section G.3 the l\Iean-Shift approach is introduced along with some lllodifications to 

increase the performance in multi-targets environments. The content of the chapter is 

discussed in section 5.4. 

5.2 Data association strategies applied to tracking 

Tracking using the Kalman filter applied to segmented object observatiolls is the most 

comIllon technique used in visual surveillance systems[ 181]. It requires a segmentation 

module to provide people detections at every time step and a data association process 

to correctly link the detections from frame to frame. 

In this context the tracking of a target consists of a recursive process where at every 

frame its location is predicted using a motion model and then updated with 1 he latest 

observation. The appearance models of the target and the current observa.tions are 

compared to find the observation whose lIlodel is the most similar to the targd's lllodd. 

In single target tracking when only one observation is detected the association is trivial. 

However, in multi-target environments the corred solution might become extremely 

complicated t.o attain especially in certain situations. For example when targets are in 

close proximity and have similar appearance, during occlusions when targets disappear 

temporarily or when spurious observations are detected. This probleUl has been studied 

by many authors in the past [8G, 88,91]. However, it is still an unresolved prohlem. In 

this work the data association problem is iuvestigated further and a new appearauce 

model is presented, which aims to mitigate SOlIW of the UllCprtaintips of tlw data 

association process and improve the performance during occlusion situations. 

5.2.1 Thacking methodology 

In generaL till' process for tracking pcopll~ in video s(~qucnces consists of labelling people 

consistently throughout the sequence. It is approached from a. recursive perspective 

with two stages: prediction of the people states from the previous time, and the updatt' 

of these predictions with the latest measurements. This is commonly known as the 

estiIllation problelll. 

In the cOlltext of people tracking two diH"erent spaces can be distinguished: the state 
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space where people are described in tenus of location, velocity, acceleration, etc, amI 

the measurement space where observations are represented, normally only with the 

location. A target moves across the state space over time a.cconlillg to the following 

function: 

(5.1 ) 

where tk E Rnx is the vector of nl: dimensions t.hat defilws tlw t.argd st.ak at. time k, 

f (.) is the motion model that predicts the current target state frolll the last estimation 

tk-l, and t'k-l is a noise signal used to cover a.ny mislllodeling issm~ or unforeseen 

disturbances. The prediction tk is updated with the last measurement by converting it 

frolll the state space to the measurement space as follows: 

(5.2) 

where rnk ERn. is the measurement vector, h(·) is the measurelllent model that 

converts the target state tk into the measurement space, and 'Ulk is the measurement 

noise introduced to cover for the noise of the sensor. 

Kalman filter 

The Kalman Filter (KF) [42] provides an optimal solution to the estimation problem 

assuming the target state is Gaussian (t ,....., N(/1tJ ~t)). This assumption implies that 

the following statements must be true: 

• The Illotion Illodel f (tk-l, Vk-l) is a linear function 

• The measurement model h(tk, Wk) is a linear function. 

• The Illotion model noise ('Vk-d and the measurement noise (Wk) are normally 

distributed. 

Given these considerations the prediction and update stages arc: 

1. Prediction: The target sta.te is predicted from the last state estimation using the 

system Illodel as follows: 

(5.3) 

where {It,k and ~t,k are the predicted mean and covariance of the target at time 

k, F E Rll.rxn.r is the Illatrix that clefiues the lillear lllutioll IIlodel, awl q> is the 

covariance of the Illotion model ullcertainty, which covers for minor violations of 

the linearity assumption. 
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Figure 5.1: Recursive cycle of Kalman Filter: PredictioIl a11<l Update 

2. Update: The predicted me au amI covariance at time k are updated usiug the 

latest measurement TTtk as follows: 

(5.4) 

where H E Rnz 
Xn", is the matrix that defines the linear measuremcnt model, H Itt,k 

is the predicted llleasurement, rrtk - HI.tt,k is often refcrred us innovation, and Sk 

is the covariance of the innovation or total UlH..:crtaillty, which is defined as: 

(5.5) 

where A is the covariance of the meusurement Illodel noise, and J(k' is the Kalman 

gain which is defined as follows: 

(G.G) 

The Kalman gain is used to weight the contribution of the measurelllent 1/tk to 

the final estimation It/,k. Its value depends on the ullcertainty of the prediction 

(tt,k) with respect to the total uncertainty (Sk)' 

The recursive process of Kalman filter is illustrated ill figure (5.1). 

5.2.1.1 Design decisions 

The most relevant design decisions of the tracker concern the selection of the track­

ing space, the state and lllea.cmrement space, the motion model of people and the 

measurement model. 

Tracking space 

The tracking space refers to the coordinate system used to repres(mt the physical 

location of the targets of interest, and in which the tracking takes pla(:(\ The sdedion 
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of a proper tracking space is essential for achieving high performance ill tracking. Three 

different spaces are considered for tracking in this work: Ima.ge Plane Space (IPS), 

Remapped Polar Space (RPS), and the ground plane Map of Activity (MoA). These are 

the same spaces that were presented in chapter 4 and where evaluated throughout in the 

context of people segmentation. III the tracking stage, however, such a cOIllprehensive 

study is not intended. III this section a brief discussioll is conducted about the potential 

performance of the three spaces in the context of a lllUlti-cCLlllcra lIlulti-target t.racking 

system. The objective of this discussion is to lllotivate the selection of a suitable tracking 

space. 

Image Plane Space. The IPS is described in detailed in section 4.2. From the 

three spaces proposed, the IPS has been widdy used for tracking people ill typical 

CCTV systems. A multitude of methodologies have been proposed over the years 

applied to this space [7V, 112, 17~~1. However, for the muiti-calllera system proposed 

ill this work this space presents the following major disadvantage: re-identification of 

targets across cameras. For example, when people move from camera to camera ideally 

their ID should be consistent independently of the camera they W('l"C captured frolIl. 

A solution to this problematic situation would require an external association module. 

As will be discussed later in the chapter (section 5.2.~n, the association problem is not 

trivial in this context. 

Remapped Polar Space. The RPS as described ill section 4.4, is a very conve­

nient space for segmenting people, mainly because the size and orientations of targets 

are homogeneous throughout the space. In the context of tracking systems, it solves the 

problem of re-idelltificatioll of targets ::u; the views from the three sensors are aggregated 

in a comlllon view. However, tracking in a polar CS is not convenient ill general, because 

the motion of people is not linear in the polar system, and therefore more complex 

tracking solutions are required. 

Map of Activity. In section 4.:3 the MoA is presented alld evaluated in the 

context of people segmentation. This space was not recommended for segmentation 

purposes, since target blobs ill the MoA are represented with different orielltations 

and varying dimensions. N everthdess, for tracking purposes this space addresses the 

problems encounter in the other two spaces . 

• The MoA is a common representation for the data from the three sensors. There­

fore the problem of re-identification that appears in the IPS cloes Hot arise 

here . 

• The motion of people in the MoA can be assuIlled to be linear. which allows the 

use of optimal trackers such as Kalman Filter. 
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Based on this analysis, the l\IoA is considered more suitable than the IPS and the 

RPS for tracking multiple people in a multi-camera system. 

This analysis was not intended to be exhaustive as the discussion prescllted ill 

chapter 4 as its only purpose was to justify the use of the MoA for trackiug. 

State and measurement space 

The state of a person is represented in four dilllensiolls t = (u,'U,u,vf', where (u,'U) 

are the two dimensional coordinates that define the location of the person 011 the MoA, 

and (il, v) is the velocity in both directions. The measurement space is defined with the 

two dimensions of the MoA 1ft = (u, 'U f. 

Motion model 

In general, it can be assumed that the motion of people walking has constant velocity 

i.e. no accel(c)l·ation. Therefore, using the killematic equations, the motion model of a 

persoll is defined as: 

1 0 ~t 0 

F= 
0 1 ° fl.t 

(5.7) 
() () 1 0 

0 0 0 1 

Using the prediction equation 5.3 the state of a person at the CUlH'ut time IS 

predicted from the state at the previous time and the lllotion model as follows: 

'Uk 1 0 fl.t 0 'Uk-I Uk-l + 'itfl.t 
'Uk 0 1 0 ~t 'Uk-l Vk-l + 'iJ~t 

(5.8) 
'U () 0 1 0 'U U 

'U 0 0 0 1 v v 

Measurement model 

The rnea.<;urelllent model refers to the function that COllverts the target state space into 

the target measurement space and is defined with the matrix H E l{2 x 4 as follows: 

H=(lOOO) 
o 1 0 0 
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A target state is described in the Uleasuremellt space as: 

( ::) (~ o 0 

1 () u 

v 

This model is used in equation SA durillg the update stage of KF. 

5.2.1.2 Implementation details: Initialization of targets 

(S.lO) 

When a new target is identified froUl a detected llleasurement, the following parameters 

are initialized: 

• Target state, t = (u,v,U,'U)T. 

• Uncertainty of the target state, E t • 

• Motion model uncertainty, <1>. 

• IVleasurelllent model uIlcertainty, A. 

Target state 

The spatial locatiou of t.he target state (u, v) is illitialillcd with Uw locat.ion of the 

associated measurement Ill. The two dimensions of velocity (it, v) are completely 

unknown and they are assumed zero. 

Uncertainty of the target state 

rnv 

() 

o 

(5.11 ) 

The initial ullcertainty of the target location is approximated using the 2 x 2 scattered 

matrix Em that defines the physical extent of the measurement Ill. R{~garding the 

uncertainty ill velocity an initial value of (J v is used. Note that this uncertaiuty will 

increase every time when adding the Illotion model ullcerta.inty at the prediction stage 

(equation 5.~~). 
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Et illit = , (5.12) 

where o"v has been computed from an empirical value of 0.1 m/ !:::.t, which ill tllP ~vloA 

yields a standard deviation of 5 bins/!:::.t since the bin size is 0.2 x 0.2 lll. 

Motion model uncertainty 

The ullcertainty of the motion model is set with a constant value (Tm for the location 

uncertainty and (Tv for the velocity uneertainty that guarantee Ow rec()v(~ry of the 

system in situations where the Illodel differs from the actual motion of tlw turget. 

<1>= (G.13) 

where the constant value CTm has been oUtained frolll au estimated uneertainty of 15 

elll, which is approximately 50 bins variance in the MoA. 

Measurement model uncertainty 

The measurement uncertainty is defined over the two dimensions of the MoA as follows 

(5.14) 

In order to account for the different orientations of llleasurements in the .t\IoA, A!l/oA 

is computed from the ullcertainty in the polar CS Apes. The study cOllduct(~d in section 

3.2.1.3, reveals that the accuracy of the Kinect depth sensor decreases with range - see 

equation 3.3 and figure 3.5. Therefore, each person has a different uncertainty value 

depending on the distance of that person. The proeedure to compute the uncertainty 

of a particular measurement consists of the following steps: 

1. The range Pm and angle Om of the llleasuremcut are computed. 

2. The variance in the range dimension 0"; is determined from equation 3.:.~ evaluated 

at Pm· 
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3. The angle variance a~ is set with a constant value, since the accuracy does not 

vary as a function of the angle. At this point the covariance matrix in the polar 

CS has the following form: 

(G.1G) 

where (To was set empirically to 7 degrees, which corresponds to 7 billS ill the RPS 

i.e. 1 bin in the BPS accouuts for 1 degree. 

4. The ullcertainty in the polar CS Apes is transformed into the MoA with the 

following geometric transformation: 

(S.W) 

where Ro,.. is the rotation matrix computed at the measuremellt angh~ Bill 

(S.17) 

5.2.1.3 Issues: The need for data association 

The Kallllan Filter assumes that the measurement used during the updating stage is 

correct. This assumption is challenging to cnsure, especially ill nllllti-t.argd t.racking 

applications such as the one proposed in this work. The Kalman filter is not responsible 

for the correct association of measurements as is illustrated in figure S.2 where the data 

association module is located outside the Kalman Filter. 

The data association lllodule receives at every tillle step a set of targets and 

measurements of unknown origin. Tlw similarityl hetween targets alld lllea,,"iUl'Cllwuts is 

computed based on their appearance models obtaining a matrix known as "similarity 

matrix" that relates targets (rows) with measurements (colullllls). The objective is, 

using this matrix, to find the set of disjoint associations that maximizes the overall 

similarity. At this stage the appearance Illodel employed to describe targets and 

measurements is decisive for the success of the association pr()(x~ss. In tht' llt'xt section 

two different appearance models are explored. 

5.2.2 Appearance modelling 

Appearance models are used during t he data association stag(~ to COlllpare targets a.nd 

measurements. For visual tracking the appearance model employed to describe people 

1 Alternatively it could compute the dissimilarity or cost of association. 
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Figure 5.2: Recursive cycle of Kalman Filter: Prediction , Data Association and Update. 
Note that T and M refer to the set of target and measuremcnt . 

should be capable to readily distinguish one persoll from anothcr. Moreover , they 

should facili tate mechani ms for updating and comparison wi th other peoplc s model . 

In this section two appearance models of increasing complexity are analy cd. 

5.2 .2.1 Spatial appearance model 

The spatial appearance model of a target is built over the same dimensions of the 

t racking space i.e. MoA. No colour information is u ed, only the physical extent . 

Model construction 

The spatial model of a target is defined with a probability density function (PDF), 

which is built using the projections of the target points. The PDF is modelled with a 

Gau sian distribut ion , where the mean refers to the centroid of th projection , and t.he 

covariance defines the physical extent of the target in the tracking pace - see figurc 5.3 . 

At this point it is essent ial to differentiate between th targct stat.e u eel in the 

Kalman fil ter and the spatial model of the target. Both are defined with a Gaussian 

distribution to define t heir location in th t racking space, and both share th same 

mean posit ion . However, their covariances arc concept ually and physically differ nt. As 

just described, the covariance of the spatial mod I refer to the physical extent of the 

points t hat conform t he target , while the oval'iancc of the target state refers to the 

uncertaint~r of the mean position. 
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Figure 5.3: Spatial appearance model of a mca 'm c1ll 'Ilt. The nGB reprcscllt·atioll 
of the t arget is di played in the most left image, fo ll wed by it s seglll C' lltation ill t he 
IPS and the projection of all its constitll ent POillt int o the 1\10. esides. t. he 1\10 
project ion i enlarged to present the spatial lllo del of th meaSlIrCIll C'nt (111 a ll a ile! 
covariance of the projection distribution ) . 

Model update 

This model requires to be constant ly updated at every t ime st p sill cc the person movcs 

through the tracking space. The updat procc s on is ts of replacing the target model 

with t he as ociated measurement model and propaga te the mean via t he prccli ·b Oll 

equation of Ka lman fil ter (5.3) . Note h re t hat. th target might llot gct associated with 

any measurement at a parti ular t ime. In this ·ase the spat.ial model only uJldergoes 

the prediction of the mean , maintaining the. am ovan ancc. 

Similarity function 

The similarity between two patial model can b e estimatcd by thc clis t c\ll ce bet.wC'cn 

th ir Ga u ian di tribut ion . In t hi work th 

the similari ty between the two models . 

ha ttacha ryya eli . tl1l1(,C is II eel to 1:1SSC 'S 

The Bhattacharyya di tance is a popular mea m e tha t gcn ratC's a ""dll e not only in 

term of the separation of llleans but al with re p ert to t.heir shap es. T he general 

equation fo r continuou PDF i a follow 

Du(t,m) = J1 - p(t.m) (5 .1 ) 

where t a nd m are the Gau ian PDFs of a targct and a 111Ca ' llL'el11c11t L"CSP 'dively, anel 

p(t, m) i th imilarity measure between them defined as 
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p(t, m) = J Jt(:r), m(:r:)d:r: (5.19) 

The closed form of the Bhattaclmryya distance for two multivariate Gaussian distrilm­

tions t "-' N(pt. ~~) and m"-' N(, l 711l ~~,J is defined as: 

(5.20) 

where 

(G.21) 

DB E [0,00) is converted into a similarity value nOI'luulized between 0 and 1, where 1 

indicates maximum similarity as follows: 

(G.22) 

5.2.2.2 Multi-part height and colour model: Chromograms 

To achieve more discriminative results, a llluiti-part Illodel defined on the height in the 

3D space and colour dimensions is proposed in this section. The target is represellted 

in four dimensions: three dimensions for colour: red, green and blue (R,G,B); and one 

dimension for the absolute height (h) of the person. The colour information is retrieved 

from the RGB (;amera, and the height from the verti(;al dimension of the target 3D 

points. It is espe(;ially intended to handle occlusion situations and being robust to scale 

chauges. This lIlodel is referred to ill this work as a chromogram. 

Model construction 

Chrolllograms consist of a histogram over the height dimension augmellted with (;olour 

information. The histogram is binned in n equal ranges of height, and ea(;h bin stores 

the number of person's 3D points that fall in that range. In addition, eadl bin is 

associated with the colour distribution of its constituent points, which is modelled with 

a three dimensional Gaussian PDF (R,G,B) defined with the mean and the cova.riallce 

- see figure G.4. ChrOlllograms (;an be thought of as representations that lie half-way 

between telllplates [lg2, 183] and histograms [111, 19:1]. They combine the advantages 

of templates maintaining some spatial information (height), and keep, at the same 

time, the computational requirements low by using a histogram structure. The COll(;Cpt 

and IH111W of the lllo(ld are inspired by the work of Birchfield and Rangarajan [7:)] 
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RGB 3D+RGB 
Height 

Histogram 

~ 

RGB PDF 

ISO .' 
~ . ' 

200 . 

150 ,.' ,"" 

100 '.; 

50 .. ' 

Figure 5.4: Chromogram of a person. From left to right: 2D RGB r pre entation of the 
person; 3D RGB distribution of the per on's points; Height histogram with bin of 25 
cm. each . (each bin is coloured with the mean of the RGB distribut ion at that bin) ; 
Three-dimen ional Gau sian distribution in the colour space (mean and covariance) of 
bin fifth . Note that for visual purposes only the colour PDF of one bin is repre. ented . 

where they proposed "spatiograms" . Th ir structur is similar to the one presented 

here, however the histogram is computed over the olour dimension instead, and is 

augmented wit h a spatial PDF. Chromograms are expected to be more effective in the 

presence of occIu ions since the division is made on the height dimension. T he size 

of the divisions \\ as set empirically to 25 cm. with a total of bill a a compromise 

between resolution and computational load. 

M odel update 

Changes are expected in the appearance of people during t he sequence, e pecially when 

they move between cameras. To cope with these changes and avoid loosing tracks, the 

targets' chromogram must be updated. 

A target's chromogram is upd ated bin-wise with the a socia ted mea m ement 's 

chromogram every 10 frame following a simple ru le; each bin of the target's chromogram 

(i .e. height and colour Gaussian PDF) is repla d by the mea urement 's bin provided 

that the measurement 's chromogram contains da ta in that bin. In other 'Nords , if the 

measurement doe not have any points within the height range of the bin , it is as umed 

to be temporally occluded and therefore hould not be used for updating the target. 

Sim ilarity function 

The simil arity between two rhromograms is omputed using the metric proposed by 

Conaire et a1. [1 5]. Originally the metric was intended for spa tiogram . However it 

can b easily adapted for c1ll'omogram . Using th original terminology, the similari ty 
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between a target and a measurement chromogram t = {n, ¢ '" N(p, E)} and 'Tn = 
{n', ¢' '" N(/t', E')} is calculated from the Bhattacharyya coefficient as follows: 

p(t, m) ~ t, 1:~: p(4),ln,)p(,,,)p(4>~·llI:,)p(n;,)dx 

~ t, [ p(",)p(",) t~: p(4),I,,,)p( <lfrl",)tlx 1 
(5.23) 

Following the original paper [1~!j], etlua.tion .'j.2~~ can be simplified yielding to Uw 

following closed form: 

B 

p(t,m) = L Jnbn~ [8rrIEbE~I-iN(/lb;JL~' 2(Eb + E~))] 
b=l 

(5.24) 

where p(t, 111,) E [0,1]' where 1 indicates maximulll silllilarity, and N(/lb; /j,~, 2(Eb + E~)) 
is the probability of JLb with respect to the Gaussian PDF N(JI'~, 2(Eb + E:,)). 

Issue with chromograms 

A failure mode has been identified regarding the use of chrornograms. When a me1yed 

measurement is detected, the chromogram of each target involved is compared with 

the chromogralll of the merged meaS1L1'ement. This comparison results inevitably in low 

similarity and erroneous a.<;sociation, As 11 solution, a mechanism that switches between 

chrolllograllls and spatial models is proposed, When a merged measurement is detected, 

the similarities between the targets involved alld the measurement are cOlIlputed usillg 

only the spatial models, This results in high similarity values, and assures the targets 

will be associated with the merged measurement. Once the merged 'measurement splits, 

the similarities are computed again using chromograms. Note the fact that as both 

similarities, spatial model and chromograms, return normalized values between 0 and 

1, the switch between models does not affect the associatioll process. 

5.2.2.3 Qualitative results 

Some qualita.tive results are presented here which illustrate some failure 1ll0(l<~s that 

have becn identified for both appearance models. 

As expected the spatial model exhibits a poor capacity for discrimination when 

people are ill dose proximity. Figure 5.5 presents a case study where two people shake 

hauds, they become merged and then they split again. III this case the spatial Illodel 

fails to disambiguate the conftict after the merged measurement. 

The same case is evaluated using chromograms whcre it is solved correctly as 

presented ill figure 5.G. 
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Figure 5.5 : Key frames of an interact ion between hvo target . The interaction is resolv('d 
incorrect ly u ing the spatial model. 
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Figure 5.6 : h ey frame of an interaction between two targets. The int·(,HIC't. ioll i. resolv('d 
correct ly llsing chromograms. 
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Finally, although chrornogralIls present in general good perforlllance ill dellse target 

spaces, they fail with some probability when targetH have Himilar appea.ra.nce. Figure 

5.7 illustrates a. situation were the use of chromograllls does not diHcrilllinate correctly 

two people wearing similar colours. 

5.2.3 Data association 

In the previous section two different appearance models were described. In this section 

those models will be studied in the context of the duta association problem. 

Multi-target tracking applications require an intermediate process to associate the 

measurements available at any given time with the active tracks, which is known as 

the data associatioll problem. The associated measurement will he used to update the 

target estimation (equation 5.4). Solving the data association problelll is not trivial, 

especially in highly dense target environments, when the Illunber of targets is unknown 

and variable over time, when spurious measurements are present in the scene, or when 

there are temporary disappearallces of targets due to occlusion. Further uncertaiuties 

could appear if split and mcr:qcd 'Tftcasun"menls are cOllsiderml. 

Solving the duta association requires the cOIllparison between targets and llleasure­

ments with a function based on the appearance model of targets and measurements: 

(5.25) 

where 't/J( ti, 'TIL)) compares the ith target modd all(l the l" llwasurClllcnt lll()(ld accordillg 

to the similarity function of the appearance model. Both, the appearance model and 

the comparative fUIlction determine the capacity of the system to discriminate targets, 

and therefore the performance on the data association process. 

Using equation 5.25 a similarity matrix (\lI) is built, which relates allllleasurl'lllents 

(coluIIlns) with all targets (rows) - see equation 5.20. The objective is to obtain fwm 

this matrix a set of associations where the sum of all similarities is maximised. 

measurement (j) 
" , 

" 1 2 3 N m 

81,1 81,2 81,3 Sl.Nm 
1 

82,1 82,2 82.3 82,m 
2 (5.2(j) 

\11= 83,1 83,2 83,3 83,m 3 target (i) 

Nt 
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Similarity Matrix (Chromogram) 

tJs 0.89 o 

t43 o 0.86 

t 38 .. Targe t models Measure ment models 
.'. f ' ,..--_~A,-__ ~ 

t 3S t l3 \ 

~ _____ A 

r ml ~-m-2~\ 

(a) Frame 779. Target 3 and..13 a re similar . Each target 
produces an illdependent measurement , 1111 and 111 2 respect ively. 

Similarity Matrix (Spatial) 

ml 

tJs 0.88 

t43 0.84 

(b) Frame 782. Target. ;) and -13 prod uce a ingle 111 r'gcd 
meaSU1'ement. Note that appearance similarity between a target 
and a merged measurement does not produce cliscrinlinat iyc 
re ults. Instead spatial imilarity i considered during the merge. 

Similarity Matrix (Chromogram) 

Targe t models ,..--_____ A ____ -..., 

t43 

ml 111 2 

0.84 0.85 

0.84 0.78 

Measurement models 
,--_~A,-__ -...,\ 

1112 

(c) Frame 7 6. Targets 3 alld 43 split from the mC7!}ed 

meaSU7 ment. Data a ocia tio l1 based on chromograms fails 
due to t he high similari ty bet\ycen t a rgets appcarance. 

Figure 5. 7: C'Cjut'ncC' of h'"O imilar-Iooking target eros ing cHch other. The in trrHct ioll 
incorrC'ct h" resoh'C'cl using chromograms. 
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For some applications the process can be simplified if the following two classical 

assumptions are made: 

• A measuremeut is generated by oue target maximum. 

• A target can generate maximum one measurement. 

However, in real applications due to limitations in the resolution and quality of 

the sensors these assumptions do not necessarily hold. In fad, when tracking multiple 

people in an indoor scene, the following two situations happen with relatively high 

frequency: 

• lYlerged measurements: These measurements are produced when two or more 

targets are so close that only one measurement is produced for both of them. 

• Split measurements: Due to partial occlusions a target produces lllore than one 

measurement. 

A complex situation arises after a merged measurement, when the targets involved 

separate and the resultant measurements have to be re-assodated with their original 

targets. As these situations are very COUlIllon in the scenarios envisaged ill this work, 

they are especially heated (see sectiou G.2.3.G) and indcpendcntly evaluated. 

Under these uncertain conditions, the complexity of the process grows expollentially 

with the number of targets and measurements involved, therefore approximations need 

to be considered. One of the most common approaches is to define areas with high 

probabilities of finding the true measurement for the corresponding target, th(~se regions 

are often referrcd to a.., gates. 

Gates 

In the tracking context, gates are employed to reduce the number of possible cOlIlbina­

tions between targets and measurements. For every target an area around its predicted 

measurement is defined and only measurements within that area are considered as 

possihle associations (see figure G.8). The gate area is ddilH'd on the MoA based OB the 

square of the Maha.lanobis distance as follows: 

(5.27) 

where S is the innovation uncertainty (equation 5.G), "I is the spatial threshold that 

defines the gate volume, and v is the innovation terIll as follows: 

(5.28) 
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* 
* 

* x 

* 

Figure 5.8: Gate area in the MoA. The cross (X) is the predicted measurement; the 
stars (*) are the available measurements; and the shaded region defines the gate . 

where Tn is the position of the measurement , and 1nk is the predicted measurement of 

the target at t ime k - see equation 5.2. 

The threshold I is defined from the "chi-squ ared" tables, since the Mahalanobis 

distance of samples drawn from a Gaussian distribution are chi-squared distributed , 

with nz degrees of freedom. 

Using gates, the similarity matrix W can be now constructed a follows: 

if measurement j is outside the gate of target i. 

otherwise. 
(5.29) 

It is important to notice a potential problem that can arise with gates. When a 

target is not associated with any measurement (temporally occluded) , its uncertainty 

(and associated gate) starts growing. As a consequence, measurements from nearby 

targets fall within this large gate occasionally leading to erroneous as ociations. 

To reduce the effect of large gates , one possibility is to limit the maximum size of 

the gate. Another possibility is to introduce ordering within the association process, 

priorit ising targets with smaller covariances. 

Although the use of gates reduces the number of possible combinations, ambiguous 

situations can still arise. For instance, when two or more measurements fall within t he 

same gating area, or when a single measurement falls in the intersection of two different 

gates. For those situations association techniques are still required. 

Choosing a data association methodology 

The problem of data association has received considerable attention in the community 

and sophisticated techniques such as the joint probabilistic data associatioll filter 

(JPDAF) [ 1 6] and the multi hypothesis tracking (MHT) [90] have been studied 
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and extended over the years. However these methodologies present some limitations 

that make them not suitable for this work. 

JPDAF was particularly designed to handle noisy euviromuents with spurious 

measurements, which is not the case in the environment proposed. The segmentation 

module presented in section 4.4 produces indeed very few spurious measurements. 

l\-1oreover, JPDAF assumes a known and constant number of targets. l\IHT is considered 

the best solution to the data association problem since it explores anel maint.ains a.ll 

hypotheses. l\IHT inevitably requires a high computational load and even with the use 

of approximation techniques (e.g. pruning, clustering) the approach struggles to meet 

real-time requirements. Furthermore, l\IHT is a batch method, which means that in the 

presence of conflicts the decision is delayed in time until more information is available. 

A lllon~ appropriate dat.a association method for this projcct is t.he ncarest. neighbour 

standard filter (NNSF). The NNSF is cOlllPutationally efficient, takes decisions a.t every 

time step and its performance has been proven satisfactory ill a range of problems 

[82, 84]. Three variations of increasing complexity of the NNSF are explored in this 

project. 

5.2.3.1 Iterative Nearest Neighbour 

Iterative Nearest Neighbour (INN) is one of the simplest methodologies for solving the 

problem of data association. It is a derivation from the simple uearest neighbour that 

prohibits a target being associated with llluitiple measurements [4, 77]. This technique 

is executed sequentially considering one target at a time. 

The procedure consists of the following steps: 

1. Build the similarity matrix between t.argets and llleH .. 'mrcments - s(~e equation 

5.29. 

2. Establish an order in which the targets will be associated, e.g. randolIl order, 

largest first, nearest to the depth sensor first, etc, and choose the first target. 

3. Search in the lllatrix along the corresponding row for the most similar measure­

llll'nt. 

4. Eliminate the associa.ted measurement from the similarity llla.trix (the entire 

colullln) to ensure the measurement canllot be associated with anotber target. 

5. If there are still targets available: choose the next target and go back to step 3, 

otherwise finish the process. 

This approach works rea.'.;onably well when targets are quitl' separate from (~a.('h otlH'l". 

In addition, it requires low computa.tional time and resources. However, when targets 
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Figure 5.9: Three key frames of an interaction betweclI two t.argcts whicb is incorr 'dly 

resolved using 11\1\ . 1\ote that the thinner ellip e of target 1 Rt framc 3 <I indicates t hat. 
the target is being una sociated . The association result at frame 3 4 is errOllCOUS due 
to the chosen order in which the two targets are a so iated (to first fll1c! then t I)' 

get close thi ' approach do s not perform well , mainly because it is highl y ciepcncicnt. on 

the order in which the target are associated. Figure 5.9 present.s a case of t llcly where 

this techniqu actually fails . In this example two targets (to and t,) get. involvecl in an 

interaction . to is more distant and at ome point it gets ocdud cl by t" llot producing 

any measurement. In addition. as the two targ ts are very lose, the meaS lI H'l1lC'Jlt 

produced by t, fall within the gate of both, allowing the mea m ement to get associated 

with either of them. to is fir t evaluated and becomes incorre ·tly associated with th 

measurement. leaving t1 unassociated. Figure r:: .10 shows a hypot het ica l situation where 

I\f:\' would obtain a non-optimal solution. These ases l' veal a d ear limi tat ion f the 

methodology. ",hi h i the dependency on the order of a soriation. The performance of 

I:\,:\' could impro"e if a meaningful order of a ociation j chosen. For example. ill thi. 

case it ould compute fir t closer target, a . uming t.hey a rc los. likely to be occlueled 

by other . 

In the next section a more advanced algorithm for associat i 11 is presented, which 

aims to con'}' the identified weakne s of Il'\N. 
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Similarity Matrix (INN) 

ml mz m3 m4 

tl 0 0.8 0.6 0 

tz 0 0.9 0 0.2 

Figure 5.10: Hypothetical situation of 2 targets (t J and t2) and 4 mea urCll1ellt (m,l , 
m2, 1n3 and m4) ' The INN is applied to solve the data association problem obtailling 
a non-optimal result r = {[t1 , m2], [t2, m4]}' The optimal solu tioll in this ca e is 
1" = {[t 1 , m3], [t2, m2]} where the total similarity i higher. 

5.2.3.2 Suboptimal Nearest Neighbour 

The Suboptimal Nearest Neighbour (SNN) is a data a ociation technique that i 

commonly used in early tracking literature [80-82]. It is considered suboptimal because 

it does not explicitly recover a global solut ion i.e. maximize the total similarity of all 

associations. 

The procedure consists of the following steps: 

1. Create the similarity matrix between targets and measurements at the current 

t ime using equation 5.29. 

2. Choose t he highest similarity value in t he matrix and create the a sociation 

between the target (row) and measurement (column) involved. 

3. Remove t he associated target row and measurement column from t he similarity 

matrix. 

4. If there are still targets available go back to step 2, otherwi e fini h the process. 

In general, SNN outperforms IN N because it is not dependent on the order of 

t he targets. For comparison purposes the same case of t udy presented in figure 5.9 

is analysed again using t he SNN method instead (see figure 5. 11 ). This time the 

interaction is correctly resolved. 

However, SNN doe not always achieve the correct result primarily because a global 

solut ion is not explicitly sought , i. e. it does not a im to maximize the similarity of all 

associations. SNN is expected to fail in situations such as the one depicted ill figure 

5.12. 
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Figure 5.11: Three key frames of an interaction between two targ ts, which is ('orrect ly 

resolved using 8N N. 

* Similarity Matrix (SNN) 

m1 m2 m3 m4 

t1 0 0.8 0.2 0 

t z 0 0.9 0 0.8 

F igur 5. 12: Hypothetical situation of 2 ta rgets (f l and 12 ) all 1 4 Jl1 C'RSlll'(, l llC'llt S ( 1111 , 

711 2. T17 3 and 17l\ ). The 81\_ T i ' applied to solve the data associa tion problC'1ll o bt a illing 

a non-optimal result l' = {[fl , 171 3], [t2' 117 2]}. The optimal solution ill t h is cas(' is 
1" = {[tl . 1112]' [t2. 717 tl} \yhere t11 total imilari ty i higher. 
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Similarity Matrix (GNN) 

mI m2 m3 m4 

tt 0 0.8 0.2 0 

t2 0 0.9 0 0.8 

Figure 5.13: Hypothetical situation of 2 targets (t J and t2) and 4 mcasm cllI IIts (m\, 
m2, m3 and m4)' The G N is applied to solve the data as ociation problcm obtaining 
a optimal result 7' = {[t l , m2], [t2, m4]} where the total similarity i highcr. 

5.2.3.3 Global Nearest Neighbour 

The Global Nearest Neighbour (GNN) is an approach to the data a 0 iation problem 

t hat uses the similarit ies from all targets and measurements to construct a global 

solution , which is considered opt imal. This solut ion is based on the poplllar HUllgarian 

algorithm [83, 4, 1 7] that solves the a signment problem in polYllomial time wi thout 

the need of an exhaustive search. Given the similarity matrix \lJ of cquat ioll 5.26 G N 

finds the set of associations that m~imizes the total imilari ty as follow : 

Nt N m 

argmin"'"' "'"' s· 'X' . x ~~ t ,) t ,) 

j 

(5.30) 

where Nt. and Nm are the total number of targets and measurement re pectivelYi and 

x defines the et of associations, which applies the restriction t hat a target can only be 

associated with a single measurement and vice-vel' a (equation 5.31): 

Nt Nm 

L Xi ,j = L Xi ,j = 1; 
j 

(5.31) 

In general, G N requires more computational t ime than SNN. However with th 

improved implementation proposed by Munkres [ 3]2, and depending on the cardinali ty 

of targets and mcasurements, the approa h achi ve imilar exe ution times. 

Figure 5.13 pre ent a hypothetical it uation where GN fillds t h optimal . olution . 

2The implementation of t-.'lunkres improve t he perform a lice of the a lgorithm a.chieving a complexity 

of o rder O(n3) 
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5.2.3.4 Initialization and termination of tracks 

The methodologies presented here (INN, SNN and GNN) do not cxplicitly handh' thc 

initialization and termination of tracks and therefore additional actiolls lWl~d to be 

taken. Firstly, the identification of potential new tracks is deterlllinc(l a.ttending to the 

number of tracks and detected measurements at ea.ch tillle step. In gmwral, WIWIl n 

new target enters the scelle, the number of ddl~ct.e(l lJleaSlln~nWllt.s is la.rg(~r thall tIl<' 

Humber of targets, signalling all unassociated lllcasurement. which is cOllsid(,I"l'd as a 

potential new track. The opposite occurs when a target leaves the SCelW, the llUllli)('r of 

mea.<;urements is smaller than the number of targets, and therefore one target is left 

Ullassociated, which is labelled as a potential finished track. These potential new und 

finil:>hed tracks are analysed independently: 

• A potelltialllew track is promoted to actual track if during a certain amount of 

time exists evidence to support it. In other words, ill order to initialize a new 

track, the target should be associated with llleasuremellts [or a miuimulll period 

of time. The objective of this action is to rcduce the nUlllber of false lWW tracks 

caused by noise measurements. 

• A potential terminated track is terminated if it is not associated with auy mea­

surement for a certain period of time. This action reduces the uUIllber of falsely 

terminated tracks that are just temporally occluded. 

The time spall threshold considered for the initialization and finalization of tracks 

was defined empirically to 1.5 secomls. 

5.2.3.5 Issues: Interaction Periods 

Interaction Periods (IP) refer to those situations where two or more people produce a 

single merged measurement on the MoA due to their spatial closeupss. These periods H,W 

normally the result of events such as grouping, handshakes or even just path crossing. 

After the merged measurement the system is expected to correctly w-identify the targets, 

i.e. the targets ID after the merged measurement should be COllsistent with their lOs 

before the merge. This rl.'-identificatioll represents an important challenge for the 

data association module. Note that for the purpose of this project the iudepcncl('nt 

segmentation of targets during a merged measurement is not IlPcessary. 

The proposed process for handling interaction periods consists of the following steps: 

1. Detection of merged measurements. A dedicated module has b('en illlplmnentml 

to identify these special measurements based on area and proximity of targets 
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2. Multiple associations. The data association module needs to he adapted to allow 

the targets involved in the interaction to be associated with their COllllllon (lllcrge) 

measurement 

3. Targets' state estimatioll (update alld prediction). Targets are pw<iicted lIorIllally. 

However for the update stage, different policies can be adopted . 

• Normal update. The targets involved update their positioll with tlw merged 

mCtLS'tLTCmcnt. This approach is suitahl<~ for long-lasting lJwrgt~s such as 

grouping where the lllotion of the targets changes during the lllerge . 

• Non-update: The targets motion is not updated with the mer:q('(l 1T/.msurement 

aiming to preserve the Illotion Illodel of the targets. This approach to 

updating is recommended for short interactions such as path crossing events. 

4. Continue to step 1 and repeat the entire process until the targets involved in the 

interaction split. At this point the data association amI targd pstimatioll are 

applied normally. 

This process is independent from the associa.tion methodology a.mI the object 

modelling used. Nonetheless, its performance relies highly OIl a correct detection of 

merged measur·ements at step 1. This detector module is described in further detail 

next. 

Merged measurement detector 

The merged measurement detector is an external module responsible for the recogllition 

of llleasurements produced by more than one target. These lllcasurellwllts appear when 

people get spatially dose and their projectiolls on the ground plane h('conw COlllll'Ct<'d 

in a single blob. 

The identification of merged measurements is based 011 two features: an~a of the 

measurement and number of dose targets. A measurement is labelled as a merge if it 

satisfies the two following requirements: its area is larger than a defilled threshold and 

more than one tracked target are in dose proximity. 

Area restriction. The idea of filtering llleasurenlPnts by area is lllotivat{~d by 

the assumption that in general, mer:qed meas'Urements are larger than single-ta.rgot 

measuremellts. This filtering is performed in the RPS, where the areas of the blobs over 

the cntire range of the space are more hOlllogeneous thall ill allY otlwr space. 

The optimal value for the threshold is learned using a training dataset: l and its 

3The trainillJ?; dataset is the same dataset used to adjust the parallleters for the people detection 
algorithm. 
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Figure 5.14: Distribut ion of the areas of merged measurements and single-target mea ure­
ments in the RPS. The samples have been manually labelled from a training sequence 
on the RPS. In each frame of the sequence t he detected measurements (connected 
components) were annotated with their area and category - i.e. merged or single. 

corresponding ground truth of m erged measurements". Figure 5. 14 plots the distri but ion 

of t he measurement areas labelled by category i.e. ingle-target and me1:qed mea ur' menlo 

From the plot, it is clear t hat the two classes are completely in eparable using only 

t he area. In addit ion , the number of samples of merged m easurements is signifl antly 

smaller t han t he number of samples from the other class i.e. only 0.03% of the samples 

are merged measurements. In order to select an appropriate t hreshold an empirical 

approximation based on t he popular ROC curve is employed - see fi gure 5. 15. T he 

ROC curve is a visual way to compare the performance of an algorithm for diHerent 

parameter values. It is represented in a two dimensional plot where the vertical 3,.,'(is 

defines t he t rue posit ive rate (T P R = TPr:FN ) and t he horizontal axis represell ts the 

false positive rate (F P R = F::rN)' The idea is to plot t he result for a set of diHercnt 

area t hresholds and fi t a curve to the data. The optimal values are on the mo t top-left 

part of the curve, where the ratio between TPR and FPR is maximum. 

P roxim ity of targets. Once a measurement ha been defin ed a larger than the 

threshold , the next step is to identify the number of nearby target. . If it ha more than 

one, then it is con idered a merge. 

4The merged mea tLrement ground tru th was manually created by an operator. Every me1:ged 
measur-ement \Va labelled and stored in a file along wit h its area in t he RPS (pixel 2) 
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Figure 5.15: ROC curve that presents the evaluation for detecting mer:g d meaS71Tements 
with different area thresholds. The optimal value is ident ified as t he point of the curve 
closest to the top-left corner (115 pixels2

). Note, that the axis are in different scales. 

The process followed is similar to the idea of the gates used during the data 

association stage. The search window in this case is estimated 1I ing the catter matrix 

of the measurement in the RPS. If more than one target ' predicted posit ion falls within 

this search area, the measurement is labelled as a merge. 

Evaluating the merged measurement detector 

The meTged meaSUTement module has been independently assessed on the same dataset 

used for the evaluation of people segmentation - see section 4.5.4. The ground truth 

in this case identifies the meTged measurements and the single measurements in the 

sequence. To evaluate t he performance of t he system the following metrics are computed: 

• True Posit ives: number of merged measurements correctly identified as merged. 

• False Positives: number of single measurements incorrectly labelled as merged. 

• True Negatives: number of single mea urements correctly labelled as single. 

• False Negative : number of merged measurements incorrectly labelled a single. 

• F1-score: harmonic mean of precision and recall. 
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Table 5.1 presents a comparison of the performance of the mer:qed mea.81tr·ement 

detector described in section 5.2.~3.5 using first only the area filter, and second, llsing 

the combined filter: area and proximity of targets. 

Features " TP I TN I FP I FN I Fl-score 
Area 109 33:38 :J53 5 O.:J7 

Area+ Proximity 84 3G81 10 30 0.8 

Table 5.1: Comparison of the performance evaluation of the mer:qcd m('a.')ure"'Ll~nt 

detector using only the area filter and the combination of area and proximity of targets. 

As expected, the overall performance of the cOlllbined filter outperforms the urea. 

filter. However, it is interesting the fact that the number of FNs is lower in the area­

based filter. A possible explanation is that when two targets start to approach and 

before the meryed measurement takes place, the more distant turget gets occluded by 

the closer target. The trajectory of the occluded target starts to diverge because it relies 

only on predictions. When the merged measurement actually occurs the diverp;ed target 

fall outside the measurement search window. As a consequence the ta.rgets proximity 

filter does not hold and the measurement is not identified as a mergl'. 

Failures of the meryed measurement uetector lllay result ill the loss of people in 

subsequent stages. In particular, the direct consequence of the FPs is that a target's 

mouel and location will not be updated with the measurement (depending 011 the 

update policy during merged measurements). Equivalently, FNs yields onl.v one targeL 

to be associated with the merged measurement, leaving the rest of the targets iuvolved 

unassociated or forced to "steal" somebody else's measurement. Although. the COlllbilH~d 

filter increases the number of FN by a factor of G, the muuber of FP <11"<' rpduce<i by a 

factor of approximately 35, which clearly justifies the use of the combilwd filter. 

Modifying the data association algorithm 

The data association methodologies introduced in sections 5.2.3.1, 5.2.:.t2 and 5.2.~t~~ 

do not allow multiple targets to be associated with the saIlle measurmnent. Tlwrdore, 

when a merged mcaSUfcrnent occurs one or more of the targets involved will not he 

appropriately associated. 

In order to manage these situations an ad-hoc solution is proposed to allow measure­

ments, in this case merged measurements, to be associated with all the targets involved. 

The process consists of the following steps: 

1. Extend the similarity matrix \{I by duplicating the colulllns that belong to rnerg(;ri 

measurements. The number of duplications is set by the Illllnber of targets within 

the proximity gate. 

2. Execute the data association algorithm using the extended simila.rity matrix w'. 
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Figure 5.16: Two targets yield a merged m a urem nt, m2 . 

3. Ident ify all targets associated with the duplicat ed columns and associate them 

wi th the corresponding measurement . 

The sit uation illustrated in figure 5. 16 presents an example involving a m rged 

m easurement. The process proposed yields the followings similarity matrix ('11) and 

extended similarity matrix ('11' ). 

~ _________ A __________ ~,' 

ml m 2 m 3 m 2 

when the data association algorithm is applied on 'lI' , targets tl and t2 will be associated 

with measurements m2 and m; respectively. 

A thorough evaluation of the multi-target tracking sy tem discu ed in this section 

is presented in chapter 6. 

5.3 The Mean-Shift algorithm applied to tracking 

In t his ection an alternative tra king approach is presented - the Mean-Shift algorithm . 

T his algorithm \Va fi rst applied for tracking purposes by Comaniciu Rall1e h aJld Mee1' 
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[70]. U lllike typical tracking methodologies such as Kalman filter and particle filters, 

the Mean-Shift approach does not need to perform any data association, which i/o) au 

important source of errors as argued in section G.2.3. For that reason the Mean-Shift 

approach appears as a promising alteruative to the multi-target trackiug problplIl. 

The l\Iean-Shift algorithm is normally classified as a data-drivell methodology, since 

it does not segment objects but rather use only the information retrieved from the 

data itself to build the target model. Mean-Shift tracks a given target by searching for 

its model ill every image of the sequence. Rather than applying an exhaustive search, 

the frame is efficiently searched towards the direction of the similarity gradicllt in the 

tracking space. 

The Mean-Shift tracker is considered a computationally efficient method. However it 

is frccluelltiy associated with some limitatiolls especially in multi-target cllvironllWllt.s. It 

is ea.'lily affected by the inclusion of background data into the Illodel or the interferences 

produced by similar targets during interaction periods. Targets are modelled using 

histograms which have less discriminative power since the spatial information is dis­

carded. The standard I\leau-Shift does not support changes in the scale aud orientation 

of the targets over time. In addition, it does not provide mechanisms for the automatic 

initialization of new targets. Due to these limitations the Mean-Shift algorithm is not 

normally used for tracking multiple targets. Nonetheless, lllany authors have proposed 

different approximations to overcome these issues. For example, Gao and Lin [1O;.~] ap­

plied 1:1 previous background subtraction operation to reduce the number of distractions. 

Beyan and Temi~d [104] used a people segmentation module to allow til(' automati(' 

initialization of new targets. Leichte et a1. [188] improved the appearance model by 

using multiple color histograms from different views. In this work some modifications 

are introduced into the Mean-Shift algorithm to address the aforementioned weaknesses. 

5.3.1 The standard Mean-Shift approach 

Mean-Shift is a non parametric method for climbing density gradients. It is a versatile 

technique that can be applied in segmentation, clustering or for tracking alllong other 

computer vision tasks. The method was initia.lly proposed by Fukunaga. [189], but 

it was not used for computer vision tasks until late 90's. ~Iean-Shift was origina.lly 

proposed for tracking purposes by Comalliciu et a1. [70] and it has been widely used 

since thell. 

The Mean-Shift tracker is presented in this work as an alternative approach to the 

comIllon and widely used tracking Illethodology outlined in sectioll G.2.1. The most 

relevant feature of the Mean-Shift tracker for the current study is that it does Hot 

require data association. The objective here is to evaluate I\Ieau-Shift as an alternative 

"data association-free" tracker in multi target environments and to compare the results 
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with those that Heed a data association module i.e. Kalman Filter. 

A model of the target is built in the initial frame and Mean-Shift searches the image 

in an optimal way looking for the location of maximuIll similarity with thc target lllodei. 

The outline of the algorithm is described next using thc notation of the original pap<),r: 

Target model. When the object first appears in the scene it is initializml by 

building a colour histogram appearance modd () = {r},J It= 1...", wlwre 'Tn is Hw tot.al 

number of bins which sum to unity. i.e. L.::~J qu = 1. Each bins ddill(~s the target 

probability for that particular colour range. 

n 

qu = C L k(llx iI1 2 )£5[b(:r:i) - u], 
i=l 

1 
C= ",11 k(II' 112) L....i=l .rj 

(5.:32) 

where {Xdi=l...n are the pixel locations of the target; k is a spatial-kel'llel profile that 

weights more highly pixels closer to the centre position; b(·) : R 2 ~ R is It function 

that associates a pixel with its corresponding histogram bin with regard to its colour 

information; £5 is the Kronecker delta fuuction; and C is a normalizatioll term that 

makes the sUIllmation of all bins equal to one. The only restriction regarding the kel'llei 

is that it must be convex and monotonically decreasing [70j. 

Candidate model. In the next frame the search for the target starts from the 

previous locatioll Yo. At tha.t positioll a. ca.ndidate modd is cOllstruct.ed ill a silllila.r 

fashion p(Yo) = {pu(YO)}u=l...m 

~ Yo - Xi 
l1h (II 112) ]Ju = Cit t; k It 8[b(:rd - 11.], (5.33) 

where It is the bandwidth that defines the size of the t:alldidate i.e. window size; 

{xih=l...llh are the candidate pixels; and Cit is the normalization constant. Candidate 

and target models are compared using the Bhattacharyya coefficient. 

III 

,J[p(yo) , q] = L ViJn(Yo)qll (5.34) 
tt=l 

The objective is to find a candidate in the current image frame that minimizes the 

Bhattacharyya coefficient 

a.rg min p[p{y), (1] 
Y 
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Mode seeking. This global target search strategy is optilllized using tho Meall­

Shift algorithm that seeks iteratively the mode of a probability distrilmtion along the 

density gradient direction. This distribution has been previously COIllputpd frolll the 

target's colour histogram. This approach requires the computation of the pixels weights 

within a search window {Wi}i=l...nh' which are obtained based on their probahility of 

belonging to the target Illodel as follows: 

m 

Wi = L 8[b(Xi) - u] 
u=l 

qu 

P.,,(v()) 
(5.:35) 

Then, the new location y. is located at the Illode of this probability space, which is 

obtained via Mean-Shift equation 5.3(j: 

(5.:3(j ) 

where g(.) = -k'(·). 

If the magnitude of the Mean-Shift vector (Y = y* - Yo) is higher than a certain 

threshold, then the centre is updated to the new position Yo ~ y. and the process 

is repeated. Otherwise the search finishes and the new target position at the current 

frame is set at Yo, which represents a localmaximulll of the PDF. 

Although the f\'lean-Shift tracker is considered to be efficient and robust, there are a 

number of limitations that reduce its performance on certain situations l'specially wheIl 

tracking multiple targets. Those limitations are described next. 

5.3.1.1 Limitations of Mean-Shift in multi-target environments 

The i\leun-Shift tracker was originally designed for single target tracking and its use in 

multi-target environments is limited due to the following issues: 

• It is highly sensitive to distractions produced by other targets during interaction 

periods or from the background. This issue is normally associated to the fact that 

rigid primitives e.g. bounding box are used to delimit non-rigid targets e.g people, 

allowing the inclusion of outliers ill the target Illodel. 

• The appearance model is not discriminative enough to distinguish people from one 

another in complex situations. The majority of the Mean-Shift implementations 

found ill the literature as well as in the original paper, IIlodel the targ<t with a 

colour histogram, which is sometimes simplified to a ID histogram. Histograms 

are in general very convenient structures to work with due to their silllplicity, fast 

computation and (~specially because they are rohust to rotations and nOll-rigid 

transformations. Nonetheless, they are frequently criticized for not preserving 
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the spatial dimension of the data, which implies a lower discriminative capability 

[74,75] . 

• The original Mean-Shift approach does not provide with adequate lllechanisllls to 

deal with changes in the scale of targets. The authors ofl"ered all ad-hoc solutioll 

far from being ideal. They try three different bandwidth sizes and choose the 

one that fits the model best. This is an important issue particularly ill visual 

surveillance applications where targets usually move throughout the whole field 

of view varying their size in the projected image. 

• It does not provide with mechanisms for the automatic initialization and tennilla­

tion of tracks. In real surveillance scenarios this is a chief a..<ipect since in general 

the number of targets is unkllown and varies unpredictably over time. 

In the next section is presented an enhanced :r..lean-Shift trackm· that aims to (1<'<11 

with all these limitations. 

5.3.2 Enhanced Mean-Shift algorithm 

In this section the modifications introduced to the original Mean-Shift implementation 

are presented, which aim to address the aforementioned limitations. 

Chromogram appearance model 

One of the main weaknesses of the standard Mean-Shift tracker is the use of a poor 

discriminative model, namely a I-dimensional histogram. One of the enhanccmcnts 

proposed is the use of the chromogram appearance Illodel as presented ill sectioll 5.2.2.2. 

Many authors noted this weakness before and different models have been introduced in 

the past. Leichter et al. [188] uses a combination of llluitiple colour histograms taken 

from different views. Zhang et al. [190jlearu a lllodel based 011 SURF features. However, 

most of these models are complex to compute and evaluate. Chromograms on the other 

hand are silllple models based on a histogram structure, but also discriminative and 

effective during occlusions situations since they are constructed with adjacent parts. In 

addition, unlike lllost of the models built on the image plane [70, 7G], chrolllograms are 

robust to changes in scale. 

Clearing target data after evaluation 

The main challenge of applying l\'Iean-Shift in a multi target environment is the 

interference produced by other targets especially during interaction periods i.e. data 

that belongs to one person is used in the tracking of other people due to their proximity. 

As a consequence multiple targets end up following the same person. In the literature 
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sOIlle authors perform foreground object extraction, which requires an additional stage 

for data a.~sociation. In the work of Beyall and Temizel [1O:l] occlusiom;, llwrges and 

splits are resolved through a data association process. In this work a completely 

data association-free tracking methodology is presented. To handle thes(~ probleIllatic 

situations the pixels of a person are removed from the tracking space just after being 

evaluated, so the pixels of that perSOll canllot distract the rest of the people. Using this 

approximation the order ill which p(~ople are evaluated is critical. A meaningful order 

has been established giving priority to people closer to the call1l'ras sincl' they a.re less 

likely to be occluded. Figure 5.17 illustrates the trucking order for a particular fruUle 

in a video sequence where 8 people are involved. 

Tracking space over the ground plane: MoA 

Unlike the majority of Mean-Shift tracker implementations that define the tracking 

space on the image plane [11:3, 188], ill this work the plan view MoA is employed 

instead since it has been shown (section 4.5) to be more effective for solving occlusions. 

Typically, each pixel of the image plane is weighted with the prohability obta.ined 

from the histogram appearance model according to the colour or each pixel [70]. This 

operation is known as "histogram backprojection". This process has been adapted to 

be used in the plan view MoA. Since multiple points might contribute to the sa.me 

position in the MoA, the probability of each position PAloA (u, v) is cOlllput(~d us the 

sum of the probabilities of all the points that project in that locatioll as follows. 

11 

PMoA(U, v) = LP(Xi(h))p(Xi(C)lxi(h)) (5.37) 
i=l 

where {:l:ih=l...1t are all points that project into the sm}l(~ locatioll Cu, v) ill the MoA; 

p(xj(h)) is the probability of the ith point in the height dimension of the chromogram; 

and p(;ri (c) I:,ri (h)) is the conditional probability of the point colour given its height. 

This probability is computed using the colour Gaussian PDF (N/i{fI·, E)) associa.ted 

with the chromogram bin of the pixel height. 

To speed up the process, in the actual implementation only an area around the 

last person position is considered. The dimension of this area is set dynamica.lly every 

frame to be 50% larger than the estimation size of the la.')t person location. This region 

should cover any possible displacement of the target from the last time step. 

Background exclusion 

To further improve the performance of I\Iean-Shift the background pixels are removed 

from the scelH~ and only the foreground pixels, which are asslllued to helong to people, 

are considered. A foreground segmentation is perforllled at each time step using 
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Figur 5.17: In tant of the execution of the Mean-Shift tracker with 8 people involved. 
Th part ial re ult are pre ent d for each evaluation tarting frolll the closer per on. 
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the depth-based background subtraction implementation described ill section 4.2.1.l. 

The objective of this measure is two fold: first, to mitigate the interference ad<lml by 

background data during tracking; and second, to increase the cOlllputatiollal speed as the 

number of pixels to consider is smaller and less iterations are required to ("()llV('rgp. The 

same approximation has been used in other works [1O:_~, 101] , however tlwy use intellsity 

images which require sophisticated techniques to deal with illulllination conditions such 

as shadows or gradual illumination changes. 

Automatic adaptive kernel size 

The projections of targets into the l\loA vary their sizes with the range as it was 

reported in section 4.3.3. In order to handle these variations the CAl\1SIIIFT algorit.hm 

[1l0] is employed5 . This technique follows the sa.me methodology of Mea.n-Shift with 

an additional step at the end after the Illode of the distribution is found. At this step 

the size and orientation of the kernel is estimated using the moments of the underlying 

distribution. Although CAl\ISHIFT was originally designed for face tracking, it has 

been used in other contexts aoS well and can serve a."! a good approxilllatioll for t.rnckiug 

people in the MoA. 

Initialization of tracks 

Another limitation of the Mean-Shift tracker in surveillance environlllents with lllultiplp 

targets is the lack of a mechanism for initializing new tracks, In this impl(Hlwntatioll 

the people segmentation methodology presented ill chapter 4 is elllployed to identify 

new people. This module is executed at every frame after all act.ive t.a.rget.s hav(~ been 

evaluated. Therefore, only the data that has not been associated with any ta.rget is 

used for the detection of llew people. 

Termination of tracks 

Regarding the identification of terminated tracks a similar procedure to the one presented 

in section 5.2.3.4 is elllployed. There is a time threshold where the target is still active 

even if no evidence for its existence is found. This measure allows recovery from 

temporarily occluded targets, A target does not produce evidence of existence when 

the area of the kernel returned by CAl\ISHIFT is smaller than a certain threshohl 

Tarea . This threshold waf; set experimentally to 100 pixels2 which corresponds to an 

area approximately of 400 cm2 and it was estimated using the projected area of au 

occluded person at 1 m. from the camera, 

5In t.his work is used t.hc' CAMSHIFT impkllll'nt.atioll versioll illduded ill t.he c'olllput.('r visioll 
framework OpellCV 2.4. 
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Summary of the proposed algorithm. 

To sUIIlmarize, the proposed approach consists of the following steps: 

1. Sort targets by distance. A list of targets is created where targets dos(~r to the 

camera are located first. 

2. Track first target in the list. Using the target chwmogmlll the tracking space is 

weighted (equation 5.37) and the CAMSHIFT tracker is applied. 

3. All samples that belong to the current target are W11l0Vl~<l from the tmckillg space'. 

4. If there are more targets left in the list go back to step 2, otherwise continue to 

step 5. 

G. Identify and remove terminated targets. If a ta.rget is lost for lllon~ tha.n a 

maximuIll period of time it is eliminated from the list of targets. 

G. Detect new people in the scene. The people segmentation module is executed 

with the remaining data after the tracking of all targets. 

The results of the evaluation of this enhanced version of Mean-Shift are presented 

in the next chapter. 

5.4 Discussion 

In this chapter two different tracking methodologies have been investigated ill the context 

of multi-target tracking. The standard approach bast-xl on object segmentations and 

data association, namely the Kalman filter, and the Mean-Shift method, an alternative 

"data association-free" tracker. 

Thacking with data association: the Kalman filter 

A chief a..<;pect of the Kalman filter in multi-target environments is the selection of 

the correct measurement for the update of each target. This requires an additional 

module to evaluate and identify the best set of a.':lsociatiollS betwcl'n llwasurcllH'lIts awl 

targets at each time step. This issue is known as the data association problmll. The 

objective is to find the set of disjoint associations that maximizes the total similarity 

between targets and measurements, which is computed bused 011 the compa.rison of 

their appearance models. 

Two different appearance Illodels were presented in this chapter. First a silllple 

spatial model defined with the mean location and area of a person in the ~loA . This 

Illodel is easy to implement and fast to compute but does Bot discriminate betweell people 
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effectively in dense target spaces. To overcome this lilllitation a more sophisticated lllodel 

was presented, the so-called chromogram. A chromogram is a novel app(~arance lllodel 

that combines the absolute height dimension in the 3D space and the colour dilllcnsioll. 

It is constructed in a multi-part fashion structure particularly useful durin~ partial 

occlusion situations allowing only the observable parts to be considered. Furthermore, 

it is robust to changes ill scale since it uses the absolute height of targets. 

Data association is not a trivial process especially in dens(~ targd sit.uat.ioBS. 'I'll<! 

problem becomes even harder to solve when the number of targets is unknown, spurious 

measurements are present in the scene, temporal occlusions are frequeut and splits 

or merged measurements are considered. The problem of data association has been 

studied in this chapter by exploring three well known methodologies each of increasing 

complexity: Iterative Nearest Neighbour (INN), Sub-optimal Nearest Neighhour (SNN) 

and Global Nearest Neighbour (GNN). The first is widely used because of its simplicity 

and high speed execution, but is highly dependeut Oil the order of association. SNN is 

independent of ordering but does not explicitly seek a global solution, unlik(\ GNN. 

Alternative tracker: the Mean-Shift approach 

The Mean-Shift technique for tracking is considered as an alternative trackm· to the 

traditional tracking methodologies based on data a.ssociation e.g. Kalma.n filter. In this 

work a novel approximation of the Mean-Shift tracker has been presented a.iming to 

increase the performance when tracking multiple targets. 

The Mean-Shift tracker as originally proposed by Comuniciu ct a1 [70j weights 

the trucking space using the current image and the target model and searches this 

space for the location of maximuIll similarity with the target. This search is lwrfort\\('d 

in an optimal way using the rvlean-Shift gradient ascent methodology. Although this 

technique has become very popular in recent years because it is easy to illlplement and 

computationally efficient, the following limitations are associated with it: 

• It is in general rather sensitive to the interferences produced by background data 

aud similar targets, in particular during interaction periods. 

• Targets are modelled with colour histograms, which a.re robust strndun~s against 

rotations and non-rigid transforlllations. However, they lack of spatial inforlllation 

which make them less discriminative in cluttered backgrounds or when lIlultiple 

targets are nearby. 

• Uniquely the transiationaimotioll is computed. It does not account for chauges 

ill scale or orientation. 

• The tracking space is built over the image plane where occlusions are difficult to 

solve. 
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• It does not provide a mechanism for the automatic initialization of new targets. 

The approach propos(~d enhanced the standard .Mean-Shift, t.ra.("k(~r to ()v(~n:()IlW t.\WS(\ 

limitations. The modifications introduced are the followings: 

• The chrolllogram structure presented in section 5.2.2.2 is emploYl~<l to lllodd 

the appearance of people. This model is highly discriminative minimi:t.ing the 

distractions produced from nearby targets or from the background. 

• The data belonging to a target is removed from the trackillg spa.('e Ollce that 

target has been evaluated. This measure reduces the iuterfcrcnce produced by 

uearby targets. However it requires a meaningful order of evaluatioll. Considering 

that people closer to the camera are less likely to be occluded, they are evaluated 

first. 

• The tracking space is built over the ground plane I\IoA with the objective of 

increasing the performance during occlusion situations. 

• The background data is removed from the scene at every time step before the 

evaluation of the targets. This measures avoid possible interferences of the 

background with the tracking process and speed up the cOlllPutations since less 

data is considered. 

• An automatic process to adapt the kernel size at each tinw step is employed to 

handle scale changes of targets in the tracking space. In particular it is l'lIlployed 

CAMSHIFT, an approach proposed by Bradsky [l1O] that computes the scale 

and orientation of the target based on the moments of the distributions. 

• The people segmentation module presented in chapter 4 is PIllploye<l for the 

initialization of new targets at every time step. This module is executed after all 

current targets have been evaluated so only the remainillg data is analysed. 

The proposed approach takes "hanI" decisions to <ldenninp t.he origin of the 

pixels giving priority to those targets closer to the camera, which lUight hut to 

incorrect solutions occasionally. A possible line of investigation would be to cOlnputp 

the probabilities of the pixels with respect to each target and assign each pixel to the 

target with higher probability. Another altel'llative could be to weight the contributions 

of the individual pixels with targets using their pl'obabiliti(~s ill a "soft" way. 
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Chapter 6 

Performance Evaluation: 

Multi-target Tracking 

The evaluation of an algorithm is not only important to <':Ollipare the results with 

other people's works, but also to assess progn~ss during its (ieveioplllcllt. This chapter 

describes in detail the procedure followed for the evaluation of the tracking methodologies 

presented chapter 5. 

The first stage is the design of a dataset and ground truth to serve as a platform for 

the evaluation. Ideally, the dataset should cover the challenge situations the algorithm is 

expected to address. For example, in this project the dataset should cOlltain occlusions 

and interactions between people. The ground truth is considered the perfect solution 

which all algorithms should aim for. The generation of the grouml truth for a trackiug 

application normally requires the manual anllotation of all targets throughout the 

sequence by a human operator. This is a highly tedious task which is error prOlw ill 

part because of the subjective interpretation needed by the annotator aIHl also by the 

likely reduction in the concentration of the operator after a long time repeating tllP 

same task. 

The second stage entails the identification of the relevant failure modes of the 

system. Depending on the application the failure lllodes will be different. For iustance 

an application that counts people is more interested in gettiug the right llUluber of 

people ill each moment rather than the accuracy in their location. Next, 11 set of 

metrics needs to be defined to cover all detected failure modes. These llletrics should 

be comprehensive enough to allow the identification of weakness(!s and strengths of 

the algorithms, which is useful during the development stag(~ to assess the progwss. 

Ideally, they should be combined to generate a single global llletric to uescrilw tlw 

overall performance which simplifies the comparison between different approaches. 

This chapter first presents in section (j.1 a study is cOllducted to identify relevant 

failure modes in multi-target. tracking environments and a set of llll'tri('s is PW})()s(!d t.o 

provide meaningful evaluations. Section (j.2 describes the evaluation parallleters. The 
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tracking methodologies presented in chapter 5 are evaluated and cOlllpared quantitatively 

in sections G.3 and GA. Finally, in section G.5 the condusiom; are presented. 

6.1 Failure modes and evaluation metrics 

As defined in section 4.5.1, the failure lllodes of a systelll refers to the situations whew 

the outcome of the algorithm differs from what is expected; in this cn.se the ground 

truth. The failure modes are application dependent. As an example, for a system that 

counts people the inaccuracies ill the location of people is not a relevant issue. \Vhat 

is important is to obtain the correct number of people in the seeBe. On the contrary, 

location inaccuracies might be relevant for an action recogllition systmll. The proper 

identification of the relevant failure modes in a particular application is n critical st('P 

in order to define meanillgfulmetrics for its evaluation. 

Failure modes 

The two following failure modes have been identified as the most relevant failures for 

the proposed application: 

• Cardinality errors. Due to noisy and inaccurate data, discrepancies occur ill the 

number of tracks detected by the System (STs) with respect to tho lHunber of 

Ground truth Tracks (GTs). These errors occur because one or several GTs were 

not detected by the system (e.g. the target wa.") distant or highly ocdudpd), or 

because detected STs do not actually belong to any existing GT (e.g. spurious 

measurements) . 

• Label inconsistency. When people get into physical interactions of any kind (e.g. 

grouping, haud shaking, path crossing) they become spatially dose and the propl'r 

identification of the targets involved becomes harder to rel:iolve. These situations 

are likely to produce different labels for the sallle target before and after the 

interaction. Note that the possible inconsistellcy of labels durillg the illt('ractioll 

(i.e. merged measurement) is out of the scope of this evaluation. Figure G.1 depicts 

the lllost COUllllon scenarios where label inconsistency occurs during Interaction 

Periods (11'). 

By no llleans do the aforementioned errors cover the tota.lity of fa.ilures that call 

arise ill a multi-target tracking system. However, they define the problematic situations 

that are intended to be tackled in this work. 
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___ GTl 

___ GT2 

_ · _ · -· STA 

_ . _._. STB 

(a) Failure mode 1: Two targets swap their IDs aft.er the 
IP. 

GT 1 

GT 2 

_._ . _ . STA 

_._._ . STB 

_ . _._ STC 

(b) Failure mode 2: GT 2 chang s its ID after t he IP. 
Note that this failure mode is equivalent to the failure 
mode where t he GT 1 changes its ID instead. 

___ GTl 

___ GT2 

_ . _._ . STA 

_ . _ . _ . STB 

_ . _ _ . STC 

_ . _ . _ . STD 

(e) Failure mode 3: Both, GT 1 and GT 2 change th il" 
ID after the IP. 

Figure 6.1: Failure modes during an Interaction Period. 
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Evaluation metrics 

Throughout the years different metrics have been proposed aiming to standardize 

the way multi-target trackers are evaluated. Authors tend to us(' the lllOSt suituul<~ 

metrics for the evaluation of their algorithm and in many cases they come up with new 

additional metrics that better describe the particularities or novdti(~s of their approach. 

Therefore, there does not exist a set of standard nwtrics for (waluatillg Illulti-targd 

tracking systems. For this evaluation, the popular set of llletrics proposed by Yin et al. 

[ISo] are used since they provide suitable llletrics for assessing the failure modes just 

identified. 

As a prior step to the computation of the metriC's GTs are mapped with STs 

based on temporal and spatial overlapping. In the original paper the spatial overlap 

A(G1i,k, 5Tj ,k) at frame k between the i" GT alld it" ST is defined as: 

A(GT. ST) = Area(GJi,k n STj,k) 
t,k, ),k Area(GJi,k U STj,k) (G.l) 

where Area( GJi,k n 5Tj ,k) and Area( G1i,k U STj,k) refer to the intersection and union 

region respectively between the bounding boxes of GTi and 51} at time k. For this 

work, the computation has been slightly modified since the GT and ST are represented 

by Gaussian PDFs. The Bhattacharyya. coefficient has been used instead to obtain a 

va.lue of spatial overlapping as it was done for the people segmentation nvaluatioll ill 

section 4.5.2. 

The temporal oyerlapping is defined as follows: 

T( GT 5Y:) = Lcngth( G1i n 51)) 
1, J Length( G1i U 51}) 

((j.2) 

where Length( G1i n STj ) and Lellgth( GTi U STj ) are the teIllporal inters(~dion amI 

union respectively between the life span of G1i awl 51). 

In the original paper nine different metrics are presented, two for the accuracy of 

detections at frame level and seven for the consistency of trajectories at track level. 

Not all of them are relevant for this project and therefore only the following sub-sct of 

metrics are adopted: 

1. Correct Detected n·acks (CDT): A GT is identified as a CDT if it has sufiident 

spatial and temporal overlap with at least one ST that has sufficient spatial and 

temporal overlap. 

((j.3) 

where Tt and Ta are predefined temporal and spatial thresholds respectivdy, and 

N refers to the number of frames that have both GTj and S1j. 
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This metric is an indicator of high performance and thereforc~ is eXlwctpd to rdum 

large values. 

2. False Alarm Tracks (FAT): A ST is regarded as a FAT if it does Bot have ('Bough 

temporal or spatial overlap with Hlly 01'. 

(G.4) 

The evaluation of this metric should report low values to iudicate good pm-[or-

mance. 

3. Track Detection Failure (TDF): A GT is considered a TOF if it does Hot have 

temporal and spatial overlap with any ST. 

(G. [)) 

As with the previous metric TDF are expected to be as low as possible to guarantee 

high performance. 

4. ID Change (IDC): This metric counts the number of label c:hallges for GTs. The 

actual implementation of this metric, unlike the one proposed by the authors, is 

computed with respect to OTs instead of STs. In addition, since IDes ma.inly 

occur when targets are spatially dose, they are evaluated sp(~dfically at t.lw 

Interaction Periods (IPs) - see section 5.2.~J.5. For evaluation purposes au IP is 

defined over three sub-periods (see figure G.2): 

• Before merged measurement. This consists of a predefined number of fra.mes 

before the merged measurement is detected. 

• Merged measurement. Lasts as long as the merged mmsurement is detect(~d. 

• After merged measurement. This consists of a predefined IlUll1h(~r of frallles 

after the actual merged mca:f/L'rCmcnt is <lded,(~d. 

An IDC is counted during all IP when a GT is lIwpped with a. pa.rticular ST 

before the merged measurement occurs and is mapped with a. <lifi"en'llt ST after 

the merged measurement. Note that the evaluation during the actual mcr:qed 

measur-erncnt period is out of the scope of this project. For example, attelldillg; to 

the cases of study depicted in figure G.1, in the first and third ca8(, (figures G.l(a) 

and (j.1 (c) ) two ID cha.nges are counted, and only one ID change is computed ill 

the second case (figure 6.1 (b)). 

Low values of IDes indicates a good performance of the algorithm (lspecia.lly ill 

the resolution of occlusions. 
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• Before Merge Measurement 

• Merge Measurement 

• After Merge Measurement 

Figure 6.2: Sub-period. in all IP. 

For more details about these metrics the read er is referred to the od gillrd pap r 

[156]. 

An additional metric is presented that combines the resul t of e DT, FAT alld TDF 

into a single global resul t. This metric is the F1-score, which wa pre 'ented in sectioll 

4.5.2 and aims to ease the comparison between different algori thms by repr sent ing with 

one value the overall performance of the system. The Fl-s ore values are 1I0flll a.lized 

between 0 and 1 where 1 indicates the ideal performance. 

6.2 Evaluation parameters 

This section covers the relevant decisions taken for the actual implementation of the 

metrics, which allow the reader to replicate the results presented in section 6.:3. 

Regarding the estimation of the spatial overlap between GTs and STs defin 'd ill 

equation 6. 1, the methodology used depends on t he primitives employed to delimi t t he 

physical extent of the target . - e.g. bounding boxes, ellip es, PDFs. Ulllike the original 

paper, in th is work t he physical extent of a target is represell ted with a Gau ~ ia ll PDF, 

and therefore a slight ly different approach is considered. The spatial overlap ill t his 

implementation is based on t he Bhattacharyya coeffici ent ( ee equation 5.22), alld til 

spatial threshold is set to 0.4. 

The temporal overlap is calculated as in the original paper with a thre hold ,t to 

0.5. 

In t his implementation , a GT is only allowed to be mapped to a maximum of one ST. 

\iVhen mult iple STs satisfy the spatial and temporal overlap condi tions for a parti ular 

GT, the mapping is performed using a majority based rule i. e. the GT is 1l1apped to 

the ST that meets the spatial condition for the largest amount of time. 

Finally, for the evaluation of IDes during interaction periods, the frame spall that 

defines the periods before and after a merged measurement is set arbitrarily to 10 fram . 

In each period an independent GT mapping is performed following the majori ty ba ed 

rule. An IDe i accounted if the STs mapped in both periods arc different. 
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6.3 Evaluation of data association strategies 

The tracking methodology described in section fi.2 is <,valuated wit wgard to the 

following aspects: 

• Object modelling. Two different models have been proposed; the spatial lllo<iol 

and the chrolllograms - see sectioll fi.2.2. 

• Data association methodology. Three techniques of increasing sophistication 

have been presented: Iterative Nearest Neighbour (INN), Suboptimal Nearest 

Neighbour (SNN) and Global Nean~st Neighhour (GNN) - s(~() S(wtiOll r>.2.:1. 

• Update strategy during merged measun~rnents. When a mer:qcd 7nC(L.'i'lL7·ClIwut is 

detected the targets involved can update their location with the mer.IJfd mm.'mrc­

rnent or not. If the update is skipped, the target estimation reiips exclusively on 

the Illotion Illodel of the target previous to the mer:qed mcw;ur,(;1T!cnt - s(~e section 

5.2.:3.5. 

Additionally, a dummy algorithm has been implement{)d that perforllls the data 

association randomly and is used to serve as a benchmark for the rest of appwaciws. 

This algorithm is referred to a." Version 0 and it is independent of the object model 

employed. 

In sections 0.:3.1, G.3.2 and 0.3.3 a detailed analysis of the results is giwll atl(,IHling 

to the three aforementioned aspects. These results have beeu obtained using t IH' dataset 

presented in section 4.5.4. For completeness the full set of results are pws(,lltpd ill 

section G.3.4. 

6.3.1 Choosing an object model: Spatial vs Chrolllogralll 

The first analysis conducted aims to compare the two mouels propospd: tlw silllpip 

model ba."ed only on spatial features and the more discriminative model that cOlllbines 

3D height and colour dimensions, the so-called chwlllograllls. The two evuluatiolls are 

conducted using the INN data association methodology and a llorl11al updat<~ strategy 

during occlusions. Table 6.1 presents the results for both appearance models along with 

the results of Version O. 

II eDT I TDF I FAT II F'1-score IIIDC I 
Versioll 0 23 22 48 0.4 G9 

Spatial l\Iodel 25 20 41 0.45 G7 

Chromogram 33 12 35 0.58 37 

Table G.l: Object model evaluation results (I). 
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A visual compari on i given in fi gure 6.3 where only thc two Illost r(' pr('s(' li t Ilt iv(' 

metrics are shown; the F1-. core t hat derives fro])] DT, TDF alld fAT. Hlld t 11(' lD ' 

to allow an independent evaluation of the algorit hl1l during illt cnwL ioll periods. 
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Figure 6.3 : Spatial model vs Chromogram model. (INN, nO'l'lnaL 'ltl)(la/,(') . 

These resul ts indicate a clear improvement in the oventll p rfOL"lnHJl(, (, of ell ro llJOgrH ill S 

over spatial models e pecially in terms of IDC, in fa t the pat ial moclel is olll y s ligllLly 

better than Version O. These results are not particula.rly surpri ing illC'c citro lllogrHI1 I.· 

provide with specific mechanisms for dealing with occ'lu. ions sit. uat. io ll s by Il sing o ll ly 

the observable parts. Addit ionally, the fact that they are built. ov ' r t ile abso lut (, lI ei rll t. 

dimension of the 3D space makes them robust to changes in SCRle. 

Interestingly, this increment in the p erformance is even morc signifi (,~"Illt whell 118('(1 

along 'vvith SNN or GNI , which reveals t hat di criminativ models arc more rclevallt 

when used in combination with a sophi ticated data a so iat ion m et.hod. Tabl G.2 

presents the results obtained with the SNN methodology a lld a norlll a l IlpclHtc stra tegy. 

Version 0 23 22 48 0.4 69 

Spatia l .fodel 28 17 34 0.52 57 

Chrolllogram 40 5 19 0.77 15 

Table 6.2: Object model evaluation r ult (II). 

At tending to the F1- core and IDC metrics fi gure 6A how a vi ual Olllpan OIl f 

both appearance models. 
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Figure 6.4: Spatial model vs Chromogram model. AN, 1W1"/II.a[ update) . 

6.3.2 Choosing a data associat ion 111ethodology: INN, SNN, 

GNN 

T he evaluation of three data association approa hes is PI' ' llLed ill t. hb s 'ct io ll ill 

detail. These are the simple Iterative Nearest ighbour whi h relics It av ily ill t. he 

association order; the more advanced Suboptimal Near t Neigllbom ; and the optilllal 

Global Nearest Neighbour method. For this evaluation t he chroll10grmn apPCHrH II CC 

model is used with a normal update tratcgy during occl l! iOll · . Table (j.;) prcst' uts t he' 

resul ts obtained for the three data association mcthod and V r ion O. 

II CDT I TDF I FAT II Fl-score II ID 

Version 0 23 22 48 0.4 69 
INN 33 12 35 0.5 37 
S TN 40 5 19 0.77 15 

G N 40 5 19 0.77 15 

Table 6.3: Data asso iation evaluatiOll. 

A closer look is presented ill figure 6.5 where the F l -score is liS d t omparc the 

global performance of the three methods alld the IDC metric is llsed to a,'scss their 

performance specifi ally during interaction period . 
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Figure 6.5: INN vs SN v G T. ( Chr-omogmrn n07"'lnai 'Ill)(ia le) . 

T he results of the Fl-s ore metric reveal a ignificall t illCTcas' ill Lhe oV('l'<1 11 pcr-

formance of the two more sophisticat d method , S all I wit h r('~pc('t. 1,0 t,he 

impler I .. 11\ till ou tperform Vel' ion 0 by a fa tor of 1.5. R garding t. he IIII1lJl )('1' 

of IDCs, IN reduces them by half with re pect to Vel' ion O. NN and . obt.nillcd 

about 2.4 t ime les number of IDC than INN. An interesti ng r suI t. is Lit e fnet. that TN 

and G. behave imilarly. A po ible explanation might b that for t. he ·c eva luatioll 

parameters the sub-optimal results obtained with S N happen to b' t he opLi Jll a l. 

6.3.3 Choosing the update strategy during occlusions: 

Normal update vs Non-update 

A final discu sion refers to the updat strategy followed d ming m 7:9 d rnca 'm ' 7n rnts. 

Two po ible opt ions are presented: normal update wher t.arg t updat their position 

with the m erged m ea 'urem ent or non-update. For thL evaill ati n 'lIr Illogrmlls HI' 

used as appearance models and the GN N methodology i employ d to rC'~o l V(' t.he 

da ta association problem. Table 6.4 presents th re ults btailled for t.he t.wo Ilpdate 

strategies and Ver ion O. 

II CDT I TDF I FAT II Fl-scar 

Vel' ion 0 23 22 4 0.4 69 

Normal update 40 5 19 0.77 15 

Non-update 43 2 1 O. 1 12 

Table 6.4: Update stra tegy evalua tion (I) . 

Figure 6.6 pre ent the vi ual ompari on of the overall perfonnallc ' with the 

Fl-score and the more d t ailed evaluation dming in t. er·~ h II periods \\ it. h th(' JD 

metric. 
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F igure 6.6: Update vs Non-Upda te strat gy d uring mcrgillgs. ( h1"Om og'/"{/,1/I" 

T he F l -score resul ts show a similar performance between t he two llpdnt stra te ,. it's 

improving Version 0 by a factor of 2 approximately. Bot h stra tegiC'.' )bt <1 ill cO lllpmH bl(' 

numbers of IDC whi h is not urpri ing 'inc t he imila ri ty betw(' 11 cli ro lllogra l1l . does 

not employ location feature. Fur thermore the numb ·'r of lD ,ue reduced a bo ll t 

even t ime with respec to Version O. 

An additional evaluat ion was conducted to (l.S c t h p rfOrJllHnC of the spatial 

model with respect to the update strategy ut ilized . Table 6. r: presell t · t. h ' com pa ri 0 11 

between the two update strategies using t he spa tial model and t il G N cl at.a Hssociat ioll 

method. 

Version 0 23 22 4 0.4 69 

onnal update 27 18 35 0.5 60 

Non-update 41 4 21 0.77 20 

Table 6.5: Upda te strategy evalua tion (II). 

It is intere t ing t he ignifi cant improvemen t \Vh n the non-upcla t t rat,cgy is COlll­

bined wi t h patia! mode! as illustrated in figur 6.7. The overall ('va lua t ioll is present.cd 

with the F1-s ore and ID C how t.h specific p rformant f the a l rorithm during 

ocelu ions. 
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Figure 6.7: Update vs Non-Update strategy during 111 rging . ( p{J.l:ialmori l, NN) 

T he e results suggest that spatial models, which in g neral arc C'o lltjid crcc! poor 

discriminat ive models when targets are close, are in fact adequHt. \ Illodels whell combincd 

wit h a non-update strategy during merged meaS1l1' m nts. However , t his illt crpr 'tHt. ion 

must be taken with caution as it depend on the accuracy of t. h tar rC'ts ' mot ion Ill od el. 

If during a m rged measurement the targets involv d mod ify t heir veloc it.y or d ir ct. ioll 

the motion model prior to the m rg d measurem nt i not 1 ng l' a 'cura t,c Hl1c1 r Iyillg 

on it results inevitably in fai lures. As an example, figure 6. pre Cll t a 'it ll at io ll where 

two target become merged and t he motion model of one of t.hem cha n res. T he t.wo 

update trategies are compar d during this cenario u ing differell t appcara n e model::;. 

The first approach utilizes the spatial model, I TN for data as ociat. ion and a 1I 011-lIpdate 

strategy during the occlusion. T he econd approach u s thc h romogralll appcarn llc \ 

model, GNN and a normal update strategy. As expected the first. approach fa il ' to 

resolve t he occlusion since it relies on t he motion model of t he tar ret. T he second 

approach. on t he other hand , succeeds beca1\se it does not usc any mot iOl1 est.i mat.ion and 

relie exclusively on the performance of hromogram highly d i crimin at. ive Hp pearn ll C'C 

models. 

6 .3.4 Complete set of evaluat ion resu lts 

In this section the result s obtained from all the evaluations cond u ted arc pr cll tcd . For 

visual purposes the results are divided in three tables . Table 6.G ill cl lld t.he bell l'hIlIRl'k 

results obtained with the Version 0 algorithm. Table 6.7 presen t. til r suI t o\) tH inccl 

wi t h a normal update t rategy d uring occlusion. Finally t.ableG. hows t. ll valll a tio lls 

wi t h a non-update strategy during 0 clu ion. 

II CDT I TDF I FAT II FI-Scor 

Vel' ion 0 II 23 I 22 I 48 II 0.40 69 

Table 6.6: Result obtained from a random proce s of H :->oc: iat ions (\ cr:-;i 11 0). 
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Figure 6. : Three key frames of an interaction p eriod Det.wC'C'll two t argC'l s, Top row: 
lon-update strategy combined with spatial models and INN. T his a pprorH'iJ fnils as tI l(' 

motion of one of the targets slightly hang duri ng thC' interact iOll , l\ lidcJle row: olollL' 
images of the key frames of the interaction, Bott om row : pclnt e sl rat ('gy combilled 
with chromograms and GN~, In thi ca e the a ociat ioll is reso lved successfully. 
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COT 'I'DI<' FAT Fl-scot'(, IDC 

INN 25 20 41 0.45 G7 

Spatial fvIodd SNN 28 17 :l'! O.S2 f)7 

GNN 27 18 ~15 0.5 GO 
N onnal Update 

INN 33 12 ~15 0.S8 ~~7 

Chwmogram SNN 40 5 19 0.77 15 
GNN 40 5 HI 0.77 15 

Table G.7: Set of results for a normal update stmt(~gy during on:lusiolls. 

II eDT I 'I'DI<' I FAT II Fl-scorc II IDe I 
INN 37 8 29 O.U7 

Spatial Model SNN 41 4 21 0.77 

GNN 41 4 21 0.77 
Non-Update 

INN 35 10 :15 O.G1 

Chromogram SNN 40 5 24 0.73 

GNN 43 2 18 0.81 

Table 6.8: Set of results for a non-update strategy during occlusions. 

6.4 Evaluation of the enhanced Mean-Shift 

methodology 

28 

20 

20 

41 

18 

12 

In this section the Mean-Shift approach for multi-target tracking proposed ill sl'ctioll [).~1.2 

is evaluated quantitatively. In addition, it is compared with the tracking nwthodology 

based 011 Kalman filter described in section 5.2; in particular with the versjon that 

obtained the best results in the evaluation of section u.3 i.e. KF with the GlobalI\earcst 

Neighbour for data association and the chrolllogram appearance lllodel. The n'sults are 

summarized in table G.9. 

II CDT I TDF I FAT II Fl-St'ore II IDC I 
Euhanced Mean-Shift 3u !J 105 O.3!J :J5 

KF + G NN + Chromogram 43 2 18 0.81 12 

Table (j.g: Performance evaluation of the enhanced version of the Mean-Shift approach 
and the tracking methodology based OIl Kalman filter, GNN and chrolllograills 

A closer detail of the most significant results is presented ill figure G.9. 

With regard to the number of CDT, the results of Mean-Shift are comparable with 

those obtained with the traditional tracker based on KF and data associatioll. In tenus 
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Figure 6.9 : Performance evaluation in terms of CDT, FAT alld ID ~ II hCII)('('d 
Mean-Shift algori thm and KF-based tracking with G Nand 'hroll1ognl lll ·. 

of IDCs, Mean-Shift obtains more than double the number pro illced by the t radit iollal 

approach. The more significant result is obtained with th numb r of FATs. T h 

Mean-Shift approach is especially poor in the large amount of false alanlls that ar 

produced . A possible explanation for this behaviour may be the inaccm Cl 'y of t.h ' 

people dimension est imated by CAMSHIFT. It is been observed that t h est. imatiolls 

are slight ly smaller than the actual extension of people in MoA. T his re 'ults ill r 'gions 

of people data falling outside t he estimation area which are not removed frolll t.he 

feature space and, as a consequence, being detected as new people. F igur (j.IO 'hows 

an example of this behaviour in a particular instant of the video seqllcll . 

A possible solution to this situation is to explore different approachcs for comp uti llg 

the size of the estimation such as the SOAMST algorithm [109], or the l1lethod propo d 

by Zivkovic and Krose [71] based on the EM algorithm. Alternatively, a rcstri t iolL 

could be added to t he location where new people are detected whi 11 PI' 'v nts t. h 

creation of new targets at. the edges of the MoA. However , mol' re earell 011 t.hi . i u 

needs to be undertaken. 

6.5 Discussion 

In t his section t.he different. t.racking methodologies pre ented in chapter 5 were evaluated 

quantitatively. For this evaluat ion a dataset was specifi ally reat.ed which con ists 

of two video equences: one for training (Le. parameters settillg) ancl anoth r for t.h \ 

actual evaluation . They were recorded from a set of three Kinect scnsors strategically 

mounted on a non-overlapping configuration at a high locat.ion. T he cont 11 t. of t il \ 

videos consists of people walking in a lab with constant interactions e. ) .. path crossing. 
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Figure 6.10: CAIvISHIFT estimates a smaller regio)) for targct. 51 leadill g Llt t' l'CllIllillill ,. 
points to be detected as a new target. 

The dataset was manually annotated with bounding boxes 1 y a hlllllHII operator Hllel 

the assistance of the semi-automatic tool VATIC . Using t hese a llllotHt i liS t h ' fill HI 

ground truth was generated by modelling t he data within t he bOlllldillg boxt's with 

Gaussian PDFs. 

A proper evaluation requires the ident ification of t he relevant failm modes for earll 

application. In t he proposed system two main fa ilure modes were recognized : l'nrdi IlHli t.y 

errors that occur when the number of ground truth tracks diff rs from t. he 1It1ll1hcr of 

tracks detected by the system ; and the inconsistency of labels thRt. happel ls dllrill ,. 

interaction periods. For the assessment of these failur mode som \ of t. he III 't. ri C's 

proposed by Yin et a1. [156] were employed. 

First it was evaluated the performance of the tracking methodology ba eel a ll l\'a lu1Rn 

fil ter and data association. Three relevant aspects were pe ifi 'ally 0 11 icl red: t.1I' 

object model; t he data association methodology; and th update trategy dmill J' 'In 1'[j d 

measurements. As expected , discriminative models such a chromogram p ' rforlll bet.t ' 1' 

t han simple model based solely on spatial feature . In part iclIl ar the difi'crell C" is Illon' 

significant when used in conjunction with an optimal data a ociation t c:hniqIH'. T he 

multi-part st ruct ure of chromograms combined with the ab olut.e height clilllCIISioll ill 

t he 3D spa e have been proven succe sful for resolving OCel li iOll . T h ' P rfol'lllaJlC'e 

of t he imple data a sociat.ion method I TN is not snrprisillgly Oll t.p 'rfol'llwc\ by LI)(' 

135 



CHAPTER 6. PERFORMANCE EVALUATION: MULTI-TARGET TRACKING 

more sophisticated approaches SNN and GNN. It is interosting to note the fact that 

the outcome of SNN is comparable to the results obtained with G NN. This suggests 

that for this particular configuration and design, the sub-optilllal associatioll coincides 

with an optimal. Lastly, the results revealed that the update straU~gy durillg 'lI/,fTycd 

measurements is in general irrelevant when the ohject model does not contain location 

features. However, when spatial models are used the perfOrlllUUC() iucreases siguificcllltly 

<I .. '> long as targets do not lllodify their motioll during 1I/.c'/ycd 1fu:a.'mn:'l/u'uf.<;. 

Second, the enhanced Mean-Shift algorithlll for tracking was evaluated amI the 

results were cOlllpared with those obtained with the truditiollal approach based 011 

Kalman filter and data association; in particular with the version that combines GNN 

for data association and chromograms for modelling people since it was proven to be 

the best combination. The results rewaled an inferior perfonnallc() of the tvkau-Shift, 

approach with respect to the traditional tracker especially in the llUluber of FATs. 

The reason could be attributed to a systematic underestimation in the siz() of targets. 

It is concluded that further enhancements need to be introduced in the Meau-Shift 

approach ill order to achieve comparable results to those obtaiIwd with traditional 

tracking metho(iologies. 
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Chapter 7 

Conclusions and Future Work 

7.1 Outcome 

This thesis ailIled to investigate the use of the popular Kined RGI3-D seHsor for 

surveillance purposes. A framework was proposed for the integra.tion of llluitiple 1l0Il­

overlapping RGB-D cameras to allow the monitoring of large area indoor spa.C('s. New 

techniques were developed that fully exploit tlw capa.hilities of HG B-D H(~llHorS. This 

study advanced towards new works paces that are expected to serve as the oasis for 

further study withiu the research COlIlIlluuity. 

7.2 Contributions 

In this section the main contributions of this work are summarized. 

7.2.1 Calibration of non-overlapping RGB-D cameras 

The surveillance framework proposed in this work is formed by three nOll-overlapping 

Microsoft /(inect@ sensors. This configuration maximizes the area covered uIHllllilli­

miy;es the interference between sensors. To efficiently use t.lw data fwm nIl S('llSOl"S it is 

required to calibrate the sensors with respect to a COIlllllOIl coordiuate systelll. 

7.2.1.1 Issues 

The external calibration of non-overlapping cameras is always a challellgillg t.a.o.;k, 

especially because standard procedures based on corresponding poiuts cannot he applied. 

Additionally, issues related to the depth resolution and noise of the depth sensor 

inevitably result in inaccurate calibration parameters. Finally, a. refmence coordinate 

system for the entire device should be chosen carefully to a.llow simple ('alihratioll 

procedure~ and ~erve as a useful represelltation for ~('glIlelltatioll alld trackillg tasks. 
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7.2.1.2 Solutions 

A novel plane-based procedure is proposed for the calibration of lloll-overlappiug llGU-D 

sensors. The method uses corresponding planes to derive cOllstraiuts Oll rotatiou awl 

translation. The normal vector of the planes are used t.o estimate the rotations, while 

the translation is computed by using the closest poiut of tlw plullm; to the origill of tl\(~ 

reference CS. In order to ohtain lllany corresponding plant's I)('\'w(~(m pairs of 1\.( Ijan'llt. 

non-overlapping cameras a calibration tool was pwsellted - til!' "I>nddl('''. This tool 

features two coplanar boards attached to both ends of a pole to hI' d(~t('ct('d by a<ijac(,llt 

cameras simultaneously. Using a plane fitting approach planes were offectivei.v t'xtmdml 

from the range data. Finally, for practical reasons the middle Killed CS was sd(~cted 

as the reference CS which lllinimi~es the required nlllllher of calibratiolls. 

7.2.1.3 Outstanding problems 

The proposed solution for the calibration of non-overlapping I1wgP eomenls n'quin~s 801ll(' 

IIlanual intervention for holding the paddle in different positiollS ill CWllt of tile ('Il.\II('H1S. 

Ideally, the procedure would be fully automatic, A possible line of investigatioll is the 

use of accuIllUlation of trajectories to estimate automatically the geometric calibration 

l>etween sensors. 

7.2.2 Depth-based polar coordinate systelll for people 

segmentation 

For segmenting people in the proposed framework it requires the use of It l'OllllllOIl 

representation that aggregates the data froUl all sensors. Differeut deptll-hased spa('(~s 

have been explored in order to obtain a representatioll that achi('Yes high pl'rfonmlllces 

in the context of people segmentation, especially during occlusioll situatiollS. 

7.2.2.1 Issues 

Due to the nature of RGB-D sensors l>ased 011 triallgulatioll the <i!'pth l'('SO\utiOll 

decreases with distance while the amount of noise increases, Tlwse issues result ill 

people data appearing increasingly scattered with distance along the optical axis of 

the camera. Furthenuon\ when considering t.he aggregated view from all s(~nsOl'S, (~a('h 

camera produces a different orientation of datu. 

7.2.2.2 Solutions 

A dl'pth-ha."ed polar coordinate system is proposed to efi'(~ctivdy aggrq;at.(~ t1w datI\. 

from all sensors - Remapped Polar Space (RPS). In this space the prohlem of diff('rent 

orientations is automatically solved by transforming the data into 11 polar l'!'I>l'l'sl'ntatiou. 
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In addition, the effect of increasing scattering of data with distance is Illitigated hy tho 

use of a remapping operation. This operation COlllpreSS{~::; distant data Ilud eul/l,rg(~s 

closer data resulting in a hOlllogeneous representatioll of da.ta throughout, tlH' rllug('. 

The proposed space allows segmclltatiolls of people at clistlUH·ps heyoIHI tlw OI)('l"IItillll, 

range of the sensor. 

7.2.2.3 Outstanding problems 

The RPS illvolves an illcrease of approxilllately 2G% 011 the cOlll(>utatioll tillW. Tlw 

mapping of all data from the 3D Cartesian CS to the RPS cOlllprises a sot of Ilon-lilloal" 

transformations that must be performed point-wise. A future versioll could cOllsicier a 

parallelihed implementation in order to speed up the process. 

For tracking purposes the RPS presents SOllle limitations since the Illotion of peol>l(' 

cannot be assumed linear. This entails tllt' use of more comp!<'x tmckillg algorithllls 

such as particle filters, which in general are computationally intellsive. 

7.2.3 Chromogram appearance models 

Traditional tracking methodologies rely on the correct ilicntificatioll of observations 

over time (i.e. data association). In this context it is required the 11S(, of appeara.nce 

models that can effectively distinguish people from each other. 

7.2.3.1 Issues 

The issues related to appearance models are associated with varia.tiolls ill thl' ta.rget 

representation over time. Several problematic situations that producp challgl's Oil tIH' 

targets' appearance are identified: 

• Occlusions: The correct identification of people during and after occlllsions is 

a real challenge since their appearance inevitably change. Occlusions an' wry 

frequent in situations of high density of people. 

• Illumination changes: Appearance models based 011 colour information nre highly 

sensitive to illuminatioll conditions, e.g. weather, switchillg Oil/off lights, de. 

Additionally, in multi-camera systems the specific configuration of each CH.ment 

e.g. camera shutter, results in different colour represl'lltatiolls. 

• Scale changcs: \VhCll a.ppearance models are huilt ov(~r tlw iIWI.)!P plalw p('opl(~ 

scale varies according to the distance to the camera. 
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7.2.3.2 Solutions 

A novel discriminative multi-part appearance model was pres(mted that COllli>illes tlw 

height frolll the 3D space and colour inforIuatioll. It wa.s sp('cifically d(~siglWd to l)(~ 

effective in the presence of occlusions, the multi-part structure allows (lilly the (JhH(~rvahle 

parts to be considered. It is also robust to changes ill scale since it is huilt f1"0111 tl\(~ 

absolute height of targets. 

7.2.3.3 Outstanding problems 

Chrolllograms have proven to serve well ill dense ta.rget situations. HowBwr tlll'Y 

generally fail to distinguish people dressed in silllilar colours. It would be illterestillg to 

assess the effect of using extra information such as texture. 

7.2.4 RGB-D dataset for people segmentation and rnulti-target 

tracking 

For the evaluation and comparison of the different algorithms presented in this work it 

is required the use of a benchmark dataset. 

7.2.4.1 Issues 

The design of a proper evaluation platform for multi-ta.rget tracking algorithllls is a 

highly complex task. First, it requires the design of a suitable dataset e.g. <ldillition 

of routes and behaviour of actors, type of interactions, etc. Second, to produ('(' tlw 

ground truth annotations, which is in general subject to different interpretations awl 

requires the definition of certain rules e.g. how to Ullllotate occluded I)('opl(', what labd 

assigned to people re-entering the scene, etc. Third, the identification of tlw rdevallt 

failure modes of the application. Finally, the definition of a set of nHMics that I)l'ovi<h~s 

meaningful evaluation. 

7.2.4.2 Solutions 

A new dataset was presented for the evaluation of people seglllentatioll and tmckillg 

algorithms. This dataset w<},s recorded with the cOlJlbilWd <l(~viC(~ propos('d in this 

work covering an area of approximately 220 m 2
. Up to 15 people appear in tIl<' 

evaluation seqUl'IlCe performing normal behaviours such as walkillg through thc sccne ill 

a casual way and showing frequent short-lived interactions between them. It cOlllprises 

approximately 140 different people interactions where occlusions, dYllalllic awl static. 

are highly freqlwnt. The dataset was ma.nually allllotat(~(1 with bOlllHlillg boxes by 

a human operator and the assist of the semi-automatic tool VAT I C. Two relevant 

failure modes were identified in the context of multi-target tracking: mnlinality C77'OT'8 
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that occur when the number of ground truth tracks differs from the llUllllH'r or tracks 

detected by the system; and the inconsistency of labels frequently during OCclllSiollS. 

For the asseSSIllent of these failure modes some of the llldrics propospd hy Yin d al. 

[15G] were employed along with the Fl-score llletric. 

7.2.4.3 Outstanding problems 

The majority of occlusions appearing 011 the dataset are reduced to brief internctiollS 

such as handshaking or path crossing. A future extellsioll shoulcl ilH:lud(' 1l('W scellluios 

with more challenging occlusions such as grouping of people, chunges of directions nnd 

velocity, etc. 

7.2.5 Additional contributions 

In this section some additional contributions that were proposed to assist ill the progress 

of this work are presented. 

7.2.5.1 Enhanced Mean-Shift algorithm for tracking 

A modified version of the Mean-Shift tracker was proposed aiming to improve tho 

performance in multi-target tracking envirollments. The main lllodificut iOlls an', first, 

the integration with chromogram appearallce models to increas(~ the discrilltillativ(~ 

capacity during occlusions. Second, the use of a ground plane tracking space to Illillillli~() 

occlusions. Third, the segmentation of foregrouud data to reduce distractions fWIll tlw 

bac;kground. Finally, the use of a priority-based target evaluation strategy to lllinilllize 

the interferences between targets. 

In the proposed version, targets closer to the camera hav(~ priority for using pixds 

located in the intersection area with other targets which might lead to incorrl'ct solutiolls 

occasionally. A possible line of investigation would be to use tl!(~ probahilities for tlw 

pixels with resped to each target. For instance a pixel is lls(~d with tIll' targd. wit.h 

highest probability. Alternatively, it could be used ill a. soft way hy wpightillg the 

contribution of the individual pixels with targets using their prohabiliti('s. To w<iIlC(, 

the inevitable iuc.:rease in the computation time, parallelized illlpll'llll'lltations could he 

considered. 

7.2.5.2 Depth-based foreground detection 

A depth-based background subtraction approac;h is proposed for foregrouud segllH'lltaLioll 

that mitigates the low resolution and increasing noise introduced by RGB-D sellsors 

at far diHtallces. The maiu cOlltrihutioll in this COllt(~xt is tlw use of all adaptive 
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depth threshold derived from a characterization of the error. This approach dl"<~ctivdy 

segments foreground data while minimizing the noise. 

A failure Illode has been identified in the proposed mothod. Whell H PC'l'SOIl is Ilear 

the background, that person will not be detected if the d('pth <iiff(,l"PlH'P b('tw('(~n t h(' 

person and the background is smaller than the threshold used at tha.t dist/l.ll(,(~. 1\ 

natural progression of this work would be the use of 1t<.I<litiollui illforIlIlltioll such ItS 

colour to assist in the segmentation at critical regions of tlw S('(~lW. 

7.2.5.3 Merged measurement detector 

A detector of meryed measurements is proposed ill this work, which is 1\ 1ll0<lul<~ 

responsible for the recognition of measurements produced by mow than OlW target. 

These measurements appear when people are in dose proximity nn<i tho S<'llSOl', <Itw 

to its limited resolution, cannot separate their signals yielding I\. sillgi<' llWHSlll"l'IIU'lIt 

that combines them all, The correct detection of these nWllsureuwntH is of critical 

importance since the results obtained froUl this module are used by the tmckc'r to apply 

different update strategios, depending on whet hoI' t lw lll('asun~nwllt is llH'rgt'd or lIot, 

The proposed approach labels a measurement as a nlPrge if it Hatisfies the two 

following requirements: its area is larger than a defined threshold amI lllOl'{' tha.u Olle 

tracked target are in dose proximity. 

It has been identified a significant fa.ilure mode tlwt produces a certaiu mUllhe}' of 

false negatives. The reason seems to be the misdetectioll of partially occ\ud('d pt~opl(' 

during interaction periods. As a consequence the target proximity requin'llH'llt is 1I0t. 

satisfied. Future research might explore a soft approach where illstead of lllaking a hard 

decision whether a measurement is merged or not, it could return prolmhiliti('s to ht, 

used for weighting the subsequent actions accordingly. Another possibility could he to 

take special actions when these situations are likely to occur; for instarH'(~ by lowt'ring 

the detection threshold in that region to reduce the probability of lllis(ll,tections, 
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