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Abstract 

The work described in this thesis aims at facilitating the design and im

plementation of web-based editors, driven by speech or natural language 

input, with a focus on editing mathematics. 

First, a taxonomy for system architectures of speech-based applications is 

given. This classification is based on the location of the speech recognition, 

the speech, and application logic and the resulting flow of data between 

client and server components. This contribution extends existing system 

architecture approaches to take into account the characteristics of speech

based systems. 

We then show, using statistical language modelling techniques, that math

ematics, either spoken or typed, is more predictable than everyday natu

ral languages. We illustrate how these models, in combination with error 

correction algorithms, can be used to successfully assist the process of cre

ating mathematical expressions within electronic documents using speech. 

We have successfully implemented systems to demonstrate our findings, 

which have also been evaluated using standard language modelling evalua

tion techniques. This work is novel as applying statistical language models 

to the recognition of spoken mathematics has not been evaluated to this 

extent prior to our work. 

We create a parsing framework for spoken mathematics, based on mixfix 

operators, operator precedences and non-deterministic parsing techniques. 

This framework can significantly improve the design and parsing of spoken 

command languages such as spoken mathematics. A novel robust error 

recovery method for an adaptation of the XGLR parsing approach to our 

operator precedence setting is presented. This greatly enhances the range 

of spoken or typed mathematics that can be parsed. The novel parsing 



framework, algorithms and error recovery that we have designed are suitable 

for more general structured spoken command languages, as well. 

The algorithms devised in this thesis have been implemented and integrated 

in a research prototype system called TalkMaths. We evaluate our contri

butions to the new version of this system by comparing the power of our 

parser with that contained in previous versions, and by conducting a field 

study where students engage with our system in a real classroom-based 

environment. We show that using TalkMaths, rather than a conventional 

mathematics editor, had a positive impact on the learning and understand-. 

ing of mathematical concepts of the participants. 
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Chapter 1 

Introd uction 

1.1 Motivation 

Until relatively recently, automatic speech recognition was only available to a small 

group of highly specialised scientists. Even around twenty five years ago, in order 

to use what was then considered state-of-the-art speech recognition software, highly 

expensive equipment was required. Today, even hand-held devices such as smart phones 

or tablet pes and game consoles such as the Xbox and Nintendo Wii are often equipped 

with some form of speech recognition software. The reasons behind this rapid evolution 

are the tremendous progress that has been made in speech recognition technology, the 

advances in available memory and processing power of personal computers and the fact 

that complex and computationally intensive tasks can now be carried out with the help 

of powerful cloud-based applications. 

At present, speech recognition is used in a large number of application domains. 

As a consequence, speech input plays an increasingly important role in making com

puter tasks accessible to users who wish or need to rely on input modalities other 

than conventional keyboard and mouse. This includes, for example, online (distance) 

learners, people working or studying "on the move", relying on mobile devices, and 

disadvantaged users such as people with physical disabilities or other special needs. 

Most speech recognition systems tend to focus on everyday natural language input 

in one of the "mainstream" languages such as English, Spanish or Japanese, including 

typical dialects of them. Often, these systems are not well-suited for recognising "arti-
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ficial" languages such as formal languages for speaking mathematics or programming 

code. These languages are highly specialised and only used by a small community, and 

that might be why formal languages have been given less attention by research and 

industry. 

1.2 Problems Addressed by this Thesis 

The work described in this thesis, motivated by an enthusiasm for widening the acces

sibility of mathematics through speech input, addresses the following problems: 

Editing mathematical text, which can already be a difficult and potentially error

prone process when using keyboard and mouse together with specialised mathematics 

editors, is particularly challenging for users who wish or need to engage in hands-free 

computing, relying exclusively on speech recognition. 

Powerful speech recognition tools and products exist on the market, and these can 

be installed and used together with standard desktop applications, including reasonably 

user-friendly mathematics editors such as Microsoft Equation Editor. However, as we 

have found, this does not result in a satisfactory solution to the above problem. 

Despite several documented and published attempts to remedy this situation [El

liott and Bilmes, 2007; Gould, 2001; Guy et al., 2004; Metroplex Voice Computing, 

Inc], we have found that the resulting outcomes are not very satisfactory. We have 

examined most of the systems that have been suggested in the literature, and came to 

the conclusion that they were not usable for the purposes we had in mind. 

After some further investigation, and having reviewed the state-of-the-art of several 

research strands that we deemed relevant in the context of our overarching research 

problems, we identified the following problems: 

Statistical Language Models (SLMs) are a widely adopted technique for implement

ing automatic speech recognition, and it appeared that no-one had evaluated sophis

ticated language models for spoken mathematics, covering a reasonably broad range 

of mathematics. In particular, we could not find evidence of any SLMs being used 

for improving the accuracy of recognition for this type of speech input languages. We 

are not aware of any system or mathematical editor that benefits from SLMs for this 

purpose. 

Even if the spoken mathematics were recognised accurately, parsing the resulting 
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expressions at symbol level may pose significant problems. We have found specialist 

parsing techniques dealing with ambiguity for a related input language (spoken com

puter programming code) [Begel, 2005], but not for mathematics. Overall, the problem 

of error recovery as it arises in our situation did not seem to be addressed sufficiently 

in the literature, as standard techniques from compiler construction are not suitable. 

The version of TalkMaths that was available prior to our work was limited in the 

amount of mathematics that could be created, and expressions were not always cor

rectly parsed. Only the most basic of the mechanisms for editing mathematical expres

sions using speech within a GUI (Graphical User Interface) environment, as presented 

in [Wigmore, 2011], was implemented. Furthermore, this editing facility was poorly 

integrated in the system which made its use very difficult. 

As a consequence, the TalkMaths system had only been used by a small number of 

individuals where it was difficult to gauge its usefulness and in a number of usability 

studies where the participants were helped by an expert. No use of TalkMaths in the 

classroom, for students without previous experience in using the system, had been 

undertaken. 

1.3 Research Aims and Objectives 

The work described in this thesis aims at facilitating the design and implementation 

of web-based editors, driven by speech or natural language input, with a focus on 

mathematical editing interfaces. It hence directly addresses the problems documented 

in the previous section by tackling the following research objectives: 

1. To investigate and evaluate the potential benefit which statistical language mod

els could provide, in the context of creating and editing mathematical text, for 

the prediction of future input and for the correction of errors. 

2. To implement a predictive and corrective facility for speech-based mathematical 

editors using our statistical language models and an "edit distance" similarity 

metric. 

3. To create a framework for defining and parsing spoken mathematics, based on 

mixfix operators, operator precedences and non-deterministic parsing techniques. 
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4. To recover from incomplete and incorrect spoken mathematics input, by devising 

novel error recovery strategies for the operator precedence parser. 

5. To implement the novel parsing framework in the TalkMaths system and to eval

uate the resulting enhancements. 

6. To study the benefits that using the new version of TalkMaths offers to the 

understanding of mathematical concepts. 

1.4 Contributions 

This thesis contains several contributions to knowledge in a range of research domains. 

In this subsection, we motivate, describe and justify our contributions. 

First, we start by giving a taxonomy for system architectures of speech-based appli

cations. We classify a range of architectures by considering the location of the speech 

recognition, the speech and application logic, and the resulting flow of data between 

client and server components. We believe that our classification will be helpful for 

anyone needing to make a design choice for a planned speech-based systems, for ex

ample, based on frameworks such as [Gruenstein et al., 2008; Lau et al., 1997]. Also, 

our findings led us to fundamentally change the architecture of the TalkMaths system 

to a web-based one: prior to this work, TalkMaths was a stand-alone desktop-based 

application. 

We then show, using statistical language modelling techniques, that mathematics, 

either spoken or typed, is more predictable than everyday natural language. We illus

trate how these models, in combination with error correction algorithms, can be used 

to successfully assist the process of creating mathematical expressions within electronic 

documents using speech. Whilst some previous authors have used statistical language 

models of mathematical expressions, with the exception of the earlier work of [Wig

more, 2011] and [Wigmore et al., 2009b], we are only aware of these models being 

applied to the conversion of hand-written mathematical equations into electronic for

mat using optical character recognition [Smirnova and Watt, 2008; Suzuki et al., 2009]. 

Hence, this present work applying statistical language models to the recognition of 

spoken mathematics is a novel contribution. 
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Our next contributions are concerned with the design and parsing of spoken math

ematics, although our approach would also be valid for more general structured spoken 

command languages. Our starting point is a design framework using mixfix operators, 

leading to the construction of commands that we refer to as speech templates. This 

can significantly enhance the ease of design and maintenance of any spoken command 

language, and in particular, our proposed language for spoken mathematics improves 

upon previous attempts [Chang, 1983; Fateman, 2006, 2009], including that in earlier 

versions of the TalkMaths system. 

The approach of speech templates greatly improves upon the parsing of the spoken 

input in the previous version of the TalkMaths system by designing the input language 

using an operator precedence grammar, which in turn is much simpler to parse while 

recovering from potential errors. To our knowledge, at the time of writing this thesis, 

considering operator grammars in the context of spoken command languages (and in 

particular, for spoken mathematics) is a novel approach. 

We then devise a parsing method for our proposed language, based on operator 

precedences and non-deterministic parsing techniques. Our approach is inspired by 

work on spoken programming languages [Begel, 2005] and our main novel contribution 

here is an error recovery method for an adaptation of the XGLR [Begel and Graham, 

2006] parsing approach to our operator precedence setting. As a consequence, the range 

of mathematics that can be parsed by TalkMaths has been significantly enhanced and, 

for the first time, our system can tolerate errors that might typically arise from the 

input of spoken or typed mathematics. 
Finally, we evaluate our new version of TalkMaths by conducting some practi

cal experiments with students using our system. Our implementation of the editing 

paradigms for spoken mathematics presented in [Wigmore, 2011] provided for the first 

time a persistent editing facility which subjects were able to use within a mathemat

ics teaching and learning session. We show that the use of TalkMaths, compared to 

that of a conventional mathematical editor, had a positive impact on the learning and 

understanding of mathematical concepts of the participants. 
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1.5 Thesis Organisation 

The remainder of this thesis is organised as follows: Chapter 2 reviews the related work 

that has been published in the literature. In Chapter 3, we present our classification of 

architectures for speech-based applications. The next chapter (Chapter 4) introduces 

the theory of statistical language models and additionally discusses similarity metrics. 

Moving to Chapter 5, we use statistical language models and "edit distance" metrics in 

order to improve recognition of spoken mathematics. Chapter 6 contains an important 

contribution of this thesis, a parsing framework for ambiguous spoken mathematics 

together with robust error-correction strategies. In Chapter 7, we give an overview of 

the TalkMaths system and explain the improvements in architecture and functionality 

that our research contributions have made. We then provide an evaluation of our parser 

implementation and finally present a field study demonstrating the benefits that using 

TalkMaths can have on the learning and understanding of mathematical concepts. In 

the conclusion of this thesis we critically reflect on our work and give some future 

directions. Finally, we include an appendix comprising a comparison of statistical 

language modelling training data, sample programming code from our implementation 

of the parser and other related tools, a selection of TalkMaths screenshots and some 

material from the TalkMaths field study. 



Chapter 2 

Background 

The aim of this chapter is to provide background information for the reader in order 

to become more familiar with the main topical areas relevant to this thesis. 

As noted in the introduction, our proposed system for creating and editing mathe

matical text has the following modules: an engine to implement the speech recognition 

(the ASR - we will be using the term "ASR" to denote "Automatic Speech Recogniser" 

and "Automatic Speech Recognising" as appropriate), spoken mathematical input, a 

statistical language model, an error correcting algorithm and a parser with error re

covery. This chapter outlines work that has been published in the literature in each of 

these areas. 

We will start with reviewing attempts to define how to unambiguously speak math

ematical formulae, followed by a discussion of statistical language models and related 

algorithms for prediction and correction of text which can include transcribed versions 

of spoken mathematics. 

We will then present an overview of different parsing techniques, leading to more 

specialised parsing of spoken mathematics. Subsequently, we discuss speech-driven 

editing systems by reviewing commercial and freely available tools, approaches for 

editing paradigms that use speech and finally speech-driven interfaces for mathematics. 

To conclude, we mention work that relates to some of the areas in which we have been 

carrying out research in. 
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2.1 Defining Spoken Mathematics 

Defining a standard for spoken mathematics is an essential starting point when creating 

speech-based mathematical editing systems. In this section, we will review several 

approaches for this that have been taken in the past. 

The question of how to define rules for speaking mathematics has been asked by 

several authors in the past. The motivation behind these attempts to find standards 

seems to be linked to three different contexts: dictating or describing mathematics to 

other human beings, parsing mathematics by computer systems in order to further 

process the input and defining rules for converting mathematical content to audio 

synthetic speech output (text-to-speech, TTS). 

One of the first attempts to give a standard for speaking mathematical equations 

and objects in English appears to be Chang's handbook "Larry's Speakeasy" [Chang, 

1983]. He defines spoken forms for a broad range of mathematics, from basic symbols, 

algebra, trigonometry, logic, geometry, statistics, calculus, linear algebra, topology to 

mathematical diagrams and graphs. Chang, himself being a blind mathematician, 

primarily focuses on dictating mathematics to other human beings. 

As far as we are aware, the most complete investigation into spoken mathematics 

to date is presented in [Fateman, 2006, 2009]. He focuses on introducing a vocabulary 

that is intuitive and easy to learn by novices, and at the same time allows as little 

ambiguity as possible. This work was carried out by Fateman within the context of 

the Math Speak & Write system [Guy et al., 2004]. He provided a detailed analysis 

of how to speak numbers, non-numeric tokens, nested arithmetic expressions, integrals 

and sums. He also discusses the problem of ambiguity, to which in some cases no easy 

solution seems to be available. 

Apparently unaware of this work, [Elliott and Bilmes, 2007] developed a similar ap

proach, although their language design is oriented towards the use of "two-dimensional 

mathematics" in combination with an existing mathematics editor (Scientific Note

book). 

In [Wigmore, 2011], spoken mathematics is also investigated, based on empirical 

evidence of how people - notably mathematical students and teachers - actually speak 

mathematical expressions. This was carried out by analysing transcriptions of recorded 

mathematics classes from the British National Corpus (BNC) [Burnard, 1995] and 



2. BACKGROUND 9 

an experiment where participants read out given expressions. The study focusses on 

the potential of prosodic information providing clues in order to resolve ambiguity. 

However, this did not influence the design of the language used in older versions of 

TalkMaths and Wigmore uses an approach very similar to that of Fateman. 

Rules for spoken mathematics have also been developed for text-to-speech con

version of mathematics. For example, Raman, another blind mathematician, gave a 

framework in his AsTeR system [Raman, 1998], which synthesised LaTeX/TeX doc

uments for blind users. Another initiative is the MathSpeak project [Schleppenbach, 

2013] in which a set of grammar rules for speaking mathematics have been designed. 

However, rules for speaking mathematics that have been developed for text-to-speech 

appear less suitable for spoken input due to the tedious learning curve and usage. In 
other words, a text-to-speech system would use a more descriptive language with a 

much larger vocabulary to give the listener as much information as possible to explain 

the expression on screen which might be too long and complex for a user to dictate to 

insert a relatively smaller formulae [Fateman, 2009]. 

It should be mentioned that some commercial systems are gradually supporting 

spoken mathematics. The most popular example is the Computer Algebra System 

Mathematica, that actually provides a function spokenStringO [Mathematica, 2014] 

for converting mathematical objects into their spoken language form. 

2.2 Language Models and Algorithms 

One of the primary goals of the work described in this thesis is to provide assistance to 

users of speech-driven mathematics editors, through predictive and corrective facilities. 

In this section we first explore the background of a particular technique for modelling 

language and algorithms which are useful in realising such facilities. Finally, we review 

both commercial and research systems that take advantage of those language models 

and algorithms. 

2.2.1 Statistical Language Modelling 

A language model can be described as an attempt to capture the properties of a lan

guage in order to be able to predict the next word(s) of a given sentence of that 
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language for the purpose of syntactic or semantic analysis, or to carry out corrections 

if it is malformed or otherwise incorrect. A variety of different approaches to language 

modelling exist in the literature, including those based on grammatical rules, statis

tics, or neural networks. Among such language models, Statistical Language Models 

(SLMs) [Rosenfeld, 2000] have been at the core of ASR systems for many years [Young, 

1996, 2002J. These use statistics from past experience to predict the likelihood of what 

will be spoken next and combine this with evidence from the acoustic signal of the 

speech to decide what words were actually said. 

The simplest types of SLMs are N-gram models, which use statistics of the occur

rences of specific sequences of N consecutive words within a database (or corpus) of 

training material observed in the past. A more dynamic or adaptive approach is to use 

a cache model [Clarkson, 1999b], where a cache or buffer, of recently-occurred words is 

used to update the baseline N-gram models. Variants of these models have been suc

cessfully applied to various domains by other authors [Martins et al., 2008; Vaiciiinas 

and RaSkinis, 2006]. We will explain the theoretical aspects of N -gram models and 

cache models in Chapter 4. 

2.2.2 Error Correction Algorithms for Text 

It has been noted that the majority of human typing and spelling errors are quite 

minor [Damerau, 1964; Pollock and Zamora, 1983J, often involving just the omission or 

addition of a single character, typing two characters in the wrong order, or accidentally 

substituting one character for another (often one adjacent to the correct symbol on the 

keyboard [Grudin, 1983]). Correcting errors in text has been a widely researched area. 

There are three steps in correcting words in text: detecting non-words, isolated-word 

and context-dependent word error correction [Kukich, 1992]. In our setting, we only 

focus on the first two types. 

The most researched technique of correcting isolated-word errors in text is the min

imum edit distance [Wagner, 1974]. One of the pioneering approaches that use this 

technique, the Damerau-Levenshtein distance [Damerau, 1964; Levenshtein, 1966J be

tween two character strings, measures how different those strings are by taking into 

account the minimum numbers of insertions, deletions, substitutions and transpositions 

of adjacent characters required to transform one of the strings into the other. [Wagner 
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and Fischer, 1974; Wagner and Lowrance, 1975J also introduced more computationally 

efficient spelling correction by using dynamic programming techniques [Nemhauser, 

1966J. Some further extensions, such as allowing the exchange of non-adjacent charac

ters given by [Wagner and Lowrance, 1975J. While the Damerau-Levenshtein distance 

method has been widely-used, research is being still carried out in this area - for ex

ample, [Shah et aI., 2012] proposed a hybrid approach and [Lu et aI., 2013] suggested 

a synonym-based approach. Although one of the original motivations for the develop

ment of this metric was to compare the similarity of short pieces of natural language 

text, it has also been applied in fields such as genetics, for example to study how similar 

two fragments of DNA are to each other [Troncos<rPastoriza et aI., 2007J. It has also 

been recently used in graph-matching [Cao et aI., 2013J, which is essential aspect to 

many graph searching, pattern recognition and machine vision tasks. It should also 

be noted that other similar metrics have been developed in the past, such as "direct 

threshold matching" described by Glantz [1957J in which the differences of two strings 

are matched in a position-for-position manner, but these are not as widely used as the 

Damerau-Levenshtein distance method. 

2.2.3 Predictive and Corrective Systems using SLMs and Al

gorithms 

More recently, SLMs have been incorporated into innovative systems for automatic 

translation between languages, such as Google Translate [Google, 2012J. A wide vari

ety of existing technological systems employ prediction and/or correction methodol<r 

gies in an attempt to make them more useful and usable. These include automatic 

(or semi-automatic) correction systems found in word processors and internet search 

engines (Showing results for... Search instead for ... ) and the prediction systems used 

in ASR systems and SMS text message editors on mobile telephones. Although man

ufacturers of commercial products rarely reveal exactly their secrets, it is understood 

that correction systems look for close matches to what was entered within a database 

of common words or phrases, whilst prediction systems use statistical models. These 

models give probabilities of words and word sequences, using information from a large 

set of previously observed data and evidence from the current situation, together with 

an inference rule, such as a Bayesian framework, in order to combine information from 
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more than one source [Young, 1996]. 

2.3 Parsing 

Spoken mathematics that has either been recognised by the ASR, or perhaps directly 

typed into a suitable user interface, needs to be parsed in order to lead to a meaningful 

action within the system. The classification of formal languages into recursively enu

merable (Type-D), context-sensitive (Type-I), context-free (Type-2) and regular (Type-

3) has been given in [Chomsky, 1957]. However, it is commonly assumed that parsing 

general natural languages is a "hard" problem - indeed, some authors [Kallmeyer, 

2010] have noted that some natural languages, such as Dutch [Bresnan et al., 1987] 

and Swiss-German [Shieber, 1988], contain cross-serial dependencies which cannot be 

adequately modeled using context-free grammars. Thus natural languages are not in 

general Type-2 languages [van de Koot, 2013]. lIence for parsing our input, we will 

have to restrict ourselves to an appropriate sub-language, namely our standard of spo

ken mathematics, which has a well-defined vocabulary and relatively prescribed syntax. 

All of the approaches for spoken mathematics as discussed in Section 2.1, are based on 

context-free languages. 

In this section, we will outline different key techniques for parsing context-free lan

guages, followed by a discussion on suitable frameworks for parsing spoken mathemat

ics. Note that this is considerably more difficult than the opposite task, the conversion 

of mathematical content into a spoken language representation, which can be carried 

out following one of the approaches mentioned in Section 2.1. 

2.3.1 Context-free Parsing Techniques 

Context-free parsing has been investigated in great detail in the past, mostly because 

of its use in computer science: most systems and compilers use context-free parsing. 

Even though any programming language that for example requires the declaration of 

variables (e.g., C or C++) is effectively context-sensitive, a multi-stage approach that 

is based on an initial context-free analysis, is generally assumed to be most effective. 

Amongst the context-free languages, research has further identified several sub

classes which are characterized by their ease of parsing, depending on the order in 
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which the resulting parse tree data structure is built (top-down or bottom-up) [Aho 

et aI., 1986]. The class of LL(k) [Lewis II and Stearns, 1968] parsers proceeds top-down, 

usually following a recursive descent algorithm. Parsers written in this approach tend 

to be manually created and are easier to read for human beings. LR( k) parsers [Knuth, 

1965] are driven by parse tables, constructing the parse tree bottom-up by following a 

stack-based shift-reduce scheme. They are fast and particularly suitable for automatic 

code generation. The parameter k is the value of the look-ahead, which indicates how 

many tokens have to be processed before the parser can decide which parsing action 

to take. Traditionally, k = 1 was assumed to be sufficient. LALR(k) [DeRemer, 1969] 

languages are a subset of LR(k) which are particularly efficient to parse and are used 

for the design of popular modern programming languages. Specialist techniques exist 

[Pager, 1977; Pager and Chen, 2008] that can speed up general LR parsing, yielding 

parsers that are similarly efficient as LALR parsers [Sorkin and Donovan, 2011]. The 

class of Operator Precedence (OPrec) parsers, which is of particular relevance to the 

work in this thesis, is an attractive alternative as it is fast and results in a simple parser 

but is only applicable within a restricted domain. 

GLR parsing is an extension of LR parsing to handle ambiguous languages (orig

inally aiming at natural languages [Tomita, 1985]). The main technique is to use 

back-tracking of non-deterministic rules, in a breadth-first search manner. [Begel and 

Graham, 2006] in turn extends GLR parsing to handle lexical ambiguities arising from 

spoken input and embedded languages. The resulting parsing technique is referred 

to as XGLR in the original paper. In this thesis, we will see how to combine OPrec 

and GLR parsing techniques in order to obtain a suitable framework for the spoken 

languages we have in mind, which is an alternative to XGLR parsing. 

Writing a parser can be a complex task and there are two different ways of designing 

and implementing parsing algorithms: "by hand", i.e. coding manually appropriate 

functionality, or using a parser generator. As we have mentioned already in the pre

vious paragraph, most automatically generated parsers are LR and LALR. One of 

the earliest tools was YACC [Johnson, 1975], which inspired the release of the Open 

Source tool Bison [Donnelly and Richard, 1998]. Both create native C code which, 

once compiled, results in efficient LALR parser applications. The LR parser genera

tion system [Wetherell and Shannon, 1981] and various more recent tools [Chauveau 

and Bodin, 1998; Chen and Pager, 2008] are all essentially based on Pager's algorithm 
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[Pager, 1977]. An interim version of the spoken mathematics parser included in the 

TalkMaths system used Yapps2 [Patel, 2009], a little used parser generator which pro

duces recursive descent (LL) parsers in the scripting language Python. ANTLR [Parr 

and Fisher, 2012] is a modern tool (although in development since the late 80s) and is 

an exception as it has introduced efficient LL(*) parsing, which denotes LL(k) parsing 

where k is not bounded a priori. 

Any language is defined by a grammar, and in particular grammars that accept 

context-free (and their refined classes LL(k), LR(k) and LALR(k)) languages are re

ferred to as context-free (LL(k), LR(k) and LALR(k) respectively) grammars. A gram

mar consists of terminals, non-terminals, productions and a start symbol. We will 

further explore these aspects when we introduce OPrec grammars in Chapter 6. 

Once a suitable grammar and corresponding parser have been created and put into 

place, one might face an additional challenge: input that deviates from correct syntax 

cannot be parsed. In this situation, rather than simply detecting this and rejecting 

the input, one might wish for the parser to take appropriate actions to correct input, 

and also inform the user. This is commonly referred to as error recovery. In the 

literature, a substantial amount of work on error recovery has been carried out in the 

context of parsing programming languages. Comprehensive survey articles reviewing 

these early works are [Ciesinger, 1979; Sippu, 1981]. The seminal paper [Graham 

et al., 1979] introduces practical strategies for error recovery in LR parsing. Their 

approach is easy to use, even for adding recovery support to existing parser generators. 

This method is further developed in [Burke and Fisher, 1987], to give a method for 

LR and LL syntactic error diagnosis and recovery. Error recovery schemes for OPrec 

parsers are given in [Graham and Rhodes, 1975; Leinius, 1970]. These methods are 

computationally efficient and are still used in modern compilers. However, [de Jonge 

et al., 2010] indicates that more work could be done in order to improve the quality of 

error recovery. Strategies such as narrowing down regions where parser errors might 

reside and taking into account formatting (for example, indentation levels in source 

code) are used by [de Jonge et al., 2010] in order to improve error recovery for the 

Java programming language. Another approach is to provide structural information 

about the expected input, prior to parsing. In rUgen, 2010], XML is used to define 

structural properties about documents containing JavaScript code, helping to correct 

erroneous data entry in the declaration of objects. However, more research has to 
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be conducted before these techniques will influence the error recovery capabilities of 

mainstream parsers. 

For our purposes, none of these methods are totally suitable. In a system such 

as TalkMaths, wrong user input can arise for several reasons (in Chapter 6 we will 

look into this in detail). Error recovery needs to be extremely resilient, interactive and 

flexible, perhaps customisable by the user. In [Suhm et al., 1996]' these requirements 

were formulated and various error recovery methods for speech interfaces are stated: 

repair by respeak, by spelling, by selection amongst alternatives and using an alterna

tive input mode - in the original paper, the use of handwriting. If one is concerned 

with recovering from recognition errors, most of these strategies are available through 

the ASR tool, and users of TalkMaths will be able to benefit from this, as well. Our 

work on error recovery in the context of speech-driven systems is at the syntactical 

level during parsing. We have not found evidence that this aspect has been treated in 

the literature. 

2.3.2 Parsing Spoken Mathematics 

The work on spoken mathematics by Fateman, as presented earlier, was also inter

ested in defining spoken mathematics using grammars, hence enabling a computer to 

process spoken input, using a parser. His research is interested in parsing suitably de

fined spoken forms of syntactically correct mathematical expressions, or else converting 

syntactically incorrect input to a format for display or further processing. 

Given a syntactically correct spoken mathematical expression, it can be parsed using 

a grammar. This results in a parse tree that is useful for additional manipulations. As 

mentioned in [Fateman, 2006], it is difficult to specify a grammar that will parse the full 

set of mathematics that one may typically encounter in research papers, text books or 

lecture notes. An acceptable compromise might be the restriction to expressions that 

can be parsed with a context-free grammar, combined with some pre-processing of the 

input. In [Fateman, 2009], this approach is adopted in order to specify a subset of 

spoken mathematics, taking into account the fact that mathematical expressions use 

prefix, infix or suffix conventions and have operator precedences that are sometimes 

ambiguous. 

In [Wigmore, 2011], an attribute grammar [Kastens, 1980; Knuth, 1990] for the 



2. BACKGROUND 16 

Yapps2 parser generator is described that recognises spoken mathematics at an ele

mentary level. This was used in one of the earlier versions of TalkMaths to successfully 

parse complete mathematical expressions. 

When attempting to add support for incomplete expressions to this aforementioned 

attribute grammar, we experienced difficulties formulating appropriate rules and con

cluded that novel directions for the problem of robustly parsing mathematics might be 

needed. 

2.4 Speech-Driven Editing Systems 

One of the main motivations behind our work is to make speech-driven systems as suit

able as possible for users who typically might wish to engage in hands-free computing. 

In this section, we will outline contributions made by other authors to systems with 

a similar intention. After briefly reviewing existing commercial and freely available 

speech recognition tools, we discuss past work on speech-driven editing approaches, 

followed by documenting the extent to what the literature contributes towards realis

ing speech-driven editors for mathematics. We pursue these further in Chapter 6. 

2.4.1 Speech Recognition Technologies 

Automatic speech recognition is the process of converting human spoken words to 

human- or computer-readable text [Young, 1996]. Commercial ASRs tend to be mar

keted as speech recognition applications or packages. The term "voice recognition" 

also appears in places, however, strictly speaking, this is incorrect terminology. Most 

ASRs require to be trained for a particular user in order to provide the best and most 

accurate recognition. 

There are a few commercial speech recognition packages available in the current 

market, with the most widely available ones being products sold by Nuance and Mi

crosoft. With claims of 99% word accuracy under good conditions, Nuance Dragon 

NaturallySpeaking (DNS) [Nuance Communications, 2013] is the market leader. It 

was originally developed to run on Windows operating systems, although recently Nu

ance has released versions for Mac as X. Microsoft now includes Windows Speech 

in Windows 7 & 8, and their speech recognition solution is likely to be included and 
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further improved in future versions of their operating systems. At present, it remains 

unclear which of these two main players will eventually dominate the market. 

A free alternative to the commercial products is Sphinx, an Open Source toolkit for 

speech recognition [Carnegie Mellon University, 2008] developed at Carnegie Mellon 

University. With Sphinx, additional data such as prosodic and intonation informa

tion can be captured. Currently, the recognition accuracy is inferior to that of the 

commercial ASRs. 

More and more, vendors are adding speech support to their software. For example, 

Google has enabled speech recognition in its Chrome web browser, specifically designed 

for speech-enabled applications, such as "Google Voice Search" [Google]. In particular, 

mobile devices and gaming consoles are starting to be speech-enabled, and this trend 

is only likely to continue. 

Typically, a speech recognition tool provides a dictation mode and a command mode. 

The former is used for the purpose of dictating textual information into an application 

such as a word processor or an email client, and the latter is for speaking structured 

commands which will trigger specific actions such as selecting menu items or clicking 

on GUI elements. Some allow the user to create custom spoken commands in addition 

to the default pre-defined commands. 

Usually, these tools also supply an application programming interface (API), such 

as Microsoft's speech API (SAPI) in order to add more sophisticated commands, load 

user files or restrict the vocabulary to increase the recognition accuracy for specific 

domains such as the medical industry [Mohr, 2009]. 

2.4.2 Speech-Driven Editing Approaches 

Any system for creating mathematical content would be of limited value if it did not also 

allow the editing of existing material. Even for ordinary text documents, a person may 

spend a very substantial amount of time editing what he/she has typed or correcting 

mistakes [Sears et al., 2001]. Also, the existing cursor control methods are still difficult 

to use [Haque et al., 2013] when editing text by speech. This is likely to be just as 

much the case with mathematical expressions in documents. For speech-based systems, 

this appears only to have received limited attention in the literature. When using 

speech-controlled text editing, in a standard editor, it is relatively straightforward to 
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develop spoken commands for moving the cursor, plus a limited range of actions such as 

"backspace" , selecting words or a sentence. This is relatively inefficient and difficult to 

use for editing ordinary text, but of even less utility for editing mathematical content, 

which (as noted previously) often has a rather complicated two dimensional layout in 

conventional notation. 

A mechanism for moving the mouse pointer using speech is attributed to [Pugliese 

and Gould, 1998J. This is available as the "mouse grid" in DNS, and Windows Speech 

provides a similar facility. Some research [Bickel et al., 2010; Christian et al., 2000; Dai 

et al., 2004; Karl et al., 1993; Sears et al., 2003J exists, which improves this approach 

for editing ordinary text via speech, exclusively based on an "anchor and target" ap

proach. Whilst reasonably efficient for general mouse moving or text editing, it could 

be improved for the editing of structured documents. Begel [Begel and Zafrir, 2002J 

introduces a "context-sensitive" mouse grid, in the context of speech-enabled program

ming environments. This idea is further extended for the use in a mathematics editor 

in [Wigmore, 2011], where novel speech editing paradigms via specialist grids are in

troduced. In TalkMaths, some of these grids are available and can be used in order to 

assist the user with editing by speech. 

2.4.3 Speech-Driven Interfaces for Mathematics 

\Ve are aware of a number of systems translating spoken mathematical input to different 

output formats and displaying the structure of the mathematical expressions. These 

systems work together with ASRs installed on the user's machine. 

MathTalk [Metroplex Voice Computing, IncJ is a commercially available system that 

implements speech macros for use within the Scientific Notebook environment. The 

functionality of MathTalk, even when compared with the other academic prototype 

systems mentioned below, is quite limited. 

Fateman has undertaken work leading to Math Speak & Write, a multimodal ap

proach combining spoken input with handwriting recognition. Unfortunately, the am

bitious aim of simultaneous multimodal input was not achieved. Another system is 

CamMath, described in [Elliott and Bilmes, 2007], which needs the same support en

vironment as MathTalk but seems to offer a better developed command language. 

Previous approaches to allowing spoken input of mathematics include the research 
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prototype systems of Bernareggi & Brigatti [Bernareggi and Brigatti, 2008] (which 

only works in Italian) and Hanakovic and Nagy [Hanakovic and Nagy, 2006] (which 

is restricted to use with the Opera web browser due to it using X+V (XML + voice) 

technology) . 

We conclude that all these systems are not yet robust enough for day-to-day use 

by (potentially inexperienced) users. 

2.5 Other Related Approaches 

In the previous sections, we have explored different approaches to defining, recognising, 

predicting, correcting and parsing spoken mathematics. This section briefly reviews 

other work that relates to one or more of these aspects, including assistive systems for 

creating and editing mathematics since TalkMaths, from its early stages, has always 

been intended to be a highly usable and beneficial piece of assistive software. 

There have been a variety of systems attempting to provide synthetic speech descrip

tions of mathematical text, including AsTeR (Audio Systems for Technical Readings) 

[Raman, 1998], MathGenie [Jacobs, 2006], REMathEx [Gaura, 2002], the commer

cial system MathPlayer [Design Science, 2013bJ, and AudioMath [Ferreira and Freitas, 

2004J. The latter system is open-source, but unfortunately only functions in Por

tuguese. 

In the context of verification mechanisms within OCR (Optical Character Recog

nition) for mathematical text, creating SLMs and context-free grammars for parsing 

mathematics in symbolic notation turns out to be highly relevant. Some previous au

thors [Suzuki et aI., 2003; Watt and Xie, 2005J have developed systems for recognising 

and processing mathematical symbols using an OCR approach. However, two remain

ing issues are how to deal with the possibilities of misidentified symbols (potentially 

a big problem, since many people have poor on-screen, or on tablet handwriting) and 

mistakes by the user. Previous researchers have used syntactic [Fujiyoshi et aI., 2008; 

Suzuki et aI., 2009J or statistical [Mazalov and Watt, 2013; Smirnova and Watt, 2008J 

approaches in attempts to resolve these issues. Research in this area is continuing, 

and systems such as Math Input Panel (MIP) [Radakovic et al., 2011] provided by Mi

crosoft Windows 7 and later versions of Windows, and MathPad 2 [Jr. et al., 2007J are 

more recent examples of OCR applications for converting hand-written mathematics in 
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conventional notation into its electronic equivalent (MS Word and MathType [Design 

Science, 2013a] equations and Matlab code respectively). However, adding speech as 

an input modality to these systems seems to be difficult. 

Assistive systems such as those developed in the Lambda project [Edwards et al., 

2006] and [Crombie et al., 2004] convert MathML into Braille format, to help blind 

users to read mathematical expressions within electronic documents such as web pages. 

However, such systems also require use of a Braille output device. They also require 

parsing of mathematics and use similar techniques to the ones discussed so far. 

Although we are not aware of these approaches having been applied to the editing 

of mathematical text, severely disabled people, including tetraplegics, can only interact 

with computers using systems which monitor motion of their head, eyes, or possibly 

even facial muscles [Zielinski, 2013]. One such system of particular note is Dasher 

[Vertanen and MacKay, 2010] which can use a mouse pointer, possibly controlled by 

eye or head movement, to select characters from a menu on the screen. This uses 

statistical language models (see Chapter 4) to allocate an appropriate area of a display 

screen according to the likelihood of a particular character, word or symbol displayed 

there being the next item in the input sequence. Dasher can be controlled using a 

mouse, pointer or any motion or graze tracking system. It should be possible to adapt 

Dasher for use with mathematical editors, and in principle, with speech. 

2.6 Summary 

In this chapter, we have primarily reviewed previous work in a number of key areas: 

defining languages for spoken mathematics, statistical language models and error cor

rection algorithms focusing on predictive and corrective systems using those SLMs and 

algorithms, syntax analysis using context-free parsing techniques in general, but then 

also with a focus on spoken mathematics. \Ve have also reviewed several systems: 

speech-driven editing systems implemented in the past by other authors that have sim

ilar aims as the TalkMaths system, and other non speech-based assistive systems for 

creating and editing mathematics. 



Chapter 3 

Architectures for Speech-based 

Applications 

3.1 Motivation 

The Naturally-preferred method for human-human communication method is speech, 

whereas that is not the case in human-computer communication. In this, we tend to rely 

on non-intuitive interfaces for input, such as a keyboard and mouse. However in recent 

times, speech has become a realistic alternative method to interact with computers 

[McTear, 2002], especially for users who have limited or no access to keyboard or mouse 

due to some kind of disability [Karshmer, 2008], or people "on the move" [Cuartero
Olivera et aI., 2012]. In effect, speech recognition has now become a viable option for 

many users of desktop applications to use to input commands and data. 

There does not appear to be a set of formal definitions in the literature of different 

types of applications using speech. It seems natural to define a computer application 

relying on speech as the primary input method as a speech-based application. 

With current state-of-the-art speech recognition technology being more available, 

various speech-based systems exist either as research prototypes or as commercial prod

ucts. A range of example systems can be given, from systems that are used in the 

medical industry such as Voice Activated Medical Tracking Application [Durling and 

Lumsden, 2008] or systems used in cars [Lee et aI., 2001], to mobile phone intelligent 

personal assistants such as Siri [Dery, 2012] and Iris [Cheyer et aI., 2005]. Such speech-
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based applications can either run entirely on one computer - thus free from network 

and data transmission constraints - or use a client-server architecture. 

The Internet is an important medium for modern applications in many fields. 

Whilst it should be noted that desktop-based applications still have their place, web

based applications have numerous advantages over other networked applications, such 

as location and platform independence, ease of upgrading and logging user interactions 

for various purposes. Although there are some non-trivial barriers one has to overcome 

in dealing with browser limitations, thick-client web applications built with more con

trol over the client machine (using plug-ins such as Flash Player [Allaire, 2002] or the 

latest standard HTML5) are becoming increasingly popular. 

For many users of speech recognition, possibly relying on mobile devices with limited 

processing power, a speech-based web application also has the advantage that it can be 

used whenever a speech-web client is available. Despite a number of research-prototypes 

being developed, not many practical systems combining automatic speech recognition 

and web technologies are available at present. 

The motivation behind the work in this chapter was the fact that, for speech-based 

applications, the system architecture is a vital aspect that needs to be considered 

carefully in the design stages in order to implement a robust, reliable and efficient 

system. Our goal in this chapter is to describe and discuss different architectural 

approaches suitable for speech-based applications and identify the one most suitable 

for the TalkMaths system we will be presenting in Chapter 7. This chapter starts by 

investigating speech-based applications and their underlying technologies. We give an 

overview of different architectures suitable for speech-based applications, discuss their 

various merits and deficiencies, and then present a suitable architecture for web-based 

applications that use speech as the primary input mode. The remainder of this chapter 

is organised as follows: We first review relevant speech technology and tools. Then we 

propose the following possible architectures for speech-based applications: 

• Desktop Speech-Based 

• ASR and Post-ASR Processor (PASRP) on Client 

• Speech Proxy 

• Application Proxy 
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• ASR on Same Server 

• ASR on Different Servers 

• Distributed ASR using Same Server 

• Distributed ASR using Different Servers 

and finally choose a suitable architecture for the type of speech-enabled web applica

tions of interest in this project. 

3.2 Relevant Speech Technologies and Tools 

Speech-based applications rely on a variety of tools and technologies. In this chapter 

we focus on architectural aspects and hence will not discuss the mechanisms behind 

speech recognition, speech synthesis or speech markup. We refer the reader to [Holmes 

and Holmes, 2001; Young, 1996] for more details of these. Here we mention some tools 

and technologies that are available, which may not be widely known. 

3.2.1 Post-ASR Technologies 

There are many technologies that can be used to build speech-enabled applications 

using the output from ASR. Here, we mention some of these technologies. Developed 

by Microsoft Corporation, the Speech Application development Interface (SAPI), pro

vides a framework for speech application developers to design and build speech-enabled 

desktop applications. SALT (Speech Application Language Tags) is also a Microsoft 

technology that is developed specifically for the use of speech-enabled and voice-input 

only browsers [Microsoft Corporation]. SALT can be used to integrate simple speech 

interaction capabilities into existing web pages with minimal effort. A SALT enabled 

web page interacts with Text-to-Speech (TTS) and speech recognition software by 

specifying an XML-based grammar called Speech Recognition Grammar Specification 

(SRGS) [Hunt and McGlashan]. 

A Python-based macro system called NatLink has been developed by Joel Gould 

[Gould and Gould] as a subsystem for DNS. NatLink provides an interface to DNS and 

is available under an open source licence. Another speech macro system that works 
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with DNS is called Vocola [Mohr, 2009]. These macro systems require Python installed 

on the local machine hosting the application. 

A more recent approach on building a framework for speech-based applications in 

a client-server setting is the Web-Accessible Multimodal Interfaces (WAMI) toolkit 

[Gruenstein et al., 2008]. WAMI provides a platform for developing speech-based web 

applications where the speech recognition happens at the server-side by allowing trans

fer of audio data and application data between client and server using two different 

connections, where one connection is established by a GUI controller and the other by 

an audio controller (both installed locally). It supports application-specific language 

models and is built with the aim of supporting multi-modal input systems. WAMI 

was developed to help interface developers to build systems that can be accessed by 

any standard web browser. Applications built with the WAMI toolkit use a browser

embedded Java applet that serves as an audio data transfer device, while a web-based 

GUI acts as the non-speech interface. Additionally, WAMI supports system develop

ment aimed at a variety of platforms such as tablet PCs, mobiles and laptops. 

3.3 Classification of Architectures for Speech-based 

Systems 

The World Wide Web Consortium (W3C) defines a speech interface framework [Larson, 

2002] for speech-enabled web applications. This framework is concerned with defining 

markup languages suitable for integrating with ASR and standardising client-side com

munication methods. The W3C speech interface framework also allows for touchtone 

and pre-recorded audio input, as well as speech synthesis (text-to-speech) of output, 

which are not considered in this thesis. Whilst the W3C framework focuses only on 

the client-side, we are interested in ways of communication between client and server 

for speech-based applications. This will be the focus of the different architectures we 

will present later in this section. 

We identify three components of a speech-based application: ASR, application logic 

and PASRP. We will now look at each of these components before moving on to possible 

system architectures. 

Carrying out speech recognition solely on the client machine is called embedded 
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speech recognition (ESR), whilst sending raw audio data to the server and perform

ing recognition there is called network speech recognition (NSR) [Zhemin and Philipos, 

1999]. Splitting speech recognition between server and client is defined as distributed 

speech recognition (DSR) [Holada, 2003; Rajput and Nanavati, 2012] wherein perform

ing a certain amount of processing on the client side (e.g. spectral analysis and/or 

data compression) reduces the amount of data to be transferred by only extracting 

necessary "features", such as Mel-Frequency Cepstral Coefficients (MFCC) [Davis and 

Mermelstein, 1980; Holmes and Holmes, 2001] of the speech signal and sending these to 

the server [Flynn and Jones, 2012; Holada, 2003]. DSR is often used rather than NSR 

to save bandwidth of the network, in particular client-server speech recognition systems 

with low bandwidth network connections. Holada [2003] also states that feature extrac

tion on client-side before transmission is better than compressing and decompressing 

speech on client and server sides respectively due to the decrease in the quality of 

speech. In any case, the processing and resource demands are very high for speech 

recognition tasks, as several processes involving signal processing, noise reduction and 

applying acoustic and language models are required. This intensive requirement on 

resources makes the choice of which of ESR, NSR or DSR strategies to adopt, a de

cisive factor for speech recognition. In particular, due to limited processing power, 

complex speech recognition in mobile phones, mobile hand-held and similar devices is 

best carried out at a remote server using DSR [Burke and Yacoub, 2010] strategies. 

However simple speech recognition tasks (such as digit or keyword recognition for di

aling by voice) requiring less processing power can still be carried out solely on these 

devices (embedded speech recognition) using software available from vendors such as 

[Fonix.com; Rubidium.com; SensoryInc.com] and [Speechfxinc.com]. 

3.3.1 Terminology 

Before moving on, let us define some terminology used to describe different archi

tectures in this chapter. When considering the processing requirements of a given 

speech-enabled application, we can identify two aspects: the actual application logic 

that controls the behavior of the application independent from any speech input, and 

the Post-ASR Processor (PASRP). By the latter, we understand those parts of the logic 

that deal with interpreting input in the form of spoken commands. Due to these com-
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mands a variety of actions can be taken, such as triggering specific application logic, 

enabling or disabling other speech commands, and generally maintaining a certain state 

within the current execution of the application (i.e. session management). 

In a similar way to the ASR, the PASRP can reside on either client or server (or 

be split between both) and this will have an important impact on the design of the 

architecture. Furthermore, the (speech-enabled) application can also entirely run on 

one single machine or be based on a client-server design. 

We will now present different system architectures for common speech-based ap

plications, using diagrams to illustrate the different structures and characteristics, i.e. 

the location of the ASR, application logic and the PASRP. We denote by speech audio 

data (dsa ) the electronic signal formed from the audio stream of a spoken utterance 

originating from the user via a microphone, possibly having been pre-processed and/or 

compressed. The term recognised speech data (dst ) will be used for text string output 

data created from dsa by the ASR with or without the assistance of an API. Appli

cation specific data (dapp ) will refer to all data other than the speech-related data as 

described above. Finally, f( dsa ) denotes features from speech audio data extracted 

locally for some kind of DSR strategy. 

3.3.2 ASR and PASRP Both Performed Locally 

The following two architectures are based on ASR and PASRP being carried out locally, 

either on a stand-alone PC, or client-side in a web application, for example, with the 

aid of embedded speech recognition systems. 

3.3.2.1 Desktop Speech-Based (Architecture A) 

The Desktop Speech-Based architecture is illustrated in Figure 3.1 (Architecture A). 

Applications based on this architecture rely on the ASR being installed entirely on the 

local machine. A spoken utterance is transmitted from the user as an audio signal to 

the microphone and is then converted into an (digital) electronic signal (dsa ) which is 

passed to the ASR. The recognised string (denoted as dst ) output from the ASR then 

passes to the main application. The main application subsequently processes the string 

and displays the output for the user. Depending on the level of sophistication of both 

the ASR and the application, PASRP can be implemented to some extent within both 
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-- --- -- ---- ----- --- -- ---- -- - Desktop PC ------------ --- --- -- ---- ---

elst 
Application Logic 
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PASRP 

1 __ - ------------- -------------------------------------------------------

elsa 

Figure 3.1: Desktop Speech-Enabled Application Architecture (A) 

components. 

As an example, consider a user creating a Micro oft Word document by speaking 

commands that are recognised by the ASR installed on his machine. 

3.3.2.2 ASR and PASRP on Client (Architecture B) 

As we have already mentioned, the introduction of server-side technology into a speech

enabled application can be done in several ways. Perhaps the most straightforward 

approach is to use a server to implement most of the application logic, with the ASR 

installed on the client machine. Recent advances in web technologies allow replacing 

the custom client application with a browser. Ultimately, this removes the necessity for 

the user to install addit ional software. Architecture B caters for this and is probably 

t he one most commonly used for web applications. 

Figure 3.2 shows that, as in Architecture A, the ASR sends recognised spoken com

mands (dst ) as text to the client application, which exchanges application data (dapp ) 

with the server, following a request-response principle. Most modern web browsers 

are compatible with commercial ASRs such as DNS. A typical scenario where a user 

browses the web using speech commands that are recognised by DNS and translated 

into browser actions , would follow this architecture. 
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Figure 3.2: ASR and PASRP on Client Architecture (B) 

3.3.3 ASR on Client, PASRP on Server 

28 

The next st ep would be to move the PASRP to the server whilst retaining the ASR on 

the client machine. This can be done in two different ways depending on the flow of 

data between PASRP and application logic. 

3.3.3 .1 Speech Proxy (Architecture C) 

The first approach to achieving this is through having the PASRP as a proxy between 

client and server application logic. A visual representation of this architecture is illus

trated in Figure 3.3. Due t he fact t hat any incoming data from the client first passes 

t hrough the PASRP proxy, and hence this data must have originally come from spoken 

input, we can see that any application based on this architecture is a speech-driven 

application. This architecture is of part icular advantage if an existing client-server ap

plication can be easily turned into a speech-driven one by simply insert ing t he proxy. 

PASRP and application logic may or may not reside on t he same host . 
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Figure 3.3: Speech P roxy Architecture (C) 

3.3.3.2 Application Proxy (Architecture D) 

The second approach of moving P ASRP to the server can be achieved by exchanging 

the order in which the data flows through the server-side components (see Figure 3.4). 

In this architecture, t he recognised speech data is forwarded by t he application logic 

component to t he PASRP. The PASRP then processes it and returns the results back to 

the application logic, which prepares and returns t he response to t he client. Compared 

to the previous architecture (C), it is necessary to exchange more data in case of 

the Architecture D, which will have a negative impact on t he performance of the 

application. On the other hand, rather t han having a purely speech-driven application, 

Architecture D allows for a speech-enabled approach as the application logic can decide 

to ignore incoming data dst and process application data dapp only. 

As further detailed in Chapter 7, the TalkMaths application is based on the above 

archi tecture. 
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Figure 3.4: Application Proxy Architecture (D) 

3.3.4 ASR and PASRP on Server 
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Moving speech r cognition entirely from the client machine to t he erver yields anoth r 

possible architectural approach (called network speech recognition in [Zhemin and Phili

pos, 1999]). Again, two difF rent varieties exist, dep nding on the numb r of s rvers 

involved. An example appropriate to such architectures would be an application that 

is built using t he WAMI toolkit [Gruenstein tal. , 2008]. Further distinctions are po -

sible, for example when taking into account the location of the PASRP, but we shall 

not further explore t his aspect further in this chapter as that would deviate from the 

main focus of this thesis. 

3.3.4.1 ASR on Same Server (Architecture E) 

In this architecture, both the server application and ASR coexist on the same server. 

As Figure 3.5 indicates, t he user only has to install one client-side application that 

ends an audio stream dsa to t he server application. ASR will be residing in the erver 

and rec ives dsa from the server application for recognit ion. It t h n provides the server 



3. ARCHITECTURES FOR SPEECH-BASED APPLICATIONS 

,------ Client PC 
1 
1 
1 
1 
1 
1 Client 
1 
1 
1 
1 

Application 
1 
1 
1 ,- ------------- --------------

dsa 

'\ 

~------ . 
1 Server 
1 

dsa + dapp i Application Logic 
i· 

PASRP 
dapp 

dsa dst 

1 
1 
1 
1 ASR 1 
1 
1 
1 
I 
1 L ___________________________ _ 

Figure 3.5: ASR on Same Server Architecture (E) 
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application with recognised commands dst in order to proc ss them and finally the 

server application sends dapp back to the client application. 

3.3.4.2 ASR on Different Server (Architecture F) 

Having the server application and ASR located on different servers creates this archi

tecture. The flow of data for this architecture type is indicated in Figure 3.6 . The 

client application sends t he audio data dsa directly to the ASR, which resides on a 

remote server, for recognition. The recognised data dst , is then fed back to the cli nt 

application which interacts with the server application hosted on a different server to 

the ASR. 

As cloud-based infrastructure for speech recognition is becoming more and more 

available, Architecture F experiences increasing popularity. Players such as Nuance 

and Google already provide ASRs based on this architecture. Thi is particularly 

suitable for mobile clients (eg. mobile phone and tablet PC users) due to their restricted 

resources. Also, WAMI-based online games such as Voice Race [Gruenstein et al. , 2009] 

are examples for this kind of applications. 
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Figure 3.6: ASR on Different Server Architecture (F) 

3.3.4.3 Distributed ASR using Same Server (Architecture G) 

32 

In t his architecture, both server application and ASR coexist on the same serv r as 

in Architecture E. However, t he raw audio signal dsa is preprocessed at t h client-side 

into a set of features, ! (dsa ), which are then sent to the server so that t he contents of 

the original speech signal can be recognised. Figure 3.7 illustrat s t he structure of this 

architecture. 

3.3.4.4 Distributed ASR using Different Server (Architecture H) 

In a similar way to Architecture F, here the server application and ASR reside on 

different servers. The only difference is that like Architecture G, the client machine 

only sends a selected set of features of the speech audio signal, ! (dsa ) , to the server 

that carries out ASR. Figure 3.8 illustrates this type of architecture. 
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Figure 3.7: Distributed ASR using Same S rver Architecture (G) 

3.4 Choosing a Suitable A rchitecture for Speech

Enabled Web Applications 

In this ection, we first discuss the advantage and the disadvantag s of the different 

architectures A - H, then analy e the architectural needs of the TalkMaths system 

prior to our work, and finally justify our decision to cho Architecture D. 

Speech-enabled desktop applications are resource-intensive and require high r pro

cessing power than their web-based counterparts. In addition, the former r quire the 

installation of custom client-based software. However, thes desktop applications can 

potentially be faster t han corresponding client-serv r architecture versions sinc a de k

top application does not have to rely on t he speed and availability of the network. 

With a client-server architecture, the increased availability over the internet of the 

application and the ability to store in, and retrieve data from different locations are 

advantages. Also, client-server architectures reduce the amount of software t hat needs 

to be installed on the client machine and can dramatically r duce the requir ments for 
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Figure 3.8: Distributed ASR using Different Server Architecture (H) 

high processor speed and power consumpt ion. 
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Due to t he fact that the user has to have t he speech recognit ion software install d 

locally for a speech-enabled desktop application (Architecture A) and other similar 

architectures (B, C and D), there are fewer choices available to satisfy t hese require

ments at the client side and hence a speech recognition on the server architectur may 

be advantageous. On the other hand , when ASR resides on t he server, as we discussed 

previously, t he client machine has to send an audio stream to the server for recogni

t ion. However, there are some important technical challenges associated with sending 

large amounts of continuous speech audio data over a network. One solution is for the 

speech audio to be compressed before being sent , for example, as described in [Holada, 

2003], by extracting only essential features (such as spectral coefficients) and only send

ing these as packet data to t he server, where t hey are decoded for recognit ion. This 

approach allows for t he system to be accessed by many devices of limited processing 

power, such as Personal Digital Assistants (PDA) and mobile phones, in addit ion to 
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personal computers. We described how this approach can be used in a client-server(s) 

setting in architectures G and H. Nuance SDK server edition [Nuance Communica

tions] and Carnegie Mellon University's Sphinx [Carnegie Mellon University, 2008] are 

examples of server-side speech recognisers available at the present time. 

As stated in [Bayer, 1996], embedding speech recognition inside the browser on the 

client machine is not convenient as it limits the application to a specific browser or 

requires different plug-ins or applets for different browsers. This is difficult to maintain 

and limits the utility of Google's cloud-based approach for ASR. 

Given the options discussed in this chapter, one can appreciate how difficult it is to 

choose the right architecture for a speech-based system. Table 3.1 below shows where 

each of ASR, PASRP, rendering output and Application logic components reside for 

each architecture we presented above. This should be a helpful matrix to aid developers 

to decide which architecture is most appropriate for their purpose. 

Client Server ASR Server 
Speech Preprocessing G,H 
ASR A,B,C,D E,G F,H 
Application Logic A,C,D B,E,F,G,H 
PASRP A,B C,D,E,F,G,H 
Rendering Output A,B,C,D,E,F,G,H 

Table 3.1: Architecture Classification for Speech-based Systems 

In Table 3.1, the capital letters refer to the respective architectures, which we have 

listed here again for convenience. 

• A: Desktop Speech-Based 

• B: ASR and PASRP on Client 

• C: Speech Proxy 

• D: Application Proxy 

• E: ASR on Same Server 

• F: ASR on Different Server 

• G: Distributed ASR using Same Server 
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• H: Distributed ASR using Different Server 

For all the applications that we have in mind (such as the TalkMaths system or the 

SWIMS interface), we are concerned with the creation and modification of mathemat

ical content, primarily by speech. We will be using client-side ASR both as a means of 

issuing commands for our systems, and to dictate (mathematical) text that needs to 

be processed and displayed. 

The architectural choice for the TalkMaths system has been changed over the course 

of the project. The architecture of TalkMaths version prior to the start of this PhD 

work was a standard desktop-based one (Architecture A) [Wigmore, 2011]. As ex

plained in Section 1.2, some limitations of this early version of TalkMaths led us to 

move to a web-based architecture. With this decision, all architectures apart from 

A, described in this chapter were potential candidates for our new prototype systems. 

Our initial TalkMaths parser was based on a parser generator written in the Python 

language - that requires Python to be installed on the machine that carries out the 

PASRP. When moving over to a client-server architecture, one requirement was to 

minimise the amount of software which to be installed on the client PC. Also, carrying 

out the PASRP on the server means that we can use high processing resources, such 

as cloud processing. Architecture B was therefore rejected for these reasons. 

As we were more interested in good PASRP performance and speed rather than 

pure speech recognition performance, our focus was not on enhancing speech recog

nition at the signal processing level or making that "distributed" between client and 

server. Hence, for our work, a standard commercial client-side ASR tool such as Dragon 

Naturally Speaking or Microsoft Speech should be sufficient. This choice eliminated 

Architectures E - H as options. However elimination of these options could have com

promised the overall speed of the system. 

The final choice for our system is now between Architecture C and D. Although 

speech is considered to be the primary input method, we also allow keyboard and 

mouse modalities. The rationale behind this approach is that a considerable portion of 

our target users (individuals suffering from various disabilities, people relying heavily 

on on-line learning systems or using portable devices) may prefer to revert to key

board and mouse for certain tasks, especially when ASR repeatedly fails to recognise 

dictated commands and/or corrections. If speech proved inadequate for input, this 
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multi-modality guarantees the user another option. With this multi-modal aspect, a 

command originating from the client-side in our setting is not necessarily speech input, 

and it makes sense not to process it as a speech command straight away. To allow 

for this, the best possible architecture was the Application Proxy (D) Architecture, as 

that allows the input of both modalities, rather than Speech Proxy architecture (C). 

Then, it was Architecture D which was eventually selected for use in the new web-based 

version of TalkMaths. 

3.5 Summary 

In this chapter, we were concerned with architectures for applications using speech 

as input. We further distinguished between speech-based, speech-enabled and speech

driven applications, depending on how speech input is processed. We also emphasised 

the usefulness of speech-based applications and reviewed relevant speech technologies 

and tools. We then gave a taxonomy for system architectures of applications using 

speech as input, by classifying possible architectures based on whether ASR and/or 

PASRP are being hosted on the server or on the client. Each architecture was explained 

and examined in terms of dataflow between client and/or server(s) and example systems 

were provided whenever possible. We then discussed advantages and disadvantages 

of each of these architectures, characterised by their requirements for resources and 

availability. A summary in the form of a table was also given to aid the process of 

making a design choice for speech-based systems. Finally, we chose an architecture 

that is suitable for speech-enabled web applications such as TalkMaths and SWIMS. 

In the next chapter we will explore the use of Statistical Language Models (SLM) which 

are later used in conjunction with the Application Proxy Architecture (D) in Chapter 

5 to develop the SWIMS system. 



Chapter 4 

Theory of Statistical Language 

Models and Similarity Metrics 

4.1 Motivation 

Processing a language (natural or artificial) is a complex task for us human beings, 

as there are complex syntactic, semantic and pragmatic aspects of every language. As 

people, we constantly have to process the meaning of spoken and written (or typed) text 

in our daily life. Modelling or trying to model this process is called language modelling. 

Some researchers have focussed on syntactic [Chomsky, 1957, 1965; Lappin and Leass, 

1994] or semantic [Purver and Ginzburg, 2004] aspects of language. However, one 

particularly successful approach has been to use statistical patterns found within a 

given language. We call this type of language model a "Statistical Language Model". 

The assumption made is that we can in some sense encode syntactic and semantic rules 

in the statistics derived from these patterns [Hunter, 2004; Young, 1996]. The simplest 

types of Statistical Language Model (SLM) are based on sets of estimated probabilities 

corresponding to the N-grams (see next section) of the underlying language. 

These models are primarily used in Automatic Speech Recognition (ASR) and have 

been very successful. In the ASR process, SLMs are used in conjunction with acoustic 

modelling and speech signal processing (spectral analysis, etc). Such language models 

based on word probabilities tend to be more effective for acoustically very similar words 

and lowest for acoustically very different words [Holmes and Holmes, 2001] since the 
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former are more likely to be confused by acoustic models unlike the latter. However 

SLMs are also useful in other disciplines such as machine translation [Marino et al., 

2006], cryptography [Hasinoff, 2003], text prediction and auto correction tasks as well. 

Although SLMs were originally created for natural languages, they can equally well be 

applied to artificial languages such as computer programming languages or, as it will 

turn out in the next chapter, for language that arises from describing mathematical 

content in a spoken manner. In this chapter we present the theory of SLM and edit 

distance metric, which are then used in the next chapter in order to improve the 

recognition of spoken mathematics. 

The remainder of this chapter is organised as follows: In the next section, we 

discuss N-gram SLMs and then look into the ways of interpolating them to create 

more sophisticated language models. Subsequently, an approach to allow SLMs to 

adapt to the current context called cache models, based on an analogy with "short

term memory", and their interpolation with N-grams will be discussed. We then briefly 

discuss methods for the evaluation of SLMs before moving into a section which explains 

string edit distance metrics and their uses. We conclude this chapter by introducing 

how these can be applied to spoken mathematics which will be the theme of Chapter 

5. 

4.2 N-grams - A Baseline Approach to Statistical 

Language Modelling 

The most common and easiest to understand approach to statistical language modelling 

is the use of N-grams [Bahl et al., 1983; Holmes and Holmes, 2001; Jelinek et al., 1990]. 

In this approach, we call all possible individual words (i.e the vocabulary) unigrams 

(where N = 1), pairs of consecutive words bigrams (N = 2) and sequences of three 

consecutive words trigrams (N = 3) of the language. In general, N-grams are all 

possible N word sequences. In N-gram SLMs, we use probabilities of these N-grams 

within the language as the basis of the language model. 

To create N -gram language models, we need to obtain estimates of the probabilities 

of all the possible N-grams. To do this, we require a suitable dataset, called training 

data (or a training corpus). We assume that this training data contains adequate 
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information to determine realistic N -gram probabilities of the underpinning language. 

Practically, with a large number of possible permutations and combinations of words, 

this is never the case for any natural language with a considerable vocabulary. If the 

language is assumed to have a vocabulary of V words where V may be several thousand, 

then there will be a total of V N theoretically possible N -grams. In order to have 

appropriate probabilities for even the most rare but possible sequences of words, we 

require a large enough dataset which we call a representative sample of the language. 

The estimation of N-gram probabilities for common word sequences can be easily 

carried out by counting frequencies of these sequences from the training data to obtain 

maximum-likelihood estimates. For example, in a word sequence W = WI, W2, ••• , W n , 

we can define the bigrams as (Wk-l, Wk) for 2 ~ k ~ nand trigrams as (Wk-2, Wk-l, Wk) 

for 3 ~ k ~ n. Then we can estimate conditional probabilities: 

(4.1) 

(namely a bigram model) and 

(4.2) 

(Le. a trigram model), where the C(x) is used to represent the count of number of 

examples of x found in the training corpus [Holmes and Holmes, 2001]. P represents 

the "best" estimate of the probability. 

Thus, it is possible to produce N-gram models for a language once a suitable dataset 

has been obtained. However, as already noted, the number of theoretically possible 

N-grams for this language of vocabulary V grows as V N and it becomes difficult to 

obtain reliable estimates of N -gram probabilities, particularly for rare word sequences, 

for larger values of N. Furthermore, attempting to estimate these for large values of 

N would require very large amount of training data and be highly computationally 

expensive. Hence, in most cases, N-gram models are only created up to trigrams 

(N = 3) as the performance at larger values of N usually does not improve significantly 

over trigram models [Clarkson, 1999b]. 

N -gram language models are also useful for applications in text prediction, such as 

those used in SMS messaging in many mobile phones and in some assistive systems to 
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help disabled people type, such as Dasher [Vertanen and MacKay, 2010]. Typically, 

the task is to predict the next word in a sequence of n words, based on the previous 

n - 1 words. This can be simply achieved by using N-grams on their own - for 

example, using only unigrams, only bigrams or only trigrams and so on. It is also 

possible to combine variants of these N-gram probabilities and use a more complex 

model to obtain better results. See Section 4.3 for an example. N-gram based SLMs 

are quite successful in predicting one or two words ahead. However these are not 

normally reliable for predicting beyond that (some of our work on this topic, relating 

to a study on the prediction accuracy of SLMs in the domain of spoken mathematics, 

can be found in the next chapter). Similarly, these models can be useful for correcting 

small errors in text documents (e.g. correction of spelling, such as is carried out by the 

automated spell checkers incorporated into many word processing systems and syntax 

checkers in state-of-the art programming editors). N-gram models can also be used in 

the correction of ill-formed word sequences [Pereira, 2000] or out-of-vocabulary (OOV) 

word errors. Using N-gram probabilities, we can rank the likelihood (probability) of a 

given sequence of words within a sentence and, if the probability is less than a given 

threshold, we can suggest that there is some sort of error in the sentence. Similarly, 

when a word used is not in the normal vocabulary or the current word sequence is highly 

impossible, we can find the most probable within-vocabulary words to substitute at 

that point in the sentence in order to suggest possible corrections. As mentioned in the 

Section 4.7 later, these types of errors can be corrected using the edit distance metric 

method as well. 

Unigrams on their own have no context knowledge about the language they were 

generated from, only how common each word is. Bigram models are based on word 

pairs, and thus have a one word context knowledge, and in turn trigrams have a two 

word context. In general, N-gram models contain an (N - 1) word context, in terms 

of providing information about the properties of the language. However, this is purely 

from a statistical perspective, and can only provide the most basic semantic, syntactic 

and pragmatic information. This is in contrast to knowledge-based approaches, which 

would attempt to take more detailed account of these aspects. On the other hand, such 

approaches tend to be more complicated without necessarily yielding good performance 

in applications [Huckvale, 1996]. 

In natural languages, some word sequences may be theoretically possible, yet either 
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occur very rarely or do not occur at all in even very large training corpuses [Witten 

and Bell, 1991], for example, "a" and "the" are unlikely to occur next to each other in 

normal English text. (However, due to people hesitating while speaking, such pairings 

maybe less uncommon in transcriptions of spontaneous speech. For example, "I saw 

a the dog", where the speaker hesitated between "a" and "the" to correct himself). 

In such cases, obtaining reliable probabilities for these rare or unseen N-grams may 

be near impossible even using a very large amount of training date. To deal with this 

problem, we estimate probabilities for these sparse N-grams by "borrowing" proba

bility from more common N-gram probabilities [Hunter, 2004]. The rationale for this 

redistributing probabilities from "seen" N-grams to "less seen" and "unseen" N-grams 

is so that we can assume sum of all N -gram probabilities across all possible N -grams 

should be exactly equal to 1, whereas the sum of probabilities of the N-grams found 

in the training data should be less than 1, as this represents a subset of all possible 

events [Holmes and Holmes, 2001]. These techniques are called smoothing, discounting 

and backing-off [Katz, 1987; Ney et al., 1994]. Amongst many other smoothing tech

niques, the "Good-Turing" [Good, 1953] discounting method is one of the most-utilised 

on N-gram models. The Good-Turing method essentially involves altering the counts 

of N-grams such that an N-gram which occurs r times in the training data will be 

counted as though it had occurred d( r) times: 

d(r) = (r + 1) nr+1 
nr 

(4.3) 

where nr is the number of N-grams that occur exactly r times in the training data 

[Chen and Goodman, 1996]. There are other discounting schemes such as "Witten

Bell" [Witten and Bell, 1991] in which the discounting coefficient is determined by 

a particular context, for example in case of a bigram "AB" the context would be 

counts of distinct "A*" (where * is any word within the vocabulary), and the context 

for a trigram "P Q R" would be "PQ*" and so on [Clarkson, 1999b]. The concept of 

backing-off is to use a less-specific model when a high order language model fails to 

give an accurate probability estimate, for example using bigrams in place of trigrams. 

In general, an N-gram model can be backed-off to an (N - I)-gram model in cases 

where the former has too little data to estimate the probability of a particular event. 
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4.3 Interpolation between N-grams 

Increasing the performance of simple N-gram models can be done by combining them 

in several ways. One such approach, called a "deleted interpolation trigram model" 

combines unigram, bigram and trigram models together and was introduced by Lau 

[1994]. In this, the probability of the kth word P(Wk) in a sequence can be estimated 

by using the unigram, bigram and trigram counts of occurrences of the word Wk and 

the two previous words Wk-l and Wk-2 in the training data: 

(4.4) 

where N is the number of words and C(x) is the count of an item x in the training 

data. The oX's are optimised with respect to held-back data in order to minimise the 

perplexity (see Section 4.6). 

When there is more than one set of training data, one could combine all the training 

sets into one and create an N-gram model from that. This technique is called the brute

force approach [IIsu, 2007]. Unless these training sets are of same size, relevance and 

coverage relative to the type of target language to which the model would be applied, 

this method will not be expected to give particularly satisfactory results [Rosenfeld, 

2000]. Hence, some meaningful method of combining these data sources is required. 

One simple solution to this is linear interpolation [Chen and Goodman, 1996; Katz, 

1987; Neyet al., 1994]. Here, each training set (Ti) is used to create an N-gram model 

(Mi) and in application the probability of the next word w given information a is 

estimated as: 

P(wla) = L Ai~(wla) (4.5) 

where {Ai} are weights for each model. Note that E Ai = 1. For example, the deleted 
i 

interpolation trigram model proposed by Lau [1994] can be regarded as a special case of 

this. Typically the A'S are chosen in order to optimise the performance of the resulting 

interpolated model [Hsu, 2007]. This way we can adapt the relevance of each training 

set to the target domain in a sensible way. In other words, with reference to a given 

target domain, priority is given to models trained on more relevant data over the models 

trained on less relevant data. 
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4.4 Cache Models 

N -gram models work well if enough training data is available to provide a represen

tative sample of the domain it is intended to be applied to [Moore, 2001, 2003] - for 

example, for use in transcribing news broadcasts. In practice, we might need to cre

ate and apply language models to scenarios, such as dialogues and other spontaneous 

conversations between people and formal or informal speeches, where a suitable train

ing corpus may not necessarily be available. In these circumstances, a language model 

needs to adjust while it is being used. Such dynamic language models are referred to as 

adaptive language models [Clarkson, 1999b], which use probabilities of recently encoun

tered words - on the assumption that these are likely to influence the probabilities of 

words occurring in the near future - to update the existing word probability estimates. 

The distinction is that whilst N-gram models are static and use fixed probabilities 

based on a training corpus, adaptive models can dynamically change word probabili

ties according to the current situation. One often used adaptive language modelling 

technique is "Cache-based modelling", that takes into account the fact that, in most 

natural languages, recently-appeared words are quite likely to re-appear [Holmes and 

Holmes, 2001] in the near future. Using this assumption, we can update the current 

word probabilities from those of a baseline N-gram model by giving higher weights 

to recently-appeared words and lesser weights to others. These tend to use a "cache

buffer" or "recent history", usually over a predefined length - such as the 20 most 

recent words. (however some authors have adjusted the weights used according to a 

word's position in the cache, e.g. Bellegarda [2004]; Clarkson and Robinson [1997]; 

Iyer and Ostendorf [1999]). If we define a word stream as wi = WI, W2, ... , Wi, such 

that wf = Wi, Wi +1 , ... , Wj, then, using a cache of K words the cache-based conditional 

probability of the kth word Wk in the sequence is given by: 

(4.6) 

where IE is an indicator function which equals to 1 if € occurred and 0 otherwise [Clark

son, 1999b; Kuhn and De Mori, 1990]. This approach is analogous to the "short-term 

memory" of people [Baddeley, 2003; Fletcher, 1994] and the cache memory used in 

computers. Kuhn and De Mori [1990] have shown that this technique can be success-
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fully used in ASR. Table 4.1 illustrates how a dynamic cache buffer could be maintained 

Step Sentence 
1 This is just another sentence with 
2 This is just another sentence with some 
3 This is just another sentence with some words 
4 This is just another sentence with some words in 
5 This is just another sentence with some words in it 

Table 4.1: Change of 5-word cache content (marked in bold) over time 

over time. The words in bold font will be used in each step as the cache buffer, where 

at each step the left-most word in the cache is dropped-out and a new word from the 

text stream is inserted at the right-most edge. 

4.5 Interpolation between N-grams and Cache Mod

els 

Since cache models on their own are based on limited information about language, it 

proves to be highly impractical to use them for recognition tasks on their own. However, 

they do reflect the word patterns over the short range - which is useful for prediction 

tasks as discussed earlier. In contrast, N-gram models contain the overall "global" 

word probabilities but not local patterns. To use both of these features together for 

better recognition performance, it is necessary to combine cache models and N-gram 

models in an appropriate manner. We can do this in many ways as the outputs of 

both models are in the same form (Le. conditional probabilities). Generally, the linear 

interpolated cache-N -gram model would be: 

where PCache is defined by equation 4.6. The goal is to find the optimal value of the 

coefficient ,\ to calculate probabilities of the resultant model such that its performance 

is maximised, and is better than that of each individual model. The eMU SLM Toolkit 

[Clarkson, 1999a; Clarkson and Rosenfeld, 1997] is a very useful tool to determine these 

optimal coefficients using algorithms such as the "Expectation Maximisation" (EM) 
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algorithm [Dempster et al., 1977], which estimates these coefficients on the basis of 

some testing data. 

4.6 Evaluating the Performance of SLMs 

The performance of a SLM is measured with respect to its domain of application 

by applying the model to a previously "unseen dataset", which we call "test data". 

Usually, a subset of the training data is held back for this purpose and is hence called 

"held-back data". Suppose that we have a language model L trained on training 

data T and with held-back test data S exists, composed of a word sequence W = 
WI, W2, ... , WK. (Ideally both Sand T should be representative of the domain which 

the model will be applied.) Using L, we can find the probability of the word sequence 

P(W) = (WlIW2, ... ,WK). The higher P(W), the better the language model L with 

respect to the training set S. We call the reciprocal of the Kth root of this probability 

the Perplexity score [Holmes and Holmes, 2001] of the model L with respect to the test 

set S. In general, perplexity can be written as: 

(4.8) 

where P P(W) is the perplexity score of the model L with respect to a test set Shaving 

a word sequence with K words. We can use this technique to evaluate a language model 

with respect to a test dataset that needs to be recognised. The perplexity can also 

be regarded as the average number of equally probable words possible, and therefore 

which need to be considered, at each step in a "guess the next word" game [Hunter, 

2004; Shannon, 1951]. Hence the lower the perplexity score, the better the language 

model will be in predicting the test data. 

Given a set of SLMs, choosing the best possible model can also be done using Maxi

mum Entropy method [Lau et al., 1993]. Given an optimal language model, its entropy 

(sometimes called cross entropy) is the average, minimum number of bits required to 

encode a word [Shannon, 1951]. So, for a given probability distribution p, the entropy 
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H(p): 

(4.9) 

where Pi is the probability of the system when it is in the state i [Hunter, 2004; 

Shannon, 1951]. The entropy of a language model can be interpreted as the amount 

of non-redundant (i.e. useful) information produced by it [Rosenfeld, 1996; Shannon, 

1951] and hence the quality of a language model with respect to a target domain can be 

maximised by increasing the entropy. One such method of finding the best language 

model is called "maximum entropy method" [Berger et al., 1996; Lau et al., 1993; 

Rosenfeld, 1996]. The relationship between entropy H(p) and perplexity PP(IV) can 

given as [Bahl et al., 1983]: 
P P(IV) = 2H (P) (4.10) 

Since the perplexity and entropy are dependent on test data, it depends on how the test 

data was chosen. To minimise this bias, we use a "Cross Validation" technique [Kohavi 

et al., 1995] when evaluating a language model. This is done by splitting the training 

corpus into several subsets and training the model on all but one subset, and then 

applying the model to the skipped subset for evaluation. \Ve then repeat this process 

by skipping one subset at a time for all the subsets, averaging perplexity or entropy 

over the different trails. Sometimes we also look at the variation of measurements 

between trials to estimate the uniformity of the training corpus. 

4.7 String Edit Distance Metrics and its Usage 

As explained in Section 2.2.2, it has been noted that the majority of human typing and 

spelling errors are quite minor [Damerau, 1964], often involving just the omission or 

addition of a single character, typing two characters in the wrong order, or accidentally 

substituting one character for another (often one adjacent to the correct symbol on 

the keyboard [Grudin, 1983]). The Damerau-Levenshtein distance [Damerau, 1964; 

Levenshtein, 1966] on its own, or with some additional contextual knowledge [Mays 

et al., 1991] can be used to find the nearest correct within-vocabulary words to correct 

such spelling errors. The Damerau-Levenshtein distance between two character strings 

measures how different the strings are by taking account of the minimum numbers of 
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insertions, deletions, substitutions and "single transpositions" of characters required to 

transform one of the strings into the other. (Note that single transposition refers to the 

interchange of two adjacent characters [Damerau, 1964; Wagner and Lowrance, 1975]). 

Here we assume each such operation corresponds to equal "distance", i.e. insertion=l, 

deletion=l, substitution=1 and transposion=l, where each "1" is the same unit of 

distance. For example, the edit distance of the words "string" and "strong" will be just 

1 as changing the character "i" into "0" would suffice (1 substitution). Some approaches 

regard a substitution as 2 units: 1 deletion + 1 insertion. An efficient algorithm to 

calculate Damerau-Levenshtein distance between two words was introduced by Wagner 

and Lowrance [1975]. 

Edit distance metrics can be used in order to correct training data for errors prior 

to creation of SLMs and also to correct target data before applying SLMs to them for 

prediction. In this way the SLMs will no longer need to deal with DOV words. A 

more sophisticated method would be to rank the candidate words to be replaced in 

place of an incorrect word using a combination of SLM and edit distance metric in a 

meaningful way. 

4.8 Applications to Spoken Mathematics 

As mentioned in Section 4.1, SLMs have many applications in predicting and correcting 

both natural and artificial languages. One such artificial language is "Spoken Math

ematics" [Attanayake et al., 2011a; Chang, 1983; Fateman, 2009]' which is used to 

dictate mathematics into electronic documents using ASR on a computer. Although 

many applications of SLMs to the processing of different natural languages can be found 

in the literature, we have not come across any evidence of these being used to enhance 

the recognition of spoken mathematics, apart from studies by Wigmore [2011] in the 

earlier stages of the TalkMaths project. Regarding the use of edit distance metrics, it 

may be obvious that it can be used with any language, yet has not previously been 

employed in correcting typed mathematics equations. Based on the theories discussed 

in this chapter, the next chapter will present our work on prediction and correction of 

spoken mathematics using SLMs and an edit distance metric. 



Chapter 5 

SLM Applications to Spoken 

Mathematics 

5 .1 Introduction 

As noted in Chapter 3, 8LMs and edit distance metrics have proved to be very useful 

in prediction and correction tasks. In this chapter, we describe how these techniques 

were applied in the TalkMaths project, with a view to assisting its users in editing 

mathematical text documents. 

Proficiency in mathematics, at least at an elementary level, is essential for success 

in a wide range of scientific, technical and commercial fields. However, it is a subject 

which many students find difficult, in part due to its specialized language and notation. 

These make working with mathematical equations and formulae a problem for a large 

proportion of people. This is more notable when the mathematics expressions to be 

manipulated are to be included in electronic documents. Typing and editing ordinary 

text can be both slow and error-prone for non-experts, which is even more the case for 

mathematical text, with its non-alphanumeric symbols and often rather complicated 

two-dimensional layout. Furthermore, creating, editing and reading mathematical text 

(in its conventional form) is particularly difficult for individuals suffering from vari

ous disabilities [Karshmer, 2008J, on-line distance learners and people who are often 

working "on the move". (It has been noted that a growing proportion of studying 

and academic exercises are being carried out using mobile devices such as smart phones 
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and notebook or tablet computers, often "on the move" or in potentially noisy public 

places such as cafes [Cuartero-Olivera et al., 2012]). Spell checkers, automated correct

ing facilities and predictive text have been familiar features of word processing and text 

messaging (e.g. SMS on mobile phones) systems for several years. These have aimed to 

provide intelligent assistance to the user in order to make the task of creating and edit

ing ordinary text easier. In this chapter, we discuss the development of similar features 

using 8LMs and edit distance metrics for two mathematical text editors, TalkMaths 

and SWIMS, which allow input of mathematical text using spoken mathematics. We 

also present the results of three experiments that were used to evaluate our prediction 

and correction implementations. The first part of this chapter is devoted to describing 

the creation and evaluation of SLMs from a suitable dataset collected from relevant 

domains on the World-Wide-Web. The next part will then describe three experiments 

using these SLMs for spoken mathematics prediction tasks and the analysis of their 

results. Subsequently, details of another experiment and its results on error correction 

for spoken mathematics using a string edit distance metric are given. The chapter will 

be concluded by a discussion section. 

5.2 Developing and Evaluating SLMs for Spoken 

Mathematics 

As part of the TalkMaths project, our approach to building a substantial database of 

mathematical text - incorporating equations, formulae, etc - has been evolving contin

uously over the last few years. During the earlier stages in this project [Wigmore, 2011], 

the first attempt at obtaining data on the ways in which mathematical equations are 

spoken by people was based on a part of the British National Corpus (BNC) [Burnard, 

1995] which consisted of transcriptions of conversations from school and college math

ematics classes [Wigmore, 2011; Wigmore et al., 2009a,b]. The vocabulary (number 

of different words) found in this dataset was 4,355 (the total number of words was 

123,821) and the perplexity of the N-gram SLM obtained was rather high, due to both 

the relatively large vocabulary and the high proportion of non-mathematical words and 

"general chat" in the conversations, making the data somewhat unpredictable. The sec

ond attempt at modelling mathematical text was to manually populate a dataset using 
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trigonometric equations from some mathematical school text books [Wigmore, 2011; 

Wigmore et al., 2010]. Not surprisingly, both the vocabulary (102 distinct words) and 

the dataset overall (the total number of words was 7,857) were smaller for this trigono

metric dataset than for the BNC-based data. The statistical language models built 

from the second (trigonometry) dataset had much lower perplexity scores, indicating 

that this data was more predictable. Interestingly, consistent with previous studies on 

more general speech data [Hunter and Huckvale, 2006; Moore, 2001, 2003], the results 

of these first two attempts at creating statistical language models from mathematical 

material confirmed that, for data of a given type, if the training dataset is increased in 

size, the perplexity of the resulting language model decreases and hence its predictive 

power is increased. Since the second dataset was much smaller, the necessity to create 

a substantial yet relevant dataset was evident. 

5.2.1 Creation of the Dataset from Web Sources 

In the current study, we have created a much larger, high quality dataset containing 

over 4100 expressions of mathematical expressions (the total number of words was 

77,824 with a vocabulary of 100 words) on which to base new SLMs. We identified 

and crawled a handful of publicly available tutorial web sites containing mathemati

cal equations at a similar level of complexity to those which TalkMaths is currently 

capable of processing. For this work, we identified a number of mathematical tutorial 

web sites in the public domain covering material at roughly GCSE & GCE A-Level or 

"Senior High School level" mathematics. We developed a web-crawler that can iden

tify LaTeX or MathML content within the source code of a web site and applied this 

to the tutorial sites we had found. This mathematical content is then extracted into 

a database. A filtering script was then applied to remove display instructions from 

LaTeX code and illegal characters from the equations. Finally, a LaTeX to spoken 

mathematics format converter for expressions was designed and developed using the 

Yapps2 [Patel, 2009] parser generator. The implementation of this converter can be 

found in the Appendix B. In order to ensure that the mapping from LaTeX code to 

spoken mathematics was one-to-one rather than many-to-one (Le. any given valid 

expression in spoken mathematics should be the result of converting a unique piece 

of LaTeX code) the converter introduced additional keywords begin and end for de-
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noting sub-sections (such as fractions or square roots) within the linearised spoken 

descriptions l of each mathematical expression, to create a word string which would be 

identical to the correct way in which a TalkMaths user would dictate that expression. 

Some example expressions from this corpus are shown in Table 5.1. Table 5.2 shows 

the most frequent words (unigrams) found in this corpus of spoken mathematics. Table 

5.3 illustrate most frequent bigrams and trigrams in our spoken mathematical expres

sions corpus respectively. A more detailed comparison of how our dataset compared to 

other related corpuses in N-gram frequencies can be found in the Appendix A, Tables 

A.1, A.2 and A.3. 

5.2.2 Creating Statistical Language Models 

Once the dataset has been created by using the web-crawler, we then used the Carnegie 

Mellon University Statistical Language Modelling (CMU SLM) Toolkit [Clarkson and 

Rosenfeld, 1997] (with Good-Turing discounting [Good, 1953]) to build various trigram

based SLMs using samples of our corpus (3,194 mathematical expressions containing 

a total of 61,479 words with a vocabulary of 100 words). Figure 5.1 illustrates the 

typical usage of the CMU Toolkit which we have adopted to suite our needs. The 

theoretical principles behind these models were described in the previous chapter. An 

overview of the process of creating SLMs and measuring perplexities from web-crawled 

spoken mathematics corpus is illustrated in Figure 5.2 which covers three main pro

cesses, namely data collection, conversion and SLM production & evaluation. Here 

"text2wfreq", "wfreq2vocab", text2idngram", "idngram21m" and "evallm" are names 

of programs or routines within the CMU toolkit. text2wfreq converts a passage of text 

to a table of word frequencies, wfreq2vocab produces a vocabulary list from that table 

of word frequencies, text2idngram takes in a text stream together with a vocabulary 

1 When speaking mathematics, in general, the spatial aspects of mathematical quantities are usu
ally omitted. For example, ab+c + d could be spoken as "a to the power of b plus c plus d", where a 
pause may be used between c and d to indicate the end of the superscript. However, without seeing 
the written expression, this may be ambiguous for the listener since that utterance could also mean 
a b + c + d or ab+c+d. Here, what we mean by "linearised spoken mathematics" is the introduction of 
some suitable spoken delimiters to indicate such spatial aspects (end of a superscript, end or beginning 
of a numerator/denominator, etc.) to a mathematical expression. For the example here, the linearised 
spoken mathematical version would be "a to the power of begin b plus c end plus d" which clearly 
indicate the beginning and end of the sub-expression corresponding to the power of a. We refer to 
the next chapter for a more detailed discussion of spoken mathematics. 
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Spoken Mathematical Expression Written form 

delta victor equals cos x-ray delta x-ray dv = cosxdx 

hotel of x-ray equals one minus x-ray to the power of two hex) = 1- x 2 

equals one over alpha begin integral of delta theta end _ 1 

-~ 

equals theta over alpha plus capital charlie =_IJ_ 
a+C 

golf of x-ray equals square root x-ray semi-colon g(x) = .;x:. 
hotel of x-ray equals one minus x-ray to the power of three hex) = 1-x3 

open bracket one over two close bracket (!) 
four less than or equal to x-ray less than or equal to five 4~x~5 

square root begin one minus x-ray to the power of two end y'1- x2 

papa of x-ray equals foxtrot of x-ray plus capital charlie p(x) = I(x) + C 

uniform equals one plus begin alpha to the power of two end u = 1 +a2 

india index zero equals echo to the power of x-ray io = eX 

begin minus bravo end over begin two alpha end -b 
2a 

minus bravo over begin two alpha to the power two -b 
W 

two over five x-ray to the power of five plus capital charlie 2 
5x5+C 

Table 5.1: Sample expressions from our spoken mathematics corpus. The names of 
individual letters are dictated using the NATO pronunciation alphabet (alpha, bravo, 
charlie, delta, ... ) with x-ray representing the letter x 

list and generates a numerically sorted mapping between N -grams and the vocabulary 

list. idngram2lm then takes in the output of text2idngram and a vocabulary list to 

generate the language model, evallm evaluates the perplexity of a language model with 

respect to a specific passage of test text. 

5.2.3 Evaluation Results of Statistical Language Models 

The experiments to investigate the quality of the web-crawled data, and the SLMs ob

tained using them confirmed the trends noted by previous studies [Hunter and Huck-
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Unigram Frequency % Unigram Frequency % 
end 7.58 over 3.21 

begin 7.57 minus 2.53 
x-ray 7.30 one 2.52 

of 7.26 delta 2.42 
two 4.82 close 1.81 
to 4.32 open 1.80 
the 3.93 three 1.66 

power 3.93 alpha 1.65 
equals 3.79 index 1.62 
bracket 3.61 plus 3.34 

Table 5.2: The most frequent words (unigrams) in our spoken mathematical expressions 
as percentages of all the words in the corpus. x-ray is the spoken form of the symbol x 

Bigram Frequency % Trigram Frequency % 
the power 3.93 to the power 3.93 

to the 3.93 the power of 3.93 
power of 3.93 power of two 2.05 
of two 2.1 x-ray to the 1.66 

over begin 1.85 end over begin 1.2 
of begin 1.76 delta x-ray end 0.88 
end over 1.68 power of begin 0.73 
x-ray to 1.66 close bracket end 0.72 

close bracket 1.55 of two end 0.67 
open bracket 1.54 begin open bracket 0.63 

of x-ray 1.42 over begin delta 0.63 
x-ray end 1.39 open bracket x-ray 0.58 

begin delta 1.17 of x-ray equals 0.52 
delta x-ray 1.11 end to the 0.51 

end end 1.08 foxtrot of x-ray 0.49 
x-ray plus 1.07 of two plus 0.47 
two end 1.07 begin delta x-ray 0.46 

end equals 1.06 x-ray end equals 0.39 
equals begin 0.9 power of three 0.39 
begin x-ray 0.81 x-ray close bracket 0.39 

Table 5.3: Most frequent bigrams and trigrams in our dataset 
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Figure 5. 1: Typical usage of CMU Toolkit [Clarkson and Ro enfeld , 1997] 

vale, 2006; Wigmore, 2011 ; Wigmore et al. , 2010]. As m nt ioned pr viously (in S ction 

4.6), in a similar manner to other authors we us d p rpl xityas a m asure of th qual

ity of our models, with lower perplexity indicating a better model. W al 0 minimis d 

any potential bias in the perplexity tests by using the cross-validation t chniqu also 

xplained in Section 4.6. The re ults from thi new study are summaris d in Table 5.4. 

Interestingly, the predictive power of the models based on the sample of our new 

dataset t ested was better (as shown by low r perpl xity values) than those of both 

earlier studies [Wigmore, 2011 ' Wigmore et al. , 2010] on poken mathemati s. There 

are everal possible reasons for thi improvement . Th vocabulary is still r latively 

small and the t raining datasets used in our late t study are considerably larger than 

the t rigonometric dataset used in Wigmore t al. [2010]. Perhaps the mo t important 

reasons could be the higher quality and incr ased amount of t raining data. 
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Figure 5.2: Building & Evaluating SLMs for Spoken Mathematics for Tutorial Web 
Site Data 

5.3 Applications of SLMs to Prediction of 

Spoken Mathematics 

As noted in previous section, the SLMs we built have the potential to be useful for 

prediction of mathematical text. In this section, we first introduce a prototype system 

(Speech-based Web Interface for Mathematics using SLMs, or SWIMS) , that we used 

to empirically evaluate our SLMs when put into practice. Then we report results 

of three experiments used to evaluate the predictive power of the SLMs: For the 

first two experiments, A and B, we trained a SLM using 90% of our database of 
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Training set Test set Training Test Perplexit) Vocabulary 
words words (words) 

subsets [1-9] subsetlO 54907 6572 7.07 100 
subsets [1-8 & 10] subset9 54968 6511 7.17 100 

subsets [1-7 & 9-10] subset8 55294 6185 7.11 100 
subsets [1-6 & 8-10] subset7 55688 5791 7.31 100 
subsets [1-5 & 7-10] subset6 55172 6307 7.25 100 
subsets [1-4 & 6-10] subset5 55597 5882 7.74 100 
subsets [1-3 & 5-10] subset4 55340 6139 7.01 100 
subsets [1-2 & 4-10] subset3 55805 5674 7.65 98 
subsets [1 & 3-10] subset2 55177 6302 7.53 100 

subsets [2-10] subsetl 55363 6116 7.02 100 
Grand Mean 55331.10 6147.90 7.29 99.80 

Table 5.4: Cross-validation Perplexity Calculations on Statistical Language Models of 
3,194 spoken mathematical expressions using CMU Language Modelling toolkit 

spoken mathematical equations ('" 3700 expressions). The remaining 10% ("" 400) 

was then used to test the predictions offered by the system, based on the trained 

model, comparing these with the complete correct version of each expression. For the 

third experiment, C, we varied the size of the training and test data sets in order to 

monitor the consequential change in the system's prediction performance. 

5.3.1 The SWIMS Prototype System 

SWIMS was developed as a separate module which can be later integrated into the 

TalkMaths system following successful evaluation. The goal of SWIMS is to assist 

the user by predicting and/or correcting his/her input using SLMs prior to parsing. 

Parsing is required in order to display the output on the screen using suitable math

ematical rendering technology such as MathML. For ease of evaluation and for better 

performance, SWIMS has been divided into two units, one to predict the next word(s) 

in the input and the other to correct user mistakes. The former interface is called Pre

dictive Mathematics and the latter Alternative/Corrective Mathematics. We note that 

requiring a user to read a large number of possible alternatives offered to them by the 

system imposes a high cognitive load. Therefore, we also provide previews of each of 

these alternatives, rendered into standard mathematical format. This should make the 
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user's task of identifying the correct version easier, removing the burden of reading long 

expressions in spoken mathematics format. We used JSON to store trigram probabil

ities for our SLM, JavaScript for calculating probabilities, and the jQuery JavaScript 

library to communicate between the browser and the TalkMaths parsing server. 

5.3.2 Predictive Mathematics Interface 

The predictive mathematics interface predicts one or two words ahead of the currently 

typed or dictated mathematical text. In order to predict one word ahead, the system 

uses the last two words of the input, trying to match the first two words of trigrams 

found in our SLM. When such matches are found, suggestions for possible completions, 

i.e. the third word of such trigrams, are offered to the user as alternatives, ranked 

according to the trigram probabilities. In cases where the input is less than two words, 

or there is no matching trigram, then the system will back-off [Katz, 1987; Kneser 

and Ney, 1995] to bigrams and their probabilities. Similarly, if this is not successful, 

unigram probabilities will be used. Two word prediction is a recursive extension of 

the one word prediction mechanism, where only the first word of each trigram is used 

as input. The system architecture of this predictive interface is shown in Figure 5.3, 

where the dashed line indicates the system boundary of SWIMS. Figure 5.4 shows this 

I User I 

Spoken 
Mathematics 
(SM) 

1~ ________________________ 
I
SW 
1 SM 

-------------- -------------- -------, 
I 
1 I SLM I I Controller J l Expression J l Predictions J 

1 
1 
1 
1 
1 
1 

1 
1 
1- SM Predictions -------------------------- ------- ---------

SM Predictions SM 

1-------- -------- -------, 
1 1 
1 I TalkMaths I 

1 
1 1 1 
1 1 L ________________________ J 

-------------- ------_J 

MathML Math ML 

Figure 5.3: SWIMS Predictive Mathematics Interface System Architecture where "SM" 
refers to "Spoken Mathematics Format" 
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system applied to the spoken mathematics form of the formula, V = Ee R6, for the 

voltage across a capacitor which is being discharged through a resistor, where SWIMS 

has correctly predicted the next word (circled) that should come after the last word 

dictated/typed by the user. 

SlPlMS 
~eclH>ased Web Interfaco "" MaIhomotics using ~LM 

Home~AJtern.tlye Math! About 

Rendorod Prediction.: 

1) V. Ek*) 
2) II. Et( -if) 

Prodlc:tLowf ' 3) V. E' (-'is) 

~ ~::~ 4) V . E.( -To) 
TWo or dlcllle yow c_ ,--18ngO -begin ....... - ~ 5) v . E.( -i;) 

Spot ... Prodlcllons: 
1) capital victor equals capital echo echo 10 tho powe, 01 begin open brackel minus tango over begin copltal romoo capital hartlo 
2) capital vlcto, oquals capital echo ocho 10 tho powe, 01 begin open brackel minus tango over bogln capital romoo capllal 
3) capital victor oquals capltalocho ocho 10 tho powe, 01 begin open brackel minus tango ove, bogln capital ,omoo capital Ilorra 
4) capital vlclor oquals capltalocho ocho '" tho pow .. 0' bogln open brackel mInu.lango over bogln capital romeo capital bravo 
S) 'lip'" vktor equals capital echo .elM to the power of begin open bracket minus tango over begin capital romeo capital alpha 

Figure 5.4: Predictive Mathematics Interface in use. In the top-ranked ugg stion, the 
SLM correctly predicts that capital will be followed by charlie 

5.3.3 Dependence of Prediction Success Rate on Number of 

Alternatives Offered (Experiments A and B) 

Each expression in the test set was run through the predictive mathematics interface, 

with the last one (Experiment A) or two (Experiment B) word(s) omitted. We then 

observed the next word(s) predicted by the system, to see if one of highest ranked (by 

probability) predictions contained the actual missing word(s) . Some example expre -

sions we used for these experiments are illustrated in Table 5.5 (Experiment A) and 

Table 5.6 (Experiment B). The word end is normally used as a context cue within our 

specialized language for spoken mathematics, resulting in it being the most common 

word (see Table 5.2) in our dataset. Hence, we did not test expressions ending with 

end (A) or ones which had end in the last two words (B). Table 5.7 illustrates the 

percentages of times the correct prediction was included in the list of M "best" sug

gestions being offered to the user, and how this varied with M. In order to check that 



5. SLM APPLICATIONS TO SPOKEN MATHEMATICS 60 

Incomplete Expression Omitted SWIMS predictions 
next 
word 

alpha to the power of two plus bravo to the two two, begin, three, 
power of x-ray, four 
begin x-ray minus one end over begin x-ray two one, two, three, 
minus three end equals one plus two over charlie, yankee 
begin x-ray minus 
three delta over begin delta x-ray end open to close, plus, to , mi-
square bracket x-ray nus, index 
begin delta over begin delta x-ray end end x-ray x-ray, yankee, 
of begin charlie foxtrot end equals charlie tango, to, over 
begin delta foxtrot end over begin delta 
one minus two alpha plus bravo equals one alpha charlie, alpha, or, 
minus two bravo plus foxtrot, bravo 
zero less than x-ray minus charlie less than two two, one, x-ray, be-
delta index gin, yankee 
alpha x-ray to the power of two plus bravo zero or, x-ray, delta, 
x-ray plus charlie less than three, one 
alpha index november equals november to one one, alpha, begin, 
the power of begin minus begin november x-ray, papa 
plus 

Table 5.5: Sample incomplete expressions we used for Experiment A, omitted word 
and predictions (using 5 suggestions, adding one word for each) 

the results obtained were consistent, we performed 10 fold cross validation. The results 

of Experiment A are also represented graphically in Figure 5.5, which shows that the 

success of the one word ahead prediction increased as the number of suggestions shown 

to the user was increased, but with diminishing return. However, with 10 suggested 

alternatives, the system correctly predicted one word ahead over 75% of the time. 
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Incomplete Expression Omitted S\VIMS predictions 
last two 
word(s) 

alpha to the power of two plus bravo to the of two of two, of begin, 
power end over, end end, 

begin delta begin x-
ray 

begin x-ray minus one end over begin x-ray minus two to the, to bravo, 
minus three end equals one plus two over plus one, plus two, 
begin x-ray index zero 
three delta over begin delta x-ray end open x-ray to times close, times 
square bracket open, begin inte-

gral, begin delta, 
foxtrot of 

begin delta over begin delta x-ray end end delta x-ray delta x-ray, delta 
of begin charlie foxtrot end equals charlie yankee, x-ray to, x-
begin delta foxtrot end over begin ray plus, two x-ray 
four x-ray to the power of three plus four two plus two end, two plus, 
x-ray to the power of begin x-ray, begin 

two, three plus 
foxtrot of x-ray equals x-ray to the power the power, the 

end, bravo of, bravo 
foxtrot, alpha of 

alpha x-ray to the power of two plus bravo than zero than or, than x-ray, 
x-ray plus charlie less end over, end end, 

begin delta 
alpha index november equals november to plus one minus one, minus 
the power of begin minus begin november two, plus one, plus 

alpha, index sierra 

Table 5.6: Sample incomplete expressions we used for Experiment 0, omitted words 
and predictions (using 5 suggestions, adding two words for each) 
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N umber of Suggest ions 
Training Test Set 5 10 15 20 25 
Set Size Size 

Minimum 3684 407 62% 74% 79% 85% 88% 
Mean 3691.8 410.2 63.2% 77.6% 84.4% 88.9% 91.1% 
Max: 3695 418 66% 81% 87% 91% 94% 

Table 5.7: Experiment A: Variation of success rates of one word predict ion with numb r 
of suggestions offered to the user 

One" · 0 rd Predic non 

95 -- 90 c .--~ 85 . ""'1 
'";I 

f 80 ... -- 75 ~ 
~ - 70 :.. 
Q 
~ 65 ,. -Q 

= 60 .. -
55 

0 10 ~o 30 
:Xumber of Sllggesnons 

Figure 5.5: One word ahead prediction success rat increasing with the number of 
suggestions offered to the user. The different points corresponding to the same number 
of suggestions indicate the results from the 10 different cross validation t rials 

Experiment B evaluated the two words ahead prediction facility within SWIMS, 

in a similar manner to Experiment A. The results are summarized in Table 5.8, and 

shown graphically in Figure 5.6. The trend is similar to that for xperiment A, but 

the success rates in experiment B are lower for a given number of sugge tions, and it 

would appear unlikely that prediction success rates in excess of 50% could b achieved. 
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Number of Suggestions 
Training Te t Set 5 10 15 20 25 
Set Size Size 

Minimum 3684 407 17% 24% 28% 29% 30% 
Mean 369l.8 410.2 24.3% 30.2% 33.6% 35.2% 36.2% 
Max 3695 418 31% 36% 39% 42% 44% 

Table 5.8: Experiment B: Variation of success rat s of two word prediction with number 
of uggestions offered to the user 

Two " ·ords. Prediction 
45 --c .- 40 -~ .--:;, 
35 E .. -- 30 ~ 

E 
~ 

25 c 
::.; . -c 20 
~ -.. + .. 

15 

0 110 20 30 
:\"u.mber ofSugges.tions 

Figure 5.6: Two word ahead prediction success rate increasing with the numb r of 
suggestions offered to the u er 

5.3.4 Dependence of Prediction Success Rate on Size of '!rain

ing Dataset (Experiment C) 

In Experiment C, we studied how the success rate for one word ahead pr diction varied 

as different sized datasets were used to t rain the SLM. The r suIts are ummarized in 

Table 5.9. We kept the number of suggestions offer d, M , as 5 and varied t he size of the 
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Mean Training Set Size Mean Test Set Size Mean % Correct (SD) 
3691.8 410.2 63.10 (1.32) 
3281.6 820.4 62.60 (1.69) 
2871.4 1230.6 62.30 (1.58) 
2461.2 1640.8 62.10 (1.60) 
2051 2051 61.30 (1.62) 

1640.8 2461.2 60.30 (1.49) 
1230.6 2871.4 59.00 (1.31) 
820.4 3281.6 56.50 (1.44) 
410.2 3691.8 52.70 (1.77) 

Table 5.9: Experiment C: Variation of success rate of one word ahead prediction with 
SLM size (5 suggestions per trial) - both training and test sets may vary in size 

training and test set sizes. We were particularly interested in the relationship between 

the increase in the size of the training set and one word ahead prediction success rate. 

The Results in Table 5.9 showed a small increase in success rate for one word ahead 

prediction when the amount of training data used was increased, whilst ft.,f remained 

fixed. However, due to the cross validation technique used, the size of test set has 

also been varied during this trial, which in turn may have an effect on the outcome, 

making it difficult to draw a conclusion. We then carried out the same experiment, 

keeping the test set size fixed as well. The results of this more controlled experiment 

Mean Training Set Size Mean % Correct (SD) 
3691.8 63.11 (1.14) 
3281.6 61.36 (2.02) 
2871.4 61.88 (2.57) 
2461.2 62.99 (2.47) 
2051 61.32 (3.16) 

1640.8 59.18 (2.15) 
1230.6 58.97 (3.88) 
820.4 56.86 (3.97) 
410.2 52.94 (3.03) 

Table 5.10: Experiment C(2): Variation of success rate of one word ahead prediction 
with SLM size (5 suggestions per trial) keeping test set constant (400) 
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shown in Table 5.10 re-confirmed the relationship between training dataset size and 

the prediction accuracy shown by the less-controlled initial experiment. 

5.4 Applications of Edit Distance Metrics to Error 

Correction 

To realise correction of errors (in this case, small typing errors), in the SWIMS sys

tem, we implemented another web interface called Alternative/Corrective Mathemat

ics. Each time an out of vocabulary (OOV) word is detected, the Damerau-Levenshtein 

algorithm [Damerau, 1964; Levenshtein, 1966] is used to calculate the Levenshtein dis

tance of the typed word relative to each word in the vocabulary, in order to find 

suitable candidates for correction of the OOV word in question. Once a list of such 

candidates has been obtained, the Levenshtein distance and/or SLM probabilities can 

be used to re-rank the resulting new sequences of words. To illustrate this concept, we 

designed three variants of correction methods in the Alternative/Corrective Interface 

of SWIMS. These use Damerau-Levenshtein only, SLM only, and both in combina

tion, respectively. In this project, we have only implemented and evaluated the first 

of these. In experiment D, the edit distance-based correction algorithm of the SWIMS 

system has been evaluated by artificially introducing a controlled selection of mistakes 

into otherwise correct expressions. Figure 5.7 illustrates the system architecture of 

SWIMS alternative/corrective mathematics interface. The D-L Engine is based on 

the Damerau-Levenshtein algorithm which provides alternatives for OOV words in the 

input. 

An illustration of the SWIMS Alternative/Corrective Mathematics in use can be 

seen in Figure 5.8, where a user made a mistake while dictating/typing the word "plus" 

and this was corrected in the alternatives suggested by the system. 

5.4.1 How Successful the Correction System at Correcting Er

rors (Experiment D) 

In order to evaluate the performance of the correction algorithm, we artificially in

troduced some controlled errors each of 100 expressions (spoken mathematics form) 
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Figure 5.7: SWIMS Alternative/Corrective Mathematics System Architecture 
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selected from the set of test expressions, then observed the proportion of these where 

the correct version was found within the 5 top ranked alternatives offered by our cor

rection system. This was carried out for each of introducing an extra R characters 

per expression, deleting R characters per expression and swapping R pairs of adjacent 

characters, for each of R = 1, 2, 3. Some example expressions created for this experi

ment are shown in Table 5.12. The percentage of expressions which were successfully 

corrected using this approach for each trial are shown in Table 5.11. It can be seen that 

our method is extremely successful in correcting up to 3 insertions or transpositions of 

characters per expression, and fairly successful in correcting cases where up to three 

characters have been deleted from an expression. 

N umber of Changes 1 2 3 
Deletion of characters 95 92 68 
Insertion of characters 100 98 97 

Swapping pairs of adjacent characters 100 95 91 

Table 5.11: Experiment D: Variation of success rate (%) of correction using Damerau
Levenshtein method (5 suggestions offered per trial) 
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StplMS 
~.ch-bo.ed 101.b Int.,fac. I.,.. Moth.matics using ~LM 

Momollv. Maths 1.. . ::I!lJ 

I(·Y) . ( 2X' - XX 3.lpIuck I) 

Sugg .. t~ COfT.c:tkm.: 

1) f t y)- ( 2X' -XX 3X+.) 
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o Oom ... ,u· Lev .... hI.1n Plus Sl.M (TaD) 
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1) foxtrot of X ...... y .qual. begin optn bracket-two xofay to the powlr 0' nVI minul x-ray elo.t brlcket tnd 0' btgln thr •• x .... tu. nt end 
2) foxtrot 0' x-ray equals blgln optn brack,t two x-ray to the pow.r 0' flvi minul x.,.y dosl brlcket end of b.gln thr •• X..f.y alp .. on •• nd 
3) foxtrot 0' X.fay tquab btgln optn brade,t two x..ray to the powlr 0' flv. mlnua x .. ny clo •• brack,t tnd of begin ltv •• x ..... y do •• OM tAd 
of) foxtrot 0' .ofay .quals btgln optn brack.t two x~ to the power of flv, mlnul x..,..y do •• brack,t tnd 0' blgln thr •• x-ray tqual one end 
5) foxtrot 0' x-ny .quats blgln optn brack.t two x ...... y to the pow.r of ttve mkws x·uy dose bfac:ket end of beg'" three x.faY fow OM end 

Figure 5.8: Alternative/Corr ctive Mathematics Interfa e in use. In the top-rank d 
suggestion, the OOV word pluck is replaced with plus 

5.5 Discussion of Results 

In this chapter, we fir t explained our method for d veloping and valuating SLMs for 

spoken mathematics using a web-crawled spoken mathematic corpu. The evalua

tion were carried out by using perplexity calculations. The re ults show d that pok n 

mathematics is indeed highly predictable compared with ordinary t xt and th poken 

mathematics corpus we created should therefore b us ful. These obs rvations ju tify 

our use of language models based on this corpu , for pr diction tasks. Then we pre

sented results from s veral pr diction and corr ction experiments, namely A, B, C and 

D. From Experiments A and B, we ob erve that on word ah ad and two word ahead 

prediction success rates can be improved by increasing the number of alternative , M, 

suggested to the user. However, the rate of increase of uccess rat diminish s as M 

increases, and it would appear that the maximum po sible rates are about 90% for one 

word prediction, but around just 40% for two word pr diction. Howev r, if the u r 

has to read too large a number of sugge tions, the ognitive load imp os d will be very 

great. Thus, the number of options displayed must be limited. Bas d on our result , 

we propo e that between 5 to 10 suggestions should be offered for one word pr diction, 

giving success rates from 63 to 80%. However, two word prediction is rather less useful 

unles a large number of sugg tions are pre ented. Exp riment C showed that a small 

increase in success rate for one word ahead prediction could be achieved by incr asing 
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yankee equals capital alpha x-ray to the power of begin minus three end 
yankee equals capital alpha x-ray to the power of bgin minus three end 
yankee equals cpital alpha x-ray to the pwer of begin minus three end 
yakee equals cpital alpha x-ray to the pwer of begin minus three end 

yankee equals capital alpha x-ray too the power of begin minus three end 
yankee equals capital alpha x-ray too the power of begins minus three end 
yankee equals capital alpha x-ray too the power off begins minus three end 

yankee equals capital aplha x-ray to the power of begin minus three end 
yankee equals cpaital alpha x-ray to the opwer of begin minus three end 
yaknee equals cpaital alpha x-ray to the opwer of begin minus three end 

68 

Table 5.12: Experiment D: Examples of incorrect expressions derived from the same 
correct expression "yankee equals capital alpha x-ray to the power of begin minus three 
end" (by deleting, inserting and swapping characters). Words with errors are marked 
in bold font 

the amount of training data used, whilst keeping M, the number of suggestions offered 

to the user, fixed. This is consistent with other studies of the predictive power of 

models based on other types of text [Jelinek, 1991; Kneser and Ney, 1995]. 

Finally, according to the results we obtained in Experiment D, the Damerau

Levenshtein based correcting method is highly successful at correcting up to 3 character

level errors in an expression. However, when the number or complexity of such errors 

is increased, the efficiency of correction declines. At present, the suggested corrections 

are limited to words within the vocabulary of the SLM. This implies that each time a 

valid new word (in our case, a spoken name of a mathematical entity) is encountered 

it will need to be added to the system's vocabulary. This should be relatively straight

forward for the Damerau-Levenshtein based method. However, in order to modify the 

SLM, the corpus of mathematical expressions will have to be extended to reflect the 

change. Although possible in principle, this is not straightforward as one would have 

to find a considerable additional amount of data in order to update the model. Online 

learning within an adaptive system may be the solution to this issue, however we do 

not investigate this further here. 

Our work to date has indicated that the prediction/correction assistive facilities 

incorporated into SWIMS have potential to help make mathematical editing systems, 

including TalkMaths, more powerful and user-friendly. Improving such systems in this 

manner should in turn make writing and editing mathematics in electronic documents 
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much easier, particular for three target groups - the disabled, on-line (particularly at a 

distance) learners and people relying heavily on the use of portable devices - for whom 

these tasks are currently very difficult or even near impossible. 

5.6 Summary 

As seen in Section 5.2.3, our perplexity experiments have indicated that spoken math

ematics seems to be relatively predictable, so SLMs should aid in its prediction and 

correction. In order to investigate this further, we carried out three prediction exper

iments in Sections 5.3.3 and 5.3.4 and the results of these confirmed our hypotheses 

on SLM-driven prediction of spoken mathematics. The results of the first three ex

periments suggested that, while one word ahead prediction is efficient and can be 

improved by increasing the size of the training dataset used, two words ahead pre

diction was rather poor. The fourth experiment was on error correction experiment 

using a method based on the Damerau-Levenshtein distance method, where character 

level errors were artificially introduced into otherwise correct spoken mathematics ex

pressions. We observed that the correction success rate declines as the errors become 

more complex, suggesting that Damerau-Levenshtein distance method is only useful in 

correcting relatively small numbers of errors in spoken mathematics expressions. Our 

method should be easily adaptable to use in several other closely related domains. For 

example, computer algebra systems such as Maple and Mathematica have their own 

language and syntax for mathematical expressions. It should be fairly straightforward 

for our predictive and corrective methods to be integrated with these systems, assuming 

that enough data on past usage is available to train the necessary models. In summary, 

both these predictive and corrective methods can be used to assist users of TalkMaths 

and possibly other systems to create and edit mathematical text efficiently. 



Chapter 6 

Error Recovery Strategies for 

Parsing Transcribed Spoken 

Mathematics 

6.1 Introduction 

The art of compiler construction, essential to the success that modern computer science 

has experienced, was developed throughout the 1960s and 70s and most of its techniques 

are well understood [Aho and Ullman, 1972; Aho et al., 1986, 2007]. Its main use is 

to design tools such as compilers or interpreters that convert source code to object 

and/or executable code. The ease by which these tools are available nowadays has 

led to a proliferation of programming, markup and other formal languages. Usually, 

the functionality of a compiler is divided into several phases: lexical analysis (carried 

out by a lexer), syntax analysis (the corresponding tool is called a parser), semantic 

analysis and code generation. 

Apart from writing compilers, some of these phases are also relevant when designing 

structure editors (sometimes also referred to as language-sensitive editors in the litera

ture). A structure editor is an editor that is aware ofthe underlying document structure 

and supports the user to maintain document integrity while entering or manipulating 

the document. Creating such a structure editor, that is efficient and user-friendly, is 

commonly regarded as being difficult. Most commercial tools for developing computer 
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code (so called Integrated Development Environments, IDEs) do not offer the same 

level of functionality as a structure editor. 

More recently, the rise of web-based interfaces and the need to manage vast amounts 

of information available on the internet has led to another challenge: more and more 

often, users want to use natural language to phrase queries for search engines and 

the use of speech input is becoming more mainstream (as we have already discussed 

in Chapter 3). Parsing natural language is still a difficult problem, and traditional 

context-free parsing algorithms [Chomsky, 1957, 1965J are not powerful enough. lIence, 

command languages that are based on a relatively small subset of natural language 

might be a viable option. 

Our work on the TalkMaths system, as it is relevant to this thesis, effectively 

touches all these aspects. TalkMaths is a web-based structure editor, that accepts 

natural language commands in order to control the editing process. We will assume 

that spoken mathematics commands have been recognised by the ASR, or perhaps 

have been directly typed into a suitable user interface. As a consequence, we have a 

string of transcribed spoken mathematics which we would like to further analyse with 

the ultimate goal of displaying it in our system. 

In this chapter, we first investigate some properties of previously suggested com

mand languages for spoken mathematics. We then propose an improved framework 

based on the idea of speech templates. Next, we elicit technical challenges that arise 

when designing and implementing a robust parser that is able to analyse our language. 

A framework is developed that enables us to use mixfix operators in order to construct 

our input language. We then use operator precedence parsing for the syntactical anal

ysis of this language. In order to deal with ambiguities at lexical level, we adapt the 

XGLR parsing algorithm given in Begel and Graham [2006J to our operator precedence 

setting. Finally, we devise robust error recovery strategies for our parser. 

We have fully implemented our parsing approach as part of a new prototype version 

of TalkMaths, denoted by Pa in Chapter 7, where we have provided an evaluation of 

our implementation, that documents the resulting improvements. The error recovery 

strategies have been partially implemented with an emphasis on treating incomplete 

input (as this seemed the most frequently occurring error). 
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6.2 Spoken Mathematics as Input Language 

In this section, we present the main characteristics of the language for spoken math

ematics that we use in the TalkMaths system and for which we propose a parser and 

error recovery strategies. 

Our language consists of a set of spoken forms for operators and operands. This 

approach is not new and arguably, most previous attempts, as explained in Chapter 2, 

follow the same scheme. However, we improve several aspects of spoken mathematics, 

as explained in the remainder of this section. 

6.2.1 Ambiguity 

As already stated in the literature [Fateman, 2009; Wigmore, 2011], spoken mathe

matics often contains ambiguity. Precedence rules, normally expected to be known by 

mathematically trained users, can help with resolving this ambiguity. For example, 

if we hear "a plus b over c", either a + Q or a+b could be meant. If a display of the c c 

expression was available - perhaps in a teaching session or during a mathematical talk 

- there would be no confusion. Otherwise, if we need to interpret the transcribed spo

ken mathematics without any additional clues, our system should follow the rule that 

division (the fraction operator) binds more strongly than addition. IIence, following 

this precedence rule, we would decide on the first expression rather than the second. 

However, this is not always an obvious solution. Consider the transcribed spoken 

mathematics "square root of b squared minus a". This could either be interpreted as 

...jFj2 - a or vI? - a. No obvious operator precedence rule would help in this example. 

There is no common standard that indicates exactly how much input is supposed to 

be the argument of the root function. 

The approach taken by Fateman [Fateman, 2009] is to use additional "locutions" 

(spoken delimiter/marker commands) to clearly indicate boundaries between argu

ments. The first expression would be spoken as "square root of b squared all minus a" . 

Here, the term "all" acts as an "invisible" end marker in order to separate the square 

root function from the subtraction operation. An additional construction ("quantity") 

implements a corresponding begin marker. The expression a + b~c for example would 

be dictated as "a plus quantity b plus c all over d". Note that these commands could 
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also be used as a spoken form for brackets, as for example in the input "a plus b all 

times c" which is the spoken form of (a + b) x c. 

The emphasis on the simple design of spoken mathematics in [Fateman, 2009] is 

on simplicity and convenience for the user. For these reasons, the author does not 

consider the use of additional commands other than "quantity" and "all", although he 

acknowledges that this might lead to artificial examples, see the example with" all all" 

in Section 6.2.2. 

6.2.2 Speech Templates 

We propose an extension of this scheme, the use of speech templates l . Speech templates 

are (usually, relatively short) spoken natural language commands. A speech template 

consists of one or several groups of words. Between each group, any other spoken 

language elements (including speech templates) might occur. Effectively, these groups 

act as "boundaries". Hence, a speech template can take zero or more arguments and 

can be nested. 

For example, suppose we would like to speak the expression (a+ c!d) xe (see Section 

3.6 in Fateman [2009]). Using his approach, we would say "a plus b over quantity c 

plus d all all times e". A speech template for fractions could be defined by 

"fraction" .. "over" .. "end fraction" 

Using this speech template, the expression is now pronounced as "a plus fraction b 

over c plus d end fraction all times e". This appears more natural, as it avoids the 

repeated "all all" construction. 

Speech templates without any arguments can also make sense. These consist of 

a single command such as "edit expression" or "what can I say". Such commands 

can be useful, for example, in a system that offers a user interface with additional 

functionality, such as editing mathematics expressions or displaying help information. 

As an example of a speech template with more than two arguments, we define a 

speech template for speaking or typing integrals as: 

"integral from" .. "to" .. "of" .. "end integral" 

IThis is not to be confused with the type of acoustic templates used for pattern matching in speech 
signal processing. 
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The expression J:=a(f(x) + g(x)) dx would be spoken as "integral from x equals a to 

b of f of x plus g of x all d x end integral". Table 6.1 illustrates some currently used 

and potential examples of speech templates. 

Speech Template Arguments 
edit expression 0 
clear expression 0 
select numbers 0 
integral of .. end integral 1 
third root of .. end root 1 
to the power of .. end power 1 
edit .. end 1 
begin .. end 1 
function .. of .. end function 2 
fraction .. over .. end fraction 2 
integral from.. to .. of .. end integral 3 
sum from.. to .. of .. end sum 3 
matrix row .. and .. row .. and .. end matrix 4 
limit of .. of .. as .. approaches .. end limit 4 
matrix row .. and .. and .. row.. and .. and .. end matrix 6 

Table 6.1: Examples of speech templates with different number of arguments 

Finally, we remark that there are still other aspects of ambiguity in spoken mathe

matics which seem difficult to deal with, and we refer to Fateman [2009] for a discussion. 

6.3 Parsing Challenges 

Before presenting our parsing approach, we illustrate the challenges that typically 

arise during the syntax analysis of transcribed spoken mathematics or, potentially, any 

spoken command language for creating structured content. Essentially, we have to 

deal with lexical ambiguity, incomplete or syntactically incorrect input, as well as any 

combination of these. 
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6.3.1 Lexical Ambiguity 

Ambiguity at the lexical level may arise for two reasons. In the context of spoken 

input, ambiguity is caused by the presence of homophones in natural languages (the 

English language in our case)l. For example, both "four" and "for" sound the same 

and an ASR might not be able to identify the correct utterance. Hence, the lexer 

will be misled by this type of ambiguity. Furthermore, due to its design, any formal 

language may contain ambiguity, and this is also the case in our language for spoken 

mathematics. 

In the context of lexing, [Begel and Graham, 2006] classify four kinds of input 

streams. 

(i) Single spelling, single lexical type. 

(ii) Multiple spellings, single lexical type. 

(iii) Single spelling, multiple lexical types. 

(iv) Multiple spellings, multiple lexical types. 

In this classification, the last three are ambiguous. Here, multiple spellings indicates 

the phenomenon of ambiguity due to homophones and multiple lexical types refers to 

ambiguous language. 

6.3.2 Incomplete Input 

We refer to incomplete input as syntactically incorrect input, that can be made correct 

by inserting additional content. Due to the input being a spoken command language, 

we will frequently encounter such incomplete input primarily due to the following two 

aspects. 

(i) The fact that all input originates from utterances that are spoken by the user. 

In general, humans find it easier to break down complex instructions into smaller 

chunks as it reduces cognitive load [Christian et al., 2000]. We assume here 

that the command language is designed in such a way that this "chunking" is 

permitted. 

IThis is even more likely to happen in some other natural languages, for example, in French. 
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(ii) The desire to omit keywords in the input, as long as this does not create semantic 

problems. We have already seen in the context of spoken mathematics that 

specific keywords are necessary in order to resolve ambiguity. However, especially 

in reasonably short utterances, they might become optional. It greatly alleviates 

the physical and cognitive effort needed to use the system, if they can be omitted. 

Let us give some examples to illustrate these two aspects. Firstly, the utterance "a 

plus", followed by "square root of b" together form the syntactical correct expression 

a + Vb. This is only known after the second command, and the parser needs to tolerate 

the incomplete first command. 

In order to better understand the second aspect, consider the spoken command 

"begin a plus b end times c". Here, the term "begin" can be omitted without any 

resulting ambiguity. Effectively, it is an optional term and users would probably prefer 

not to speak it. 

6.3.3 Incorrect Input 

In addition to incomplete input, as discussed in the previous section, one could observe 

other types of general syntactically incorrect input. In the context of spoken input we 

can identify the following main reasons for this: 

(i) Misrecognition - errors of the ASR could lead to violation of the syntax in the 

input. This introduces invalid or erroneous commands, words or characters. 

(ii) Human error - users might make errors due to negligence or insufficient knowledge 

of the command language, or due to hesitation or speech impediment, with similar 

consequences as above. 

Often, the parser could simply ignore input such as "$ # &" (assuming that we have a 

means of inputting these special characters). On the other hand, the input "plus plus 

plus" is at the borderline of an incomplete expression. The input "square root root of 

three" however leaves us wondering what sensible actions the system could take. 
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6.4 Parsing Framework 

In order to parse and display the input to the TalkMaths system, we proceed as in 

standard compiler construction. We recall the following phases [Aho et al., 1986]: 

(i) Lexical Analysis: this is the first step in analysing the input. A tool (the Lexer) 

scans the input and converts it into meaningful entities (tokens). For input 

languages such as programming languages, this is normally a straight forward 

task. Tokens are defined using regular expressions, and this drives a pattern 

matching process. 

(ii) Syntax Analysis: a continued analysis, based on the token stream that is the 

output of the lexical analysis. The main goal in this phase is to construct a parse 

tree. 

(iii) Semantic Analysis: in this phase, the information in the parse tree, together with 

additional semantic rules, is used for various semantic tasks. For example, type 

checking of tokens in programming languages is done at this phase. 

(iv) Code Creation: finally, executable code is generated by using all the information 

and data structures that were created in all the previous phases. 

In this chapter, we focus on the first and second phase. The semantic analysis and 

code creation phases are not explicitly covered by the work in this thesis but are under 

ongoing investigation within the TalkMaths research project [Wigmore, 2011]. 

6.4.1 Underlying Grammar 

In this section, we explain our framework for parsing our language for spoken mathe

matics, denoted by M. The idea is to map this language into an equivalent language 

,c, which consists of expressions containing operators and operands. By "equivalent" 

we mean that there is a one-to-one correspondence of elements in M to elements in ,c. 
Lexical analysis converts equivalent elements into the same token stream, and hence 

this will result in the same syntax tree. 

In order to realise this map, we use operators in their most general form: mixfix 

operators [Danielsson and Norell, 2011] (referred to as distfix in [Annika, 1995]), that 
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are a generalisation of prefix, postfix and infix operators. Mixfix operators are used 

in specialised programming languages such as PROLOG [Clocksin and Mellish, 1984], 

ML [Paulson, 1996] and Agda [Bove et al., 2009]. For our work, we consider the special 

class of closed mixfix operators. These operators consist of a sequence of operator 

paris, enclosing holes. Each hole in turn contains another valid expression, which may 

contain other mixfix operators. The notation for such an operator of arity (number 

of operators) n is OPl _ OP2 _ ••• _ 0Pn [Danielsson and Norell, 2011] where we also 

allow the case of arity 0, i.e. no internal holes at all. This makes it evident that speech 

templates are in fact spoken forms for closed mixfix operators. 

The language ,c is recognised by the following grammar G = (N, E, P, S) where E 

is a symbol, N = {E} is the set of non-terminals, E contains the terminal symbols, 

P is a set of productions (grammar rules), as shown below, and S = E is the start 

symbol: 

E-+a 

E -+ E*E 
E-+ oE 

E-+Ee 

E -+ (E) 

E -+ (E II E) 

E -+ (E II .. ·11 E) 

(Rd 

(R2 ) 

(R3) 
(R4) 
(Rs) 

(RtJ) 

(lIm) 
In this grammar, the rules R2-Rs are specifying expressions containing 

unary pre- and post-fix, or binary operators. Rule Rl yields constants 

(operator-free expressions), and rules RtJ-lIm (and, strictly speaking, also 

R 1) are concerned with specifying valid speech templates. For example, in 

order to create the integral speech template presented in Section 6.2.2, we 

would have m = 8 as the spoken integral template example corresponds to 

a closed mixfix operator with three holes, which would be covered by rule 

Rs· 
In order to simplify notation, we state these rules generically: a E E denotes any 

alpha-numerical character or a number, which are operands; *,0,. E E are any binary, 

prefix and postfix operators respectively and any arbitrary closed mixfix operator is 

written using the open operator "(", optionally, the argument separating operators 
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"II", and the close operator ")". 

By design, this grammar is a context-free grammar. Moreover, since there are 

no productions with two adjacent non-terminals on their right side, it is an operator 

grammar [Aho et aL, 1986, Section 4.6]. It is well known that operator grammars, 

together with precedence and associativity rules, can be analysed using an efficient 

parsing technique called operator-precedence parsing. 

In [Annilm, 1995], this has been done for a grammar which ours is a subset of. 

From this work, we deduce precedence relations between operators and operands as in 

Tables 6.2 and 6.3. This information will be used in the parsing algorithm as explained 

in the next section. 

II * I a I ( I II I ) I $ I 
* < < > > > 
a > El E2 > > > 
( < < < Fl 
II > < < F2 
) > E3 E4 > > > 
$ < < < F3 F4 S 

Table 6.2: Operator Precedence Table 

Table 6.2 is a simplified representation of the complete precedence matrix, which is 

obtained by grouping entries of identical precedences together. The generic operator 

* represents the operator classes *,0, e. The $ symbol is an additional symbol. The 

top left missing entry needs expanding into a refined precedence matrix, detailing 

the precedences that exist between the various prefix, infix and postfix operators. The 

values El to E4 and Fl to F4 are error entries, which will be used during error recovery. 

The remaining empty entries need to be completed according to the following table. 

Table 6.3: Additional Precedence Tables for Mixfix Operators 

The first table expresses the precedence relation between the same mixfix operator 
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parts, whereas the second table represents those of different operators. The additional 

entries G1 to G4 are also for error recovery, more precisely, they are used in Section 6.6.4. 

We will have the convention that the closed mixfix operators that correspond to 

our speech templates have a higher precedence than any other operator (prefix, infix 

or postfix). Furthermore, all closed mixfix operators have the same precedence and are 

right associative. 

6.4.2 Operator Precedence Parsing 

In this section, we explain the standard shift-reduce operator precedence parsing algo

rithm as described in [Aho et al., 1986]. It is based on bottom-up, shift-reduce parsing 

and uses an operator precedence table to decide on the parsing action at each step. 

During the algorithm, the precedence between the token at the top of the stack and 

the current input token is determined. Depending on its value, either the current to

ken is shifted onto the stack (if the precedence is "=" or "<"), the stack is reduced 

(precedence ">"), the algorithm terminates or error recovery is triggered. 

The following description of the algorithm using pseudocode follows closely the 

presentation of Algorithm 4.5 in [Aho et al., 1986]. The stack is initialised with the 

$ symbol. The input, appended by "$", is contained in the variable w, ip points to 

the current symbol in the input and precedences between token values stored in the 

variables a and b drive the algorithm as explained in the previous paragraph. After 

execution of the algorithm, the output queue contains the reverse polish notation of 

the input. It is straightforward to create a parse tree from this - we will detail this 

further in the context of error recovery in Section 6.6.5. 

6.5 Dealing with Lexical Ambiguity 

In Section 6.3, we have identified the main challenges that our parsing framework has 

to respond to. We now tackle the first of these challenges, lexical ambiguity. 

The general task of a scanner (or lexer) is to take care of the first stage of the 

syntax analysis. Usually this is based on matching token definitions represented using 

regular expressions with parts of the input, hence identifying lexemes. The output of 

this process is a token stream. Each token contains information about its lexical type, 
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Algorithm 1: Standard Operator Precedence Parsing Algorithm 

set ip to point to the first symbol of Wj 

while forever do 
if $ is on top of the stack and ip points to $ then 

return 
else 

let a be the topmost terminal symbol on the stack and let b be the 
symbol pointed to by ipj 
if if a < b or a = b then 

push b onto the stackj 
advance ip to the next input symbolj 

else if a > b then 
repeat 

pop the stack into output queuej 
until the top stack terminal is related by < to the terminal most 
recently poppedj 

else 
errorO; 

and a reference to an appropriate data structure (symbol table) that remains accessible 

during later stages (for example, syntax analysis). 

For example, a spoken command "a times fraction b plus cover d end fraction" 

that uses the fraction speech template would result in the following token stream: 

(id, 1), (op, 2), (open, 3), (id, 4), (op, 5), (id, 6), (arg, 7), (id, 8), (close, 9) 

Each token is defined by two entries: the token type, and the reference to an entry in 

the symbol table (see Table 6.4). We use generic types such as 'op', 'id' for operators 

and operands. By following the symbol table references, additional information can be 

retrieved - in this example, the third row of the symbol table stores an identifier for 

the fraction speech template, indicating that the token (open, 3) was created from the 

"fraction" lexeme. 
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Type Lexeme Position .. 
id "a" 1 .. 
op "times" 2 .. 
open "fraction" 3 .. 
id "b" 4 .. 
op "plus" 5 .. 
id "c" 6 .. 
arg "over" 7 .. 
id "d" 8 .. 
close "end fraction" 9 .. 

Table 6.4: Symbol table for spoken command "a times fraction b plus cover d end 
fraction". The right most column contains additional information about each entries 
(for example, if the entry is the type of op, all possible operator classes it could take: 
i.e. *,0,.) 

6.5.1 XGLR Approach 

The solution we have implemented for resolving lexical ambiguity is based on Begel's 

XGLR framework [Begel and Graham, 2006], developed in the context of spoken pro

gramming languages, which in turn builds on GLR parsing [Lang, 1974; Rekers, 1992; 

Tomita, 1985]. 

GLR parsing is a knowledge-based, non-deterministic parsing method that can deal 

with ambiguities by creating all possible parse trees. In order to improve efficiency, 

common data structures should be shared. Inspired by Begel's work, we have imple

mented this using an object oriented approach, where instead of backtracking multiple 

parses we have a lexer object that can fork into several instances whenever it encounters 

ambiguity. This is then propagated into the parser. 

An extension of GLR parsing, that can handle ambiguous lookaheads arising from 

spoken input (due to multiple spellings, as mentioned in Section 6.3.1), is introduced 

in [Begel and Graham, 2006] as XGLR parsing. The mechanism is fairly similar to 

that in GLR parsing: whenever lexemes do not uniquely determine a token, the lexer 

explores all possibilities. This can also be implemented by forking the lexer object. 
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6.5.2 Lexer Algorithm 

We now present our version of the lexer that implements the lexical analysis phase 

within the adapted XGLR framework. It is implemented as an object, remembering a 

certain state and offering a method doWorkO which is illustrated below. This method 

is called repeatedly and, depending on the current state, scans the input for the next 

token (which might be ambiguous) or handles the case of ambiguous tokens by creating 

copies of itself for each possible token alternative. Initially, self. state is set to new _token. 

A list of currently active lexers is maintained and their respective doWorkO methods 

are called successively. Effectively, we handle this process in a very similar way as it is 

explained in Begel's paper. 

Algorithm 2: Lexer - doWorkO 

if self state = check_ambiguity then 
if token is ambiguous then 

self. state = fork; 
else 

self. state = new _token; 
else if self state = fork then 

foreach non-ambiguous token in current token do 
create a copy of Lexer object where current token is replaced with 
non-ambiguous token; 
append new Lexer object into list of children; 

self.state = inactive; 
else if self state = new_token then 

if current Token = end Token then 
self. state = terminate; 

else 
Scan input and return next (potentially ambiguous) token; 

We give some examples in order to illustrate how the lexer proceeds. 

The input "minus a" is ambiguous since the minus operator can be either unary 

prefix (the minus sign) or binary infix (the subtraction operator). IIence, two tokens 

will have to be considered during the lexical analysis. Eventually, the following two 

token streams are generated: 

(op, 1), (id, 2) 
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and 

(op, 3), (id, 2). 

Note that here, the first tokens are different and the symbol table will store the infor

mation on the two different operators separately (in row 1 and 3). We remark that the 

token stream that corresponds to the binary subtraction operator represents a syntac

tically incorrect expression as there is a missing first argument. We will see later how 

this will be resolved during the error recovery. 

As a second example, consider the intended input ''x plus four" which the ASR 

misinterpreted as "x plus for", and let us also assume the existence of a speech template 

starting with "for". The lexer will return the token streams: 

(id, 1), (op, 2), (id, 3) 

and 

(id,I),(op,2),(op,4) 

The difference is the interpretation of the third token as either an identifier (the nu

merical value 4 to be precise) or an initial operator word of the speech template. 

6.5.3 Parser Algorithm 

The parser algorithm is a slight extension of Algorithm 1 which takes into account 

the possibility that several instances of the lexer might be created, as discussed in the 

previous section. We have implemented this in a similar fashion, using objects, as in the 

lexer. At the beginning of the main loop, the parser calls the lexer's doWorkO method. 

After a successful return from this method, if we detect the presence of additional new 

lexer objects, we propagate this into the parser by creating a new child parser object. 

6.6 Error Recovery Strategies for XGLR Parsing 

Having addressed ambiguity at lexical analysis level, we continue to address the re

maining parsing challenges of Section 6.3. We will see that this requires substantially 

more work, involving both the lexical and syntax analysis phases and suitable, robust 
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error recovery strategies. The task will be to parse the entire input, without rejection, 

followed by correcting as much as we can, and only ignoring input if really necessary. 

Some of this error recovery happens already during lexical analysis, whereas more 

"difficult" cases need to be addressed during the parsing. 

6.6.1 Classification of Errors 

In order to state precisely what the error recovery needs to cope with, we give a 

classification of possible errors that we can encounter. We include incomplete input in 

our discussion. 

(i) Missing operators and operands - we exclude mixfix operators from these con

siderations. 

(ii) Incomplete mixfix operators - the fact that one or several operator parts are 

missing. 

(iii) Interlaced mixfix operators - here, matters are made more complicated by the 

fact that operator parts from different mixfix operators appear "merged together" 

in the input stream. 

(iv) Shuffled mixfix operators - these are mixfix operators with correct open and close 

operator parts, containing a incorrectly permuted sequence of argument separator 

parts. 

(v) Mixfix operators with redundancy - multiple occurrence of the same argument 

separator parts. 

(vi) Otherwise incorrect mixfix operators - containing wrong identifiers that are not 

valid tokens. 

(vii) Any combination of any of the previous errors. 

We now give some typical examples that are representatives of these error classes: 

Class (i): "a b", or "a plus" 

Class (ii): "fraction a", or even "fraction" 
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Class (iii): "function f over x" 

Class (iv): "integral f dx to b from a end" 

Class (v): "function f of x of y" 

Class (vi): "fraction a hello b" 

6.6.2 Main Idea 

The main idea for our parsing error recovery algorithm is as follows. Errors of type 

(i) can be dealt with at lexer level, based on the classical approach of inserting tokens 

[Burke and Fisher, 1987]. The remaining errors (ii) - (vii) are corrected in two stages: 

first, we parse an augmented language ,c *, followed by running a tree manipulation 

algorithm. Before we detail these steps in the following sections, let us define precisely 

,c* by introducing some additional notations. 

We shall denote by 0 the set of mixfix operators that are contained in our language 

,c. Let open(m) (close(m) respectively) denote the initial (last respectively) operator 

parts of a mixfix operator m E O. Also, args(m) is a new mixfix operator, formed 

by the remaining, intermittent operator parts of m. \Ve adopt the usual notation 

open(O) := {open(m)lm E O} for the combined set of initial operator parts of all 

mixfix operators, and accordingly for close(O) and args(O). Having this terminology 

in place, we can now characterise the augmented set of mixfix operators 0* by 

(9* = {o _ a _ c 10 E open(O), a E args*(O), C E close(O)} 

and 

args*(O) = {ao _ al _ ... _ anlai E args(O), n E fil} 

The augmented language ,c * is ,c together with all mixfix operators that are additionally 

contained in 0*. 

6.6.3 Error Recovery at Lexer Level 

As already indicated in the previous section, we can deal with missing operators (other 

than mixfix) and operands at the level of lexical analysis. \Ve insert missing operators 
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by using an appropriately defined default invisible operator *d. In the case of spoken 

maths, for example, this would be the "invisible times". Missing operands are inserted 

using an empty identifier id? Due to the special property of the input language being 

recognised by an operator grammar, we can implement this based on a decision that 

involves comparing adjacent tokens. This is made explicit in Table 6.5, by stating the 

token which will be inserted between tokens that correspond to those in the row and 

column positions. The corresponding algorithm is given below. It takes as input the 

" $ I id I * I 0 I • I ( I II I ) I 
$ id? id? id? 
id *d *d *d 

* id? id? id? id? id? 
0 id? id? id? 

• *d *d *d 
( id? id? id? 

II id? id? id? id? 
) *d *d *d 

Table 6.5: Token Insertion Rules 

last and current token and returns the token that needs to be inserted, otherwise, none 

Algorithm 3: Lexer Error Recovery Algorithm -lexerErrorRecoveryO 

Lookup action in Table 6.5 by indexing with (lastToken, token); 
if action = id? then 

/ / Default empty operand to be inserted inserted Token = id?; 
else if action = *d then 

/ / Default invisible operator to be inserted insertedToken = *di 
else 

insertedToken = None; 
return insertedToken; 

This simple approach yields already quite powerful error recovery. We now give 

some examples which demonstrate this. 
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Input Error recovery output 
abf(c + d) a *d b *d f(c + d) 

f( +d)* f{id? + d) * id? 
abf{+d) a *d b *d f *d (id? + d) 
f(, x)y f *d (id?,x) *d Y 

Table 6.6: Lexer Error Recovery Examples 

6.6.4 Error Recovery at Parser Level: Stage 1 

Let us remind that an attempt to parse incorrect input that contains any of the error 

types classified in Section 6.6.1 will mean that the operator precedence parser encoun

ters, at some stage, one of the error entries El to E4, Fl to F4 or G1 to G4 given in 

Tables 6.2 and 6.3. One can easily see that the error recovery actions undertaken by 

the lexer as explained by the previous section eliminate the need to consider the entries 

El to E4 , and we can focus on addressing the remaining error entries. 

We first consider the entries Fl to F4 • For each of these error entries, the "$" 

symbol is involved which, after analysing the shift-reduce algorithm, implies that for 

error entries 

• FI, F2: the input has run out of symbols whilst we still have the mixfix operator 

words "(" or "II" on the stack. This is the case if a ")" is missing in the input. 

• F3 , F4 : the stack is empty, possibly after some reduce actions, and we encounter 

"II" or ")". Here, we have a missing "{". 

We conclude that these error entries are concerned with errors in error class (ii) in 

Section 6.6.1. However, this does not cover all possible elements of this class. For 

example, in both cases above, there could also be missing "II" operator parts in the 

input. We will continue to deal with the same error class in Stage 2 of our error 

recovery. 

In order to carry out suitable error recovery actions, we proceed as follows: 

• Error entries Fl , F2 : since we have reached the end of the input, the only possible 

action is a reduce. This will remove elements from the stack into the output. Note 

that we will have to accept incomplete information. In order to construct a valid 
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parse tree, more work will have to be done. This is subject of the algorithm in 

Stage 2 . 

• Error entries F3 , F4 : using a similar argument, since the stack is empty, we carry 

out a shift. This will move tokens from the input into the stack and we are led 

to a similar situation as in previous case. 

This leads to the following adjusted precedence table, where the error entries FI to F4 

have been replaced with precedence values that correspond to the discussion above. 

II * I a I ( I II I ) I $ I 
* < < > > > 
a > EI E2 > > > 
( < < < > 
II > < < > 
) > E3 E4 > > > 
$ < < < < < S 

Table 6.7: Adjusted Operator Precedence Table 

We continue our analysis of error recovery actions by examining the error entries 

GI to G4 • Rather than being able to give unique shift/reduce actions, we will see that 

we have to use (again) nondeterministic parsing . 

• Error entry G3 : here, we can carry out a reduce action. In order to justify this, 

we recall that our aim is to parse the augmented language .c.. By definition, 

this language consists of mixfix operators whose argument operator parts are the 

union of all possible such operator parts, in any order and repeated occurrences. 

This means that for this error entry, we can always accept the "generic" argument 

separator "II" by reducing it into the output. This will address the error class of 

interlaced mixfix operators . 

• Error entries GI , G2 and G4 : one can easily find examples (such as the input "(]", 

which leads to G2 ) which show that shift and reduce are both equally meaningful 

possible actions. Inspired by the XGLR framework, we solve this by forking new 

parsers, which will carry out each of the actions. 
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This results in the following table, where we have used the symbol "<>" to indicate a 

shift-reduce conflict. 

I II Ilj I )j 
I (i Jl <> <> 
Illi II > <> 

Table 6.8: Precedence Tables for Interlaced Mixfix Operators 

6.6.4.1 The Parser Algorithm 

We now give our parser algorithm including Stage 1 of the error recovery in pseudo

code. 

6.6.5 Error Recovery at Parser Level: Stage 2 

After carrying out the error recovery algorithm of the shift-reduce parser in Stage 

1, we have created output data which can be converted into a syntax tree!. In our 

implementation, we create this syntax tree on-the-fly during each reduce step. The 

outcome is a partial syntax tree - we cannot completely construct complete nodes for 

mixfix operators at this stage. Such a mixfix operator node stores information on its 

arity, the individual operator parts and is turned into a tree by pointing to a list of child 

trees which correspond to expressions contained in the various holes of the operator 

(its operands). 

Mixfix operator nodes in our parse tree might be incomplete in the following ways: 

(i) The node might consist of only one opening or closing operator part. 

(ii) It might have all of its argument separator operator parts missing. 

(iii) It might only consist of an argument separator operator part. 

1 Due to the fact that parsers can fork, we obtain a parse forest rather than single syntax tree. 
However, in this section, without loss of generality, we focus on an individual element of this parse 
forest. 
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Algorithm 4: Parser Algorithm with Error Recovery Stage 1 - doWorkO 

if self.state=check_ambiguity then 
if token is ambiguous then 

self.state=for k; 
else 

self.state=error Jecovery; 
else if selfstate=erroLrecovery then 

if lexerErrorRecovery() returns a token then 
Insert new token into tokenBuffer; 
Insert new token as current token; 

Append token to token stream; 
self.state=new _token; 

else if selfstate=new_token then 
if token = end Token then 

self.state=terminate; 
else 

if tokenBuffer is empty then 
tokenBuffer := nextTokensO[Oj; 

last Token := token; 
if tokenBuffer is not empty then 

token := tokenBuffer[O]; 
Remove first element from tokenBuffer; 

else 
token := end token; 

self.state=check_ambiguity; 
else if self.state=fork then 

if scanMode is all then 
foreach non-ambiguous token in token do 

Create a copy of GLRParser object where current token is replaced 
with non-ambiguous token; 
Append new GLRParser object into list of children; 

self.state=inactive; 
else 

Choose one non-ambiguous token, using some strategy; 
self.state=error Jecovery; 
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Aspect (i) arises for incomplete input, with missing opening or closing operator parts, 

due to the error recovery reduce actions as described in Section 6.6.5.1. 

Whenever the argument separator operator parts are reduced into the output, we 

create a new node, effectively interpreting them as binary operators and linking this 

node to the previous two existing trees in the output. This explains why the complete 

information for complete mixfix operator nodes is distributed into the nodes as sketched 

in (ii) and (iii). 

The tree-manipulation algorithm will traverse the incomplete parse tree and, in 

combination with the algorithms introduced in the following 4 sections, re-instate a 

complete parse tree, possibly by adding placeholders. 

6.6.5.1 Sort Argument Separator Parts 

The goal of this algorithm is to convert a mixfix operator node with (potentially in

terlaced, redundant or missing) argument separator parts in an arbitrary order into a 

node where the correct order has been reinstated. By this we mean 

if either i i j and (Ji and (Jj denote mixfix operator parts that have been (initially) 

enumerated in a static order where (Ji appears before (Jj, or i = j and the argument 

separator parts (Ji is to the left of (Jj. 

Due to the expected small number of argument separator parts, any reasonable 

searching algorithm can be used - we call the Python standard sorting algorithm 

Timson[wikipedia.org]. 

6.6.5.2 Detangle Argument Separator Parts 

We assume that prior to this algorithm, the argument separator operator parts (Ji have 

been sorted as explained in Section 6.6.5.1. It is then straightforward to identify those 

that belong correctly to the individual mixfix operators. For all other operator parts 

ai, several strategies are possible: 

(i) Remove all non-matching Ui including the content of the holes to their right. 
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(ii) Complete non-matching Ui with their missing opening, closing and possibly ar

gument separator parts and empty identifiers as content for the holes. 

(iii) A combination of removing and completing. If a certain amount of argument 

separator parts are present of a different mixfix operator Ui (say t out of m 

where t ~ [WJ and m is the arity of Ui), then proceed with completion as in (ii), 

otherwise as in (i). 

6.6.5.3 Complete Argument Separator Parts 

In this step, we add missing argument separator operand parts as well as default 

"empty" content for the resulting operator holes. This is straightforward provided 

the algorithms in Section 6.6.5.1 and 6.6.5.2 have been executed. We use the empty 

identifier "id?" as previously introduced. 

6.6.5.4 Eliminate Redundant Argument Separator Parts 

Finally, we need to eliminate redundant argument separator parts. Following the ap

plication of the algorithms from the previous sections, these can easily be identified if 

we adopt the convention that the first of a group of such redundant argument separator 

parts is kept. 

The next step is to chose appropriate content for the hole that is immediately 

following the argument separator part in question. Here, several strategies could be 

envisaged, for example one could keep the first occurring operand that is not id?, or 

the operand that was contained in the hole immediately following the first argument 

separator part in the group. 

A more sophisticated strategy would be to attempt a completion of all redundant 

argument operator parts, but the simple strategy that we have sketched at first works 

quite well in practice. 

6.6.6 Error Recovery - Summary 

In this section, we have presented some strategies for error recovery that can be used 

to make our parser more robust. We have seen that the error recovery proceeds at 

both lexer and parser level (where we have further distinguished between two stages) 



6. ERROR RECOVERY STRATEGIES FOR PARSING TRANSCRIBED SPOKEN 
MATHEMATICS 94 

and the different types of errors, as classified in Section 6.6.1, are handled by several 

sub-algorithms (in particular, in Stage 2). The following table summarises this by 

listing, for all error types, the various algorithms that are used in order to recover from 

it. In our prototype implementation, we fully support error recovery at lexer level as 

Error Type Lexer Parser-Stage 1 Parser-Stage 2 
(i) Missing operators Algorithm 3: - -

All 
(ii) Incomplete Algorithm 3: FI , F2 , F3 , F4 : Algorithm in 6.6.5.3: 

Mixfix Special case Missing "(", ")" Complete "II" 
(iii) Interlaced - G3 : Interlaced "II" Algorithm in 6.6.5.2 

Mixfix GI ,G2,G4: Detangle "II" 
Interlaced "(", ")" 

(iv) Shuffled - G3 : Shuffled "II" Algorithm in 6.6.5.1 
Mixfix Sort "II" 

(v) Mixfix - G3 : Redundant "II" Algorithm in 6.6.5.4 
with Redundancy Eliminate "II" 

(vi) Otherwise Lexer token - -
incorrect Mixfix validator 

Table 6.9: Summary of Error Recovery 

well as parser Stage 1. For Stage 2, we have have focused on the completion scenario 

described in Section 6.6.5.3 which, in our experience, is one of the most frequently 

occurring errors when considering input that is spoken mathematics. The remaining 

cases are relatively easy to implement and, upon completion and integration with the 

entire system, the error recovery strategies that we have devised in this section lead to 

a significant improvement of the TalkMaths parsing capabilities. 

6.7 Summary 

This chapter presented our approach to the design and parsing of spoken mathemat

ics. The parsing framework we described and implemented was based on the idea of 

speech templates. This allowed us to define our language for spoken mathematics using 

an operator precedence grammar, containing mixfix operators, hence representing all 

elements of the language including editing commands as either operator or operand. 
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This approach is novel compared to previous approaches (described in Section 2.1) 

and could potentially be extended to other spoken command languages, for exam

ple spoken programming languages by the introduction of suitable rules following the 

grammar in Section 6.4.1. 



Chapter 7 

System Implementation and 

Evaluation 

7.1 Introduction 

All the contributions that have been described in the previous chapters of this thesis 

are ultimately aimed at improving the TalkMaths system. To this end, we have im

plemented as many as possible algorithms and methods that we have presented. Some 

of this work contributed to new prototype versions of TalkMaths and some were also 

released in the publicly available version of the system. 

In this chapter, we will first give an overview of the TalkMaths system and explain 

how the theoretical contributions contained in this thesis have advanced earlier versions 

of TalkMaths. We then present an evaluation of the system by comparing the power of 

our parsing approach with that contained in the older versions of TalkMaths. Finally, 

we will present and discuss results of a user trial to evaluate TalkMaths as a tool to 

help improve students' understanding of mathematical concepts. 

7.2 The TalkMaths System 

The TalkMaths system is a result of an ongoing research project. Several versions have 

been released in the past, and our work has directly contributed to the current version. 

TalkMaths is a web-based editing system for mathematical e-content that can be 
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controlled using a variety of modalities. Primarily, the system is designed to be used 

with spoken input. Users can also type their input, should they wish to use TalkMaths 

without speech. In addition, some functionality also supports the use of the mouse. 

A demonstration video, showing TalkMaths in use, can be viewed at ww . youtube. 

comltalkmaths. We have also included some screenshots of the TalkMaths interface 

in Appendix D. 

In order to use TalkMaths successfully by speech, a number of additional software 

applications need to be installed on the user's machine: an ASR, a speech front-end ap

plication and a web browser. Furthermore, there are certain compatibility requirements 

to be satisfied. 

On the "client" (typically the user's desktop machine) speech-recognition and inter

action with the user-interface are done using the ASR. This tool listens to the spoken 

input, performs the recognition and forwards the resulting transcribed text to the 

speech front-end. 

The speech front-end fulfills several purposes. It enables the recognition of spoken 

mathematics. It also filters out words that do not belong to the vocabulary and converts 

certain spoken forms to symbol level (such as, for example, spoken "alpha" to the single 

letter "a") before it then sends the text stream to the browser. 

To render the mathematical content of the TalkMaths web site, a web browser 

needs to display documents encoded in the Open MathML [Carlisle, 2003; W3C, 2010] 

standard format. Mozilla Firefox currently supports MathML [W3C, 2003] natively, 

Internet Explorer and other browsers require the MathJax plugins [Cervone, 2012]. 

However, the full power of the editing mechanisms can only be reached if CSS support 

for MathML is also implemented, as is the case in Mozila Firefox. Currently, JavaScript 

needs to be enabled in the browser in order to obtain the best user experience of 

TalkMaths. 

In the first version of TalkMaths, Dragon NaturallySpeaking was used as the ASR 

together with the free NatLink [Gould, 2001] library as speech front-end and the XUL

Runner [Mozilla Foundation, 2009] browser as a standalone GUI. In a subsequent in

termediate version, NatLink was replaced with the commercial DNS SDK [Nuance 

Communications] and the TalkMaths web site was usable only with the Mozilla Fire

fox web browser. Although Dragon NaturallySpeaking provides probably the best and 

most accurate recognition amongst all available (commercial and free) ASRs, the latest 
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version of TalkMaths now uses Windows Speech Recognition. This made it possible to 

create a more sophisticated and flexible front-end. 

Most ASR users are familiar with interacting with a web browser using their speech 

recogniser software with some help from the keyboard and mouse. Being web-based, 

TalkMaths is compatible with any speech recognition software on any platform, pro

vided it supports the browser available on the client system. 

7.2.1 System Architecture 

The architecture of TalkMaths has evolved from that of [Wigmore, 2011], which was a 

standalone desktop application, towards a multi-component, distributed model, where 

the ASR and the TalkMaths web application (including the parser) are separate. This 

yields a web application which provides an online speech-based user-interface for math

ematics that uses speech as the main input modality. In practise, this means that users 

speak into the ASR and the resulting transcribed text output is used as the input for 

the web application. To this purpose, an input field is provided within the editor page 

(see Figure D.5 in Appendix). An additional advantage of this web-based architecture 

is the fact that one can now enter commands via the keyboard, which was not the case 

in any of the earlier versions. 

In Chapter 3, we have already introduced the general system architecture of the 

system. The final choice we made for the system architecture was the Application 

Proxy architecture 3.4. This architecture enabled the multi modality of the application 

(which was a limitation of the standalone desktop version) and it was compatible with 

the parser engine and would run on a web browser. It also allowed us to develop user 

interface, application logic and parser components in separate modules which makes 

the project more extensible. \Ve will now provide more information on web-related 

aspects including the implementation. 

The TalkMaths system is an interactive web application. The web server used 

is Apache, the server-side environment uses PHP and a MySQL database, and the 

Coogle App Engine service [Severance, 2009] written in the Python scripting language. 

The web server interacts with an application that resides on the Coogle Engine (cur

rently, the URL is http://talkmathsparse . appspot. com). This application parses 

the input language and is effectively a (RESTful) web service. These two systems 
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exchange messages, including data in JSO format. All data is held in the database 

on the server, this ensures that the information that belongs to an diting e sion is 

persistent. Figure 7.1 illustrates the system architecture of the publi TalkMath w b 

Text Stream 

~------------ Client PC 

MathMl 
Converter 

Pre Processor 

TalkMaths Parser 

XML 
Converter 

Yapps2 

L.-___ Google App -------' 

SlM 
Corrections/Predictions 

Browser 

Web Server 

Figure 7.1: TalkMaths syst m archit ctur 

application. Two input modalities are available, nam ly spoken input (u ing ASR) and 

textual input from a keyboard & mouse. Each of the e r ult in a t xt tr am whi h 

describes the mathematical expression of current int r t in relatively natural language 

(see Section 7.2.2 below). The text stream is then pas d through the brow r int rface, 

encapsulated in a HTTP request , to the web erv r. The SLM Corr tion IPr di tion 

component is currently not integrated to the TalkMath y tern, how v r it i in Iud d 

in the figure to illustrate where the corrections and pr diction of the t xt tr am would 

take place (See SWIMS system in Section 5.3.1.The w b application on thi erv r th n 

handles the application logic (covering general ecurity, ion management and tor

age tasks) [Attanayake et al. , 2011b] and call the par er running on th Googl App 

Engine server, which ultimately proces es the input text stream, tran forming it into 
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the desired format, such as MathML or XML. Again, web application requests and 

parser responses use HTTP. Upon receiving the parsed output from the Coogle App 

Engine server, the web application sends the output (in the appropriate marked-up 

form) to the browser on the client for rendering in conventional mathematical notation 

on a display. Initially, we have used a recursive-descent context-free grammar parser 

generator called Yapps2 [Patel, 2009] to develop our TalkMaths parser. Then we devel

oped our own parser based on operator precedence grammar, that has been described 

in Chapter 6. Due to the bi-modal nature of our system, and the consequential (small) 

differences between the correct spoken and typed descriptions of any given mathemat

ical expression (see Section 7.2.2 below), a pre-processor has been used to convert the 

input from either spoken or typed form (as appropriate) into a canonical form that is 

suitable for analysis by our parser. An example of a mathematical expression created 

by TalkMaths can be seen in Figure 7.2. 

7.2.2 Natural Language Commands 

The mathematical expressions currently supported in TalkMaths are standard arith

metic expressions including exponentials (raising a to a power), fractions, roots and 

functions. Although this is a fairly restricted set of mathematics, it provides a proof 

of concept for most of the features discussed in this chapter. Work on implementing 

speech templates has reached prototype stage and will be available in the online-system 

(of a public release) shortly. 

Both SWIMS and TalkMaths employ an input language that is much closer to how 

people actually speak mathematics in a classroom environment compared to specialised 

mark-up or formatting languages for mathematics, such as LaTeX or MathML which 

take much effort to learn,. The rationale behind this is to make learning to command 

the system to be as easy and intuitive as possible for the user, keeping the "naturalness" 

of the task to a maximum. For example, Figure 7.3 shows encodings of the same 

mathematical expression, namely 
n 

ken - 1) 

in LaTeX, MathML, the TalkMaths spoken input form and the TalkMaths and SWIMS 

keyboard input command language. Note that both forms of the TalkMaths command 

language are easy for a person to read, speak or type. They should be much more 
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talk {maths} creating maths by 
using plai7' English 

1 
n 

2 
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Import E%port 

Figure 7.2: TalkMaths used to create the formula for th urn of n t rms of an arith
metic progression 
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LaTeX: 

MathML: 
$ Ijrac{n}{k(n-l)} $ 

<mfrac> 
<mi>n<lmi> 
<mrow> 

<mi>k<lmi> 
<mo>&lnvisibleTimes;<lmo> 
<mfenced c!ose='1" open="("> 

<mrow> 
<mi>n<lmi> 
<mo>-<Imo> 
<mn>l<lmn> 

<Imrow> 
<Imfenced> 

<Imrow> 
<Imfrac> 

TalkMaths speech input: 
november over begin kilo open bracket 
november minus one close bracket end 

TalkMaths & SWIMS keyboard input: 
n over begin k (n - I) end 

102 

Figure 7.3: Encoding of same mathematical expression in LaTeX, MathML, TalkMaths 
and SWIMS command languages respectively 
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accessible and easy to learn for novice users than either LaTeX or MathML. Also, note 

that the TalkMaths speech input language requires use of the NATO alphabet [Law, 

2009] for the dictation of single characters, due to issues of potential confusion between 

conventional letter names by ASR systems (e.g. "bee" (b), "cee" (c), "dee" (d)). An 

example of a simple mathematical expression is the equation for velocity under uniform 

acceleration v = u + at, which in our spoken mathematical language would be read as: 

"victor equals uniform plus alpha tango". A more complex example is the formula for 

the solutions of a general quadratic equation: 

-b ± yfb2 - 4ac 
2a 

(7.1) 

which would be spoken as "minus bravo plus or minus square root of bravo squared 

minus four alpha charlie all over begin two alpha end". Greek characters, such as (l', (3, 

etc. can be inserted using the prefix 'greek" before the name of the character. For 

example, the trigonometric identity : 

sin( (l' + (3) = sin (l' cos f3 + cos (l' sin (3 

would be read as "sine begin greek alpha plus greek beta end equals sine greek alpha 

cos greek beta plus cos greek alpha sine greek beta". An example of a more complicated 

expression which can be interpreted by TalkMaths is the van der \Vaals equation from 

thermal physics, rendered as shown in Figure 7.4 below. This would be dictated a8 

"open bracket capital papa plus begin november to the power of two alpha end over 

begin capital victor to the power of two end close bracket open bracket capital victor 

minus november bravo close bracket equals november capital romeo capital tango" . 

7.2.3 Editing Paradigms 

TalkMaths allows users to edit mathematical expressions that they have input, as ren

dered on the computer screen, by issuing relatively intuitive commands which are close 

to how a human-to-human interaction would deal with the same tasks. For exam

ple, editing the numerator of a fraction can be invoked using the "edit numerator" 

command. Here, the application "understands" that the user requires the editing of 

only a part (in this case, the top part) of the fraction. Another example is where 
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Figure 7.4: The van der Waals equation, read as stated above, r nd red by TalkMath 
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t he "edit functions" command will invoke editing of all available function within t he 

current mathematical expre sion. We refer to the e type of edit ommand as "se

mantic editing" commands, as they refer to the meaning of the rnathemati al tru 

ture/components which the user sees on the scr n. Other type of ommand in lude 

"selective edit ing' and "exhaustive edit ing". The former is used to I t P ifi sub

expression(s) within the full expression shown on th scr n. For xarn ple, if a u er 

wishes to change the sub-expression 2a in the quadrati formula 7.1, h / h an u 

the command "edit two alpha", which will make t h denominator (2a) of the above 

quadratic formula editable by placing indexed bounding boxe around all po sibl I c

t ions of t he sub-expre sion 2a - in this case, ju t th denominator. In ontrast to this, 

exhaustive edit ing make u e of a displayed et of n ted ind xed b x up rimpo d 

over the expression to allow the user to select th whol or any part, f th xpr s

sion for editing. Thr e such methods, highlighting all ub-expr ion , all individual 

symbols and all operators, respectively, are illustrat d in Figur 7.5 (orr ponding 

commands are: "edit expre sion", "edit symbol " and " di t operator 'r p tiv Iy). 

A more detailed explanation of these editing paradigms can b found in [Wigmor , 

2011] . 

Figure 7.5: Different edit ing paradigms for editing mathematics by 
to one of equations of uniformly accelerated motion 

h, ach appli d 
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7.2.4 Natural Language Search-Driven Help Facility 

TalkMaths has a help facility that includes a natural language search option. A user can 

search through the help information using this tool, by entering search terms in natural 

language form. If the search phrase contains a word that is not in the vocabulary 

(V) of the help content, we use the Damerau-Levenshtein algorithm [Damerau, 1964; 

Levenshtein, 1966] to calculate the Levenshtein distance between the entered word and 

each word in V. This distance is based on the minimum number of insertions, deletions, 

substitutions and transpositions of characters required to transform one string into the 

other. The word within V with the shortest distance from the entered word is selected 

as the "best guess" for what the user intended to enter. See Section 4.7 for a more 

detailed discussion. 

The Damerau-Levenshtein method was originally introduced to compare the simi

larity of text strings, and we found that this strategy works well when the user makes 

minor misspellings when typing using the keyboard and mouse. For each help term, 

we assign a score based on its length, the length of the entered search term and how 

similar the terms are (based on the Levenshtein distance). Our mechanism assists the 

user to find appropriate commands using their existing mathematical knowledge. For 

example, typing, "How to edit a fraction" command will present all the TalkMaths 

commands associated with fractions and rank them according to how relevant they are 

believed to be (see Figure 7.6). 

7.3 Parser Evaluation 

We have carried out an experiment to measure the power of our current parser com

pared to its earlier versions. Firstly, from the very same spoken mathematics expres

sions corpus we created described in Section 5.2.1 of Chapter 5, we parsed 4308 spoken 

mathematics expressions using the Yapps2-based parser (PJ) presented by [Wigmore, 

2011] and the Yapps2-based parser in our live TalkMaths web-based system (P2 ). Of 

these, 1955 (45.38%) expressions were successfully parsed (865 had the expected parse 

tree and 1090 had a different one) by PI and 3726 (86.49%) (2657 had the expected 

parse tree and 1069 had a different one) were successfully parsed by P2• 1169 (27.14%) 

expressions were successfully parsed by both parsers. Table 7.1 shows a selected sam-
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Figure 7.6: The TalkMaths Natural Languag Driv n H lp Fa ility u d to ar h t 
find information on fractions 

pIe of expressions and success or failure of their parsing by ach par r. W th n u d 

this selected sample to evaluate our new operator pr cedenc par r (P3) ' H wev r, 

whereas PI and P2 each return a single par e tr whi h i ither orr t r in or

rect, P3 actually returns a parse forest (a list of po ibl par tr ) which onsi t 

of different interpretations of ambiguous expre ion. Of thes , at mo t on par tr 

from the forest may correspond to the correct par e of th xpr ion, or non may b 

correct. We impose an ord ring or ranking on the tr of th par for t , u h that 

simpler trees with fewer nodes are always ranked higher than more mpl x tr with 

more nodes. The ranking order of two trees with th am number of nod 
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arbitrarily. 

In order to perform a direct comparison between all three parsers, it was necessary 

to manually parse a selected sample of expressions so that the correct parse tree could 

be compared not only with the single parse trees produced by PI and P2, but also with 

each of the trees in the parse forest found by P3 • In Table 7.1 below, for PI or P2 , a tick 

(v") in the appropriate column denotes a successful correct parse, which is computed 

unambiguously by PI or P2 , as appropriate. In contrast, P3 returns a parse forest, of 

one or more parse trees each of which corresponds to a different interpretation of an 

expression (due to ambiguities). In this case, a v" in the P3 column means that the 

correct parse tree, namely that obtained manually, can be found within the first five 

trees, ranked according to the scheme described above, of the output parse forest. A 

"?" in any column indicates that the corresponding parser generated an incorrect parse 

tree(s), whereas a cross (x) means that the parser failed to return a parse tree for that 

expression (i.e. the program did not terminate correctly). 

The results of the first experiment show that the Yapps2-based parser P2 we created 

in this project is more powerful than the earlier parser Pl' The number of expressions 

used in the second evaluation is quite small because the resulting parse tree from P3 

have to be manually checked. However, from both above evaluations, we clearly can 

demonstrate that the current operator precedence-based parser has been significantly 

improved over the course of the project. It should be noted that in Table 7.1, the 

expression x', y" fails to be parsed by all three parsers, due to the fact that the "double 

prime" or "prime prime" mathematical operation was not defined in any of the parsers 

in question. 
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Expression Spoken Format PI P2 P3 

a2 + b2 = Cl alpha to the power of two plus bravo to the ./ ./ ./ 

power of two equals charlie to the power of 

two 

3x2 +3 three x-ray to the power of two plus three ./ ./ ./ 

delta (X) delta echo lima tango alpha of capital x-ray ? ./ ./ 

f(g(h(x))) = esin(x2) foxtrot of begin golf of begin hotel of x-ray ? ? ./ 

end end equals echo to the power of begin 

sin open bracket x-ray to the power of two 

close bracket end 
sn capital sierra to the power of november ./ ./ ./ 

x', y" x-ray prime comma yankee prime prime x x x 

1R one index capital romeo x ./ ./ 

Vax+b november root of begin alpha x-ray plus x x ./ 
=+d 

bravo end over begin charlie x-ray plus delta 

end 
dO begin delta theta end over begin delta x ./ ./ 
dr 

romeo end 
X= -7±y'49±32 x-ray equals begin minus seven plus or mi- x ./ ./ 

8 

nus square root begin forty nine plus thirty 

two end end over eight 

ox greek delta x-ray ? ./ ./ 

x<4 x-ray less than four ./ ./ ./ 

f(2 x x) foxtrot of begin two times x-ray end ? ./ ./ 

y = f(x) yankee equals foxtrot of x-ray ? ./ ./ 

H open square bracket times close square ./ ./ ./ 

bracket 

1 one ./ ./ ./ 

.!!.. echo over mike ? ./ ./ 
m 

y = x2 yankee equals x-ray to the power of two ./ ./ ./ 

dB= 1Olog~ delta capital bravo equals ten log begin cap- x ? ./ 
Pin 

ital papa index begin oscar uniform tango 

end end over begin capital papa index begin 

india november end end 

4x2 - 9y2 four x-ray to the power of two minus nine ./ ./ ./ 

yankee to the power of two 

Table 7.1: Sample results of parsing spoken mathematics corpus (complete expressions) 
using Yapps2-based parser (PI) presented by [Wigmore, 2011] , the Yapps2-based parser 
in our live TalkMaths web-based system (H) and operator precedence-based parser 
(Pa) 
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7.4 TalkMaths Field Study 

This section describes a field study on how users create and edit mathematical formulae 

using our TalkMaths system and natural language commands based on the approach in 

Section 6.2. For the purpose of this study, users typed their commands as opposed to 

speaking them, and they were using the TalkMaths editor in comparison to conventional 

equation editing software (such as the Microsoft Word equation editor). In particular, 

our goal is to evaluate whether such an approach can aid participants' understanding 

of particular mathematical concepts, such as the "numerator" and "denominator" of 

fractions, to reinforce their understanding of these and related ideas. Our findings 

also evaluate the usefulness of our developed language as a means of communicating 

mathematics using textual input only. 

We carried this out through questionnaires, both to test participants' knowledge 

and understanding and to quantify their own perception of these, with respect to 

appropriate mathematical concepts. These questionnaires are shown in Appendix E. 

The current chapter describes a small pilot study of this type within an introductory 

non-specialist mathematics course and measures the students' performance in both pre

and post-task tests. We intend to use the results of such studies in the development 

of new teaching and support materials aimed at improving students' understanding of 

key ideas. These activities will be rolled-into more courses in the future, which should 

give useful insights and data for additional studies. 

7.4.1 Experiment: The Learning Activities 

In this section, we present the design, implementation and results of an experiment 

on using TalkMaths with real students in a real classroom environment. This was to 

assess the TalkMaths application in terms of its usability and impact on learning of 

mathematical concepts, compared with use of a conventional mathematical editor. A 

user evaluation had previously been carried-out on the original, desktop-based version 

of TalkMaths [Wigmore, 2011]. However, this focused on the system's ease of use and 

how fast and accurate users were in performing various mathematical editing tasks. 

It was found that the majority of participants, who did not have any disability, took 

longer and produced more errors using TalkMaths than when using a conventional key-
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board & mouse based editor. Nevertheless, the only participant who did have a major 

disability (Duchenne Muscular Dystrophy) performed better, both in terms of speed 

and accuracy, when using TalkMaths, and out-performed many of the non-disabled 

group when using this modality [Wigmore, 2011]. This illustrated the potential bene

fits of TalkMaths to one of the user groups for which it was primarily designed. The 

present study investigates how the new version of TalkMaths influences the users' un

derstanding of mathematical concepts related to the prescribed editing tasks, instead 

of speed and accuracy in performing the editing. The results of a preliminary eval

uation of the new version have already been published elsewhere [Attanayake et al., 

2013], but scrutiny of these revealed some weaknesses in the design of the original ex

periment - notably ambiguities in some parts of the questionnaires. These limitations 

were addressed and the revised materials were tested using a new group of students 

[Attanayake et aL, 2012]. The details and results of this refined, follow-up study are 

presented below. 

7.4.2 Design of Experiment 

We developed a set of classroom mathematical materials and learning tasks for un

dergraduate Life-Science students who were taking a basic mathematics module at 

Kingston University. The tasks to be carried out by the participants and the questions 

on their mathematical knowledge, were designed to be appropriate to their typical level 

of mathematical expertise. The volunteer student participants were allocated to two 

groups randomly. Both groups carried out the same tasks, but using two different 

tools. The first group (A) used a conventional mathematical editor (Microsoft Word 

Equation Editor) while the other group (B) used a research prototype version of Talk

Maths. Note that all subjects had previously used MS Equation Editor but none had 

used the TalkMaths system before. Each participant was asked to complete three ques

tionnaires (see the Appendix E). The first questionnaire was about the participants' 

own perception of their mathematical competence at the start of the experiment. The 

second was a diagnostic test related to the tasks they were about to carry out and the 

final questionnaire, given at the end of the exercise, was similar to the second, in order 

to assess improvements to the participants' understanding, but also included questions 

concerning their experience of using whichever system they were allocated. From our 
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initial pilot experiments, it was observed that some participants omitting to answer 

some of the questions - particularly in the post-task questionnaire - led to results of 

dubious reliability. Hence, in the follow-up study we instructed the subjects that all 

questions on both pre- and post-task questionnaires were mandatory. Furthermore, af

ter detailed scrutiny of the original versions, the revised questions were re-designed and 

re-worded to be as unambiguous as possible. Details of the tasks and the questionnaires 

are given in Appendix E. 

7.4.3 Undertaking The Learning Activities 

The regular teaching staff and demonstrators for the module supervised the participants 

carrying out the tasks of the experiment, without actually instructing them. The 

students were required to learn by themselves, with the only resources available being 

the instructions given in the worksheet and the help facility of whichever tool they were 

assigned to. After completing the first two questionnaires, participants were required 

to undertake three tasks (Tasks 1, 2 & 3 - see Appendix E) creating and editing 

mathematical expressions involving fractions, functions and square roots respectively. 

Each task required them to create a specified equation and then carry out a minor 

modification to this using the editor they were assigned. As noted previously, all 

participants had used Microsoft Equation Editor in earlier practical sessions for the 

module but no prior training on TalkMaths was given. Thus, we expected "better" 

performance and possibly higher levels of satisfaction amongst the group using MS 

Equation Editor. All participants were encouraged to use the help facility of the editor 

to resolve any questions they might have while completing the tasks. 

7.4.4 Evaluation 

Table 7.2 presents the results of the post-task feedback from the participants on the ease 

of use of the tool they were using to complete the tasks. Figure 7.7 illustrates the same 

results graphically. The group using the MS Equation Editor seemed to find it easy 

to use, more-so than the group using TalkMaths. When these qualitative evaluations 

were each put onto a 5 point Likert scale, the differences in perceived ease of use of 

the system by the two groups proved just to be statistically significant (p :::::: 0.047 

in a one-tailed t-test). However, this was to be expected due to the participants' 
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How Easy :is the Editor to Use 

f A o· Response 

Very Difficult 

A Bit Diffi cult 

Using Talkt.;l a hs 
OK 

• Using MS Equa ion Edi or 

Fairly Easy 

0 % 20 % 40% 60% 

Figure 7.7: The ease of use of the system by th two group 

Editor Used Participants Very Fairly OK A Bit y, ry N 
Easy Easy Difficult Difficul t ResponsE 

MS Equation 14 50% 36% 7% 0% 7% 0% 
TalkMaths 13 15% 38% 31% 8% % 0% 

Table 7.2: Results of the post -task feedback on th of u f th t 01 

previous experience with MS Equation Editor , in contr t to non of th m having u d 

TalkMaths before. 

Table 7.3 and Figure 7.8 present the results of the post task £ dba k from th par

ticipants regarding any improvements t hey perceiv d to t heir und r tanding of th 

mathematical concepts involved in the task after using the appropriat tool th y wer 

allocated. 

Most users of TalkMaths seemed to believe it had improved t h ir und rstanding, 

while only 35% of users of MS Equation Editor reported any improv ment. In fa t, 14% 

of users of MS Equation Editor thought it had impeded their und r tanding, wh r as no 

TalkMaths users held this opinion. How v r , when these qualitativ valuation w r 
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converted to a 5 point Likert scale, the difference between the two group ' per eption 

proved to be not quite st atistically significant (p ~ 0.065 for a on -tailed t-te t). 

We also evaluated the students' performance on knowl dge of relevant math mat

ical terminology, both before and after the tasks, to inve t igate wh th r the exercise, 

possibly including use of the help facility of whichever tool they wer allocated , had 

improved this knowledge. We gave a score of + 1 whenever the parti ipant orr t ly 

gave the prescribed answer to one of these "mathematical knowledg " quest ions or a 

score of + 0.5 for an answer we considered to be a r I vant "near miss". If th an w r 

given was incorrect or the student did not respond, a score of 0 was giv n for t hat qu -

tion. We observed the change to each student 's cor betw n th pr - and p t-t k 

questionnaires. 

Improved Learning of Mathematics 

N/ A No Response 

A Lot 

QU it e a Bit 

Usini T~ lkM~ths 
A littl e 

• Usini MS Equiltion Editor 

Not Really 

0'. I feel more con used now 

0 % 10% 20 % 30 % 4 0% 50% 60% 

Figure 7.8: Improved under tanding 
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Editor Used Participants No, Not A Quite A No 

I feel More Really Little a Bit Lot Response 

confused 

now 

MS Equation 14 14% 50% 21% 14% 0% 0% 

TalkMaths 13 0% 38% 38% 15% 8% 0% 

Table 7.3: Results of the post-task feedback on any improvements to understanding 
mathematical concepts 

Although, in both groups, most individuals gave the same response to any given ques

tion in both pre- and post-task questionnaires, indicating no change to their knowledge, 

one participant in group A (MS Word Equation Editor) actually did worse the second 

time, indicating a decline in understanding! In the previous, pilot study [Attanayake 

et al., 2012], such observations could possibly have been due to laziness, where the 

subject did not complete all the questions in the post-task questionnaire. However, 

this was not the case in the current second study. Although the overall average score 

for the MS Equation Editor group did increase slightly after performing the tasks, this 

improvement was very small and was not statistically significant (p ~ 0.18 in a one

tailed t-test). In contrast, no participants using TalkMaths did worse on the second 

questionnaire, five students improved their scores and overall the group average score 

increased by a noteworthy amount, which proved statistically significant (p ~ 0.011 

in a tw~tailed t-test, or p ~ 0.006 in a one-tailed test). The difference between the 

two groups in mean improvement after performing the tasks also proved to be weakly 

statistically significant (p ~ 0.048 in a one-tailed t-test), where the TalkMaths group 

showed greater improvement. In summary, from these results, it can be concluded 

that due to their previous experience, users found the MS Word Equation Editor eas

ier to use than TalkMaths, but on the other hand TalkMaths helped improving their 

understanding of mathematical concepts more than MS Word Equation Editor. 



Chapter 8 

Conclusions and Future Work 

The work described in this thesis has devised, implemented and evaluated solutions 

for the problem of creating and modifying mathematical expressions by speech, using 

web-based applications. In this chapter, we conclude this work by critically analysing 

our findings and giving an outlook for future research directions. 

8.1 Conclusions 

The first phase of our research was motivated by our desire to improve the desktop

based TalkMaths system that was described and implemented in [Wigmore, 2011]. We 

started-off by investigating various architectures for realising general-purpose speech

based applications. This led to our literature review of this area and our architecture 

taxonomy. In particular, we have adopted the view that web-based architectures will 

eventually become more and more prevalent even amongst speech-based applications 

due to trends like the move to more cloud-based solutions and service-oriented archi

tectures. 

The amount of previously published work in the area of web-based architectures 

for speech-enabled systems seemed relatively small at the time of writing. However, 

we expect additional interest on speech-based applications amongst researchers in the 

foreseeable future, as speech technology becomes more established. As we explained 

in Chapter 7, our work resulted in TalkMaths being rewritten as a web-based system 

(and a web service), and our findings might persuade other system architects to proceed 
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similarly. 

We have gained very encouraging results from the perplexity experiments carried 

out in Chapter 5, leading to the conclusion that spoken mathematics is relatively more 

predictable than everyday natural languages. lIenee, by statistically modelling spoken 

mathematics, it is possible to (semi-) automatically predict or correct the user's input 

to a system such as TalkMaths. With this result in mind, we have implemented a proto

type predictive system that can achieve over 90% one word ahead prediction accuracy, 

which can be used to assist in the creation of electronic mathematical content. \Ve have 

also seen that one word ahead prediction accuracy can be improved by increasing the 

size of the training dataset used for the 8LM. At present, the predictions are limited 

to the vocabulary of the 8LM. This implies that each time a new word (in our case, a 

spoken name of a mathematical entity) is encountered, it would need to be added to 

the system's vocabulary. This in turn requires the corpus of mathematical expressions 

on which the 8LM is based to be extended to reflect the change. Although possible in 

principle, this is not straightforward as one would have to find a considerable amount 

of additional data in order to update the baseline 8LM. Adaptive online learning may 

be a solution to this issue. 

We have also implemented and evaluated a prototype corrective system for spoken 

mathematics input using the Damerau-Levenshtein distance method. This was also 

proven to be highly successful at correcting up to 3 character-level errors in an expres

sion. However, as expected, when the number or complexity of such errors increases, 

the efficiency of correction declines. 

Our proposed framework for the design of spoken mathematics (and spoken com

mand languages in general) uses mixfix operators. This leads to our construction of 

speech templates, resulting in (usually short) spoken commands that appear reason

ably intuitive and "natural" to the user. They can be used for expressing commands 

of different types such as content, editing or help commands. Mixfix operators with no 

arguments (arity 0) are frequently used for any command that is not related to content 

such as editing and system commands. Overall, our framework has clearly resulted in a 

much improved input language for our new prototype version of the TalkMaths system, 

in particular, the increased range of mathematics that can be parsed as documented 

in our parser evaluation (Table 7.1). 

The operator precedence-based GLR parsing technique that we have developed, 
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using multiple parses for resolving ambiguity, and our error recovery algorithm have 

resolved many problems and weaknesses in earlier systems and proposals. However, 

parsing incomplete or incorrect spoken commands remains a complex and challenging 

task. Whereas evidence from our evaluation suggests that our overall error recovery 

strategy is correct and can treat a wide range of problematic input, there exist a 

number of issues that could be addressed to further improve our algorithm. The error 

recovery algorithm that we have given in Section 6.6.5 is very comprehensive, but may 

not always be needed in practice. Restricting the range of tolerated incorrect input 

would speed up the algorithm. This leads us to discuss the main drawback of our 

approach, and certainly of the prototype implementation: due to the large number of 

possible interpretations of occurring ambiguities, an exponentially growing number of 

different parse trees might be generated. This can slow down the algorithm and make 

it less convenient to the user. We suspect that a careful analysis and profiling of our 

code would reveal bottlenecks in it, and it is clear that using revised data structures 

allowing partial sharing of the various parse trees could significantly improve its run

time behaviour. On the other hand, for relatively shorter input (and this will be the 

typical situation in a speech-based system) the algorithm appears practical. 

Syntax analysis is only the first step of the classical approach to compiler-construction, 

and it would be interesting to investigate whether a more general framework for dis

playing spoken mathematical input can be found. An investigation into tools and tech

niques employed for semantic analysis and code generation would be needed, followed 

by an analysis of their usefulness and relevance for the kind of tasks and challenges 

that are required for our line of work. 

Throughout the different phases of this PhD project, we have been keen to see 

the practical relevance of our research by implementing the algorithms even in their 

early stages. This has led to a number of prototypes, including re-implementation of 

earlier work. We recreated a version of the system described by [Wigmore, 2011] in 

order to have a baseline in our parser evaluation (see our comparison of the parsers 

PI, P2 and Pa in Section 7.3). Our implementation of some of the speech editing 

paradigms, as introduced in [Wigmore, 2011] was needed to make speech-driven editing 

possible in an interim version of TalkMaths, used for the learning and teaching user 

experiment in 7.4.1. To our knowledge, this is the first time that both the exhaustive 

and semantic grids (see Section 7.2.3) have been fully implemented, used and tested in 
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a real classroom environment. 

In Chapter 7, we described a thorough evaluation of our new version of TalkMaths, 

by illustrating the improvements we made to the parsing algorithm. Our findings . 
suggest that our new Operator Precedence parsing approach performs significantly 

better for both syntactically correct and incorrect expressions, compared with that 

used in [Wigmore, 2011]. On the other hand, there are still a number of problems, 

mainly linked to out of vocabulary words, out of scope grammar and Yapps2 grammar 

inflicted left recursion errors (only for PI and P2). 

The results of our field study, presented in Chapter 7, Section 7.4.1 are encouraging. 

Due to the novel web interface offering multimodal input, students were able to type 

"natural maths" commands. Removing the danger of misrecognition due to the lack of 

an ASR, they could focus on engaging with the mathematical content using descriptive 

natural language commands. In this way, as our findings suggest, the students were 

able to improve their understanding of specific mathematical concepts. \Ve feel that 

there is a lot of potential in this approach. For example, online maths tutoring sys

tems, educational chat rooms or forums could all hugely benefit from our techniques 

as they provide a first step towards a natural or multimodal user interface for online 

mathematics that is operating-system independent. 

8.2 Future work 

During the time of the PhD, numerous findings and insights reshaped the course of 

the TalkMaths project. However, there were other interesting research questions raised 

while answering the main research questions we were originally concerned with. Even 

though it would have been valid to carry out more research on each of these other 

aspects, the time available was limited. In this chapter, we briefly outline some of 

those aspects as future directions to our work. 

Although the architecture choice we made for the TalkMaths project was facilitated 

by our classification of speech based architectures, we were constrained by some histor

ical reasons and design limitations, for example the language used and the processing 

power available at the University. For these reasons, we were unable to compare the 

performance of our system between different possible architectures. It would have been 

better to experiment on the performance of our prototype systems using different pos-
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sible architectures prior to implementation of the final solution which can be used by 
end users. 

The 8LMs we created were based on linearised mathematics language of the nature 

described by previous authors [Chang, 1983; Fateman, 2009; Wigmore, 2011]. Even 

though the experiments described in Chapter 5 demonstrated that spoken mathematics 

in general is quite predictable, the final proposal of the spoken mathematics language 

described in subsequent chapters ( 7 and 6) was slightly different from its predecessors 

(for example, using speech templates). As a direction for future work, creating and 

evaluating 8LMs using a suitable dataset of spoken mathematics that use speech tem

plates could further demonstrate that we can use prediction and correction facilities 

for the new spoken mathematics language that includes speech template components 

as well. It should be noted that such a dataset will be available through time as more 

and more people use the TalkMaths system. 

As explained in Chapter 8, when new speech components are added to the system, 

the baseline 8LM will have to be updated to incorporate the changes. This is the 

same case when a user wishes to alter or remove currently-used speech components in 

from the system. An adaptive language modeling technique, such as cache or trigger 

models, (see Chapter 4) could be useful to do this in a more dynamic way rather 

than recalculating word probabilities from each new training dataset. Investigating 

which adaptive language modeling technique is best for the underlying language and 

subsequent implementation of predictive and corrective facilities into the TalkMaths 

system will make the system more scalable. 

Currently, the predictive and corrective systems are implemented as separate pro

totypes to the TalkMaths system. However, integrating these facilities into TalkMaths 

in the future is possible and shall be very useful. It would also be interesting to employ 

a user evaluation study of our predictive and corrective facilities once they have been 

integrated into the TalkMaths system and compare the resulting benefits with the us

ability of the system prior to integration - in particular, carrying out an evaluation 

similar to that described in Chapter 5. 

We have shown that the error correction system based on Damerau-Levenshtein 

distance was quite good at correcting character-level errors during user input. This is 

extremely useful when the input method is via the keyboard. However, during speech 

input - by mistake (or due to different ways of speaking), a user may speak words in 



8. CONCLUSIONS AND FUTURE WORK 121 

a different order to what the system expect. A word-level (for example, words being 

deleted/inserted/swapped in a given sentence) distance calculation metric similar to 

the Damerau-Levenshtein method that we have applied could be of benefit in such 

circumstances. Also, this method can be extended to correction of phonetic error 

(errors in A8R) between similar sounding words - such as "theta", "beta" and "eta". 

More research on this topic should be of interest for any speech-based system, not just 

TalkMaths. Theoretically this would seem to be useful, however, carrying these out 

might be an excessively heavy computational task. 8LMs could also be used to assess 

which sentences are highly unlikely to occur as a way of detecting word-level errors in 

a given sentence. It would be a valid experiment to compare these different methods 

with the input correction method described in this thesis. 

As already mentioned in [Fateman, 2006], any speech-based system that wishes 

to offer the fullest flexibility and usability to its users needs to provide a facility for 

defining custom user-created commands. In our framework, this corresponds to adding 

new operators (in particular, mixfix operators corresponding to new speech templates), 

with appropriate precedence information, to the system. In principle, this does not pose 

any problem. However, a suitable user interface for this would have to be designed and 

implemented. We think that this desirable feature could be an important next step for 

improving TalkMaths as it would enable TalkMaths to become a generic, extensible 

editor for languages like Maths that are suitable for the parser and speech template 

approach implemented. 

Additional future work could integrate a generic semantic analysis mechanism, for 

correctly interpreting arbitrary, potentially user-defined command types. This would 

improve the way the parser could distinguish between, e.g. editing, help or mathemat

ical content commands and correctly identify the necessary action that the system has 

to undertake. 

During the field study we have carried out to evaluate our TalkMaths interface, it 

was evident to us that the use of speech templates was quite natural for the users. The 

comments we received from the participants were encouraging and no one questioned 

the nature of the language they had to use. However, the focus of those experiments 

was not on the ease of use of the new spoken mathematics language, therefore it cannot 

be used to reach the conclusion that the speech templates were indeed easy and natural 

to users compared to earlier versions of spoken mathematics. An empirical evaluation 
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of the use of spoken mathematics that include speech templates will be highly beneficial 

in the future. 

The editing paradigms implemented in TalkMaths produced much lively discussion 

at public demonstrations at Kingston University among post graduate user experience 

students. If we had time in hand, experimenting on the ease of use of those novel 

editing paradigms described in Chapter 7 would have been designed and carried out. 

Currently editing paradigms designed based on editing mathematics. It would also be 

a valid experiment to design and use our editing paradigms concept in the context of 

dictation of programming code and compare these with conventional speech editing 

paradigms (such as use of a mouse grid) 

The prototype implementation of our parsing algorithm presented in Section 6.5.3 

has been evaluated and its novel error recovery features have been illustrated and 

tested (see Section 6.6). Due to the complexity of the algorithm, we could not fine

tune all aspects of our implementation, and we did not integrate our code into the live 

TalkMaths system, publicly available on the web. Doing so would mainly require work 

relating to system integration and software engineering of a technical nature rather 

than academic research. 

An interesting additional feature of our system could be an interactive mechanism 

to display various ranked alternatives of expressions offered to resolve ambiguity, as well 

as devising new ways of determining this ranking (currently, we use the number of nodes 

in the parse tree - the lower the better, as this gave us better results). For example, this 

mechanism could work similarly to how our SWIMS system offers suggested predictions 

and corrections to the users, and in principle, it would be possible to use the same 

JavaScript code to implement this for TalkMaths. However, this will also require 

additional processing power due to the need for analysis of possible outcomes using a 

suitable rule set, which therefore could affect the performance of the system. 

A highly desirable direction for TalkMaths project is to make the system more 

accessible for people with visual impairments by incorporating facilities to output 

mathematics expressions on the screen using synthetic spoken text-terspeech (TTS) 

mathematics descriptions. 

Ultimately, we believe that in future versions of TalkMaths, the concepts and alger 

rithms that we have devised in this project and described in this thesis will form core 

components of the system, and will be further enhanced by additional improvements 
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and extensions. Eventually, the entire functionality described here will be available 

in the public interface and the power of our approach will be measured in terms of 

satisfied users, rather than academic case studies or prototype evaluations. 
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Appendix A 

SLM Training Data Comparisons 

In Chapter 5, we have described how we have created a new spoken mathematics 

training data corpus. It is sensible to view our perplexity results compared to some 

already known data corpuses to see the full picture. The tables in this appendix 

illustrate different comparisons of our web crawled SLM training data with other known 

corpuses. The full description of these corpuses used in each tables are: 

• COCA - Corpus of Contemporary American English (COCA) - non case s(,Ilsitive 

[Davies, 20081 (419845044 words in total, containing 629895 different words) 

• BNC Maths - selected subset of the BNC{The British National Corpus) dialogue 

material (15 files - 123821 words in total, containing 4355 differmt words), com

posed of transcriptions of audio recordings from school, collC'ge and university 

mathematics lessons, described in [Wigmore, 2011] 

• Trig Maths Data - a hand-typed dataset created from symbols from the "trigonom

etry" chapters of some secondary school GCSE mathematics textbooks, described 

in [Wigmore, 2011] (7857 words in total, containing 102 different words) 

• Web Crawled Maths - spoken mathematics dataset extracted from mathematical 

tutorial web sites in the public domain covering material at roughly GCSE & GCE 

A-Level or "Senior-High School level" mathematics, described in this thesis, in 

Chapter 5 (61479 words in total, containing 100 different words) 



Total Words 
Vocab 

1 
2 
3 
4 

5 

6 
7 
8 
9 
10 

COCA (Cen) BNC (Maths) Trig Maths Data Web Crawled Maths 
419845044 123821 7857 61479 

629895 4355 102 100 
the (0.05%) one (1.39%) = (10.03%) end (7.58%) 
of (0.03%) two (0.87%) 2 (5.24%) begin (7.57%) 
to (0.03%) three (0.67%) o (4.77%) x-ray (7.30%) 

and (0.03%) X (0.47%) sin (4.37%) of (7.26%) 

a (0.02%) four (0.41%) 1\ (superscript or (391o/c) 
"to the power") . 0 

two (4.82%) 

in (0.02%) six (0.41%) / (3.37%) to (4.32%) 
that (0.01%) five (0.40%) x (2.60%) the (3.93%) 

I (0.01%) hundred (0.39%) cos (2.20%) power (3.93%) 
is (0.01%) minus (0.36%) a (2.07%) equals (3.79%) 

for (p.01 0/0) times (0.31%) x (2.07%) bracket (3.61%) 

Table A.l: Comparison of Overall words & most common words 

~ 

~ 
~ 

~ 
~ 

~ 
S2 
Q 

~ 
~ 

8 
~ 
~ 
::tJ 
~ 
o 
~ 

-~ 
CN 



COCA (Gen) BNC (Maths) Trig Maths Data 
Total Bigrarns 286758206 123820 7856 

1 of the (0.90%) a hundred (0.4%) 0=(5.24%) 
2 in the (0.71%) hundred and (0.3%) A 2 (or 2) (3.55%) 
3 to the (0.37%) take away (0.3%) 2= (1.18%) 
4 on the (0.32%) of a (0.2%) 2+ (1.04%) 
5 and the (0.26%) an hour (0.2%) /2 (0.88%) 
6 to be (0.23%) one of (0.2%) /sin (0.85%) 
7 at the (0.22%) equal to (0.1%) =sin (0.80%) 
8 for the (0.21%) X squared (0.1%) C= (0.79%) 
9 in a (0.19%) a quater (0.1%) 2- (0.74%) 
10 __ L- do n't (0.19%) minus one (0.1%) x= (0.73%) 

Table A.2: ~Iost Common Bigrams 

Web Crawled Maths I 

61478 
the power (3.93%) 

to the (3.93%) 
power of (3.93%) 

of two (2.1%) 
over begin (1.85%) 
of begin (1.76%) 
end over (1.68%) 
x-ray to (1.66%) 

close bracket (1.55%) 
open bracket (1.54%) 

~ 

~ 
~ 

~ 
~ 

~ 
~ 
c;":) 

~ 
~ 

8 
~ 
~ 
;:,::, 
C;) 
o 
~ 

-"'" ...... 



Corpus 
COCA (Gen) 

Total 
Tri- 128125547 

grams 
1 i do n't (0.16%) 
2 one of the (0.13%) 
3 a lot of (0.11%) 
4 the united states (0.1%) 
5 do n't know (0.06%) 
6 out of the (0.06%) 
7 as well as (0.06%) 
8 going to be (0.06%) 
9 some of the (0.05%) 
10 you do n'tJO.05%) 

BNC (Maths) Trig Maths Data 

123819 7855 

miles an hour (0.06%) 2 = (or 2=) (1.13%) 
hundred snd twenty (0.06%) 2+ (or 2+) (1.02%) 

D Y by (0.04%) 2+ (or 2-) (0.74%) 
Y by D (0.04%) a2 (or a2) (0.66%) 

take away a (0.04%) b2 (or b2) (0.61%) 
X plus two (0.04%) 1/2 (or) (0.61) 
Y equals X (0.04%) c2 (or c2) (0.57%) 

square root of (0.03%) =1/ (0.56%) 
hundred and eighty (0.03%) 2 - 2 (0.45%) 

two three four (0.03%) x)= (0.34%) 

Table A.3: 110st Common Trigrams 

Web Crawled Maths 

61477 

to the power (3.93%) 
the power of (3.93%) 
power of two (2.05%) 
x-ray to the (1.66%) 

end over begin (1.2%) 
delta x-ray end (0.88%) 
power of begin (0.73%) 

close bracket end (7.2%) 
of two end (0.67%) 

begin open bracket (0.63~L 

~ 

~ 
~ 

~ 
~ 

~ 
~ 
c:J 

~ 
~ 

8 
~ 
~ 
~ 

~ a 
~ 

.... 
~ 
Coil 



BNC (Maths) 

'Training Test 
\Yords \Yords 
61913 61913 

82551.33 41275.67 
92870.25 30956.75 
99001.6 24765.4 

103188.33 20637.67 
106136.57 17689.43 
108347.75 15478.25 
110068.44 13758.56 
111444.3 12382.7 

117635.65 6191.35 

Trig Maths Data Web Crawled Maths 
100 

Training Test 'Training Test Perplexity 
\Vords \Vords 

Perplexity 
\Vords \Vords 

Perplexity 

238.85 3928.5 3928.5 18.97 54907 6572 7.07 
221.61 5238 2619 17.18 54968 6511 7.17 
210.13 5892.75 1964.25 16.46 55294 6185 7.11 

206 6285.6 1571.4 16 55688 5791 7.31 
200.05 6547.5 1309.5 15.47 55172 6307 7.25 
194.05 6729.29 1122.43 14.84 55597 5882 7.74 
185.27 55340 6139 7.04 
196.18 55805 5674 7.65 
188.57 55177 6302 7.53 
181.3 55363 6116 7.02 

--- ........ - '----------

Table A.4: Perplexity scores as function of training set size 

l 
! 

~ 

~ 
~ 

;;5 
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~ 
~ 
~ 

§: 
~ 

8 
~ 
;?2 
::0 
C;:i 
a 
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-~ 
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Appendix B 

LaTeX to Spoken Mathematics 

Yapps2 Parser 

As described in Chapter 5, we have used the parser generator tool Yapps2 [Patel, 2009] 

to translate web-crawled LaTeX mathematical expressions into spok£'n matlwmatics. 

Below are the grammar rules written using the Yapps2 grammar specification. Some 

parts were omitted for readability. 

parser Latex: 

# tokens for templates 

token FRACTION: "\\\\frac\{" 

token OVER: "\\\\over" 

# tokens for operators used in arithmetic expressions 

token PLUS: "\+" 
token MINUS: "_" 

token PLUS_MINUS: "\+-I\\\\pm" 

token MINUS_PLUS: "-\+I\\\\mp" 

token TIMES: 1I\*I\\\\times" 

token DIVIDE: 11/" 
token POWER: II\~" 

token SQUARED: II_squared" 



B. LATEX TO SPOKEN MATHEMATICS YAPPS2 PARSER 

token CUBED: lI_cubedll 

token BEGIN: II_quantity II 

token END: 11$11 

token ENDS: lI_all li 

token ASSIGN: 11:=11 

token EQUALS: 11=11 

token COMMA: 11.11 

token LESS_THAN: 11<11 

token GREATER_THAN: 11>11 

token LESS_THAN_E: 1I<=I\\\\leqll 

token GREATER_THAN_E: 1I>=I\\\\geqll 

# while using left and right as alternatives for open and close 

token OPEN_BRACKET: 11\(11 

token OPEN_CURLY_BRACKET: II\{II 

token OPEN_SQUARE_BRACKET: 11\[11 

token CLOSE_BRACKET: 11\)11 

token CLOSE_CURLY_BRACKET: II\}II 

token CLOSE_SQUARE_BRACKET: 11\]11 

token OPEN_CURLY_ACTUAL_BRACKET: II\\\\{II 

token CLOSE_CURLY_ACTUAL_BRACKET: II\\\\}II 

# tokens for functions 

token BEGINFUNCTION: lI_functionll 

token OF: II_of II 

# tokens for trigonometry 

token SIN: 1I\\\\sinll 

token COS: 1I\\\\cos ll 

token TAN: II \\\\t an II 

token LOG: 1I\\\\logll 
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token LN: "\\\\In" 

token DEGREE: "_degree II 

token THETA: "\\\\theta" 

token DELTA: "\\\\delta" 

token ALPHA: "\\\\alpha" 

token PI: "\\\\pi" 

token DOT: "\\\\cdot" 

token PRIME: II \\\\prime II 

#token IN: "\\\\in" 

token SEMICOLON: "\\\\;1;" 

token MATHBF: "\\\\mathbf{1I 

# tokens for numbers 

token AHUNDRED: "_hundred" 

token ATHOUSAND: "_thousand II 

token AMILLION: "_million" 

#tokens for roots 

token SQUARE_ROOT: II \\\\sqrt II 

token NTHROOT: "_root II 

#tokens for integral 

token INTEGRAL: "\\\ \int" 

token FROM: "_from" 

token TO: "_to" 

token GREEKID: "\&#X [0-9] + [A-Z] [0-9];" 
token EMPTY: 1111 

token PERCENT: "_percent II 

token TILDE: "_tildeII 

token OVERBAR: "_overbar" 

token AND: "_and II 
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token SUPERSCRIPT: "_superscript II 

token SUBSCRIPT: "_" 

token IDENTIFIER: l[a-zA-Z]I\?" 

token DIGIT: "[0-9]+" 

ignore: "\ \s+" 

rule goal: expr END {{ return expr }} 
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# An expression is one or several arithmetic expressions, separated by 

# relational operators «, >, <=, >=, =) or the assignment operator (:-) 

# these operators are of lowest priority 

rule expr: 

arithmetic_expr 

{{ v = arithmetic_expr }} 

( LESS_THAN arithmetic_expr 

{{ v = ['<',v,arithmetic_expr ] }} 

I GREATER_THAN arithmetic_expr 

{{ v = ['>',v,arithmetic_expr ] }} 

I LESS_THAN_E arithmetic_expr 
{{ v = ['<=',v,arithmetic_expr ] }} 

I GREATER_THAN_E arithmetic_expr 

{{ v = ['>=',v,arithmetic_expr] }} 

I EQUALS arithmetic_expr 
{{ v = ['=',v,arithmetic_expr ] }} 

I ASSIGN arithmetic_expr 

{{ v = [':=',v,arithmetic_expr] }} 

I COMMA arithmetic_expr 

{{ v = [',',v,arithmetic_expr ] }} 

)* 

{{ return v }} 

# An arithmetic expression is a sum or difference of a 
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# signed term and one or several unsigned terms. 

# This means it is a signed term, 

# followed by '+', '-' or '+-' and an unsigned term 
rule arithmetic_expr: 

(signed_term 

{{ v = signed_term }} 

I unsigned_term 

{{ v = unsigned_term }} 
) 

( PLUS unsigned_term 

{{ v = ['+',v,unsigned_term] }} 

I MINUS unsigned_term 

{{ v = ['-',v,unsigned_term] }} 

I PLUS_MINUS unsigned_term 

{{ v = ['+-',v,unsigned_term] }} 

I MINUS_PLUS unsigned_term 

{{ v = ['-+',v,unsigned_term] }} 

)* 

{{ return v }} 

# A signed term consists of a 

# sign ('+', '-' or '+-') followed by an unsigned term 

rule signed_term: 

PLUS unsigned_term 

{{ return ['plus_sign',unsigned_term] }} 

I MINUS unsigned_term 

{{ return ['minus_sign',unsigned_term] }} 

I PLUS_MINUS unsigned_term 

{{ return ['plus_minus_sign',unsigned_term] }} 

I MINUS_PLUS unsigned_term 

{{ return ['minus_plus_sign',unsigned_term] }} 
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# An unsigned term is a product or division of factors 
rule unsigned_term: 

#FRACTION factor {{ v = factor }} 

CLOSE_CURLY_BRACKET OPEN_CURLY_BRACKET factor 

{{ v = ['fraction',v,factor] }} CLOSE_CURLY_BRACKET {{v-v}} 
factor 

{{ v = factor }} 
( 

TIMES factor 

{{ v = ['*',v,factor] }} 

I DIVIDE factor 

{{ v = ['/',v,factor] }} 

lOVER factor 

{{ v = ['fraction',v,factor] }} 

I DOT factor 

{{ v = ['dot' ,v,factor] }} 

I factor 

{{ v = ['invisibletimes',v,factor] }} 

)* 

{{ return v }} 

rule factor: 
base 

{{v=base}} ( 

POWER factor 

{{v=['-',base,factor]}} 

I SUPERSCRIPT factor 

{{v=['superscript',base,factor]}} 

I SUBSCRIPT factor 

{{v=['subscript',base,factor]}} 

I SQUARED 
{{v=['-',base,2]}} 
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I CUBED 
{{v=[,A',base,3]}} 

I ) 

{{return v}} 

rule base: 

argument {{v=argument}} 

[OPEN_BRACKET arithmetic_expr 

CLOSE_BRACKET {{v=['function',v,arithmetic_expr]}}] 

{{ return v n 

rule argument: 

root 

{{ return root }} 

I fraction 

{{ return fraction }} 

I integration 

{{ return integration }} 

I number 

{{ return number }} 

I trig 

{{ return trig }} 

I OPEN_BRACKET arithmetic_expr ( 

CLOSE_BRACKET 

{{b=' o'n 
I CLOSE_SQUARE_BRACKET 

{{b=' (] 'n 
I {{b=' 0 'n 
) 

{{ return [b,arithmetic_expr]}} 
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CLOSE_SQUARE_BRACKET 
{{b=' [] 'n 
I CLOSE_BRACKET 
{{b=' [)'n 
I 
{{b=' [] 'n 
) 

{{ return [b,arithmetic_expr]}} 

I BEGIN arithmetic_expr ENDS 
{{return arithmetic_expr}} 
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I MATHBF arithmetic_expr CLOSE_CURLY_BRACKET {{return arithmetic_expr}} 

EMPTY {{ return '1' }} 

IDENTIFIER {{ v= IDENTIFIERn [II \ I" {{ v= [v, ' I '] n] {{ return v }} 

"\ I" IDENTIFIER {{ return [' I " IDENTIFIER] }} 
THETA {{return 'theta'}} 

DELTA {{return 'delta'}} 
ALPHA {{return 'greek alpha'}} 

PI {{return 'pi'}} 

SEMICOLON {{return 'semi-colon'}} 

PRIME {{return 'prime'}} 

rule integration: 

INTEGRAL 
( ... 

rule accents: 

TILDE IDENTIFIER (END I ) 
{{ return ['-',IDENTIFIER] }} 
I OVERBAR arithmetic_expr (END I ) 
{{ return ['overbar',arithmetic_expr] }} 

rule root: 
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( ... 

rule fraction: 

FRACTION arithmetic_expr {{n=arithmetic_expr}} 
CLOSE_CURLY_BRACKET OPEN_CURLY_BRACKET arithmetic_expr 
{{d=arithmetic_expr}} CLOSE_CURLY_BRACKET 

{{ return ['fraction', n, d] }} 

rule trig: 

SIN arithmetic_expr 

{{ return ['sin', arithmetic_expr] }} 

I COS arithmetic_expr 

{{ return ['cos', arithmetic_expr] }} 

I TAN arithmetic_expr 

{{ return ['tan', arithmetic_expr] }} 

I LOG arithmetic_expr 

{{ return ['log', arithmetic_expr] }} 

I LN arithmetic_expr 

{{ return ['In', arithmetic_expr] }} 

rule number: 

DIGIT {{v = eval(DIGIT)}} {{return v}} 
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Sample Parser Programming Code 

GLR Parser 

This section gives our GLR Parser code from the TalkMaths web service. For read

ability, some parts are abbreviated. The language used is Python 2.5. 

# Filename: GLRParser.py 

# Creation Date: 16 April 2012. 14:33:33 

# Last Modified $Date: 2013-12-13 15:57:46 +0000 (Wed. 13 Feb 2013) $ 

# Explanation: Constructs a GLR parser. 

from copy import copy 

from OperatorPrecedenceParser import * 
class GLRParser: 

# constructor 

def __ init __ (self. SpokenLanguageData, logger): 

self.id = 'GLRParser' + str(id(self)) 

self.SpokenLanguageData = SpokenLanguageData 

self.results = [] 
self.logger = logger 

self.logger.addLog( ... ) 

def doParse(self. inputString, parseMode): 

self.parseSet = [] 
self.parseSet.append(OperatorPrecedenceParser( ... )) 
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while self.parseSet <> []: 
updatedParserSet = range(O, len(self.parseSet» 

self.newParsers = [] 
for i in range(O, len(self.parseSet»: 

p = self.parseSet[i] 

if p.state == 'READY_TO_TERMINATE': 
# This parser completed it's work. 

# Add to completed list 

updatedParserSet.remove(i) 

if type(p.parseForest) is ListType: 

for i in p.parseForest: 

self.results.append(i) 

else: 

self.results.append(p.parseForest) 

elif p.state == 'READY_TO_PARSE': 

# This parser is ready to act, doWork 
p.doWork() 

elif p.state == 'READY_TO_FORK': 

# This parser is ready to fork 

p.doWorkO 
self.newParsers = self.newParsers + p.children 

for j in updatedParserSet: 

self.newParsers.append(self.parseSet[j]) 

self.parseSet = self.newParsers 

tmpParseSet = copy(self.parseSet) 

for p in tmpParseSet: 

# Remove all parent parsers which forked 

if p.state == 'READY_TO_BECOME_INACTIVE': 

self.parseSet.remove(p) 

# We now run an analysis to count various things 

for tree in self.results: 

tree.collectSeparators() 

tree. sort_Argument_Separators () 
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tree.detangle_Argument_Separators() 

tree.complete_Argument_Separator_Parts() 

tree.eliminate_Redundant_Argument_Separator_Parts() 

# sort by number of mixfix operators 

# check once for top most node 

# and if it is separator(s), then upgrade to mixfix 

if tree.node.getType() in ['separator', 'separators']: 

tree.node.upgrade('mixfix_operator', []) 

tree.countMixFix() 

self.results.sort(key=lambda x: x.mixfixOperatorCount) 

return self.results 

OP Parser 
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The Operator Precedence Parser code from the TalkUaths web service is illustrated 

below. Similar to the GLR Parser code, some parts have been abbreviated for read

ability. 

# Filename: OperatorPrecedenceParser.py 

# Creation Date: 16 April 2012, 14:33:33 

# Last Modified $Date: 2013-12-13 15:57:46 +0000 (Wed, 13 Feb 2013) $ 

# Explanation: Constructs a Operator Precedence Parser. 

# Assume a token list is provided after Lexing 

from OperatorPrecedence.Scanner import Scanner 

from GoogleApp.ParseTree import * 
from GoogleApp.Node import * 
from copy import copy, deepcopy 

from GoogleApp.Logger import * 

import sys 

import re 

from Token import Token 

class OperatorPrecedenceParser: 
def __ init __ ( ... , *args): 
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# This is the constructor for the operator precedence parser. 

self.id = 'OPParser' + str(id(self» 

self.parent = parent 

self.spokenLanguageData = spokenLanguageData 

self.inputString = inputString 

self.parseMode = parseMode 

self.logger = logger 

self.children = [] 
self.pause = False 

if len(args)== 0: 

# We create a new scanner object 

self.myScanner = Scanner( ... ) 

# We initialise the stack with begins token 

self.stack = [self.myScanner.token] 

# We let the scanner do some work 

# in order to skip begin token 

self.myScanner.doWork() 

# We let the scanner do some work until we can either 

# retrieve a unique token (which is not the begin token. 

# we will skip this). or the scanner needs forking 

while self.myScanner.state not in [ ... ]: 

self.myScanner.doWork() 

# We initialise the stack with begins token 

self.state = "READY_TO_PARSE" 

#self.token = (". ") 
self.token = Token( ... ) 

self.parseForest = [] 

self.shift_reduce = " 

else: 

self.myScanner = args[O] 

self.stack = copy(args[l]) 
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self.parseForest = deepcopy(args[2]) 

self.state = args[3] 

self.shift_reduce = args[4] 

def doWork(self ): 

if self.state == "READY_TO_PARSE": 

# We perform Operator precedence parsing, 

# involving shift and reduce actions depending on the 

# precedence relation between the token on 

# top of the stack and the current token 

while self. state == "READY _TO_PARSE": 

# Depending on the scanner state, 

# we do some specific actions 

160 

if self.myScanner.state == 'READY_TO_RETURN_UNIQUE_TOKEN': 

self.token = self.myScanner.token 

# In this state, the parser is ready to act, 

# depending on the information on the precedence table 

self.topToken = self.stack[-l] 

if self.shift_reduce == ": 
# A new parser created by forking in 
# shift-reduce error 

thisPrec = self.computePrecedence( ... ) 

else: 

thisPrec = self.shift_reduce 

# Set the shift_reduce to nothing to make sure 

# next time thisPrec is calculated in the usual way 
self.shift_reduce = ') 

if (thisPrec == '<') or (thisPrec -- ,.,): 

# shift 

self.logger.addLog( ... ) 

self.stack.append(self.token) 

# Now we change state of the scanner 

self.myScanner.doWork() 
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# We scan until an external state is reached 

while self.myScanner.state 

not in [. .. ]: 

self.myScanner.doWork() 

elif thisPrec == '>': 

# In this case, we need to reduce 

self.logger.addLog( ... ) 

i = len(self.stack)-1 

while (self.computePrecedence( ... ): 

i = i -1 

1 = len(self.stack) 

temp = [] 

for j in range(i, 1): 

temp.append(self.stack.pop(» 

# We call updateParseForest() with 

# all reduced tokens as input 
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self.parseForest = self.updateParseForest(temp) 

elif thisPrec == '<>': 

# We will fork in order to do 

# a shift and reduce in parallel 

self.state = "READY_TO_FORK" 

elif thisPrec -- 'STOP': 

# We have finished the parsing 

self.state = "READY_TO_TERMINATE" 

else: 

# The precedence table indicates an error state 

self.errorRecovery(thisPrec) 

elif self.myScanner.state == 'READY_TO_FORK': 

self.state = 'READY_TO_FORK' 
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# We continue to do some more work with the scanner 

self.myScanner.doWork() 

elif self.myScanner.state == 'READY_TO_TERMINATE': 

self.state = "READY_TO_TERMINATE" 

else: 

self.myScanner.doWork() 

elif self. state == "READY_TO_FORK": 

#if self.parseMode == 'all': 

if True: 

# now main script checks for shortest 

# bracket count for this 

#if thisPrec == '<>': 
if self.myScanner.children ==[]: 

# we fork because of different brackets case 

# Create a copy of self 

self.logger.addLog( ... ) 

# Call constructor by setting shift_reduce flag to shift 

myCopyl = OperatorPrecedenceParser( ... ) 

self.children.append(myCopyl) 

# Call constructor by setting shift_reduce flag to reduce 

myCopy2 = OperatorPrecedenceParser( ... ) 

self. children. append (myCopy2) 

else: 

# We fork because of the ambiguity of the lexing 

for child in self.myScanner.children: 

# Create a copy of self 

self.logger.addLog( ... ) 

# Call constructor with each child scanner 

# and copy of stack and parseForest 

myCopy = OperatorPrecedenceParser( ... ) 
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self. children. append (myCopy) 

# Since we only need forked parsers, 

# this parser is not needed anymore. 

# We set it to be inactive. 

self.state = "READY_TD_BECOME_INACTIVE" 

self. spokenLanguageData= [] 

self.inputString=" 

self. parent= [] 

self.myScanner=[] 

self.logger.addLog( ... ) 

else: 

self.state = "READY_TD_PARSE" 

elif self.state -- "READY_TD_TERMINATE": 

pass 

def updateParseForest(self, tokenList): 

self.logger.addLog( ... ) 

for token in tokenList: 

t = token.getType() 

if token.getType() == '10': 

# Create a tree that has one node only, 

# and added to the parse forest. 

mynode = Node('id', [token]) 

my tree = ParseTree(mynode, []) 

self.parseForest.append(mytree) 

elif token.getErrorRecoveryTokenType() -- 'binary': 

# Token is a binary operator. 

# Token is binary, both operands are 
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# in the parseForest list. Use them as child one and two 

# first popped child is the second child as the 

# reverse polish notation is used 

child2 = self.parseForest.pop() 

childl = self.parseForest.pop() 
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mynode = Node('op', [token]) 

my tree = ParseTree(mynode, [child1, child2]) 

self.parseForest.append(mytree) 
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elif token.getErrorRecoveryTokenType() in ['prefix', 'postfix']: 

# Token is postfix or prefix, 

# an operand exist in the parseForest list. 

# Use it as the only child 

child1 = self.parseForest.pop() 

mynode = Node('op', [token]) 

my tree = ParseTree(mynode, [child1]) 

self.parseForest.append(mytree) 

elif token.getType() == 'OPEN_BRACKET': 

theNode = self.parseForest[-1].node 

if theNode.getDetailedType() == 'close_bracket' 

and (theNode.getKey() == token.getKey(»: 

# The token and the node of the top tree of the 

# parseForest are of the same speech template, 

# just update the top node of the top of parseTree 

# open bracket property to True 

theNode.setOpenBracket(token) 

else: 

# Either top tree of the parseForest node 

# is not bracket type, or if it is, then 

# its of a different speech template 

# than that of the token. 

# So create a new tree with brackets node 

mynode = Node('brackets', [token, None]) 

my tree = ParseTree(mynode, [self.parseForest.pop()]) 

self.parseForest.append(mytree) 

elif token.getType() == 'ARGUMENT_SEPARATOR': 
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# add information on open bracket to self.functionNode 

mynode = Node('separator', [token]) 

childl = self.parseForest.pop() 

child2 = self.parseForest.pop() 

mytree = ParseTree(mynode, [child2, childl]) 

self.parseForest.append(mytree) 

elif token.getType() == 'CLOSE_BRACKET': 

theNode = self.parseForest[-l] .node 

if theNode.getDetailedType() == 'open_bracket' 

and (theNode.getKey() == token.getKey(»: 

#case 1 - if we have same bracket type node 

# at the top with missing close bracket, 

# we merge 

theNode.setCloseBracket(token) 

else: 

# Case 2 - otherwise we always 

# create a new bracket node 

mynode = Node('brackets', [None, token]) 

my tree = ParseTree(mynode, [self.parseForest.pop()]) 

self.parseForest.append(mytree) 

return self.parseForest 

def computePrecedence(self, tokenl, token2, *args): 

# if both tokens are not open brackets, do as we used to 

opClassl = tokenl.getOperatorClass() 

opClass2 = token2.getOperatorClass() 

if len(args) > 0 : 

# We are in reduce. No need to check bracket types 

return self.spokenLanguageData.precedenceTable[ ... ] 

else: 

# We are checking for either reduce or shift. 
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# Need to check bracket types are same or not 

if (opClass1 in [ ... ]) and (opClass2 in [ ... ]): 

# Check for function brackets by checking lexeme 

# according to which speech template this 

# bracket belongs to, action as required :) 

if token1.getKey() == token2.getKey(): 
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return self.spokenLanguageData.precedenceTable[ ... ] 

else: 

#Now we know that we have two different bracket types 

if opClass1=='OPEN_BRACKET' and 

opClass2=='OPEN_BRACKET': 
return ,<, 

if opClass1=='OPEN_BRACKET' and 

opClass2=='ARGUMENT_SEPARATOR': 

#return 'Sl' NOW G1 
return ,<>, 

if opClass1=='OPEN_BRACKET' 

and opClass2=='CLOSE_BRACKET': 

#return 'S2' NOW G2 
return ,<>, 

if opClassl=='ARGUMENT_SEPARATOR' 

and opClass2=='OPEN_BRACKET': 
return ,<, 

if opClass1=='ARGUMENT_SEPARATOR' 

and opClass2=='ARGUMENT_SEPARATOR': 

#return 'S3' 
return ,>, 

if opClassl=='ARGUMENT_SEPARATOR' 

and opClass2=='CLOSE_BRACKET': 

#return 'S4' 
return ,<>, 

if opClass1=='CLOSE_BRACKET' 

and opClass2=='OPEN_BRACKET': 
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else: 

print 'stopping code' 

sys.exitO 

if opClassl=='CLOSE_BRACKET' 

and opClass2=='ARGUMENT_SEPARATOR': 
return ,>, 

if opClassl=='CLOSE_BRACKET' 

and opClass2=='CLOSE_BRACKET': 

return '>' 

# both are not speech templates 

if tokenl.getType() == 'OPERATOR' 

and token2.getType() == 'OPERATOR': 
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return self.spokenLanguageData.precedenceTable[ ... ] 

else: 

classOrTypel = opClassl 

classOrType2 = opClass2 

if tokenl.getType() == 'OPERATOR': 

classOrTypel = 'OPERATOR' 

if token2.getType() == 'OPERATOR': 

classOrType2 = 'OPERATOR' 
return self.spokenLanguageData.precedenceTable[ ... ] 
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TalkMaths Interface Screenshots 

TalkMaths is a web-based software which is free to use. However, it requires the user 

to register before being able to access the editor. The following figure shows the login 

page and Figure D.2 is the new user registration page. The screens hots are taken from 

the latest interface, that we have integrated into the web application which was created 

by us from scratch. 

crratmg maths bv Uling 
plain English 

Welcome 10 TalkMnlhs 

Do you "-ant [0 create mathemat:ical 
expressions by talling or typing plain 
£nalish into your computer? Tired of 
pointing and clicJ.:ing? 111<0 checl: out 
our web site. 

Hou: dot.J it u:ori:? 1/!i()IJ hat.!t speech 
rtCOgnirio!1 installtd Oil yourc:ompUIrT: 
you can dou:ni()(U/ an applic:anol7.from. our 
u.~b$ite au, lubsite proddu a 
mathm:atia tclitor thtzf VOll can use by 
qwaJdng commandsfor inpurring and 
modiJiring your ma!.~emal1·ca1 conttnl. 
onC'l' }Iou ha;;. i..'1StaIl~d thil applictttion. 

[s it free? Yes. it is. 

Login 

Email Qddr~ss: 

Password: 

[] Remember me? 

First nm* user? 

I'oreot pauword? 

Figure D.l: TalkMaths Login Page 
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t21k {maths} creating maths by using 
plain English 

Create a TaIkMaths account 

Email address: 

First Name: Last Name: 

Password: Confirm Password: 

Create account 

Figure D.2: TalkMaths Registration Page 
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Once registered, should the user wish to use the system with an ASR system, 

he/she can install the speech front-end which works with Microsoft Windows Speech 

ASR. Figure D.3 illustrates the download page of the TalkMaths system which gives 

the instructions for this and a download link to the front-end. 
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talk {maths} Cl'f!ating maIm by u.ing 
plain £71glilh 

Welcome to Talk Maths 

l V~'come, useT Log Out 

T o be abk!: to use this web application with ~ using Dragon NaturaUySpealdng. you an required to hue The Speech Pln&ln*. H you have DOt 

dont this yet, please download and instlln it on your PC . 

./ I have dODe this. 
Take me to TalJcMaLhs Speeclt Edito,. 

• Dbdabna: l1ns ~ tr prfJI:':.:ftdfrtc oj'charpt. Wt ctm't0l pl'Olidt anv U'(l11'Qnry lor data ms orothu damDgt pountia'\! QlU$t4 b~ Ir.j~ rhl applicat'.QIL l7tlr appbtlollll 
I'tOt o~ AJ'porud by M!thn .YtdUk't [1tC. nor 1l'ttdom o!spttch ud. r Ot! eM elmtact tJ:, u,tblitt CtU1ttrot wblnaJtnttt.albnat.b.o" (you MU' qumu. l1lU CIpi'lfcallalt fr 
(D~ ",iI'iI Dragoll XOf'.lral!vSpcgk&rg 1'" 1mnium 01 Proft:UiDnaJolt Ubldow., (.T£nglWl onlAt. rOll nquwa bonsrdaJpy afJl.\'SIn:tt4C.tdOIl ~ madtiIt bI otrhrlO """ t1tis 
~.lfytRI do atJIlurt.T rha.};011 ron purcJwt Ont onl!:lt fro". Ftudo," ofSpftdt Ud 

Figure D.3: TalkMaths Download Page 
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TalkMaths allows its users to change default settings in order to customise the us

age of the system. This can be done within the Settings page shown in Figure D.4. 

These settings include user account details and the default edit ing grid type. The 

talk {maths} 

Settings 

Fint n.alne: 

Email addr~ss: 

Language: 

r-reating matru bll using 
plain English 

Endish G 

Confi"" n ew 
pa5SWOrfi: 

Editor grid I}Jpc; 

80".80' .• ,. 

G 

.wWlla 

Figure D.4: TalkMaths Settings Page 

TalkMaths system editor page (shown in Figure D.5), has an area to render mathe

matics expressions, two text boxes to dictate or type spoken mathematics and help 
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queries (As described in Section 7.2.4). The section titled "Edit ing Commands" gives 

(or activated by speech) links to frequently used commands, which when invoked, au

tomatically trigger corresponding commands on the system. The Figure D.6 illustrates 
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Figure D.5: TalkMaths Editor Page 

one of the edit ing paradigms being in use on editing a mathematical formula. The 

numbered colour boxes around mathematical constructs allow t he user to select parts 

(or t he whole) of t he expression that needs changing. This is an example of the "ex

haustive" edit ing grid. Semantic editing is similar to the exhaustive editing. It still 

provides numbered colour boxes around mathematical constructs, however the user can 

decide which sub construct(s) within the expression on display should have them. For 

example, as seen in Figure D.7, the numbered boxes only invoked on symbols. This 

is less complicate in the eye of t he user t han t he exhaustive edit ing. Similar to the 
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semantic editing of symbols, Figures D.8, D.9 , D.lO, D.ll , D.12, D.13, D.14 show ex

amples of other types of semantic editing method such as editing operators, numbers, 

roots, fractions , functions , numerators and denominators respectively. 
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Appendix E 

TalkMaths Field Study Material 

Pre-Session Questionnaire 

This is the pre-session questionnaire for both groups of participants (the correct answers 

for Questions 2 to 6 are given in Section E below). 

1. How competent would you regard yourself in terms of your basic maths skills? 

(Doing simple algebraic manipulations, involving fractions, functions and square 

roots) 

Excellent D Good D Fair D Poor D Don't Know D 
2. Given the following fraction, 

x2 -1 
x+1 

do you know what the expressions on the top and the bottom of the expression 

are normally called? If so, write them in the blanks below: The top is called the 
______ and the bottom is called the ______ of the fraction. 

3. Consider the expression, 

In general, the number n in this example is called the ______ of (a + b). 

4. The mathematical symbols +, -, x, -;- represent the processes of addition, sub-

traction, multiplication and division respectively. We call them binary ______ ' 
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(Add a single word to complete the blank space above) 

5. Given the following expression, 

do you know how the expression inside the bracket associated with the function 

f is normally referred to? If so, write it in the space: The expression inside the 

bracket is called the of the function of f. 

6. Given the following square root, 

y+vx(l+x)b 

do you know how the expression inside the square root symbol is normally referred 

to? If so, write it in the blank space below: The expression inside the square 

root is called the of the root. 

Mathematical Tasks for Microsoft Equation Editor 

Group 

Mathematical tasks given for participants who were allocated with Microsoft Equation 

Editor: 

Task 1: Question on fractions 

i For this exercise, you are supposed to create the following mathematical expression, 

using Microsoft Equation Editor: 

b
2 + c 

a+ -
x-y 

ii Now, replace the expression x - yin (1) by w - z. 
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Task 2: Question on functions 

i Still using the Microsoft Equation Editor, create the following expression: 

a + f(2x - 5) 

ii Now, replace the expression 2x in (2) by y. 

Task 3: Question on square roots 

i Still using the Microsoft Equation Editor, create the following expression: 

a+ vx+2y 

ii Now, replace the expression 2y in (3) by 3z. 

Mathematical Tasks for TalkMaths Group 

Mathematical tasks given for participants who were allocated with TalkMaths: 

Task 1: Question on fractions 

i Using the TalkMaths editor, create the following expression: 

b
2 + c 

a+ -
x-y 

179 

In order to do this, in the input field, type "a + b begin 2 + c end over begin x -

y" and press enter. 

ii Now, replace the expression x - yin (1) by w - z. Hint: consult the help facility on 

fractions and selections. This will help you to edit the expression, select appropriate 

parts of it and replace the desired symbols. 
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Task 2: Question on functions 

i Still using the TalkMaths editor, clear the previous expression and create the fol

lowing expression: 

a + f(2x - 5) 

In order to do this, in the input field, type "a + f of begin 2 x -5 end" and press 

enter. 

ii Now, replace the expression 2x in (2) by y. Hint: consult the help facility on 

functions and selections. As in the previous example, this will help you to edit the 

expression, select appropriate parts of it and replace the desired symbols. 

Task 3: Question on square roots 

Still using the TalkMaths editor, create the following expression: 

a+ vx+2y 

In order to do this, in the input field, type "a + square root of begin x + 2 y end" 

and press enter. 

ii Now, replace the expression 2y in (3) by 3z. Hint: consult the help facility on roots 

and selections. As in the previous example, this will help you to edit the expression, 

select appropriate parts of it and replace the desired symbols. 

Post-Session Questionnaire 

This is the post-session questionnaire for both groups of participants (the correct an

swers for questions 3 to 7 are given in Section E below). 

1. How competent would you regard yourself in terms of your basic maths skills? 

(Doing simple algebraic manipulations, involving fractions, functions and square 

roots) 

Excellent D Good D Fair D Poor D Don't Know D 
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2. \Vhich of the computer-based tasks(s) from this session did you manage to com

plete? Please circle. 

Task l(i) Task l(ii) Task 2(i) Task 2(ii) Task 3(i) Task 3(ii) 

3. Given the following fraction, 

do you know what the expressions on the top and the bottom of the expression 

are normally called? If so, write them in the blanks below: 

The top is called the ______ and the bottom is called the _____ _ 

of the fraction. 

4. Consider the expression, 

In general, the number n in this example is called the ______ of (a + 
b). 

5. The mathematical symbols +, -, x, +- represent the processes of addition, sub-

traction, multiplication and division respectively. We call them binary _____ _ 

(Add a single word to complete the blank space above) 

6. Given the following expression, 

do you know how the expression inside the bracket associated with the function 

f is normally referred to? If so, write it in the space below: The expression inside 

the bracket is called the of the function of f. 

7. Given the following square root, 

y+vx(l+x)b 

do you know how the expression inside the square root symbol is normally referred 

to? If so, write it in the blank space below: 
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The expression inside the square root is called the ______ of the root. 

8. How easy did you find the Equation Editor system to use? Please tick the ap

propriate answer. 

Very Easy D Fairly Easy D O.K. D A Bit Difficult D Very Difficult 

D 
9. Did you feel that using the TalkMaths/ Microsoft Equation Editor for doing this 

exercise improved your understanding of the relevant mathematical concepts? 

Please tick the appropriate answer. 

No, I feel more confused now D Not Really D A Little D Quite a Bit 

DALotD 

10. Have you any other comments? If so, please write them below. 

Correct Answers 

The prescribed correct answers for Questions 2 to 6 and 3 to 7 in pre- and post

questionnaires respectively (the numbers not in parentheses refer to the pre-questionnaire 

and those in parentheses to the post-questionnaire) are as follows. 

• 2(3). The top is called the numerator and the bottom is called the denominator 

of the fraction. 

• 3(4). In general, the number n in this example is called the power of (a + b). 

• 4(5). We call them binary operators. 

• 5(6). The expression inside the bracket is called the argument of the function of 

f· 

• 6(7). The expression inside the square root is called the radicand of the root. 


