
Statistical Language Modelling and

Novel Parsing Techniques for

Enhanced Creation and Editing of

Mathematical E-Content

Using Spoken Input

Kingston
University
London

Dilaksha Rajiv ATTANAYAKE

A thesis submitted in partial fulfilment of the requirements of

Kingston University for the degree of

Doctor of Philosophy

in Computer Science

2014

Acknowledgements

Many people helped this thesis along the way. First, I am grateful to my su

pervisors, Dr Eckhard Pfluegel, Dr Gordon Hunter and Dr James Denholm

Price, for their supervision, valuable time and knowledge in the process of

the study. Kingston University has constantly encouraged my studies by

offering relevant training sessions and bursaries which supplemented well

to this PhD.

During my time at the university, I was fortunate to meet wonderful people

who helped me in many ways. I would like to thank Professor Andy Au

gousti, Dr Vincent Lau, Dr Souheil Khaddaj, Dr J arinee Chattratichart, Dr

Martin Colbert, and Alan Petty for their valuable insights and involvement

at certain stages of the research.

I also like to thank Stuart Lunn and Susan Matthews for their encour

agement and support during past few years. Special thanks to my sister

Umanga and her family, my brother in-law Naveendra for their kind support

when I needed at times.

Throughout this project, I have been supported by some important people

in my life and a special gratitude should go towards them, my loving wife

Yasanthika, who stood by my side in all gains and losses, my mother She

lia, who actually inspired me to pursue a PhD, and Ananda and Thusitha

Weerakoon, my in-laws who also financially supported my studies through

out the process. Hence, I dedicate this thesis to them.

Abstract

The work described in this thesis aims at facilitating the design and im

plementation of web-based editors, driven by speech or natural language

input, with a focus on editing mathematics.

First, a taxonomy for system architectures of speech-based applications is

given. This classification is based on the location of the speech recognition,

the speech, and application logic and the resulting flow of data between

client and server components. This contribution extends existing system

architecture approaches to take into account the characteristics of speech

based systems.

We then show, using statistical language modelling techniques, that math

ematics, either spoken or typed, is more predictable than everyday natu

ral languages. We illustrate how these models, in combination with error

correction algorithms, can be used to successfully assist the process of cre

ating mathematical expressions within electronic documents using speech.

We have successfully implemented systems to demonstrate our findings,

which have also been evaluated using standard language modelling evalua

tion techniques. This work is novel as applying statistical language models

to the recognition of spoken mathematics has not been evaluated to this

extent prior to our work.

We create a parsing framework for spoken mathematics, based on mixfix

operators, operator precedences and non-deterministic parsing techniques.

This framework can significantly improve the design and parsing of spoken

command languages such as spoken mathematics. A novel robust error

recovery method for an adaptation of the XGLR parsing approach to our

operator precedence setting is presented. This greatly enhances the range

of spoken or typed mathematics that can be parsed. The novel parsing

framework, algorithms and error recovery that we have designed are suitable

for more general structured spoken command languages, as well.

The algorithms devised in this thesis have been implemented and integrated

in a research prototype system called TalkMaths. We evaluate our contri

butions to the new version of this system by comparing the power of our

parser with that contained in previous versions, and by conducting a field

study where students engage with our system in a real classroom-based

environment. We show that using TalkMaths, rather than a conventional

mathematics editor, had a positive impact on the learning and understand-.

ing of mathematical concepts of the participants.

Publications by Author

Some of the work described in this thesis are based on peer-reviewed journals/book

chapters or conference papers listed below.

• D. R. At t anayake , G. J. A. Hunter, E. Pfluegel, J. C. W. Denholm-Price, "Using

statistical language models and edit distance metrics for prediction and error

correction in a novel interface for mathematical text", U.K. Speech Conference,

September 17-18, Cambridge, U.K. (2013)

• D. R. Attanayake, G. J. A. Hunter, E. Pfluegel, J. C. W. Denholm-Price, "Novel

Multi-Modal Tools to Enhance Disabled and Distance Learners Experience of

Mathematics" in International Journal on Advances in ICT for Emerging Regions

(ICTER), 6(1), March, IEEE Computer Society (Asia Region). (2013)

• D. R. Attanayake, G. J. A. Hunter, J. C. W. Denholm-Price, E. Pfluegel, "Inter

active error correction using statistical language models in a client-server interface

for editing mathematical text" in Designing Inclusive Systems: Designing Inclu

sion for Real-world Applications, Edited by Langdon, P. et. al., Springer, pp.

125-132. ISBN 1447128664. (2012)

• D. R. Attanayake, G. J. A. Hunter, J. C. W. Denholm-Price, E. Pfluegel, "A Novel

Web-Based Tool to Enhance Learning of Mathematical Concepts", International

Conference on Advances in ICT for Emerging Regions (ICTER), December 13-14,

Colombo, Sri Lanka. ISBN 978-1-4673-5527-8. (2012)

• D. R. Attanayake, G. J. A. Hunter, J. C. W. Denholm-Price, E. Pfluegel, "In

telligent Assistive Interfaces for Editing Mathematics", 1st Workshop on Future

Intelligent Educational Environments (WOFIEEI2), Volume 13, lOS Press, June

2012, Guanajuato, Mexico, pp. 286-297. ISBN 978-1-61499-079-6. (2012)

• D. R. Attanayake, G. J. A. Hunter, J. C. W. Denholm-Price, E. Pfluegel, "SWIMS

(Speech-based Web Interface for Mathematics using Statistical language models):

An intelligent editing assistant for mathematical text", 8th International Confer

ence on Intelligent Environments, IE2012, June 26-29, Guanajuato, Mexico, pp.

327-330. ISBN 978-1-4673-2093-1. (2012)

• D. R. Attanayake, E. Pfluegel, G. J. A. Hunter, J. C. W. Denholm-Price, "Use

of a Novel Tool, TalkMaths, to Enhance Students Learning of Mathematical

Concepts" in Quality Enhancement in Learning and Teaching: How Kingston

University is improving the student experience, Vol. 2, pp 22 - 23, Kingston

University Academic Development Centre, Kingston University, London. (2012)

• D. R. Attanayake, E. Pfluegel, J. C. W. Denholm-Price, G. J. A. Hunter, "Archi

tectures for Speech-Based Web Applications", 4th International Conference on

Semantic E-business and Enterprise Computing (SEEC2011), July 20-22, UK.

(2011)

• D. R. Attanayake, J. C. W. Denholm-Price, G. J. A. Hunter, E. Pfluegel, "Talk

Maths - Developing a Speech User-Interface for Spoken Mathematics" in MSOR

Connections, Vol 11(2), MSOR Network. (2011)

• A. M. Wigmore, E. Pfluegel, G. J. A. Hunter, J. C. '-V. Denholm-Price, M.

Colbert, D. R. Attanayake, "Evaluating and improving the TalkMaths speech

interface for dictating and editing mathematical text", 5th European Workshop

on Mathematical and Scientific E-Contents, 9 Sept - 11 Sept 2010, Salamanca,

Spain. DOl http://fundacion.usal.es/5euworkshop/index.php. (2010)

Contents

Contents

List of Figures

List of Tables

1 Introduction

1.1 Motivation

1.2 Problems Addressed by this Thesis

1.3 Research Aims and Objectives .

1.4 Contributions

1.5 Thesis Organisation.

2 Background

2.1 Defining Spoken Mathematics

2.2 Language Models and Algorithms ...

2.2.1 Statistical Language Modelling

2.2.2 Error Correction Algorithms for Text

2.2.3 Predictive and Corrective Systems using SLMs and Algorithms.

2.3 Parsing...................

2.3.1 Context-free Parsing Techniques.

2.3.2 Parsing Spoken Mathematics ..

2.4 Speech-Driven Editing Systems

2.4.1 Speech Recognition Technologies

2.4.2 Speech-Driven Editing Approaches

vi

xi

xiii

1

1

2

3

4

6

7
8

9

9

10

11

12

12

15

16

16

17

CONTENTS

2.4.3 Speech-Driven Interfaces for Mathematics

2.5 Other Related Approaches

2.6 Summary

3 Architectures for Speech-based Applications

3.1 Motivation

3.2 Relevant Speech Technologies and Tools .. .

3.2.1 Post-ASR Technologies

3.3 Classification of Architectures for Speech-based Systems

3.3.1 Terminology

3.3.2 ASR and PASRP Both Performed Locally

3.3.2.1 Desktop Speech-Based (Architecture A)

3.3.2.2 ASR and PASRP on Client (Architecture B) .

3.3.3 ASR on Client, PASRP on Server

3.3.3.1 Speech Proxy (Architecture C) .. .

3.3.3.2 Application Proxy (Architecture D) .

3.3.4 ASR and PASRP on Server

3.3.4.1 ASR on Same Server (Architecture E)

3.3.4.2 ASR on Different Server (Architecture F)

vii

18

19

20

21
21

23

23

24

25
26

26

27

28
28

29
30

30

31

3.3.4.3 Distributed ASR using Same Server (Architecture G). 32

3.3.4.4 Distributed ASR using Different Server (Architecture II) 32

3.4 Choosing a Suitable Architecture for Speech-Enabled Web Applications 33

3.5 Summary 37

4 Theory of Statistical Language Models and Similarity Metrics 38

4.1 Motivation............................... 38

4.2 N-grams - A Baseline Approach to Statistical Language Modelling 39

4.3 Interpolation between N-grams 43

4.4 Cache Models . 44

4.5 Interpolation between N-grams and Cache Models.

4.6 Evaluating the Performance of SLMs

4.7 String Edit Distance Metrics and its Usage.

4.8 Applications to Spoken Mathematics

45

46

47

48

CONTENTS

5 SLM Applications to Spoken Mathematics

5.1 Introduction

5.2 Developing and Evaluating SLMs for Spoken Mathematics

5.2.1 Creation of the Dataset from Web Sources

5.2.2 Creating Statistical Language Models

5.2.3 Evaluation Results of Statistical Language Models.

5.3 Applications of SLMs to Prediction of

Spoken Mathematics

5.3.1 The SWIMS Prototype System .

5.3.2 Predictive Mathematics Interface

5.3.3 Dependence of Prediction Success Rate on Number of Alterna-

viii

49

49
50

51

52

53

56

57

58

tives Offered (Experiments A and B) 59

5.3.4 Dependence of Prediction Success Rate on Size of Training Dataset

(Experiment C) 63

5.4 Applications of Edit Distance Metrics to Error Correction 65

5.4.1 How Successful the Correction System at Correcting Errors (Ex-

periment D) . 65

5.5 Discussion of Results 67

5.6 Summary 69

6 Error Recovery Strategies for Parsing Transcribed Spoken

matics

6.1 Introduction

6.2 Spoken Mathematics as Input Language

6.2.1 Ambiguity

6.2.2 Speech Templates .

6.3 Parsing Challenges

6.3.1 Lexical Ambiguity

6.3.2 Incomplete Input

6.3.3 Incorrect Input . .

6.4 Parsing Framework

6.4.1 Underlying Grammar.

6.4.2 Operator Precedence Parsing

Mathe-

70

70
72

72

73

74
75

75

76

77
77

80

CONTENTS

6.5 Dealing with Lexical Ambiguity

6.5.1 XGLR Approach

6.5.2

6.5.3

Lexer Algorithm

Parser Algorithm

6.6 Error Recovery Strategies for XGLR Parsing

6.6.1 Classification of Errors

6.6.2 Main Idea

6.6.3 Error Recovery at Lexer Level

6.6.4 Error Recovery at Parser Level: Stage 1

6.6.4.1 The Parser Algorithm

6.6.5 Error Recovery at Parser Level: Stage 2

6.6.5.1

6.6.5.2

6.6.5.3

6.6.5.4

Sort Argument Separator Parts

Detangle Argument Separator Parts

Complete Argument Separator Parts

Eliminate Redundant Argument Separator Parts

6.6.6 Error Recovery - Summary

6.7 Summary

7 System Implementation and Evaluation

7.1 Introduction

7.2 The TalkMaths System

7.2.1 System Architecture

7.2.2 Natural Language Commands

7.2.3 Editing Paradigms

7.2.4 Natural Language Search-Driven Help Facility

7.3 Parser Evaluation

7.4 TalkMaths Field Study

7.4.1 Experiment: The Learning Activities

7.4.2 Design of Experiment

7.4.3 Undertaking The Learning Activities

7.4.4 Evaluation...............

ix

80
82
83

84
84
85

86
86

88
90
90
92
92
93

93

93

94

96

96
96

98
100

103
106

106

110
110
111
112

112

CONTENTS

8 Conclusions and Future Work

8.1 Conclusions

8.2 Future work

References

A SLM Training Data Comparisons

B LaTeX to Spoken Mathematics Yapps2 Parser

C Sample Parser Programming Code

D TalkMaths Interface Screenshots

E TalkMaths Field Study Material

x

116
116

119

124

142

147

156

168

111

List of Figures

3.1 Desktop Speech-Enabled Application Architecture (A) 27

3.2 ASR and PASRP on Client Architecture (B) 28

3.3 Speech Proxy Architecture (C). 29

3.4 Application Proxy Architecture (D) 30

3.5 ASR on Same Server Architecture (E) .. 31

3.6 ASR on Different Server Architecture (F) . 32

3.7 Distributed ASR using Same Server Architecture (G) 33

3.8 Distributed ASR using Different Server Architecture (II) 34

5.1 Typical usage of CMU Toolkit [Clarkson and Rosenfeld, 1997] 55

5.2 Building & Evaluating SLMs for Spoken Mathematics for Tutorial 'Veb

Site Data 56

5.3 SWIMS Predictive Mathematics Interface System Architecture where

"SM" refers to "Spoken Mathematics Format" 58

5.4 Predictive Mathematics Interface in use. In the top-ranked suggestion,

the SLM correctly predicts that capital will be followed by charlie . .. 59

5.5 One word ahead prediction success rate increasing with the number of

suggestions offered to the user. The different points corresponding to

the same number of suggestions indicate the results from the 10 different

cross validation trials .. 62

5.6 Two word ahead prediction success rate increasing with the number of

suggestions offered to the user .. 63

5.7 SWIMS Alternative/Corrective Mathematics System Architecture . .. 66

5.8 Alternative/Corrective Mathematics Interface in use. In the top-ranked

suggestion, the OOV word pluck is replaced with plus 67

LIST OF FIGURES xii

7.1 TalkMaths system architecture. .. 99

7.2 TalkMaths used to create the formula for the sum of n terms of an

arithmetic progression 101

7.3 Encoding of same mathematical expression in LaTeX, MathML, Talk-

Maths and SWIMS command languages respectively 102

7.4 The van der Waals equation, read as stated above, rendered by TalkMathsl04

7.5 Different editing paradigms for editing mathematics by speech, each

applied to one of equations of uniformly accelerated motion. 105

7.6 The TalkMaths Natural Language Driven Help Facility used to search

to find information on fractions

7.7 The ease of use of the system by the two groups

7.8 Improved understanding

107

113

114

List of Tables

3.1 Architecture Classification for Speech-based Systems 35

4.1 Change of 5-word cache content (marked in bold) over time. 45

5.1 Sample expressions from our spoken mathematics corpus. The names of

individual letters are dictated using the NATO pronunciation alphabet

(alpha, bravo, charlie, delta, ...) with x-ray representing the letter x. .. 53

5.2 The most frequent words (unigrams) in our spoken mathematical expres-

sions as percentages of all the words in the corpus. x-ray is the spoken

form of the symbol x .. 54

5.3 Most frequent bigrams and trigrams in our dataset 54

5.4 Cross-validation Perplexity Calculations on Statistical Language Models

of 3,194 spoken mathematical expressions using eMU Language Mod-

elling toolkit. .. 57

5.5 Sample incomplete expressions we used for Experiment A, omitted word

and predictions (using 5 suggestions, adding one word for each) 60

5.6 Sample incomplete expressions we used for Experiment B, omitted words

and predictions (using 5 suggestions, adding two words for each) 61

5.7 Experiment A: Variation of success rates of one word prediction with

number of suggestions offered to the user 62

5.8 Experiment B: Variation of success rates of two word prediction with

number of suggestions offered to the user 63

5.9 Experiment C: Variation of success rate of one word ahead prediction

with SLM size (5 suggestions per trial) - both training and test sets may

vary in size 64

LIST OF TABLES xiv

5.10 Experiment C(2): Variation of success rate of one word ahead prediction

with SLM size (5 suggestions per trial) keeping test set constant (400). 64

5.11 Experiment D: Variation of success rate (%) of correction using Damerau

Levenshtein method (5 suggestions offered per trial) 66

5.12 Experiment D: Examples of incorrect expressions derived from the same

correct expression "yankee equals capital alpha x-ray to the power of

begin minus three end" (by deleting, inserting and swapping characters).

Words with errors are marked in bold font 68

6.1 Examples of speech templates with different number of arguments 74

6.2 Operator Precedence Table. 79

6.3 Additional Precedence Tables for Mixfix Operators 79

6.4 Symbol table for spoken command "a times fraction b plus cover d

end fraction". The right most column contains additional information

about each entries (for example, if the entry is the type of op, all possible

operator classes it could take: i.e. *,0,.)
6.5 Token Insertion Rules.

6.6 Lexer Error Recovery Examples

6.7 Adjusted Operator Precedence Table . .

6.8 Precedence Tables for Interlaced Mixfix Operators .

6.9 Summary of Error Recovery

7.1 Sample results of parsing spoken mathematics corpus (complete expres

sions) using Yapps2-based parser (Pd presented by [Wigmore, 2011] ,

the Yapps2-based parser in our live TalkMaths web-based system (P2)

82

87

88

89

90

94

and operator precedence-based parser (Pa) • . • 109

7.2 Results of the post-task feedback on the ease of use of the tool 113

7.3 Results of the post-task feedback on any improvements to understanding

mathematical concepts

A.l Comparison of Overall words & most common words

A.2 Most Common Bigrams

A.3 Most Common Trigrams

AA Perplexity scores as function of training set size

115

143

144

145

146

Chapter 1

Introd uction

1.1 Motivation

Until relatively recently, automatic speech recognition was only available to a small

group of highly specialised scientists. Even around twenty five years ago, in order

to use what was then considered state-of-the-art speech recognition software, highly

expensive equipment was required. Today, even hand-held devices such as smart phones

or tablet pes and game consoles such as the Xbox and Nintendo Wii are often equipped

with some form of speech recognition software. The reasons behind this rapid evolution

are the tremendous progress that has been made in speech recognition technology, the

advances in available memory and processing power of personal computers and the fact

that complex and computationally intensive tasks can now be carried out with the help

of powerful cloud-based applications.

At present, speech recognition is used in a large number of application domains.

As a consequence, speech input plays an increasingly important role in making com

puter tasks accessible to users who wish or need to rely on input modalities other

than conventional keyboard and mouse. This includes, for example, online (distance)

learners, people working or studying "on the move", relying on mobile devices, and

disadvantaged users such as people with physical disabilities or other special needs.

Most speech recognition systems tend to focus on everyday natural language input

in one of the "mainstream" languages such as English, Spanish or Japanese, including

typical dialects of them. Often, these systems are not well-suited for recognising "arti-

1. INTRODUCTION 2

ficial" languages such as formal languages for speaking mathematics or programming

code. These languages are highly specialised and only used by a small community, and

that might be why formal languages have been given less attention by research and

industry.

1.2 Problems Addressed by this Thesis

The work described in this thesis, motivated by an enthusiasm for widening the acces

sibility of mathematics through speech input, addresses the following problems:

Editing mathematical text, which can already be a difficult and potentially error

prone process when using keyboard and mouse together with specialised mathematics

editors, is particularly challenging for users who wish or need to engage in hands-free

computing, relying exclusively on speech recognition.

Powerful speech recognition tools and products exist on the market, and these can

be installed and used together with standard desktop applications, including reasonably

user-friendly mathematics editors such as Microsoft Equation Editor. However, as we

have found, this does not result in a satisfactory solution to the above problem.

Despite several documented and published attempts to remedy this situation [El

liott and Bilmes, 2007; Gould, 2001; Guy et al., 2004; Metroplex Voice Computing,

Inc], we have found that the resulting outcomes are not very satisfactory. We have

examined most of the systems that have been suggested in the literature, and came to

the conclusion that they were not usable for the purposes we had in mind.

After some further investigation, and having reviewed the state-of-the-art of several

research strands that we deemed relevant in the context of our overarching research

problems, we identified the following problems:

Statistical Language Models (SLMs) are a widely adopted technique for implement

ing automatic speech recognition, and it appeared that no-one had evaluated sophis

ticated language models for spoken mathematics, covering a reasonably broad range

of mathematics. In particular, we could not find evidence of any SLMs being used

for improving the accuracy of recognition for this type of speech input languages. We

are not aware of any system or mathematical editor that benefits from SLMs for this

purpose.

Even if the spoken mathematics were recognised accurately, parsing the resulting

1. INTRODUCTION 3

expressions at symbol level may pose significant problems. We have found specialist

parsing techniques dealing with ambiguity for a related input language (spoken com

puter programming code) [Begel, 2005], but not for mathematics. Overall, the problem

of error recovery as it arises in our situation did not seem to be addressed sufficiently

in the literature, as standard techniques from compiler construction are not suitable.

The version of TalkMaths that was available prior to our work was limited in the

amount of mathematics that could be created, and expressions were not always cor

rectly parsed. Only the most basic of the mechanisms for editing mathematical expres

sions using speech within a GUI (Graphical User Interface) environment, as presented

in [Wigmore, 2011], was implemented. Furthermore, this editing facility was poorly

integrated in the system which made its use very difficult.

As a consequence, the TalkMaths system had only been used by a small number of

individuals where it was difficult to gauge its usefulness and in a number of usability

studies where the participants were helped by an expert. No use of TalkMaths in the

classroom, for students without previous experience in using the system, had been

undertaken.

1.3 Research Aims and Objectives

The work described in this thesis aims at facilitating the design and implementation

of web-based editors, driven by speech or natural language input, with a focus on

mathematical editing interfaces. It hence directly addresses the problems documented

in the previous section by tackling the following research objectives:

1. To investigate and evaluate the potential benefit which statistical language mod

els could provide, in the context of creating and editing mathematical text, for

the prediction of future input and for the correction of errors.

2. To implement a predictive and corrective facility for speech-based mathematical

editors using our statistical language models and an "edit distance" similarity

metric.

3. To create a framework for defining and parsing spoken mathematics, based on

mixfix operators, operator precedences and non-deterministic parsing techniques.

1. INTRODUCTION 4

4. To recover from incomplete and incorrect spoken mathematics input, by devising

novel error recovery strategies for the operator precedence parser.

5. To implement the novel parsing framework in the TalkMaths system and to eval

uate the resulting enhancements.

6. To study the benefits that using the new version of TalkMaths offers to the

understanding of mathematical concepts.

1.4 Contributions

This thesis contains several contributions to knowledge in a range of research domains.

In this subsection, we motivate, describe and justify our contributions.

First, we start by giving a taxonomy for system architectures of speech-based appli

cations. We classify a range of architectures by considering the location of the speech

recognition, the speech and application logic, and the resulting flow of data between

client and server components. We believe that our classification will be helpful for

anyone needing to make a design choice for a planned speech-based systems, for ex

ample, based on frameworks such as [Gruenstein et al., 2008; Lau et al., 1997]. Also,

our findings led us to fundamentally change the architecture of the TalkMaths system

to a web-based one: prior to this work, TalkMaths was a stand-alone desktop-based

application.

We then show, using statistical language modelling techniques, that mathematics,

either spoken or typed, is more predictable than everyday natural language. We illus

trate how these models, in combination with error correction algorithms, can be used

to successfully assist the process of creating mathematical expressions within electronic

documents using speech. Whilst some previous authors have used statistical language

models of mathematical expressions, with the exception of the earlier work of [Wig

more, 2011] and [Wigmore et al., 2009b], we are only aware of these models being

applied to the conversion of hand-written mathematical equations into electronic for

mat using optical character recognition [Smirnova and Watt, 2008; Suzuki et al., 2009].

Hence, this present work applying statistical language models to the recognition of

spoken mathematics is a novel contribution.

1. INTRODUCTION 5

Our next contributions are concerned with the design and parsing of spoken math

ematics, although our approach would also be valid for more general structured spoken

command languages. Our starting point is a design framework using mixfix operators,

leading to the construction of commands that we refer to as speech templates. This

can significantly enhance the ease of design and maintenance of any spoken command

language, and in particular, our proposed language for spoken mathematics improves

upon previous attempts [Chang, 1983; Fateman, 2006, 2009], including that in earlier

versions of the TalkMaths system.

The approach of speech templates greatly improves upon the parsing of the spoken

input in the previous version of the TalkMaths system by designing the input language

using an operator precedence grammar, which in turn is much simpler to parse while

recovering from potential errors. To our knowledge, at the time of writing this thesis,

considering operator grammars in the context of spoken command languages (and in

particular, for spoken mathematics) is a novel approach.

We then devise a parsing method for our proposed language, based on operator

precedences and non-deterministic parsing techniques. Our approach is inspired by

work on spoken programming languages [Begel, 2005] and our main novel contribution

here is an error recovery method for an adaptation of the XGLR [Begel and Graham,

2006] parsing approach to our operator precedence setting. As a consequence, the range

of mathematics that can be parsed by TalkMaths has been significantly enhanced and,

for the first time, our system can tolerate errors that might typically arise from the

input of spoken or typed mathematics.
Finally, we evaluate our new version of TalkMaths by conducting some practi

cal experiments with students using our system. Our implementation of the editing

paradigms for spoken mathematics presented in [Wigmore, 2011] provided for the first

time a persistent editing facility which subjects were able to use within a mathemat

ics teaching and learning session. We show that the use of TalkMaths, compared to

that of a conventional mathematical editor, had a positive impact on the learning and

understanding of mathematical concepts of the participants.

1. INTRODUCTION 6

1.5 Thesis Organisation

The remainder of this thesis is organised as follows: Chapter 2 reviews the related work

that has been published in the literature. In Chapter 3, we present our classification of

architectures for speech-based applications. The next chapter (Chapter 4) introduces

the theory of statistical language models and additionally discusses similarity metrics.

Moving to Chapter 5, we use statistical language models and "edit distance" metrics in

order to improve recognition of spoken mathematics. Chapter 6 contains an important

contribution of this thesis, a parsing framework for ambiguous spoken mathematics

together with robust error-correction strategies. In Chapter 7, we give an overview of

the TalkMaths system and explain the improvements in architecture and functionality

that our research contributions have made. We then provide an evaluation of our parser

implementation and finally present a field study demonstrating the benefits that using

TalkMaths can have on the learning and understanding of mathematical concepts. In

the conclusion of this thesis we critically reflect on our work and give some future

directions. Finally, we include an appendix comprising a comparison of statistical

language modelling training data, sample programming code from our implementation

of the parser and other related tools, a selection of TalkMaths screenshots and some

material from the TalkMaths field study.

Chapter 2

Background

The aim of this chapter is to provide background information for the reader in order

to become more familiar with the main topical areas relevant to this thesis.

As noted in the introduction, our proposed system for creating and editing mathe

matical text has the following modules: an engine to implement the speech recognition

(the ASR - we will be using the term "ASR" to denote "Automatic Speech Recogniser"

and "Automatic Speech Recognising" as appropriate), spoken mathematical input, a

statistical language model, an error correcting algorithm and a parser with error re

covery. This chapter outlines work that has been published in the literature in each of

these areas.

We will start with reviewing attempts to define how to unambiguously speak math

ematical formulae, followed by a discussion of statistical language models and related

algorithms for prediction and correction of text which can include transcribed versions

of spoken mathematics.

We will then present an overview of different parsing techniques, leading to more

specialised parsing of spoken mathematics. Subsequently, we discuss speech-driven

editing systems by reviewing commercial and freely available tools, approaches for

editing paradigms that use speech and finally speech-driven interfaces for mathematics.

To conclude, we mention work that relates to some of the areas in which we have been

carrying out research in.

2. BACKGROUND 8

2.1 Defining Spoken Mathematics

Defining a standard for spoken mathematics is an essential starting point when creating

speech-based mathematical editing systems. In this section, we will review several

approaches for this that have been taken in the past.

The question of how to define rules for speaking mathematics has been asked by

several authors in the past. The motivation behind these attempts to find standards

seems to be linked to three different contexts: dictating or describing mathematics to

other human beings, parsing mathematics by computer systems in order to further

process the input and defining rules for converting mathematical content to audio

synthetic speech output (text-to-speech, TTS).

One of the first attempts to give a standard for speaking mathematical equations

and objects in English appears to be Chang's handbook "Larry's Speakeasy" [Chang,

1983]. He defines spoken forms for a broad range of mathematics, from basic symbols,

algebra, trigonometry, logic, geometry, statistics, calculus, linear algebra, topology to

mathematical diagrams and graphs. Chang, himself being a blind mathematician,

primarily focuses on dictating mathematics to other human beings.

As far as we are aware, the most complete investigation into spoken mathematics

to date is presented in [Fateman, 2006, 2009]. He focuses on introducing a vocabulary

that is intuitive and easy to learn by novices, and at the same time allows as little

ambiguity as possible. This work was carried out by Fateman within the context of

the Math Speak & Write system [Guy et al., 2004]. He provided a detailed analysis

of how to speak numbers, non-numeric tokens, nested arithmetic expressions, integrals

and sums. He also discusses the problem of ambiguity, to which in some cases no easy

solution seems to be available.

Apparently unaware of this work, [Elliott and Bilmes, 2007] developed a similar ap

proach, although their language design is oriented towards the use of "two-dimensional

mathematics" in combination with an existing mathematics editor (Scientific Note

book).

In [Wigmore, 2011], spoken mathematics is also investigated, based on empirical

evidence of how people - notably mathematical students and teachers - actually speak

mathematical expressions. This was carried out by analysing transcriptions of recorded

mathematics classes from the British National Corpus (BNC) [Burnard, 1995] and

2. BACKGROUND 9

an experiment where participants read out given expressions. The study focusses on

the potential of prosodic information providing clues in order to resolve ambiguity.

However, this did not influence the design of the language used in older versions of

TalkMaths and Wigmore uses an approach very similar to that of Fateman.

Rules for spoken mathematics have also been developed for text-to-speech con

version of mathematics. For example, Raman, another blind mathematician, gave a

framework in his AsTeR system [Raman, 1998], which synthesised LaTeX/TeX doc

uments for blind users. Another initiative is the MathSpeak project [Schleppenbach,

2013] in which a set of grammar rules for speaking mathematics have been designed.

However, rules for speaking mathematics that have been developed for text-to-speech

appear less suitable for spoken input due to the tedious learning curve and usage. In
other words, a text-to-speech system would use a more descriptive language with a

much larger vocabulary to give the listener as much information as possible to explain

the expression on screen which might be too long and complex for a user to dictate to

insert a relatively smaller formulae [Fateman, 2009].

It should be mentioned that some commercial systems are gradually supporting

spoken mathematics. The most popular example is the Computer Algebra System

Mathematica, that actually provides a function spokenStringO [Mathematica, 2014]

for converting mathematical objects into their spoken language form.

2.2 Language Models and Algorithms

One of the primary goals of the work described in this thesis is to provide assistance to

users of speech-driven mathematics editors, through predictive and corrective facilities.

In this section we first explore the background of a particular technique for modelling

language and algorithms which are useful in realising such facilities. Finally, we review

both commercial and research systems that take advantage of those language models

and algorithms.

2.2.1 Statistical Language Modelling

A language model can be described as an attempt to capture the properties of a lan

guage in order to be able to predict the next word(s) of a given sentence of that

2. BACKGROUND 10

language for the purpose of syntactic or semantic analysis, or to carry out corrections

if it is malformed or otherwise incorrect. A variety of different approaches to language

modelling exist in the literature, including those based on grammatical rules, statis

tics, or neural networks. Among such language models, Statistical Language Models

(SLMs) [Rosenfeld, 2000] have been at the core of ASR systems for many years [Young,

1996, 2002J. These use statistics from past experience to predict the likelihood of what

will be spoken next and combine this with evidence from the acoustic signal of the

speech to decide what words were actually said.

The simplest types of SLMs are N-gram models, which use statistics of the occur

rences of specific sequences of N consecutive words within a database (or corpus) of

training material observed in the past. A more dynamic or adaptive approach is to use

a cache model [Clarkson, 1999b], where a cache or buffer, of recently-occurred words is

used to update the baseline N-gram models. Variants of these models have been suc

cessfully applied to various domains by other authors [Martins et al., 2008; Vaiciiinas

and RaSkinis, 2006]. We will explain the theoretical aspects of N -gram models and

cache models in Chapter 4.

2.2.2 Error Correction Algorithms for Text

It has been noted that the majority of human typing and spelling errors are quite

minor [Damerau, 1964; Pollock and Zamora, 1983J, often involving just the omission or

addition of a single character, typing two characters in the wrong order, or accidentally

substituting one character for another (often one adjacent to the correct symbol on the

keyboard [Grudin, 1983]). Correcting errors in text has been a widely researched area.

There are three steps in correcting words in text: detecting non-words, isolated-word

and context-dependent word error correction [Kukich, 1992]. In our setting, we only

focus on the first two types.

The most researched technique of correcting isolated-word errors in text is the min

imum edit distance [Wagner, 1974]. One of the pioneering approaches that use this

technique, the Damerau-Levenshtein distance [Damerau, 1964; Levenshtein, 1966J be

tween two character strings, measures how different those strings are by taking into

account the minimum numbers of insertions, deletions, substitutions and transpositions

of adjacent characters required to transform one of the strings into the other. [Wagner

2. BACKGROUND 11

and Fischer, 1974; Wagner and Lowrance, 1975J also introduced more computationally

efficient spelling correction by using dynamic programming techniques [Nemhauser,

1966J. Some further extensions, such as allowing the exchange of non-adjacent charac

ters given by [Wagner and Lowrance, 1975J. While the Damerau-Levenshtein distance

method has been widely-used, research is being still carried out in this area - for ex

ample, [Shah et aI., 2012] proposed a hybrid approach and [Lu et aI., 2013] suggested

a synonym-based approach. Although one of the original motivations for the develop

ment of this metric was to compare the similarity of short pieces of natural language

text, it has also been applied in fields such as genetics, for example to study how similar

two fragments of DNA are to each other [Troncos<rPastoriza et aI., 2007J. It has also

been recently used in graph-matching [Cao et aI., 2013J, which is essential aspect to

many graph searching, pattern recognition and machine vision tasks. It should also

be noted that other similar metrics have been developed in the past, such as "direct

threshold matching" described by Glantz [1957J in which the differences of two strings

are matched in a position-for-position manner, but these are not as widely used as the

Damerau-Levenshtein distance method.

2.2.3 Predictive and Corrective Systems using SLMs and Al

gorithms

More recently, SLMs have been incorporated into innovative systems for automatic

translation between languages, such as Google Translate [Google, 2012J. A wide vari

ety of existing technological systems employ prediction and/or correction methodol<r

gies in an attempt to make them more useful and usable. These include automatic

(or semi-automatic) correction systems found in word processors and internet search

engines (Showing results for... Search instead for ...) and the prediction systems used

in ASR systems and SMS text message editors on mobile telephones. Although man

ufacturers of commercial products rarely reveal exactly their secrets, it is understood

that correction systems look for close matches to what was entered within a database

of common words or phrases, whilst prediction systems use statistical models. These

models give probabilities of words and word sequences, using information from a large

set of previously observed data and evidence from the current situation, together with

an inference rule, such as a Bayesian framework, in order to combine information from

2. BACKGROUND 12

more than one source [Young, 1996].

2.3 Parsing

Spoken mathematics that has either been recognised by the ASR, or perhaps directly

typed into a suitable user interface, needs to be parsed in order to lead to a meaningful

action within the system. The classification of formal languages into recursively enu

merable (Type-D), context-sensitive (Type-I), context-free (Type-2) and regular (Type-

3) has been given in [Chomsky, 1957]. However, it is commonly assumed that parsing

general natural languages is a "hard" problem - indeed, some authors [Kallmeyer,

2010] have noted that some natural languages, such as Dutch [Bresnan et al., 1987]

and Swiss-German [Shieber, 1988], contain cross-serial dependencies which cannot be

adequately modeled using context-free grammars. Thus natural languages are not in

general Type-2 languages [van de Koot, 2013]. lIence for parsing our input, we will

have to restrict ourselves to an appropriate sub-language, namely our standard of spo

ken mathematics, which has a well-defined vocabulary and relatively prescribed syntax.

All of the approaches for spoken mathematics as discussed in Section 2.1, are based on

context-free languages.

In this section, we will outline different key techniques for parsing context-free lan

guages, followed by a discussion on suitable frameworks for parsing spoken mathemat

ics. Note that this is considerably more difficult than the opposite task, the conversion

of mathematical content into a spoken language representation, which can be carried

out following one of the approaches mentioned in Section 2.1.

2.3.1 Context-free Parsing Techniques

Context-free parsing has been investigated in great detail in the past, mostly because

of its use in computer science: most systems and compilers use context-free parsing.

Even though any programming language that for example requires the declaration of

variables (e.g., C or C++) is effectively context-sensitive, a multi-stage approach that

is based on an initial context-free analysis, is generally assumed to be most effective.

Amongst the context-free languages, research has further identified several sub

classes which are characterized by their ease of parsing, depending on the order in

2. BACKGROUND 13

which the resulting parse tree data structure is built (top-down or bottom-up) [Aho

et aI., 1986]. The class of LL(k) [Lewis II and Stearns, 1968] parsers proceeds top-down,

usually following a recursive descent algorithm. Parsers written in this approach tend

to be manually created and are easier to read for human beings. LR(k) parsers [Knuth,

1965] are driven by parse tables, constructing the parse tree bottom-up by following a

stack-based shift-reduce scheme. They are fast and particularly suitable for automatic

code generation. The parameter k is the value of the look-ahead, which indicates how

many tokens have to be processed before the parser can decide which parsing action

to take. Traditionally, k = 1 was assumed to be sufficient. LALR(k) [DeRemer, 1969]

languages are a subset of LR(k) which are particularly efficient to parse and are used

for the design of popular modern programming languages. Specialist techniques exist

[Pager, 1977; Pager and Chen, 2008] that can speed up general LR parsing, yielding

parsers that are similarly efficient as LALR parsers [Sorkin and Donovan, 2011]. The

class of Operator Precedence (OPrec) parsers, which is of particular relevance to the

work in this thesis, is an attractive alternative as it is fast and results in a simple parser

but is only applicable within a restricted domain.

GLR parsing is an extension of LR parsing to handle ambiguous languages (orig

inally aiming at natural languages [Tomita, 1985]). The main technique is to use

back-tracking of non-deterministic rules, in a breadth-first search manner. [Begel and

Graham, 2006] in turn extends GLR parsing to handle lexical ambiguities arising from

spoken input and embedded languages. The resulting parsing technique is referred

to as XGLR in the original paper. In this thesis, we will see how to combine OPrec

and GLR parsing techniques in order to obtain a suitable framework for the spoken

languages we have in mind, which is an alternative to XGLR parsing.

Writing a parser can be a complex task and there are two different ways of designing

and implementing parsing algorithms: "by hand", i.e. coding manually appropriate

functionality, or using a parser generator. As we have mentioned already in the pre

vious paragraph, most automatically generated parsers are LR and LALR. One of

the earliest tools was YACC [Johnson, 1975], which inspired the release of the Open

Source tool Bison [Donnelly and Richard, 1998]. Both create native C code which,

once compiled, results in efficient LALR parser applications. The LR parser genera

tion system [Wetherell and Shannon, 1981] and various more recent tools [Chauveau

and Bodin, 1998; Chen and Pager, 2008] are all essentially based on Pager's algorithm

2. BACKGROUND 14

[Pager, 1977]. An interim version of the spoken mathematics parser included in the

TalkMaths system used Yapps2 [Patel, 2009], a little used parser generator which pro

duces recursive descent (LL) parsers in the scripting language Python. ANTLR [Parr

and Fisher, 2012] is a modern tool (although in development since the late 80s) and is

an exception as it has introduced efficient LL(*) parsing, which denotes LL(k) parsing

where k is not bounded a priori.

Any language is defined by a grammar, and in particular grammars that accept

context-free (and their refined classes LL(k), LR(k) and LALR(k)) languages are re

ferred to as context-free (LL(k), LR(k) and LALR(k) respectively) grammars. A gram

mar consists of terminals, non-terminals, productions and a start symbol. We will

further explore these aspects when we introduce OPrec grammars in Chapter 6.

Once a suitable grammar and corresponding parser have been created and put into

place, one might face an additional challenge: input that deviates from correct syntax

cannot be parsed. In this situation, rather than simply detecting this and rejecting

the input, one might wish for the parser to take appropriate actions to correct input,

and also inform the user. This is commonly referred to as error recovery. In the

literature, a substantial amount of work on error recovery has been carried out in the

context of parsing programming languages. Comprehensive survey articles reviewing

these early works are [Ciesinger, 1979; Sippu, 1981]. The seminal paper [Graham

et al., 1979] introduces practical strategies for error recovery in LR parsing. Their

approach is easy to use, even for adding recovery support to existing parser generators.

This method is further developed in [Burke and Fisher, 1987], to give a method for

LR and LL syntactic error diagnosis and recovery. Error recovery schemes for OPrec

parsers are given in [Graham and Rhodes, 1975; Leinius, 1970]. These methods are

computationally efficient and are still used in modern compilers. However, [de Jonge

et al., 2010] indicates that more work could be done in order to improve the quality of

error recovery. Strategies such as narrowing down regions where parser errors might

reside and taking into account formatting (for example, indentation levels in source

code) are used by [de Jonge et al., 2010] in order to improve error recovery for the

Java programming language. Another approach is to provide structural information

about the expected input, prior to parsing. In rUgen, 2010], XML is used to define

structural properties about documents containing JavaScript code, helping to correct

erroneous data entry in the declaration of objects. However, more research has to

2. BACKGROUND 15

be conducted before these techniques will influence the error recovery capabilities of

mainstream parsers.

For our purposes, none of these methods are totally suitable. In a system such

as TalkMaths, wrong user input can arise for several reasons (in Chapter 6 we will

look into this in detail). Error recovery needs to be extremely resilient, interactive and

flexible, perhaps customisable by the user. In [Suhm et al., 1996]' these requirements

were formulated and various error recovery methods for speech interfaces are stated:

repair by respeak, by spelling, by selection amongst alternatives and using an alterna

tive input mode - in the original paper, the use of handwriting. If one is concerned

with recovering from recognition errors, most of these strategies are available through

the ASR tool, and users of TalkMaths will be able to benefit from this, as well. Our

work on error recovery in the context of speech-driven systems is at the syntactical

level during parsing. We have not found evidence that this aspect has been treated in

the literature.

2.3.2 Parsing Spoken Mathematics

The work on spoken mathematics by Fateman, as presented earlier, was also inter

ested in defining spoken mathematics using grammars, hence enabling a computer to

process spoken input, using a parser. His research is interested in parsing suitably de

fined spoken forms of syntactically correct mathematical expressions, or else converting

syntactically incorrect input to a format for display or further processing.

Given a syntactically correct spoken mathematical expression, it can be parsed using

a grammar. This results in a parse tree that is useful for additional manipulations. As

mentioned in [Fateman, 2006], it is difficult to specify a grammar that will parse the full

set of mathematics that one may typically encounter in research papers, text books or

lecture notes. An acceptable compromise might be the restriction to expressions that

can be parsed with a context-free grammar, combined with some pre-processing of the

input. In [Fateman, 2009], this approach is adopted in order to specify a subset of

spoken mathematics, taking into account the fact that mathematical expressions use

prefix, infix or suffix conventions and have operator precedences that are sometimes

ambiguous.

In [Wigmore, 2011], an attribute grammar [Kastens, 1980; Knuth, 1990] for the

2. BACKGROUND 16

Yapps2 parser generator is described that recognises spoken mathematics at an ele

mentary level. This was used in one of the earlier versions of TalkMaths to successfully

parse complete mathematical expressions.

When attempting to add support for incomplete expressions to this aforementioned

attribute grammar, we experienced difficulties formulating appropriate rules and con

cluded that novel directions for the problem of robustly parsing mathematics might be

needed.

2.4 Speech-Driven Editing Systems

One of the main motivations behind our work is to make speech-driven systems as suit

able as possible for users who typically might wish to engage in hands-free computing.

In this section, we will outline contributions made by other authors to systems with

a similar intention. After briefly reviewing existing commercial and freely available

speech recognition tools, we discuss past work on speech-driven editing approaches,

followed by documenting the extent to what the literature contributes towards realis

ing speech-driven editors for mathematics. We pursue these further in Chapter 6.

2.4.1 Speech Recognition Technologies

Automatic speech recognition is the process of converting human spoken words to

human- or computer-readable text [Young, 1996]. Commercial ASRs tend to be mar

keted as speech recognition applications or packages. The term "voice recognition"

also appears in places, however, strictly speaking, this is incorrect terminology. Most

ASRs require to be trained for a particular user in order to provide the best and most

accurate recognition.

There are a few commercial speech recognition packages available in the current

market, with the most widely available ones being products sold by Nuance and Mi

crosoft. With claims of 99% word accuracy under good conditions, Nuance Dragon

NaturallySpeaking (DNS) [Nuance Communications, 2013] is the market leader. It

was originally developed to run on Windows operating systems, although recently Nu

ance has released versions for Mac as X. Microsoft now includes Windows Speech

in Windows 7 & 8, and their speech recognition solution is likely to be included and

2. BACKGROUND 17

further improved in future versions of their operating systems. At present, it remains

unclear which of these two main players will eventually dominate the market.

A free alternative to the commercial products is Sphinx, an Open Source toolkit for

speech recognition [Carnegie Mellon University, 2008] developed at Carnegie Mellon

University. With Sphinx, additional data such as prosodic and intonation informa

tion can be captured. Currently, the recognition accuracy is inferior to that of the

commercial ASRs.

More and more, vendors are adding speech support to their software. For example,

Google has enabled speech recognition in its Chrome web browser, specifically designed

for speech-enabled applications, such as "Google Voice Search" [Google]. In particular,

mobile devices and gaming consoles are starting to be speech-enabled, and this trend

is only likely to continue.

Typically, a speech recognition tool provides a dictation mode and a command mode.

The former is used for the purpose of dictating textual information into an application

such as a word processor or an email client, and the latter is for speaking structured

commands which will trigger specific actions such as selecting menu items or clicking

on GUI elements. Some allow the user to create custom spoken commands in addition

to the default pre-defined commands.

Usually, these tools also supply an application programming interface (API), such

as Microsoft's speech API (SAPI) in order to add more sophisticated commands, load

user files or restrict the vocabulary to increase the recognition accuracy for specific

domains such as the medical industry [Mohr, 2009].

2.4.2 Speech-Driven Editing Approaches

Any system for creating mathematical content would be of limited value if it did not also

allow the editing of existing material. Even for ordinary text documents, a person may

spend a very substantial amount of time editing what he/she has typed or correcting

mistakes [Sears et al., 2001]. Also, the existing cursor control methods are still difficult

to use [Haque et al., 2013] when editing text by speech. This is likely to be just as

much the case with mathematical expressions in documents. For speech-based systems,

this appears only to have received limited attention in the literature. When using

speech-controlled text editing, in a standard editor, it is relatively straightforward to

2. BACKGROUND 18

develop spoken commands for moving the cursor, plus a limited range of actions such as

"backspace" , selecting words or a sentence. This is relatively inefficient and difficult to

use for editing ordinary text, but of even less utility for editing mathematical content,

which (as noted previously) often has a rather complicated two dimensional layout in

conventional notation.

A mechanism for moving the mouse pointer using speech is attributed to [Pugliese

and Gould, 1998J. This is available as the "mouse grid" in DNS, and Windows Speech

provides a similar facility. Some research [Bickel et al., 2010; Christian et al., 2000; Dai

et al., 2004; Karl et al., 1993; Sears et al., 2003J exists, which improves this approach

for editing ordinary text via speech, exclusively based on an "anchor and target" ap

proach. Whilst reasonably efficient for general mouse moving or text editing, it could

be improved for the editing of structured documents. Begel [Begel and Zafrir, 2002J

introduces a "context-sensitive" mouse grid, in the context of speech-enabled program

ming environments. This idea is further extended for the use in a mathematics editor

in [Wigmore, 2011], where novel speech editing paradigms via specialist grids are in

troduced. In TalkMaths, some of these grids are available and can be used in order to

assist the user with editing by speech.

2.4.3 Speech-Driven Interfaces for Mathematics

\Ve are aware of a number of systems translating spoken mathematical input to different

output formats and displaying the structure of the mathematical expressions. These

systems work together with ASRs installed on the user's machine.

MathTalk [Metroplex Voice Computing, IncJ is a commercially available system that

implements speech macros for use within the Scientific Notebook environment. The

functionality of MathTalk, even when compared with the other academic prototype

systems mentioned below, is quite limited.

Fateman has undertaken work leading to Math Speak & Write, a multimodal ap

proach combining spoken input with handwriting recognition. Unfortunately, the am

bitious aim of simultaneous multimodal input was not achieved. Another system is

CamMath, described in [Elliott and Bilmes, 2007], which needs the same support en

vironment as MathTalk but seems to offer a better developed command language.

Previous approaches to allowing spoken input of mathematics include the research

2. BACKGROUND 19

prototype systems of Bernareggi & Brigatti [Bernareggi and Brigatti, 2008] (which

only works in Italian) and Hanakovic and Nagy [Hanakovic and Nagy, 2006] (which

is restricted to use with the Opera web browser due to it using X+V (XML + voice)

technology) .

We conclude that all these systems are not yet robust enough for day-to-day use

by (potentially inexperienced) users.

2.5 Other Related Approaches

In the previous sections, we have explored different approaches to defining, recognising,

predicting, correcting and parsing spoken mathematics. This section briefly reviews

other work that relates to one or more of these aspects, including assistive systems for

creating and editing mathematics since TalkMaths, from its early stages, has always

been intended to be a highly usable and beneficial piece of assistive software.

There have been a variety of systems attempting to provide synthetic speech descrip

tions of mathematical text, including AsTeR (Audio Systems for Technical Readings)

[Raman, 1998], MathGenie [Jacobs, 2006], REMathEx [Gaura, 2002], the commer

cial system MathPlayer [Design Science, 2013bJ, and AudioMath [Ferreira and Freitas,

2004J. The latter system is open-source, but unfortunately only functions in Por

tuguese.

In the context of verification mechanisms within OCR (Optical Character Recog

nition) for mathematical text, creating SLMs and context-free grammars for parsing

mathematics in symbolic notation turns out to be highly relevant. Some previous au

thors [Suzuki et aI., 2003; Watt and Xie, 2005J have developed systems for recognising

and processing mathematical symbols using an OCR approach. However, two remain

ing issues are how to deal with the possibilities of misidentified symbols (potentially

a big problem, since many people have poor on-screen, or on tablet handwriting) and

mistakes by the user. Previous researchers have used syntactic [Fujiyoshi et aI., 2008;

Suzuki et aI., 2009J or statistical [Mazalov and Watt, 2013; Smirnova and Watt, 2008J

approaches in attempts to resolve these issues. Research in this area is continuing,

and systems such as Math Input Panel (MIP) [Radakovic et al., 2011] provided by Mi

crosoft Windows 7 and later versions of Windows, and MathPad 2 [Jr. et al., 2007J are

more recent examples of OCR applications for converting hand-written mathematics in

2. BACKGROUND 20

conventional notation into its electronic equivalent (MS Word and MathType [Design

Science, 2013a] equations and Matlab code respectively). However, adding speech as

an input modality to these systems seems to be difficult.

Assistive systems such as those developed in the Lambda project [Edwards et al.,

2006] and [Crombie et al., 2004] convert MathML into Braille format, to help blind

users to read mathematical expressions within electronic documents such as web pages.

However, such systems also require use of a Braille output device. They also require

parsing of mathematics and use similar techniques to the ones discussed so far.

Although we are not aware of these approaches having been applied to the editing

of mathematical text, severely disabled people, including tetraplegics, can only interact

with computers using systems which monitor motion of their head, eyes, or possibly

even facial muscles [Zielinski, 2013]. One such system of particular note is Dasher

[Vertanen and MacKay, 2010] which can use a mouse pointer, possibly controlled by

eye or head movement, to select characters from a menu on the screen. This uses

statistical language models (see Chapter 4) to allocate an appropriate area of a display

screen according to the likelihood of a particular character, word or symbol displayed

there being the next item in the input sequence. Dasher can be controlled using a

mouse, pointer or any motion or graze tracking system. It should be possible to adapt

Dasher for use with mathematical editors, and in principle, with speech.

2.6 Summary

In this chapter, we have primarily reviewed previous work in a number of key areas:

defining languages for spoken mathematics, statistical language models and error cor

rection algorithms focusing on predictive and corrective systems using those SLMs and

algorithms, syntax analysis using context-free parsing techniques in general, but then

also with a focus on spoken mathematics. \Ve have also reviewed several systems:

speech-driven editing systems implemented in the past by other authors that have sim

ilar aims as the TalkMaths system, and other non speech-based assistive systems for

creating and editing mathematics.

Chapter 3

Architectures for Speech-based

Applications

3.1 Motivation

The Naturally-preferred method for human-human communication method is speech,

whereas that is not the case in human-computer communication. In this, we tend to rely

on non-intuitive interfaces for input, such as a keyboard and mouse. However in recent

times, speech has become a realistic alternative method to interact with computers

[McTear, 2002], especially for users who have limited or no access to keyboard or mouse

due to some kind of disability [Karshmer, 2008], or people "on the move" [Cuartero
Olivera et aI., 2012]. In effect, speech recognition has now become a viable option for

many users of desktop applications to use to input commands and data.

There does not appear to be a set of formal definitions in the literature of different

types of applications using speech. It seems natural to define a computer application

relying on speech as the primary input method as a speech-based application.

With current state-of-the-art speech recognition technology being more available,

various speech-based systems exist either as research prototypes or as commercial prod

ucts. A range of example systems can be given, from systems that are used in the

medical industry such as Voice Activated Medical Tracking Application [Durling and

Lumsden, 2008] or systems used in cars [Lee et aI., 2001], to mobile phone intelligent

personal assistants such as Siri [Dery, 2012] and Iris [Cheyer et aI., 2005]. Such speech-

3. ARCHITECTURES FOR SPEECH-BASED APPLICATIONS 22

based applications can either run entirely on one computer - thus free from network

and data transmission constraints - or use a client-server architecture.

The Internet is an important medium for modern applications in many fields.

Whilst it should be noted that desktop-based applications still have their place, web

based applications have numerous advantages over other networked applications, such

as location and platform independence, ease of upgrading and logging user interactions

for various purposes. Although there are some non-trivial barriers one has to overcome

in dealing with browser limitations, thick-client web applications built with more con

trol over the client machine (using plug-ins such as Flash Player [Allaire, 2002] or the

latest standard HTML5) are becoming increasingly popular.

For many users of speech recognition, possibly relying on mobile devices with limited

processing power, a speech-based web application also has the advantage that it can be

used whenever a speech-web client is available. Despite a number of research-prototypes

being developed, not many practical systems combining automatic speech recognition

and web technologies are available at present.

The motivation behind the work in this chapter was the fact that, for speech-based

applications, the system architecture is a vital aspect that needs to be considered

carefully in the design stages in order to implement a robust, reliable and efficient

system. Our goal in this chapter is to describe and discuss different architectural

approaches suitable for speech-based applications and identify the one most suitable

for the TalkMaths system we will be presenting in Chapter 7. This chapter starts by

investigating speech-based applications and their underlying technologies. We give an

overview of different architectures suitable for speech-based applications, discuss their

various merits and deficiencies, and then present a suitable architecture for web-based

applications that use speech as the primary input mode. The remainder of this chapter

is organised as follows: We first review relevant speech technology and tools. Then we

propose the following possible architectures for speech-based applications:

• Desktop Speech-Based

• ASR and Post-ASR Processor (PASRP) on Client

• Speech Proxy

• Application Proxy

3. ARCHITECTURES FOR SPEECH-BASED APPLICATIONS 23

• ASR on Same Server

• ASR on Different Servers

• Distributed ASR using Same Server

• Distributed ASR using Different Servers

and finally choose a suitable architecture for the type of speech-enabled web applica

tions of interest in this project.

3.2 Relevant Speech Technologies and Tools

Speech-based applications rely on a variety of tools and technologies. In this chapter

we focus on architectural aspects and hence will not discuss the mechanisms behind

speech recognition, speech synthesis or speech markup. We refer the reader to [Holmes

and Holmes, 2001; Young, 1996] for more details of these. Here we mention some tools

and technologies that are available, which may not be widely known.

3.2.1 Post-ASR Technologies

There are many technologies that can be used to build speech-enabled applications

using the output from ASR. Here, we mention some of these technologies. Developed

by Microsoft Corporation, the Speech Application development Interface (SAPI), pro

vides a framework for speech application developers to design and build speech-enabled

desktop applications. SALT (Speech Application Language Tags) is also a Microsoft

technology that is developed specifically for the use of speech-enabled and voice-input

only browsers [Microsoft Corporation]. SALT can be used to integrate simple speech

interaction capabilities into existing web pages with minimal effort. A SALT enabled

web page interacts with Text-to-Speech (TTS) and speech recognition software by

specifying an XML-based grammar called Speech Recognition Grammar Specification

(SRGS) [Hunt and McGlashan].

A Python-based macro system called NatLink has been developed by Joel Gould

[Gould and Gould] as a subsystem for DNS. NatLink provides an interface to DNS and

is available under an open source licence. Another speech macro system that works

3. ARCHITECTURES FOR SPEECH-BASED APPLICATIONS 24

with DNS is called Vocola [Mohr, 2009]. These macro systems require Python installed

on the local machine hosting the application.

A more recent approach on building a framework for speech-based applications in

a client-server setting is the Web-Accessible Multimodal Interfaces (WAMI) toolkit

[Gruenstein et al., 2008]. WAMI provides a platform for developing speech-based web

applications where the speech recognition happens at the server-side by allowing trans

fer of audio data and application data between client and server using two different

connections, where one connection is established by a GUI controller and the other by

an audio controller (both installed locally). It supports application-specific language

models and is built with the aim of supporting multi-modal input systems. WAMI

was developed to help interface developers to build systems that can be accessed by

any standard web browser. Applications built with the WAMI toolkit use a browser

embedded Java applet that serves as an audio data transfer device, while a web-based

GUI acts as the non-speech interface. Additionally, WAMI supports system develop

ment aimed at a variety of platforms such as tablet PCs, mobiles and laptops.

3.3 Classification of Architectures for Speech-based

Systems

The World Wide Web Consortium (W3C) defines a speech interface framework [Larson,

2002] for speech-enabled web applications. This framework is concerned with defining

markup languages suitable for integrating with ASR and standardising client-side com

munication methods. The W3C speech interface framework also allows for touchtone

and pre-recorded audio input, as well as speech synthesis (text-to-speech) of output,

which are not considered in this thesis. Whilst the W3C framework focuses only on

the client-side, we are interested in ways of communication between client and server

for speech-based applications. This will be the focus of the different architectures we

will present later in this section.

We identify three components of a speech-based application: ASR, application logic

and PASRP. We will now look at each of these components before moving on to possible

system architectures.

Carrying out speech recognition solely on the client machine is called embedded

3. ARCHITECTURES FOR SPEECH-BASED APPLICATIONS 25

speech recognition (ESR), whilst sending raw audio data to the server and perform

ing recognition there is called network speech recognition (NSR) [Zhemin and Philipos,

1999]. Splitting speech recognition between server and client is defined as distributed

speech recognition (DSR) [Holada, 2003; Rajput and Nanavati, 2012] wherein perform

ing a certain amount of processing on the client side (e.g. spectral analysis and/or

data compression) reduces the amount of data to be transferred by only extracting

necessary "features", such as Mel-Frequency Cepstral Coefficients (MFCC) [Davis and

Mermelstein, 1980; Holmes and Holmes, 2001] of the speech signal and sending these to

the server [Flynn and Jones, 2012; Holada, 2003]. DSR is often used rather than NSR

to save bandwidth of the network, in particular client-server speech recognition systems

with low bandwidth network connections. Holada [2003] also states that feature extrac

tion on client-side before transmission is better than compressing and decompressing

speech on client and server sides respectively due to the decrease in the quality of

speech. In any case, the processing and resource demands are very high for speech

recognition tasks, as several processes involving signal processing, noise reduction and

applying acoustic and language models are required. This intensive requirement on

resources makes the choice of which of ESR, NSR or DSR strategies to adopt, a de

cisive factor for speech recognition. In particular, due to limited processing power,

complex speech recognition in mobile phones, mobile hand-held and similar devices is

best carried out at a remote server using DSR [Burke and Yacoub, 2010] strategies.

However simple speech recognition tasks (such as digit or keyword recognition for di

aling by voice) requiring less processing power can still be carried out solely on these

devices (embedded speech recognition) using software available from vendors such as

[Fonix.com; Rubidium.com; SensoryInc.com] and [Speechfxinc.com].

3.3.1 Terminology

Before moving on, let us define some terminology used to describe different archi

tectures in this chapter. When considering the processing requirements of a given

speech-enabled application, we can identify two aspects: the actual application logic

that controls the behavior of the application independent from any speech input, and

the Post-ASR Processor (PASRP). By the latter, we understand those parts of the logic

that deal with interpreting input in the form of spoken commands. Due to these com-

3. ARCHITECTURES FOR SPEECH-BASED APPLICATIONS 26

mands a variety of actions can be taken, such as triggering specific application logic,

enabling or disabling other speech commands, and generally maintaining a certain state

within the current execution of the application (i.e. session management).

In a similar way to the ASR, the PASRP can reside on either client or server (or

be split between both) and this will have an important impact on the design of the

architecture. Furthermore, the (speech-enabled) application can also entirely run on

one single machine or be based on a client-server design.

We will now present different system architectures for common speech-based ap

plications, using diagrams to illustrate the different structures and characteristics, i.e.

the location of the ASR, application logic and the PASRP. We denote by speech audio

data (dsa) the electronic signal formed from the audio stream of a spoken utterance

originating from the user via a microphone, possibly having been pre-processed and/or

compressed. The term recognised speech data (dst) will be used for text string output

data created from dsa by the ASR with or without the assistance of an API. Appli

cation specific data (dapp) will refer to all data other than the speech-related data as

described above. Finally, f(dsa) denotes features from speech audio data extracted

locally for some kind of DSR strategy.

3.3.2 ASR and PASRP Both Performed Locally

The following two architectures are based on ASR and PASRP being carried out locally,

either on a stand-alone PC, or client-side in a web application, for example, with the

aid of embedded speech recognition systems.

3.3.2.1 Desktop Speech-Based (Architecture A)

The Desktop Speech-Based architecture is illustrated in Figure 3.1 (Architecture A).

Applications based on this architecture rely on the ASR being installed entirely on the

local machine. A spoken utterance is transmitted from the user as an audio signal to

the microphone and is then converted into an (digital) electronic signal (dsa) which is

passed to the ASR. The recognised string (denoted as dst) output from the ASR then

passes to the main application. The main application subsequently processes the string

and displays the output for the user. Depending on the level of sophistication of both

the ASR and the application, PASRP can be implemented to some extent within both

3. ARCHITECTURES FOR SPEECH-BASED APPLICATIONS 27

-- --- -- ---- ----- --- -- ---- -- - Desktop PC ------------ --- --- -- ---- ---

elst
Application Logic

ASR
PASRP

1 __ - ------------- ---

elsa

Figure 3.1: Desktop Speech-Enabled Application Architecture (A)

components.

As an example, consider a user creating a Micro oft Word document by speaking

commands that are recognised by the ASR installed on his machine.

3.3.2.2 ASR and PASRP on Client (Architecture B)

As we have already mentioned, the introduction of server-side technology into a speech

enabled application can be done in several ways. Perhaps the most straightforward

approach is to use a server to implement most of the application logic, with the ASR

installed on the client machine. Recent advances in web technologies allow replacing

the custom client application with a browser. Ultimately, this removes the necessity for

the user to install addit ional software. Architecture B caters for this and is probably

t he one most commonly used for web applications.

Figure 3.2 shows that, as in Architecture A, the ASR sends recognised spoken com

mands (dst) as text to the client application, which exchanges application data (dapp)

with the server, following a request-response principle. Most modern web browsers

are compatible with commercial ASRs such as DNS. A typical scenario where a user

browses the web using speech commands that are recognised by DNS and translated

into browser actions , would follow this architecture.

3. AR CHITECT URES FOR SPEECH-BASED A PPLICA TIONS

I
I
I
I
I
I
I

Client PC

Client App lication

PASRP

cl st

ASR

L ___________________________ _

------- . Selver _______ _

clapp
Application Logic ..

elsa ,"

Figure 3.2: ASR and PASRP on Client Architecture (B)

3.3.3 ASR on Client, PASRP on Server

28

The next st ep would be to move the PASRP to the server whilst retaining the ASR on

the client machine. This can be done in two different ways depending on the flow of

data between PASRP and application logic.

3.3.3 .1 Speech Proxy (Architecture C)

The first approach to achieving this is through having the PASRP as a proxy between

client and server application logic. A visual representation of this architecture is illus

trated in Figure 3.3. Due t he fact t hat any incoming data from the client first passes

t hrough the PASRP proxy, and hence this data must have originally come from spoken

input, we can see that any application based on this architecture is a speech-driven

application. This architecture is of part icular advantage if an existing client-server ap

plication can be easily turned into a speech-driven one by simply insert ing t he proxy.

PASRP and application logic may or may not reside on t he same host .

3. AR CHITECT URES FOR SPEECH-BASED APPLICATIONS 29

Client PC -----. Server
I
I

d st + clapp Client
Application

PASRP

.~

d st dapp
~

dapp

ASR Application Logic

L -------------
L ___________________________

d

Figure 3.3: Speech P roxy Architecture (C)

3.3.3.2 Application Proxy (Architecture D)

The second approach of moving P ASRP to the server can be achieved by exchanging

the order in which the data flows through the server-side components (see Figure 3.4).

In this architecture, t he recognised speech data is forwarded by t he application logic

component to t he PASRP. The PASRP then processes it and returns the results back to

the application logic, which prepares and returns t he response to t he client. Compared

to the previous architecture (C), it is necessary to exchange more data in case of

the Architecture D, which will have a negative impact on t he performance of the

application. On the other hand, rather t han having a purely speech-driven application,

Architecture D allows for a speech-enabled approach as the application logic can decide

to ignore incoming data dst and process application data dapp only.

As further detailed in Chapter 7, the TalkMaths application is based on the above

archi tecture.

3. AR CHITECT URES FOR SPEECH-BASED APPLICATIONS

,.----- -
I
I
I

Client PC ,.-----_ .
I Server
I

--- --- --.

Client dst + dapp 1

Application Logic
Application

I
I
I

dapp
I
I r-I

dst
I

dapp dst
I
I
I

ASR PASRP

L. ------------- -------------- ---------------------------
d

Figure 3.4: Application Proxy Architecture (D)

3.3.4 ASR and PASRP on Server

30

Moving speech r cognition entirely from the client machine to t he erver yields anoth r

possible architectural approach (called network speech recognition in [Zhemin and Phili

pos, 1999]). Again, two difF rent varieties exist, dep nding on the numb r of s rvers

involved. An example appropriate to such architectures would be an application that

is built using t he WAMI toolkit [Gruenstein tal. , 2008]. Further distinctions are po -

sible, for example when taking into account the location of the PASRP, but we shall

not further explore t his aspect further in this chapter as that would deviate from the

main focus of this thesis.

3.3.4.1 ASR on Same Server (Architecture E)

In this architecture, both the server application and ASR coexist on the same server.

As Figure 3.5 indicates, t he user only has to install one client-side application that

ends an audio stream dsa to t he server application. ASR will be residing in the erver

and rec ives dsa from the server application for recognit ion. It t h n provides the server

3. ARCHITECTURES FOR SPEECH-BASED APPLICATIONS

,------ Client PC
1
1
1
1
1
1 Client
1
1
1
1

Application
1
1
1 ,- ------------- --------------

dsa

'\

~------ .
1 Server
1

dsa + dapp i Application Logic
i·

PASRP
dapp

dsa dst

1
1
1
1 ASR 1
1
1
1
I
1 L ___________________________ _

Figure 3.5: ASR on Same Server Architecture (E)

31

application with recognised commands dst in order to proc ss them and finally the

server application sends dapp back to the client application.

3.3.4.2 ASR on Different Server (Architecture F)

Having the server application and ASR located on different servers creates this archi

tecture. The flow of data for this architecture type is indicated in Figure 3.6 . The

client application sends t he audio data dsa directly to the ASR, which resides on a

remote server, for recognition. The recognised data dst , is then fed back to the cli nt

application which interacts with the server application hosted on a different server to

the ASR.

As cloud-based infrastructure for speech recognition is becoming more and more

available, Architecture F experiences increasing popularity. Players such as Nuance

and Google already provide ASRs based on this architecture. Thi is particularly

suitable for mobile clients (eg. mobile phone and tablet PC users) due to their restricted

resources. Also, WAMI-based online games such as Voice Race [Gruenstein et al. , 2009]

are examples for this kind of applications.

3. AR CHITECT URES FOR SPEECH-BASED APPLICA TIONS

Client PC
I

I r-------------------~ I
I
I
I
I
I
I
I
I
I

Client
App lication

I '--------------x----..-----..........
I L. _____________ _

d~

Server

(I .A}J}JliclItion Logic
app - '

I
I
I
I
I

PASRP

.ASR Server

.ASR

L ___________________________ _

Figure 3.6: ASR on Different Server Architecture (F)

3.3.4.3 Distributed ASR using Same Server (Architecture G)

32

In t his architecture, both server application and ASR coexist on the same serv r as

in Architecture E. However, t he raw audio signal dsa is preprocessed at t h client-side

into a set of features, ! (dsa), which are then sent to the server so that t he contents of

the original speech signal can be recognised. Figure 3.7 illustrat s t he structure of this

architecture.

3.3.4.4 Distributed ASR using Different Server (Architecture H)

In a similar way to Architecture F, here the server application and ASR reside on

different servers. The only difference is that like Architecture G, the client machine

only sends a selected set of features of the speech audio signal, ! (dsa) , to the server

that carries out ASR. Figure 3.8 illustrates this type of architecture.

3. AR CHITECT URES FOR SPEECH-BASED APPLICA TIONS 33

Client PC -----. Selver ,

Client if(dsJ + dapp App lication Logic
,

Application , ,
PASRP ,

dapp
f(dsJ dst f(dsJ

Pre-Processor ASR

- ----- - --- -- - -------------- --------- ------------ ------
dsa

Figure 3.7: Distributed ASR using Same S rver Architecture (G)

3.4 Choosing a Suitable A rchitecture for Speech

Enabled Web Applications

In this ection, we first discuss the advantage and the disadvantag s of the different

architectures A - H, then analy e the architectural needs of the TalkMaths system

prior to our work, and finally justify our decision to cho Architecture D.

Speech-enabled desktop applications are resource-intensive and require high r pro

cessing power than their web-based counterparts. In addition, the former r quire the

installation of custom client-based software. However, thes desktop applications can

potentially be faster t han corresponding client-serv r architecture versions sinc a de k

top application does not have to rely on t he speed and availability of the network.

With a client-server architecture, the increased availability over the internet of the

application and the ability to store in, and retrieve data from different locations are

advantages. Also, client-server architectures reduce the amount of software t hat needs

to be installed on the client machine and can dramatically r duce the requir ments for

3. AR CHITECT URES FOR SPEECH-BASED A PPLICA TIONS

I
I
I
I
I

Client. PC

Client.
Application

f(dsJ

Pre-Processor

: ~---------T--------~ L _____________ _

I
I
I
I
I

Server

Application Logic

PASRP

A.SR Server

i\SR

l ____________________________ ,

Figure 3.8: Distributed ASR using Different Server Architecture (H)

high processor speed and power consumpt ion.

34

Due to t he fact that the user has to have t he speech recognit ion software install d

locally for a speech-enabled desktop application (Architecture A) and other similar

architectures (B, C and D), there are fewer choices available to satisfy t hese require

ments at the client side and hence a speech recognition on the server architectur may

be advantageous. On the other hand , when ASR resides on t he server, as we discussed

previously, t he client machine has to send an audio stream to the server for recogni

t ion. However, there are some important technical challenges associated with sending

large amounts of continuous speech audio data over a network. One solution is for the

speech audio to be compressed before being sent , for example, as described in [Holada,

2003], by extracting only essential features (such as spectral coefficients) and only send

ing these as packet data to t he server, where t hey are decoded for recognit ion. This

approach allows for t he system to be accessed by many devices of limited processing

power, such as Personal Digital Assistants (PDA) and mobile phones, in addit ion to

3. ARCHITECTURES FOR SPEECH-BASED APPLICATIONS 35

personal computers. We described how this approach can be used in a client-server(s)

setting in architectures G and H. Nuance SDK server edition [Nuance Communica

tions] and Carnegie Mellon University's Sphinx [Carnegie Mellon University, 2008] are

examples of server-side speech recognisers available at the present time.

As stated in [Bayer, 1996], embedding speech recognition inside the browser on the

client machine is not convenient as it limits the application to a specific browser or

requires different plug-ins or applets for different browsers. This is difficult to maintain

and limits the utility of Google's cloud-based approach for ASR.

Given the options discussed in this chapter, one can appreciate how difficult it is to

choose the right architecture for a speech-based system. Table 3.1 below shows where

each of ASR, PASRP, rendering output and Application logic components reside for

each architecture we presented above. This should be a helpful matrix to aid developers

to decide which architecture is most appropriate for their purpose.

Client Server ASR Server
Speech Preprocessing G,H
ASR A,B,C,D E,G F,H
Application Logic A,C,D B,E,F,G,H
PASRP A,B C,D,E,F,G,H
Rendering Output A,B,C,D,E,F,G,H

Table 3.1: Architecture Classification for Speech-based Systems

In Table 3.1, the capital letters refer to the respective architectures, which we have

listed here again for convenience.

• A: Desktop Speech-Based

• B: ASR and PASRP on Client

• C: Speech Proxy

• D: Application Proxy

• E: ASR on Same Server

• F: ASR on Different Server

• G: Distributed ASR using Same Server

3. ARCHITECTURES FOR SPEECH-BASED APPLICATIONS 36

• H: Distributed ASR using Different Server

For all the applications that we have in mind (such as the TalkMaths system or the

SWIMS interface), we are concerned with the creation and modification of mathemat

ical content, primarily by speech. We will be using client-side ASR both as a means of

issuing commands for our systems, and to dictate (mathematical) text that needs to

be processed and displayed.

The architectural choice for the TalkMaths system has been changed over the course

of the project. The architecture of TalkMaths version prior to the start of this PhD

work was a standard desktop-based one (Architecture A) [Wigmore, 2011]. As ex

plained in Section 1.2, some limitations of this early version of TalkMaths led us to

move to a web-based architecture. With this decision, all architectures apart from

A, described in this chapter were potential candidates for our new prototype systems.

Our initial TalkMaths parser was based on a parser generator written in the Python

language - that requires Python to be installed on the machine that carries out the

PASRP. When moving over to a client-server architecture, one requirement was to

minimise the amount of software which to be installed on the client PC. Also, carrying

out the PASRP on the server means that we can use high processing resources, such

as cloud processing. Architecture B was therefore rejected for these reasons.

As we were more interested in good PASRP performance and speed rather than

pure speech recognition performance, our focus was not on enhancing speech recog

nition at the signal processing level or making that "distributed" between client and

server. Hence, for our work, a standard commercial client-side ASR tool such as Dragon

Naturally Speaking or Microsoft Speech should be sufficient. This choice eliminated

Architectures E - H as options. However elimination of these options could have com

promised the overall speed of the system.

The final choice for our system is now between Architecture C and D. Although

speech is considered to be the primary input method, we also allow keyboard and

mouse modalities. The rationale behind this approach is that a considerable portion of

our target users (individuals suffering from various disabilities, people relying heavily

on on-line learning systems or using portable devices) may prefer to revert to key

board and mouse for certain tasks, especially when ASR repeatedly fails to recognise

dictated commands and/or corrections. If speech proved inadequate for input, this

3. ARCHITECTURES FOR SPEECH-BASED APPLICATIONS 37

multi-modality guarantees the user another option. With this multi-modal aspect, a

command originating from the client-side in our setting is not necessarily speech input,

and it makes sense not to process it as a speech command straight away. To allow

for this, the best possible architecture was the Application Proxy (D) Architecture, as

that allows the input of both modalities, rather than Speech Proxy architecture (C).

Then, it was Architecture D which was eventually selected for use in the new web-based

version of TalkMaths.

3.5 Summary

In this chapter, we were concerned with architectures for applications using speech

as input. We further distinguished between speech-based, speech-enabled and speech

driven applications, depending on how speech input is processed. We also emphasised

the usefulness of speech-based applications and reviewed relevant speech technologies

and tools. We then gave a taxonomy for system architectures of applications using

speech as input, by classifying possible architectures based on whether ASR and/or

PASRP are being hosted on the server or on the client. Each architecture was explained

and examined in terms of dataflow between client and/or server(s) and example systems

were provided whenever possible. We then discussed advantages and disadvantages

of each of these architectures, characterised by their requirements for resources and

availability. A summary in the form of a table was also given to aid the process of

making a design choice for speech-based systems. Finally, we chose an architecture

that is suitable for speech-enabled web applications such as TalkMaths and SWIMS.

In the next chapter we will explore the use of Statistical Language Models (SLM) which

are later used in conjunction with the Application Proxy Architecture (D) in Chapter

5 to develop the SWIMS system.

Chapter 4

Theory of Statistical Language

Models and Similarity Metrics

4.1 Motivation

Processing a language (natural or artificial) is a complex task for us human beings,

as there are complex syntactic, semantic and pragmatic aspects of every language. As

people, we constantly have to process the meaning of spoken and written (or typed) text

in our daily life. Modelling or trying to model this process is called language modelling.

Some researchers have focussed on syntactic [Chomsky, 1957, 1965; Lappin and Leass,

1994] or semantic [Purver and Ginzburg, 2004] aspects of language. However, one

particularly successful approach has been to use statistical patterns found within a

given language. We call this type of language model a "Statistical Language Model".

The assumption made is that we can in some sense encode syntactic and semantic rules

in the statistics derived from these patterns [Hunter, 2004; Young, 1996]. The simplest

types of Statistical Language Model (SLM) are based on sets of estimated probabilities

corresponding to the N-grams (see next section) of the underlying language.

These models are primarily used in Automatic Speech Recognition (ASR) and have

been very successful. In the ASR process, SLMs are used in conjunction with acoustic

modelling and speech signal processing (spectral analysis, etc). Such language models

based on word probabilities tend to be more effective for acoustically very similar words

and lowest for acoustically very different words [Holmes and Holmes, 2001] since the

4. THEORY OF STATISTICAL LANGUAGE MODELS AND SIMILARITY
METRICS 39

former are more likely to be confused by acoustic models unlike the latter. However

SLMs are also useful in other disciplines such as machine translation [Marino et al.,

2006], cryptography [Hasinoff, 2003], text prediction and auto correction tasks as well.

Although SLMs were originally created for natural languages, they can equally well be

applied to artificial languages such as computer programming languages or, as it will

turn out in the next chapter, for language that arises from describing mathematical

content in a spoken manner. In this chapter we present the theory of SLM and edit

distance metric, which are then used in the next chapter in order to improve the

recognition of spoken mathematics.

The remainder of this chapter is organised as follows: In the next section, we

discuss N-gram SLMs and then look into the ways of interpolating them to create

more sophisticated language models. Subsequently, an approach to allow SLMs to

adapt to the current context called cache models, based on an analogy with "short

term memory", and their interpolation with N-grams will be discussed. We then briefly

discuss methods for the evaluation of SLMs before moving into a section which explains

string edit distance metrics and their uses. We conclude this chapter by introducing

how these can be applied to spoken mathematics which will be the theme of Chapter

5.

4.2 N-grams - A Baseline Approach to Statistical

Language Modelling

The most common and easiest to understand approach to statistical language modelling

is the use of N-grams [Bahl et al., 1983; Holmes and Holmes, 2001; Jelinek et al., 1990].

In this approach, we call all possible individual words (i.e the vocabulary) unigrams

(where N = 1), pairs of consecutive words bigrams (N = 2) and sequences of three

consecutive words trigrams (N = 3) of the language. In general, N-grams are all

possible N word sequences. In N-gram SLMs, we use probabilities of these N-grams

within the language as the basis of the language model.

To create N -gram language models, we need to obtain estimates of the probabilities

of all the possible N-grams. To do this, we require a suitable dataset, called training

data (or a training corpus). We assume that this training data contains adequate

4. THEORY OF STATISTICAL LANGUAGE MODELS AND SIMILARITY
METRICS 40

information to determine realistic N -gram probabilities of the underpinning language.

Practically, with a large number of possible permutations and combinations of words,

this is never the case for any natural language with a considerable vocabulary. If the

language is assumed to have a vocabulary of V words where V may be several thousand,

then there will be a total of V N theoretically possible N -grams. In order to have

appropriate probabilities for even the most rare but possible sequences of words, we

require a large enough dataset which we call a representative sample of the language.

The estimation of N-gram probabilities for common word sequences can be easily

carried out by counting frequencies of these sequences from the training data to obtain

maximum-likelihood estimates. For example, in a word sequence W = WI, W2, ••• , W n ,

we can define the bigrams as (Wk-l, Wk) for 2 ~ k ~ nand trigrams as (Wk-2, Wk-l, Wk)

for 3 ~ k ~ n. Then we can estimate conditional probabilities:

(4.1)

(namely a bigram model) and

(4.2)

(Le. a trigram model), where the C(x) is used to represent the count of number of

examples of x found in the training corpus [Holmes and Holmes, 2001]. P represents

the "best" estimate of the probability.

Thus, it is possible to produce N-gram models for a language once a suitable dataset

has been obtained. However, as already noted, the number of theoretically possible

N-grams for this language of vocabulary V grows as V N and it becomes difficult to

obtain reliable estimates of N -gram probabilities, particularly for rare word sequences,

for larger values of N. Furthermore, attempting to estimate these for large values of

N would require very large amount of training data and be highly computationally

expensive. Hence, in most cases, N-gram models are only created up to trigrams

(N = 3) as the performance at larger values of N usually does not improve significantly

over trigram models [Clarkson, 1999b].

N -gram language models are also useful for applications in text prediction, such as

those used in SMS messaging in many mobile phones and in some assistive systems to

4. THEORY OF STATISTICAL LANGUAGE MODELS AND SIMILARITY
METRICS 41

help disabled people type, such as Dasher [Vertanen and MacKay, 2010]. Typically,

the task is to predict the next word in a sequence of n words, based on the previous

n - 1 words. This can be simply achieved by using N-grams on their own - for

example, using only unigrams, only bigrams or only trigrams and so on. It is also

possible to combine variants of these N-gram probabilities and use a more complex

model to obtain better results. See Section 4.3 for an example. N-gram based SLMs

are quite successful in predicting one or two words ahead. However these are not

normally reliable for predicting beyond that (some of our work on this topic, relating

to a study on the prediction accuracy of SLMs in the domain of spoken mathematics,

can be found in the next chapter). Similarly, these models can be useful for correcting

small errors in text documents (e.g. correction of spelling, such as is carried out by the

automated spell checkers incorporated into many word processing systems and syntax

checkers in state-of-the art programming editors). N-gram models can also be used in

the correction of ill-formed word sequences [Pereira, 2000] or out-of-vocabulary (OOV)

word errors. Using N-gram probabilities, we can rank the likelihood (probability) of a

given sequence of words within a sentence and, if the probability is less than a given

threshold, we can suggest that there is some sort of error in the sentence. Similarly,

when a word used is not in the normal vocabulary or the current word sequence is highly

impossible, we can find the most probable within-vocabulary words to substitute at

that point in the sentence in order to suggest possible corrections. As mentioned in the

Section 4.7 later, these types of errors can be corrected using the edit distance metric

method as well.

Unigrams on their own have no context knowledge about the language they were

generated from, only how common each word is. Bigram models are based on word

pairs, and thus have a one word context knowledge, and in turn trigrams have a two

word context. In general, N-gram models contain an (N - 1) word context, in terms

of providing information about the properties of the language. However, this is purely

from a statistical perspective, and can only provide the most basic semantic, syntactic

and pragmatic information. This is in contrast to knowledge-based approaches, which

would attempt to take more detailed account of these aspects. On the other hand, such

approaches tend to be more complicated without necessarily yielding good performance

in applications [Huckvale, 1996].

In natural languages, some word sequences may be theoretically possible, yet either

4. THEORY OF STATISTICAL LANGUAGE MODELS AND SIMILARITY
METRICS 42

occur very rarely or do not occur at all in even very large training corpuses [Witten

and Bell, 1991], for example, "a" and "the" are unlikely to occur next to each other in

normal English text. (However, due to people hesitating while speaking, such pairings

maybe less uncommon in transcriptions of spontaneous speech. For example, "I saw

a the dog", where the speaker hesitated between "a" and "the" to correct himself).

In such cases, obtaining reliable probabilities for these rare or unseen N-grams may

be near impossible even using a very large amount of training date. To deal with this

problem, we estimate probabilities for these sparse N-grams by "borrowing" proba

bility from more common N-gram probabilities [Hunter, 2004]. The rationale for this

redistributing probabilities from "seen" N-grams to "less seen" and "unseen" N-grams

is so that we can assume sum of all N -gram probabilities across all possible N -grams

should be exactly equal to 1, whereas the sum of probabilities of the N-grams found

in the training data should be less than 1, as this represents a subset of all possible

events [Holmes and Holmes, 2001]. These techniques are called smoothing, discounting

and backing-off [Katz, 1987; Ney et al., 1994]. Amongst many other smoothing tech

niques, the "Good-Turing" [Good, 1953] discounting method is one of the most-utilised

on N-gram models. The Good-Turing method essentially involves altering the counts

of N-grams such that an N-gram which occurs r times in the training data will be

counted as though it had occurred d(r) times:

d(r) = (r + 1) nr+1
nr

(4.3)

where nr is the number of N-grams that occur exactly r times in the training data

[Chen and Goodman, 1996]. There are other discounting schemes such as "Witten

Bell" [Witten and Bell, 1991] in which the discounting coefficient is determined by

a particular context, for example in case of a bigram "AB" the context would be

counts of distinct "A*" (where * is any word within the vocabulary), and the context

for a trigram "P Q R" would be "PQ*" and so on [Clarkson, 1999b]. The concept of

backing-off is to use a less-specific model when a high order language model fails to

give an accurate probability estimate, for example using bigrams in place of trigrams.

In general, an N-gram model can be backed-off to an (N - I)-gram model in cases

where the former has too little data to estimate the probability of a particular event.

4. THEORY OF STATISTICAL LANGUAGE MODELS AND SIMILARITY
METRICS 43

4.3 Interpolation between N-grams

Increasing the performance of simple N-gram models can be done by combining them

in several ways. One such approach, called a "deleted interpolation trigram model"

combines unigram, bigram and trigram models together and was introduced by Lau

[1994]. In this, the probability of the kth word P(Wk) in a sequence can be estimated

by using the unigram, bigram and trigram counts of occurrences of the word Wk and

the two previous words Wk-l and Wk-2 in the training data:

(4.4)

where N is the number of words and C(x) is the count of an item x in the training

data. The oX's are optimised with respect to held-back data in order to minimise the

perplexity (see Section 4.6).

When there is more than one set of training data, one could combine all the training

sets into one and create an N-gram model from that. This technique is called the brute

force approach [IIsu, 2007]. Unless these training sets are of same size, relevance and

coverage relative to the type of target language to which the model would be applied,

this method will not be expected to give particularly satisfactory results [Rosenfeld,

2000]. Hence, some meaningful method of combining these data sources is required.

One simple solution to this is linear interpolation [Chen and Goodman, 1996; Katz,

1987; Neyet al., 1994]. Here, each training set (Ti) is used to create an N-gram model

(Mi) and in application the probability of the next word w given information a is

estimated as:

P(wla) = L Ai~(wla) (4.5)

where {Ai} are weights for each model. Note that E Ai = 1. For example, the deleted
i

interpolation trigram model proposed by Lau [1994] can be regarded as a special case of

this. Typically the A'S are chosen in order to optimise the performance of the resulting

interpolated model [Hsu, 2007]. This way we can adapt the relevance of each training

set to the target domain in a sensible way. In other words, with reference to a given

target domain, priority is given to models trained on more relevant data over the models

trained on less relevant data.

4. THEORY OF STATISTICAL LANGUAGE MODELS AND SIMILARITY
METRICS 44

4.4 Cache Models

N -gram models work well if enough training data is available to provide a represen

tative sample of the domain it is intended to be applied to [Moore, 2001, 2003] - for

example, for use in transcribing news broadcasts. In practice, we might need to cre

ate and apply language models to scenarios, such as dialogues and other spontaneous

conversations between people and formal or informal speeches, where a suitable train

ing corpus may not necessarily be available. In these circumstances, a language model

needs to adjust while it is being used. Such dynamic language models are referred to as

adaptive language models [Clarkson, 1999b], which use probabilities of recently encoun

tered words - on the assumption that these are likely to influence the probabilities of

words occurring in the near future - to update the existing word probability estimates.

The distinction is that whilst N-gram models are static and use fixed probabilities

based on a training corpus, adaptive models can dynamically change word probabili

ties according to the current situation. One often used adaptive language modelling

technique is "Cache-based modelling", that takes into account the fact that, in most

natural languages, recently-appeared words are quite likely to re-appear [Holmes and

Holmes, 2001] in the near future. Using this assumption, we can update the current

word probabilities from those of a baseline N-gram model by giving higher weights

to recently-appeared words and lesser weights to others. These tend to use a "cache

buffer" or "recent history", usually over a predefined length - such as the 20 most

recent words. (however some authors have adjusted the weights used according to a

word's position in the cache, e.g. Bellegarda [2004]; Clarkson and Robinson [1997];

Iyer and Ostendorf [1999]). If we define a word stream as wi = WI, W2, ... , Wi, such

that wf = Wi, Wi +1 , ... , Wj, then, using a cache of K words the cache-based conditional

probability of the kth word Wk in the sequence is given by:

(4.6)

where IE is an indicator function which equals to 1 if € occurred and 0 otherwise [Clark

son, 1999b; Kuhn and De Mori, 1990]. This approach is analogous to the "short-term

memory" of people [Baddeley, 2003; Fletcher, 1994] and the cache memory used in

computers. Kuhn and De Mori [1990] have shown that this technique can be success-

4. THEORY OF STATISTICAL LANGUAGE MODELS AND SIMILARITY
METRICS 45

fully used in ASR. Table 4.1 illustrates how a dynamic cache buffer could be maintained

Step Sentence
1 This is just another sentence with
2 This is just another sentence with some
3 This is just another sentence with some words
4 This is just another sentence with some words in
5 This is just another sentence with some words in it

Table 4.1: Change of 5-word cache content (marked in bold) over time

over time. The words in bold font will be used in each step as the cache buffer, where

at each step the left-most word in the cache is dropped-out and a new word from the

text stream is inserted at the right-most edge.

4.5 Interpolation between N-grams and Cache Mod

els

Since cache models on their own are based on limited information about language, it

proves to be highly impractical to use them for recognition tasks on their own. However,

they do reflect the word patterns over the short range - which is useful for prediction

tasks as discussed earlier. In contrast, N-gram models contain the overall "global"

word probabilities but not local patterns. To use both of these features together for

better recognition performance, it is necessary to combine cache models and N-gram

models in an appropriate manner. We can do this in many ways as the outputs of

both models are in the same form (Le. conditional probabilities). Generally, the linear

interpolated cache-N -gram model would be:

where PCache is defined by equation 4.6. The goal is to find the optimal value of the

coefficient ,\ to calculate probabilities of the resultant model such that its performance

is maximised, and is better than that of each individual model. The eMU SLM Toolkit

[Clarkson, 1999a; Clarkson and Rosenfeld, 1997] is a very useful tool to determine these

optimal coefficients using algorithms such as the "Expectation Maximisation" (EM)

4. THEORY OF STATISTICAL LANGUAGE MODELS AND SIMILARITY
METRICS 46

algorithm [Dempster et al., 1977], which estimates these coefficients on the basis of

some testing data.

4.6 Evaluating the Performance of SLMs

The performance of a SLM is measured with respect to its domain of application

by applying the model to a previously "unseen dataset", which we call "test data".

Usually, a subset of the training data is held back for this purpose and is hence called

"held-back data". Suppose that we have a language model L trained on training

data T and with held-back test data S exists, composed of a word sequence W =
WI, W2, ... , WK. (Ideally both Sand T should be representative of the domain which

the model will be applied.) Using L, we can find the probability of the word sequence

P(W) = (WlIW2, ... ,WK). The higher P(W), the better the language model L with

respect to the training set S. We call the reciprocal of the Kth root of this probability

the Perplexity score [Holmes and Holmes, 2001] of the model L with respect to the test

set S. In general, perplexity can be written as:

(4.8)

where P P(W) is the perplexity score of the model L with respect to a test set Shaving

a word sequence with K words. We can use this technique to evaluate a language model

with respect to a test dataset that needs to be recognised. The perplexity can also

be regarded as the average number of equally probable words possible, and therefore

which need to be considered, at each step in a "guess the next word" game [Hunter,

2004; Shannon, 1951]. Hence the lower the perplexity score, the better the language

model will be in predicting the test data.

Given a set of SLMs, choosing the best possible model can also be done using Maxi

mum Entropy method [Lau et al., 1993]. Given an optimal language model, its entropy

(sometimes called cross entropy) is the average, minimum number of bits required to

encode a word [Shannon, 1951]. So, for a given probability distribution p, the entropy

4. THEORY OF STATISTICAL LANGUAGE MODELS AND SIMILARITY
METRICS 47

H(p):

(4.9)

where Pi is the probability of the system when it is in the state i [Hunter, 2004;

Shannon, 1951]. The entropy of a language model can be interpreted as the amount

of non-redundant (i.e. useful) information produced by it [Rosenfeld, 1996; Shannon,

1951] and hence the quality of a language model with respect to a target domain can be

maximised by increasing the entropy. One such method of finding the best language

model is called "maximum entropy method" [Berger et al., 1996; Lau et al., 1993;

Rosenfeld, 1996]. The relationship between entropy H(p) and perplexity PP(IV) can

given as [Bahl et al., 1983]:
P P(IV) = 2H (P) (4.10)

Since the perplexity and entropy are dependent on test data, it depends on how the test

data was chosen. To minimise this bias, we use a "Cross Validation" technique [Kohavi

et al., 1995] when evaluating a language model. This is done by splitting the training

corpus into several subsets and training the model on all but one subset, and then

applying the model to the skipped subset for evaluation. \Ve then repeat this process

by skipping one subset at a time for all the subsets, averaging perplexity or entropy

over the different trails. Sometimes we also look at the variation of measurements

between trials to estimate the uniformity of the training corpus.

4.7 String Edit Distance Metrics and its Usage

As explained in Section 2.2.2, it has been noted that the majority of human typing and

spelling errors are quite minor [Damerau, 1964], often involving just the omission or

addition of a single character, typing two characters in the wrong order, or accidentally

substituting one character for another (often one adjacent to the correct symbol on

the keyboard [Grudin, 1983]). The Damerau-Levenshtein distance [Damerau, 1964;

Levenshtein, 1966] on its own, or with some additional contextual knowledge [Mays

et al., 1991] can be used to find the nearest correct within-vocabulary words to correct

such spelling errors. The Damerau-Levenshtein distance between two character strings

measures how different the strings are by taking account of the minimum numbers of

4. THEORY OF STATISTICAL LANGUAGE MODELS AND SIMILARITY
METRICS 48

insertions, deletions, substitutions and "single transpositions" of characters required to

transform one of the strings into the other. (Note that single transposition refers to the

interchange of two adjacent characters [Damerau, 1964; Wagner and Lowrance, 1975]).

Here we assume each such operation corresponds to equal "distance", i.e. insertion=l,

deletion=l, substitution=1 and transposion=l, where each "1" is the same unit of

distance. For example, the edit distance of the words "string" and "strong" will be just

1 as changing the character "i" into "0" would suffice (1 substitution). Some approaches

regard a substitution as 2 units: 1 deletion + 1 insertion. An efficient algorithm to

calculate Damerau-Levenshtein distance between two words was introduced by Wagner

and Lowrance [1975].

Edit distance metrics can be used in order to correct training data for errors prior

to creation of SLMs and also to correct target data before applying SLMs to them for

prediction. In this way the SLMs will no longer need to deal with DOV words. A

more sophisticated method would be to rank the candidate words to be replaced in

place of an incorrect word using a combination of SLM and edit distance metric in a

meaningful way.

4.8 Applications to Spoken Mathematics

As mentioned in Section 4.1, SLMs have many applications in predicting and correcting

both natural and artificial languages. One such artificial language is "Spoken Math

ematics" [Attanayake et al., 2011a; Chang, 1983; Fateman, 2009]' which is used to

dictate mathematics into electronic documents using ASR on a computer. Although

many applications of SLMs to the processing of different natural languages can be found

in the literature, we have not come across any evidence of these being used to enhance

the recognition of spoken mathematics, apart from studies by Wigmore [2011] in the

earlier stages of the TalkMaths project. Regarding the use of edit distance metrics, it

may be obvious that it can be used with any language, yet has not previously been

employed in correcting typed mathematics equations. Based on the theories discussed

in this chapter, the next chapter will present our work on prediction and correction of

spoken mathematics using SLMs and an edit distance metric.

Chapter 5

SLM Applications to Spoken

Mathematics

5 .1 Introduction

As noted in Chapter 3, 8LMs and edit distance metrics have proved to be very useful

in prediction and correction tasks. In this chapter, we describe how these techniques

were applied in the TalkMaths project, with a view to assisting its users in editing

mathematical text documents.

Proficiency in mathematics, at least at an elementary level, is essential for success

in a wide range of scientific, technical and commercial fields. However, it is a subject

which many students find difficult, in part due to its specialized language and notation.

These make working with mathematical equations and formulae a problem for a large

proportion of people. This is more notable when the mathematics expressions to be

manipulated are to be included in electronic documents. Typing and editing ordinary

text can be both slow and error-prone for non-experts, which is even more the case for

mathematical text, with its non-alphanumeric symbols and often rather complicated

two-dimensional layout. Furthermore, creating, editing and reading mathematical text

(in its conventional form) is particularly difficult for individuals suffering from vari

ous disabilities [Karshmer, 2008J, on-line distance learners and people who are often

working "on the move". (It has been noted that a growing proportion of studying

and academic exercises are being carried out using mobile devices such as smart phones

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS 50

and notebook or tablet computers, often "on the move" or in potentially noisy public

places such as cafes [Cuartero-Olivera et al., 2012]). Spell checkers, automated correct

ing facilities and predictive text have been familiar features of word processing and text

messaging (e.g. SMS on mobile phones) systems for several years. These have aimed to

provide intelligent assistance to the user in order to make the task of creating and edit

ing ordinary text easier. In this chapter, we discuss the development of similar features

using 8LMs and edit distance metrics for two mathematical text editors, TalkMaths

and SWIMS, which allow input of mathematical text using spoken mathematics. We

also present the results of three experiments that were used to evaluate our prediction

and correction implementations. The first part of this chapter is devoted to describing

the creation and evaluation of SLMs from a suitable dataset collected from relevant

domains on the World-Wide-Web. The next part will then describe three experiments

using these SLMs for spoken mathematics prediction tasks and the analysis of their

results. Subsequently, details of another experiment and its results on error correction

for spoken mathematics using a string edit distance metric are given. The chapter will

be concluded by a discussion section.

5.2 Developing and Evaluating SLMs for Spoken

Mathematics

As part of the TalkMaths project, our approach to building a substantial database of

mathematical text - incorporating equations, formulae, etc - has been evolving contin

uously over the last few years. During the earlier stages in this project [Wigmore, 2011],

the first attempt at obtaining data on the ways in which mathematical equations are

spoken by people was based on a part of the British National Corpus (BNC) [Burnard,

1995] which consisted of transcriptions of conversations from school and college math

ematics classes [Wigmore, 2011; Wigmore et al., 2009a,b]. The vocabulary (number

of different words) found in this dataset was 4,355 (the total number of words was

123,821) and the perplexity of the N-gram SLM obtained was rather high, due to both

the relatively large vocabulary and the high proportion of non-mathematical words and

"general chat" in the conversations, making the data somewhat unpredictable. The sec

ond attempt at modelling mathematical text was to manually populate a dataset using

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS 51

trigonometric equations from some mathematical school text books [Wigmore, 2011;

Wigmore et al., 2010]. Not surprisingly, both the vocabulary (102 distinct words) and

the dataset overall (the total number of words was 7,857) were smaller for this trigono

metric dataset than for the BNC-based data. The statistical language models built

from the second (trigonometry) dataset had much lower perplexity scores, indicating

that this data was more predictable. Interestingly, consistent with previous studies on

more general speech data [Hunter and Huckvale, 2006; Moore, 2001, 2003], the results

of these first two attempts at creating statistical language models from mathematical

material confirmed that, for data of a given type, if the training dataset is increased in

size, the perplexity of the resulting language model decreases and hence its predictive

power is increased. Since the second dataset was much smaller, the necessity to create

a substantial yet relevant dataset was evident.

5.2.1 Creation of the Dataset from Web Sources

In the current study, we have created a much larger, high quality dataset containing

over 4100 expressions of mathematical expressions (the total number of words was

77,824 with a vocabulary of 100 words) on which to base new SLMs. We identified

and crawled a handful of publicly available tutorial web sites containing mathemati

cal equations at a similar level of complexity to those which TalkMaths is currently

capable of processing. For this work, we identified a number of mathematical tutorial

web sites in the public domain covering material at roughly GCSE & GCE A-Level or

"Senior High School level" mathematics. We developed a web-crawler that can iden

tify LaTeX or MathML content within the source code of a web site and applied this

to the tutorial sites we had found. This mathematical content is then extracted into

a database. A filtering script was then applied to remove display instructions from

LaTeX code and illegal characters from the equations. Finally, a LaTeX to spoken

mathematics format converter for expressions was designed and developed using the

Yapps2 [Patel, 2009] parser generator. The implementation of this converter can be

found in the Appendix B. In order to ensure that the mapping from LaTeX code to

spoken mathematics was one-to-one rather than many-to-one (Le. any given valid

expression in spoken mathematics should be the result of converting a unique piece

of LaTeX code) the converter introduced additional keywords begin and end for de-

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS 52

noting sub-sections (such as fractions or square roots) within the linearised spoken

descriptions l of each mathematical expression, to create a word string which would be

identical to the correct way in which a TalkMaths user would dictate that expression.

Some example expressions from this corpus are shown in Table 5.1. Table 5.2 shows

the most frequent words (unigrams) found in this corpus of spoken mathematics. Table

5.3 illustrate most frequent bigrams and trigrams in our spoken mathematical expres

sions corpus respectively. A more detailed comparison of how our dataset compared to

other related corpuses in N-gram frequencies can be found in the Appendix A, Tables

A.1, A.2 and A.3.

5.2.2 Creating Statistical Language Models

Once the dataset has been created by using the web-crawler, we then used the Carnegie

Mellon University Statistical Language Modelling (CMU SLM) Toolkit [Clarkson and

Rosenfeld, 1997] (with Good-Turing discounting [Good, 1953]) to build various trigram

based SLMs using samples of our corpus (3,194 mathematical expressions containing

a total of 61,479 words with a vocabulary of 100 words). Figure 5.1 illustrates the

typical usage of the CMU Toolkit which we have adopted to suite our needs. The

theoretical principles behind these models were described in the previous chapter. An

overview of the process of creating SLMs and measuring perplexities from web-crawled

spoken mathematics corpus is illustrated in Figure 5.2 which covers three main pro

cesses, namely data collection, conversion and SLM production & evaluation. Here

"text2wfreq", "wfreq2vocab", text2idngram", "idngram21m" and "evallm" are names

of programs or routines within the CMU toolkit. text2wfreq converts a passage of text

to a table of word frequencies, wfreq2vocab produces a vocabulary list from that table

of word frequencies, text2idngram takes in a text stream together with a vocabulary

1 When speaking mathematics, in general, the spatial aspects of mathematical quantities are usu
ally omitted. For example, ab+c + d could be spoken as "a to the power of b plus c plus d", where a
pause may be used between c and d to indicate the end of the superscript. However, without seeing
the written expression, this may be ambiguous for the listener since that utterance could also mean
a b + c + d or ab+c+d. Here, what we mean by "linearised spoken mathematics" is the introduction of
some suitable spoken delimiters to indicate such spatial aspects (end of a superscript, end or beginning
of a numerator/denominator, etc.) to a mathematical expression. For the example here, the linearised
spoken mathematical version would be "a to the power of begin b plus c end plus d" which clearly
indicate the beginning and end of the sub-expression corresponding to the power of a. We refer to
the next chapter for a more detailed discussion of spoken mathematics.

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS 53

Spoken Mathematical Expression Written form

delta victor equals cos x-ray delta x-ray dv = cosxdx

hotel of x-ray equals one minus x-ray to the power of two hex) = 1- x 2

equals one over alpha begin integral of delta theta end _ 1

-~

equals theta over alpha plus capital charlie =_IJ_
a+C

golf of x-ray equals square root x-ray semi-colon g(x) = .;x:.
hotel of x-ray equals one minus x-ray to the power of three hex) = 1-x3

open bracket one over two close bracket (!)
four less than or equal to x-ray less than or equal to five 4~x~5

square root begin one minus x-ray to the power of two end y'1- x2

papa of x-ray equals foxtrot of x-ray plus capital charlie p(x) = I(x) + C

uniform equals one plus begin alpha to the power of two end u = 1 +a2

india index zero equals echo to the power of x-ray io = eX

begin minus bravo end over begin two alpha end -b
2a

minus bravo over begin two alpha to the power two -b
W

two over five x-ray to the power of five plus capital charlie 2
5x5+C

Table 5.1: Sample expressions from our spoken mathematics corpus. The names of
individual letters are dictated using the NATO pronunciation alphabet (alpha, bravo,
charlie, delta, ...) with x-ray representing the letter x

list and generates a numerically sorted mapping between N -grams and the vocabulary

list. idngram2lm then takes in the output of text2idngram and a vocabulary list to

generate the language model, evallm evaluates the perplexity of a language model with

respect to a specific passage of test text.

5.2.3 Evaluation Results of Statistical Language Models

The experiments to investigate the quality of the web-crawled data, and the SLMs ob

tained using them confirmed the trends noted by previous studies [Hunter and Huck-

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS 54

Unigram Frequency % Unigram Frequency %
end 7.58 over 3.21

begin 7.57 minus 2.53
x-ray 7.30 one 2.52

of 7.26 delta 2.42
two 4.82 close 1.81
to 4.32 open 1.80
the 3.93 three 1.66

power 3.93 alpha 1.65
equals 3.79 index 1.62
bracket 3.61 plus 3.34

Table 5.2: The most frequent words (unigrams) in our spoken mathematical expressions
as percentages of all the words in the corpus. x-ray is the spoken form of the symbol x

Bigram Frequency % Trigram Frequency %
the power 3.93 to the power 3.93

to the 3.93 the power of 3.93
power of 3.93 power of two 2.05
of two 2.1 x-ray to the 1.66

over begin 1.85 end over begin 1.2
of begin 1.76 delta x-ray end 0.88
end over 1.68 power of begin 0.73
x-ray to 1.66 close bracket end 0.72

close bracket 1.55 of two end 0.67
open bracket 1.54 begin open bracket 0.63

of x-ray 1.42 over begin delta 0.63
x-ray end 1.39 open bracket x-ray 0.58

begin delta 1.17 of x-ray equals 0.52
delta x-ray 1.11 end to the 0.51

end end 1.08 foxtrot of x-ray 0.49
x-ray plus 1.07 of two plus 0.47
two end 1.07 begin delta x-ray 0.46

end equals 1.06 x-ray end equals 0.39
equals begin 0.9 power of three 0.39
begin x-ray 0.81 x-ray close bracket 0.39

Table 5.3: Most frequent bigrams and trigrams in our dataset

5. SLM A PPLICA TIONS TO SPOKEN MATHEMATICS 55

Figure 5. 1: Typical usage of CMU Toolkit [Clarkson and Ro enfeld , 1997]

vale, 2006; Wigmore, 2011 ; Wigmore et al. , 2010]. As m nt ioned pr viously (in S ction

4.6), in a similar manner to other authors we us d p rpl xityas a m asure of th qual

ity of our models, with lower perplexity indicating a better model. W al 0 minimis d

any potential bias in the perplexity tests by using the cross-validation t chniqu also

xplained in Section 4.6. The re ults from thi new study are summaris d in Table 5.4.

Interestingly, the predictive power of the models based on the sample of our new

dataset t ested was better (as shown by low r perpl xity values) than those of both

earlier studies [Wigmore, 2011 ' Wigmore et al. , 2010] on poken mathemati s. There

are everal possible reasons for thi improvement . Th vocabulary is still r latively

small and the t raining datasets used in our late t study are considerably larger than

the t rigonometric dataset used in Wigmore t al. [2010]. Perhaps the mo t important

reasons could be the higher quality and incr ased amount of t raining data.

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS

Data Collection
Web-crawler

Tutorial Web Sites

!
LatexlMathML
Mathematical
Expressions

-------------------------------------1:---------------.

Conversion (Context
Free Grammar)

Filter Scripts

l
·Spoken Mathematics·
format Mathematical

Expressions

------------------------------~---------
Training Set Test Set

SLM Production l l & Evaluation
(CMU Toolkit)

SLM • Perplexity
Calculation

56

Figure 5.2: Building & Evaluating SLMs for Spoken Mathematics for Tutorial Web
Site Data

5.3 Applications of SLMs to Prediction of

Spoken Mathematics

As noted in previous section, the SLMs we built have the potential to be useful for

prediction of mathematical text. In this section, we first introduce a prototype system

(Speech-based Web Interface for Mathematics using SLMs, or SWIMS) , that we used

to empirically evaluate our SLMs when put into practice. Then we report results

of three experiments used to evaluate the predictive power of the SLMs: For the

first two experiments, A and B, we trained a SLM using 90% of our database of

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS 57

Training set Test set Training Test Perplexit) Vocabulary
words words (words)

subsets [1-9] subsetlO 54907 6572 7.07 100
subsets [1-8 & 10] subset9 54968 6511 7.17 100

subsets [1-7 & 9-10] subset8 55294 6185 7.11 100
subsets [1-6 & 8-10] subset7 55688 5791 7.31 100
subsets [1-5 & 7-10] subset6 55172 6307 7.25 100
subsets [1-4 & 6-10] subset5 55597 5882 7.74 100
subsets [1-3 & 5-10] subset4 55340 6139 7.01 100
subsets [1-2 & 4-10] subset3 55805 5674 7.65 98
subsets [1 & 3-10] subset2 55177 6302 7.53 100

subsets [2-10] subsetl 55363 6116 7.02 100
Grand Mean 55331.10 6147.90 7.29 99.80

Table 5.4: Cross-validation Perplexity Calculations on Statistical Language Models of
3,194 spoken mathematical expressions using CMU Language Modelling toolkit

spoken mathematical equations ('" 3700 expressions). The remaining 10% ("" 400)

was then used to test the predictions offered by the system, based on the trained

model, comparing these with the complete correct version of each expression. For the

third experiment, C, we varied the size of the training and test data sets in order to

monitor the consequential change in the system's prediction performance.

5.3.1 The SWIMS Prototype System

SWIMS was developed as a separate module which can be later integrated into the

TalkMaths system following successful evaluation. The goal of SWIMS is to assist

the user by predicting and/or correcting his/her input using SLMs prior to parsing.

Parsing is required in order to display the output on the screen using suitable math

ematical rendering technology such as MathML. For ease of evaluation and for better

performance, SWIMS has been divided into two units, one to predict the next word(s)

in the input and the other to correct user mistakes. The former interface is called Pre

dictive Mathematics and the latter Alternative/Corrective Mathematics. We note that

requiring a user to read a large number of possible alternatives offered to them by the

system imposes a high cognitive load. Therefore, we also provide previews of each of

these alternatives, rendered into standard mathematical format. This should make the

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS 58

user's task of identifying the correct version easier, removing the burden of reading long

expressions in spoken mathematics format. We used JSON to store trigram probabil

ities for our SLM, JavaScript for calculating probabilities, and the jQuery JavaScript

library to communicate between the browser and the TalkMaths parsing server.

5.3.2 Predictive Mathematics Interface

The predictive mathematics interface predicts one or two words ahead of the currently

typed or dictated mathematical text. In order to predict one word ahead, the system

uses the last two words of the input, trying to match the first two words of trigrams

found in our SLM. When such matches are found, suggestions for possible completions,

i.e. the third word of such trigrams, are offered to the user as alternatives, ranked

according to the trigram probabilities. In cases where the input is less than two words,

or there is no matching trigram, then the system will back-off [Katz, 1987; Kneser

and Ney, 1995] to bigrams and their probabilities. Similarly, if this is not successful,

unigram probabilities will be used. Two word prediction is a recursive extension of

the one word prediction mechanism, where only the first word of each trigram is used

as input. The system architecture of this predictive interface is shown in Figure 5.3,

where the dashed line indicates the system boundary of SWIMS. Figure 5.4 shows this

I User I

Spoken
Mathematics
(SM)

1~ ________________________
I
SW
1 SM

-------------- -------------- -------,
I
1 I SLM I I Controller J l Expression J l Predictions J

1
1
1
1
1
1

1
1
1- SM Predictions -------------------------- ------- ---------

SM Predictions SM

1-------- -------- -------,
1 1
1 I TalkMaths I

1
1 1 1
1 1 L ________________________ J

-------------- ------_J

MathML Math ML

Figure 5.3: SWIMS Predictive Mathematics Interface System Architecture where "SM"
refers to "Spoken Mathematics Format"

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS 59

system applied to the spoken mathematics form of the formula, V = Ee R6, for the

voltage across a capacitor which is being discharged through a resistor, where SWIMS

has correctly predicted the next word (circled) that should come after the last word

dictated/typed by the user.

SlPlMS
~eclH>ased Web Interfaco "" MaIhomotics using ~LM

Home~AJtern.tlye Math! About

Rendorod Prediction.:

1) V. Ek*)
2) II. Et(-if)

Prodlc:tLowf ' 3) V. E' (-'is)

~ ~::~ 4) V . E.(-To)
TWo or dlcllle yow c_ ,--18ngO -begin - ~ 5) v . E.(-i;)

Spot ... Prodlcllons:
1) capital victor equals capital echo echo 10 tho powe, 01 begin open brackel minus tango over begin copltal romoo capital hartlo
2) capital vlcto, oquals capital echo ocho 10 tho powe, 01 begin open brackel minus tango over bogln capital romoo capllal
3) capital victor oquals capltalocho ocho 10 tho powe, 01 begin open brackel minus tango ove, bogln capital ,omoo capital Ilorra
4) capital vlclor oquals capltalocho ocho '" tho pow .. 0' bogln open brackel mInu.lango over bogln capital romeo capital bravo
S) 'lip'" vktor equals capital echo .elM to the power of begin open bracket minus tango over begin capital romeo capital alpha

Figure 5.4: Predictive Mathematics Interface in use. In the top-ranked ugg stion, the
SLM correctly predicts that capital will be followed by charlie

5.3.3 Dependence of Prediction Success Rate on Number of

Alternatives Offered (Experiments A and B)

Each expression in the test set was run through the predictive mathematics interface,

with the last one (Experiment A) or two (Experiment B) word(s) omitted. We then

observed the next word(s) predicted by the system, to see if one of highest ranked (by

probability) predictions contained the actual missing word(s) . Some example expre -

sions we used for these experiments are illustrated in Table 5.5 (Experiment A) and

Table 5.6 (Experiment B). The word end is normally used as a context cue within our

specialized language for spoken mathematics, resulting in it being the most common

word (see Table 5.2) in our dataset. Hence, we did not test expressions ending with

end (A) or ones which had end in the last two words (B). Table 5.7 illustrates the

percentages of times the correct prediction was included in the list of M "best" sug

gestions being offered to the user, and how this varied with M. In order to check that

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS 60

Incomplete Expression Omitted SWIMS predictions
next
word

alpha to the power of two plus bravo to the two two, begin, three,
power of x-ray, four
begin x-ray minus one end over begin x-ray two one, two, three,
minus three end equals one plus two over charlie, yankee
begin x-ray minus
three delta over begin delta x-ray end open to close, plus, to , mi-
square bracket x-ray nus, index
begin delta over begin delta x-ray end end x-ray x-ray, yankee,
of begin charlie foxtrot end equals charlie tango, to, over
begin delta foxtrot end over begin delta
one minus two alpha plus bravo equals one alpha charlie, alpha, or,
minus two bravo plus foxtrot, bravo
zero less than x-ray minus charlie less than two two, one, x-ray, be-
delta index gin, yankee
alpha x-ray to the power of two plus bravo zero or, x-ray, delta,
x-ray plus charlie less than three, one
alpha index november equals november to one one, alpha, begin,
the power of begin minus begin november x-ray, papa
plus

Table 5.5: Sample incomplete expressions we used for Experiment A, omitted word
and predictions (using 5 suggestions, adding one word for each)

the results obtained were consistent, we performed 10 fold cross validation. The results

of Experiment A are also represented graphically in Figure 5.5, which shows that the

success of the one word ahead prediction increased as the number of suggestions shown

to the user was increased, but with diminishing return. However, with 10 suggested

alternatives, the system correctly predicted one word ahead over 75% of the time.

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS 61

Incomplete Expression Omitted S\VIMS predictions
last two
word(s)

alpha to the power of two plus bravo to the of two of two, of begin,
power end over, end end,

begin delta begin x-
ray

begin x-ray minus one end over begin x-ray minus two to the, to bravo,
minus three end equals one plus two over plus one, plus two,
begin x-ray index zero
three delta over begin delta x-ray end open x-ray to times close, times
square bracket open, begin inte-

gral, begin delta,
foxtrot of

begin delta over begin delta x-ray end end delta x-ray delta x-ray, delta
of begin charlie foxtrot end equals charlie yankee, x-ray to, x-
begin delta foxtrot end over begin ray plus, two x-ray
four x-ray to the power of three plus four two plus two end, two plus,
x-ray to the power of begin x-ray, begin

two, three plus
foxtrot of x-ray equals x-ray to the power the power, the

end, bravo of, bravo
foxtrot, alpha of

alpha x-ray to the power of two plus bravo than zero than or, than x-ray,
x-ray plus charlie less end over, end end,

begin delta
alpha index november equals november to plus one minus one, minus
the power of begin minus begin november two, plus one, plus

alpha, index sierra

Table 5.6: Sample incomplete expressions we used for Experiment 0, omitted words
and predictions (using 5 suggestions, adding two words for each)

5. SLM A PPLICA TIONS TO SPOKEN MATHEMA TICS 62

N umber of Suggest ions
Training Test Set 5 10 15 20 25
Set Size Size

Minimum 3684 407 62% 74% 79% 85% 88%
Mean 3691.8 410.2 63.2% 77.6% 84.4% 88.9% 91.1%
Max: 3695 418 66% 81% 87% 91% 94%

Table 5.7: Experiment A: Variation of success rates of one word predict ion with numb r
of suggestions offered to the user

One" · 0 rd Predic non

95 -- 90 c .--~ 85 . ""'1
'";I

f 80 ... -- 75 ~
~ - 70 :..
Q
~ 65 ,. -Q

= 60 .. -
55

0 10 ~o 30
:Xumber of Sllggesnons

Figure 5.5: One word ahead prediction success rat increasing with the number of
suggestions offered to the user. The different points corresponding to the same number
of suggestions indicate the results from the 10 different cross validation t rials

Experiment B evaluated the two words ahead prediction facility within SWIMS,

in a similar manner to Experiment A. The results are summarized in Table 5.8, and

shown graphically in Figure 5.6. The trend is similar to that for xperiment A, but

the success rates in experiment B are lower for a given number of sugge tions, and it

would appear unlikely that prediction success rates in excess of 50% could b achieved.

5. SLM A PPLICATIONS TO SPOKEN MATHEMATICS 63

Number of Suggestions
Training Te t Set 5 10 15 20 25
Set Size Size

Minimum 3684 407 17% 24% 28% 29% 30%
Mean 369l.8 410.2 24.3% 30.2% 33.6% 35.2% 36.2%
Max 3695 418 31% 36% 39% 42% 44%

Table 5.8: Experiment B: Variation of success rat s of two word prediction with number
of uggestions offered to the user

Two " ·ords. Prediction
45 --c .- 40 -~ .--:;,
35 E .. -- 30 ~

E
~

25 c
::.; . -c 20
~ -.. + ..

15

0 110 20 30
:\"u.mber ofSugges.tions

Figure 5.6: Two word ahead prediction success rate increasing with the numb r of
suggestions offered to the u er

5.3.4 Dependence of Prediction Success Rate on Size of '!rain

ing Dataset (Experiment C)

In Experiment C, we studied how the success rate for one word ahead pr diction varied

as different sized datasets were used to t rain the SLM. The r suIts are ummarized in

Table 5.9. We kept the number of suggestions offer d, M , as 5 and varied t he size of the

5. 8LM APPLICATIONS TO SPOKEN MATHEMATICS 64

Mean Training Set Size Mean Test Set Size Mean % Correct (SD)
3691.8 410.2 63.10 (1.32)
3281.6 820.4 62.60 (1.69)
2871.4 1230.6 62.30 (1.58)
2461.2 1640.8 62.10 (1.60)
2051 2051 61.30 (1.62)

1640.8 2461.2 60.30 (1.49)
1230.6 2871.4 59.00 (1.31)
820.4 3281.6 56.50 (1.44)
410.2 3691.8 52.70 (1.77)

Table 5.9: Experiment C: Variation of success rate of one word ahead prediction with
SLM size (5 suggestions per trial) - both training and test sets may vary in size

training and test set sizes. We were particularly interested in the relationship between

the increase in the size of the training set and one word ahead prediction success rate.

The Results in Table 5.9 showed a small increase in success rate for one word ahead

prediction when the amount of training data used was increased, whilst ft.,f remained

fixed. However, due to the cross validation technique used, the size of test set has

also been varied during this trial, which in turn may have an effect on the outcome,

making it difficult to draw a conclusion. We then carried out the same experiment,

keeping the test set size fixed as well. The results of this more controlled experiment

Mean Training Set Size Mean % Correct (SD)
3691.8 63.11 (1.14)
3281.6 61.36 (2.02)
2871.4 61.88 (2.57)
2461.2 62.99 (2.47)
2051 61.32 (3.16)

1640.8 59.18 (2.15)
1230.6 58.97 (3.88)
820.4 56.86 (3.97)
410.2 52.94 (3.03)

Table 5.10: Experiment C(2): Variation of success rate of one word ahead prediction
with SLM size (5 suggestions per trial) keeping test set constant (400)

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS 65

shown in Table 5.10 re-confirmed the relationship between training dataset size and

the prediction accuracy shown by the less-controlled initial experiment.

5.4 Applications of Edit Distance Metrics to Error

Correction

To realise correction of errors (in this case, small typing errors), in the SWIMS sys

tem, we implemented another web interface called Alternative/Corrective Mathemat

ics. Each time an out of vocabulary (OOV) word is detected, the Damerau-Levenshtein

algorithm [Damerau, 1964; Levenshtein, 1966] is used to calculate the Levenshtein dis

tance of the typed word relative to each word in the vocabulary, in order to find

suitable candidates for correction of the OOV word in question. Once a list of such

candidates has been obtained, the Levenshtein distance and/or SLM probabilities can

be used to re-rank the resulting new sequences of words. To illustrate this concept, we

designed three variants of correction methods in the Alternative/Corrective Interface

of SWIMS. These use Damerau-Levenshtein only, SLM only, and both in combina

tion, respectively. In this project, we have only implemented and evaluated the first

of these. In experiment D, the edit distance-based correction algorithm of the SWIMS

system has been evaluated by artificially introducing a controlled selection of mistakes

into otherwise correct expressions. Figure 5.7 illustrates the system architecture of

SWIMS alternative/corrective mathematics interface. The D-L Engine is based on

the Damerau-Levenshtein algorithm which provides alternatives for OOV words in the

input.

An illustration of the SWIMS Alternative/Corrective Mathematics in use can be

seen in Figure 5.8, where a user made a mistake while dictating/typing the word "plus"

and this was corrected in the alternatives suggested by the system.

5.4.1 How Successful the Correction System at Correcting Er

rors (Experiment D)

In order to evaluate the performance of the correction algorithm, we artificially in

troduced some controlled errors each of 100 expressions (spoken mathematics form)

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS

I User L
I

Spoken
Mathematics
(SM)

1~ ________________________
,5YJi , SM

-------------- -------------- -------, , , , I D-l Engine I I Controller I I Expression I I Corrections I
I
I , , , , , , ,- SM Corrections -- -------- --------- ------_J

SM Corrections SM MathMl MathM l

,-------- -------- -------, , , , I TalkMaths I
, , , , , , L ________________________ J

Figure 5.7: SWIMS Alternative/Corrective Mathematics System Architecture

66

selected from the set of test expressions, then observed the proportion of these where

the correct version was found within the 5 top ranked alternatives offered by our cor

rection system. This was carried out for each of introducing an extra R characters

per expression, deleting R characters per expression and swapping R pairs of adjacent

characters, for each of R = 1, 2, 3. Some example expressions created for this experi

ment are shown in Table 5.12. The percentage of expressions which were successfully

corrected using this approach for each trial are shown in Table 5.11. It can be seen that

our method is extremely successful in correcting up to 3 insertions or transpositions of

characters per expression, and fairly successful in correcting cases where up to three

characters have been deleted from an expression.

N umber of Changes 1 2 3
Deletion of characters 95 92 68
Insertion of characters 100 98 97

Swapping pairs of adjacent characters 100 95 91

Table 5.11: Experiment D: Variation of success rate (%) of correction using Damerau
Levenshtein method (5 suggestions offered per trial)

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS 67

StplMS
~.ch-bo.ed 101.b Int.,fac. I.,.. Moth.matics using ~LM

Momollv. Maths 1.. . ::I!lJ

I(·Y) . (2X' - XX 3.lpIuck I)

Sugg .. t~ COfT.c:tkm.:

1) f t y)- (2X' -XX 3X+.)
2) I) - (2., -.X 3XO')

ConKtlon Method • 3) f (x) - (2X' -XX 3XClose t)

o Oom.,eu · L.vonshl.1n 0rIy ~) o SLM Only (TBO) 4) I (x) _ (2.' -x 3xtqllai l
o Oom ... ,u· Lev hI.1n Plus Sl.M (TaD)
l'fpoOfdlcllityourcomrnond / __ ondolbegin_x-nypludt ~ 5) f (x) - (2 ., - . 3X41)

Suggestod Coo.etlon.:
1) foxtrot of X y .qual. begin optn bracket-two xofay to the powlr 0' nVI minul x-ray elo.t brlcket tnd 0' btgln thr •• x tu. nt end
2) foxtrot 0' x-ray equals blgln optn brack,t two x-ray to the pow.r 0' flvi minul x.,.y dosl brlcket end of b.gln thr •• X..f.y alp .. on •• nd
3) foxtrot 0' X.fay tquab btgln optn brade,t two x..ray to the powlr 0' flv. mlnua x .. ny clo •• brack,t tnd of begin ltv •• x y do •• OM tAd
of) foxtrot 0' .ofay .quals btgln optn brack.t two x~ to the power of flv, mlnul x..,..y do •• brack,t tnd 0' blgln thr •• x-ray tqual one end
5) foxtrot 0' x-ny .quats blgln optn brack.t two x y to the pow.r of ttve mkws x·uy dose bfac:ket end of beg'" three x.faY fow OM end

Figure 5.8: Alternative/Corr ctive Mathematics Interfa e in use. In the top-rank d
suggestion, the OOV word pluck is replaced with plus

5.5 Discussion of Results

In this chapter, we fir t explained our method for d veloping and valuating SLMs for

spoken mathematics using a web-crawled spoken mathematic corpu. The evalua

tion were carried out by using perplexity calculations. The re ults show d that pok n

mathematics is indeed highly predictable compared with ordinary t xt and th poken

mathematics corpus we created should therefore b us ful. These obs rvations ju tify

our use of language models based on this corpu , for pr diction tasks. Then we pre

sented results from s veral pr diction and corr ction experiments, namely A, B, C and

D. From Experiments A and B, we ob erve that on word ah ad and two word ahead

prediction success rates can be improved by increasing the number of alternative , M,

suggested to the user. However, the rate of increase of uccess rat diminish s as M

increases, and it would appear that the maximum po sible rates are about 90% for one

word prediction, but around just 40% for two word pr diction. Howev r, if the u r

has to read too large a number of sugge tions, the ognitive load imp os d will be very

great. Thus, the number of options displayed must be limited. Bas d on our result ,

we propo e that between 5 to 10 suggestions should be offered for one word pr diction,

giving success rates from 63 to 80%. However, two word prediction is rather less useful

unles a large number of sugg tions are pre ented. Exp riment C showed that a small

increase in success rate for one word ahead prediction could be achieved by incr asing

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS

yankee equals capital alpha x-ray to the power of begin minus three end
yankee equals capital alpha x-ray to the power of bgin minus three end
yankee equals cpital alpha x-ray to the pwer of begin minus three end
yakee equals cpital alpha x-ray to the pwer of begin minus three end

yankee equals capital alpha x-ray too the power of begin minus three end
yankee equals capital alpha x-ray too the power of begins minus three end
yankee equals capital alpha x-ray too the power off begins minus three end

yankee equals capital aplha x-ray to the power of begin minus three end
yankee equals cpaital alpha x-ray to the opwer of begin minus three end
yaknee equals cpaital alpha x-ray to the opwer of begin minus three end

68

Table 5.12: Experiment D: Examples of incorrect expressions derived from the same
correct expression "yankee equals capital alpha x-ray to the power of begin minus three
end" (by deleting, inserting and swapping characters). Words with errors are marked
in bold font

the amount of training data used, whilst keeping M, the number of suggestions offered

to the user, fixed. This is consistent with other studies of the predictive power of

models based on other types of text [Jelinek, 1991; Kneser and Ney, 1995].

Finally, according to the results we obtained in Experiment D, the Damerau

Levenshtein based correcting method is highly successful at correcting up to 3 character

level errors in an expression. However, when the number or complexity of such errors

is increased, the efficiency of correction declines. At present, the suggested corrections

are limited to words within the vocabulary of the SLM. This implies that each time a

valid new word (in our case, a spoken name of a mathematical entity) is encountered

it will need to be added to the system's vocabulary. This should be relatively straight

forward for the Damerau-Levenshtein based method. However, in order to modify the

SLM, the corpus of mathematical expressions will have to be extended to reflect the

change. Although possible in principle, this is not straightforward as one would have

to find a considerable additional amount of data in order to update the model. Online

learning within an adaptive system may be the solution to this issue, however we do

not investigate this further here.

Our work to date has indicated that the prediction/correction assistive facilities

incorporated into SWIMS have potential to help make mathematical editing systems,

including TalkMaths, more powerful and user-friendly. Improving such systems in this

manner should in turn make writing and editing mathematics in electronic documents

5. SLM APPLICATIONS TO SPOKEN MATHEMATICS 69

much easier, particular for three target groups - the disabled, on-line (particularly at a

distance) learners and people relying heavily on the use of portable devices - for whom

these tasks are currently very difficult or even near impossible.

5.6 Summary

As seen in Section 5.2.3, our perplexity experiments have indicated that spoken math

ematics seems to be relatively predictable, so SLMs should aid in its prediction and

correction. In order to investigate this further, we carried out three prediction exper

iments in Sections 5.3.3 and 5.3.4 and the results of these confirmed our hypotheses

on SLM-driven prediction of spoken mathematics. The results of the first three ex

periments suggested that, while one word ahead prediction is efficient and can be

improved by increasing the size of the training dataset used, two words ahead pre

diction was rather poor. The fourth experiment was on error correction experiment

using a method based on the Damerau-Levenshtein distance method, where character

level errors were artificially introduced into otherwise correct spoken mathematics ex

pressions. We observed that the correction success rate declines as the errors become

more complex, suggesting that Damerau-Levenshtein distance method is only useful in

correcting relatively small numbers of errors in spoken mathematics expressions. Our

method should be easily adaptable to use in several other closely related domains. For

example, computer algebra systems such as Maple and Mathematica have their own

language and syntax for mathematical expressions. It should be fairly straightforward

for our predictive and corrective methods to be integrated with these systems, assuming

that enough data on past usage is available to train the necessary models. In summary,

both these predictive and corrective methods can be used to assist users of TalkMaths

and possibly other systems to create and edit mathematical text efficiently.

Chapter 6

Error Recovery Strategies for

Parsing Transcribed Spoken

Mathematics

6.1 Introduction

The art of compiler construction, essential to the success that modern computer science

has experienced, was developed throughout the 1960s and 70s and most of its techniques

are well understood [Aho and Ullman, 1972; Aho et al., 1986, 2007]. Its main use is

to design tools such as compilers or interpreters that convert source code to object

and/or executable code. The ease by which these tools are available nowadays has

led to a proliferation of programming, markup and other formal languages. Usually,

the functionality of a compiler is divided into several phases: lexical analysis (carried

out by a lexer), syntax analysis (the corresponding tool is called a parser), semantic

analysis and code generation.

Apart from writing compilers, some of these phases are also relevant when designing

structure editors (sometimes also referred to as language-sensitive editors in the litera

ture). A structure editor is an editor that is aware ofthe underlying document structure

and supports the user to maintain document integrity while entering or manipulating

the document. Creating such a structure editor, that is efficient and user-friendly, is

commonly regarded as being difficult. Most commercial tools for developing computer

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 71

code (so called Integrated Development Environments, IDEs) do not offer the same

level of functionality as a structure editor.

More recently, the rise of web-based interfaces and the need to manage vast amounts

of information available on the internet has led to another challenge: more and more

often, users want to use natural language to phrase queries for search engines and

the use of speech input is becoming more mainstream (as we have already discussed

in Chapter 3). Parsing natural language is still a difficult problem, and traditional

context-free parsing algorithms [Chomsky, 1957, 1965J are not powerful enough. lIence,

command languages that are based on a relatively small subset of natural language

might be a viable option.

Our work on the TalkMaths system, as it is relevant to this thesis, effectively

touches all these aspects. TalkMaths is a web-based structure editor, that accepts

natural language commands in order to control the editing process. We will assume

that spoken mathematics commands have been recognised by the ASR, or perhaps

have been directly typed into a suitable user interface. As a consequence, we have a

string of transcribed spoken mathematics which we would like to further analyse with

the ultimate goal of displaying it in our system.

In this chapter, we first investigate some properties of previously suggested com

mand languages for spoken mathematics. We then propose an improved framework

based on the idea of speech templates. Next, we elicit technical challenges that arise

when designing and implementing a robust parser that is able to analyse our language.

A framework is developed that enables us to use mixfix operators in order to construct

our input language. We then use operator precedence parsing for the syntactical anal

ysis of this language. In order to deal with ambiguities at lexical level, we adapt the

XGLR parsing algorithm given in Begel and Graham [2006J to our operator precedence

setting. Finally, we devise robust error recovery strategies for our parser.

We have fully implemented our parsing approach as part of a new prototype version

of TalkMaths, denoted by Pa in Chapter 7, where we have provided an evaluation of

our implementation, that documents the resulting improvements. The error recovery

strategies have been partially implemented with an emphasis on treating incomplete

input (as this seemed the most frequently occurring error).

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 72

6.2 Spoken Mathematics as Input Language

In this section, we present the main characteristics of the language for spoken math

ematics that we use in the TalkMaths system and for which we propose a parser and

error recovery strategies.

Our language consists of a set of spoken forms for operators and operands. This

approach is not new and arguably, most previous attempts, as explained in Chapter 2,

follow the same scheme. However, we improve several aspects of spoken mathematics,

as explained in the remainder of this section.

6.2.1 Ambiguity

As already stated in the literature [Fateman, 2009; Wigmore, 2011], spoken mathe

matics often contains ambiguity. Precedence rules, normally expected to be known by

mathematically trained users, can help with resolving this ambiguity. For example,

if we hear "a plus b over c", either a + Q or a+b could be meant. If a display of the c c

expression was available - perhaps in a teaching session or during a mathematical talk

- there would be no confusion. Otherwise, if we need to interpret the transcribed spo

ken mathematics without any additional clues, our system should follow the rule that

division (the fraction operator) binds more strongly than addition. IIence, following

this precedence rule, we would decide on the first expression rather than the second.

However, this is not always an obvious solution. Consider the transcribed spoken

mathematics "square root of b squared minus a". This could either be interpreted as

...jFj2 - a or vI? - a. No obvious operator precedence rule would help in this example.

There is no common standard that indicates exactly how much input is supposed to

be the argument of the root function.

The approach taken by Fateman [Fateman, 2009] is to use additional "locutions"

(spoken delimiter/marker commands) to clearly indicate boundaries between argu

ments. The first expression would be spoken as "square root of b squared all minus a" .

Here, the term "all" acts as an "invisible" end marker in order to separate the square

root function from the subtraction operation. An additional construction ("quantity")

implements a corresponding begin marker. The expression a + b~c for example would

be dictated as "a plus quantity b plus c all over d". Note that these commands could

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 73

also be used as a spoken form for brackets, as for example in the input "a plus b all

times c" which is the spoken form of (a + b) x c.

The emphasis on the simple design of spoken mathematics in [Fateman, 2009] is

on simplicity and convenience for the user. For these reasons, the author does not

consider the use of additional commands other than "quantity" and "all", although he

acknowledges that this might lead to artificial examples, see the example with" all all"

in Section 6.2.2.

6.2.2 Speech Templates

We propose an extension of this scheme, the use of speech templates l . Speech templates

are (usually, relatively short) spoken natural language commands. A speech template

consists of one or several groups of words. Between each group, any other spoken

language elements (including speech templates) might occur. Effectively, these groups

act as "boundaries". Hence, a speech template can take zero or more arguments and

can be nested.

For example, suppose we would like to speak the expression (a+ c!d) xe (see Section

3.6 in Fateman [2009]). Using his approach, we would say "a plus b over quantity c

plus d all all times e". A speech template for fractions could be defined by

"fraction" .. "over" .. "end fraction"

Using this speech template, the expression is now pronounced as "a plus fraction b

over c plus d end fraction all times e". This appears more natural, as it avoids the

repeated "all all" construction.

Speech templates without any arguments can also make sense. These consist of

a single command such as "edit expression" or "what can I say". Such commands

can be useful, for example, in a system that offers a user interface with additional

functionality, such as editing mathematics expressions or displaying help information.

As an example of a speech template with more than two arguments, we define a

speech template for speaking or typing integrals as:

"integral from" .. "to" .. "of" .. "end integral"

IThis is not to be confused with the type of acoustic templates used for pattern matching in speech
signal processing.

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 74

The expression J:=a(f(x) + g(x)) dx would be spoken as "integral from x equals a to

b of f of x plus g of x all d x end integral". Table 6.1 illustrates some currently used

and potential examples of speech templates.

Speech Template Arguments
edit expression 0
clear expression 0
select numbers 0
integral of .. end integral 1
third root of .. end root 1
to the power of .. end power 1
edit .. end 1
begin .. end 1
function .. of .. end function 2
fraction .. over .. end fraction 2
integral from.. to .. of .. end integral 3
sum from.. to .. of .. end sum 3
matrix row .. and .. row .. and .. end matrix 4
limit of .. of .. as .. approaches .. end limit 4
matrix row .. and .. and .. row.. and .. and .. end matrix 6

Table 6.1: Examples of speech templates with different number of arguments

Finally, we remark that there are still other aspects of ambiguity in spoken mathe

matics which seem difficult to deal with, and we refer to Fateman [2009] for a discussion.

6.3 Parsing Challenges

Before presenting our parsing approach, we illustrate the challenges that typically

arise during the syntax analysis of transcribed spoken mathematics or, potentially, any

spoken command language for creating structured content. Essentially, we have to

deal with lexical ambiguity, incomplete or syntactically incorrect input, as well as any

combination of these.

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 75

6.3.1 Lexical Ambiguity

Ambiguity at the lexical level may arise for two reasons. In the context of spoken

input, ambiguity is caused by the presence of homophones in natural languages (the

English language in our case)l. For example, both "four" and "for" sound the same

and an ASR might not be able to identify the correct utterance. Hence, the lexer

will be misled by this type of ambiguity. Furthermore, due to its design, any formal

language may contain ambiguity, and this is also the case in our language for spoken

mathematics.

In the context of lexing, [Begel and Graham, 2006] classify four kinds of input

streams.

(i) Single spelling, single lexical type.

(ii) Multiple spellings, single lexical type.

(iii) Single spelling, multiple lexical types.

(iv) Multiple spellings, multiple lexical types.

In this classification, the last three are ambiguous. Here, multiple spellings indicates

the phenomenon of ambiguity due to homophones and multiple lexical types refers to

ambiguous language.

6.3.2 Incomplete Input

We refer to incomplete input as syntactically incorrect input, that can be made correct

by inserting additional content. Due to the input being a spoken command language,

we will frequently encounter such incomplete input primarily due to the following two

aspects.

(i) The fact that all input originates from utterances that are spoken by the user.

In general, humans find it easier to break down complex instructions into smaller

chunks as it reduces cognitive load [Christian et al., 2000]. We assume here

that the command language is designed in such a way that this "chunking" is

permitted.

IThis is even more likely to happen in some other natural languages, for example, in French.

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 76

(ii) The desire to omit keywords in the input, as long as this does not create semantic

problems. We have already seen in the context of spoken mathematics that

specific keywords are necessary in order to resolve ambiguity. However, especially

in reasonably short utterances, they might become optional. It greatly alleviates

the physical and cognitive effort needed to use the system, if they can be omitted.

Let us give some examples to illustrate these two aspects. Firstly, the utterance "a

plus", followed by "square root of b" together form the syntactical correct expression

a + Vb. This is only known after the second command, and the parser needs to tolerate

the incomplete first command.

In order to better understand the second aspect, consider the spoken command

"begin a plus b end times c". Here, the term "begin" can be omitted without any

resulting ambiguity. Effectively, it is an optional term and users would probably prefer

not to speak it.

6.3.3 Incorrect Input

In addition to incomplete input, as discussed in the previous section, one could observe

other types of general syntactically incorrect input. In the context of spoken input we

can identify the following main reasons for this:

(i) Misrecognition - errors of the ASR could lead to violation of the syntax in the

input. This introduces invalid or erroneous commands, words or characters.

(ii) Human error - users might make errors due to negligence or insufficient knowledge

of the command language, or due to hesitation or speech impediment, with similar

consequences as above.

Often, the parser could simply ignore input such as "$ # &" (assuming that we have a

means of inputting these special characters). On the other hand, the input "plus plus

plus" is at the borderline of an incomplete expression. The input "square root root of

three" however leaves us wondering what sensible actions the system could take.

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 77

6.4 Parsing Framework

In order to parse and display the input to the TalkMaths system, we proceed as in

standard compiler construction. We recall the following phases [Aho et al., 1986]:

(i) Lexical Analysis: this is the first step in analysing the input. A tool (the Lexer)

scans the input and converts it into meaningful entities (tokens). For input

languages such as programming languages, this is normally a straight forward

task. Tokens are defined using regular expressions, and this drives a pattern

matching process.

(ii) Syntax Analysis: a continued analysis, based on the token stream that is the

output of the lexical analysis. The main goal in this phase is to construct a parse

tree.

(iii) Semantic Analysis: in this phase, the information in the parse tree, together with

additional semantic rules, is used for various semantic tasks. For example, type

checking of tokens in programming languages is done at this phase.

(iv) Code Creation: finally, executable code is generated by using all the information

and data structures that were created in all the previous phases.

In this chapter, we focus on the first and second phase. The semantic analysis and

code creation phases are not explicitly covered by the work in this thesis but are under

ongoing investigation within the TalkMaths research project [Wigmore, 2011].

6.4.1 Underlying Grammar

In this section, we explain our framework for parsing our language for spoken mathe

matics, denoted by M. The idea is to map this language into an equivalent language

,c, which consists of expressions containing operators and operands. By "equivalent"

we mean that there is a one-to-one correspondence of elements in M to elements in ,c.
Lexical analysis converts equivalent elements into the same token stream, and hence

this will result in the same syntax tree.

In order to realise this map, we use operators in their most general form: mixfix

operators [Danielsson and Norell, 2011] (referred to as distfix in [Annika, 1995]), that

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 78

are a generalisation of prefix, postfix and infix operators. Mixfix operators are used

in specialised programming languages such as PROLOG [Clocksin and Mellish, 1984],

ML [Paulson, 1996] and Agda [Bove et al., 2009]. For our work, we consider the special

class of closed mixfix operators. These operators consist of a sequence of operator

paris, enclosing holes. Each hole in turn contains another valid expression, which may

contain other mixfix operators. The notation for such an operator of arity (number

of operators) n is OPl _ OP2 _ ••• _ 0Pn [Danielsson and Norell, 2011] where we also

allow the case of arity 0, i.e. no internal holes at all. This makes it evident that speech

templates are in fact spoken forms for closed mixfix operators.

The language ,c is recognised by the following grammar G = (N, E, P, S) where E

is a symbol, N = {E} is the set of non-terminals, E contains the terminal symbols,

P is a set of productions (grammar rules), as shown below, and S = E is the start

symbol:

E-+a

E -+ E*E
E-+ oE

E-+Ee

E -+ (E)

E -+ (E II E)

E -+ (E II .. ·11 E)

(Rd

(R2)

(R3)
(R4)
(Rs)

(RtJ)

(lIm)
In this grammar, the rules R2-Rs are specifying expressions containing

unary pre- and post-fix, or binary operators. Rule Rl yields constants

(operator-free expressions), and rules RtJ-lIm (and, strictly speaking, also

R 1) are concerned with specifying valid speech templates. For example, in

order to create the integral speech template presented in Section 6.2.2, we

would have m = 8 as the spoken integral template example corresponds to

a closed mixfix operator with three holes, which would be covered by rule

Rs·
In order to simplify notation, we state these rules generically: a E E denotes any

alpha-numerical character or a number, which are operands; *,0,. E E are any binary,

prefix and postfix operators respectively and any arbitrary closed mixfix operator is

written using the open operator "(", optionally, the argument separating operators

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 79

"II", and the close operator ")".

By design, this grammar is a context-free grammar. Moreover, since there are

no productions with two adjacent non-terminals on their right side, it is an operator

grammar [Aho et aL, 1986, Section 4.6]. It is well known that operator grammars,

together with precedence and associativity rules, can be analysed using an efficient

parsing technique called operator-precedence parsing.

In [Annilm, 1995], this has been done for a grammar which ours is a subset of.

From this work, we deduce precedence relations between operators and operands as in

Tables 6.2 and 6.3. This information will be used in the parsing algorithm as explained

in the next section.

II * I a I (I II I) I $ I
* < < > > >
a > El E2 > > >
(< < < Fl
II > < < F2
) > E3 E4 > > >
$ < < < F3 F4 S

Table 6.2: Operator Precedence Table

Table 6.2 is a simplified representation of the complete precedence matrix, which is

obtained by grouping entries of identical precedences together. The generic operator

* represents the operator classes *,0, e. The $ symbol is an additional symbol. The

top left missing entry needs expanding into a refined precedence matrix, detailing

the precedences that exist between the various prefix, infix and postfix operators. The

values El to E4 and Fl to F4 are error entries, which will be used during error recovery.

The remaining empty entries need to be completed according to the following table.

Table 6.3: Additional Precedence Tables for Mixfix Operators

The first table expresses the precedence relation between the same mixfix operator

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 80

parts, whereas the second table represents those of different operators. The additional

entries G1 to G4 are also for error recovery, more precisely, they are used in Section 6.6.4.

We will have the convention that the closed mixfix operators that correspond to

our speech templates have a higher precedence than any other operator (prefix, infix

or postfix). Furthermore, all closed mixfix operators have the same precedence and are

right associative.

6.4.2 Operator Precedence Parsing

In this section, we explain the standard shift-reduce operator precedence parsing algo

rithm as described in [Aho et al., 1986]. It is based on bottom-up, shift-reduce parsing

and uses an operator precedence table to decide on the parsing action at each step.

During the algorithm, the precedence between the token at the top of the stack and

the current input token is determined. Depending on its value, either the current to

ken is shifted onto the stack (if the precedence is "=" or "<"), the stack is reduced

(precedence ">"), the algorithm terminates or error recovery is triggered.

The following description of the algorithm using pseudocode follows closely the

presentation of Algorithm 4.5 in [Aho et al., 1986]. The stack is initialised with the

$ symbol. The input, appended by "$", is contained in the variable w, ip points to

the current symbol in the input and precedences between token values stored in the

variables a and b drive the algorithm as explained in the previous paragraph. After

execution of the algorithm, the output queue contains the reverse polish notation of

the input. It is straightforward to create a parse tree from this - we will detail this

further in the context of error recovery in Section 6.6.5.

6.5 Dealing with Lexical Ambiguity

In Section 6.3, we have identified the main challenges that our parsing framework has

to respond to. We now tackle the first of these challenges, lexical ambiguity.

The general task of a scanner (or lexer) is to take care of the first stage of the

syntax analysis. Usually this is based on matching token definitions represented using

regular expressions with parts of the input, hence identifying lexemes. The output of

this process is a token stream. Each token contains information about its lexical type,

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 81

Algorithm 1: Standard Operator Precedence Parsing Algorithm

set ip to point to the first symbol of Wj

while forever do
if $ is on top of the stack and ip points to $ then

return
else

let a be the topmost terminal symbol on the stack and let b be the
symbol pointed to by ipj
if if a < b or a = b then

push b onto the stackj
advance ip to the next input symbolj

else if a > b then
repeat

pop the stack into output queuej
until the top stack terminal is related by < to the terminal most
recently poppedj

else
errorO;

and a reference to an appropriate data structure (symbol table) that remains accessible

during later stages (for example, syntax analysis).

For example, a spoken command "a times fraction b plus cover d end fraction"

that uses the fraction speech template would result in the following token stream:

(id, 1), (op, 2), (open, 3), (id, 4), (op, 5), (id, 6), (arg, 7), (id, 8), (close, 9)

Each token is defined by two entries: the token type, and the reference to an entry in

the symbol table (see Table 6.4). We use generic types such as 'op', 'id' for operators

and operands. By following the symbol table references, additional information can be

retrieved - in this example, the third row of the symbol table stores an identifier for

the fraction speech template, indicating that the token (open, 3) was created from the

"fraction" lexeme.

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 82

Type Lexeme Position ..
id "a" 1 ..
op "times" 2 ..
open "fraction" 3 ..
id "b" 4 ..
op "plus" 5 ..
id "c" 6 ..
arg "over" 7 ..
id "d" 8 ..
close "end fraction" 9 ..

Table 6.4: Symbol table for spoken command "a times fraction b plus cover d end
fraction". The right most column contains additional information about each entries
(for example, if the entry is the type of op, all possible operator classes it could take:
i.e. *,0,.)

6.5.1 XGLR Approach

The solution we have implemented for resolving lexical ambiguity is based on Begel's

XGLR framework [Begel and Graham, 2006], developed in the context of spoken pro

gramming languages, which in turn builds on GLR parsing [Lang, 1974; Rekers, 1992;

Tomita, 1985].

GLR parsing is a knowledge-based, non-deterministic parsing method that can deal

with ambiguities by creating all possible parse trees. In order to improve efficiency,

common data structures should be shared. Inspired by Begel's work, we have imple

mented this using an object oriented approach, where instead of backtracking multiple

parses we have a lexer object that can fork into several instances whenever it encounters

ambiguity. This is then propagated into the parser.

An extension of GLR parsing, that can handle ambiguous lookaheads arising from

spoken input (due to multiple spellings, as mentioned in Section 6.3.1), is introduced

in [Begel and Graham, 2006] as XGLR parsing. The mechanism is fairly similar to

that in GLR parsing: whenever lexemes do not uniquely determine a token, the lexer

explores all possibilities. This can also be implemented by forking the lexer object.

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 83

6.5.2 Lexer Algorithm

We now present our version of the lexer that implements the lexical analysis phase

within the adapted XGLR framework. It is implemented as an object, remembering a

certain state and offering a method doWorkO which is illustrated below. This method

is called repeatedly and, depending on the current state, scans the input for the next

token (which might be ambiguous) or handles the case of ambiguous tokens by creating

copies of itself for each possible token alternative. Initially, self. state is set to new _token.

A list of currently active lexers is maintained and their respective doWorkO methods

are called successively. Effectively, we handle this process in a very similar way as it is

explained in Begel's paper.

Algorithm 2: Lexer - doWorkO

if self state = check_ambiguity then
if token is ambiguous then

self. state = fork;
else

self. state = new _token;
else if self state = fork then

foreach non-ambiguous token in current token do
create a copy of Lexer object where current token is replaced with
non-ambiguous token;
append new Lexer object into list of children;

self.state = inactive;
else if self state = new_token then

if current Token = end Token then
self. state = terminate;

else
Scan input and return next (potentially ambiguous) token;

We give some examples in order to illustrate how the lexer proceeds.

The input "minus a" is ambiguous since the minus operator can be either unary

prefix (the minus sign) or binary infix (the subtraction operator). IIence, two tokens

will have to be considered during the lexical analysis. Eventually, the following two

token streams are generated:

(op, 1), (id, 2)

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 84

and

(op, 3), (id, 2).

Note that here, the first tokens are different and the symbol table will store the infor

mation on the two different operators separately (in row 1 and 3). We remark that the

token stream that corresponds to the binary subtraction operator represents a syntac

tically incorrect expression as there is a missing first argument. We will see later how

this will be resolved during the error recovery.

As a second example, consider the intended input ''x plus four" which the ASR

misinterpreted as "x plus for", and let us also assume the existence of a speech template

starting with "for". The lexer will return the token streams:

(id, 1), (op, 2), (id, 3)

and

(id,I),(op,2),(op,4)

The difference is the interpretation of the third token as either an identifier (the nu

merical value 4 to be precise) or an initial operator word of the speech template.

6.5.3 Parser Algorithm

The parser algorithm is a slight extension of Algorithm 1 which takes into account

the possibility that several instances of the lexer might be created, as discussed in the

previous section. We have implemented this in a similar fashion, using objects, as in the

lexer. At the beginning of the main loop, the parser calls the lexer's doWorkO method.

After a successful return from this method, if we detect the presence of additional new

lexer objects, we propagate this into the parser by creating a new child parser object.

6.6 Error Recovery Strategies for XGLR Parsing

Having addressed ambiguity at lexical analysis level, we continue to address the re

maining parsing challenges of Section 6.3. We will see that this requires substantially

more work, involving both the lexical and syntax analysis phases and suitable, robust

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 85

error recovery strategies. The task will be to parse the entire input, without rejection,

followed by correcting as much as we can, and only ignoring input if really necessary.

Some of this error recovery happens already during lexical analysis, whereas more

"difficult" cases need to be addressed during the parsing.

6.6.1 Classification of Errors

In order to state precisely what the error recovery needs to cope with, we give a

classification of possible errors that we can encounter. We include incomplete input in

our discussion.

(i) Missing operators and operands - we exclude mixfix operators from these con

siderations.

(ii) Incomplete mixfix operators - the fact that one or several operator parts are

missing.

(iii) Interlaced mixfix operators - here, matters are made more complicated by the

fact that operator parts from different mixfix operators appear "merged together"

in the input stream.

(iv) Shuffled mixfix operators - these are mixfix operators with correct open and close

operator parts, containing a incorrectly permuted sequence of argument separator

parts.

(v) Mixfix operators with redundancy - multiple occurrence of the same argument

separator parts.

(vi) Otherwise incorrect mixfix operators - containing wrong identifiers that are not

valid tokens.

(vii) Any combination of any of the previous errors.

We now give some typical examples that are representatives of these error classes:

Class (i): "a b", or "a plus"

Class (ii): "fraction a", or even "fraction"

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 86

Class (iii): "function f over x"

Class (iv): "integral f dx to b from a end"

Class (v): "function f of x of y"

Class (vi): "fraction a hello b"

6.6.2 Main Idea

The main idea for our parsing error recovery algorithm is as follows. Errors of type

(i) can be dealt with at lexer level, based on the classical approach of inserting tokens

[Burke and Fisher, 1987]. The remaining errors (ii) - (vii) are corrected in two stages:

first, we parse an augmented language ,c *, followed by running a tree manipulation

algorithm. Before we detail these steps in the following sections, let us define precisely

,c* by introducing some additional notations.

We shall denote by 0 the set of mixfix operators that are contained in our language

,c. Let open(m) (close(m) respectively) denote the initial (last respectively) operator

parts of a mixfix operator m E O. Also, args(m) is a new mixfix operator, formed

by the remaining, intermittent operator parts of m. \Ve adopt the usual notation

open(O) := {open(m)lm E O} for the combined set of initial operator parts of all

mixfix operators, and accordingly for close(O) and args(O). Having this terminology

in place, we can now characterise the augmented set of mixfix operators 0* by

(9* = {o _ a _ c 10 E open(O), a E args*(O), C E close(O)}

and

args*(O) = {ao _ al _ ... _ anlai E args(O), n E fil}

The augmented language ,c * is ,c together with all mixfix operators that are additionally

contained in 0*.

6.6.3 Error Recovery at Lexer Level

As already indicated in the previous section, we can deal with missing operators (other

than mixfix) and operands at the level of lexical analysis. \Ve insert missing operators

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 87

by using an appropriately defined default invisible operator *d. In the case of spoken

maths, for example, this would be the "invisible times". Missing operands are inserted

using an empty identifier id? Due to the special property of the input language being

recognised by an operator grammar, we can implement this based on a decision that

involves comparing adjacent tokens. This is made explicit in Table 6.5, by stating the

token which will be inserted between tokens that correspond to those in the row and

column positions. The corresponding algorithm is given below. It takes as input the

" $ I id I * I 0 I • I (I II I) I
$ id? id? id?
id *d *d *d

* id? id? id? id? id?
0 id? id? id?

• *d *d *d
(id? id? id?

II id? id? id? id?
) *d *d *d

Table 6.5: Token Insertion Rules

last and current token and returns the token that needs to be inserted, otherwise, none

Algorithm 3: Lexer Error Recovery Algorithm -lexerErrorRecoveryO

Lookup action in Table 6.5 by indexing with (lastToken, token);
if action = id? then

/ / Default empty operand to be inserted inserted Token = id?;
else if action = *d then

/ / Default invisible operator to be inserted insertedToken = *di
else

insertedToken = None;
return insertedToken;

This simple approach yields already quite powerful error recovery. We now give

some examples which demonstrate this.

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 88

Input Error recovery output
abf(c + d) a *d b *d f(c + d)

f(+d)* f{id? + d) * id?
abf{+d) a *d b *d f *d (id? + d)
f(, x)y f *d (id?,x) *d Y

Table 6.6: Lexer Error Recovery Examples

6.6.4 Error Recovery at Parser Level: Stage 1

Let us remind that an attempt to parse incorrect input that contains any of the error

types classified in Section 6.6.1 will mean that the operator precedence parser encoun

ters, at some stage, one of the error entries El to E4, Fl to F4 or G1 to G4 given in

Tables 6.2 and 6.3. One can easily see that the error recovery actions undertaken by

the lexer as explained by the previous section eliminate the need to consider the entries

El to E4 , and we can focus on addressing the remaining error entries.

We first consider the entries Fl to F4 • For each of these error entries, the "$"

symbol is involved which, after analysing the shift-reduce algorithm, implies that for

error entries

• FI, F2: the input has run out of symbols whilst we still have the mixfix operator

words "(" or "II" on the stack. This is the case if a ")" is missing in the input.

• F3 , F4 : the stack is empty, possibly after some reduce actions, and we encounter

"II" or ")". Here, we have a missing "{".

We conclude that these error entries are concerned with errors in error class (ii) in

Section 6.6.1. However, this does not cover all possible elements of this class. For

example, in both cases above, there could also be missing "II" operator parts in the

input. We will continue to deal with the same error class in Stage 2 of our error

recovery.

In order to carry out suitable error recovery actions, we proceed as follows:

• Error entries Fl , F2 : since we have reached the end of the input, the only possible

action is a reduce. This will remove elements from the stack into the output. Note

that we will have to accept incomplete information. In order to construct a valid

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 89

parse tree, more work will have to be done. This is subject of the algorithm in

Stage 2 .

• Error entries F3 , F4 : using a similar argument, since the stack is empty, we carry

out a shift. This will move tokens from the input into the stack and we are led

to a similar situation as in previous case.

This leads to the following adjusted precedence table, where the error entries FI to F4

have been replaced with precedence values that correspond to the discussion above.

II * I a I (I II I) I $ I
* < < > > >
a > EI E2 > > >
(< < < >
II > < < >
) > E3 E4 > > >
$ < < < < < S

Table 6.7: Adjusted Operator Precedence Table

We continue our analysis of error recovery actions by examining the error entries

GI to G4 • Rather than being able to give unique shift/reduce actions, we will see that

we have to use (again) nondeterministic parsing .

• Error entry G3 : here, we can carry out a reduce action. In order to justify this,

we recall that our aim is to parse the augmented language .c.. By definition,

this language consists of mixfix operators whose argument operator parts are the

union of all possible such operator parts, in any order and repeated occurrences.

This means that for this error entry, we can always accept the "generic" argument

separator "II" by reducing it into the output. This will address the error class of

interlaced mixfix operators .

• Error entries GI , G2 and G4 : one can easily find examples (such as the input "(]",

which leads to G2) which show that shift and reduce are both equally meaningful

possible actions. Inspired by the XGLR framework, we solve this by forking new

parsers, which will carry out each of the actions.

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 90

This results in the following table, where we have used the symbol "<>" to indicate a

shift-reduce conflict.

I II Ilj I)j
I (i Jl <> <>
Illi II > <>

Table 6.8: Precedence Tables for Interlaced Mixfix Operators

6.6.4.1 The Parser Algorithm

We now give our parser algorithm including Stage 1 of the error recovery in pseudo

code.

6.6.5 Error Recovery at Parser Level: Stage 2

After carrying out the error recovery algorithm of the shift-reduce parser in Stage

1, we have created output data which can be converted into a syntax tree!. In our

implementation, we create this syntax tree on-the-fly during each reduce step. The

outcome is a partial syntax tree - we cannot completely construct complete nodes for

mixfix operators at this stage. Such a mixfix operator node stores information on its

arity, the individual operator parts and is turned into a tree by pointing to a list of child

trees which correspond to expressions contained in the various holes of the operator

(its operands).

Mixfix operator nodes in our parse tree might be incomplete in the following ways:

(i) The node might consist of only one opening or closing operator part.

(ii) It might have all of its argument separator operator parts missing.

(iii) It might only consist of an argument separator operator part.

1 Due to the fact that parsers can fork, we obtain a parse forest rather than single syntax tree.
However, in this section, without loss of generality, we focus on an individual element of this parse
forest.

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 91

Algorithm 4: Parser Algorithm with Error Recovery Stage 1 - doWorkO

if self.state=check_ambiguity then
if token is ambiguous then

self.state=for k;
else

self.state=error Jecovery;
else if selfstate=erroLrecovery then

if lexerErrorRecovery() returns a token then
Insert new token into tokenBuffer;
Insert new token as current token;

Append token to token stream;
self.state=new _token;

else if selfstate=new_token then
if token = end Token then

self.state=terminate;
else

if tokenBuffer is empty then
tokenBuffer := nextTokensO[Oj;

last Token := token;
if tokenBuffer is not empty then

token := tokenBuffer[O];
Remove first element from tokenBuffer;

else
token := end token;

self.state=check_ambiguity;
else if self.state=fork then

if scanMode is all then
foreach non-ambiguous token in token do

Create a copy of GLRParser object where current token is replaced
with non-ambiguous token;
Append new GLRParser object into list of children;

self.state=inactive;
else

Choose one non-ambiguous token, using some strategy;
self.state=error Jecovery;

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 92

Aspect (i) arises for incomplete input, with missing opening or closing operator parts,

due to the error recovery reduce actions as described in Section 6.6.5.1.

Whenever the argument separator operator parts are reduced into the output, we

create a new node, effectively interpreting them as binary operators and linking this

node to the previous two existing trees in the output. This explains why the complete

information for complete mixfix operator nodes is distributed into the nodes as sketched

in (ii) and (iii).

The tree-manipulation algorithm will traverse the incomplete parse tree and, in

combination with the algorithms introduced in the following 4 sections, re-instate a

complete parse tree, possibly by adding placeholders.

6.6.5.1 Sort Argument Separator Parts

The goal of this algorithm is to convert a mixfix operator node with (potentially in

terlaced, redundant or missing) argument separator parts in an arbitrary order into a

node where the correct order has been reinstated. By this we mean

if either i i j and (Ji and (Jj denote mixfix operator parts that have been (initially)

enumerated in a static order where (Ji appears before (Jj, or i = j and the argument

separator parts (Ji is to the left of (Jj.

Due to the expected small number of argument separator parts, any reasonable

searching algorithm can be used - we call the Python standard sorting algorithm

Timson[wikipedia.org].

6.6.5.2 Detangle Argument Separator Parts

We assume that prior to this algorithm, the argument separator operator parts (Ji have

been sorted as explained in Section 6.6.5.1. It is then straightforward to identify those

that belong correctly to the individual mixfix operators. For all other operator parts

ai, several strategies are possible:

(i) Remove all non-matching Ui including the content of the holes to their right.

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 93

(ii) Complete non-matching Ui with their missing opening, closing and possibly ar

gument separator parts and empty identifiers as content for the holes.

(iii) A combination of removing and completing. If a certain amount of argument

separator parts are present of a different mixfix operator Ui (say t out of m

where t ~ [WJ and m is the arity of Ui), then proceed with completion as in (ii),

otherwise as in (i).

6.6.5.3 Complete Argument Separator Parts

In this step, we add missing argument separator operand parts as well as default

"empty" content for the resulting operator holes. This is straightforward provided

the algorithms in Section 6.6.5.1 and 6.6.5.2 have been executed. We use the empty

identifier "id?" as previously introduced.

6.6.5.4 Eliminate Redundant Argument Separator Parts

Finally, we need to eliminate redundant argument separator parts. Following the ap

plication of the algorithms from the previous sections, these can easily be identified if

we adopt the convention that the first of a group of such redundant argument separator

parts is kept.

The next step is to chose appropriate content for the hole that is immediately

following the argument separator part in question. Here, several strategies could be

envisaged, for example one could keep the first occurring operand that is not id?, or

the operand that was contained in the hole immediately following the first argument

separator part in the group.

A more sophisticated strategy would be to attempt a completion of all redundant

argument operator parts, but the simple strategy that we have sketched at first works

quite well in practice.

6.6.6 Error Recovery - Summary

In this section, we have presented some strategies for error recovery that can be used

to make our parser more robust. We have seen that the error recovery proceeds at

both lexer and parser level (where we have further distinguished between two stages)

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 94

and the different types of errors, as classified in Section 6.6.1, are handled by several

sub-algorithms (in particular, in Stage 2). The following table summarises this by

listing, for all error types, the various algorithms that are used in order to recover from

it. In our prototype implementation, we fully support error recovery at lexer level as

Error Type Lexer Parser-Stage 1 Parser-Stage 2
(i) Missing operators Algorithm 3: - -

All
(ii) Incomplete Algorithm 3: FI , F2 , F3 , F4 : Algorithm in 6.6.5.3:

Mixfix Special case Missing "(", ")" Complete "II"
(iii) Interlaced - G3 : Interlaced "II" Algorithm in 6.6.5.2

Mixfix GI ,G2,G4: Detangle "II"
Interlaced "(", ")"

(iv) Shuffled - G3 : Shuffled "II" Algorithm in 6.6.5.1
Mixfix Sort "II"

(v) Mixfix - G3 : Redundant "II" Algorithm in 6.6.5.4
with Redundancy Eliminate "II"

(vi) Otherwise Lexer token - -
incorrect Mixfix validator

Table 6.9: Summary of Error Recovery

well as parser Stage 1. For Stage 2, we have have focused on the completion scenario

described in Section 6.6.5.3 which, in our experience, is one of the most frequently

occurring errors when considering input that is spoken mathematics. The remaining

cases are relatively easy to implement and, upon completion and integration with the

entire system, the error recovery strategies that we have devised in this section lead to

a significant improvement of the TalkMaths parsing capabilities.

6.7 Summary

This chapter presented our approach to the design and parsing of spoken mathemat

ics. The parsing framework we described and implemented was based on the idea of

speech templates. This allowed us to define our language for spoken mathematics using

an operator precedence grammar, containing mixfix operators, hence representing all

elements of the language including editing commands as either operator or operand.

6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN
MATHEMATICS 95

This approach is novel compared to previous approaches (described in Section 2.1)

and could potentially be extended to other spoken command languages, for exam

ple spoken programming languages by the introduction of suitable rules following the

grammar in Section 6.4.1.

Chapter 7

System Implementation and

Evaluation

7.1 Introduction

All the contributions that have been described in the previous chapters of this thesis

are ultimately aimed at improving the TalkMaths system. To this end, we have im

plemented as many as possible algorithms and methods that we have presented. Some

of this work contributed to new prototype versions of TalkMaths and some were also

released in the publicly available version of the system.

In this chapter, we will first give an overview of the TalkMaths system and explain

how the theoretical contributions contained in this thesis have advanced earlier versions

of TalkMaths. We then present an evaluation of the system by comparing the power of

our parsing approach with that contained in the older versions of TalkMaths. Finally,

we will present and discuss results of a user trial to evaluate TalkMaths as a tool to

help improve students' understanding of mathematical concepts.

7.2 The TalkMaths System

The TalkMaths system is a result of an ongoing research project. Several versions have

been released in the past, and our work has directly contributed to the current version.

TalkMaths is a web-based editing system for mathematical e-content that can be

7. SYSTEM IMPLEMENTATION AND EVALUATION 97

controlled using a variety of modalities. Primarily, the system is designed to be used

with spoken input. Users can also type their input, should they wish to use TalkMaths

without speech. In addition, some functionality also supports the use of the mouse.

A demonstration video, showing TalkMaths in use, can be viewed at ww . youtube.

comltalkmaths. We have also included some screenshots of the TalkMaths interface

in Appendix D.

In order to use TalkMaths successfully by speech, a number of additional software

applications need to be installed on the user's machine: an ASR, a speech front-end ap

plication and a web browser. Furthermore, there are certain compatibility requirements

to be satisfied.

On the "client" (typically the user's desktop machine) speech-recognition and inter

action with the user-interface are done using the ASR. This tool listens to the spoken

input, performs the recognition and forwards the resulting transcribed text to the

speech front-end.

The speech front-end fulfills several purposes. It enables the recognition of spoken

mathematics. It also filters out words that do not belong to the vocabulary and converts

certain spoken forms to symbol level (such as, for example, spoken "alpha" to the single

letter "a") before it then sends the text stream to the browser.

To render the mathematical content of the TalkMaths web site, a web browser

needs to display documents encoded in the Open MathML [Carlisle, 2003; W3C, 2010]

standard format. Mozilla Firefox currently supports MathML [W3C, 2003] natively,

Internet Explorer and other browsers require the MathJax plugins [Cervone, 2012].

However, the full power of the editing mechanisms can only be reached if CSS support

for MathML is also implemented, as is the case in Mozila Firefox. Currently, JavaScript

needs to be enabled in the browser in order to obtain the best user experience of

TalkMaths.

In the first version of TalkMaths, Dragon NaturallySpeaking was used as the ASR

together with the free NatLink [Gould, 2001] library as speech front-end and the XUL

Runner [Mozilla Foundation, 2009] browser as a standalone GUI. In a subsequent in

termediate version, NatLink was replaced with the commercial DNS SDK [Nuance

Communications] and the TalkMaths web site was usable only with the Mozilla Fire

fox web browser. Although Dragon NaturallySpeaking provides probably the best and

most accurate recognition amongst all available (commercial and free) ASRs, the latest

7. SYSTEM IMPLEMENTATION AND EVALUATION 98

version of TalkMaths now uses Windows Speech Recognition. This made it possible to

create a more sophisticated and flexible front-end.

Most ASR users are familiar with interacting with a web browser using their speech

recogniser software with some help from the keyboard and mouse. Being web-based,

TalkMaths is compatible with any speech recognition software on any platform, pro

vided it supports the browser available on the client system.

7.2.1 System Architecture

The architecture of TalkMaths has evolved from that of [Wigmore, 2011], which was a

standalone desktop application, towards a multi-component, distributed model, where

the ASR and the TalkMaths web application (including the parser) are separate. This

yields a web application which provides an online speech-based user-interface for math

ematics that uses speech as the main input modality. In practise, this means that users

speak into the ASR and the resulting transcribed text output is used as the input for

the web application. To this purpose, an input field is provided within the editor page

(see Figure D.5 in Appendix). An additional advantage of this web-based architecture

is the fact that one can now enter commands via the keyboard, which was not the case

in any of the earlier versions.

In Chapter 3, we have already introduced the general system architecture of the

system. The final choice we made for the system architecture was the Application

Proxy architecture 3.4. This architecture enabled the multi modality of the application

(which was a limitation of the standalone desktop version) and it was compatible with

the parser engine and would run on a web browser. It also allowed us to develop user

interface, application logic and parser components in separate modules which makes

the project more extensible. \Ve will now provide more information on web-related

aspects including the implementation.

The TalkMaths system is an interactive web application. The web server used

is Apache, the server-side environment uses PHP and a MySQL database, and the

Coogle App Engine service [Severance, 2009] written in the Python scripting language.

The web server interacts with an application that resides on the Coogle Engine (cur

rently, the URL is http://talkmathsparse . appspot. com). This application parses

the input language and is effectively a (RESTful) web service. These two systems

7. SYSTEM IMPLEMENTATION AND EVALUATION 99

exchange messages, including data in JSO format. All data is held in the database

on the server, this ensures that the information that belongs to an diting e sion is

persistent. Figure 7.1 illustrates the system architecture of the publi TalkMath w b

Text Stream

~------------ Client PC

MathMl
Converter

Pre Processor

TalkMaths Parser

XML
Converter

Yapps2

L.-___ Google App -------'

SlM
Corrections/Predictions

Browser

Web Server

Figure 7.1: TalkMaths syst m archit ctur

application. Two input modalities are available, nam ly spoken input (u ing ASR) and

textual input from a keyboard & mouse. Each of the e r ult in a t xt tr am whi h

describes the mathematical expression of current int r t in relatively natural language

(see Section 7.2.2 below). The text stream is then pas d through the brow r int rface,

encapsulated in a HTTP request , to the web erv r. The SLM Corr tion IPr di tion

component is currently not integrated to the TalkMath y tern, how v r it i in Iud d

in the figure to illustrate where the corrections and pr diction of the t xt tr am would

take place (See SWIMS system in Section 5.3.1.The w b application on thi erv r th n

handles the application logic (covering general ecurity, ion management and tor

age tasks) [Attanayake et al. , 2011b] and call the par er running on th Googl App

Engine server, which ultimately proces es the input text stream, tran forming it into

7. SYSTEM IMPLEMENTATION AND EVALUATION 100

the desired format, such as MathML or XML. Again, web application requests and

parser responses use HTTP. Upon receiving the parsed output from the Coogle App

Engine server, the web application sends the output (in the appropriate marked-up

form) to the browser on the client for rendering in conventional mathematical notation

on a display. Initially, we have used a recursive-descent context-free grammar parser

generator called Yapps2 [Patel, 2009] to develop our TalkMaths parser. Then we devel

oped our own parser based on operator precedence grammar, that has been described

in Chapter 6. Due to the bi-modal nature of our system, and the consequential (small)

differences between the correct spoken and typed descriptions of any given mathemat

ical expression (see Section 7.2.2 below), a pre-processor has been used to convert the

input from either spoken or typed form (as appropriate) into a canonical form that is

suitable for analysis by our parser. An example of a mathematical expression created

by TalkMaths can be seen in Figure 7.2.

7.2.2 Natural Language Commands

The mathematical expressions currently supported in TalkMaths are standard arith

metic expressions including exponentials (raising a to a power), fractions, roots and

functions. Although this is a fairly restricted set of mathematics, it provides a proof

of concept for most of the features discussed in this chapter. Work on implementing

speech templates has reached prototype stage and will be available in the online-system

(of a public release) shortly.

Both SWIMS and TalkMaths employ an input language that is much closer to how

people actually speak mathematics in a classroom environment compared to specialised

mark-up or formatting languages for mathematics, such as LaTeX or MathML which

take much effort to learn,. The rationale behind this is to make learning to command

the system to be as easy and intuitive as possible for the user, keeping the "naturalness"

of the task to a maximum. For example, Figure 7.3 shows encodings of the same

mathematical expression, namely
n

ken - 1)

in LaTeX, MathML, the TalkMaths spoken input form and the TalkMaths and SWIMS

keyboard input command language. Note that both forms of the TalkMaths command

language are easy for a person to read, speak or type. They should be much more

7. SYSTEM IMPLEMENTATION AND EVALUATION

talk {maths} creating maths by
using plai7' English

1
n

2

101

Import E%port

Figure 7.2: TalkMaths used to create the formula for th urn of n t rms of an arith
metic progression

7. SYSTEM IMPLEMENTATION AND EVALUATION

LaTeX:

MathML:
$ Ijrac{n}{k(n-l)} $

<mfrac>
<mi>n<lmi>
<mrow>

<mi>k<lmi>
<mo>&lnvisibleTimes;<lmo>
<mfenced c!ose='1" open="(">

<mrow>
<mi>n<lmi>
<mo>-<Imo>
<mn>l<lmn>

<Imrow>
<Imfenced>

<Imrow>
<Imfrac>

TalkMaths speech input:
november over begin kilo open bracket
november minus one close bracket end

TalkMaths & SWIMS keyboard input:
n over begin k (n - I) end

102

Figure 7.3: Encoding of same mathematical expression in LaTeX, MathML, TalkMaths
and SWIMS command languages respectively

7. SYSTEM IMPLEMENTATION AND EVALUATION 103

accessible and easy to learn for novice users than either LaTeX or MathML. Also, note

that the TalkMaths speech input language requires use of the NATO alphabet [Law,

2009] for the dictation of single characters, due to issues of potential confusion between

conventional letter names by ASR systems (e.g. "bee" (b), "cee" (c), "dee" (d)). An

example of a simple mathematical expression is the equation for velocity under uniform

acceleration v = u + at, which in our spoken mathematical language would be read as:

"victor equals uniform plus alpha tango". A more complex example is the formula for

the solutions of a general quadratic equation:

-b ± yfb2 - 4ac
2a

(7.1)

which would be spoken as "minus bravo plus or minus square root of bravo squared

minus four alpha charlie all over begin two alpha end". Greek characters, such as (l', (3,

etc. can be inserted using the prefix 'greek" before the name of the character. For

example, the trigonometric identity :

sin((l' + (3) = sin (l' cos f3 + cos (l' sin (3

would be read as "sine begin greek alpha plus greek beta end equals sine greek alpha

cos greek beta plus cos greek alpha sine greek beta". An example of a more complicated

expression which can be interpreted by TalkMaths is the van der \Vaals equation from

thermal physics, rendered as shown in Figure 7.4 below. This would be dictated a8

"open bracket capital papa plus begin november to the power of two alpha end over

begin capital victor to the power of two end close bracket open bracket capital victor

minus november bravo close bracket equals november capital romeo capital tango" .

7.2.3 Editing Paradigms

TalkMaths allows users to edit mathematical expressions that they have input, as ren

dered on the computer screen, by issuing relatively intuitive commands which are close

to how a human-to-human interaction would deal with the same tasks. For exam

ple, editing the numerator of a fraction can be invoked using the "edit numerator"

command. Here, the application "understands" that the user requires the editing of

only a part (in this case, the top part) of the fraction. Another example is where

7. SYSTEM IMPLEMENTATION AND EVALUATION

ta1k{maths} n"earu'll m.aJM "11 win",
plamEnglWt

v - nb)

T.Tlt)I..tlu is da\-Moped at DDpton Unk-.n:lty by _ &: _, Contact U.

nRT

\\ h1lt \ ',In I do" If UIJ .. tllIl

71ItI1t-"a.Glle/tlJdDt
.... (...
n.u u..iI' awaIt I fortCtlOft. A ftnrcn4. Iia,, IIItd
1,,1l1lWllt('Jlftlrtrtbt."'}l!{tl'fll"'R'J
ploa
7Nf hInI tIw"'l) Op'fG/Or ..

M""
tNt 111." ".,~ 1M .",.., 0(1 ... (",.un.
.. 6
T1IU It-"nwl fht • .,..lt<blt".....
lMttn····nd ,.,.."., ,.."......
~ bnC:"'L .• dOfNl br.c:kM
11tU ... 1Jt'~cI/jI.,.flI.~(aJfU'"Uf)Io. .. ~
Mitrblll
.,.-• .qua,. bnekaL .. .r:to. lIQuan
bnc
17Iifu.. .. tK.bN o lU.~(."""" .. } "'"
open ('url)' 1wad.t. .. dOM C!Urly brKket

Search Help:

104

Figure 7.4: The van der Waals equation, read as stated above, r nd red by TalkMath

7. SYSTEM IMPLEMENTATION AND EVA L UATION 105

t he "edit functions" command will invoke editing of all available function within t he

current mathematical expre sion. We refer to the e type of edit ommand as "se

mantic editing" commands, as they refer to the meaning of the rnathemati al tru

ture/components which the user sees on the scr n. Other type of ommand in lude

"selective edit ing' and "exhaustive edit ing". The former is used to I t P ifi sub

expression(s) within the full expression shown on th scr n. For xarn ple, if a u er

wishes to change the sub-expression 2a in the quadrati formula 7.1, h / h an u

the command "edit two alpha", which will make t h denominator (2a) of the above

quadratic formula editable by placing indexed bounding boxe around all po sibl I c

t ions of t he sub-expre sion 2a - in this case, ju t th denominator. In ontrast to this,

exhaustive edit ing make u e of a displayed et of n ted ind xed b x up rimpo d

over the expression to allow the user to select th whol or any part, f th xpr s

sion for editing. Thr e such methods, highlighting all ub-expr ion , all individual

symbols and all operators, respectively, are illustrat d in Figur 7.5 (orr ponding

commands are: "edit expre sion", "edit symbol " and " di t operator 'r p tiv Iy).

A more detailed explanation of these editing paradigms can b found in [Wigmor ,

2011] .

Figure 7.5: Different edit ing paradigms for editing mathematics by
to one of equations of uniformly accelerated motion

h, ach appli d

7. SYSTEM IMPLEMENTATION AND EVALUATION 106

7.2.4 Natural Language Search-Driven Help Facility

TalkMaths has a help facility that includes a natural language search option. A user can

search through the help information using this tool, by entering search terms in natural

language form. If the search phrase contains a word that is not in the vocabulary

(V) of the help content, we use the Damerau-Levenshtein algorithm [Damerau, 1964;

Levenshtein, 1966] to calculate the Levenshtein distance between the entered word and

each word in V. This distance is based on the minimum number of insertions, deletions,

substitutions and transpositions of characters required to transform one string into the

other. The word within V with the shortest distance from the entered word is selected

as the "best guess" for what the user intended to enter. See Section 4.7 for a more

detailed discussion.

The Damerau-Levenshtein method was originally introduced to compare the simi

larity of text strings, and we found that this strategy works well when the user makes

minor misspellings when typing using the keyboard and mouse. For each help term,

we assign a score based on its length, the length of the entered search term and how

similar the terms are (based on the Levenshtein distance). Our mechanism assists the

user to find appropriate commands using their existing mathematical knowledge. For

example, typing, "How to edit a fraction" command will present all the TalkMaths

commands associated with fractions and rank them according to how relevant they are

believed to be (see Figure 7.6).

7.3 Parser Evaluation

We have carried out an experiment to measure the power of our current parser com

pared to its earlier versions. Firstly, from the very same spoken mathematics expres

sions corpus we created described in Section 5.2.1 of Chapter 5, we parsed 4308 spoken

mathematics expressions using the Yapps2-based parser (PJ) presented by [Wigmore,

2011] and the Yapps2-based parser in our live TalkMaths web-based system (P2). Of

these, 1955 (45.38%) expressions were successfully parsed (865 had the expected parse

tree and 1090 had a different one) by PI and 3726 (86.49%) (2657 had the expected

parse tree and 1069 had a different one) were successfully parsed by P2• 1169 (27.14%)

expressions were successfully parsed by both parsers. Table 7.1 shows a selected sam-

7. SYSTEM IMPLEMENTATION AND EVALUATION

l.,.....~~ .. ~_ ':,: ~-.4ft f~""1oP 1. ~~,,~~~?"""~..,.

,,,That can I do? x Hidetllis

edit fractions
This command w171 edit all fractions in the current
expression . This w17l include all numerators and
denominators. See also: help on NEdit numerators· and
"Edit denominators N

•

edit functions
This command wl7l place all fUnctions in current expression
inside an editable gnd labelled using numberes.
finish editing
Clear out the gnd
edit numbers
This command will place all numbers in current expression
inside an editable grid labelled using numberes
edit operators
This command will place the current expression inside an
editable gnd labelled using operators
edit expression
This command will place the current expression inside an
editable gn'd labelled using numberes
edit numerators (s)
This command will edit all numerators of all fractions in the
current expression.

~I

edit denominator (s) ~I

Search Help:

how- to edit a

107

Figure 7.6: The TalkMaths Natural Languag Driv n H lp Fa ility u d to ar h t
find information on fractions

pIe of expressions and success or failure of their parsing by ach par r. W th n u d

this selected sample to evaluate our new operator pr cedenc par r (P3) ' H wev r,

whereas PI and P2 each return a single par e tr whi h i ither orr t r in or

rect, P3 actually returns a parse forest (a list of po ibl par tr) which onsi t

of different interpretations of ambiguous expre ion. Of thes , at mo t on par tr

from the forest may correspond to the correct par e of th xpr ion, or non may b

correct. We impose an ord ring or ranking on the tr of th par for t , u h that

simpler trees with fewer nodes are always ranked higher than more mpl x tr with

more nodes. The ranking order of two trees with th am number of nod

7. SYSTEM IMPLEMENTATION AND EVALUATION 108

arbitrarily.

In order to perform a direct comparison between all three parsers, it was necessary

to manually parse a selected sample of expressions so that the correct parse tree could

be compared not only with the single parse trees produced by PI and P2, but also with

each of the trees in the parse forest found by P3 • In Table 7.1 below, for PI or P2 , a tick

(v") in the appropriate column denotes a successful correct parse, which is computed

unambiguously by PI or P2 , as appropriate. In contrast, P3 returns a parse forest, of

one or more parse trees each of which corresponds to a different interpretation of an

expression (due to ambiguities). In this case, a v" in the P3 column means that the

correct parse tree, namely that obtained manually, can be found within the first five

trees, ranked according to the scheme described above, of the output parse forest. A

"?" in any column indicates that the corresponding parser generated an incorrect parse

tree(s), whereas a cross (x) means that the parser failed to return a parse tree for that

expression (i.e. the program did not terminate correctly).

The results of the first experiment show that the Yapps2-based parser P2 we created

in this project is more powerful than the earlier parser Pl' The number of expressions

used in the second evaluation is quite small because the resulting parse tree from P3

have to be manually checked. However, from both above evaluations, we clearly can

demonstrate that the current operator precedence-based parser has been significantly

improved over the course of the project. It should be noted that in Table 7.1, the

expression x', y" fails to be parsed by all three parsers, due to the fact that the "double

prime" or "prime prime" mathematical operation was not defined in any of the parsers

in question.

7. SYSTEM IMPLEMENTATION AND EVALUATION 109

Expression Spoken Format PI P2 P3

a2 + b2 = Cl alpha to the power of two plus bravo to the ./ ./ ./

power of two equals charlie to the power of

two

3x2 +3 three x-ray to the power of two plus three ./ ./ ./

delta (X) delta echo lima tango alpha of capital x-ray ? ./ ./

f(g(h(x))) = esin(x2) foxtrot of begin golf of begin hotel of x-ray ? ? ./

end end equals echo to the power of begin

sin open bracket x-ray to the power of two

close bracket end
sn capital sierra to the power of november ./ ./ ./

x', y" x-ray prime comma yankee prime prime x x x

1R one index capital romeo x ./ ./

Vax+b november root of begin alpha x-ray plus x x ./
=+d

bravo end over begin charlie x-ray plus delta

end
dO begin delta theta end over begin delta x ./ ./
dr

romeo end
X= -7±y'49±32 x-ray equals begin minus seven plus or mi- x ./ ./

8

nus square root begin forty nine plus thirty

two end end over eight

ox greek delta x-ray ? ./ ./

x<4 x-ray less than four ./ ./ ./

f(2 x x) foxtrot of begin two times x-ray end ? ./ ./

y = f(x) yankee equals foxtrot of x-ray ? ./ ./

H open square bracket times close square ./ ./ ./

bracket

1 one ./ ./ ./

.!!.. echo over mike ? ./ ./
m

y = x2 yankee equals x-ray to the power of two ./ ./ ./

dB= 1Olog~ delta capital bravo equals ten log begin cap- x ? ./
Pin

ital papa index begin oscar uniform tango

end end over begin capital papa index begin

india november end end

4x2 - 9y2 four x-ray to the power of two minus nine ./ ./ ./

yankee to the power of two

Table 7.1: Sample results of parsing spoken mathematics corpus (complete expressions)
using Yapps2-based parser (PI) presented by [Wigmore, 2011] , the Yapps2-based parser
in our live TalkMaths web-based system (H) and operator precedence-based parser
(Pa)

7. SYSTEM IMPLEMENTATION AND EVALUATION 110

7.4 TalkMaths Field Study

This section describes a field study on how users create and edit mathematical formulae

using our TalkMaths system and natural language commands based on the approach in

Section 6.2. For the purpose of this study, users typed their commands as opposed to

speaking them, and they were using the TalkMaths editor in comparison to conventional

equation editing software (such as the Microsoft Word equation editor). In particular,

our goal is to evaluate whether such an approach can aid participants' understanding

of particular mathematical concepts, such as the "numerator" and "denominator" of

fractions, to reinforce their understanding of these and related ideas. Our findings

also evaluate the usefulness of our developed language as a means of communicating

mathematics using textual input only.

We carried this out through questionnaires, both to test participants' knowledge

and understanding and to quantify their own perception of these, with respect to

appropriate mathematical concepts. These questionnaires are shown in Appendix E.

The current chapter describes a small pilot study of this type within an introductory

non-specialist mathematics course and measures the students' performance in both pre

and post-task tests. We intend to use the results of such studies in the development

of new teaching and support materials aimed at improving students' understanding of

key ideas. These activities will be rolled-into more courses in the future, which should

give useful insights and data for additional studies.

7.4.1 Experiment: The Learning Activities

In this section, we present the design, implementation and results of an experiment

on using TalkMaths with real students in a real classroom environment. This was to

assess the TalkMaths application in terms of its usability and impact on learning of

mathematical concepts, compared with use of a conventional mathematical editor. A

user evaluation had previously been carried-out on the original, desktop-based version

of TalkMaths [Wigmore, 2011]. However, this focused on the system's ease of use and

how fast and accurate users were in performing various mathematical editing tasks.

It was found that the majority of participants, who did not have any disability, took

longer and produced more errors using TalkMaths than when using a conventional key-

7. SYSTEM IMPLEMENTATION AND EVALUATION 111

board & mouse based editor. Nevertheless, the only participant who did have a major

disability (Duchenne Muscular Dystrophy) performed better, both in terms of speed

and accuracy, when using TalkMaths, and out-performed many of the non-disabled

group when using this modality [Wigmore, 2011]. This illustrated the potential bene

fits of TalkMaths to one of the user groups for which it was primarily designed. The

present study investigates how the new version of TalkMaths influences the users' un

derstanding of mathematical concepts related to the prescribed editing tasks, instead

of speed and accuracy in performing the editing. The results of a preliminary eval

uation of the new version have already been published elsewhere [Attanayake et al.,

2013], but scrutiny of these revealed some weaknesses in the design of the original ex

periment - notably ambiguities in some parts of the questionnaires. These limitations

were addressed and the revised materials were tested using a new group of students

[Attanayake et aL, 2012]. The details and results of this refined, follow-up study are

presented below.

7.4.2 Design of Experiment

We developed a set of classroom mathematical materials and learning tasks for un

dergraduate Life-Science students who were taking a basic mathematics module at

Kingston University. The tasks to be carried out by the participants and the questions

on their mathematical knowledge, were designed to be appropriate to their typical level

of mathematical expertise. The volunteer student participants were allocated to two

groups randomly. Both groups carried out the same tasks, but using two different

tools. The first group (A) used a conventional mathematical editor (Microsoft Word

Equation Editor) while the other group (B) used a research prototype version of Talk

Maths. Note that all subjects had previously used MS Equation Editor but none had

used the TalkMaths system before. Each participant was asked to complete three ques

tionnaires (see the Appendix E). The first questionnaire was about the participants'

own perception of their mathematical competence at the start of the experiment. The

second was a diagnostic test related to the tasks they were about to carry out and the

final questionnaire, given at the end of the exercise, was similar to the second, in order

to assess improvements to the participants' understanding, but also included questions

concerning their experience of using whichever system they were allocated. From our

7. SYSTEM IMPLEMENTATION AND EVALUATION 112

initial pilot experiments, it was observed that some participants omitting to answer

some of the questions - particularly in the post-task questionnaire - led to results of

dubious reliability. Hence, in the follow-up study we instructed the subjects that all

questions on both pre- and post-task questionnaires were mandatory. Furthermore, af

ter detailed scrutiny of the original versions, the revised questions were re-designed and

re-worded to be as unambiguous as possible. Details of the tasks and the questionnaires

are given in Appendix E.

7.4.3 Undertaking The Learning Activities

The regular teaching staff and demonstrators for the module supervised the participants

carrying out the tasks of the experiment, without actually instructing them. The

students were required to learn by themselves, with the only resources available being

the instructions given in the worksheet and the help facility of whichever tool they were

assigned to. After completing the first two questionnaires, participants were required

to undertake three tasks (Tasks 1, 2 & 3 - see Appendix E) creating and editing

mathematical expressions involving fractions, functions and square roots respectively.

Each task required them to create a specified equation and then carry out a minor

modification to this using the editor they were assigned. As noted previously, all

participants had used Microsoft Equation Editor in earlier practical sessions for the

module but no prior training on TalkMaths was given. Thus, we expected "better"

performance and possibly higher levels of satisfaction amongst the group using MS

Equation Editor. All participants were encouraged to use the help facility of the editor

to resolve any questions they might have while completing the tasks.

7.4.4 Evaluation

Table 7.2 presents the results of the post-task feedback from the participants on the ease

of use of the tool they were using to complete the tasks. Figure 7.7 illustrates the same

results graphically. The group using the MS Equation Editor seemed to find it easy

to use, more-so than the group using TalkMaths. When these qualitative evaluations

were each put onto a 5 point Likert scale, the differences in perceived ease of use of

the system by the two groups proved just to be statistically significant (p :::::: 0.047

in a one-tailed t-test). However, this was to be expected due to the participants'

7. SYSTEM IMPLEMENTATION AND E VA L UA TION 113

How Easy :is the Editor to Use

f A o· Response

Very Difficult

A Bit Diffi cult

Using Talkt.;l a hs
OK

• Using MS Equa ion Edi or

Fairly Easy

0 % 20 % 40% 60%

Figure 7.7: The ease of use of the system by th two group

Editor Used Participants Very Fairly OK A Bit y, ry N
Easy Easy Difficult Difficul t ResponsE

MS Equation 14 50% 36% 7% 0% 7% 0%
TalkMaths 13 15% 38% 31% 8% % 0%

Table 7.2: Results of the post -task feedback on th of u f th t 01

previous experience with MS Equation Editor , in contr t to non of th m having u d

TalkMaths before.

Table 7.3 and Figure 7.8 present the results of the post task £ dba k from th par

ticipants regarding any improvements t hey perceiv d to t heir und r tanding of th

mathematical concepts involved in the task after using the appropriat tool th y wer

allocated.

Most users of TalkMaths seemed to believe it had improved t h ir und rstanding,

while only 35% of users of MS Equation Editor reported any improv ment. In fa t, 14%

of users of MS Equation Editor thought it had impeded their und r tanding, wh r as no

TalkMaths users held this opinion. How v r , when these qualitativ valuation w r

7. SYSTEM IMPLEMENTATION AND E VA L UA TION 114

converted to a 5 point Likert scale, the difference between the two group ' per eption

proved to be not quite st atistically significant (p ~ 0.065 for a on -tailed t-te t).

We also evaluated the students' performance on knowl dge of relevant math mat

ical terminology, both before and after the tasks, to inve t igate wh th r the exercise,

possibly including use of the help facility of whichever tool they wer allocated , had

improved this knowledge. We gave a score of + 1 whenever the parti ipant orr t ly

gave the prescribed answer to one of these "mathematical knowledg " quest ions or a

score of + 0.5 for an answer we considered to be a r I vant "near miss". If th an w r

given was incorrect or the student did not respond, a score of 0 was giv n for t hat qu -

tion. We observed the change to each student 's cor betw n th pr - and p t-t k

questionnaires.

Improved Learning of Mathematics

N/ A No Response

A Lot

QU it e a Bit

Usini T~ lkM~ths
A littl e

• Usini MS Equiltion Editor

Not Really

0'. I feel more con used now

0 % 10% 20 % 30 % 4 0% 50% 60%

Figure 7.8: Improved under tanding

7. SYSTEM IMPLEMENTATION AND EVALUATION 115

Editor Used Participants No, Not A Quite A No

I feel More Really Little a Bit Lot Response

confused

now

MS Equation 14 14% 50% 21% 14% 0% 0%

TalkMaths 13 0% 38% 38% 15% 8% 0%

Table 7.3: Results of the post-task feedback on any improvements to understanding
mathematical concepts

Although, in both groups, most individuals gave the same response to any given ques

tion in both pre- and post-task questionnaires, indicating no change to their knowledge,

one participant in group A (MS Word Equation Editor) actually did worse the second

time, indicating a decline in understanding! In the previous, pilot study [Attanayake

et al., 2012], such observations could possibly have been due to laziness, where the

subject did not complete all the questions in the post-task questionnaire. However,

this was not the case in the current second study. Although the overall average score

for the MS Equation Editor group did increase slightly after performing the tasks, this

improvement was very small and was not statistically significant (p ~ 0.18 in a one

tailed t-test). In contrast, no participants using TalkMaths did worse on the second

questionnaire, five students improved their scores and overall the group average score

increased by a noteworthy amount, which proved statistically significant (p ~ 0.011

in a tw~tailed t-test, or p ~ 0.006 in a one-tailed test). The difference between the

two groups in mean improvement after performing the tasks also proved to be weakly

statistically significant (p ~ 0.048 in a one-tailed t-test), where the TalkMaths group

showed greater improvement. In summary, from these results, it can be concluded

that due to their previous experience, users found the MS Word Equation Editor eas

ier to use than TalkMaths, but on the other hand TalkMaths helped improving their

understanding of mathematical concepts more than MS Word Equation Editor.

Chapter 8

Conclusions and Future Work

The work described in this thesis has devised, implemented and evaluated solutions

for the problem of creating and modifying mathematical expressions by speech, using

web-based applications. In this chapter, we conclude this work by critically analysing

our findings and giving an outlook for future research directions.

8.1 Conclusions

The first phase of our research was motivated by our desire to improve the desktop

based TalkMaths system that was described and implemented in [Wigmore, 2011]. We

started-off by investigating various architectures for realising general-purpose speech

based applications. This led to our literature review of this area and our architecture

taxonomy. In particular, we have adopted the view that web-based architectures will

eventually become more and more prevalent even amongst speech-based applications

due to trends like the move to more cloud-based solutions and service-oriented archi

tectures.

The amount of previously published work in the area of web-based architectures

for speech-enabled systems seemed relatively small at the time of writing. However,

we expect additional interest on speech-based applications amongst researchers in the

foreseeable future, as speech technology becomes more established. As we explained

in Chapter 7, our work resulted in TalkMaths being rewritten as a web-based system

(and a web service), and our findings might persuade other system architects to proceed

8. CONCLUSIONS AND FUTURE WORK 117

similarly.

We have gained very encouraging results from the perplexity experiments carried

out in Chapter 5, leading to the conclusion that spoken mathematics is relatively more

predictable than everyday natural languages. lIenee, by statistically modelling spoken

mathematics, it is possible to (semi-) automatically predict or correct the user's input

to a system such as TalkMaths. With this result in mind, we have implemented a proto

type predictive system that can achieve over 90% one word ahead prediction accuracy,

which can be used to assist in the creation of electronic mathematical content. \Ve have

also seen that one word ahead prediction accuracy can be improved by increasing the

size of the training dataset used for the 8LM. At present, the predictions are limited

to the vocabulary of the 8LM. This implies that each time a new word (in our case, a

spoken name of a mathematical entity) is encountered, it would need to be added to

the system's vocabulary. This in turn requires the corpus of mathematical expressions

on which the 8LM is based to be extended to reflect the change. Although possible in

principle, this is not straightforward as one would have to find a considerable amount

of additional data in order to update the baseline 8LM. Adaptive online learning may

be a solution to this issue.

We have also implemented and evaluated a prototype corrective system for spoken

mathematics input using the Damerau-Levenshtein distance method. This was also

proven to be highly successful at correcting up to 3 character-level errors in an expres

sion. However, as expected, when the number or complexity of such errors increases,

the efficiency of correction declines.

Our proposed framework for the design of spoken mathematics (and spoken com

mand languages in general) uses mixfix operators. This leads to our construction of

speech templates, resulting in (usually short) spoken commands that appear reason

ably intuitive and "natural" to the user. They can be used for expressing commands

of different types such as content, editing or help commands. Mixfix operators with no

arguments (arity 0) are frequently used for any command that is not related to content

such as editing and system commands. Overall, our framework has clearly resulted in a

much improved input language for our new prototype version of the TalkMaths system,

in particular, the increased range of mathematics that can be parsed as documented

in our parser evaluation (Table 7.1).

The operator precedence-based GLR parsing technique that we have developed,

8. CONCLUSIONS AND FUTURE WORK 118

using multiple parses for resolving ambiguity, and our error recovery algorithm have

resolved many problems and weaknesses in earlier systems and proposals. However,

parsing incomplete or incorrect spoken commands remains a complex and challenging

task. Whereas evidence from our evaluation suggests that our overall error recovery

strategy is correct and can treat a wide range of problematic input, there exist a

number of issues that could be addressed to further improve our algorithm. The error

recovery algorithm that we have given in Section 6.6.5 is very comprehensive, but may

not always be needed in practice. Restricting the range of tolerated incorrect input

would speed up the algorithm. This leads us to discuss the main drawback of our

approach, and certainly of the prototype implementation: due to the large number of

possible interpretations of occurring ambiguities, an exponentially growing number of

different parse trees might be generated. This can slow down the algorithm and make

it less convenient to the user. We suspect that a careful analysis and profiling of our

code would reveal bottlenecks in it, and it is clear that using revised data structures

allowing partial sharing of the various parse trees could significantly improve its run

time behaviour. On the other hand, for relatively shorter input (and this will be the

typical situation in a speech-based system) the algorithm appears practical.

Syntax analysis is only the first step of the classical approach to compiler-construction,

and it would be interesting to investigate whether a more general framework for dis

playing spoken mathematical input can be found. An investigation into tools and tech

niques employed for semantic analysis and code generation would be needed, followed

by an analysis of their usefulness and relevance for the kind of tasks and challenges

that are required for our line of work.

Throughout the different phases of this PhD project, we have been keen to see

the practical relevance of our research by implementing the algorithms even in their

early stages. This has led to a number of prototypes, including re-implementation of

earlier work. We recreated a version of the system described by [Wigmore, 2011] in

order to have a baseline in our parser evaluation (see our comparison of the parsers

PI, P2 and Pa in Section 7.3). Our implementation of some of the speech editing

paradigms, as introduced in [Wigmore, 2011] was needed to make speech-driven editing

possible in an interim version of TalkMaths, used for the learning and teaching user

experiment in 7.4.1. To our knowledge, this is the first time that both the exhaustive

and semantic grids (see Section 7.2.3) have been fully implemented, used and tested in

8. GONGL USIONS AND FUTURE WORK 119

a real classroom environment.

In Chapter 7, we described a thorough evaluation of our new version of TalkMaths,

by illustrating the improvements we made to the parsing algorithm. Our findings .
suggest that our new Operator Precedence parsing approach performs significantly

better for both syntactically correct and incorrect expressions, compared with that

used in [Wigmore, 2011]. On the other hand, there are still a number of problems,

mainly linked to out of vocabulary words, out of scope grammar and Yapps2 grammar

inflicted left recursion errors (only for PI and P2).

The results of our field study, presented in Chapter 7, Section 7.4.1 are encouraging.

Due to the novel web interface offering multimodal input, students were able to type

"natural maths" commands. Removing the danger of misrecognition due to the lack of

an ASR, they could focus on engaging with the mathematical content using descriptive

natural language commands. In this way, as our findings suggest, the students were

able to improve their understanding of specific mathematical concepts. \Ve feel that

there is a lot of potential in this approach. For example, online maths tutoring sys

tems, educational chat rooms or forums could all hugely benefit from our techniques

as they provide a first step towards a natural or multimodal user interface for online

mathematics that is operating-system independent.

8.2 Future work

During the time of the PhD, numerous findings and insights reshaped the course of

the TalkMaths project. However, there were other interesting research questions raised

while answering the main research questions we were originally concerned with. Even

though it would have been valid to carry out more research on each of these other

aspects, the time available was limited. In this chapter, we briefly outline some of

those aspects as future directions to our work.

Although the architecture choice we made for the TalkMaths project was facilitated

by our classification of speech based architectures, we were constrained by some histor

ical reasons and design limitations, for example the language used and the processing

power available at the University. For these reasons, we were unable to compare the

performance of our system between different possible architectures. It would have been

better to experiment on the performance of our prototype systems using different pos-

8. CONGL USIONS AND FUTURE WORK 120

sible architectures prior to implementation of the final solution which can be used by
end users.

The 8LMs we created were based on linearised mathematics language of the nature

described by previous authors [Chang, 1983; Fateman, 2009; Wigmore, 2011]. Even

though the experiments described in Chapter 5 demonstrated that spoken mathematics

in general is quite predictable, the final proposal of the spoken mathematics language

described in subsequent chapters (7 and 6) was slightly different from its predecessors

(for example, using speech templates). As a direction for future work, creating and

evaluating 8LMs using a suitable dataset of spoken mathematics that use speech tem

plates could further demonstrate that we can use prediction and correction facilities

for the new spoken mathematics language that includes speech template components

as well. It should be noted that such a dataset will be available through time as more

and more people use the TalkMaths system.

As explained in Chapter 8, when new speech components are added to the system,

the baseline 8LM will have to be updated to incorporate the changes. This is the

same case when a user wishes to alter or remove currently-used speech components in

from the system. An adaptive language modeling technique, such as cache or trigger

models, (see Chapter 4) could be useful to do this in a more dynamic way rather

than recalculating word probabilities from each new training dataset. Investigating

which adaptive language modeling technique is best for the underlying language and

subsequent implementation of predictive and corrective facilities into the TalkMaths

system will make the system more scalable.

Currently, the predictive and corrective systems are implemented as separate pro

totypes to the TalkMaths system. However, integrating these facilities into TalkMaths

in the future is possible and shall be very useful. It would also be interesting to employ

a user evaluation study of our predictive and corrective facilities once they have been

integrated into the TalkMaths system and compare the resulting benefits with the us

ability of the system prior to integration - in particular, carrying out an evaluation

similar to that described in Chapter 5.

We have shown that the error correction system based on Damerau-Levenshtein

distance was quite good at correcting character-level errors during user input. This is

extremely useful when the input method is via the keyboard. However, during speech

input - by mistake (or due to different ways of speaking), a user may speak words in

8. CONCLUSIONS AND FUTURE WORK 121

a different order to what the system expect. A word-level (for example, words being

deleted/inserted/swapped in a given sentence) distance calculation metric similar to

the Damerau-Levenshtein method that we have applied could be of benefit in such

circumstances. Also, this method can be extended to correction of phonetic error

(errors in A8R) between similar sounding words - such as "theta", "beta" and "eta".

More research on this topic should be of interest for any speech-based system, not just

TalkMaths. Theoretically this would seem to be useful, however, carrying these out

might be an excessively heavy computational task. 8LMs could also be used to assess

which sentences are highly unlikely to occur as a way of detecting word-level errors in

a given sentence. It would be a valid experiment to compare these different methods

with the input correction method described in this thesis.

As already mentioned in [Fateman, 2006], any speech-based system that wishes

to offer the fullest flexibility and usability to its users needs to provide a facility for

defining custom user-created commands. In our framework, this corresponds to adding

new operators (in particular, mixfix operators corresponding to new speech templates),

with appropriate precedence information, to the system. In principle, this does not pose

any problem. However, a suitable user interface for this would have to be designed and

implemented. We think that this desirable feature could be an important next step for

improving TalkMaths as it would enable TalkMaths to become a generic, extensible

editor for languages like Maths that are suitable for the parser and speech template

approach implemented.

Additional future work could integrate a generic semantic analysis mechanism, for

correctly interpreting arbitrary, potentially user-defined command types. This would

improve the way the parser could distinguish between, e.g. editing, help or mathemat

ical content commands and correctly identify the necessary action that the system has

to undertake.

During the field study we have carried out to evaluate our TalkMaths interface, it

was evident to us that the use of speech templates was quite natural for the users. The

comments we received from the participants were encouraging and no one questioned

the nature of the language they had to use. However, the focus of those experiments

was not on the ease of use of the new spoken mathematics language, therefore it cannot

be used to reach the conclusion that the speech templates were indeed easy and natural

to users compared to earlier versions of spoken mathematics. An empirical evaluation

8. CONCLUSIONS AND FUTURE WORK 122

of the use of spoken mathematics that include speech templates will be highly beneficial

in the future.

The editing paradigms implemented in TalkMaths produced much lively discussion

at public demonstrations at Kingston University among post graduate user experience

students. If we had time in hand, experimenting on the ease of use of those novel

editing paradigms described in Chapter 7 would have been designed and carried out.

Currently editing paradigms designed based on editing mathematics. It would also be

a valid experiment to design and use our editing paradigms concept in the context of

dictation of programming code and compare these with conventional speech editing

paradigms (such as use of a mouse grid)

The prototype implementation of our parsing algorithm presented in Section 6.5.3

has been evaluated and its novel error recovery features have been illustrated and

tested (see Section 6.6). Due to the complexity of the algorithm, we could not fine

tune all aspects of our implementation, and we did not integrate our code into the live

TalkMaths system, publicly available on the web. Doing so would mainly require work

relating to system integration and software engineering of a technical nature rather

than academic research.

An interesting additional feature of our system could be an interactive mechanism

to display various ranked alternatives of expressions offered to resolve ambiguity, as well

as devising new ways of determining this ranking (currently, we use the number of nodes

in the parse tree - the lower the better, as this gave us better results). For example, this

mechanism could work similarly to how our SWIMS system offers suggested predictions

and corrections to the users, and in principle, it would be possible to use the same

JavaScript code to implement this for TalkMaths. However, this will also require

additional processing power due to the need for analysis of possible outcomes using a

suitable rule set, which therefore could affect the performance of the system.

A highly desirable direction for TalkMaths project is to make the system more

accessible for people with visual impairments by incorporating facilities to output

mathematics expressions on the screen using synthetic spoken text-terspeech (TTS)

mathematics descriptions.

Ultimately, we believe that in future versions of TalkMaths, the concepts and alger

rithms that we have devised in this project and described in this thesis will form core

components of the system, and will be further enhanced by additional improvements

8. CONCLUSIONS AND FUTURE WORK 123

and extensions. Eventually, the entire functionality described here will be available

in the public interface and the power of our approach will be measured in terms of

satisfied users, rather than academic case studies or prototype evaluations.

References

A.V. Aho and J .D. Ullman. The theory of parsing, tmn lation, and compiling. r nti

Hall, Inc., 1972. 70

A.V. Aho, R. Sethi, and J .D. Ullman. Compilers: Principles, 11 chniqu and Tools.

Addison-Wesley Publi hing Company, USA, world dition, 1 6. I B

0201101947. 13, 70, 77, 79 , 80

A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman. Compil r : principl , t hniqu

tools, volume 1009. Pearson/ Addison W sl y, 2007. 70

J. Allaire. Macromedia Flash MXA next-gen ration rich Ii nt. Ma rom dia whit

paper, pages 1- 2, 2002 . 22

A. Annika. Precedences in specification and implem ntatio of pr gr mming lan

guages. Theoretical Computer Science, 142(1):3- 26, 1995. 77 79

D. At t anayake, G. Hunter , J . Denholm-Price, and E . Pftu g 1. TalkMath - d v I ping

a speech user-interface for spoken mathemati . MSOR Connections, 11 (2):4 - 6
2011a. 48

D. Attanayake, G. Hunter , E . Pftuegel, and J. Denholm-Pri h-

based web application . In International Conference on S mantic E-Busin and

Enterprise Computing, 2011. SEEC 201 2. Proceeding ., p g 73- 77 2011b. 99

D. Attanayake, G. Hunter , J. Denholm-Price, and E. Pftu g 1. A nov I w b-b d tool

to enhance learning of mathematical concept. In Advances in ICT for Em rging

Regions (ICTer), 201 2 International Conference on, pag s 129- 136. IEEE, 2012. 111

115

REFERENCES 125

D. Attanayake, G. Hunter, J . Denholm-Price, and E. PHu gel. Novel mul t i-modal t 01

to enhance disabled and distance learners exp rien e of mathemati s. lnt rnalional

Journal on Advances in ICT fo r Emerging Regions (ICTer) , 6(1), 2013. 111

A. Baddeley. Working memory: Looking back and looking forward. Natur R vi w

Neuroscience, 4(10):829- 839, 2003. 44

L.R Bahl, F. Jelinek, and RL. Mercer. A maximum lik lihood approa h t nti nu u

speech recognition. Pattern Analysis and Machine lnl llig nc IEEE Tran actions

on, (2):179- 190, 1983. 39, 47

S. Bayer. Embedding speech in w b interfa e. In Proc eding of th Fourth lnt r

national Conference on Spoken Language Proc sing, 1996. ICSLP 96., v lum 3

pages 1684- 1687. IEEE, 1996. 35

A. Begel. Spoken Language Support fo r Softwar D velopment. PhD th

of California, Berkeley, 2005. Report UCB-EEC -2006- . 3, 5

ni v r ity

A. Begel and S.L. Graham. XGLR - an algori thm for ambigui y in pr gramming

languages. Science of Computer Programming, 61 (3) :211- 227, 200 . 5, 13, 71 75 ,

82

A. Beg I and K. Zafrir. SpeedNav: Document navigation by voi . unpubli h d 2002.

18

J .R Bellegarda. Statistical language model adaptation: r vi w

Speech communication, 42(1):93- 108, 2004. 44

A.L. Berger, S. A. Della Pietra, and V. J . Della Pi t ra. A maximum ntr p ppr h

to natural language processing. Computational Linguisitics 22:1- 36, 1 96. 47

C. Bernareggi and V. Brigatti. Writing mathematic by p h: A

visually impaired. In Proceedings of ICCH? 2008 {l 1th International Con} 1· nc on

Computers Helping People with Special Need) , page 79- 2, 200 . 19

R.T. Bickel, O.E. Murillo, D. Mowatt, R.L. Chamb r , nd O. S holz. raphi u r

interface schemes for supporting speech recognit ion input y t m Jun 222010.

Patent 7,742,923. 18

REFERENCES 126

A. Bove, P. Dybjer , and U. Norell. A brief ov rview of Agda- a fun tional languag

with dependent types. In Theorem Proving in High r Order Logic , pag s 73- 7 .

Springer, 2009. 78

J . Bresnan, R.M . Kaplan, S. Peters, and A. Zaen n. Cro - erial dep nd

In The Formal complexity of natural language, pag s 2 6- 319. pring r, 19 7. 12

M.G. Burke and G.A. Fisher. A practical m thod for LR and LL ynta t i rror

diagnosis and recovery. A CM Transactions on Programming Languag and Sy t m

(TOPLAS) , 9(2) :164- 197, 1987. 14, 86

P.M. Burke and S. Yacoub. Distributed spe ch r ogni t ion for m bil d vi

ber 24 2010. EP Patent 1,617 410. 25

1. Burnard. User 's reference guide for th Briti h ation I C rpu . http://WTIlW.

nat corp . ox. ac . uk/ , 1995. Accessed: 2 / 05/2013. 8 50

B. Cao, Y. Li , and J. Yin. M asuring similarity betw n graph b d n th L v n

shtein Distance. Appl. Math, 7(lL):169- 175, 2013. 11

D. Carlisle. Mathematical markup language (MathML) v r ion 2.0 (nd di in).

http://WTIlW. y3. org/TR/MathML2, 2003. A ed: 6/ /200 . 97

Carnegie Mellon University. Sphinx-4 A pe ch r ogniz r writ n nt ir ly in h

Java ™ programming language. http : //cmusphinx.sourceforge.net/sphinx4/

2008. Accessed: 27/03/2013. 17, 35

D. Cervone. Mathjax: A platform for mathemati s on th w b. Notic of th AMS

59(2):312- 316, 2012. 97

L.A. Chang. Handbook for spoken mathematics (Larry speakea y). Lawr n Liv r

more National Laboratory, University of California, USA, 19 3. 5 8, 48 120

S. Chauveau and F. Bodin. M nhir: An environment for high p rforman

In Languages, Compilers, and Run-Time System for Scalabl Comput r pag

27-40. Springer, 1998. 13

R EFERENCES 127

S.F. Chen and J . Goodman. An empirical study of smoothing t chniqu for languag

modeling. In Proceedings of the 34th annual m eeting on As ociation f01' Computa

tional Linguistics, pages 310- 318. Association for Computat ional Lingui t i , 19 6.

42, 43

x. Chen and D . Pager. LR (1) parser generator Hyacc. In Proceeding oj Int rnational

Conf erence on Software Engineering Research and Practice, pag s 471- 477 200 . 13

A. Cheyer, J. Park, and R. Giuli . IRIS: Int grat , r lat. inf r. shar . T hni al r p rt ,

DTIC Document , 2005. 21

N. Chomsky. Syntactic structures. de Gruyter Mouton Th Hagu , N th rl nd , 1957.

12, 38, 71

N. Chomsky. Aspects of the Theory of Syntax. Th MIT pr , 1965. 3 71

K. Christian, B. Kules, B. Shneiderman, and A. You f. A mpari n f v i n-

trolled and mouse controlled web browsing. In Proc ding of th f ourth int rnational

ACM conference on Assistive technologie pag 72- 79 2000. I B 15 11 14. 1

75

J. Ciesinger. A bibliography of error-handling. SIGPLAN Notic 14(1):1 26 1 7 .

14

P. Clarkson. Statistical language modeling toolkit . http : II 8vr-www . eng. cam. ac . ukl

-prc14/toolki t. html , 1999a. Accessed: 27/ 04/2013. 45

P. Clarkson and R. Rosenfeld. Statisticallanguag modeling ing th

toolkit. In Proceedings of Fifth European Con} rence on Spe ch Communication and

Technology (Eurospeech), pages 2707- 2710, 1997. xi 45 52 55

P.R. Clarkson. Adaptation of Statistical Language Model for Automatic Sp h R cog

nition. PhD thesis, 1999b. 10, 40, 42, 44

P.R. Clarkson and A.J. Robinson. Language model adaptation u ing mixtur nd an

exponentially decaying cache. In 1997 IEEE International Con} r, nee on A ou tic ,

Speech, and Signal Processing, ICA SSP-97. 1997 volum 2 pag 799- 02. IEEE

1997. 44

REFERENCES 12

W.F. Clocksin and C.S. Mellish. Programming in PROLOG. 19 4. 78

D. Crombie, R. Lenoir, . McKenzie, and A. Barker. math2braille: Opening a to

mathematics. In Computers Helping People with Special Needs, volum 311 pages

670- 677. Springer, 2004. ISB 978-3-540-22334-4. 20

J. Cuartero-Olivera, G. Hunter, and A. Perez-Navarro. Reading and writing math

matical notation in e-learning environments. eLearn Center R s arch Pap r S ri,

Universitat Oberta de Catalunya, (4), 2012. 21 , 50

1. Dai, R. Goldman, A. Sears, and J. Lozier. Spe ch-based cursor ontrol: a study

of grid-based solutions. In Proceedings of the 6th international ACM SIGACCESS

conference on Computers and accessibility, pages 94- 101 , Atlanta, GA, U A, 2004.

ACM. ISBN 158113911X. 18

F.J. Damerau. A technique for computer detection and corr tion of p lling rror.

Commun. ACM, 7(3):171- 176, March 1964. ISSN 0001-07 2. doi: 10.1145/36395 .

363994. URL http://doi.aem. org/10 .1145/363958.363994. 10, 47 48 , 65 , 106

N.A. Danielsson and U. Norell. Parsing mixfix operator. In Sv n-Bodo S holz and laf

Chitil, editors, Implementation and Application of Functional Languag v lum

5836, pages 80- 99. Springer, 2011. ISBN 978-3-642-24451-3. 77, 78

M. Davies. The corpus of contemporary american english (COCA): 400+ million w rd ,

1990-present. Available online at http://www. americancorpu .ory 200 . 142

S. Davis and P. Mermelstein. Comparison of parametric r pr ntatio £ r m n

syllabic word recognition in continuously spoken sentence. Acoustic, Sp ch and

Signal Processing, IEEE Transactions on, 28(4):357- 366, 19 O. 25

M. de Jonge, E. ilsson-Nyman, 1. Kats, and E. Visser. Natural nd fl xibl rror

recovery for generated parsers. Software Language Engineering pag 204- 223, 2010.

14

A.P. Dempster, .M. Laird, and D.E. Rubin. Maximum lik lihood from in ompl t

data via the EM algorithm. Journal of the Royal Statistical Society. Seri B

(Methodological), 39(1):1- 38, 1977. 46

REFERENCES 129

F.L. DeRemer. Practical translators for LR (k) language . PhD th si , Mas a hu ctts

Institute of Technology, 1969. 13

J. Dery. Life With Siri, volume 2. Jodi Dery, 2012. 21

Design Science. MathTyp 6.9. http : //WYY. dessci.com/en/products/mathtype/

2013a. Accessed: 21/06/ 2013. 20

Design Science. MathPlay r. http://YWY.dessci . com/en/products/mathplayer/ ,

2013b. Accessed: 20/06/2013. 19

C. Donnelly and S. Richard. Bison: The YACC- compatible Par er G n rator (Nov m

ber 1995, Bison Version 1.25)' Free Software Foundation 199 . 13

S. Durling and J . Lumsden. Speech recognit ion u in h alth ar ppli

Proceedings of the 6th International Conference on Advanc in Mobil Computing

and Multimedia, pages 473- 478. ACM, 2008. 21

A. D. N. Edwards, H. McCartney, and F . Fogarolo. Lambda:: A rnult irn dal apl r a h

to making mathematics accessible to blind stud nt . In Proc eding of th th In

ternational ACM SIGACCESS Conference on Comput rand Acc ibility

'06, pages 48- 54, New York, NY, USA, 2006. ACM. I BN 1-5 59 -290-. d i:

10.1145/1168987.1168997. URL http://doi. acm.org/10 . 1145/ 1168987 .1168997.
20

C. Elliott and J .A. Bilmes. Computer based mathemati u ing h

recognition. CHI 2007 Workshop on Striking a C(hjord: VocalInt raction in A 2-

tive Technologies, Games and More, 2007. 2, 8, 18

R. Fateman. 2-D Display of Incomplete Mathematical Expr ion. http://YWY . eecs .

berkeley . edu/ - fateman/papers/dispbad . pdf , 2006. Ac d: 20/01/2011. 5 8

15, 121

R. Fateman. How can we speak math? http://wyY . eecs. ber kel ey. edu/-fateman/

papers/speakmath.pdf , 2009. Accessed: 25/ 07/2013. 5, 8 9 15 48 72 73 74 120

REFERENCES 130

H. Ferreira and D. Freitas . Enhancing the accessibili ty of mathemati for blind p pi :

The AudioMath project. In Computers Helping People with Sp cial N ds volume

3118, page 627, 2004. ISB 978-3-540-22334-4. 19

C.R. Fletcher. Level of representation in memory for discours . 1994. 44

R. Flynn and E. Jones. Feature selection for reduc d-bandwidth di tribut d pe h

recognit ion. Speech Communication, 2012. 25

Fonix.com. http://www.Fonix.com. Acc sed: 10/ 03/2013. 25

A. Fujiyoshi, M. Suzuki, and S. Uchida. Y, rification of math mati al f rmula b d

on a combination of context-free grammar and tr grammar. In Pro ding of

the 9th A ISC international conf erence, the 15th Calculema ympo ium and th 7th

international MKM conference on Intelligent Computer Math mati , volum 51 ,

pages 415- 429, Heidelberg, 2008. Springer. ISBN 97 3540 510 7. 19

P. Gaura. REMathEx reader and editor of th math matical xpr

students. In K. Miesenberger, J . Klau , and W. Zagl r, ditor Comput r H lping

People with Special Needs, volume 2398 of Lecture No te in Comput r ci n p g

486-493. Springer Berlin Heidelberg, 2002. ISBN 97 -3-540-43904-2. d i: 10.1 7/

3-540-45491-8_92. URL http://dx . doi. org/l0. 1007/3-540- 45491- 8_92 . 19

H.T . Glantz . On the recognit ion of information with a digital omput r. J. ACM, 4

(2) :178- 188, April 1957. ISSN 0004-5411. doi: 10.1145/320 6 .320 7 . URL http :

//doi.acm .org/l0.1145/320868.320878. 11

I.J . Good. The population frequencies of peci s and the timation f p pula ion

parameters. Biometrika, 40:237- 264, 1953. 42 , 52

Google. Google speech demo. http://www .google.com/intl/ en/ chrome/ demos/

speech. html. Accessed: 27/ 03/ 2013. 17

Google. Googl translate. http://translate . google. com/about 2012. d:

27/ 03/ 2013. 11

REFERENCES 131

J. Gould. Implementation and acceptance of NatLink, a Python-based rna ro sy tern

for Dragon aturallySpeaking. In The Ninth International Python Confer nce, pag

5- 8, 200l. 2, 97

J. Gould and D. Gould. Gould home page. http://wyw.gouldhome . com/joel/ . Ac

cessed: 27/03/2013. 23

S.L. Graham and S.P. Rhodes. Practical syntactic error recovery. Communications of

the ACM, 18(11):639- 650, 1975. ISS 0001-0782. URL http://doi . acm. org/l0.

1145/361219.361223. 14

S.L. Graham, C.B. Haley, and W .N. Joy. Practical LR error recov ry, volum 14.

ACM, 1979. 14

J.T. Grudin. Error patterns in nOVIce and skilled tran ription typing. In

WilliamE. Cooper, editor, Cognitive aspects of skill d typ writing, pag 121- 1 3.

Springer , 1983. ISBN 978-1-4612-5472-0. URL http://dx . doi. org/l0. 1007/

978-1-4612-5470-6_6 . 10, 47

A. Gruenstein, I. McGraw, and I. Badr. The WAMI toolkit for d v loping, d pI ying,

and evaluating web-accessible multimodal int rfac . In Proc ding of th 10th

international conference on Multimodal interfaces, pag 141- 14. A M 200 . 4.

24 , 30

A. Gruenstein, I. McGraw, and A. Sutherland. A self-transcribing rpu: 01-

lecting continuous speech with an online educational game. In Sp ch and Languag

Technology in Education, 2011. SLaTE 201 2 Workshop. , 2009. 31

C. Guy, M. Jurka, S. Stanek, and R. Fateman. Math Sp ak & Writ , mput r

program to read and hear mathematical input . ~ chnical r port , niv r ity of al

ifornia, Berkeley, Electrical Engineering and Computer Sci n D partm nt , 2004.

2, 8

T. Hanakovic and M. Nagy. Speech recognition help visually impair d p opl writing

mathematical formulas. In K. Miesenberger , J. Klaus, W.L. Z gl r , and A.I. Kar h

mer, editors, Computers Helping People with Special Needs , volum 4061, pag

REFERENCES 132

1231- 1234. Springer, 2006. ISBN 978-3-540-36020-9. doi: 10.1007/ 117 713_177.

URL http://dx . doi. org/l0. 1007/11788713_177. 19

T . Haque, E. Liang, and J. Gray. The adjustable grid: A grid-bas d ur or ontrol

solution using speech recognition. In Proceedings of the 51st ACM South ast Con} r

ence, pages 36:1- 36:6, ew York, Y, USA, 2013. ACM. ISBN 97 1-4503-1901-0.

URL http://doi.acID . org/l0 .1 145/2498328.2500084. 17

S. Hasinoff. Solving substitution ciphers, a technical r port. Technical report , niv r

sity of Toronto, 2003. 39

M. Holada. Internet speech recognition server. Systemics, Cybern tics and Informatic

1(3):74- 77, 2003. 25 , 34

J.N. Holmes and W.J. Holmes. Speech synthesis and r cognition. Taylor and an i

2001. ISBN 0748408576. 23 , 25 , 38 , 39 , 40 , 42 , 44, 46

B. Hsu. Generalized linear interpolation of languag mod 1 . In IEEE Work hop on

Automatic Speech Recognition fj Understanding, 2007, ASRU, pag 136- 140. I

2007. 43

M. Huckvale. Learning from the experience of building automatic p h r gni i n

systems. Speech Hearing and Language- Work in Progr ,9, 1996. 41

A. Hunt and S. McGlashan. Speech recognition grammar p ifi ati n v r i n 1.0.

W3C Recommendation, March. 23

G.J.A Hunter. Statistical language modelling of dialogue mat rial in th Briti h Na

tional Corpus. PhD thesis, University Colleg London London 2004. 38 , 42, 46,

47

G.J.A. Hunter and M. Huckvale. Is it appropriate to model dialogu in th am w

as text? In Proceedings of European Modelling Symposium, pag 199- 203, London

UK, 2006. ISBN 0-9516509-3-9. 51 , 53

RM. Iyer and M. Ostendorf. Modeling long distance depend nee in languag : Topi

mixtures versus dynamic cache models. IEEE Transactions on Sp ech and Audio

Processing, 7(1):30-39, 1999. 44

REFERENCES 133

N. Jacobs. MathGenie : User 's guide and teacher 's manual. http://logicalsoft .

net/MathGenie .pdf , 2006. 19

F . Jelinek. Up from trigrams!-The struggle for improved Janguag mod J . In Pro

ceedings of Second European Conference on Speech Communication and 71 chnology

(Eurospeech), 1991. 68

F . Jelinek, B. Merialdo, S. Roukos, and M.L St rauss. Self-organiz d languag m d ling

for speech recognition. In Readings in Speech Recognition, page 45 506. M rgan

Kaufmann, 1990. 39

S.c. Johnson. Yacc: Yet another compiler-compiler, volum 32. B U L bor t ri

Murray Hill, NJ , 1975. 13

LaViola Jr., J . Joseph, and R.C. Zeleznik. MathPad 2: a sy t m for th r ati n and

exploration of mathematical sketches. In ACM SIGGRAPH 2007 our ,pag 4

New York, NY, USA, 2007. ACM. ISB 978-1-4503-1 23-5. URL http: / /doi . acID.

arg/l0. 1145/1281500.1281557. 19

1. Kallmeyer. Parsing beyond context-free grammar . pring r, 2010. I EN

3642264530, 9783642264535. 12

K. Karl, M. Pettey, and B. Shneiderman. a tiv t d

commands for word processing applications: An empirical valuati n. Int rnational

Journal of Man-Machine Studies, 30(4):355- 375, 1993. 18

A. I. Karshmer. Access to mathematics and sci nc . In Klau Mi

Klaus, Wolfgang Zagler, and Arthur Karshmer , editors, Computer H lping P pl

with Special Needs, volume 5105, pages 873- 874. Springer 200 . ISBN 7 -3-540-

70539-0. URL http ://dx . doi. org/l0 . 1007/978-3-540-70540-6_129 . 21 , 49

U. Kastens. Ordered attributed grammars. Acta Informatica, 13(3) :229- 256 1 O. 15

S. M. Katz. Estimation of probabilties from sparse data for t he languag mod I om

ponent of a speech recogniser. IEEE Transactions on Acoustics Sp ech and Signal

Processing, 35(3):400- 401 , 1987. 42, 43, 58

R EFERENCES 134

R. Kneser and H. Ney. Improved backing-off for m-gram language modeling. In Inter

national Conference on Acoustics, Speech, and Signal Processing, 1995. ICASSP-95. ,

1995 volume 1, pages 1 1- 184. IEEE, 1995. 58, 68

D.E. Knuth. On th t ranslation of languages from left to right . Info rmation and

control, 8(6):607- 639, 1965. 13

D.E. Knuth. The gene is of attribute grammars. In Attribute Grammar and Their

Applications, pages 1- 12. Springer, 1990. 15

R. Kohavi et al. A study of cross-validation and bootstrap for accuracy stimation

and model selection. In International Joint Conference on A rtificial Intelligence,

volume 14, pages 1137- 1145. Lawrence Erlbaum Associates Ltd, 1995. 47

R. Kuhn and R. De Mori. A cache-based natural language model for speech recognition.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(6) :570- 5 3,

1990. 44

K. Kukich. Techniques for automatically correcting words in text. A CM Computing

Surveys (CSUR), 24(4):377- 439, 1992. 10

B. Lang. Deterministic techniques for efficient non-deterministic parser . In Proceedings

of the 2nd Colloquium on Automata, Languages and Programming, volume 14, page

255- 269, 1974. 82

S. Lappin and H.J. Leass. An algorithm for pronominal anaphora r solution. Compu

tational Linguistics, 20(4):535- 561 , 1994. 38

J.A. Larson. VoiceXML: Introduction to Developing Speech Applications. Prent ice Hall,

USA, 2002. ISBN 0130092622. 24

R. Lau. Adaptive tati tical language modelling. Master's thesis, Depart m nt of Elec

t rical and Computer Science, Massachusetts Insistute of Technology Cambridge,

MA, 1994. 43

R. Lau, R. Rosenfeld, and S. Roukos. Trigger-based language models: a maximum

entropy approach. In Proceedings of the IEEE International Conference on A coustics,

Speech and Signal Processing, volume 2, page 45- 4 , Minneapoli , 1993. 46, 47

REFERENCES 135

R Lau, G. Flammia, C. Pao, and V. Zue. Webgalaxy: beyond point and Ii k - a

conversational interface to a browser. Computer Networks and ISDN Syst m 29

(8):1385- 1393, 1997. 4

G. Law. Phonetic alphabets (alpha bravo charlie delta). http://wvw . faqs. org/faqs/

radio/phonetic-alph/full/ , 2009. Accessed: 22/01/2010. 103

J.D. Lee, B. Caven, S. Haake, and T .L. Brown. Speech-based int raction with in-v hi I

computers: The effect of speech-based e-mail on drivers att ntion to th roadway.

Human Factors: The Journal o/the Human Factor and Ergonomics Soci ty,43(4) :

631- 640, 2001. 21

RP. Leinius. Error detection and recovery for syntax dir ct d ompiler sy t m . 1 70.

14

V. Levenshtein. Binary codes capable of correcting d 1 tion , in rtion , and r v r al .

Soviet Physics-Doklady, 10(8):707- 710, 1966. 10, 47, 65 , 106

P.M. Lewis II and RE. Stearns. Syntax-directed tran duction. Journal 0/ th A CM

(JACM) , 15(3):465- 488, 1968. 13

J. Lu, C. Lin, W. Wang, C. Li, and H. Wang. String similarity m ur and j

with synonyms. 2013. 11

J .B. Marino, RE. Banchs, J .M. Crego, A. De Gispert, P. Lamb rt , J.A.R noll a,

and M.R Costa-Jussa. N-gram-based machine tran lation. Computational Lingui -

tics, 32(4) :527- 549, 2006. 39

C. Martins, A. Teixeira, and J . Neto. Dynamic language mod ling for th Europ an

Portuguese. In Computational Processing 0/ the Portuguese Language, pag 2 4-

267. Springer, 2008. 10

Mathematica. Spokenstring - Wolfram Mathematica 9 docum ntation. http : / /

reference.wolfram.com/mathematica/ref/SpokenString.html, 201 . 9

E. Mays, F.J . Damerau, and RL. Mercer. Context bas d sp lling corr t ion. Infor

mation Processing & Management, 27(5):517 - 522, 1991. ISSN 0306-4573. doi :

REFERENCE 136

10.1016/ 0306-4573(91)90066- U. URL http: / /www .sciencedi rect .com/science/

article/pii/030645739190066U. 47

v. Mazalov and S. Watt . Recommendation sy terns in mathematical character recog

nition. In Proceeding of MathUI, Bath, UK, 2013. 19

M. F . McTear. pok n dialogue technology: enabling the conversational user interface.

ACM Computing Survey (CSUR) , 34(1):90- 169, 2002. 21

Metroplex oic Computing Inc. mathtalk.com. http : //www .mathtalk . com/ . Ac

ce ed: 19/ 10/ 2013. 2, 18

Micro oft Corporation. peech application language tags (SALT) . http://msdn .

microsoft. com/en-us/libr ary/ms994629. aspx . Accessed: 27/ 03/ 2013. 23

R Mohr. ocola information pages. http : //vocola.net/ , 2009. Accessed:

27/ 13/ 2013. 17, 24

RK. Moore. Th r no data like more data. In Proceedings of the Institute of A coustics,

volume 23 page 1 26 2001. 44 , 51

RK. Moore. A compari on of the data requirements of automatic speech recognition

and human list ner . In Proc. Eurospeech, Geneva, pages 25 2- 2584, 2003.

Mozilla Foundat ion. XULRunner. https: / / developer. mozilla . org/En/XULRunner,

2009. A ce d: 22/ 01/ 2010. 97

C. L. Nemhau r. Introduction to dynamic programming. Wiley New York, 1966. 11

H. U. E n and R. I ne r. On structuring probilistic dependences in stochastic

language mod lling. Computer Speech and Language, 8(1):1- 38, 1994. 42, 43

Nuan Communications. Dragon NaturallySpeaking 10 sdk server edition. http: / /

www.nuance . com/naturallyspeaking/products/sdk/sdk_server.asp. Accessed:

27/ 03/ 2013. 35 97

REFERENCES 137

Nuance Communications. Dragon NaturallySpeaking Professional. http:

//www.nuance.co.uk/for-business/by-product/dragon/dragon-for-the- pc/

dragon-professional/ , 2013. Accessed: 27/03/2013. 16

D. Pager. A practical general method for constructing LR (k) parsers. Acta Informatica,

7(3):249- 268, 1977. 13, 14

D. Pager and X. Chen. The lane table method of constructing LR (1) pars rs. 'Ii hni al

report , Technical Report No. ICS2009-06-02, University of Hawaii, Information and

Computer Sciences Department, 2008. 13

T. Parr and K. Fisher. LL (*): the foundation of the A TLR par er g n rator. ACM

SIGPLAN Notices, 47(6):425- 436, 2012. 14

A. Patel. Parsing with yapps. http://theory . staniord.edu/-amitp/yapps/ , 2009.

Accessed: 22/01/2010. 14, 51 , 100, 147

L.C . Paulson. ML for the Working Programmer. Cambridge Univ r ity Pr , 1996.

78

F. Pereira. Formal grammar and information theory: togeth r again? Philo ophical

Transactions of the Royal Society of London. Series A: Mathematical Phy ical and

Engineering Sciences, 358(1769):1239- 1253, 2000. 41

J.J. Pollock and A. Zamora. Collection and characterization of pIling rr r in i

entific and scholarly text. Journal of the American Society for Information Sci nc ,

34(1):51- 58, 1983. 10

P. J. Pugliese and J. M. Gould. Voice controlled cursor mov ment , 199 . US Pat nt

No. 5818423. 18

M. Purver and J. Ginzburg. Clarifying noun phrase semantic. Journal of S mantic ,

21(3):283- 339, 2004. 38

B. Radakovic, G. Predovic, and B. Dresevic. Geometric parsing of mathemati al x

pressions, ovember 22 2011. US Patent 8,064,696. 19

REFERENCES 138

N. Rajput and A.A. anavati. Distributed speech recognit ion. Speech in Mobile and

Pervasive Environments, pages 99- 114, 2012. 25

T.V. Raman. Audio system for technical readings. Springer Verlag, Berlin, 199 . ISB

3540655158. 9, 19

J .G. Rekers. Parser generation f or interactive environments. PhD thesis, University

of Amsterdam, 1992. 82

R. Rosenfeld. A maximum entropy approach to adapt ive statisticallanguag modeling.

Computer, Speech and Language, 10:187- 228, 1996. 47

R. Rosenfeld. Two decades of statistical language modeling: Where do we go from

here? In Proceedings of the IEEE, volume 88, pages 1270- 1278, 2000. 10, 43

Rubidium.com. http://www.Rubidium.com. Accessed: 10/ 03/ 2013. 25

D.A. Schleppenbach. 2004 MathSpeak init iative_. http://yyy.gh-mathspeak . com/ ,

2013. Accessed: 28/06/ 2013. 9

A. Sears, C. Karat, K. Oseitutu, A. Karimullah, and J . Feng. Productivity, atisfaction,

and interaction strategies of individuals with spinal cord injuries and tradit ional u r

interacting with speech recognition software. Universal A ccess in the Information

Society, 1(1):4- 15, 2001. ISSN 16155289. 17

Andrew Sears, Jinjuan Feng, Kwesi Oseitutu, and Clare-Marie Karat . Hand -fr e,

speech-based navigation during dictation: Difficulties, consequences, and solut ions.

Human-Computer Interaction, 18:229- 257, 2003. 18

Sensorylnc.com. http://YYY.Sensoryinc . com. Accessed: 10/ 03/ 2013. 25

C. Severance. Using Google App Engine. O'Reilly, 2009. 98

K.R. Shah , M. Patel, J . Sheth, and K. Lad. Hybrid approach for measuring string

similarity and its usage in supply type questions answer evaluation. !JCER, 1(3):

81- 87, 2012. 11

C.F. Shannon. Prediction and entropy of printed English text . Bell System Ti chnical

Journal, 30:50- 64, 1951. 46, 47

REFERENCES 139

S.M. Shieber. A uniform architecture for parsing and generation. In Proce dings of the

12th conference on Computational linguistics- Volume 2, pages 614- 619. Asso iation

for Computational Linguistics, 1988. 12

S. Sippu. Syntax error handling in compilers. University of Helsinki , Department f

Computer Science, 1981. 14

E. Smirnova and S.M. Watt . Context-sensitive mathematical character r cogni t ion.

In Proc. lAPR International Conference on Frontiers in Handwriting Recogni

tion, (lCFHR 2008), pages 604- 610. Citeseer, 2008. 4, 19

A. Sorkin and P. Donovan. LR (1) parser generation system: LR (1) rror r ov ry,

oracles, and generic tokens. ACM SIGSOFT Software Engineering Note, 36(2):1- 5,

201l. 13

Speechfxinc.com. http : //YT.1'i1 . Speechfxinc . com. Acce sed: 10/ 03/2013. 25

B. Suhm, B. Myers, and A. Waibel. Designing int ractiv error r ov ry m th d for

speech interfaces. In Proceedings of the CHl96 Workshop on De igning th U r

Interfa ce for Speech Recognition Applications. Citeseer, 1996. 15

M. Suzuki, F. Tamari , R. Fukuda, S. Uchida, and T. Kanahori. Infty: an int gr t d r

system for mathematical documents. In Proceedings of the 2003 A CM ympo ium

on Document engineering, pages 95- 104. ACM , 2003. 19

M. Suzuki, S. Uchida, and A. Fujiyoshi. Syntactic detection and corre tion of mi r g

nitions in mathematical ocr. In Proceedings of The 10th International Con} ~ nc on

Document Analysis and Recognition, ICDAR 2009, Barcelona, Spain, pag 1360-

1364, 2009. 4, 19

M. Tomita. Efficient parsing for natural language: a fast algorithm for practical y

tems, volume 8. Springer, 1985. 13, 82

J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik. Privacy pr rving rr r

resilient dna searching through oblivious automata. In Proceedings of the 14th ACM

conference on Computer and communications security, pages 51 52. ACM, 2007.

11

REFERENCES 140

M. Ugen. Correcting errors by providing structural information to par er . 2010. 14

A. Vaiciunas and G. RaSkinis. Cache-based statisticallanguag models of english and

highly inflected lithuanian. Informatica, 17(1):111- 124, 2006. 10

H. van de Koot. Personal Communication, 2013. 12

K. Vertanen and D.J.C. MacKay. Speech dasher: fast writing u ing sp ch and gaz .

In Proceedings of the 28th international conference on Human factor in computing

systems, pages 595- 598. ACM, 2010. 20, 41

W3C. Mathematical markup language (MathML) version 2.0 (ond diti n). http:

/ /www. w3. org/TR/MathML2, 2003. Accessed: 06/08/200 . 97

W3C. Mathematical markup language (MathML) version 3.0. http://www . w3. org/

TR/MathML3/ , 2010. Accessed: 23/02/2011 . 97

RA. Wagner. Order-n correction for regular language . Communication of th ACM,

17(5):265- 268, 1974. 10

RA. Wagner and M.J . Fischer. The string-to-string orr ction probl m. Journal of

the ACM (JACM), 21(1):168- 173,1974. 10

RA. Wagner and R Lowrance. An extension of the string-to- tring orr tion pr bi m.

Journal of the ACM (JACM), 22(2):177- 183, 1975. 11 , 48

S. M. Watt and X. Xie. Recognition for large sets of handwritt n math m ti al ym

boIs. In Document Analysis and Recognition, 2005. Proceedings. Eighth Int rnational

Conference on, pages 740- 744. IEEE, 2005. 19

C. Wetherell and A. Shannon. LR automatic parser generator and LR (1) P r r.

Software Engineering, IEEE Transactions on, (3):274- 278, 19 1. 13

A.M. Wigmore. Speech-Based Creation and Editing of Mathematical Cont nt. Ph

thesis, Kingston University, UK, 2011. xiv, 3, 4, 5, 8, 15, 18, 36, 48, 50, 51 , 55 72

77, 98, 105, 106, 109, 110, 111 , 116, 118, 119, 120, 142

REFERENCES 141

A.M. Wigmore, Hunter G., E. Pfluegel and J . D nholm- ri . TalkMath : sp h

user interface for dictating mathematical xpr ion into I t roni d urn nts.

In 2nd ISCA Workshop of Speech and Languag 1'1 chnology in Edu ation (LaTE

2009), page P3.4, 2009a. 50

A.M. Wigmore, G. Hunt r , E. Pfluegel, J. D nholm-Pri , and

TalkMaths !" Developing an int lligent y t m to i t di abl d p pI

and use mathematics on computer through a p ch interfa : t h alkMath

and VoiceCalc y tern. In Proce dings of 5th AAAI Int rnational on

Intelligent Environments (IE '09), 2009b. 4 , 50

A.M. Wigmore, E . Pflueg 1, G. Hunter , J. D nholm-Pri , M. olb rt, and t-

tanayake. Evaluating and improving th TalkMath h in rf C r di a ing

and editing mathematical txt. In 5th Europ an Workshop on Math m ati cal and

Scientifi c E-Contents, 2010. 51 , 55

wikipedia.org. Timsort. http://en.wikipedia . org/wiki/Timsort .

26/07/2013. 92

I.H. Witten and T .C. Bell. The z ro-fr qu n y probl m: ima ing

of novel events in adapt ive text compr ion. IEEE Transa tion

Theory, 37(4):10 5- 1094, 1991. 42

pr babili i

n Information

S. Young. Large vocabulary ont inuous h r gni i n: r vi w. IE' E ignal

Processing Magazine, 13(5):45- 57, 1996. 10, 12, 1 23 , 3

S. Young. Talking to machine (statistically p aking). In v n th Int rnational on-

f erence on Spoken Language Prace sing 2002. 10

T. Zhemin and C.L. Philipo . Speech r ognition ov r th rn

Proceedings of the Acoustics, Speech, and Signal Proc ing v lum

2370, 1999. ISBN 0780350413. 25 , 30

v. In

pag 23 7-

P. Zielinski. Opengazer: open- ource gaz t rack r for ordinary w b am . am ung and

The Gatsby Charitable Foundation, 2013. 20

Appendix A

SLM Training Data Comparisons

In Chapter 5, we have described how we have created a new spoken mathematics

training data corpus. It is sensible to view our perplexity results compared to some

already known data corpuses to see the full picture. The tables in this appendix

illustrate different comparisons of our web crawled SLM training data with other known

corpuses. The full description of these corpuses used in each tables are:

• COCA - Corpus of Contemporary American English (COCA) - non case s(,Ilsitive

[Davies, 20081 (419845044 words in total, containing 629895 different words)

• BNC Maths - selected subset of the BNC{The British National Corpus) dialogue

material (15 files - 123821 words in total, containing 4355 differmt words), com

posed of transcriptions of audio recordings from school, collC'ge and university

mathematics lessons, described in [Wigmore, 2011]

• Trig Maths Data - a hand-typed dataset created from symbols from the "trigonom

etry" chapters of some secondary school GCSE mathematics textbooks, described

in [Wigmore, 2011] (7857 words in total, containing 102 different words)

• Web Crawled Maths - spoken mathematics dataset extracted from mathematical

tutorial web sites in the public domain covering material at roughly GCSE & GCE

A-Level or "Senior-High School level" mathematics, described in this thesis, in

Chapter 5 (61479 words in total, containing 100 different words)

Total Words
Vocab

1
2
3
4

5

6
7
8
9
10

COCA (Cen) BNC (Maths) Trig Maths Data Web Crawled Maths
419845044 123821 7857 61479

629895 4355 102 100
the (0.05%) one (1.39%) = (10.03%) end (7.58%)
of (0.03%) two (0.87%) 2 (5.24%) begin (7.57%)
to (0.03%) three (0.67%) o (4.77%) x-ray (7.30%)

and (0.03%) X (0.47%) sin (4.37%) of (7.26%)

a (0.02%) four (0.41%) 1\ (superscript or (391o/c)
"to the power") . 0

two (4.82%)

in (0.02%) six (0.41%) / (3.37%) to (4.32%)
that (0.01%) five (0.40%) x (2.60%) the (3.93%)

I (0.01%) hundred (0.39%) cos (2.20%) power (3.93%)
is (0.01%) minus (0.36%) a (2.07%) equals (3.79%)

for (p.01 0/0) times (0.31%) x (2.07%) bracket (3.61%)

Table A.l: Comparison of Overall words & most common words

~

~
~

~
~

~
S2
Q

~
~

8
~
~
::tJ
~
o
~

-~
CN

COCA (Gen) BNC (Maths) Trig Maths Data
Total Bigrarns 286758206 123820 7856

1 of the (0.90%) a hundred (0.4%) 0=(5.24%)
2 in the (0.71%) hundred and (0.3%) A 2 (or 2) (3.55%)
3 to the (0.37%) take away (0.3%) 2= (1.18%)
4 on the (0.32%) of a (0.2%) 2+ (1.04%)
5 and the (0.26%) an hour (0.2%) /2 (0.88%)
6 to be (0.23%) one of (0.2%) /sin (0.85%)
7 at the (0.22%) equal to (0.1%) =sin (0.80%)
8 for the (0.21%) X squared (0.1%) C= (0.79%)
9 in a (0.19%) a quater (0.1%) 2- (0.74%)
10 __ L- do n't (0.19%) minus one (0.1%) x= (0.73%)

Table A.2: ~Iost Common Bigrams

Web Crawled Maths I

61478
the power (3.93%)

to the (3.93%)
power of (3.93%)

of two (2.1%)
over begin (1.85%)
of begin (1.76%)
end over (1.68%)
x-ray to (1.66%)

close bracket (1.55%)
open bracket (1.54%)

~

~
~

~
~

~
~
c;":)

~
~

8
~
~
;:,::,
C;)
o
~

-"'"

Corpus
COCA (Gen)

Total
Tri- 128125547

grams
1 i do n't (0.16%)
2 one of the (0.13%)
3 a lot of (0.11%)
4 the united states (0.1%)
5 do n't know (0.06%)
6 out of the (0.06%)
7 as well as (0.06%)
8 going to be (0.06%)
9 some of the (0.05%)
10 you do n'tJO.05%)

BNC (Maths) Trig Maths Data

123819 7855

miles an hour (0.06%) 2 = (or 2=) (1.13%)
hundred snd twenty (0.06%) 2+ (or 2+) (1.02%)

D Y by (0.04%) 2+ (or 2-) (0.74%)
Y by D (0.04%) a2 (or a2) (0.66%)

take away a (0.04%) b2 (or b2) (0.61%)
X plus two (0.04%) 1/2 (or) (0.61)
Y equals X (0.04%) c2 (or c2) (0.57%)

square root of (0.03%) =1/ (0.56%)
hundred and eighty (0.03%) 2 - 2 (0.45%)

two three four (0.03%) x)= (0.34%)

Table A.3: 110st Common Trigrams

Web Crawled Maths

61477

to the power (3.93%)
the power of (3.93%)
power of two (2.05%)
x-ray to the (1.66%)

end over begin (1.2%)
delta x-ray end (0.88%)
power of begin (0.73%)

close bracket end (7.2%)
of two end (0.67%)

begin open bracket (0.63~L

~

~
~

~
~

~
~
c:J

~
~

8
~
~
~

~ a
~

....
~
Coil

BNC (Maths)

'Training Test
\Yords \Yords
61913 61913

82551.33 41275.67
92870.25 30956.75
99001.6 24765.4

103188.33 20637.67
106136.57 17689.43
108347.75 15478.25
110068.44 13758.56
111444.3 12382.7

117635.65 6191.35

Trig Maths Data Web Crawled Maths
100

Training Test 'Training Test Perplexity
\Vords \Vords

Perplexity
\Vords \Vords

Perplexity

238.85 3928.5 3928.5 18.97 54907 6572 7.07
221.61 5238 2619 17.18 54968 6511 7.17
210.13 5892.75 1964.25 16.46 55294 6185 7.11

206 6285.6 1571.4 16 55688 5791 7.31
200.05 6547.5 1309.5 15.47 55172 6307 7.25
194.05 6729.29 1122.43 14.84 55597 5882 7.74
185.27 55340 6139 7.04
196.18 55805 5674 7.65
188.57 55177 6302 7.53
181.3 55363 6116 7.02

--- - '----------

Table A.4: Perplexity scores as function of training set size

l
!

~

~
~

;;5
~

~
~
~

§:
~

8
~
;?2
::0
C;:i
a
~

-~
0)

Appendix B

LaTeX to Spoken Mathematics

Yapps2 Parser

As described in Chapter 5, we have used the parser generator tool Yapps2 [Patel, 2009]

to translate web-crawled LaTeX mathematical expressions into spok£'n matlwmatics.

Below are the grammar rules written using the Yapps2 grammar specification. Some

parts were omitted for readability.

parser Latex:

tokens for templates

token FRACTION: "\\\\frac\{"

token OVER: "\\\\over"

tokens for operators used in arithmetic expressions

token PLUS: "\+"
token MINUS: "_"

token PLUS_MINUS: "\+-I\\\\pm"

token MINUS_PLUS: "-\+I\\\\mp"

token TIMES: 1I*I\\\\times"

token DIVIDE: 11/"
token POWER: II\~"

token SQUARED: II_squared"

B. LATEX TO SPOKEN MATHEMATICS YAPPS2 PARSER

token CUBED: lI_cubedll

token BEGIN: II_quantity II

token END: 11$11

token ENDS: lI_all li

token ASSIGN: 11:=11

token EQUALS: 11=11

token COMMA: 11.11

token LESS_THAN: 11<11

token GREATER_THAN: 11>11

token LESS_THAN_E: 1I<=I\\\\leqll

token GREATER_THAN_E: 1I>=I\\\\geqll

while using left and right as alternatives for open and close

token OPEN_BRACKET: 11\(11

token OPEN_CURLY_BRACKET: II\{II

token OPEN_SQUARE_BRACKET: 11\[11

token CLOSE_BRACKET: 11\)11

token CLOSE_CURLY_BRACKET: II\}II

token CLOSE_SQUARE_BRACKET: 11\]11

token OPEN_CURLY_ACTUAL_BRACKET: II\\\\{II

token CLOSE_CURLY_ACTUAL_BRACKET: II\\\\}II

tokens for functions

token BEGINFUNCTION: lI_functionll

token OF: II_of II

tokens for trigonometry

token SIN: 1I\\\\sinll

token COS: 1I\\\\cos ll

token TAN: II \\\\t an II

token LOG: 1I\\\\logll

148

B. LATEX TO SPOKEN MATHEMATICS YAPPS2 PARSER

token LN: "\\\\In"

token DEGREE: "_degree II

token THETA: "\\\\theta"

token DELTA: "\\\\delta"

token ALPHA: "\\\\alpha"

token PI: "\\\\pi"

token DOT: "\\\\cdot"

token PRIME: II \\\\prime II

#token IN: "\\\\in"

token SEMICOLON: "\\\\;1;"

token MATHBF: "\\\\mathbf{1I

tokens for numbers

token AHUNDRED: "_hundred"

token ATHOUSAND: "_thousand II

token AMILLION: "_million"

#tokens for roots

token SQUARE_ROOT: II \\\\sqrt II

token NTHROOT: "_root II

#tokens for integral

token INTEGRAL: "\\\ \int"

token FROM: "_from"

token TO: "_to"

token GREEKID: "\&#X [0-9] + [A-Z] [0-9];"
token EMPTY: 1111

token PERCENT: "_percent II

token TILDE: "_tildeII

token OVERBAR: "_overbar"

token AND: "_and II

149

B. LATEX TO SPOKEN MATHEMATICS YAPPS2 PARSER

token SUPERSCRIPT: "_superscript II

token SUBSCRIPT: "_"

token IDENTIFIER: l[a-zA-Z]I\?"

token DIGIT: "[0-9]+"

ignore: "\ \s+"

rule goal: expr END {{ return expr }}

150

An expression is one or several arithmetic expressions, separated by

relational operators «, >, <=, >=, =) or the assignment operator (:-)

these operators are of lowest priority

rule expr:

arithmetic_expr

{{ v = arithmetic_expr }}

(LESS_THAN arithmetic_expr

{{ v = ['<',v,arithmetic_expr] }}

I GREATER_THAN arithmetic_expr

{{ v = ['>',v,arithmetic_expr] }}

I LESS_THAN_E arithmetic_expr
{{ v = ['<=',v,arithmetic_expr] }}

I GREATER_THAN_E arithmetic_expr

{{ v = ['>=',v,arithmetic_expr] }}

I EQUALS arithmetic_expr
{{ v = ['=',v,arithmetic_expr] }}

I ASSIGN arithmetic_expr

{{ v = [':=',v,arithmetic_expr] }}

I COMMA arithmetic_expr

{{ v = [',',v,arithmetic_expr] }}

)*

{{ return v }}

An arithmetic expression is a sum or difference of a

B. LATEX TO SPOKEN MATHEMATICS YAPPS2 PARSER

signed term and one or several unsigned terms.

This means it is a signed term,

followed by '+', '-' or '+-' and an unsigned term
rule arithmetic_expr:

(signed_term

{{ v = signed_term }}

I unsigned_term

{{ v = unsigned_term }}
)

(PLUS unsigned_term

{{ v = ['+',v,unsigned_term] }}

I MINUS unsigned_term

{{ v = ['-',v,unsigned_term] }}

I PLUS_MINUS unsigned_term

{{ v = ['+-',v,unsigned_term] }}

I MINUS_PLUS unsigned_term

{{ v = ['-+',v,unsigned_term] }}

)*

{{ return v }}

A signed term consists of a

sign ('+', '-' or '+-') followed by an unsigned term

rule signed_term:

PLUS unsigned_term

{{ return ['plus_sign',unsigned_term] }}

I MINUS unsigned_term

{{ return ['minus_sign',unsigned_term] }}

I PLUS_MINUS unsigned_term

{{ return ['plus_minus_sign',unsigned_term] }}

I MINUS_PLUS unsigned_term

{{ return ['minus_plus_sign',unsigned_term] }}

151

B. LATEX TO SPOKEN MATHEMATICS YAPPS2 PARSER

An unsigned term is a product or division of factors
rule unsigned_term:

#FRACTION factor {{ v = factor }}

CLOSE_CURLY_BRACKET OPEN_CURLY_BRACKET factor

{{ v = ['fraction',v,factor] }} CLOSE_CURLY_BRACKET {{v-v}}
factor

{{ v = factor }}
(

TIMES factor

{{ v = ['*',v,factor] }}

I DIVIDE factor

{{ v = ['/',v,factor] }}

lOVER factor

{{ v = ['fraction',v,factor] }}

I DOT factor

{{ v = ['dot' ,v,factor] }}

I factor

{{ v = ['invisibletimes',v,factor] }}

)*

{{ return v }}

rule factor:
base

{{v=base}} (

POWER factor

{{v=['-',base,factor]}}

I SUPERSCRIPT factor

{{v=['superscript',base,factor]}}

I SUBSCRIPT factor

{{v=['subscript',base,factor]}}

I SQUARED
{{v=['-',base,2]}}

152

B. LATEX TO SPOKEN MATHEMATICS YAPPS2 PARSER

I CUBED
{{v=[,A',base,3]}}

I)

{{return v}}

rule base:

argument {{v=argument}}

[OPEN_BRACKET arithmetic_expr

CLOSE_BRACKET {{v=['function',v,arithmetic_expr]}}]

{{ return v n

rule argument:

root

{{ return root }}

I fraction

{{ return fraction }}

I integration

{{ return integration }}

I number

{{ return number }}

I trig

{{ return trig }}

I OPEN_BRACKET arithmetic_expr (

CLOSE_BRACKET

{{b=' o'n
I CLOSE_SQUARE_BRACKET

{{b=' (] 'n
I {{b=' 0 'n
)

{{ return [b,arithmetic_expr]}}

153

B. LATEX TO SPOKEN MATHEMATICS YAPPS2 PARSER

CLOSE_SQUARE_BRACKET
{{b=' [] 'n
I CLOSE_BRACKET
{{b=' [)'n
I
{{b=' [] 'n
)

{{ return [b,arithmetic_expr]}}

I BEGIN arithmetic_expr ENDS
{{return arithmetic_expr}}

154

I MATHBF arithmetic_expr CLOSE_CURLY_BRACKET {{return arithmetic_expr}}

EMPTY {{ return '1' }}

IDENTIFIER {{ v= IDENTIFIERn [II \ I" {{ v= [v, ' I '] n] {{ return v }}

"\ I" IDENTIFIER {{ return [' I " IDENTIFIER] }}
THETA {{return 'theta'}}

DELTA {{return 'delta'}}
ALPHA {{return 'greek alpha'}}

PI {{return 'pi'}}

SEMICOLON {{return 'semi-colon'}}

PRIME {{return 'prime'}}

rule integration:

INTEGRAL
(...

rule accents:

TILDE IDENTIFIER (END I)
{{ return ['-',IDENTIFIER] }}
I OVERBAR arithmetic_expr (END I)
{{ return ['overbar',arithmetic_expr] }}

rule root:

B. LATEX TO SPOKEN MATHEMATICS YAPPS2 PARSER

(...

rule fraction:

FRACTION arithmetic_expr {{n=arithmetic_expr}}
CLOSE_CURLY_BRACKET OPEN_CURLY_BRACKET arithmetic_expr
{{d=arithmetic_expr}} CLOSE_CURLY_BRACKET

{{ return ['fraction', n, d] }}

rule trig:

SIN arithmetic_expr

{{ return ['sin', arithmetic_expr] }}

I COS arithmetic_expr

{{ return ['cos', arithmetic_expr] }}

I TAN arithmetic_expr

{{ return ['tan', arithmetic_expr] }}

I LOG arithmetic_expr

{{ return ['log', arithmetic_expr] }}

I LN arithmetic_expr

{{ return ['In', arithmetic_expr] }}

rule number:

DIGIT {{v = eval(DIGIT)}} {{return v}}

155

Appendix C

Sample Parser Programming Code

GLR Parser

This section gives our GLR Parser code from the TalkMaths web service. For read

ability, some parts are abbreviated. The language used is Python 2.5.

Filename: GLRParser.py

Creation Date: 16 April 2012. 14:33:33

Last Modified $Date: 2013-12-13 15:57:46 +0000 (Wed. 13 Feb 2013) $

Explanation: Constructs a GLR parser.

from copy import copy

from OperatorPrecedenceParser import *
class GLRParser:

constructor

def __ init __ (self. SpokenLanguageData, logger):

self.id = 'GLRParser' + str(id(self))

self.SpokenLanguageData = SpokenLanguageData

self.results = []
self.logger = logger

self.logger.addLog(...)

def doParse(self. inputString, parseMode):

self.parseSet = []
self.parseSet.append(OperatorPrecedenceParser(...))

C. SAMPLE PARSER PROGRAMMING CODE

while self.parseSet <> []:
updatedParserSet = range(O, len(self.parseSet»

self.newParsers = []
for i in range(O, len(self.parseSet»:

p = self.parseSet[i]

if p.state == 'READY_TO_TERMINATE':
This parser completed it's work.

Add to completed list

updatedParserSet.remove(i)

if type(p.parseForest) is ListType:

for i in p.parseForest:

self.results.append(i)

else:

self.results.append(p.parseForest)

elif p.state == 'READY_TO_PARSE':

This parser is ready to act, doWork
p.doWork()

elif p.state == 'READY_TO_FORK':

This parser is ready to fork

p.doWorkO
self.newParsers = self.newParsers + p.children

for j in updatedParserSet:

self.newParsers.append(self.parseSet[j])

self.parseSet = self.newParsers

tmpParseSet = copy(self.parseSet)

for p in tmpParseSet:

Remove all parent parsers which forked

if p.state == 'READY_TO_BECOME_INACTIVE':

self.parseSet.remove(p)

We now run an analysis to count various things

for tree in self.results:

tree.collectSeparators()

tree. sort_Argument_Separators ()

157

C. SAMPLE PARSER PROGRAMMING CODE

tree.detangle_Argument_Separators()

tree.complete_Argument_Separator_Parts()

tree.eliminate_Redundant_Argument_Separator_Parts()

sort by number of mixfix operators

check once for top most node

and if it is separator(s), then upgrade to mixfix

if tree.node.getType() in ['separator', 'separators']:

tree.node.upgrade('mixfix_operator', [])

tree.countMixFix()

self.results.sort(key=lambda x: x.mixfixOperatorCount)

return self.results

OP Parser

158

The Operator Precedence Parser code from the TalkUaths web service is illustrated

below. Similar to the GLR Parser code, some parts have been abbreviated for read

ability.

Filename: OperatorPrecedenceParser.py

Creation Date: 16 April 2012, 14:33:33

Last Modified $Date: 2013-12-13 15:57:46 +0000 (Wed, 13 Feb 2013) $

Explanation: Constructs a Operator Precedence Parser.

Assume a token list is provided after Lexing

from OperatorPrecedence.Scanner import Scanner

from GoogleApp.ParseTree import *
from GoogleApp.Node import *
from copy import copy, deepcopy

from GoogleApp.Logger import *

import sys

import re

from Token import Token

class OperatorPrecedenceParser:
def __ init __ (... , *args):

C. SAMPLE PARSER PROGRAMMING CODE

This is the constructor for the operator precedence parser.

self.id = 'OPParser' + str(id(self»

self.parent = parent

self.spokenLanguageData = spokenLanguageData

self.inputString = inputString

self.parseMode = parseMode

self.logger = logger

self.children = []
self.pause = False

if len(args)== 0:

We create a new scanner object

self.myScanner = Scanner(...)

We initialise the stack with begins token

self.stack = [self.myScanner.token]

We let the scanner do some work

in order to skip begin token

self.myScanner.doWork()

We let the scanner do some work until we can either

retrieve a unique token (which is not the begin token.

we will skip this). or the scanner needs forking

while self.myScanner.state not in [...]:

self.myScanner.doWork()

We initialise the stack with begins token

self.state = "READY_TO_PARSE"

#self.token = (". ")
self.token = Token(...)

self.parseForest = []

self.shift_reduce = "

else:

self.myScanner = args[O]

self.stack = copy(args[l])

159

C. SAMPLE PARSER PROGRAMMING CODE

self.parseForest = deepcopy(args[2])

self.state = args[3]

self.shift_reduce = args[4]

def doWork(self):

if self.state == "READY_TO_PARSE":

We perform Operator precedence parsing,

involving shift and reduce actions depending on the

precedence relation between the token on

top of the stack and the current token

while self. state == "READY _TO_PARSE":

Depending on the scanner state,

we do some specific actions

160

if self.myScanner.state == 'READY_TO_RETURN_UNIQUE_TOKEN':

self.token = self.myScanner.token

In this state, the parser is ready to act,

depending on the information on the precedence table

self.topToken = self.stack[-l]

if self.shift_reduce == ":
A new parser created by forking in
shift-reduce error

thisPrec = self.computePrecedence(...)

else:

thisPrec = self.shift_reduce

Set the shift_reduce to nothing to make sure

next time thisPrec is calculated in the usual way
self.shift_reduce = ')

if (thisPrec == '<') or (thisPrec -- ,.,):

shift

self.logger.addLog(...)

self.stack.append(self.token)

Now we change state of the scanner

self.myScanner.doWork()

C. SAMPLE PARSER PROGRAMMING CODE

We scan until an external state is reached

while self.myScanner.state

not in [. ..]:

self.myScanner.doWork()

elif thisPrec == '>':

In this case, we need to reduce

self.logger.addLog(...)

i = len(self.stack)-1

while (self.computePrecedence(...):

i = i -1

1 = len(self.stack)

temp = []

for j in range(i, 1):

temp.append(self.stack.pop(»

We call updateParseForest() with

all reduced tokens as input

161

self.parseForest = self.updateParseForest(temp)

elif thisPrec == '<>':

We will fork in order to do

a shift and reduce in parallel

self.state = "READY_TO_FORK"

elif thisPrec -- 'STOP':

We have finished the parsing

self.state = "READY_TO_TERMINATE"

else:

The precedence table indicates an error state

self.errorRecovery(thisPrec)

elif self.myScanner.state == 'READY_TO_FORK':

self.state = 'READY_TO_FORK'

C. SAMPLE PARSER PROGRAMMING CODE 162

We continue to do some more work with the scanner

self.myScanner.doWork()

elif self.myScanner.state == 'READY_TO_TERMINATE':

self.state = "READY_TO_TERMINATE"

else:

self.myScanner.doWork()

elif self. state == "READY_TO_FORK":

#if self.parseMode == 'all':

if True:

now main script checks for shortest

bracket count for this

#if thisPrec == '<>':
if self.myScanner.children ==[]:

we fork because of different brackets case

Create a copy of self

self.logger.addLog(...)

Call constructor by setting shift_reduce flag to shift

myCopyl = OperatorPrecedenceParser(...)

self.children.append(myCopyl)

Call constructor by setting shift_reduce flag to reduce

myCopy2 = OperatorPrecedenceParser(...)

self. children. append (myCopy2)

else:

We fork because of the ambiguity of the lexing

for child in self.myScanner.children:

Create a copy of self

self.logger.addLog(...)

Call constructor with each child scanner

and copy of stack and parseForest

myCopy = OperatorPrecedenceParser(...)

C. SAMPLE PARSER PROGRAMMING CODE

self. children. append (myCopy)

Since we only need forked parsers,

this parser is not needed anymore.

We set it to be inactive.

self.state = "READY_TD_BECOME_INACTIVE"

self. spokenLanguageData= []

self.inputString="

self. parent= []

self.myScanner=[]

self.logger.addLog(...)

else:

self.state = "READY_TD_PARSE"

elif self.state -- "READY_TD_TERMINATE":

pass

def updateParseForest(self, tokenList):

self.logger.addLog(...)

for token in tokenList:

t = token.getType()

if token.getType() == '10':

Create a tree that has one node only,

and added to the parse forest.

mynode = Node('id', [token])

my tree = ParseTree(mynode, [])

self.parseForest.append(mytree)

elif token.getErrorRecoveryTokenType() -- 'binary':

Token is a binary operator.

Token is binary, both operands are

163

in the parseForest list. Use them as child one and two

first popped child is the second child as the

reverse polish notation is used

child2 = self.parseForest.pop()

childl = self.parseForest.pop()

c. SAMPLE PARSER PROGRAMMING CODE

mynode = Node('op', [token])

my tree = ParseTree(mynode, [child1, child2])

self.parseForest.append(mytree)

164

elif token.getErrorRecoveryTokenType() in ['prefix', 'postfix']:

Token is postfix or prefix,

an operand exist in the parseForest list.

Use it as the only child

child1 = self.parseForest.pop()

mynode = Node('op', [token])

my tree = ParseTree(mynode, [child1])

self.parseForest.append(mytree)

elif token.getType() == 'OPEN_BRACKET':

theNode = self.parseForest[-1].node

if theNode.getDetailedType() == 'close_bracket'

and (theNode.getKey() == token.getKey(»:

The token and the node of the top tree of the

parseForest are of the same speech template,

just update the top node of the top of parseTree

open bracket property to True

theNode.setOpenBracket(token)

else:

Either top tree of the parseForest node

is not bracket type, or if it is, then

its of a different speech template

than that of the token.

So create a new tree with brackets node

mynode = Node('brackets', [token, None])

my tree = ParseTree(mynode, [self.parseForest.pop()])

self.parseForest.append(mytree)

elif token.getType() == 'ARGUMENT_SEPARATOR':

C. SAMPLE PARSER PROGRAMMING CODE 165

add information on open bracket to self.functionNode

mynode = Node('separator', [token])

childl = self.parseForest.pop()

child2 = self.parseForest.pop()

mytree = ParseTree(mynode, [child2, childl])

self.parseForest.append(mytree)

elif token.getType() == 'CLOSE_BRACKET':

theNode = self.parseForest[-l] .node

if theNode.getDetailedType() == 'open_bracket'

and (theNode.getKey() == token.getKey(»:

#case 1 - if we have same bracket type node

at the top with missing close bracket,

we merge

theNode.setCloseBracket(token)

else:

Case 2 - otherwise we always

create a new bracket node

mynode = Node('brackets', [None, token])

my tree = ParseTree(mynode, [self.parseForest.pop()])

self.parseForest.append(mytree)

return self.parseForest

def computePrecedence(self, tokenl, token2, *args):

if both tokens are not open brackets, do as we used to

opClassl = tokenl.getOperatorClass()

opClass2 = token2.getOperatorClass()

if len(args) > 0 :

We are in reduce. No need to check bracket types

return self.spokenLanguageData.precedenceTable[...]

else:

We are checking for either reduce or shift.

c. SAMPLE PARSER PROGRAMMING CODE

Need to check bracket types are same or not

if (opClass1 in [...]) and (opClass2 in [...]):

Check for function brackets by checking lexeme

according to which speech template this

bracket belongs to, action as required :)

if token1.getKey() == token2.getKey():

166

return self.spokenLanguageData.precedenceTable[...]

else:

#Now we know that we have two different bracket types

if opClass1=='OPEN_BRACKET' and

opClass2=='OPEN_BRACKET':
return ,<,

if opClass1=='OPEN_BRACKET' and

opClass2=='ARGUMENT_SEPARATOR':

#return 'Sl' NOW G1
return ,<>,

if opClass1=='OPEN_BRACKET'

and opClass2=='CLOSE_BRACKET':

#return 'S2' NOW G2
return ,<>,

if opClassl=='ARGUMENT_SEPARATOR'

and opClass2=='OPEN_BRACKET':
return ,<,

if opClass1=='ARGUMENT_SEPARATOR'

and opClass2=='ARGUMENT_SEPARATOR':

#return 'S3'
return ,>,

if opClassl=='ARGUMENT_SEPARATOR'

and opClass2=='CLOSE_BRACKET':

#return 'S4'
return ,<>,

if opClass1=='CLOSE_BRACKET'

and opClass2=='OPEN_BRACKET':

C. SAMPLE PARSER PROGRAMMING CODE

else:

print 'stopping code'

sys.exitO

if opClassl=='CLOSE_BRACKET'

and opClass2=='ARGUMENT_SEPARATOR':
return ,>,

if opClassl=='CLOSE_BRACKET'

and opClass2=='CLOSE_BRACKET':

return '>'

both are not speech templates

if tokenl.getType() == 'OPERATOR'

and token2.getType() == 'OPERATOR':

167

return self.spokenLanguageData.precedenceTable[...]

else:

classOrTypel = opClassl

classOrType2 = opClass2

if tokenl.getType() == 'OPERATOR':

classOrTypel = 'OPERATOR'

if token2.getType() == 'OPERATOR':

classOrType2 = 'OPERATOR'
return self.spokenLanguageData.precedenceTable[...]

Appendix D

TalkMaths Interface Screenshots

TalkMaths is a web-based software which is free to use. However, it requires the user

to register before being able to access the editor. The following figure shows the login

page and Figure D.2 is the new user registration page. The screens hots are taken from

the latest interface, that we have integrated into the web application which was created

by us from scratch.

crratmg maths bv Uling
plain English

Welcome 10 TalkMnlhs

Do you "-ant [0 create mathemat:ical
expressions by talling or typing plain
£nalish into your computer? Tired of
pointing and clicJ.:ing? 111<0 checl: out
our web site.

Hou: dot.J it u:ori:? 1/!i()IJ hat.!t speech
rtCOgnirio!1 installtd Oil yourc:ompUIrT:
you can dou:ni()(U/ an applic:anol7.from. our
u.~b$ite au, lubsite proddu a
mathm:atia tclitor thtzf VOll can use by
qwaJdng commandsfor inpurring and
modiJiring your ma!.~emal1·ca1 conttnl.
onC'l' }Iou ha;;. i..'1StaIl~d thil applictttion.

[s it free? Yes. it is.

Login

Email Qddr~ss:

Password:

[] Remember me?

First nm* user?

I'oreot pauword?

Figure D.l: TalkMaths Login Page

D. TALKMATHS INTERFACE SCREENSHOTS

t21k {maths} creating maths by using
plain English

Create a TaIkMaths account

Email address:

First Name: Last Name:

Password: Confirm Password:

Create account

Figure D.2: TalkMaths Registration Page

169

Once registered, should the user wish to use the system with an ASR system,

he/she can install the speech front-end which works with Microsoft Windows Speech

ASR. Figure D.3 illustrates the download page of the TalkMaths system which gives

the instructions for this and a download link to the front-end.

D. TALKMATHS INTERFACE SCREENSHO TS

talk {maths} Cl'f!ating maIm by u.ing
plain £71glilh

Welcome to Talk Maths

l V~'come, useT Log Out

T o be abk!: to use this web application with ~ using Dragon NaturaUySpealdng. you an required to hue The Speech Pln&ln*. H you have DOt

dont this yet, please download and instlln it on your PC .

./ I have dODe this.
Take me to TalJcMaLhs Speeclt Edito,.

• Dbdabna: l1ns ~ tr prfJI:':.:ftdfrtc oj'charpt. Wt ctm't0l pl'Olidt anv U'(l11'Qnry lor data ms orothu damDgt pountia'\! QlU$t4 b~ Ir.j~ rhl applicat'.QIL l7tlr appbtlollll
I'tOt o~ AJ'porud by M!thn .YtdUk't [1tC. nor 1l'ttdom o!spttch ud. r Ot! eM elmtact tJ:, u,tblitt CtU1ttrot wblnaJtnttt.albnat.b.o" (you MU' qumu. l1lU CIpi'lfcallalt fr
(D~ ",iI'iI Dragoll XOf'.lral!vSpcgk&rg 1'" 1mnium 01 Proft:UiDnaJolt Ubldow., (.T£nglWl onlAt. rOll nquwa bonsrdaJpy afJl.\'SIn:tt4C.tdOIl ~ madtiIt bI otrhrlO """ t1tis
~.lfytRI do atJIlurt.T rha.};011 ron purcJwt Ont onl!:lt fro". Ftudo," ofSpftdt Ud

Figure D.3: TalkMaths Download Page

170

TalkMaths allows its users to change default settings in order to customise the us

age of the system. This can be done within the Settings page shown in Figure D.4.

These settings include user account details and the default edit ing grid type. The

talk {maths}

Settings

Fint n.alne:

Email addr~ss:

Language:

r-reating matru bll using
plain English

Endish G

Confi"" n ew
pa5SWOrfi:

Editor grid I}Jpc;

80".80' .• ,.

G

.wWlla

Figure D.4: TalkMaths Settings Page

TalkMaths system editor page (shown in Figure D.5), has an area to render mathe

matics expressions, two text boxes to dictate or type spoken mathematics and help

D. TA LKMA THS IN TERFACE SCREENSHOTS 171

queries (As described in Section 7.2.4). The section titled "Edit ing Commands" gives

(or activated by speech) links to frequently used commands, which when invoked, au

tomatically trigger corresponding commands on the system. The Figure D.6 illustrates

talk {maths} cr<?ting ~.ths by ...mg
plom English

Import Export

n;~lC'Omr, user Log Out

8Q". 80".,.
\\nat can I do? Ie Hld~ thlS

1Jri1 wQJ matt ajradbn
... of ...
11rb willcnGte ajlmr:rioA.Aft,mafMt has G MI'M ad
~ (I) (jimcdDa) off argumDII)
plus

nils u..il6ut71 wbUllJ1}lOpmJto7'"
bqIn
71Us u:1ll mark the ~gtntng 0/0 $lib a'presmll
end
171& wiD mark Mot nd of a Rb apruriln
bq!n. d
l1ds u..iI t7ttWt a sub r.rpusfon
open bracket. .. clOH bracket
11Iis1L.'fItJtdottolJlbtJpl'U:Jbn(aJ"fU11lDtl}u.irh
""ckm.
open square bneket. .. close squ.are
!nuket
171& will endow: a IUb tlprurian (QrgtlmDll) u!lth
lnackm.
open eurly bn.ebt...d~ eurly bntdcAl

~archB .. lp:

I W)

T;alk Mathsisd~'elopedat Elnpton Universlty. ConQctU. (t) 2013TalkMaths

Figure D.5: TalkMaths Editor Page

one of the edit ing paradigms being in use on editing a mathematical formula. The

numbered colour boxes around mathematical constructs allow t he user to select parts

(or t he whole) of t he expression that needs changing. This is an example of the "ex

haustive" edit ing grid. Semantic editing is similar to the exhaustive editing. It still

provides numbered colour boxes around mathematical constructs, however the user can

decide which sub construct(s) within the expression on display should have them. For

example, as seen in Figure D.7, the numbered boxes only invoked on symbols. This

is less complicate in the eye of t he user t han t he exhaustive edit ing. Similar to the

D. TALKMATHS INTERFACE SCREENSHOTS

+

~' .~--
talk {maths} -... ~ --

--

• • a.-/kU

Tn", c-.-dlIc-r

~.,

t411UJ.C<>~ _d_,,_ .. iocI {nJ .J I.Y1 ('<J __ all

_'-tv """.11 oa-01'O'""- J-HIo__ .,.,.r •• d

p .. c·

n. ... _.;- Q
_ el_ C:J n. .. _v-_. __ _
N(~_J~(_J -n. ... _ ... -._ • n. __ " _ .. n. _ _ __

........... n. .. _ _ - ~ RIo __ ... __ I __ J_ -.. -~ n. _r_J_
.... cwtr cwIr n. __ • __ r_ , __ -"""----_ .

Figure D.6: TalkMaths Exhaustive Editing of the Arithmetic Series Formulae

• • ". ~ .i:. I" ~. • ~, ~ ,'. "c.-"':' 1

TW<C-....tUeO-e. •

~.,,~

I nqno--.ls
.____ (ttl .-wflnN _~ _'-
I-} ""'""' __ __

. c £I... p • D- ., -==-------_0
Wlutan 1 do" ,, _

.... -_.;
_ of_ n. __ .~ __ _

(iJ(~_I~f_J -,.. .. _ _
n.. .. .-......... ." _ ..
1'l1li .. .-.. .. ." _ 1'Il00 __ -.........-........... __ r_ '
1'l1li ___ 1_ '
_c-tr c-tr n. ___ r __ ' - -

Figure D.7: TalkMaths Semantic Editing - Symbols

172

D. TALKMATHS INTERFACE SCREENSHOTS 173

semantic editing of symbols, Figures D.8, D.9 , D.lO, D.ll , D.12, D.13, D.14 show ex

amples of other types of semantic editing method such as editing operators, numbers,

roots, fractions , functions , numerators and denominators respectively.

--

.-ftd'
Tn" r_udIlr ...

~ ...
Lc!lmllIC<ltn.......,dlI

,""".,...._ _ __ (10,/ .J.~tnJ,a .,.'"
...... .-.r..J _.011 . __ ...- ~""'_ -

rt. __ -"

-"'-,.....a_~.v.--_._ _
~U--_J"'I_J
n. .. _ .. -.y_. -::. ... -...... "' -
1l1li _., ... __ ---,.. --_
"""-1....-' -~ "* __ ... __ (_ J ~~~ ,.. .. -.... - ,)-~ -

a

Figure D.8: TalkMaths Semantic Editing - Operators

p • C .. 41 _

D. TALKMATHS INTERFACE SCREENSHOTS

+

talk {maths}

- --

• MC'-,,"W

,",,"c-... Illno-

~.,
(4Ittn~eu........w. __..-/>oj __ I-v _n ..., ...
_N _ .. _.. ._ _,...-... _'J'_

~.,~-.-'-,... .. _.~~11100. __ _
(1/(1---/ <1(_1
n. .. _ ... -.._. -,.. -..
1IIoo aIl<t/._...----,.. -_ ... ~Ir.w "' __ • __ (_ 1 __

........................,..
- _r.___J _..,..1IndId. ~ ,.,. ... --... _1_)---~--.. ---

Figure D.9: TalkMaths Semantic Editing - Numbers

f(x)
1

rn
. . ,

. , '. ..a.-~

T»rc--4U...-e:.

~ .. -
I J[hn.,, "" _

•• _ .. _r-J _~f'o<JJJ .u.
""-N -....... ____ ~..c_ , _

""'"--.~ _ ol_

DIIII"_.~""._"'_
(IIlU--_l~(~J n.. •• _ _. -,... -..-.... -.. _, ... ----,.. _---------,... __ r_J ... ""'-.... ~~......,.
n. __ r_'
_-tr~ __ -..n.t
n. __ r __ ' - ..

Figure D.10: TalkMaths Semantic Editing - Roots

174

p * c-

p • c-

D. TALKMATHS INTERFACE SCREENSHOTS

+

talk{maths} :::.-::;: --
~m(a + 1)

'-JW'
-r,ort c..-_dllttrc .-----. ..
LdI_,e-fJaJn&a<!,o

"" ' '''-_ {-v _t~JJ "-'-

_ N _u.-." ~_'--'",._

. ..
\\o1t...trml du" • "WO ,

n. ... _.~ -,,-"'"'-_.---...--.... _--
~l,...-J.(_J -"-"'-""-'-' n. ... _ __ ... nooo ... _ _ _

........... n. __ _ -----n.-.· __ l_ '

...... _~ r.r..dIoM
- ___ t _ J

.... Nrtr~--tr n. __ l _ J ... __ -

Figure D.ll: TalkMaths Semantic Editing - Fractions

P • D' " .

u £I _. ____ ~~=B"'_.~D_.~"__:_.

--
~=

1

. -
• . c ... fkW

T)l"'C-U. U rt'e.

~-...
FJII 'lUo.!!at--..1s
__ - N-N -..u ..,.,..

......... t-j --""<.. ---,--.., .-.p-

Wh.rt GIDldo" . ru,I.,lruo

n. __ ...-

-,,--.. -.. -~ ... -... -6)1;......_1-/(_ 1 ... n. .. _ _. -,.. .. -... -...-., --... n.._ *_o/. __ ---n. _
.... ~""'*'-t
______ (_ 1 __

.... ..-.............. -.wn "*_ _r_J -er __ ,." ... _ . __ r_ J __ -".. ... - _--

Figure D.12: TalkMaths Semantic Editing - Functions

175

D. TALKMATHS INTERFACE SCREENSHOTS

+

talk {maths}

X=

. .
.. C~jIdJ

I'WtcollOD dll~

~'"
l.d!1Dlr:"" _

_ _""" t-J __ _'_tv,...
_ <.l.-N _d ___,......__ '*1'_

\\lwt~ Idu" • ,."""W,

n. .. __ .11-

-~-,.., .. -~ --rollJ----'otl_J nor __ .. -. __ • _ " ... -... no. __ _ • • _.----noo .. _ _ _
""' __ ... __ C..,....I __ -..................... .,.... __ I ___ J _
_ cwlr~ __ -...... 1'Il00 _____ 1_) __ -"""-_ .. __ .

Figure D.13: TalkMaths Semantic Editing - Numerators

+

talk { maths}

.... __ eJ>-

---lIIIo"_.,-..v-_. __ _
(0)(1---_1.(_1 -1Il10 .. -. _. -.". .. -'..w.-..... _

X= -""' __ ._4 _ ---.............. ----- ,...000II ___ 1_)

-~,..
,.., __ f_J _-........---.....
,.., _(_1 __ -...... -.. -

I • ":' • ':~ • • • .. u.-/WJ . "
T)l>"C_.u;..... • "

~."~
... ,Ilqco. __

.... _ --t-I __ too.' .. Mot "'" . ,.,.

...... I.onN -",""d ____ ~__ _

Figure D.14: TalkMaths Semantic Editing - Denominators

176

p • c-

Appendix E

TalkMaths Field Study Material

Pre-Session Questionnaire

This is the pre-session questionnaire for both groups of participants (the correct answers

for Questions 2 to 6 are given in Section E below).

1. How competent would you regard yourself in terms of your basic maths skills?

(Doing simple algebraic manipulations, involving fractions, functions and square

roots)

Excellent D Good D Fair D Poor D Don't Know D
2. Given the following fraction,

x2 -1
x+1

do you know what the expressions on the top and the bottom of the expression

are normally called? If so, write them in the blanks below: The top is called the
______ and the bottom is called the ______ of the fraction.

3. Consider the expression,

In general, the number n in this example is called the ______ of (a + b).

4. The mathematical symbols +, -, x, -;- represent the processes of addition, sub-

traction, multiplication and division respectively. We call them binary ______ '

E. TALKMATHS FIELD STUDY MATERIAL 178

(Add a single word to complete the blank space above)

5. Given the following expression,

do you know how the expression inside the bracket associated with the function

f is normally referred to? If so, write it in the space: The expression inside the

bracket is called the of the function of f.

6. Given the following square root,

y+vx(l+x)b

do you know how the expression inside the square root symbol is normally referred

to? If so, write it in the blank space below: The expression inside the square

root is called the of the root.

Mathematical Tasks for Microsoft Equation Editor

Group

Mathematical tasks given for participants who were allocated with Microsoft Equation

Editor:

Task 1: Question on fractions

i For this exercise, you are supposed to create the following mathematical expression,

using Microsoft Equation Editor:

b
2 + c

a+ -
x-y

ii Now, replace the expression x - yin (1) by w - z.

E. TALKMATHS FIELD STUDY MATERIAL

Task 2: Question on functions

i Still using the Microsoft Equation Editor, create the following expression:

a + f(2x - 5)

ii Now, replace the expression 2x in (2) by y.

Task 3: Question on square roots

i Still using the Microsoft Equation Editor, create the following expression:

a+ vx+2y

ii Now, replace the expression 2y in (3) by 3z.

Mathematical Tasks for TalkMaths Group

Mathematical tasks given for participants who were allocated with TalkMaths:

Task 1: Question on fractions

i Using the TalkMaths editor, create the following expression:

b
2 + c

a+ -
x-y

179

In order to do this, in the input field, type "a + b begin 2 + c end over begin x -

y" and press enter.

ii Now, replace the expression x - yin (1) by w - z. Hint: consult the help facility on

fractions and selections. This will help you to edit the expression, select appropriate

parts of it and replace the desired symbols.

E. TALKMATHS FIELD STUDY MATERIAL 180

Task 2: Question on functions

i Still using the TalkMaths editor, clear the previous expression and create the fol

lowing expression:

a + f(2x - 5)

In order to do this, in the input field, type "a + f of begin 2 x -5 end" and press

enter.

ii Now, replace the expression 2x in (2) by y. Hint: consult the help facility on

functions and selections. As in the previous example, this will help you to edit the

expression, select appropriate parts of it and replace the desired symbols.

Task 3: Question on square roots

Still using the TalkMaths editor, create the following expression:

a+ vx+2y

In order to do this, in the input field, type "a + square root of begin x + 2 y end"

and press enter.

ii Now, replace the expression 2y in (3) by 3z. Hint: consult the help facility on roots

and selections. As in the previous example, this will help you to edit the expression,

select appropriate parts of it and replace the desired symbols.

Post-Session Questionnaire

This is the post-session questionnaire for both groups of participants (the correct an

swers for questions 3 to 7 are given in Section E below).

1. How competent would you regard yourself in terms of your basic maths skills?

(Doing simple algebraic manipulations, involving fractions, functions and square

roots)

Excellent D Good D Fair D Poor D Don't Know D

E. TALKMATHS FIELD STUDY MATERIAL 181

2. \Vhich of the computer-based tasks(s) from this session did you manage to com

plete? Please circle.

Task l(i) Task l(ii) Task 2(i) Task 2(ii) Task 3(i) Task 3(ii)

3. Given the following fraction,

do you know what the expressions on the top and the bottom of the expression

are normally called? If so, write them in the blanks below:

The top is called the ______ and the bottom is called the _____ _

of the fraction.

4. Consider the expression,

In general, the number n in this example is called the ______ of (a +
b).

5. The mathematical symbols +, -, x, +- represent the processes of addition, sub-

traction, multiplication and division respectively. We call them binary _____ _

(Add a single word to complete the blank space above)

6. Given the following expression,

do you know how the expression inside the bracket associated with the function

f is normally referred to? If so, write it in the space below: The expression inside

the bracket is called the of the function of f.

7. Given the following square root,

y+vx(l+x)b

do you know how the expression inside the square root symbol is normally referred

to? If so, write it in the blank space below:

E. TALKMATHS FIELD STUDY MATERIAL 182

The expression inside the square root is called the ______ of the root.

8. How easy did you find the Equation Editor system to use? Please tick the ap

propriate answer.

Very Easy D Fairly Easy D O.K. D A Bit Difficult D Very Difficult

D
9. Did you feel that using the TalkMaths/ Microsoft Equation Editor for doing this

exercise improved your understanding of the relevant mathematical concepts?

Please tick the appropriate answer.

No, I feel more confused now D Not Really D A Little D Quite a Bit

DALotD

10. Have you any other comments? If so, please write them below.

Correct Answers

The prescribed correct answers for Questions 2 to 6 and 3 to 7 in pre- and post

questionnaires respectively (the numbers not in parentheses refer to the pre-questionnaire

and those in parentheses to the post-questionnaire) are as follows.

• 2(3). The top is called the numerator and the bottom is called the denominator

of the fraction.

• 3(4). In general, the number n in this example is called the power of (a + b).

• 4(5). We call them binary operators.

• 5(6). The expression inside the bracket is called the argument of the function of

f·

• 6(7). The expression inside the square root is called the radicand of the root.

